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ABSTRACT 

 

The yeast Pichia pastoris shows physiological advantages for the production of 

recombinant proteins compared to other commonly used cell factories. This 

microorganism is mostly grown in dynamic conditions, where the cell’s environment is 

continuously changing and many variables influence process productivity. In this context, 

a model capable of explaining and predicting cell behavior for the rational design of 

bioprocesses is highly desirable.  

In this work, we developed a dynamic genome-scale metabolic model for glucose-limited, 

aerobic cultivations of Pichia pastoris. Starting from an initial structure for batch and fed-

batch configurations, we performed pre/post regression diagnostics to determine 

identifiability, significance and sensitivity problems between model parameters. Once 

identified, the non-relevant parameters were iteratively fixed until an a priori robust 

modeling structure was found for both types of cultivation. Next, the robustness of these 

structures was confirmed by calibrating new datasets, where no parametric problems 

appeared. Finally, the model was validated for the prediction of batch and fed-batch 

dynamics in the studied conditions. 

The platform was also used to unravel genetic and process engineering strategies to 

improve the production recombinant Human Serum Albumin (HSA). The simulation of 

single knock-outs indicated that the deviation of carbon towards cysteine and tryptophan 

formation could theoretically improve HSA production. In particular, the deletion of 

methylene tetrahydrofolate dehydrogenase could potentially increase HSA volumetric 

productivity by 630%. Also, given specific bioprocess limitations and strain 

characteristics, the model indicated that a decreasing growth rate in the feed phase of a 

fed-batch cultivation may improve the volumetric productivity of this protein by 24%. 

We formulated a dynamic genome scale metabolic model of Pichia pastoris that yields 

realistic metabolic flux distributions throughout dynamic cultivations. It can be used to 

calibrate several experimental data and to rationally propose metabolic and process 

engineering strategies to improve the performance of a cultivation setup.  
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RESUMEN 

 

Pichia pastoris posee ventajas fisiológicas para la producción de proteínas recombinantes 

en comparación a las factorías celulares convencionales. Esta levadura es comúnmente 

cultivada en condiciones dinámicas, donde el ambiente extracelular cambia 

constantemente y numerosas variables inciden en la productividad del proceso. En este 

contexto, un modelo capaz de explicar y predecir el comportamiento celular para el diseño 

racional de bioprocesos es altamente deseable.  

En este trabajo, se ensambló un modelo dinámico a escala genómica de Pichia pastoris 

para cultivos aeróbicos batch y fed-batch limitados en glucosa. El modelo fue calibrado 

con datos de fermentaciones, luego de lo cual se realizaron diagnósticos de pre/post 

regresión para determinar problemas de sensibilidad, significancia e identificabilidad 

entre sus parámetros. Una vez identificados, los parámetros irrelevantes fueron fijados 

iterativamente hasta encontrar una estructura de modelación sin problemas paramétricos 

a priori. La robustez de estas estructuras fue comprobada mediante la calibración de 

nuevos datos experimentales, donde no aparecieron los problemas antes mencionados. 

Finalmente, el modelo fue validado para la predicción de dinámicas batch y fed-batch en 

condiciones similares a las estudiadas.  

Luego de la validación, el modelo fue utilizado para revelar estrategias de ingeniería 

genética y de procesos para optimizar la producción de Albúmina Sérica Humana (HSA) 

recombinante. La simulación de knock-outs indicó que el desvío del carbono hacia la 

formación de cisteína y triptófano podría mejorar la producción de HSA. En particular, la 

deleción de la enzima Metilen-tetrahidrofolato deshidrogenasa podría aumentar la 

productividad volumétrica de la formación de HSA en un 630%. Además, el modelo 

indicó que es posible mejorar en un 24% la productividad de la formación de HSA 

mediante una política de tasa de crecimiento decreciente en la fase de alimentación de un 

cultivo fed-batch. 

En conclusión, se formuló un modelo dinámico a escala genómica de Pichia pastoris 

capaz de entregar distribuciones de flujo realistas durante cultivos dinámicos y proponer, 
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de manera racional, estrategias de ingeniería metabólica y de procesos para mejorar el 

desempeño de un biorreactor. 

 

Keywords: dFBA, Pichia pastoris, Pre/post regression diagnostics, Sensitivity, 

Identifiability, Significance, Genome-scale metabolic modeling, fed-batch, MOMA, 

Bioprocess optimization, Reparametrization. 
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1. INTRODUCTION 

Recombinant protein production is a multibillion-dollar business mainly comprised by 

biopharmaceuticals (i.e. recombinant biologic drugs) and industrial enzymes (BCC 

Research, 2014; Markets and Markets, 2015; Walsh, 2014). These compounds are 

commonly synthesized in Escherichia coli, Saccharomyces cerevisiae and Chinese 

Hamster Ovary cells (CHO) (Ferrer-Miralles, Domingo-Espín, Corchero, Vázquez, & 

Villaverde, 2009; Maccani et al., 2014; Overton, 2014; Walsh, 2014);  however, there is 

a strong pressure to find cost-effective alternatives to overcome technical and economic 

disadvantages of the aforementioned cell factories, especially in downstream processing 

(Corchero et al., 2013). 

Among the unconventional cell factories used for recombinant protein production, the 

methylotrophic yeast Pichia pastoris (syn. Komagataella phaffii) has driven special 

attention thanks to its convenient physiology and easy handling (Daly & Hearn, 2005). 

First of all, commercially available strong promoters (inducible and constitutive) allow 

the controlled expression of heterologous proteins easily (Daly & Hearn, 2005). Unlike E. 

coli, P. pastoris naturally performs post-translational modifications such as disulfide bond 

formation, proteolytic processing and glycosylation (Cereghino & Cregg, 2000; Ferrer-

Miralles et al., 2009). This feature enables the protein being produced to achieve a correct 

tertiary structure, which is essential for its functionality (Ciofalo, Barton, Kreps, Coats, & 

Shanahan, 2006; Corchero et al., 2013; Masuda, Ide, Ohta, & Kitabatake, 2010). In 

contrast to S. cerevisiae, P. pastoris exhibits a Crabtree-negative phenotype, showing a 

reduced formation of undesirable products, like ethanol, in glucose-limited conditions 

(Çalık et al., 2015; Mattanovich et al., 2009). It also shows, when compared to other 

yeasts, a lower basal secretion of proteins, which makes downstream processing easier 

(Delic et al., 2013; Mattanovich et al., 2009).  Finally, it can be efficiently grown up to 

high cell densities using fed-batch cultivations (Daly & Hearn, 2005), achieving high titers 

and productivities. For these desirable features, P. pastoris has been widely used for the 

expression of recombinant proteins, reaching grams per liter concentrations in several 

cases (Cereghino & Cregg, 2000; Čiplys et al., 2015; Hasslacher et al., 1997; Heyland, 

Fu, Blank, & Schmid, 2010; Y. Wang et al., 2001). Most remarkably, and as a proof of its 
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technical feasibility and adequacy, two recombinant proteins produced in this cell factory 

have already been approved by the FDA for medical purposes (Ciofalo et al., 2006; 

Thompson, 2010).  

Despite its growing acceptance and actual successful applications, recombinant protein 

production in P. pastoris can be undermined by several cellular processes, with protein 

folding and secretion being the most recurrent bottlenecks (Delic et al., 2013; Delic, 

Göngrich, Mattanovich, & Gasser, 2014; Gasser et al., 2013). In addition, limitations may 

also be caused by the codon usage of the recombinant protein (J.-R. Wang et al., 2015), 

promoter selection (Prielhofer et al., 2013), carbon and oxygen availability in the culture 

(Baumann et al., 2008; Heyland, Fu, Blank, & Schmid, 2011) and fed-batch operational 

parameters (Maurer, Kühleitner, Gasser, & Mattanovich, 2006), seriously hampering 

protein yield, productivity and the economic feasibility of the process. 

Industrially, Pichia pastoris is commonly grown in fed-batch cultures (Looser et al., 

2015). This configuration allows to reach high titers of a product of interest with limited 

formation of undesirable compounds in a controlled fashion (Villadsen, Nielsen, & Lidén, 

2011). During this type of cultivation, the extracellular medium changes constantly and 

the cells adapt continuously to the varying concentration of species. In this context, it is 

important to understand the metabolic impact that process conditions generate in the cell 

to improve the strain’s performance (Graf, Dragosits, Gasser, & Mattanovich, 2009). This 

is a complex task since process variables often require significant amounts of time  - and 

money - to characterize and fine-tune (Looser et al., 2015). Therefore, it would desirable 

to have a computer platform for P. pastoris that allows the simulation of its growth under 

different experimental setups in order to elaborate rational hypotheses to improve the 

production of a compound of interest. 

Systems biology offers a quantitative and comprehensive approach to address this task 

(Kitano, 2002). In particular, dynamic Flux Balance Analysis (dFBA) (Mahadevan, 

Edwards, & Doyle, 2002; Varma & Palsson, 1994) is a modeling framework that allows 

the simulation of non-stationary (batch or fed-batch) cultures of a target microorganism, 

accounting for its entire metabolism using Genome-Scale Metabolic Models (GSM). 
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GSMs are computable structures that represent the entire metabolism of a cell or microbial 

community (Palsson, 2015; Thiele & Palsson, 2010). Their applications include 

understanding cellular behavior under different environmental conditions, serving as a 

scaffold to map over them omics data and determining favorable culture conditions and 

genetic modifications for a particular metabolic engineering objective in silico (Asadollahi 

et al., 2009; Park, Lee, Kim, & Lee, 2007). There are five published GSMs of Pichia 

pastoris (Caspeta, Shoaie, Agren, Nookaew, & Nielsen, 2012; B. K. S. Chung et al., 2010; 

Irani, Kerkhoven, Shojaosadati, & Nielsen, 2015; Sohn et al., 2010; Tomàs-Gamisans, 

Ferrer, & Albiol, 2016), all designed to help in the strain optimization process with a 

special emphasis on recombinant protein production. However, their application for this 

purpose has been limited (B. K.-S. Chung, Lakshmanan, Klement, Ching, & Lee, 2013; 

Nocon et al., 2014), since they have mostly been employed to study stationary conditions 

and little attention has been given to the flux distributions that can be derived from them. 

 

2. HYPOTHESIS 

The development of a dynamic genome-scale metabolic model of Pichia pastoris will 

enable the determination of metabolic flux distributions during batch and fed-batch 

cultivations, which can then be used to unravel metabolic and process engineering 

strategies for the overproduction of a compound of interest. 

 

3. OBJECTIVES 

 

3.1. General Objective 

To assemble a dynamic, genome scale metabolic model of Pichia pastoris capable 

of fitting experimental data without parametric problems and that can be used to 

generate metabolic and process engineering strategies to improve bioreactor 

performance. 
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3.2. Specific Objectives: 

 

3.2.1. To assemble a dynamic genome-scale metabolic model for aerobic, 

glucose-limited dynamic cultivations of P. pastoris. 

 

3.2.2. To be able to calibrate new data with the model with as few sensitivity, 

identifiability and significance problems as possible.  

 

3.2.3. To apply the model to (i) obtain metabolic flux distributions during 

dynamic cultivations and (ii) to unravel genetic and process engineering 

strategies to improve the production of a recombinant protein. 

 

 

 

4. MATERIALS AND METHODS  

To assemble the dynamic modeling framework (), we started by selecting one of the 

available genome-scale metabolic models and employed it at the core of the model. Once 

built, the model was calibrated using experimental data from several batch and fed-batch 

cultivations. Then, its structure was evaluated in order to determine the presence of 

parametric problems: lack of significance, low sensitivity or non-identifiability 

(correlation). If these problems are not properly assessed, they can mask the real value of 

the parameters, which are inputs of the GSM to obtain flux distributions. Once identified, 

the aforementioned problems were eliminated by iteratively fixing the non-relevant ones, 

leaving subsets with no issues a priori. These subsets were used to recalibrate the available 

data and the one that presented the best fitting capability with the fewest parametric 

problems was chosen to be validated as a robust modeling structure. To do this, we first 

demonstrated that the chosen model structure yielded no (of just a few) significance, 

sensitivity or identifiability problems when calibrating new data. Complementary to this 

analysis, we determined if the model could predict accurately bioreactor dynamics in both 

batch and fed-batch configurations. 
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Finally, we manually curated the chosen metabolic model and performed simulations to 

demonstrate the potential uses of the model: 

i) Analysis of the metabolic flux distribution during different stages of a dynamic 

cultivation 

ii) Discovery of knock-out targets for the overproduction of recombinant proteins  

iii) Evaluation of different feeding policies in silico to improve recombinant 

protein production considering specific information about the strain and 

process setup. 

  

 

Figure 1 – Methodology workflow.  

 

4.1. Genome-scale model selection from literature 

Usability and similarity to experimental chemostat data were used as criteria to select the 

most appropriate genome-scale model for building the dynamic framework. In terms of 

usability, we verified that the models had an adequate annotation, i.e. balanced equations, 

intuitive metabolite and reaction names, compartmentalization, functional gene-reaction 

associations and adequate representation of the central metabolism, among others. We 

then evaluated model similarity to experimental data from two chemostats (Table 1) using 

the normalized square differences between experimental and simulated rates (Equation 1):  

𝐹𝑖 = ∑
1

𝑛𝑗
∙ ∑

√(𝑣𝑒𝑥𝑝𝑘,𝑗
− 𝑣𝑚𝑜𝑑𝑘,𝑗

)
2

𝑣𝑒𝑥𝑝𝑘,𝑗

𝑛𝑗

𝑘=1

2

𝑗=1

 

( 1 ) 

GSM selection  

Model 
Assembly 

Calibration with 
experimental data Validation Reparametrization 

Analysis 

Simulation 

Cross 
Calibration 



6 
 

 
 

Here, F is the overall fitting relative error of model i, nJ corresponds to the number of 

predicted rates determined in each dataset (12 in dataset 1 and 30 in dataset 2). Also, 𝑣𝑒𝑥𝑝𝑘
 

corresponds to the vector of experimental rates of condition k in dataset j and 𝑣𝑚𝑜𝑑𝑘,𝑗
 is 

the model’s estimation of the experimental rates of condition k in dataset j.  

For each prediction, we first constrained each model with nJ-1 experimental rates. Then, 

Flux Balance Analysis (FBA) (Orth, Thiele, & Palsson, 2010) was performed using 

biomass maximization as objective function to predict  the remaining one. 

It is worthy to note that whenever a model yielded an infeasible solution (due to carbon 

imbalance) or erroneously predicted the production of a compound under certain 

experimental condition, an error of 100% was assumed for that particular rate.  

The model that gave best predictions compared to experimental data was chosen as the 

basis for the dynamic model. We tested four genome-scale metabolic models of Pichia 

pastoris that were available at the beginning of this study: the iPP669(B. K. S. Chung et 

al., 2010), the iLC915(Caspeta et al., 2012), the PpaMBEL1254(Sohn et al., 2010) and an 

updated version of the iPP669 model called iFS670.  This model included the D-Arabitol 

(Cheng et al., 2014) synthesis pathway and equations for the heterologous synthesis of a 

FAB fragment, Human Serum Albumin (HSA) and thaumatin, according to P. pastoris 

codon usage (De Schutter et al., 2009) (Supplementary material 1). We also performed 

this analysis with the latest Pichia pastoris GSM published in January 2016 (Tomàs-

Gamisans et al., 2016), to determine if it is worth including it in future versions of the 

dynamic framework (Supplementary material 11).  

 

Table 1 - Chemostat data used for model selection 

Set Type of data Rates Conditions Reference 

1 Glycerol- and/or methanol-limited 

chemostats 

5 4 (Solà et al., 

2007) 

2 Glucose-limited chemostats at 

different oxygen levels 

7 6 (Carnicer et al., 

2009) 
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4.2. Model construction 

The structure of the model was based on an existing dFBA framework developed by 

Sanchez et al for Saccharomyces cerevisiae (Sánchez, Pérez-Correa, & Agosin, 2014). 

The model operates under a pseudo-steady state assumption (Mahadevan et al., 2002; 

Stephanopoulos, Aristidou, & Nielsen, 1998), i.e. considering that intracellular fluxes are 

several orders of magnitude faster than extracellular rates and, therefore, the former can 

be disregarded if the FBA model is resolved iteratively in short integration periods.  

The model is composed by three linked blocks that are solved iteratively; (i) the kinetic 

block, (ii) the metabolic block and (iii) the dynamic block ().  

