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In this paper, we consider an extension to Eddington’s proposal for the gravitational action. We study

tensor perturbations of a homogeneous and isotropic space-time in the Eddington regime, where

modifications to Einstein gravity are strong. We find that the tensor mode is linearly unstable deep in

the Eddington regime and discuss its cosmological implications.
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I. INTRODUCTION

An alternative theory of gravity was recently proposed in
Ref. [1] which attempted to extend Eddington’s affine the-
ory of gravity to the matter sector [2] (see also Refs. [3,4]).
The new theory is formulated in Palatini form in terms of
the affine connection ��

�� and a space-time metric, g��,

such that the gravitational action is given by

SEBI½g;�;�� ¼ 2

�

Z
d4x½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jg�� þ �R��ð�Þj

q
� �

ffiffiffi
g

p �
þ Sm½g;��;

where � ¼ 8�G, � denotes any additional matter fields.
R�� is the symmetric Ricci tensor constructed with �. This

action can reproduce Eddington’s original action at large
values of �R and Einstein’s at small values.

It was shown in Ref. [1] that this theory has a novel
behavior within sources. It was found that, in stars, compact
objects and black holes, the Eddington regime might not
only lead to the avoidance of singularities but to significant
modifications to the standard results of stellar astrophysics.
The authors of Ref. [5] showed that it was possible to test
the Eddington corrections to Newtonian gravity using Solar
physics, while in Ref. [6], it was shown that it should be
possible to do the same around compact rotating sources. In
Ref. [7], it was shown that the mere existence of bound
gravitational objects of a certain size led to stringent con-
straints on the free parameter of the theory, while in
Ref. [8], it was shown that the theory could reexpressed
as a bigravity theory, along the lines of Ref. [9].

The Eddington regime will also arise in the very early
Universe, and it was shown in Ref. [1] that it may have led

to a minimum scale factor. Hence, and more significantly
than in black holes, the Eddington regime seems to prevent
the formation of cosmological singularities, at least when
seen in the context of homogeneous and isotropic space-
times.
In this brief note, we look at one particular aspect of the

cosmological behavior of the Eddington regime by study-
ing the structure and evolution of linear tensor mode
perturbations, i.e. cosmological gravitational waves. We
focus on tensor modes because they are purely gravita-
tional, unlike the scalar modes which are a combination of
metric and density perturbations. This note is structured as
follows: in Sec. II, we lay out the main equations and
derive the evolution equation for traceless, transverse per-
turbations (i.e. tensor modes) to a homogeneous and iso-
tropic space-time; in Sec. III, we find the solutions to the
tensor equations in the Eddington regime and show that
there is an instability; in Sec. IV, we discuss the implication
of our findings for this specific model and the wider con-
sequences of this tensor instability for bigravity theories
and their equivalents.

II. TENSOR MODES IN THE EDDINGTON
BORN-INFELD THEORY

In this section, we review some key features of Ref. [1]
and introduce the procedure that will lead us to compute
the tensor perturbations using the auxiliary metric q��. In

Eq. (1), we see that the metric and the connection are
treated as independent variables, known as Palatini varia-
tion. The resulting new set of evolution equations can be
conveniently written in the form [1]

ffiffiffiffiffiffiffiffiffiffiffiffi��������
q

g

��������
s

ðq�1Þ�� � �g�� ¼ ��T��ðg;�Þ; (1)
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q�� � g�� ¼ �R��ðqÞ; (2)

where � ¼ 1þ ��, and � is a constant with the inverse
dimensions to that of the cosmological constant �. Here,
q�� is an auxiliary rank-2 tensor, related to the original

connection � via the Christoffel symbol. R��ðqÞ is the

associated curvature. The energy-momentum tensor is
coupled to the metric g��. These equations imply that

T�� is conserved in the usual sense, T��
;� ¼ 0, where

the covariant derivative is taken with respect to the metric
g��. This property is not obvious from the equations of

motion, but follows in a straightforward way from the
Lagrangian using invariance under general coordinate
transformations.

