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ABSTRACT: Climate can have complex effects on demographic rates and the endogenous feedback
structure regulating mammal populations, and this can create problems for predictive modelling. In
northern and Alpine environments, weather appears to influence ungulate population growth rates
mainly during years of high population density, suggesting the possibility of nonlinear interactions be-
tween the 2 variables. Threshold models have been employed to account for these nonlinearities. For
example, in the case of Alpine ibex Capra ibex in the Gran Paradiso National Park of Italy, stronger
density dependence is assumed to occur after snowfall exceeds 1.54 m. In this paper we use more ob-
jective nonparametric methods to evaluate the form of the functional relationships governing the
dynamics of this ibex population. No evidence was found for a threshold effect in the data. Instead we
uncovered a non-additive and nonlinear interaction between climate and population density. The re-
sulting models predict ibex numbers as well or better than previous threshold models despite requir-
ing fewer parameters, and also conform well to traditional ecological concepts. We conclude with sev-
eral lessons for those who wish to predict the effects of climate change on animal population dynamics.

KEY WORDS: Ibex - Population dynamics - Lateral perturbations - Theoretical models

Resale or republication not permitted without written consent of the publisher

1. INTRODUCTION

Populations of ungulates in northern latitudes and
alpine environments are severely influenced by winter
weather and, in particular, by snowy or rainy weather
related to years with a high Northern Atlantic Oscilla-
tion (NAO) index; e.g. in Soay sheep (Grenfell et al.
1998, Coulson et al. 2001), red deer (Forchhammer et
al. 1998, Post & Stenseth 1998), reindeer (Aanes et al.
2000, 2003), roe deer (Grotan et al. 2005) and Alpine
ibex (Seether et al. 2002, Jacobson et al. 2004). One of
the interesting features of many of these ungulate pop-
ulations is that weather only seems to be important
during years of high population density (Grenfell et
al.1998, Jacobson et al. 2004), suggesting the pos-
sibility of non-additive and/or nonlinear interaction
between the 2 variables. One solution to this problem
is to separate the effects of weather or density by a
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threshold. For instance, Jacobson et al. (2004) used a
snow-depth threshold to separate the Alpine ibex data
into years of high and low snow depth and then esti-
mated different linear models for each data set. In con-
trast, Grenfell et al. (1998) and Stenseth et al. (2004)
used a population density threshold to separate Soay
sheep data into high and low density years and then
assumed that winter weather only affected the high
density group. A problem with this approach is that the
threshold appears to be more an artefact erected to
enable statistical analysis than a real biological phe-
nomenon, which makes it difficult to interpret results
within a meaningful theoretical context. In this paper
we take a more objective, nonparametric approach to
model selection and diagnosis and, as a result, find
no evidence for a threshold in the Alpine ibex data.
Instead, we found that a simple nonlinear logistic
model, in which snow depth acts as a lateral perturba-
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tion (Royama 1992) on the ibex regulation function, de-
scribes the data equally well but with fewer para-
meters. This model provided an ecological explanation
for the non-additive and nonlinear interaction between
climate and density, and predicted changes in ibex
numbers as well or better than previous models.

2. MODEL OF JACOBSON ET AL. (2004)

Jacobson et al. (2004) analyzed the Alpine ibex
Capra ibex census from 1961-2000 in Gran Paradiso
National Park, Italy (Fig. 1A) using the linear model

yi = a+ bn;+ cv; + en;v; + o¢; (1)

where y; is the realized logarithmic per capita rate of
increase (x;,1 — X;), X; is the natural logarithm of n;, the
size of the population measured in the autumn of year
I, v;is the maximum depth of snow (Fig. 1B) during the
following winter, a, b, ¢ and e are parameters esti-
mated by regression, and residuals ¢; are assumed to
be normally distributed with standard deviation ©.
They also employed a log-linear model in which n; in
Eq. (1) is replaced by its natural logarithm x;. Prelimi-
nary graphical analysis led the authors to propose a
threshold effect in which the density feedback was
more intense (steeper) in years when snowfall >1.54 m
(Fig. 2). Separating the 39 yr of data (1961-2000) into 2
groups according to this threshold, they then fit linear
(and log-linear) models for Eq. (1) to each group (NB
population data from 1956-1960 were omitted because
of absence of snow data). Threshold models generally
gave better descriptions of the data than other linear
models, with the best of them explaining around 80 %
of the variation in y;.
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Fig. 1. (A) Total population of Alpine ibex Capra ibex in Gran
Paradiso National Park, Italy, in autumn and (B) maximum
snow depth observed during the preceding winter
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Fig. 2. Per capita population growth rates of Alpine ibex as a
function of total population density. Solid and open circles:

years when the annual average winter snow depth was
>1.54 m and <1.54 m, respectively

In order to test their models, Jacobson et al. (2004) fit
them to data for the first 20 yr (1961-1980) (Table 1,
Model A), and then predicted ibex numbers for the
next 19 yr. In general, the better threshold models cap-
tured some important features of ibex dynamics, par-
ticularly the increasing trend during the 1980s (Fig. 3,
Model A).