 

 

Figure 2 - Iterative structure of the model. V refers to culture volume [L], FIN is the feeding policy used in fed-batch 

cultures, X, S and P are biomass, limiting substrate and Product concentration in [g/L] respectively. 

 

 

 

V
0
 

X
0
 

S
0
 

P
0 

Fin(t) 

Kinetic Block 
 

 Glucose uptake kinetics 
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 Glucose (S)  

 Products (P)  

Metabolic Block 

 
Flux distribution determination: 
 
 Bi-objective FBA between biomass 

maximization and minimization of 
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Kinetic block 

The kinetic block sets the uptake and production rates for all the compounds in the model. 

First, glucose uptake rate (𝑣𝐺𝑙𝑢𝑐) is determined using Michaelis-Menten kinetics (Postma, 

Verduyn, Scheffers, & Van Dijken, 1989). 

𝑣𝐺𝑙𝑢𝑐 =
𝑣𝑆 𝑀𝑎𝑥 ∙ 𝑆

𝐾𝑆 + 𝑆
 

( 2 ) 

Here, S is the glucose concentration in the medium [g/L], 𝑣𝑆 𝑀𝑎𝑥 is the maximum glucose 

uptake rate and 𝐾𝑆 is the uptake half activity constant of this substrate. Once determined, 

the glucose uptake rate [mmol/gDCW·h-1] is included as lower bound of the corresponding 

exchange reaction in the model, which carries a negative flux if glucose is consumed.  

Then, the lower bounds of the exchange reactions of the remaining compounds are fixed.  

𝑙𝑏𝑘 =  𝑣𝑃𝑘
         𝑘 = 1 … 4 ( 3 ) 

Where lbK is the lower bound of the exchange reaction of compound k, which refers to 

the four products included: ethanol, pyruvate, arabitol and citrate. These parameters are 

redefined during the fed-batch phase; therefore, they adopt two values during this type of 

cultivation. 

Finally, this block fixes the non-growth associated maintenance ATP (𝑚𝐴𝑇𝑃, flux through 

a cytosolic ATP hydrolysis reaction in the model), which accounts for the energy drain 

caused by cellular processes not related to generating new cell material such as 

osmoregulation, shifts in metabolic pathways, cell motility etc. (Van Bodegom, 2007; 

Varela, Baez, & Agosin, 2004) 

 

Metabolic block 

The metabolic block receives a constrained metabolic model from the kinetic block and 

solves an optimization problem to determine growth rate and the flux distribution in the 

cell. The Genome Scale Model (GSM) consists on a set of m metabolites and n reactions 

grouped in a Stoichiometric Matrix S (m x n) that represents the cell’s entire metabolism. 
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If accumulation of metabolites is neglected, a mass balance can be stated according to the 

equation (4): 

𝑆 ∙ 𝑣 = 0 

𝑠. 𝑡. 

𝑙𝑏 < 𝑣 < 𝑢𝑏 

( 4 ) 

 

Where v is a vector of metabolic fluxes in [mmol/gDCW·h]. Additionally, lower and upper 

bounds (𝑙𝑏 𝑎𝑛𝑑 𝑢𝑏) for each component of the flux vector can be stated according to 

reaction reversibility, along with an objective function to solve the underdetermined 

system. 

The metabolic block solves a bi-objective Quadratic Programming (QP) problem between 

maximization of growth rate and minimization of the total absolute sum of fluxes 

(Holzhütter, 2004), subjected to the constraints imposed by the stoichiometric matrix 

(Feng, Xu, Chen, & Tang, 2012): 

 

 

 

𝑀𝑖𝑛 𝛼 ∙ ∑ 𝑣𝑖
2

𝑛

𝑖=1

− (1 − 𝛼) ∙ 𝜇 

𝑠. 𝑡. 

 

       𝑆 ∙ 𝑣 = 0 

       𝑙𝑏𝑖 ≤ 𝑣𝑖 ≤ 𝑢𝑏𝑖        𝑖 = 1 … 𝑛 

( 5 ) 

 

 

In this formulation, the sub-optimal growth coefficient α is an adjustable parameter from 

the model and is used to modulate the importance of the two, biologically relevant, 

competing objectives (Sánchez, Pérez-Correa, et al., 2014; Schuetz, Kuepfer, & Sauer, 

2007; Schuetz, Zamboni, Zampieri, Heinemann, & Sauer, 2012).  

All Flux Balance Analyses (FBA) were solved using the Constraint-Based Reconstruction 

and Analysis (COBRA) Toolbox (Becker et al., 2007; Hyduke et al., 2011), which 

employs the programming library libSBML (Bornstein, Keating, Jouraku, & Hucka, 
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2008) and the SBML Toolbox(Keating, Bornstein, Finney, & Hucka, 2006). Finally, 

Gurobi 6.0.2 was used as optimization software. 

 

Dynamic block 

The dynamic block consists of a set of ordinary differential equations (ODEs) that account 

for the volume change of the culture and the mass balances of biomass and the dissolved 

compounds considered in the model in either batch or fed-batch configuration.  

𝑑𝑉

𝑑𝑡
= 𝐹(𝑡) − 𝑆𝑅 ( 6 ) 

𝑑(𝑉𝑋)

𝑑𝑡
= 𝜇 ∙ (𝑉𝑋) ( 7 ) 

𝑑(𝑉𝑆)

𝑑𝑡
= 𝐹(𝑡) ∙ 𝑆𝐹 − 𝑣𝑆 ∙ 𝑀𝑊𝐺 ∙ (𝑉𝑋) ( 8 ) 

𝑑(𝑉𝑃𝑘)

𝑑𝑡
= 𝑣𝑃𝑘

· 𝑀𝑊𝑃𝑘
∙ (𝑉𝑋) ( 9 ) 

 

Where V is volume [L], t is time [h], F(t) is the feed function for the fed-batch phase in 

[L/h] and SR is a constant sampling rate [L/h] determined for every fed-batch cultivation 

included. This was considered to simulate accurately the quantity of substrate added in the 

feed phase: during the batch phase, we took between 15 to 20% of the reactor volume in 

samples and the remaining volume was considered in the determination of the feeding 

rate. X is the biomass concentration [g/L], µ is the specific growth rate [h-1] (obtained 

from equation 5), S is the extracellular concentration glucose [g/L], SF is the feed’s 

glucose concentration [g/L], PK is the k-th extracellular product concentration in [g/L], 

𝑣𝑃𝑘
 is the corresponding production rate [mmol/gDCW·h] and MW accounts for the 

corresponding molecular weight [g/mmol]. All cultivations had glucose as the limiting 

substrate, and ethanol, pyruvate, arabitol and citrate as the main metabolic products. 

Therefore, Equation 9 comprises four differential equations.  
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The set of equations was solved in Matlab and solver options were the same as the ones 

used by Sanchez et al (Sánchez, Pérez-Correa, et al., 2014).  

 

Model parameters 

All the parameters studied, along with their units, lower (LBs) and upper (UBs) bounds 

and initial values for all optimizations are summarized in (Table 2).  The LBs and UBs of 

𝑣𝑆 𝑀𝑎𝑥, KS, and mATP were chosen according to the literature (B. K. S. Chung et al., 2010; 

van Urk, Postma, Scheffers, & van Dijken, 1989; Villadsen et al., 2011) while the rest of 

the bounds were selected to ensure that the algorithm had enough search space (upper 

bounds exceeded previously reported values of production and consumption rates 

(Carnicer et al., 2009)). Finally, initial values for parameter estimation were chosen to 

attain an initial feasible simulation.   

 

Table 2 - Parameters of the model. In this table we present the symbol, name, units, lower bounds, initial value and 

upper bounds of the parameters.  

Symbol Name Units LB 
Initial 

value 
UB 

𝑣𝑆,𝑚𝑎𝑥  Maximum glucose uptake rate 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  0 2.5 10 

𝐾𝑆 Half saturation constant for glucose uptake 𝑔 𝐿⁄  0 10-4 10-3 

𝑣𝐸𝑡𝑂𝐻,𝐵 Ethanol minimum secretion rate (batch) 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  0 0.5 3 

𝑣𝑃𝑦𝑟,𝐵 Pyruvate minimum secretion rate (batch) 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  0 0.1 2 

𝑣𝐴𝑟𝑎𝑏,𝐵 Arabitol minimum secretion rate (batch) 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  0 0.2 2 

𝑣𝐶𝑖𝑡,𝐵 Citrate minimum consumption rate (batch) 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  0 0 2 

𝑣𝐸𝑡𝑂𝐻,𝐹𝐵  Ethanol minimum consumption rate (fed-batch) 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  0 0 2 

𝑣𝑃𝑦𝑟,𝐹𝐵 Pyruvate minimum consumption rate (fed-batch) 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  0 0 2 

𝑣𝐴𝑟𝑎𝑏,𝐹𝐵 Arabitol minimum consumption rate (fed-batch) 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  0 0 2 

𝑣𝐶𝑖𝑡,𝐹𝐵  Citrate minimum consumption rate (fed-batch) 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  0 0 2 

𝛼𝐵 Sub-optimal growth coefficient (batch) [−] 0 0 10-3 

𝛼𝐹𝐵 Sub-optimal growth coefficient (fed-batch) [−] 0 0 10-3 

𝑚𝐴𝑇𝑃 Non-growth associated ATP 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  0 2 10 

𝑇𝐹𝑒𝑑 
Time when secondary metabolite consumption 

starts in fed-batch cultures 
ℎ 20 25 32 
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4.3. Calibration with experimental data 

4.3.1. Strains  

Four Pichia pastoris strains were employed in this study: a parental GS115 strain 

(Invitrogen) and three recombinant strains harboring one, five and eight copies of the 

Thaumatin gene respectively. The strains were constructed and gently facilitated by 

the PhD candidate Alexandra Lobos. Despite the strains were transformed, thaumatin 

was not detected at concentrations higher than 100 ug/L in the cultivations. Therefore, 

its production was left out of the analysis and no mass balance was established to it. 

 

4.3.2. Experiments 

The batch model was calibrated using eight aerobic glucose limited cultivations 

corresponding to duplicates of the four strains available. On the other hand, the fed-batch 

configuration of the model was calibrated with three cultures of the strain harboring one 

copy of the gene under the same environmental conditions of the batch cultivations.  

 

4.3.3. Cultivation Conditions 

Each culture started from a 2 [mL] cryotube of the corresponding strain kept at -80 °C. A 

pre-culture was grown overnight at 30 °C in shake flasks with 50 [mL] of the inoculum 

medium until it reached 1 OD600, which were then added to 450 [mL] of the batch medium 

to reach an initial volume of 500 [mL] and 0.1 initial OD600 (in both batch and fed-batch 

experiments). Culture conditions were kept at 30 °C, pH = 6.0 and DO 2.8 [mg/L]. 

Aerobiosis was achieved by a triple split-range control action including agitation (200–

800 [RPM]), air flow (0.3–1.2 [L/min]) and pure oxygen flow (0–1.2 [L/min]) (M. 

Cárcamo et al., 2014). pH was controlled using phosphoric acid 20% [v/v] and ammonium 

hydroxide 20% [v/v]. Temperature was controlled with a mixture of hot and cold water, 

using the glass jacket of the reactors. Lastly, foam was controlled manually using silicone 

antifoam 10% [v/v]. Glucose starvation was detected when a sudden decrease of the CO2 
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composition in the off-gas occurred, and confirmed each time using Benedict's reagent. 

For fed-batch experiments, the feed F(t) was designed to track a predefined time variable 

growth rate and, therefore, can be calculated from the reactor's glucose and biomass mass 

balances, as detailed elsewhere (Villadsen & Patil, 2007): 

𝐹(𝑡) =
𝜇𝑠𝑒𝑡(𝑡)

𝑆𝐹 ∙ 𝑌𝑆𝑋
∙ 𝑉𝑖𝑋𝑖 ∙ exp (∫ 𝜇𝑠𝑒𝑡(𝑡)𝑑𝑡

𝑡

𝑡𝑖

) 
( 10 ) 

 

with SF the glucose feed concentration [g/L], YSX the experimental glucose-biomass yield 

[gDCW/g], ti the time at which the feed started for a given cultivation [h], Vi and Xi the 

volume [L] and biomass [g/L] values at ti, respectively, and μSET(t) the variable growth 

rate. The latter was defined as follows: 

𝜇𝑠𝑒𝑡(𝑡) = (𝜇𝑚𝑎𝑥 − 𝜇𝑚𝑖𝑛) ∙ 𝑒−𝐶𝑡 + 𝜇𝑚𝑖𝑛 ( 11 ) 

 

Where μMAX = 0.1 [1/h], μMIN  = 0.07 [1/h] and C = 0.07 [1/h]. Therefore, μSET(t) decays 

exponentially from 0.1 to 0.07 [1/h], which has been found to increase (in contrast to 

constant growth rates in the feed phase) the final biomass concentration in fed-batch 

cultivations of E. coli and S. cerevisiae performed in our laboratory (Martín Cárcamo, 

2013). 

 

4.3.4. Culture media 

The components of the different media used in this study are detailed in Table 3, they 

were based on the recipe from (Tolner, Smith, Begent, & Chester, 2006). Sodium 

hydroxide was added until reaching a pH of 6 and the trace element solution was also 

taken from (Tolner et al., 2006). 
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Table 3 - Composition of 1L of the different define media used in this study 

 

 

Batch model 

development 

Fed-batch model 

development 

Element Unit Inoculum Batch Batch Feed 

Glucose [g] 10 50 40 500 

(NH4)2SO4 [g] 1.8 9 7.2 - 

MgSO4·7H2O [g] 2.3 11.7 9.3 9 

K2SO4 [g] 2.9 14.7 11.7 - 

Histidine [mg] 80 400 320 4 

Sodium hexametaphosphate [g] 5 25.1 20 - 

Biotin [mg] 0.32 1.6 1.3 100 

Trace elements [ml] 0.8 4 3.2 12.5 

 

 

4.3.5. Bioreactor setup 

The fermenters employed for all cultivations consisted of in-house built 1 L bioreactors 

(glass purchased from Garg Scientific, India). The main features of the setup, probes, gas 

detectors and peristaltic pumps are the same as the ones used in Sánchez et al (Sánchez, 

Pérez-Correa, et al., 2014). 

 

4.3.6. Analytical procedures 

Sampling and biomass determination 

Samples of ~6 mL were periodically collected (every 2-3 hours) from all fermentations. 

Biomass was measured in OD at 600 nm using an UV-160 UV-visible recording 

spectrophotometer (Shimadzu, Japan). Biomass concentration was determined using the 

linear relationship: 1 OD600 = 0.72 [g/L], obtained using the method from (Marx, 



15 
 

 
 

Mecklenbräuker, Gasser, Sauer, & Mattanovich, 2009). Then, samples were centrifuged 

at 10000 rpm for 3 minutes and the supernatant stored at -80°C for further analysis. 

 

Extracellular metabolite concentration determination 

Glucose, ethanol, arabitol, citrate and pyruvate extracellular concentrations were 

quantified in duplicate by High Performance Liquid Chromatography (HPLC). Samples 

were prepared by adding 360 µL of culture supernatant (or a dilution of it), 40 μL of a 50 

g/L pivalic acid solution (used as internal standard) and 0,1 μL of H2SO4 98% [v/v]. Then, 

30 μL of the resulting solution were injected to a LaChrom L-7000 HPLC (Hitachi, Japan) 

equipped with an Aminex HPX-87H anion-exchange column (Bio-Rad, USA) for organic 

acids, alcohols and sugars separation, working at 35 °C with a 0.45 [mL/min] flow of the 

5 [mM] H2SO4 mobile phase. A LaChrom L-7450A diode array detector (Hitachi, Japan) 

was set at 210 [nm] for detecting organic acids, and a LaChrom L-7490 refraction index 

detector (Hitachi, Japan) for sugars and alcohols. Finally, each metabolite was quantified 

normalizing the corresponding area in the chromatogram with the internal standard area 

and employing an external standard curve. 