We can consider a perturbed homogeneous and isotropic
space-time by choosing the two metrics to be of the form

g��dx
�dx� ¼ �a2d�2 þ a2ð	ij þ hijÞdxidxj; (3)

q��dx
�dx� ¼ �X2d�2 þ Y2ð	ij þ 
ijÞdxidxj; (4)

where a, X and Y are solely functions of conformal time,
and �, both hij and 
ij are transverse and traceless, i.e.

hii ¼ 
ii ¼ 0 and @ih
ij ¼ @i


ij ¼ 0.
We can take the energy-momentum tensor to be given by

T�� ¼ ð�þ PÞu�u� þ Pg��; (5)

where u� ¼ ð1; 0; 0; 0Þ. The system (1) and (2) can then be
used to find the evolution equations at all times. We will be
focusing on the very early Universe, when matter could
be described in terms of a relativistic perfect fluid. It was
shown in Ref. [1] that the modified Friedmann-Robertson-
Walker equation has the form

3H2 ¼ 1

�

�
��� 1þ 1

3
ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð��þ 1Þð3� ��Þ3

q �

�
�ð1þ ��Þð3� ��Þ2

ð3þ �2�2Þ2
�
; (6)

where H ¼ a0=a2, and for �� � 1, we have H2 ’ �=3.
This equation has critical points for Hð�BÞ ¼ 0 at a maxi-
mum density �B which depends on the sign of �. It is
useful to write out the background equation that arises
from the field equations:

� jXY3j
X2a4

þ �

a2
¼ ��

�

a2
;

jXY3j
Y2a4

� �

a2
¼ ��

P

a2
: (7)

To construct the perturbed field equations, we need the
following identities:

ffiffiffiffiffiffi
jqj

q
¼ jXY3jð1þOð
2ÞÞ;ffiffiffiffiffiffi

jgj
q

¼ jXY3jð1þOðh2ÞÞ;

ðq�1Þij ¼ 1

Y2
ð	ij � 
ijÞ where 
ij ¼ 	ik	jl
kl;

ðgÞij ¼ 1

a2
ð	ij � hijÞ where hij ¼ 	ik	jlhkl;

	Tij ¼ � P

a2
hij:

We obtain the field equations in the form

� XY3

a4
1

Y2

ij þ �

a2
hij ¼ �

P

a2
hij:

But using Eq. (7), we have that

� XY3

a4
1

Y2

ij þ �

a2
hij ¼

�
� XY3

a4Y2
þ �

a2

�
hij;

which simplifies greatly to


ij ¼ hij:

This is an intriguing result. Even though the tensor pertur-
bations in both the metric and the auxiliary metrics are
multiplied by different conformal factors, they are identi-
cal in this theory. Furthermore, even in the Einstein regime,
where X ¼ Y ¼ a, we find that 
ij is nontrivial and com-

pletely locked to the behavior of hij.

We can now proceed to construct the evolution equation
for hij to find

h00ij þ
�
3
Y0

Y
� X0

X

�
h0ij þ

�
4

�
Y0

Y

�
2 þ 2

Y00

Y
� 2

X0

X

Y0

Y

� 2

�

�
X2a2

Y2
� X2

�
þ

�
X

Y

�
2
k2
�
hij ¼ 0: (8)

The spatial background field equation can now be used to
find

Y2 ¼ a2 þ �
Y2

X2

�
Y00

Y
þ 2

�
Y0

Y

�
2 � Y0X0

YX

�
;

which, when replaced in Eq. (8), leads to our final
expression:

h00ij þ
�
3
Y0

Y
� X0

X

�
h0ij þ

�
X

Y

�
2
k2hij ¼ 0: (9)

This is a remarkably simple evolution equation for the
tensor mode. In the Einstein limit, it reduces to

h00ij þ 2
a0

a
h0ij þ k2hij ¼ 0; (10)

as expected.
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III. EVOLUTION OF TENSOR MODES

We now wish to see how this system evolves in the
different regimes. In the Einstein regime, we find that the
evolution is indistinguishable from Einstein gravity, even
though the auxiliary metric is perturbed and present. The
solutions to Eq. (10) will be the standard ones, depending
on the dominant source of energy momentum and can be
found in any standard text book. For example, in the
radiation era, we find that

hij / 1ffiffiffiffi
�

p H ð1Þ
1=2ðk�Þ;