3. NONPARAMETRIC DIAGNOSIS

Rather than making a priori assumptions about the
form of the population regulation function, we used a
diagnostic approach to detect clues in the data. For
example, one way to achieve a relatively unbiased
view of the form of the functional relationships is to
analyze a nonparametric version of Eq. (1)

yi = a+ b(n;) + cv; + en;v; + o¢; (2)

where b, c and e are now unspecified functions of the
independent variables. Statistical analysis was per-
formed in the R environment (R Development Core
Team 2004; www.r-project.org) using the Generalized
Additive Modeling (GAM) approach of Hastie & Tib-
shirani (1990). The forms of the functions b, ¢ and e
were determined by fitting natural cubic splines to the
complete 39 yr of data (e.g. see Bjornstad et al. 1998),
and the complexity of the curve (the number of
degrees of freedom) was determined by penalized
regression splines and generalized cross validation
(GCV) (Wood 2001). Smoothing terms were estimated
using penalized regression splines with parameters
selected by GCV. Results are summarized in Table 1B.
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Table 1. Parametric and nonparametric models fit to the Alpine ibex time series (Jacobson et al. 2004) using methods discussed
in Section 2. AIC: Akaike information criterion; GCV: generalized cross validation score; DET: coefficient of determination;

n;: population density in year i; v;: snow depth in meters; y;: In [n; /(n; —

convex: downward curving; concave: upward curving

1)]; df: estimated degrees of freedom of the spline term;

Models AlIC GCV DET
A. Jacobson et al.'s parametric threshold model (D 13) fit to first 20 yr of data -48.29 091
y; = 0.25+0.0020 v; - 0.0108 (n; X v;) if v; <154 cm
yi = 0.25+0.0042 v; - 0.017 (n; X v;) if v; >154 cm
B. Nonparametric models fit to 39 yr of data
Bl. y; = b(n; df =2.1, convex) + ¢ (v;; df = 1.0, linear) + e (-n; X v;; df = 2.3, convex) 0.005 0.75
B2. y; =c(v;;df =1.00, linear) + e (-n; X v;; df = 2.30, convex) 0.0048 0.74
B3. y; =e(-n;xv; df =2.43, convex) 0.0069 0.64
B4. y; = b (-n; df =2.52, concave) + ¢ (-v;; df = 2.09, convex) 0.0062 0.68
C. Our parametric models fit to first 20 yr of data
C2. y; = -0.015+0.37 v; = 3.05 x 107° (n; x v;)'4! -62.27 0.93
C3. y; = 0.11-9.80x 107! (n; x v;)*4° -40.39 0.78
C4. y; = 0.84-9.17 x 107° ()11 = 0.010 (v;)3>* —45.72 0.86

The full nonparametric Eq. (2) explained 75 % of the
variation in Alpine ibex annual per capita rates of
change (see Model B1 in Table 1). The forms of the
partial functions are illustrated in Fig. 4 (Model B1).
Notice the neutral effect of the b-function (Model B1,
independent density effect), the linear positive c-func-
tion (Model B1, independent snowfall effect), and the
convex negative e-function (Model B1, density acting
jointly with snowfall). Not surprisingly, the removal of
the b-function had almost no effect on model determi-
nation (Table 1, Model B2) or the shape of the c- or e-
functions (Fig. 4, Model B2). Removing the b- and c-
functions results in a univariate model (e-function) that

resolves 64 % of the variation (Model B3, Table 1) and
has a convex negative shape (Fig. 4, Model B3). Finally,
removing the e-function produces a bivariate model
with concave negative b-function and convex negative
c-function (Fig. 4, Model B4) that resolves 68 % of
the variation (Table 1, Model B4). In agreement with
Jacobson et al. (2004), our nonparametric analysis indi-
cates that the conjunct variable (n; X v;) explains more
of the variation in ibex per capita rates of change
than any other single variable. However, we found no
evidence of a snow-depth threshold. Instead, we un-
covered a strongly nonlinear interaction effect, with a
pronounced downward curvature (convexity) (see the

e-functions in Fig. 4). Our analysis fur-

ther suggests that snowfall often has

5500} Model A Model C2 an independent positive linear effect on
5000 N ibex per capita rates of change (see the
4500 0% | cfunctions in Fig. 4, Models B1 to B3), a

oo o’ relationship that is difficult to rationalize

4000 o .... o | on biological grounds. It is feasible that

g 3500 ° increasing snowfall results in higher
-g 3000 , , 1 forage production in the following grow-
g ing season, but the effect of snowfall
% 5500 . Model C4 %s convex negatl‘ve in quel B4, suggest-
2 5000l I .. ing the_ oppos@e. Notice that, when
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oe ° entered as separate variables (Model