 

4.3.7. Objective Function of Model calibration 

For model calibration, we formulated a nonlinear programming problem (NLP) with the 

dFBA embedded as a constraint. This optimization problem minimized the sum of square 

errors between the experimental data and the simulation output by searching the parameter 

space using the enhanced scatter search algorithm (eSS) (Egea & Balsa-Canto, 2009), 

which has been successfully used to solve bioprocessing problems (Balsa-Canto, 

Rodriguez-Fernandez, & Banga, 2007; Sacher et al., 2011; Sriram, Rodriguez-Fernandez, 

& Doyle, 2012). The objective function F used in the minimization was also normalized 

by the maximum corresponding measured variable in order to give all data a similar 

weight, regardless of their order of magnitude. 
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𝐹 = min
𝜃

∑ ∑ (
𝑋𝑖𝑗

𝑚𝑜𝑑 − 𝑋𝑖𝑗
𝑒𝑥𝑝

max
𝑗

(𝑋𝑖𝑗
𝑒𝑥𝑝 )

)

2
𝑛

𝑗=1

𝑚

𝑖=1

  

( 12 ) 

 

With θ representing the parameter space, m the number of measured variables, n the 

number of measurements per variable, Xij
mod the dFBA output of variable i and 

measurement j, Xij
exp the corresponding experimental value and max

𝑗
(𝑋𝑖𝑗

𝑒𝑥𝑝 )  the 

maximum value measured for variable i.  

 

4.4. Reparametrization 

4.4.1. Pre/post regression diagnostics 

First, we briefly explain the regression diagnostics performed in this study, which are the 

basis of the reparametrization algorithm (Sacher et al., 2011). This section was taken from 

Sánchez et al (2014). 

Sensitivity corresponds to the impact of the parameters on the state variables of the model. 

Here, we calculated the relative sensitivity of parameter k on state variable i (Gik) as: 

𝐺𝑖𝑘(𝑡, 𝜃𝑘) =
𝜃𝑘

𝑋𝑖(𝑡)
∙

𝑑𝑋𝑖(𝑡)

𝑑𝜃𝑘
 

( 13 ) 

 

Where t is time, Xi(t) is the ith state variable in time t and θk is the kth parameter. With all 

Gik values, we formed a sensitivity matrix G(t) for each experimental time, in which the 

kth column denotes the sensitivity of the kth parameter on the state variables. In order to 

obtain a single normalized score (spanning all experimental times) of each parameter over 

each variable, we calculated average sensitivities as detailed in Hao et al (Hao, Zak, 

Sauter, Schwaber, & Ogunnaike, 2006). Therefore, if this score is under 0.01 in each 

variable for a given parameter, we chose to fix the corresponding parameter.  
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To calculate identifiability, the MATLAB function corrcoef was used to determine the 

correlation coefficients between each column of the sensitivity matrices, and stored the 

information in a correlation coefficients matrix (C). If any of the off-diagonal elements of 

the matrix take on values over a certain threshold (in our case |Cij| ≥ 0.95), it is considered 

that the associated parameters are strongly correlated, and therefore one of them should 

be fixed. 

To determine parameter significance, and also using the sensitivity matrices, we first 

calculated the Fisher Information Matrix (FIM) (Petersen, Gernaey, & Vanrolleghem, 

2001):  

𝐹𝐼𝑀 = ∑ 𝐺𝑗
𝑇𝑄𝑗𝐺𝑗

𝑛

𝑗=1

 
( 14 ) 

Here, Gj is the sensitivity matrix for measurement j, n is the number of measurements, 

and Qj is the inverse of the measurement error covariance matrix assuming white and 

uncorrelated noise, which is used as a weighting matrix. Using this matrix, the variances 

for each estimated parameter (σk
2) were calculated as (Landaw & DiStefano 3rd, 1984; 

Petersen et al., 2001)  

𝜎𝑘
2 = 𝐹𝐼𝑀𝑘𝑘

−1 ( 15 ) 

 

With the variances we computed the confidence interval (CI) with 5% significance for the 

kth parameter as follows: 

𝐶𝐼𝑘 = [𝜃𝑘 ± 1.96𝜎𝑘] ( 16 ) 

 

Here, 𝜃𝑘 is the estimated value of the corresponding parameter. Finally, coefficients of 

confidence (CC) were calculated as follows: 

𝐶𝐶𝑘 =
Δ(𝐶𝐼𝑘)

𝜃𝑘

=
3.92𝜎

𝜃𝑘

 
( 17 ) 
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With Δ(CIk), the CI's length. With this metric, we determined that a parameter was not 

significantly different from zero if the CI contained the zero, therefore if the absolute value 

of the CC was equal or larger than 2. 

 

4.4.2. General approach 

A reparametrization procedure called HIPPO (Sánchez, Soto, Jorquera, Gelmi, & Pérez-

Correa, 2014) (Heuristic Iterative Procedure for Parameter Optimization, 

http://www.systemsbiology.cl/tools/) was applied to address the parametric problems in 

the model.  

HIPPO started by performing sensitivity and identifiability tests on the initial calibration 

results for each dataset. Then, model parameters were iteratively fixed depending if they 

presented sensitivity and/or identifiability problems in the initial regression. Here, 

parameters were fixed one by one until the non-fixed subset presented none of the 

aforementioned problems. Finally, significance was determined for the remaining 

parameter set, also called reduced model structure, and if all parameters were significantly 

different from zero it was considered to be an a priori robust candidate for Cross 

calibration. 

Due to the heuristic nature of HIPPO, several robust modeling structures were achieved 

for each experimental dataset (check (Sánchez, Pérez-Correa, et al., 2014) for details on 

the heuristic employed by the algorithm). These were then ranked using a score called 

Mean Coefficient of Confidence (MCC), which is the average of the Coefficients of 

Confidence of each of the parameters of the model: 

𝑀𝐶𝐶𝑖 =
∑ 𝐶𝐶𝑘

𝑛𝑖
𝑘=1

𝑛𝑖
=

∑ (
∆𝐶𝐼𝑘,5%

𝜃𝑘

)
𝑛𝑖
𝑘=1

𝑛𝑖
=

1

𝑛𝑖
∙ ∑

3.92 ∙ 𝜎𝑘

𝜃𝑘

𝑛𝑖

𝑘=1

 

( 18 ) 

 



19 
 

 
 

Where 𝑀𝐶𝐶𝑖 is the mean coefficient of confidence for dataset i, CCK the coefficient of 

confidence of parameter k, ni the number of parameters of the model used to fit dataset i 

and ∆𝐶𝐼𝑘,5%  the length of the 95% Confidence Interval for the parameter k.  

The modeling structure of each dataset with the lowest MCC was utilized as candidate for 

the cross-calibration stage.  

 

4.5. Cross Calibration of available datasets using candidate robust modeling 

structures derived from the reparametrization stage. 

After the reparametrization of each dataset, a candidate robust modeling structure was 

achieved. The latter was employed to recalibrate the rest of the datasets in order to evaluate 

its robustness. It is worthy to note that the parameters left out of the calibration were either 

fixed according to values reported in literature, assumed to be zero or fixed at the mean 

value achieved in the calibrations. This was done in order to avoid assuming a minimum 

production of compounds in batch cultivations and to ensure model convergence for 

parameters that had no reported values in literature (feed phase consumption rates) (Table 

4). We applied a maximum of 2500 iterations in the scatter search algorithm. 

The reduced modeling structures were evaluated according to four parameters: 

I. Relative difference between objective functions (FDIFF), corresponds to the 

average relative difference between the objective function achieved with a reduced 

modeling structure in contrast to the value achieved with the original model 

structure. This score was determined according to the following expression:  

𝐹𝐷𝐼𝐹𝐹 =
1

𝑛
∙ ∑

𝐹𝑖,𝑅𝑒𝑑𝑢𝑐𝑒𝑑 − 𝐹𝑖,𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝐹𝑖,𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑛

𝑖=1

 
( 19 ) 

 

Where n corresponds to the number of cultures of each type, 𝐹𝑖,𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is the fit 

objective function for dataset i using the original model structure and 𝐹𝑖,𝑅𝑒𝑑𝑢𝑐𝑒𝑑 is 
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the fit objective function of dataset i using a reduced, a priori robust, modeling 

structure. 

 

Table 4 - Values at which problematic parameters were fixed in the cross calibration stage. Parameters marked 

with ‘-‘ in the reference column indicates that no a priori value was assumed for that particular parameter, which is the 

case for the batch minimum secretion rates. ‘*’ meant that the value of a particular parameter was fixed at the mean 

value achieved in the calibrations, because no information about them could be found in literature. It is worthy to 

mention that fixing these parameters at zero, allowed no consumption of batch by-products and yielded poor fed-batch 

fittings (data not shown). 

Parameter Fixation Value Units Reference 

𝑣𝑆,𝑚𝑎𝑥 6 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  (van Urk et al., 1989) 

𝐾𝑆 0.0027 𝑔 𝐿⁄  (van Urk et al., 1989) 

𝑣𝐸𝑡𝑂𝐻,𝐵 0 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  - 

𝑣𝑃𝑦𝑟,𝐵 0 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  - 

𝑣𝐴𝑟𝑎𝑏,𝐵 0 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  - 

𝑣𝐶𝑖𝑡,𝐵 0 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  - 

𝑣𝐸𝑡𝑂𝐻,𝐹𝐵 1.21 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  * 

𝑣𝑃𝑦𝑟,𝐹𝐵 0.14 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  * 

𝑣𝐴𝑟𝑎𝑏,𝐹𝐵 0.15 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  * 

𝑣𝐶𝑖𝑡,𝐹𝐵 0.008 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  * 

𝛼𝐵 0 [−] (Morales et al , 2014) 

𝛼𝐹𝐵 0 [−] (Morales et al., 2014) 

𝑚𝐴𝑇𝑃 
2.18 

𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  
(B. K. S. Chung et al., 

2010) 

𝑇𝐹𝑒𝑑 22 ℎ * 

 

II. Percentage of Significance issues refers to the number of times a parameter was 

found to be not significantly different from zero out of the total of significance 

determinations performed for a particular structure. If a model structure had 6 

parameters and was used to calibrate 8 datasets, 48 significance determinations 

were performed for that particular model.  

III. Percentage of Sensitivity issues refers to the number of times one of the estimated 

parameters showed no impact over state variables (average sensitivity < 0.01) for 
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a particular modeling structure out of the total sensitivity determinations 

performed. 

IV. Percentage of Identifiability issues, corresponds to the number of times a pair of 

parameters presented a strong correlation (≥ 0.95), out of the total parameter pairs 

of a particular modeling structure. If p is the number of parameters of the model 

and n is the number of datasets used for calibration, the total of parameter pairs for 

which identifiability was determined is: 

𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑖𝑟𝑠 =
𝑝 ∙ (𝑝 − 1)

2
∙ 𝑛 

( 20 ) 

 

Finally, the modeling structure that presented the lowest FDIFF and fewest parametric 

problems was used as a candidate robust modeling structure for the corresponding type of 

culture. 

 

4.6. Robustness check of the chosen modeling structure 

Once a candidate robust modeling structure was determined for the batch and fed-batch 

cases, we tested its robustness (absence of parametric problems) by calibrating new 

experimental data. If the calibration resulted in a close fit to the data and presented no 

identifiability, sensitivity or significance problems, the model structure was considered 

like robust. For the batch model, we employed fermentation data from P. pastoris GS115 

strain grown with 40 [g/L] of glucose as carbon source at T° = 25°C and pH = 6. The 

robustness of the fed-batch model was evaluated with a glucose-limited cultivation 

consisting of a 60 [g/L] of glucose batch phase and an exponential feed using 500 [g/L] 

of glucose. The medium was added in the feeding phase in order to achieve an 

exponentially decreasing growth rate from 0.1 to 0.07 [1/h].  
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4.7. Model validation 

Finally, the predicting capability of the robust batch and fed-batch models was evaluated 

for conditions similar to the ones used in the initial calibrations (training set).  

In the case of the robust batch model, we first calibrated the duplicates of the strain 

harboring one copy of the thaumatin gene together, obtaining a characteristic parameter 

set for the strain. Then, we used these parameters to predict the course of a different batch 

cultivation performed in the same conditions (30°C and pH 6).  

This procedure was also applied for the fed-batch configuration. Here, we simulated a 

bioreactor dynamics using the parameters obtained in the best calibration of the training 

dataset (the one in which the calibration objective function was minimal compared to the 

rest of the calibrations) using the robust modeling structure chosen previously. This 

prediction was compared with experimental data of a different fed-batch cultivation. 

 

4.8. Simulation 

 

4.8.1. Analysis of the metabolic flux distribution during different stages of a 

dynamic cultivation 

After the calibration of the dataset used to check the fed-batch model robustness, we 

extracted the flux distribution from three metabolically different stages of the cultivation 

in order to analyze P. pastoris’ central metabolism:  

i. Exponential growth during the batch phase 

ii. Ethanol and arabitol consumption during glucose starvation  

iii. Controlled growth during the feeding phase.  

In addition, we checked flux directionality against reported values and modified the 

genome-scale metabolic model until we observed an agreement between experimental and 
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predicted fluxes. Finally, we recalibrated the data with the curated model and analyzed 

the flux distribution of P. pastoris central metabolism in the aforementioned stages. 

 

4.8.2. Discovery of beneficial knock-out targets for the overproduction of 

recombinant Human Serum Albumin  

To demonstrate potential applications of the model, gene targets for the overproduction of 

the recombinant protein Human Serum Albumin (HSA) were searched by simulating the 

growth and protein secretion of single knock-out strains of P. pastoris in batch 

cultivations. To do this, we included in the Metabolic Block a second quadratic 

programing problem to simulate the behavior of a knock-out strain. The second problem 

consisted in the Minimization of Metabolic Adjustment (MOMA) algorithm (Segrè, 

Vitkup, & Church, 2002), which states that, after a genetic perturbation, the cell will 

attempt to redistribute its metabolic fluxes as similar as possible to the parental strain 

(equation 22).  

The hypothetical parental strain was characterized using the parameters obtained in the 

calibration of the dataset used for the batch model validation plus a reported specific HSA 

productivity (qP) by P. pastoris growing in glucose (Rebnegger et al., 2014), which 

depended on the specific growth rate μ (). In every iteration of the model, the minimum 

HSA production was fixed according to this relation, which was assumed to be a third 

degree polynomial just of modeling purposes. Other kinetics might be used to represent 

the qP vs μ relation, but this depends on the strain and protein being produced (Maurer et 

al., 2006). 
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Figure 3 - Relation between Human Serum Albumin production and growth rate in a glucose limited chemostat 

taken from Rebnegger et al, 2014 

 

Once the constrained model enters the metabolic block, it first solves equation 5, from 

which it obtains the parental flux distribution v0. Then, the k reactions associated with 

gene j are blocked: 

 

𝑙𝑏𝑙,𝑗 = 𝑢𝑏𝑙,𝑗 = 0        𝑙 = 1 … 𝑘   ( 21 ) 

 

Finally, the MOMA algorithm uses the flux distribution of the parental strain v0 to 

calculate the knockout distribution vKO as the Euclidean distance between them, 

considering that the actual model has the corresponding deletion. 

MOMA: 

𝑀𝑖𝑛 (𝑣0 − 𝑣𝐾𝑂,𝑗)
2
 

𝑠. 𝑡. 

𝑆 ∙ 𝑣𝐾𝑂,𝑗 = 0 

( 22 ) 
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𝑙𝑏𝑖 ≤ 𝑣𝑖,𝐾𝑂,𝑗 ≤ 𝑢𝑏𝑖         𝑖 = 1 … 𝑛 

 

We performed one batch simulation for every gene in the model, which were evaluated in 

terms of final protein and biomass concentrations and compared its performance against 

the parental strain. The candidates that reached a higher HSA concentration than the 

parental strain were manually analyzed and some of them were proposed as candidates to 

improve HSA production. 

 

4.8.3. Evaluation of different feeding policies in silico to improve recombinant 

protein production considering specific information about the strain and 

process setup 

We also evaluated feeding policies to improve the volumetric productivity of HSA 

production, considering information about a strain of interest and process limitations.  

Simulations were performed using the parameters obtained in the calibration of the fed-

batch validation dataset and including HSA biosynthesis in the mass balances. We used 

the same volumetric productivity (qP) vs growth rate (μ) relation from  (Rebnegger et al., 

2014) to determine protein production as a function of the growth rate. The process 

limitations (based in our setup) were a maximum reactor volume of 1 L, and a maximum 

oxygen transfer rate of 10.9 [g/L·h], given by a kLa of 300 h-1 and a driving force of 

(CO2,SATURATION – CO2,SETPOINT) of 36.2 [mg/L], considering the incorporation of pure 

oxygen into the bioreactor. If any of these thresholds were violated by either the feeding 

rate of medium or the oxygen uptake rate (extracted from the model), the integration 

stopped. 