1ffiffiffiffi
�

p H ð2Þ
1=2ðk�Þ;

where H ðmÞ
� ðxÞ are Hankel functions of the mth kind. In

the radiation era, we have � ¼ 1=2, and the solutions
reduce to a regular [ sinðk�Þ=k�] and irregular
[ cosðk�Þ=k�] solution as k� ! 0. The familiar behavior
of gravitational waves [10,11] emerges for very large k�
where we find decaying oscillatory solutions propagating
at the speed of light. Crucial to this behavior is that there is
no time-dependent factor multiplying the Laplacian (or
Fourier space analogue, �k2).

It is in the Eddington regime that we find novel behavior,
and we will first focus on � > 0. In Ref. [12], it was shown
that the evolution of the background in the Eddington
regime can be approximated by

a

aB
¼ 1þ exp

� ffiffiffiffiffiffi
8

3�

s
ðt� t0Þ

�
;

V �
�
Y

a

�
2 ¼ ffiffiffi

2
p

exp

�
1

2

ffiffiffiffiffiffi
8

3�

s
ðt� t0Þ

�
;

U �
�
X

a

�
2 ¼ 1

2
V3; (11)

where aB is the minimum scale factor, and t is physical
time. This primordial, nonsingular behavior was already
alluded to in Ref. [1] and seems like an attractive, alter-
native explanation for early time. It resurrects another of
Eddington’s ideas of doing away with beginning and in-
stead have the Universe indefinitely loitering in stasis in the
distant past. We can see, however, from Eq. (11) that the
auxiliary metric does become singular as t ! �1, and it is
this behavior which will play a crucial role in the evolution
of the tensor modes.

To proceed, we need to reexpress our background quan-
tities in terms of conformal time, �, which we can find by
integrating d� ¼ dt=aðtÞ using the above expression to
find

a ¼ aB
1� expð���Þ ;

where � ¼ aB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8=ð3�Þp

, and �� ¼ �� �i (where �i is a
fiducial time) is negative (akin to when we write de Sitter
metric conformal coordinates, we find that �< 0). We
then have that

X2

Y2
¼ expð���Þ

1� expð���Þ ;�
3
Y0

Y
� X0

X

�
¼ @� lnðY3=XÞ ¼ @� lna

2
ffiffiffiffiffiffiffiffiffiffiffiffi
V3=U

q
;

¼ 2
a0

a
þ 2�

expð���Þ
1� expð���Þ ;

The evolution equation for the tensor mode is

h00ij þ 2�
expð���Þ

½1� expð���Þ� h
0
ij þ

expð���Þ
½1� expð���Þ� k

2hij ¼ 0:

(12)

A crucial difference with regard to tensor modes in
Einstein gravity is that the prefactor of the last term in
Eq. (12) becomes singular. While in Einstein gravity, that
term is responsible for the acoustic, or wavelike, behavior
of the tensor mode evolution; in Eddington gravity, the
Laplacian term is greatly suppressed. One possible inter-
pretation is that the speed of the gravitational wave goes to
0 as t ! �1. We can extract the asymptotic behavior of
the wave equation in the limit where �� ! �1 by dis-
carding the last terms in Eq. (12) to find

h00ij ’ 0;

which we can solve to give hij / A�þ B. As announced,

we have found an instability in the Eddington regime, in
the asymptotic past. The consequences of such a result will
be discussed in the conclusions of this report.
We now turn to the case where � < 0 where we found a

bounce when the scale factor of the Universe reaches its
minimum, nonsingular value. It was shown in Ref. [12]
that, if one chooses a closed, positively curved spatial
metric, it is possible to construct an oscillating (or
Phoenix Universe) which undergoes an indefinite number
of cycles. Such a model should, in principle, allow us to
study the evolution of perturbations through the various
cycles and shed light on some of the issues that have been
raised in the study of cyclic cosmologies [13,14].
Again, we will work deep in the Eddington regime

where the a, X and Y can be closely approximated by
(assuming Euclidean geometry)

a ¼ aB

�
1þ 2

3j�j t
2

�
; X2 ¼ 4

3
a2

ffiffiffiffiffiffi
j�j
2

s
1

jtj ;