40001 i o ¢ N B4), they resolve somewhat more of
3500 [ f%e,® the variation than when employed as
3000 | i a conjunct variable, which raises ques-
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Fig. 3. Capra Ibex. Comparison of observed Alpine ibex counts (points) with
deterministic predictions (lines) for parameterized models (Table 1). Models fit
to data from 1961-1980. Runs began with an initial population size of 3412 ind.,

the number counted in 1981
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Year

tions about the true nature of the rela-
tionship between population density and
snow depth; i.e. whether they act on
per capita rates in conjunction (Model
B3) or as separate, independent effects
(Model B4).
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Fig. 4. Nonparametric forms for
the functions b, ¢ and e obtained
by fitting natural cubic splines to
Model (2). Solid lines: fitted GAM
model; dashed lines: 95% confi-
dence interval. See Table 1B for
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4. PARAMETRIC MODELLING

Nonparametric analysis suggests that we should
employ a nonlinear model to describe Alpine ibex pop-
ulation dynamics. One possibility is a nonlinear variant
of Eq. (1)

y; = a+ bn)*+ c(v)® + e(n; x v)° + o¢g; 3)

which reduces to the linear Eq. (1) when all power
parameters (o, B, 0) are unity, and which approximates
the log-linear model as the power parameters become
very small. We fit variants of this model to the first 20 yr
of data so that we could, like Jacobson et al. (2004) use
the last 19 yr to test predictions. Models were fit by
nonlinear regression using the nls library in the R pro-
gram (Bates & Watts 1988, R Development Core Team
2004, available at www.r-project.org). Parameter values
are given in Table 1C.

Since the b-function contributes nothing to model
resolution we ignore this component. A nonlinear
model containing the c-function (snowfall acting inde-
pendently and positively) and e-function (combined

definition of variables and other
Vi details

negative effect of snowfall and density) explains >90 %
of the variation in the first 20 yr of data (Table 1, Model
C2), which is comparable to Jacobson et al. (2004)
Model D13 (Table 1, Model A), but with 2 fewer para-
meters (as reflected by the smaller Akaike's Informa-
tion Criterion [AIC]). However, this model does
not effectively predict the increasing trend in ibex
numbers during 1983-1993 (Fig. 3, Model C2; correla-
tion between observed and predicted values from
1983-1993 = 0.78). In contrast, a model containing
the e-function alone resolves only 78 % of the variation
(Table 1, Model C3), but makes much better predic-
tions of the increasing trend (Fig. 3, Model C3; correla-
tion between observed and predicted values from
1983-1993 = 0.93). Thus, the independent positive
effect of snowfall in Model C1 (c-function) may be spu-
rious and should probably be ignored. Finally, a model
representing the independent effects of density and
snow depth (i.e. omitting the conjunct variable)
resolves 86 % of the variation (Table 1, Model C4), but
must be rejected for its complete inability to predict the
increasing trend in ibex abundance (Fig. 3, Model C4;
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correlation between observed and predicted numbers
from 1983-1993 = 0.62). Note that the best threshold
model of Jacobson et al. (2004) fails to improve on pre-
diction, even though it has 2 more parameters than
Model C3 (Fig. 3, Model A; correlation between
observed and predicted numbers from 1983-1993 is
0.88). Also note that Models A and C2 both fail to
reproduce the peak ibex numbers (almost 5000 ind.) in
the years 1991-1993, and that none of the models
anticipate the decline in ibex numbers from 1994 to
1997, or the relatively constant numbers during the last
4 yr (Fig. 3). Even though the years 1998 to 2000 had
some of the lowest snowfalls on record, the ibex popu-
lation failed to respond to these favorable conditions,
suggesting that a new factor or process may have
entered the picture.

5. THEORETICAL INTERPRETATION

Our reanalysis of the Alpine ibex time series sug-
gests that population dynamics in Gran Paradiso
National Park over the period 1961-1993 can be
described and predicted by a simple nonlinear model
with the independent variable being the combined
effect of population density and snow depth (i.e. Model
C3in Table 1)

vi = a+em;xv)® (4)

However, questions remain about the theoretical
interpretation of this model. We can approach the
problem by solving Eq. (4) for y; = 0 and n,; = k, the size
of the population at equilibrium, given a > 0 and e < 0,
the necessary conditions for a stable solution with
positive k; i.e.