We evaluated 13 exponential feeding policies. Five of them maintained a constant growth 

rate during the feeding phase and the rest considered a decreasing growth rate throughout 

the culture (Supplementary Material 3). After the simulation, we ranked the strategies 

according to the volumetric productivity of recombinant HSA and chose the best one as a 

culture alternative that could potentially improve bioreactor performance. 
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5. RESULTS AND DISCUSSION 

 

5.1. Genome-Scale model selection from literature 

The main components and the relevant usability features of published GSMs of Pichia 

pastoris are detailed in Table 5. The PpaMBEL1254 model was discarded due to the lack 

of intuitive reaction and metabolite names, as well as the absence of gene-protein relations 

(at least in the online version), hampering the analysis of knock-out strains. All the models 

share the same structure of the central metabolism, which carries most of the flux entering 

the cell. 

 

Table 5 - Main components and usability features of available genome-scale metabolic models of Pichia pastoris 

 iPP669 iFS670 PpaMBEL1254 iLC915 

Number of genes 669 670 540 915 

Reactions 1354 1383 1254 1426 

Metabolites 1177 1195 1058 1302 

Compartments 8 8 8 6 

Platform used for analysis Cobra Cobra Cobra Raven 

Intuitive nomenclature for 

reactions and metabolites 

Yes Yes No No 

Capable of performing 

Single Gene deletions 

Yes Yes No Yes 

Capable of automatically 

checking mass balance 

No No No Yes 

 

After the determination of the average relative error between model predictions and 

experimental data (Carnicer et al., 2009; Solà et al., 2007) (Table 6), we selected the 

iFS670 model since it has a desirable structure and better reproduces experimental data 

from P. pastoris chemostats. It is worth mentioning that the inclusion of the arabitol 
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biosynthesis pathway into Chung’s (iPP669) model – resulting in the iFS670 model - 

greatly improved the predictions of specific growth rate, Oxygen Uptake Rate (OUR) and 

Carbon Dioxide Evolution Rate (CER) in hypoxic glucose-limited chemostats 

(Supplementary Material 1). Specifically, the deviation of carbon towards arabitol reduced 

the predicted growth rate in those conditions when compared to the iPP669 model (Figure 

4), resulting in a reduction of the difference with the corresponding experimental value. 

 

Table 6 - Average error of model predictions using two datasets from carbon-limited chemostats. In glycerol- 

and/or methanol (MetOH) – limited chemostats, the models were employed to predict specific growth rate µ, Oxygen 

Uptake Rate (OUR) and carbon dioxide evolution rate (CER) in four different conditions, which gives a total of 12 

predictions. In the glucose limited chemostats, the models were used to estimate µ, OUR, CER, ethanol secretion rate 

and arabitol secretion rate in six conditions, which gives a total of 30 model predictions. Experimental data was taken 

from (Carnicer et al., 2009; Solà et al., 2007) 

Carbon Source iLC915 iFS670 iPP669 Number of 

predictions 

Glycerol/MetOH  78% 37% 38% 12 

Glucose 85% 36% 52% 30 

Overall Error (F)  83% 36% 48% 42 

 

Figure 4 - Experimental and model-predicted specific growth rates using glucose as the only carbon source at 

different oxygen levels for a P. pastoris wild type strain. Data taken from (Carnicer et al., 2009)   
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5.2. Batch model development 

In this section, we present the steps followed to achieve a robust dFBA modeling structure 

of aerobic batch cultures of Pichia pastoris, capable of fitting new data with as few 

parametric problems as possible and predicting bioreactor dynamics.  

 

5.2.1. Initial calibration 

The initial structure of the batch model (eight parameters) was capable of fitting different 

cellular dynamics from eight aerobic batch cultivations (Figure 5 and Supplementary 

Material 5). 

 

Figure 5 - Model calibration of a glucose-limited aerobic batch cultivation of Pichia pastoris. Experimental data 

from two replicates is shown with points and the model fit is presented in continuous lines. Also, the dissolved oxygen 

profile (in [mg/L]) is included in the bottom left graph. 
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Production of ethanol and arabitol was detected in the cultivations, which was probably 

caused by the high initial glucose concentration used in the experiments. Ethanol 

production during batch cultivations has already been reported (Heyland et al., 2010), 

however, the formation of these compounds has usually been associated to oxygen 

scarcity in glucose-limited conditions (Baumann et al., 2010; Carnicer et al., 2009). 

The mean, minimum and maximum values of the model parameters, calculated for the 

calibrations, are presented in Table 7. Results show that the initial fittings covered a wide 

range of values. Here, the suboptimal growth parameter alpha (αB) was always greater 

than zero, which indicates that the model “prefers” to include the minimization of total 

fluxes in the objective function, rather than only maximizing specific growth rate. This 

forces the metabolic block to solve a QP problem, which has the practical benefit of 

eliminating redundant cycles in the resulting flux distributions, also called Type III 

Pathways (Price, Famili, Beard, & Palsson, 2002), - which make metabolic pathway 

analyses cumbersome. 

 

Table 7 - Minimum, Mean and Maximum parameter values achieved in batch model calibrations. More details 

on the calibrations can be found in Supplementary material 5. 

Parameter Minimum Mean Maximum Units 

𝑉𝑀𝐴𝑋 1,27 4,286 7,948 [mmol/gDCW·h] 

𝐾𝑆 1e-05 2,96E-04 9,80E-04 [g/L] 

𝑣𝐸𝑡𝑂𝐻,𝐵 0,024 1,363 2,968 [mmol/gDCW·h] 

𝑣𝑃𝑦𝑟,𝐵 0,003 0,145 0,248 
[mmol/gDCW·h] 

𝑣𝐴𝑟𝑎𝑏,𝐵 0,088 0,373 0,541 [mmol/gDCW·h] 

𝑣𝐶𝑖𝑡,𝐵 1e-05 0,177 1,104 [mmol/gDCW·h] 

𝛼𝐵 1,454e-06 2,17E-04 4,15E-04 [-] 

𝑚𝐴𝑇𝑃 0,001 3,064 10,000 [mmol/gDCW·h] 
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5.2.2. Parametric problems found in the initial batch model structure  

Several parametric problems were found in the original modeling structure of batch 

cultivations. Table 8 shows how often a pair of parameters presented identifiability, 

sensitivity and significance issues in the eight datasets used in the initial calibrations. Non-

growth associated maintenance ATP (mATP) was the parameter that presented the strongest 

correlations with other parameters in the model, such as maximum specific glucose uptake 

rate; ethanol and arabitol specific secretion rates; and suboptimal growth. This may result 

from the fact that a change in mATP affects directly the ATP-producing pathways in the 

metabolic model, resulting in changes in biomass and product yields, which are also 

defined by other parameters of the model.  

Also, the glucose uptake saturation constant KS was the only parameter with frequent 

sensitivity and significance problems, i.e. a potential candidate to be left out of the 

adjustable parameter set. 

 

Table 8 - Parametric problems of the initial model structure for batch cultivation. Parameters were considered 

problematic if they presented a particular problem in more than 25% of the initial calibrations of the batch model (at 

least 3 out of 8). In the case of identifiability problems, we show the parameter pairs that recurrently presented a 

correlation higher than 0.95. The frequency (in percentage) of the different problems is shown in parenthesis. 

Problem Problematic Parameters 

Identifiability 

1. 𝑣𝑆 𝑀𝑎𝑥 and mATP    (63% 

) 

2. 𝑣𝑆 𝑀𝑎𝑥  and vEtOH,B 

(50%) 

3. mATP and αB            (50%) 

4. vPYR,B and vEtOH,B 

(38%) 

5. mATP and vEtOH,B (38%) 

6. mATP and vArab,B (38%) 

Sensitivity 1. KS (38%) 

Significance 1. KS (50%) 
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5.2.3. Model reparametrization and cross calibration 

After the calibration and determination of the parametric problems of each dataset, the 

non-relevant parameters were fixed (left out of the adjustable set) using the 

reparametrization procedure HIPPO. The remaining, a priori robust, reduced models 

(Table 9) were employed to recalibrate the available data (eight batch cultivations) in 

order to determine if they were enough to reproduce P. pastoris behavior appropriately. 

The persistence of parametric problems compared to the original model was also 

evaluated. 

 

Table 9 - Potential Robust Structures Tested in the Cross-Calibration Stage. Each one of these structures was 

derived from the calibration of the corresponding dataset 

Structure Parameters included 

Original 𝑉𝑀𝐴𝑋 , 𝐾𝑆 𝑣𝐸𝑡𝑂𝐻,𝐵, 𝑣𝑃𝑦𝑟,𝐵, 𝑣𝐴𝑟𝑎𝑏,𝐵, 𝑣𝐶𝑖𝑡,𝐵, 𝑚𝐴𝑇𝑃 𝑎𝑛𝑑 𝛼𝐵 

1 𝑉𝑀𝐴𝑋 , 𝑣𝐸𝑡𝑂𝐻,𝐵, 𝑣𝑃𝑦𝑟,𝐵, 𝑣𝐴𝑟𝑎𝑏,𝐵, 𝑣𝐶𝑖𝑡,𝐵 𝑎𝑛𝑑 𝛼𝐵 

2 𝑉𝑀𝐴𝑋 , 𝑣𝐶𝑖𝑡,𝐵 𝑎𝑛𝑑 𝛼𝐵 

3 𝐾𝑆, 𝑣𝐸𝑡𝑂𝐻,𝐵, 𝑣𝑃𝑦𝑟,𝐵, 𝑣𝐴𝑟𝑎𝑏,𝐵 𝑎𝑛𝑑 𝑣𝐶𝑖𝑡,𝐵 

4 𝑣𝐸𝑡𝑂𝐻,𝐵 𝑎𝑛𝑑 𝑣𝐶𝑖𝑡,𝐵 

5 𝑉𝑀𝐴𝑋 , 𝑣𝑃𝑦𝑟,𝐵, 𝑣𝐴𝑟𝑎𝑏,𝐵 

6 𝑉𝑀𝐴𝑋 , 𝑣𝐸𝑡𝑂𝐻,𝐵, 𝑣𝑃𝑦𝑟,𝐵, 𝑣𝐴𝑟𝑎𝑏,𝐵, 𝑣𝐶𝑖𝑡,𝐵 

7 𝑉𝑀𝐴𝑋 , 𝐾𝑆, 𝑣𝐸𝑡𝑂𝐻,𝐵, 𝑣𝑃𝑦𝑟,𝐵, 𝑣𝐶𝑖𝑡,𝐵 

8 𝐾𝑆, 𝑣𝑃𝑦𝑟,𝐵, 𝑣𝐴𝑟𝑎𝑏,𝐵, 𝛼𝐵 𝑎𝑛𝑑 𝑚𝐴𝑇𝑃 

 

Structures 1 and 6 were the only parameter sets whose fitting capability was similar to the 

original model of eight parameters (Table 10), showing the importance of including the 

specific uptake and production rates of the compounds considered in the model. On the 

contrary, maintenance ATP and KS were left out of these structures because of the frequent 

identifiability and sensitivity problems associated to them. 
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Structure 6 lacks the sub-optimal growth parameter αB, which forces the solution of a 

linear programming (LP) problem of growth rate maximization in the metabolic block, 

since it was assumed to be zero if it was left out of the adjustable parameter set (See Table 

4). This structure showed a significant improvement in significance and sensitivity issues 

compared to the original model; however, identifiability appeared to be a major problem 

(Table 10). Probably, the multiple solutions associated to an underdetermined LP problem 

may hamper the possibility of unambiguously infer the parameter values from the data. 

Identifiability is particularly important since the parameters are inputs (restrictions) for 

the calculation of flux distributions in genome-scale metabolic models. 

Therefore, due to the recurrent identifiability issues found in structure 6, Structure 1 was 

preferred to calibrate a different dataset in order to validate it as the most robust modeling 

structure for aerobic, glucose-limited batch cultures of Pichia pastoris. 

 

Table 10 – Batch Cross Calibration summary. Structures are organized according to FDIFF, which corresponds to the 

average relative difference between the objective function achieved by the reduced model compared to the original. For 

more information on these scores refer to section 2.5. Structures that reduced the frequency of parametric problems are 

highlighted. 

Structure 
N° 

parameters 
FDIFF 

Significance 

Issues (%) 

Sensitivity 

Issues (%) 

Identifiability 

Issues (%) 

Original 8 0 23.6 16.7 17.4 

1 6 -10% 22.9 18.8 15.0 

6 5 +18% 0 2.5 61.3 

 

 

5.2.4. Robustness check of the chosen reduced modeling structure for glucose-

limited, aerobic batch cultures of Pichia pastoris 

 

On this new dataset, Structure 1 showed a proper fit to the data and did not yield 

identifiability nor significance problems. However, the maximum glucose uptake rate 

(𝑣𝑆 𝑀𝑎𝑥) had no impact on the state variables. Therefore, after the initial calibration (not 

shown) we fixed it at 6 [mmol/gDCWh].  illustrates the model fit and Table 11 presents the 
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parameter values and confidence intervals achieved in the second calibration, which had 

no identifiability, significance or sensitivity issues.  

Despite the sensitivity issue associated with 𝑣𝑆 𝑀𝑎𝑥 for this particular dataset, we included 

this parameter in the proposed robust modeling structure. This is because in the calibration 

of the cultures of the strain harboring eight copies of the thaumatin gene (cultures 7 and 

8) the state variables were very sensitive to this parameter (average sensitivity > 0.7, recall 

that the sensitivity threshold is 0.01), and it was necessary to achieve a close fit to the data. 

Therefore, if this parameter is found insensitive in future calibrations, it could be easily 

fixed at reported values. 

 

Figure 6 – Robustness check of Structure 1 as modeling framework for aerobic, glucose-limited batch cultures 

of Pichia pastoris. The figure shows the reduced model fit to the extracellular concentration of the species involved in 

the model during a batch cultivation.  
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Table 11 - Parameter values achieved in the validation of the batch model structure. Values of the parameters are 

presented together with their 95% confidence intervals. In this calibration, 𝑣𝑆 𝑀𝑎𝑥 was fixed at a known value to avoid 

sensitivity issues. Finally, the calibration yielded no parametric problems. 

Parameter Value Units 

𝑣𝑆 𝑀𝑎𝑥 6 mmol/gDCW·h 

𝑣𝐸𝑡𝑂𝐻,𝐵 1.47 ± 0.07 mmol/gDCW·h 

𝑣𝑃𝑦𝑟,𝐵 0.13 ± 0.05 mmol/gDCW·h 

𝑣𝐴𝑟𝑎𝑏,𝐵 0.14 ± 0.06 mmol/gDCW·h 

𝑣𝐶𝑖𝑡,𝐵 0.09 ± 0.04 mmol/gDCW·h 

𝛼𝐵 4.1 ± 0.9 ·10-4 [-] 

 

Summing up, we achieved a robust modeling structure for glucose-limited, aerobic batch 

cultivations of Pichia pastoris, composed of six parameters that estimate specific 

consumption and production rates of all the species involved in the mass balances. It also 

determines the specific growth rate by solving a bi-objective optimization problem, which 

avoids most of the identifiability issues arising between parameters. 

 

5.2.5. Batch model validation 

The parameters found for the strain harboring one copy of the thaumatin gene predicted 

correctly the dynamics of a different batch cultivation using the same strain (Figure 7). 

Biomass, glucose, ethanol, pyruvate and citrate dynamics were in good agreement with 

model simulations. On the other hand, arabitol formation was significantly overestimated, 

probably because in the training dataset the initial concentration of glucose was higher, 

which might have increased the formation of secondary products. 
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Figure 7 - Batch model preliminary validation. Data is shown in filled circles while model prediction is presented 

in continuous lines. 
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6.2. Fed-batch model development  

 

6.2.1. Initial Model Calibration 

Three aerobic, glucose-limited fed-batch cultivations where successfully calibrated with 

the initial model structure composed of fourteen parameters (Figure 8). The values of the 

parameters obtained in the three datasets can be found in Supplementary Material 7.  

 

 

Figure 8 - Example of a model calibration of a fed-batch culture of Pichia pastoris. Experimental data with the 

corresponding standard deviation is shown in points while the model calibration is presented in continuous lines. The 

bottom left graph presents the dissolved oxygen concentration throughout the cultivation. The rest of the calibrations 

are included in Supplementary Material 7. 
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6.2.2. Parametric problems found in the initial fed-batch model structure  

 

The initial fed-batch model also presented parametric problems. However, these were less 

recurrent in comparison with the batch model. The most frequent correlation (in two out 

of the three calibrations) was between the maximum glucose uptake rate and the ethanol 

formation rate during the batch phase (Table 12). Also, vEtOH,B and vArab,FB parameters 

showed 5 and 6 strong correlations, respectively, with other parameters of the model.   