Y2 ¼ 4

3
a2

ffiffiffiffiffiffi
2

j�j

s
jtj;

and we have assumed that the bounce occurs at t ¼ 0. In
conformal time, we find that the scale factor can be
expressed as

a ¼ aB½1þ tan2ð��Þ�;
where � ¼ aB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð3j�jÞp

. We then have
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X2 ¼ a2
4

33=2
1

j tanð��Þj ; Y2 ¼ a2
4

31=2
j tanð��Þj:

(13)

We can now take the Taylor expansion around � ¼ 0 to
find that

X2

Y2
¼ U

V
’ 1

3�2�2
;

�
3
Y0

Y
� X0

X

�
’ 2

�
:

The evolution equation for the tensor mode reduces to

h00ij þ
2

�
h0ij þ

k2

3�2�2
hij ¼ 0; (14)

which can be solved with hij / �p, where

p ¼ �1
2 � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð4k2=3�2Þ

q
:

As in the case of � > 0, we find an instability as a ! aB,

this time at the bounce; both solutions blow up as ��1=2,
rendering such a space-time unstable to tensor mode
perturbations.

IV. CONCLUSIONS

In this paper, we found that, even though the background
evolution is resolutely nonsingular, the overall evolution is
still singular once one considers tensor perturbations. It is
an intriguing result and especially so in the case of � < 0,
where the tensor mode blows up at a finite time. The
singular behavior is clearly induced by the evolution of
the homogeneous part of the auxiliary metric (i.e. via X and
Y) and is a completely novel effect, not present in conven-
tional, Einstein gravity.

A similar instability does arise in the radiation era, in
Einstein gravity—as we saw above, there is a decaying
mode, proportional to 1=k� at early times and clearly
divergent as � ! 0. Yet, the current paradigm does not
extend the radiation era all the way back to the big bang;
there is an intervening period of de Sitter expansion,
known as cosmic inflation, which itself has a finite dura-
tion. One can imagine invoking a more elaborate theory for
Eddington theory in the asymptotic past but the simplest
scenario, first proposed in Ref. [1], does not work in its
simplest incarnation. The instability is unavoidable for
both � > 0 and � < 0.

How general is this behavior? In Refs. [8,9], an alter-
native viewpoint for these theories of gravity was

proposed, firmly placing them in the context of bigravity.
Inevitably, in such theories, one finds more than one tensor
mode which may or not be tightly coupled to each other,
depending on whether the auxiliary metric has its own
kinetic term. An analysis of perturbations in Ref. [15] did
not find such an instability in the scalar sector, and this
might be a hint that it is the particular form of the
Eddington-inspired Born-Infeld theory which gives rise
to such behavior. Another possibility is the fact that we
are considering a Palatini formulation of gravity where, as
shown, pathologies occur which are absent in purely metric
theories [16]. We intend to look at general formulation of
gravity theories [17] to pin down the conditions in which
such an instability arises.
We may learn some lessons from the cosmological

setting which may be applicable in other physical circum-
stances. In particular, there has been some work on under-
standing the process of gravitational collapse in Eddington
gravity. The focus has been on spherical collapse, as one
might expect. Clearly traceless, transverse modes may play
an unexpected role and should be included if possible [18].
Indeed, by allowing for more general perturbations, it
should also be possible trace the effect of nonlinear evo-
lution of the tensor modes (coupled to radial modes) to
search if the singularity can be stabilized in the nonlinear
regime.
Finally, there is of course the whole realm of gravita-

tional waves to be explored in more general settings in
these theories of modified gravity. Our analysis clearly
hints at the possibility that interesting effects might arise
in these theories in regions of density and curvature.
This is clearly one of the new frontiers of modern
gravitational physics which merits further exploration,
especially given the developments in the study of inspir-
alling compact objects, pulsars and gravitational wave
detection [19].
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