0 =a-ekxv)P® (5)
K= g ©

The equilibrium abundance k (frequently referred to
as the carrying capacity of the environment) is
inversely proportional to winter snow depth, v;. Since
carrying capacity is usually determined by a limiting
factor such as food or space (Leslie 1948, Berryman
1999, 2004), this suggests that the limiting factor is
inversely related to snow depth. One possibility is that
snowfall reduces the area available for winter grazing
(Seether et al. 2002), a view supported by observations
that ibex prefer sun-exposed habitats without snow
(Nievergelt 1966) and that large groups of ibex often
gather on these preferred areas during years of deep
snow and high population density (Toigo 1999).
Another possibility is that deep snow increases the
maintenance energy demands of individual ibex so
that, in years of deep snow and high ibex numbers,

many starve because their energy demands cannot be
met. This appears to be the mechanism operating in a
Soay sheep population on the island of Hirta (Berry-
man & Lima 2006).

The above interpretation seems to conform well to
classical ecological theory, since, if [(a/e)'/®]/k is sub-
stituted for v; in Eq. (4), we obtain

oy

which is a nonlinear version of the classic logistic
model, sometimes called the theta-logistic (see e.g.
Verhulst 1838, Richards 1959, Nelder 1961, Gilpin &
Ayala 1973, Berryman 1999).

6. PREDICTING EFFECTS OF CLIMATE CHANGE

Our reanalysis of the Alpine ibex time series leads to
some important lessons concerning the prediction of
climatic effects on population dynamics. The first is
that the structure of the model is of critical importance
(Berryman 1992). For instance, if we only had data
from 1961-1980 and had assumed, like many before
us, that climate has an additive effect on the rates of
population change, we would have ended up with a
model that was incapable of predicting the increase in
ibex numbers over the following years (e.g. Model C4).
Additive climatic effects cause what Royama (1992)
calls vertical perturbations to the growth function,
while interactions between climate and density cause
lateral perturbations (e.g. Model C3). These different
kinds of perturbations can have very different conse-
quences for population dynamics (cf. Models C3 and
C4 in Fig. 3). Moreover, the ecological mechanisms
underlying lateral perturbations imply that the exoge-
nous factor (snow depth) influences a resource such as
food or space (Berryman 2004). Although, other studies
have shown that snow depth and winter weather affect
Alpine ibex population dynamics (Seether et al. 2002,
Jacobson et al. 2004), our results suggests that they
probably act on the carrying capacity, a hypothesis
that had not been proposed previously. The lesson is
clear: it may be misleading, or even dangerous, to
make a priori assumptions about the structure of the
underlying model (Berryman 1992).

The second lesson emerging from our study is that
the usual criteria for model selection may not be good
enough. It is common to see models selected on the
basis of coefficients of determination (DET = r?) or
AIC (Burnham & Anderson 1998). If our results can be
extended to other situations, it seems that these criteria
may not be effective at selecting models with good
predictive capabilities. For instance, Model C2 had the
best AIC and DET (Table 1) but was unable to pre-
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dict the ibex population increase (Fig. 3). In contrast,
Model C3 with its much less impressive AIC and DET
was able to capture this trend with one parameter
fewer (Table 1, Fig. 3). From this we conclude that the
only real way to judge and compare ecological models
with any degree of confidence is in their ability to
predict independent observations. Thus, some of the
available data should be saved for testing model pre-
dictions. Here we are again in agreement with Jacob-
son et al. (2004).

The third lesson comes from the inability of all mod-
els to predict the decline and apparent stabilization of
ibex numbers following the peak in 1993. It is clear
that climate can affect many components of the ecosys-
tem, some of which may be unknown or unmeasured
(e.g. food, predators, competitors), but which can affect
the variable(s) of interest. For instance, chamois Rupi-
capra rupicapra also increased in Gran Paradiso
National Park, in a similar way to the ibex, but did not
decline during the final years (A. Provenzale pers.
comm.). Thus, one could speculate that inter-specific
competition with chamois may have been at least
partly responsible for preventing continued growth of
the ibex population. The fact that chamois seem to do
better in the more favorable habitats (Forsyth & Hick-
ling 1998), and that the availability of such habitats is
likely to increase with decreasing snow depths, may
support this proposition. Once again the lesson is clear:
accurate forecasts of climatic effects may require
multi-species time series data and multi-species
models, and for this we will need to broaden our sam-
pling to include as many environmental components as
possible.

Finally, we need to briefly comment on the nonlinear
diagnostic approach employed in this paper. Although
nonparametric techniques like GAM offer a relatively
unbiased way to deduce the form of functional rela-
tionships, they are not a panacea. Statistical probes
should generally be used with caution, and can never
substitute for biological and ecological knowledge and
insight (see, e.g. Berryman & Turchin 1997, 2001). In
addition, it is important to emphasize that we only used
the GAM approach for diagnostic purposes, not for
constructing predictive or explanatory models, which
we feel should have an ecological derivation; i.e. as
with the logistic equation (Royama 1992). It is comfort-
ing that, although we did not start out with any partic-
ular ecological model in mind, we ended up, after an
objective assessment of the data, with the familiar non-
linear logistic.
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