 

Table 12 – Frequency (in %) with which a pair of parameters presented identifiability issues in the initial 

modeling structure of fed-batch cultures of Pichia pastoris (3 datasets). Parameters with recurrent identifiability 

issues are highlighted.  
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𝛼
𝐹

𝐵
 

𝑚
𝐴

𝑇
𝑃

 

𝑇 𝐶
𝑜

𝑛
𝑠
 

𝑣𝑆,𝑚𝑎𝑥               

𝐾𝑆 0              

𝑣𝐸𝑡𝑂𝐻,𝐵 67 0             

𝑣𝑃𝑦𝑟,𝐵 
0 0 0            

𝑣𝐴𝑟𝑎𝑏,𝐵 33 0 33 0           

𝑣𝐶𝑖𝑡,𝐵 0 0 33 0 0          

𝑣𝐸𝑡𝑂𝐻,𝐹𝑏 0 0 33 0 0 0         

𝑣𝑃𝑦𝑟,𝐹𝐵 
0 0 0 0 0 0 0        

𝑣𝐴𝑟𝑎𝑏,𝐹𝐵 0 0 33 0 0 33 33 0       

𝑣𝐶𝑖𝑡,𝐹𝐵 0 0 0 0 0 0 0 0 33      

𝛼𝐵 0 0 0 0 0 0 0 0 33 0     

𝛼𝐹𝐵 0 0 0 0 0 0 0 0 0 0 0    

𝑚𝐴𝑇𝑃 0 0 0 0 0 0 0 0 0 0 0 0   

𝑇𝐶𝑜𝑛𝑠 0 0 0 0 0 0 0 0 33 0 33 0 0  

 

The citrate minimum secretion rate (both in batch and fed-batch phases) and the 

suboptimal growth coefficient during the feeding phase (αFB) were the parameters that 
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presented more sensitivity and significance issues (Table 13). Also, αB, KS and the specific 

pyruvate consumption rate vPYR,FB were non-significant in at least one of the cultivations. 

 

Table 13 - Percentage of times a parameter of the model presented sensitivity or significance problems out of a 

total of three model calibrations. Parameters with sensitivity or significance issues are highlighted. 

 

𝑣
𝑆

,𝑚
𝑎

𝑥
 

𝐾
𝑆
 

𝑣
𝐸

𝑡,
𝐵

 

𝑣
𝑃

𝑦
,𝐵

 

𝑣 𝐴
𝑟

,𝐵
 

𝑣
𝐶

𝑖,
𝐵

 

𝑣
𝐸

𝑡,
𝐹

𝐵
 

𝑣
𝑃

𝑦
,𝐹

𝐵
 

𝑣 𝐴
𝑟

,𝐹
𝐵

 

𝑣
𝐶

𝑖,
𝐹

𝐵
 

𝛼
𝐵

 

𝛼
𝐹

𝐵
 

𝑚
𝐴

𝑇
𝑃

 

𝑇 𝐶
𝑜

𝑛
𝑠
 

Sensitivity 0 0 0 0 0 0 0 0 0 33 0 67 0 0 

Significance 0 33 0 0 0 0 0 33 0 100 67 100 0 0 

 

 

6.2.3. Model reparametrization and cross calibration 

Once the parametric problems were determined after the initial calibration, we employed 

the reparametrization algorithm HIPPO to find subsets of parameters that could be 

sufficient to represent the dynamics of a fed-batch cultivation. Three potential model 

structures with less parameters than the original model were found after the calibration of 

each dataset (Table 14). 

 

Table 14 – Potential robust structures for a fed-batch model 

Structure Parameters included 

Original 
𝑣𝑀𝐴𝑋,  𝐾𝑆, 𝑣𝐸𝑡𝑂𝐻,𝐵 , 𝑣𝑃𝑦𝑟,𝐵, 𝑣𝐴𝑟𝑎𝑏,𝐵, 𝑣𝐶𝑖𝑡,𝐵, 

𝑣𝐸𝑡𝑂𝐻,𝐹𝐵, 𝑣𝑃𝑦𝑟,𝐹𝐵, 𝑣𝐴𝑟𝑎𝑏,𝐹𝐵 , 𝑣𝐶𝑖𝑡,𝐹𝐵, 𝛼𝐵, 𝛼𝐹𝐵, 𝑚𝐴𝑇𝑃, 𝑇𝐶𝑜𝑛𝑠 

1 𝑣𝑀𝐴𝑋,  𝐾𝑆, 𝑣𝑃𝑦𝑟,𝐵, 𝑣𝐶𝑖𝑡,𝐵, 𝑣𝐸𝑡𝑂𝐻,𝐹𝐵, 𝑣𝑃𝑦𝑟,𝐹𝐵, 𝑣𝐴𝑟𝑎𝑏,𝐹𝐵, 𝑣𝐶𝑖𝑡,𝐹𝐵, 𝛼𝐵, 𝑚𝐴𝑇𝑃 , 𝑇𝐶𝑜𝑛𝑠 

2 𝐾𝑆 , 𝑣𝐸𝑡𝑂𝐻,𝐵, 𝑣𝑃𝑦𝑟,𝐵, 𝑣𝐴𝑟𝑎𝑏,𝐵, 𝑣𝐶𝑖𝑡,𝐵, 𝑣𝐸𝑡𝑂𝐻,𝐹𝐵, 𝑣𝑃𝑦𝑟,𝐹𝐵, 𝛼𝐵, 𝑚𝐴𝑇𝑃 

3 𝑣𝑀𝐴𝑋, 𝐾𝑆, 𝑣𝑃𝑦𝑟,𝐵, 𝑣𝐴𝑟𝑎𝑏,𝐵, 𝑣𝐶𝑖𝑡,𝐵, 𝑣𝑃𝑦𝑟,𝐹𝐵 𝛼𝐵, 𝛼𝐹𝐵, 𝑚𝐴𝑇𝑃, 𝑇𝐶𝑜𝑛𝑠 
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All the candidate structures consider the following parameters: KS, vPYR,B, vCIT,B, αB, 

vPYR,FB and mATP. Contrary to batch model, KS. appears to play an important role for fed-

batch cultivation. This parameter, which usually lies in the micromolar range (Boles & 

Hollenberg, 1997), can directly modulate substrate uptake under glucose-limited 

conditions. Therefore, when glucose concentration is close to zero (like in the feeding 

phase), slight variations in the value of KS can change glucose uptake significantly, which 

has a direct impact in the specific growth rate. Also, mATP appears to have a relevant role 

as an energy sink when the glucose from the batch phase is depleted. Here, secondary 

product consumption starts and slower or null biomass formation rate is observed prior to 

the addition of glucose (around 30 hours of fermentation in Figure 8). This indicates that 

the substrates were consumed to maintain basic cellular functions to survive instead of 

being used for cell division. 

The three a priori robust structures improved the initial fittings and reduced the frequency 

of parametric problems observed for the initial model of 14 parameters (Table 15). 

Structure 3 showed the best fitting capability compared to the original model. On average, 

this structure improved by 25% the initial calibrations. It is worthy to note that, despite 

Structure 3 did not include the minimum production rate of ethanol during the batch phase, 

it could adequately reproduce the profiles of this compound by calibrating the objective 

function and the maintenance ATP. Finally, Structure 3 was chosen to calibrate new fed-

batch data in order to validate it as a robust modeling structure for glucose-limited aerobic 

fed-batch cultivations of Pichia pastoris. 

 

Table 15 - Summary of the Cross Calibration of the fed-batch datasets. Structure that reduced de frequency of 

parametric problems with respect to the original model are highlighted. 

Structure 
N° 

parameters 
FDIFF 

Significance 

Issues (%) 

Sensitivity 

Issues (%) 

Identifiability 

Issues (%) 

Original 14 0 33 18.8  3.9 

1 11 -2% 27.2 2.6 1.8 

2 9 -15% 25.1 7.4 0.9 

3 10 -25% 26.7 3.7 0.9 
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6.2.4. Robustness check of the chosen reduced modeling structure for glucose-

limited aerobic fed-batch cultures of Pichia pastoris 

 

Figure 9 illustrates the fit of Structure 3 to new experimental fed-batch data and Table 16 

presents the parameter values with 95% confidence intervals achieved in the calibration.  

 

 

Figure 9 – Robustness check of Structure 3 as a robust representation of aerobic glucose-limited fed-batch 

cultures of Pichia pastoris 

 

This calibration yielded no sensitivity problems. Also, parameters associated to pyruvate 
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identifiability issue between sub-optimal growth rate at the feed phase and the pyruvate 

consumption rate in this stage (Supplementary Material 8).  

Pyruvate was found at such low concentrations that it might disregarded from the analysis 

by fixing vPYR,B and vPYR,FB at 0 mmol/gDCWh. The calibration of the of this dataset 

considering no pyruvate formation, did not produce identifiability, significance or 

sensitivity problems. 

 

Table 16 - Parameter values achieved in the calibration of the robustness check dataset using the fed-batch model. 

The confidence interval on the time where the consumption of secondary metabolites started TCONS, could not be 

determined due to the stiffness of the solution caused by a sudden consumption of arabitol and ethanol. 

Parameter Value Units 

𝒗𝑴𝑨𝑿 2.09 ± 0.46 mmol/gDCW·h 

𝑲𝑺 5.55·10-2 ± 0.0000004·10-2 g/L 

𝒗𝑷𝒚𝒓,𝑩 0 mmol/gDCW·h 

𝒗𝑨𝒓𝒂𝒃,𝑩 0.42 ± 0.17 mmol/gDCW·h 

𝒗𝑪𝒊𝒕,𝑩 0.04 ± 0.00 mmol/gDCW·h 

𝒗𝑷𝒚𝒓,𝑭𝑩 0 mmol/gDCW·h 

𝜶𝑩 2.6·10-4 ± 0.4·10-4 [-] 

𝜶𝑭𝑩 2.455·10-5 ± 0.003·10-5 [-] 

𝒎𝑨𝑻𝑷 7.0 ± 1.4 mmol/gDCW·h 

𝑻𝑪𝒐𝒏𝒔 25.73 h 

 

The profile of some of the state variables still depended on the fixed values assigned to 

them. For example, in this particular experiment, arabitol was consumed at a slower rate 

than in the training dataset. The parameter representing this consumption was not included 

in the robust modeling structure and its value was fixed as the mean of the initial three 

datasets. The latter highlights the need to include more datasets from fed-batch 

cultivations, allowing the model to represent a wider variety of cellular dynamics. 

However, the model structure showed a strong fitting capacity and a limited occurrence 

of identifiability, sensitivity and significance problems between parameters. Therefore, 
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we selected Structure 3 as the most robust modeling framework for fed-batch cultivations 

of Pichia pastoris found in our setup. 

 

6.2.5. Fed-batch model validation 

The parameters found in the best calibration of training set using the aforementioned 

robust (reduced) modeling structure yielded a good prediction of fed-batch dynamics. 

Biomass, glucose, ethanol and arabitol showed a good agreement with experimental data, 

whereas pyruvate and citrate dynamics were inaccurate. These differences appeared 

because in the culture from where the parameters were derived (Fed-batch culture 1, see 

Supplementary material 6) pyruvate formation was observed during the batch phase and 

citrate was formed during the feed phase, therefore the model assumed that these 

compounds were generated. Nevertheless, for the main most abundant compounds the 

model yielded a good prediction. 

 

Figure 10 - Fed-batch model validation. Data is shown in filled dots while model prediction is presented in continuous 

lines. 

 

0 50
0

20

40

60

80

Time [h]

[g
/L

]

Biomass

0 50
0

20

40

60

80

Time [h]

[g
/L

]

Glucose

0 50
0

2

4

6

8

Time [h]

[g
/L

]

Ethanol

0 50
0

5

10

Time [h]

[g
/L

]

Arabitol

0 50
0

1

2

3

4

Time [h]

[g
/L

]

Pyruvate

0 50
0

1

2

3

4

Time [h]

[g
/L

]

Citrate



43 
 

 
 

6.3. Applications of the model 

 

6.3.1. Model manual curation and analysis of the metabolic flux distribution 

during different stages of a dynamic cultivation 

Once the model was validated and able to fit different experimental data without – or just 

a few – parametric problems, we checked the flux distributions that could be obtained 

during a fed-batch cultivation. Therefore, we chose three stages during the fermentation 

that represented different metabolic states of the cell (Figure 11): 

1. Exponential growth and nutrient excess during the batch stage (~20 hrs, μ = 0.12 h-

1). 

2. Co–consumption of arabitol and ethanol during glucose starvation (~27.5 hrs, μ = 

0.02 h-1). 

3. Controlled exponential growth during the feeding stage (~45 hrs, μ = 0.06 h-1). 

     

 

Figure 11. Biomass, glucose, ethanol and arabitol evolution of a fed-batch culture of Pichia pastoris. Dashed lines 

indicate the three instants of the fermentation where the metabolic flux distribution was determined. 
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was synthesized by a cytosolic NADP-dependent isocitrate dehydrogenase, which was 

also the main source of α-ketoglutarate in the cytosol (data not shown). Fluxomic studies 

in aerobic glucose-limited conditions in P. pastoris (Baumann et al., 2010; Dragosits et 

al., 2009; Heyland et al., 2010), have shown that about 40% of the carbon that reaches 

glucose 6 phosphate is carried through the oxidative branch of the PPP, which is also 

thermodynamically favorable (Nelson & Cox, 2008). Moreover, α-ketoglutarate is 

considered to be produced in the mitochondria and then exported to the cytosol for 

nitrogen fixation and anabolic reactions. 

These inconsistencies have been recently addressed for several genome scale metabolic 

models of Saccharomyces cerevisiae (Pereira, Nielsen, & Rocha, 2016). Therefore, we 

performed the following changes to our reconstruction according to the indication of the 

authors: 

i. We enabled the transport of α-ketoglutarate from the mitochondria to the cytosol 

using transporters present in P. pastoris (Rußmayer et al., 2015; Tomàs-Gamisans 

et al., 2016).  

ii. The flux through three symporters that passively carried protons against the 

electrochemical gradient in the mitochondria was blocked in the direction of 

export to the cytosol. 

iii. Based on the assumption postulated by Satrustegui et al (Satrustegui, Bautista, & 

Machado, 1983) for Saccharomyces cerevisiae, we considered that the 

NAD+/NADH and NADPH/NADP+ ratios in aerobic glucose-limited conditions 

are high enough to block the flux towards the formation of NAD+ and NADPH. 

Therefore, we blocked 30 cytosolic reactions in the direction of either NAD+ or 

NADPH formation. The only reactions left to produce cytosolic NADPH were the 

ones from the PPP and the acetate-forming acetaldehyde dehydrogenase, whose 

presence has been experimentally determined in aerobic glucose-limited 

cultivations of P. pastoris (Heyland et al., 2011). 

Applying these modifications resulted in a spontaneous flux through the PPP, a 

mitochondrial formation of α-ketoglutarate with its subsequent secretion to the cytosol 
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and an overall concordance in the direction of the fluxes with respect to experimental data. 

This makes the model a reasonable approximation of Pichia pastoris central carbon 

metabolism. 

When the flux distribution derived from the fed-batch robustness check dataset was 

compared with the fluxomic data obtained by Heyland et al (Heyland et al., 2010) 

(equivalent conditions), the average error in the prediction of 23 fluxes of the central 

metabolism dropped three times with respect to the predictions made by the not curated 

model - from 128% to 39% for the exponential batch phase and from 160% to 63% for 

the controlled feed phase (Figure 12). This drop was mainly caused by the change in the 

direction (from negative to positive flux) of the non-oxidative part of the PPP, the 

spontaneous flux through the oxidative branch of this pathway and the reduction in the 

predicted influx of oxaloacetate to the cell. The overall agreement in directionality can be 

seen in Figure 12 by the elimination of negative predicted fluxes in the curated model. 

 

Figure 12 - Predicted versus experimental fluxes of the central metabolism. The flux distributions determined by 

Heyland et al (Heyland et al., 2010) during an aerobic glucose limited fermentation were compared to the output of the 

model in equivalent stages of a cultivation (exponential and controlled growth phases). Values are presented as 

normalized to carbon uptake and the black line represents the unit. 
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The flux distribution of the central carbon metabolism achieved with the curated model at 

the three fermentation times is presented in Figure 13. It is possible to distinguish several 

metabolic features in these stages: 

1. Batch phase: 

 The carbon arriving to the glucose-6-phosphate node is split between 

carbohydrate production (11%), glycolysis (63%) and the oxidative branch 

of the PPP (24%). Despite carbon is divided between these pathways, flux 

through the PPP underestimates experimental values (40% of the incoming 

carbon).  

 Cytosolic NADPH is synthesized in the oxidative branch of the PPP. 

 Cytosolic ATP is formed by the activity of the ATP synthase and substrate-

level phosphorylation from glycolysis as well as from the synthesis of 

arabitol and ethanol. ATP is mostly used for cell maintenance and biomass 

formation. 

 

2. Starvation: 

 Ethanol and arabitol are co-consumed with limited formation of biomass 

(µ=0.02 h-1) at this stage.  Both compounds are directed towards the TCA 

cycle in order to form the reducing equivalents necessary to fuel the 

oxidative phosphorylation. The ATP formed in this pathway -  ~ 7 

mmol/gDCWh -, is mostly employed for maintenance. Even though this 

mATP is high compared to other reported values for P. pastoris (2.2 – 5 

mmol/gDCWh), it is necessary to reproduce the observed limited cellular 

growth despite the fast consumption of secondary metabolites.  

 

3. Controlled growth during the feed phase: 

 In this phase, neither ethanol nor arabitol were produced, and therefore all 

the carbon was directed towards biomass formation and the energy 

necessary for its synthesis and maintenance. 
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 In agreement previous fluxomic studies in aerobic glucose-limited 

chemostats (Baumann et al., 2010; Dragosits et al., 2009), flux through the 

oxidative and non-oxidative branches of the PPP without secretion of 

arabitol was observed. Furthermore, the model showed a high oxaloacetate 

transport from the cytosol to the mitochondria, which was also observed in 

the cited studies.  

 The most distinguishable feature of this phase was the high activity of the 

TCA cycle, which almost doubled the flux through this pathway reported 

under glucose limited conditions ((Baumann et al., 2010; Dragosits et al., 

2009; Heyland et al., 2011)). This is probably caused by the fact that our 

model considers the energy needed for maintenance, while more reduced 

reconstructions employed to derive TCA fluxes do not include this cost. 

Therefore, more activity in the TCA is needed to cope with maintenance 

and growth associated energy requirements, especially when no significant 

substrate level phosphorylation besides glycolysis is occurring. 
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Figure 13 – Metabolic flux distribution in the Central metabolism for three different stages of the cultivation. 

Carbon uptake is detailed in the box of the upper left corner in mmol/gDCWh and the fluxes are presented relative to this 

uptake. In each box between metabolites there are three numbers which correspond, from top to bottom, to the relative 

flux during batch, starvation and feeding phases. Depending on the time analyzed, the cell consumes Glucose (G), 

Citrate (C), Arabitol (A) or Ethanol (E). The biomass flux corresponds to the specific growth rate of the cell in h-1 and 

the negative fluxes refer to a change in the reaction directionality. Nomenclature for this figure is detailed in the 

Supplementary material 11. 
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To sum up, the model allowed the quantitative assessment of different physiological states 

present in aerobic fed-batch cultivations of Pichia pastoris. After model curation, the 

resulting flux distributions were reasonable in terms of reaction activity and directionality, 

but further curation is needed to improve the precision of the prediction, especially in the 

pentose phosphate pathway and the TCA cycle in glucose-limited conditions.  

 

6.3.2. Discovery of single knock-outs to improve recombinant Human Serum 

Albumin production using Minimization of Metabolic Adjustment 

(MOMA) as objective function to simulate mutant behavior. 

 

To demonstrate potential applications of the curated model, we performed 670 (number 

of genes in the model) batch simulations of single knock-out strains to discover beneficial 

deletions for the production of recombinant Human Serum Albumin (HSA), a 66 kDa 

protein with 16 disulfide bridges. HSA is a soluble, monomeric peptide that comprises 

about one half of the blood serum protein. It primarily acts as carrier of hormones and 

fatty acids and regulates the osmotic pressure of human blood(Verney, 1926).  

The relation between final HSA and final biomass concentration of the 133 mutations that 

improved HSA production ( > 30 mg/L at the end of the batch) are grouped into two main 

clusters (Figure 14). The first cluster consists in strains that privilege HSA production 

over biomass formation, whereas the second cluster present a trade-off between both. 

We decided to leave Cluster I out of the analysis because of the impaired growth observed 

in the simulations, which was mainly due to the deletion of reactions associated to lipid 

biosynthesis. However, candidates from cluster II (32 in total) were manually analyzed to 

identify the cause of HSA overproduction (See Supplementary Material 10 for details on 

the genes). 

A relative increase in the formation of cysteine and tryptophan was found for most of the 

candidates of Cluster II when compared to the parental strain, a trend that was not 

observed for the rest of the amino acids (Figure 15). These energetically costly residues 
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(Raiford et al., 2008) are formed from serine, therefore, re-routing carbon through this 

pathway could be beneficial to improve HSA production.   

 

 

Figure 14 - Final HSA vs. final biomass concentrations of simulated batch cultivations of single knockout-strains. 

Blue dots correspond to the output of strains that improved the initial final HSA concentration (30 mg/L). Candidates 

out of Cluster II were manually analyzed. The yellow and green triangles indicate the performance of the Parental Strain 

and the methylene tetrahydrofolate dehydrogenase, respectively.  

 

After analyzing the candidates, one strategy could be the deletion of the cytosolic NAD-

dependent methylene tetrahydrofolate dehydrogenase. When compared to the parental 

strain, the knockout strain improved in 6.3 times the final concentration of recombinant 

protein (from 30 to 189 mg/L, triangles in Figure 14) with a 5.8-fold increase in protein 

volumetric productivity (from 2 to 11.5 mg/Lh). This deletion eliminates the drain of 

serine towards 5,10 methylene tetrahydrofolate, and serine can then be re-routed in two 

reactions to cysteine. This gene is non-essential in Saccharomyces cerevisiae (West, 

Horne, & Appling, 1996) and, to the best of our knowledge, its essentiality has not been 
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determined in P. pastoris. Therefore, it constitutes an interesting knockout candidate to 

improve recombinant HSA production.  

  

 

Figure 15 – Turnover of key amino acids in knock-out strains relative to the parental strain. Each box summarizes 

how the production of each amino acid changed in the 32 knock out strains of Cluster II relative to the production in the 

parental strain (Red Line). Black dots correspond to the sample median, the extreme of the boxes to the 25th and 75th 

percentiles, the whiskers extend to the most extreme data points and circles mark outliers. 

 

6.3.3. Bioprocess optimization for the overproduction of Human Serum 

Albumin  

The dynamic modeling framework could also be used for bioprocess optimization since it 

has the possibility to simulate cell behavior using information regarding strain physiology 

and process limitations (). In this exercise, we evaluated 13 feeding strategies of a fed-

batch cultivation to improve the production of recombinant Human Serum Albumin 

(HSA) using the parental strain of the previous simulation as model.  
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Figure 16 - Scheme of the bioprocess optimization problem.  

 

After the simulations, we selected a strategy that considered a slow decrease in the growth 

rate from µ=0.14 h-1 to µ=0.08 h-1 during the feeding phase. When compared to cell growth 

at constant growth rates (Table 17), the chosen policy reached almost the same final HSA 

concentration as the constant growth rate strategy that reached the highest concentration 

(µ=0.06 h-1), but with a 24% increase in volumetric productivity. This decreasing strategy 

managed to run the cultivation under the maximum oxygen transfer threshold while 

growing at high rates. The process was finally limited by reactor volume.  

Table 17 - Feeding policies evaluated to improve the production of Serum Albumin in a particular bioreactor 

setup. This table shows the process indicators for the constant feeding Strategies (1-5) plus the best decreasing growth 

rate strategy. XFINAL and PFINAL refer to the final concentration of biomass and serum albumin in the reactor when the 

simulation stops, which happened by either violating user-defined volume and Oxygen Transfer thresholds. 

Strategy μMAX Rate μMIN qP [mg/gh] XFINAL 

[g/L] 

PFINAL [mg/L] Limitation  

1 0,14 - - 2,85 164,8 138 Oxygen 

2 0,12 - - 2,59 187,8 135 Oxygen 

3 0,1 - - 2,32 195,3 130 Volume 

4 0,08 - - 2,29 191,3 138 Volume 

5 0,06 - - 2,28 184,7 154 Volume 

Best 0,14 0,1 0,08 2,83 197,5 150 Volume 

Inputs 

Restrictions 

• Fed-Batch 
Calibration 

•  qp vs μ relation 

• Substrates 

• Reactor Volume 
1L 

• Max OTR 
Model 

Evaluation of 13 
feeding policies 

- Constant μ
SET

 (5) 

- Decreasing μ
SET

 (8) 

Scores: 
- qp 

- Final Biomass 
Concentration 
- Final Protein 
Concentration 
- Cause of limitation 
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The improvement in process productivity by modifying substrate addition during the feed 

phase is much lower than the one attained by genetic modifications. However, other 

process variables such as reactor volume and oxygen transfer may be modified to further 

improve HSA production. 

This example shows how the developed dFBA platform can be used as framework to 

organize information of a particular cultivation, to gain further insights of the strain at 

hand and to improve bioreactor performance. 

 

 

7. CONCLUSIONS AND PERSPECTIVES 

Current genome-scale metabolic models of P. pastoris have been employed to address 

cellular behavior in stationary conditions, successfully predicting production and 

consumption rates of different compounds and even improving by 40% recombinant 

protein production by model-discovered knock-outs (Nocon et al., 2014). However, little 

attention has been given to the actual metabolic flux distribution that these reconstructions 

yield and how they evolve in a dynamic environment. Resulting flux distributions are 

important for two reasons: (i) they help to understand the cellular response to the different 

stresses the cell is subjected to in this type of cultivation and (ii) they can serve as input 

for several algorithms whose aim is to find metabolic engineering targets to improve the 

production of a certain compound.  

In this work, we developed a dynamic genome-scale metabolic model of glucose-limited 

aerobic cultivations of Pichia pastoris. The assembled platform is capable of fitting 

several datasets with minimum significance, sensitivity and identifiability problems in its 

parameters. It is also capable of predicting cellular dynamics if trained properly, where 

special attention should be payed to arabitol and pyruvate production. Moreover, the 

model could be used to obtain reasonable metabolic flux distributions throughout dynamic 

cultivations, which can be analyzed and used to determine of metabolic engineering 
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strategies to improve the production of a target compound in silico. The developed 

platform could therefore be employed to determine genetic and process engineering 

strategies to improve recombinant protein production.  

The main findings of this study were: 

 Adequate calibration of batch cultivations requires the inclusion of the maximum 

glucose uptake rate, the production rates of the species considered in the model 

and the sub-optimal growth coefficient in the adjustable parameter set. This 

ensures a proper fit and a minimal occurrence of parametric problems.  

 A close fit to experimental data of fed-batch cultures requires the inclusion of 

maintenance ATP and the glucose uptake activity constant KS in the adjustable 

parameter set.  

 Blocking cytosolic reactions in the direction of NAD+ and NADPH formation 

greatly improved the prediction of experimental fluxes of the central metabolism 

of P. pastoris. 

 The resulting model allowed to identify metabolic engineering targets to improve 

recombinant protein production. From this analysis, we believe that cysteine and 

tryptophan biosynthesis pathways are potential limiting steps for the production of 

recombinant HSA. Also, the deletion of NAD-dependent methylene 

tetrahydrofolate dehydrogenase could potentially improve HSA volumetric 

productivity by 630% in batch cultivations by increasing cysteine formation 

 The model was able to evaluate feeding policies that allowed an improvement in 

the production of Human Serum Albumin based on bioreactor restrictions, strain 

dynamics and the relation between µ and Protein productivity. An exponential feed 

rate that slowly decreases the specific growth rate at which a fed-batch culture was 

operated could potentially increase the productivity of HSA production by 24%. 

 Gene knockouts proved to be more effective in the improvement of recombinant 

protein production than the modification of process variables.   
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The aforementioned findings present similarities and differences with previous works. 

First, Sanchez et al (Sánchez, Pérez-Correa, et al., 2014) determined a similar model 

structure for batch cultivations of Saccharomyces cerevisiae, but the fed-batch model 

structure they derived considered half the parameters used in this study. Unlike Sanchez 

et al in S. cerevisiae, we found that maintenance ATP could be properly estimated in fed-

batch cultivations once glucose from the batch phase has been depleted and ethanol and 

arabitol consumption occurred without biomass growth.  

It is worthy to mention two limitations of our approach. First, this model does not consider 

the calibration of gaseous mass balances of CO2 and O2. It predicts their production and 

consumption rates using the genome-scale model instead. Despite the good predicting 

capability of the model for these compounds (Supplementary material 1), it is desirable to 

include them in future versions of the platform since CO2 formation can adjust the flux 

through reactions that use or produce this compound and dissolved oxygen concentration 

has a strong impact on process performance and can be easily manipulated (Baumann et 

al., 2010). Finally, the model disregards post-translational modifications and treats 

recombinant proteins as peptide chains (primary structures). The inclusion of 

glycosylation pathways and disulfide bond formation will recreate more accurately the 

stresses caused by the tertiary structure of proteins in P. pastoris metabolism (Irani et al., 

2015).  

There is a growing interest in Pichia pastoris metabolism. In fact, a new genome-scale 

metabolic reconstruction was recently released in January of 2016 with updated 

glycosylation pathways and a manually curated  oxidative phosphorylation (Tomàs-

Gamisans et al., 2016). This new model, called iMT1026, predicts experimental data from 

chemostats better than the iFS670 model used in this study (Supplementary Material 11). 

Therefore, it would be desirable to include it in our platform. Nevertheless, and as all the 

previously reported models, the internal flux distribution yielded by the reconstruction 

was not evaluated, so it is recommended to look at the internal fluxes before its use and 

perform a manual curation based on the logic derived by Pereira et al (Pereira et al., 2016), 

until reaching a reasonable flux distribution.  
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Also, special attention should be given to the objective function used to harness the 

knowledge contained in the genome scale metabolic models of P. pastoris. Despite that 

biomass optimization has been validated to represent its central metabolism in glucose 

limited conditions (Morales et al., 2014), it falls short when simulating its growth in 

glucose-rich environments where ethanol and arabitol were produced aerobically. If 

oxygen uptake is unconstrained, the model is unable to produce these compounds because 

all the carbon is directed towards growth when biomass formation is used as objective 

function. To overcome this limitation, we used parameter estimation to force the 

production of secondary metabolites. This suggests that for the accurate prediction of P. 

pastoris behavior in nutrient-rich environments other elements might be added to this 

objective function or more restrictions - derived from omics studies from example - should 

be applied in the directionality and maximum flux of certain reactions.  

In order to broaden its applications in other conditions relevant for P. pastoris, the model 

could be calibrated with other carbon sources and feeding strategies such as glycerol batch 

phase followed by methanol induction during the feed phase. Also, the model could be 

used to study perturbations such as oxygen limitation, which is a common problem in 

industrial P. pastoris cultivations. Finally, it would be desirable to calibrate the model 

with data from a strain capable of producing high concentrations of a recombinant protein 

to understand and quantify the metabolic burden caused by this production. 

In summary, this work corresponds to the first dynamic genome scale metabolic model 

assembled for Pichia pastoris, which was complemented with manual curation to obtain 

reasonable metabolic flux distributions during industrially relevant conditions. The 

developed platform may be used to understand cellular stresses during dynamic 

cultivations, to potentially predict bioreactor dynamics, and to propose metabolic and 

process engineering strategies for the improvement of recombinant protein production. 
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I. Supplementary Material 1: Modifications performed over the iPP618 

model and genome-scale models comparison 

 

Modifications performed on the iPP618 model 

 

Addition of the D-Arabitol synthesis pathway 

 

 

Figure 17 – D-Arabitol synthesis pathway from D-Ribulose-5-phosphate in Pichia pastoris. In total, we added four 

reactions associated to this pathway. First, Ribulose-5P is converted into D-Ribose by a kinase with the formation of 

ATP. Then, D-ribose is converted into D-arabitol by a dehydrogenase with the formation of nad from nadh. After D-

arabitol is synthesized, it is transported to the extracellular medium and then “consumed” by an exchange reaction. 

 

Addition of thaumatin, Human Serum Albumin (HSA) and FAB synthesis pathways 

Thaumatin, HSA and FAB synthesis pathways were also included in the model according 

to the DNA, RNA and amino acid requirements employed in the iLC915 model to form 

the primary structure of the protein:  

0.997 ∙ 𝐴𝐴𝑇ℎ𝑎𝑢 + 0.0029 ∙ 𝑅𝑁𝐴𝑇ℎ𝑎𝑢 + 0.000028 ∙ 𝐷𝑁𝐴𝑇ℎ𝑎𝑢

→ 𝑇ℎ𝑎𝑢𝑚𝑎𝑡𝑖𝑛 [𝑐] 

 

( 23 ) 

 

(∑ 𝛽𝑖 ∙ 𝑎𝑎𝑖

20

1

) + 𝛾 ∙ 𝐴𝑇𝑃[𝑐] + 𝛾 ∙ 𝐻2𝑂[𝑐] → 𝐴𝐴𝑇ℎ𝑎𝑢 

( 24 ) 
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(∑ 𝛼𝑖 ∙ 𝑁𝑀𝑃𝑖

4

1

) + 𝛿 ∙ 𝐴𝑇𝑃[𝑐] + 𝛿 ∙ 𝐻2𝑂[𝑐] → 𝑅𝑁𝐴𝑇ℎ𝑎𝑢 

 

( 25 ) 

 

(∑ 𝜀𝑖 ∙ 𝑑𝑁𝑀𝑃𝑖

4

1

) + 𝜃 ∙ 𝐴𝑇𝑃[𝑐] + 𝜃 ∙ 𝐻2𝑂[𝑐] → 𝑅𝑁𝐴𝑇ℎ𝑎𝑢 

( 26 ) 

 

 

Coefficients for the different components of the proteins are detailed in Tables 18, 19 and 

20. Codon usage was taken from (De Schutter et al., 2009) and was used as input for the 

calculation of RNA and DNA sequences online 

(http://www.bioinformatics.org/sms2/rev_trans.html). 

 

Table 18 - Amino acid requirements to form 1 gram of thaumatin, HSA and FAB fragment in the iPP669 model. 
The coefficients here reported were used in equation 2, a cost of 4,3 mole of ATP was assumed per mole of amino acid 

assembles in the protein. All coefficients have mmol/gram of protein units. 

Substrate Thaumatin HSA Fab Fragment 

L-Alanine 0,721 0,909 0,559 

L-Arginine 0,541 0,390 0,430 

L-Asparagine 0,451 0,245 0,215 

L-Aspartate 0,541 0,519 0,387 

L-Cysteine 0,721 0,505 0,215 

L-Glutamate 0,271 0,895 0,473 

L-Glutamine 0,180 0,289 0,559 

Glycine 1,082 0,188 0,602 

L-Histidine 0,000 0,231 0,172 

L-Isoleucine 0,361 0,130 0,215 

L-Leucine 0,406 0,923 0,774 

L-Lysine 0,496 0,866 0,387 

L-Methionine 0,045 0,101 0,043 

L-Phenylalanine 0,496 0,505 0,387 

L-Proline 0,541 0,346 0,516 

L-Serine 0,631 0,404 1,376 

L-Threonine 0,902 0,418 0,731 

L-Tryptophan 0,135 0,029 0,086 

L-Tyrosine 0,361 0,274 0,387 

L-Valine 0,451 0,620 0,645 

ATP (γ) 40,1 37,8 39,4 

 

http://www.bioinformatics.org/sms2/rev_trans.html
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Table 19 - RNA requirements for the production of 1 gram of Thaumatin, HSA and Fab fragment codifying 

RNA. A cost of 2,4 mol of ATP per gram of RNA was assumed. 

Substrate Thaumatin HSA Fab Fragment 

AMP 0,73 0,86 0,74 

UMP 1,14 1,09 1,18 

GMP 0,73 0,72 0,58 

CMP 0,48 0,40 0,57 

ATP (δ) 7,38 7,38 7,38 

 

 

Table 20 - DNA requirement for the formation of 1 gram of codifying DNA for Thaumatin, HSA and Fab 

Fragment. A cost of 3,4 mol ATP per gram of DNA produced was assumed. 

Substrate Thaumatin HSA Fab Fragment 

dAMP 1,14 0,86 1,18 

dTMP 0,73 1,09 0,74 

dGMP 0,48 0,72 0,57 

dCMP 0,73 0,40 0,58 

ATP(θ) 10,45 10,45 10,45 

 

 

Model Comparison 

 

Figures 18, 19 and 20 show the performance of the different models to predict 

experimental growth rates. 
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Figure 18 - Gas exchange and secondary metabolite prediction from Dataset 2 by the analyzed models. The 

predictions were performed with the uptake and production rates obtained for the parental strain, the same analysis was 

done with the recombinant strain yielding similar results. The percentage in the x axis correspond to oxygen fraction in 

the gas inlet of the bioreactor used to perform the study (21%  normoxic, 11%  oxygen limited, 8%  hypoxic)  
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Figure 19 - Growth rate prediction in glycerol and glycerol/methanol limited chemostats. F.G. stands for Fast 

Growth (μ=0.16 h-1) and S.G. means Slow Growth (μ=0.05 h-1). 

 

  

Figure 20 - Oxygen Uptake Rate (OUR) and Carbon dioxyde Evolution Rate (CER) in glycerol and methanol 

limited chemostats. 1: Fast growth glycerol limited chemostat, 2: Fast Growth glycerol and methanol limited 

chemostat, 3: Slow growth glycerol-limited chemostat and 4: Slow growth glycerol and methanol limited chemostat. 
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II. Supplementary Material 2: Feeding policies used in the optimization of 

bioprocesses example 

 

We tested 13 different feeding strategies, which yielded a constant or decreasing growth 

rate (Figure 21). The details of the strategies are presented in Table 21. 

 

 

Figure 21 – Constant (left) versus decreasing (right) growth rates during fed-batch culture. Here, tFEED 

corresponds to the time when the feed of the culture starts after batch cultivation and μMAX, Rate and μMIN refer to the 

parameters used to describe the decreasing growth rate profile of the culture. We evaluated two values for each one of 

these parameters, which yielded eight dynamic feeding strategies (6-13 in Table 21). 
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Table 21 - Feeding strategies evaluated and productivity indicators. The first five strategies attempt to make the 

culture grow at a constant growth rate while the rest produce a decreasing growth rate profile. 

Strategy 
μSET,MAX 

[h-1] 
Rate 

μSET,MIN 

[h-1] 

qP 

[mg/gDCWh] 

XFINAL 

[g/L] 

PFINAL 

[mg/L] 
Limitation 

1 0,14 - - 2,85 164,8 138 Oxygen 

2 0,12 - - 2,59 187,8 135 Oxygen 

3 0,1 - - 2,32 195,3 130 Volume 

4 0,08 - - 2,29 191,3 138 Volume 

5 0,06 - - 2,28 184,7 154 Volume 

6 0,14 0,07 0,08 2,13 193,1 121,6 Volume 

7 0,14 0,07 0,04 1,33 176,6 92,3 Volume 

8 0,14 0,01 0,08 2,83 197,5 150,0 Volume 

9 0,14 0,01 0,04 2,34 195,1 128,0 Volume 

10 0,1 0,07 0,08 1,88 191,0 111,6 Volume 

11 0,1 0,07 0,04 0,89 172,8 66,9 Volume 

12 0,1 0,01 0,08 1,41 193,7 81,3 Volume 

13 0,1 0,01 0,04 2,30 188,8 140,5 Volume 
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III. Supplementary Material 3: Batch Model Initial Calibration and Parameter 

Values 

 

The model was used to calibrate data from eight aerobic, glucose-limited batch 

cultivations. The parameter values achieved in the calibrations is presented in Table 22, 

while the time of calibration and objective function value of the calibration are presented 

in Table 23. 

Table 22 - Parameter values achieved in the calibration of data from eight batch cultivations using the initial 

batch model structure 

 Dataset 

1 2 3 4 5 6 7 8 

𝑽𝑴𝑨𝑿 7.75 3.34 7.95 2.74 3.07 6.67 1.51 1.27 

𝑲𝑺 9.80E-04 9.60E-05 7e -4 3.00E-04 1.00E-05 1.5 e-4 1.00E-05 1.03E-05 

𝒗𝑬𝒕𝑶𝑯,𝑩 1.98 1.78 1.76 1.48 0.89 2.97 0.03 0.02 

𝒗𝑷𝒚𝒓,𝑩 0.21 0.18 0.25 0.19 0.12 0.2 0.01 0.003 

𝒗𝑨𝒓𝒂𝒃,𝑩 0.54 0.32 0.5 0.51 0.4 0.48 0.16 0.09 

𝒗𝑪𝒊𝒕,𝑩 0.06 0.04 0.08 1.1 0 0.05 0.03 0.05 

𝜶𝑩 4.05E-04 2.90E-04 4.20E-04 2.30E-04 1.45E-06 3.0E-04 7.19E-06 7.17E-05 

𝒎𝒂𝒕𝒑 0.52 0.68 0.001 4.09 9.99 4.61 3.29 1.32 

 

Table 23 - General features of initial model calibration. 

Dataset N Min. squares difference Time of calibration [h] 

1 8 0.26 1.92 

2 8 1.55 5.29 

3 8 0.47 3.46 

4 8 0.88 4.40 

5 6 1.69 4.11 

6 9 7.27 4.41 

7 12 1.17 4.32 

8 13 3.30 4.30 
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We also provide two examples of how the model fitted two of these cultivations. 

 

 

Figure 22 - Batch model calibration of GS115 culture 1 
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Figure 23 - Batch model calibration of GS115 culture 8 
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IV. Supplementary Material 4:  Parametric issues found in the initial batch 

model calibrations 

 

The recurrence of identifiability, significance and sensitivity issues found amongst the 

initial batch model calibration is presented in Table 24 and Table 25. 

 

Table 24 - Percentage of calibrations (8 in total) where pairs of parameters show identifiability issues (correlation 

≥ 0.95). Parameters with recurrent identifiability issues are highlighted. 

 𝑉𝑀𝐴𝑋 𝐾𝑆 𝑣𝐸𝑡𝑂𝐻,𝐵 𝑣𝑃𝑦𝑟,𝐵 𝑣𝐴𝑟𝑎𝑏,𝐵 𝑣𝐶𝑖𝑡,𝐵 𝛼𝐵 𝑚𝑎𝑡𝑝 

𝑉𝑀𝐴𝑋 -        

𝐾𝑆 13% -       

𝑣𝐸𝑡𝑂𝐻,𝐵 50% 0% -      

𝑣𝑃𝑦𝑟,𝐵 25% 0% 38% -     

𝑣𝐴𝑟𝑎𝑏,𝐵 25% 0% 25% 13% -    

𝑣𝐶𝑖𝑡,𝐵 13% 0% 0% 13% 0% -   

𝛼𝐵 25% 25% 0% 0% 0% 13% -  

𝑚𝑎𝑡𝑝 63% 25% 38% 25% 38% 13% 50% - 

 

 

Table 25 – Percentage (o Frequency) of calibrations (8 in total) where a parameter presented sensitivity or 

significance issues. Parameters with recurrent problems are highlighted.  

 𝑉𝑀𝐴𝑋 𝐾𝑆 𝑣𝐸𝑡𝑂𝐻,𝐵 𝑣𝑃𝑦𝑟,𝐵 𝑣𝐴𝑟𝑎𝑏,𝐵 𝑣𝐶𝑖𝑡,𝐵 𝛼𝐵 𝑚𝑎𝑡𝑝 

Sensitivity 0% 38% 0% 0% 0% 13% 25% 13% 

Significance 25% 50% 0% 13% 0% 25% 25% 25% 
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V. Supplementary Material 5: Batch model Cross Calibration Summary 
 

Table 26 - Cross Calibration summary.  

Structure 

N° 

parameters FDIFF 

% of 

significance 

Issues 

% of 

Sensitivity 

Issues 

% of 

Identifiability 

Issues 

Original 8 0 23.6 16.7 17.4 

1 6 -0.10 22.9 18.8 15.0 

2 3 2.77 29.1 8 25 

3 5 0.18 90.0 23 68 

4 2 0.56 62.5 13 0 

5 3 4.10 29.2 0 54 

6 5 0.18 0 2.5 61.3 

7 5 2.93 18.8 20.8 60.0 

8 5 2.82 22.5 25.0 33.8 
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VI. Supplementary Material 6: Correlation and Sensitivity Matrixes of the 

calibration of the batch validation dataset 

 

Table 27 and Table 28 show that the calibration of the validation datasets yielded no 

identifiability sensitivity (correlation > 0.95 between parameters) nor sensitivity 

(parameters without impact on the state variables) issues.  

 

Table 27 – Correlation Matrix of the robust parameter set used to calibrate the batch validation dataset. Each 

cell contains the correlation between the two corresponding parameters. 

 𝒗𝑬𝒕𝑶𝑯,𝑩 𝒗𝑷𝒚𝒓,𝑩 𝒗𝑨𝒓𝒂𝒃,𝑩 𝒗𝑪𝒊𝒕,𝑩 𝜶𝑩 

𝒗𝑬𝒕𝑶𝑯,𝑩 1 -0,45 0,43 0,78 -0,86 

𝒗𝑷𝒚𝒓,𝑩 -0,45 1 -0,17 -0,56 0,50 

𝒗𝑨𝒓𝒂𝒃,𝑩 0,43 -0,17 1 0,38 -0,43 

𝒗𝑪𝒊𝒕,𝑩 0,78 -0,56 0,38 1 -0,88 

𝜶𝑩 -0,86 0,50 -0,43 -0,88 1 

 

 

Table 28 - Sensitivity Matrix of the robust Parameter set used to calibrate the batch validation dataset. Each cell 

contains the average sensitivity of a particular parameter over the state variables.  

 Volume Biomass Glucose Ethanol Pyruvate Arabitol Citrate 

𝒗𝑬𝒕𝑶𝑯,𝑩 0 0,15 0,12 0,91 0,14 0,14 0,04 

𝒗𝑷𝒚𝒓,𝑩 0 0,02 0,00 0,02 0,95 0,02 0,00 

𝒗𝑨𝒓𝒂𝒃,𝑩 0 0,03 0,01 0,02 0,02 0,97 0,00 

𝒗𝑪𝒊𝒕,𝑩 0 0,03 0,00 0,02 0,03 0,03 0,45 

𝜶𝑩 0 2,62 1,09 1,80 1,93 2,00 0,73 
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VII. Supplementary Material 7: Fed-batch model initial Calibration and 

Parameter Values 

 

Table 29 indicates the parameter values achieved for the three fed-batch cultivations used 

in the initial calibration of the fed-batch model. Figures 24, 25 and 26, show the model 

fits to the experimental data. 

 

Table 29 - Parameter Values of the Initial calibrations performed with the complete fed-batch model (14 

parameters) 

Parameter Dataset 1 Dataset 2 Dataset 3 Mean Units 

𝑣𝑆,𝑚𝑎𝑥 2,74 3,29 2,59 2,94 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  

𝐾𝑆 0,05 0,03 0,07 0,05 𝑔 𝐿⁄  

𝑣𝐸𝑡𝑂𝐻,𝐵 1,95 2,18 0,98 1,58 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  

𝑣𝑃𝑦𝑟,𝐵 0,18 0,18 0,13 0,15 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  

𝑣𝐴𝑟𝑎𝑏,𝐵 0,5 0,24 0,11 0,18 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  

𝑣𝐶𝑖𝑡,𝐵 0,12 0,11 0,22 0,16 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  

𝑣𝐸𝑡𝑂𝐻,𝐹𝐵 1,13 1,20 1,22 1,21 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  

𝑣𝑃𝑦𝑟,𝐹𝐵 0,10 0,02 0,26 0,14 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  

𝑣𝐴𝑟𝑎𝑏,𝐹𝐵 0,07 0,13 0,17 0,15 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  

𝑣𝐶𝑖𝑡,𝐹𝐵 0,005 0,00 0,01 0,008 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  

𝛼𝐵 3,03E-04 4,26E-05 1,49E-04 9,6E-05 [−] 

𝛼𝐹𝐵 1,28E-04 2,22E-14 1,44E-04 7,2E-05 [−] 

𝑚𝐴𝑇𝑃 4,38 9,00 8,13 8,6 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄  

𝑇𝐹𝑒𝑑 23 22,02 22,94 22,5 ℎ 
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Figure 24 - Calibration of fed-batch dataset 1 using the original model structure 

 

 

 

 

 

 

 

 

 

 

 

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

[L
]

 

 

Volume

0 10 20 30 40 50
0

20

40

60

80

[L
]

 

 

Biomass

Glucose

0 10 20 30 40 50
0

2

4

6

8

10

12

[g
/L

]

Time [h]

 

 

Ethanol

Arabitol

0 10 20 30 40 50
0

0.5

1

1.5

2

[g
/L

]

Time [h]

 

 

Pyruvate

Citrate



81 
 

 
 

 

 

 

Figure 25 - Calibration of fed-batch dataset 2 using the original model structure 
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Figure 26 - Calibration of fed-batch dataset 3 using the original model structure 
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VIII. Supplementary Material 8: Correlation and Sensitivity Matrixes of the fed-

batch validation dataset calibrated with the candidate robust modeling 

structure 3.  

 

Table 30 - Correlation Matrix of the calibration of the fed-batch validation dataset 

 𝑣𝑀𝐴𝑋 𝐾𝑆 𝑣𝑃𝑦𝑟,𝐵 𝑣𝐴𝑟𝑎𝑏,𝐵 𝑣𝐶𝑖𝑡,𝐵 𝑣𝑃𝑦𝑟,𝐹𝐵 𝛼𝐵 𝛼𝐹𝐵 𝑚𝐴𝑇𝑃 𝑇𝐶𝑜𝑛𝑠 

𝑣𝑀𝐴𝑋 1 0,15 0,17 -0,47 0,45 -0,11 -0,92 0,14 -0,85 0,04 

𝐾𝑆 0,15 1 0,94 -0,85 0,62 -0,49 -0,20 0,68 0,24 -0,32 

𝑣𝑃𝑦𝑟,𝐵 0,17 0,94 1 -0,86 0,67 -0,76 -0,20 0,89 0,25 -0,42 

𝑣𝐴𝑟𝑎𝑏,𝐵 -0,47 -0,85 -0,86 1 -0,66 0,56 0,44 -0,70 0,07 0,55 

𝑣𝐶𝑖𝑡,𝐵 0,45 0,62 0,67 -0,66 1 -0,53 -0,51 0,60 -0,20 -0,10 

𝑣𝑃𝑦𝑟,𝐹𝐵 -0,11 -0,49 -0,76 0,56 -0,53 1 0,15 -0,96 -0,19 0,42 

𝛼𝐵 -0,92 -0,20 -0,20 0,44 -0,51 0,15 1 -0,18 0,88 -0,08 

𝛼𝐹𝐵 0,14 0,68 0,89 -0,70 0,60 -0,96 -0,18 1 0,21 -0,42 

𝑚𝐴𝑇𝑃 -0,85 0,24 0,25 0,07 -0,20 -0,19 0,88 0,21 1 -0,25 

𝑇𝐶𝑜𝑛𝑠 0,04 -0,32 -0,42 0,55 -0,10 0,42 -0,08 -0,42 -0,25 1 

 

 

Table 31 - Sensitivity Matrix of the calibration of the fed-batch validation dataset 

 Volume Biomass Glucose Ethanol Pyruvate Arabitol Citrate 

𝑣𝑀𝐴𝑋 0,00 0,65 0,93 4,32 3,67 1,57 0,61 

𝐾𝑆 0,00 0,22 0,00 0,01 1,24 0,02 0,00 

𝑣𝑃𝑦𝑟,𝐵 0,00 0,15 0,00 0,00 1,02 0,00 0,00 

𝑣𝐴𝑟𝑎𝑏,𝐵 0,00 0,10 0,09 0,69 2,74 0,91 0,22 

𝑣𝐶𝑖𝑡,𝐵 0,00 0,03 0,00 0,09 0,96 0,04 0,62 

𝑣𝑃𝑦𝑟,𝐹𝐵 0,00 0,13 0,00 0,00 0,24 0,03 0,00 

𝛼𝐵 0,00 1,03 0,88 5,82 6,27 2,91 1,24 

𝛼𝐹𝐵 0,00 0,03 0,00 0,01 0,00 0,02 0,00 

𝑚𝐴𝑇𝑃 0,00 0,79 0,65 3,24 3,66 2,13 0,95 

𝑇𝐶𝑜𝑛𝑠 0,00 0,26 0,00 0,22 3,66 3,06 0,88 
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IX. Supplementary Material 9: Glossary for Figure 12, analysis of the metabolic 

flux distribution throughout a fed-batch Cultivation. 

 

The abbreviations used correspond to the following metabolites: 

 G6P = Glucose 6 Phosphate 

 Ru5P = Ribulose 5 Phosphate 

 ABT = Arabitol 

 PPP = Non-oxidative phase of the Pentose Phosphate Pathway 

 F6P = Fructose 6 Phosphate 

 G3P = Glyceraldehyde 3 Phosphate 

 DHAP = Dihydroxyacetone Phosphate 

 Pyr = Pyruvate 

 OAA = Oxaloacetate 

 Acald = Acetaldehyde 

 EtOH = Ethanol 

 AcCoA = Acetyl Coenzyme A 

 Cit = Citrate 

 Icit = Isocitrate 

 αkg = Alpha-keto glutarate 

 Mal = Malate 

 L- glut = Glutamate  
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X. Supplementary Material 10:  Knockout candidates derived by MOMA 

 

Table 32 - Knockout candidates for HSA overproduction 

 
Deleted Gene 

Final Biomass 

[g/L] 

Final HSA 

[g/L] 
Reaction(s) Name(s) 

1 PAS_chr2-2_0094 11,81 0,91 Chitin synthase 

2 PAS_chr1-4_0194 11,41 0,84 Putrescine and Spermidine transport 

3 PAS_chr4_0836 11,41 0,84 Putrescine and Spermidine transport 

4 RPPA11109 10,74 0,63 ribulose 5-phosphate 3-epimerase 

5 RPPA11110 10,74 0,63 ribulose 5-phosphate 3-epimerase 

6 PAS_chr2-2_0330 10,20 0,62 Phosphoryl ceramide syntase 

7 PAS_chr2-2_0044 8,59 0,30 
CDP-Diacylglycerol synthetase, yeast-

specific 

8 PAS_chr4_0210 8,84 0,29 ADP/ATP transporter, mitochondrial 

9 PAS_chr4_0212 8,84 0,29 ribose-5-phosphate isomerase 

10 PAS_chr3_0604 14,05 0,23 Deoxyribokinase and ribokinase 

11 PAS_chr4_0408 15,33 0,22 phosphoethanolamine cytidyltransferase 

12 PAS_chr1-1_0418 16,02 0,21 Acetate transporter 

13 PAS_chr1-3_0220 15,88 0,19 
Methylenetetrahydrofolate dehydrogenase 

NAD 

14 PAS_chr1-4_0487 14,85 0,17 Succinate Dehydrogenase 

15 PAS_chr2-2_0278 14,85 0,17 Peptide alpha-N-acetyltransferase 

16 PAS_chr3_1110 14,85 0,17 Tyrosyl-tRNA synthetase, mitochondrial 

17 PAS_chr4_0733 14,85 0,17 Succinate Dehydrogenase 

18 PAS_chr3_0646 14,04 0,14 Phospholipase D, yeast-specific 

19 PAS_chr3_0471 15,44 0,12 
aspartate-semialdehyde dehydrogenase, 

irreversible 

20 PAS_chr2-1_0657 13,40 0,12 phosphoglycerate dehydrogenase 

21 PAS_chr4_0284 13,40 0,12 ribonucleoside-diphosphate reductase 

22 PAS_chr4_0877 16,73 0,05 
malate, succinate and fumarate transport, 

mitochondrial 

23 PAS_chr3_0176 16,53 0,05 
N-acteylglutamate synthase and ornithine 

transacetylase , mitochondrial 

24 PAS_chr1-1_0050 9,78 0,05 Pyruvate dehydrogenase 

25 PAS_chr1-4_0254 9,78 0,05 Ppyruvate dehydrogenase 

26 PAS_chr1-4_0593 9,78 0,05 
Pyruvate dehydrogenase, tetrahydrofolate 

aminomethyltransferase 

27 PAS_chr2-2_0288 9,78 0,05 Arginase 

28 PAS_chr3_0649 16,26 0,03 Thiamine transport in via proton symport 

29 PAS_chr2-2_0127 17,10 0,03 Cytochrome c peroxidase, mitochondrial 

30 PAS_chr1-4_0659 17,10 0,03 
Hydrogen peroxide reductase thioredoxin, 

peroxisomal 

31 PAS_chr2-1_0547 16,70 0,03 3',5'-bisphosphate nucleotidase 
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32 PAS_chr3_0462 17,14 0,03 Alanyl-tRNA synthetase 

 

Table 33 - Reactions and pathways associated to the deletion candidates 

 Deleted Gene Reactions Pathway 

1 PAS_chr2-2_0094 udpacgam[c]  => h[c] + udp[c] + chitin[c]  Glutamate metabolism 

2 PAS_chr1-4_0194 

h[c] + ptrc[e]  => h[e] + ptrc[c]  

h[c] + spmd[e]  => h[e] + spmd[c] h[c] + sprm[e]  

=> h[e] + sprm[c]  

Transport, Extracellular 

3 PAS_chr4_0836 

h[c] + ptrc[e]  => h[e] + ptrc[c]  

h[c] + spmd[e]  => h[e] + spmd[c] h[c] + sprm[e]  

=> h[e] + sprm[c]  

Transport, Extracellular 

4 RPPA11109 
ru5p-D[c]  <=> xu5p-D[c]  Pentose Phosphate 

Pathway 

5 RPPA11110 
ru5p-D[c]  <=> xu5p-D[c]  Pentose Phosphate 

Pathway 

6 PAS_chr2-2_0330 
ptd1ino_PP[c] + cer1_24[c]  => 12dgr_PP[c] + 

ipc124_PP[c]  

Sphingolipid 

Metabolism 

7 PAS_chr2-2_0044 

h[c] + pa_PP[c] + ctp[c]  <=> ppi[c] + 

cdpdag_PP[c]  

h[m] + ctp[m] + pa_PP[m]  <=> ppi[m] + 

cdpdag_PP[m]  

Phospholipid 

Biosynthesis 

8 PAS_chr4_0210 
h[c] + adp[c] + atp[m]  => h[m] + atp[c] + adp[m]  Transport, 

Mitochondrial 

9 PAS_chr4_0212 
r5p[c]  <=> ru5p-D[c]  Pentose Phosphate 

Pathway 

10 PAS_chr3_0604 
atp[c] + rib-D[c]  => h[c] + adp[c] + r5p[c]  Pentose Phosphate 

Pathway 

11 PAS_chr4_0408 
h[c] + ctp[c] + ethamp[c]  => ppi[c] + cdpea[c]  Phospholipid 

Biosynthesis 

12 PAS_chr1-1_0418 ac[e]  <=> ac[c]  Transport, Extracellular 

13 PAS_chr1-3_0220 nad[c] + mlthf[c]  => nadh[c] + methf[c]  Folate Metabolism 

14 PAS_chr1-4_0487 

fad[m] + succ[m]  <=> fadh2[m] + fum[m]  

q6[m] + succ[m]  <=> q6h2[m] + fum[m]  

q6[m] + fadh2[m]  <=> q6h2[m] + fad[m]  

Citric Acid 

Cycle/Oxydative 

Phosphorilation 

15 PAS_chr2-2_0278 
accoa[c] + pepd[c]  => h[c] + coa[c] + apep[c]  Other Amino Acid 

Metabolism 

16 PAS_chr3_1110 
atp[m] + tyr-L[m] + trnatyr[m]  => amp[m] + 

ppi[m] + tyrtrna[m]  
tRNA charging 

17 PAS_chr4_0733 

fad[m] + succ[m]  <=> fadh2[m] + fum[m]  

q6[m] + succ[m]  <=> q6h2[m] + fum[m]  

q6[m] + fadh2[m]  <=> q6h2[m] + fad[m]  

Citric Acid 

Cycle/Oxydative 

Phosphorilation 

18 PAS_chr3_0646 
h2o[c] + pc_PP[c]  => h[c] + pa_PP[c] + chol[c]  Phospholipid 

Metabolism 

19 PAS_chr3_0471 
h[c] + nadph[c] + 4pasp[c]  => pi[c] + nadp[c] + 

aspsa[c]  

Alanine and Aspartate 

Metabolism 

20 PAS_chr2-1_0657 
nad[c] + 3pg[c]  => h[c] + nadh[c] + 3php[c]  Glycine and Serine 

Metabolism 

21 PAS_chr4_0284 
19 Reactions Nucleotide Salvage 

Pathway 
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22 PAS_chr4_0877 
pi[m] + mal-L[c]  <=> pi[c] + mal-L[m]  Transport, 

Mitochondrial 

23 PAS_chr3_0176 

accoa[m] + glu-L[m]  => h[m] + coa[m] + 

acglu[m]  

glu-L[m] + acorn[m]  => acglu[m] + orn[m]  

Arginine and Proline 

Metabolism 

24 PAS_chr1-1_0050 
nad[m] + coa[m] + pyr[m]  => nadh[m] + co2[m] 

+ accoa[m]  

Glycolysis/Gluconeogen

esis 

25 PAS_chr1-4_0254 
nad[m] + coa[m] + pyr[m]  => nadh[m] + co2[m] 

+ accoa[m]  

Glycolysis/Gluconeogen

esis 

26 PAS_chr1-4_0593 
udpacgam[c]  => h[c] + udp[c] + chitin[c]  Glycolysis/Gluconeogen

esis 

27 PAS_chr2-2_0288 

h[c] + ptrc[e]  => h[e] + ptrc[c]  

h[c] + spmd[e]  => h[e] + spmd[c] h[c] + sprm[e]  

=> h[e] + sprm[c]  

Arginine and Proline 

Metabolism 

28 PAS_chr3_0649 

h[c] + ptrc[e]  => h[e] + ptrc[c]  

h[c] + spmd[e]  => h[e] + spmd[c] h[c] + sprm[e]  

=> h[e] + sprm[c]  

Transport, Extracellular 

29 PAS_chr2-2_0127 
ru5p-D[c]  <=> xu5p-D[c]  Oxidative 

Phosphorylation 

30 PAS_chr1-4_0659 ru5p-D[c]  <=> xu5p-D[c]  Other 

31 PAS_chr2-1_0547 
ptd1ino_PP[c] + cer1_24[c]  => 12dgr_PP[c] + 

ipc124_PP[c]  
Cysteine Metabolism 

32 PAS_chr3_0462 

h[c] + pa_PP[c] + ctp[c]  <=> ppi[c] + 

cdpdag_PP[c]  

h[m] + ctp[m] + pa_PP[m]  <=> ppi[m] + 

cdpdag_PP[m]  

tRNA charging 
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XI. Supplementary material 11: Similarity to experimental data of the iMT1026 

model and a batch calibration using it 

 

The iMT1026 model has better predicting capability of experimental consumption and 

production rates compared to the iFS670 model (Table 34). 

 

Table 34 - Average error associated to experimental rate predictions of the iFS670 model versus the iMT1026 

model 

Carbon Source N iFS670 iMT1026 

Glycerol/MetOH  12 37% 24% 

Glucose 30 36% 31% 

Average Error F (%) = 42 36% 29% 

 

As the new model improved the predictions, we used it to calibrate a batch cultivation 

assuming biomass maximization. The metabolic block did not solve a QP problem and 

the model contained six parameters (Table 35 and Figure 27). 

 

Table 35 - Parameter values achieved in the calibration of a batch cultivation using the iMT1026 genome-scale 

metabolic model 

Parameter Value Units 

𝑉𝑀𝐴𝑋 3.56 mmol/gDCWh 

𝐾𝑆 0.008 g/L 

𝑣𝐸𝑡𝑂𝐻,𝐵 2.00 mmol/gDCWh 

𝑣𝑃𝑦𝑟,𝐵 0.22 mmol/gDCWh 

𝑣𝐴𝑟𝑎𝑏,𝐵 0.57 mmol/gDCWh 

𝑣𝐶𝑖𝑡,𝐵 0.07 mmol/gDCWh 
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Figure 27 - Calibration of a batch cultivation using the iMT1026 genome-scale model of Pichia pastoris 
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