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Magnetic multilayers: A detailed analysis of continuum versus 
discrete treatments 
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(Received 28 July 1993; accepted for publication 18 Novermber 1993) 

A critical .comparison is made between discrete and continuum treatments put forward to 
determine the magnetic ordering of exchange coupled superlattices. In particular, our interest is 
focused on the spatial patterns adopted by the coupling between ferromagnetic layers across the 
nonmagnetic spacers. We find that for values of the spacer electron Fermi wavevector 
k~> ?r/a, where a is the lattice parameter, the continuum model breaks down. This gives rise to 
interesting interference effects, which emerge in the discrete three-dimensional treatment, but 
which are missed in a continuum pseudo one-dimensional approximation. The experimental 
evidence is discussed, and an analytic derivation of the critical kF value is also given. 

The development of new preparation techniques has 
led to the production of a wide variety of high quality 
multilayers systems. In particular, the magnetic properties 
of metallic multilayers, obtained intercalating ferromag- 
netic and non-magnetic metals (spacers), have lately at- 
tracted the attention of experimentalists’ and theorists2 
alike. This interest is easy to understand in view of the 
appealing basic problems’they pose, as well as their tech- 
nological applications in the magnetic recording industry. 

It has been observed that the coupling between the 
magnetic layers may oscillate from ferromagnetic to anti- 
ferromagnetic, depending mainly on the thicknesses of the 
spacer. It has also been observed that an applied magnetic 
field can induce big changes in the electrical resistivity of 
the system. This effect, denominated giant magnetoresis- 
tance, was first observed in Fe/Cr multilayer systems by 
Baibich et aL3 The periodicity, phase, and magnitude of 
the oscillations vary, depending on the multilayer constit- 
uents and their spatial arrangement. 

Early experimental results,1y3 revealed oscillation peri- 
ods of the order of 10-20 (A). More recently, in well 
controlled experiments, Unguris et a1.4 found both long 
and short wavelength oscillations of the coupling, when the 
quality of the interface was varied. With sharp interfaces 
short wavelengths were observed, of around two atomic 
layers, similar to those obtained when a Rudermann- 
Kittel-Kasuya-Yosida (RKKY) type of interaction5 is as- 
sumed to be responsible for the coupling of the magnetic 
layers. 

On the theoretical front Yafet6 investigated these sys- 
tems in 1987, comparing results obtained for one- (1-D) 
and three-dimensional (3-D) geometries. He assumed that 
an RKKY interaction couples the magnetic moments of 
the magnetic layers adjacent to the interfaces, separated by 
the non-magnetic spacer. More recently Edwards and 
Mathon proposed a Hubbard model based theory, and 
found out that it leads to answers which are quite close to 
those obtained from a plain Ruderman-Kittel treatment. 
In turn, Baltenspeger and Helman’ provided a quantitative 
comparison between the Hubbard and RKKY results, on 
the basis of a pseudo 1-D treatment. Similar procedures 
have also been implemented by Coehoorn,g and by Chap- 
pert and Rennard.” 

In this communication we show that, quite often, it is 
necessary to go one step further and implement a full 3-D 
calculation, because of significant deviations of the pseudo 
1-D results, relative to the exact ones. 

To carry out our calculations we consider a sandwich 
consisting of two ferromagnetic slabs, separated by N 
atomic layers of a nonmagnetic spacer. The ferromagnetic 
metal atoms on the first slab carry a magnetic moment 
S,. The nonmagnetic metal conduction electrons are polar- 
ized by the magnetic moments, giving rise to spatial oscil- 
lations of the spacer magnetization. The magnetic mo. 
ments of the surface magnetic layer across the spacer, 
SZ, feel the effect of the spin polarization and, depending 
on the thickness of the spacer, align ferromagnetically or 
antiferromagnetically, relative to the magnetization of the 
first slab. 

The RKKY interaction energy between a magnetic 
moment Si on the interface of the magnetic slab and the 
spacer, with all the magnetic moments on the opposite 
magnetic interface S2, with x denoting the distance be- 
tween the two magnetic slabs, is given by 

I(x)=- &k;V2 

XC 
sin ( 2kFr) - 2kycos ( 2kFr) 

(2W4 
s1*s2l (1) 

r 

where r is the distance between two magnetic moments on 
opposite magnetic slabs, J the exchange interaction be- 
tween magnetic and conduction electrons, V the volume of 
the spacer unit cell, kF its Fermi wavevector, and 1 Sjl the 
magnitude of the localized magnetic moments. 

To derive analytic expressions for the coupling energy 
it is usual to integrate over the magnetic layer,6’8 instead of 
adding,the contribution of every individual magnetic mo- 
ment, to obtain 

I(+-&k’,Y” 9 -7 
i’ 

cog -si@> , ) (2) 

where E=2kFx, A is the area of the two-dimensional unit 
cell, and si(LJ is the usual sine integral.” This expression 
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FIG, 1. Interaction energy r(5) vs 6 for /+=I (A-‘), in units of 
m*J2S,S,/25dfi ‘. The dashed line gives the continuum pseudo 1-D ap- 
proximation, while the continuous line is the large distance asymptotic 
limit. 

was derived both by Yafet,6 and by Baltensperger and 
Helman.’ In the large distance limit kFx$ 1, Eq. 2 reduces 
to 

I&$) = -.& kp2F. (3) 

The dashed line in Fig. 1 illustrates the behavior of the 
coupling energy given by Eq. (2), while the continuous 
line is the large distance approximation, supplied by Eq. 
(3). The sign is chosen such that I( 5) > 0 implies ferro- 
magnetic coupling. As observed, for ..$ > 11 the limiting 
form constitutes a very good approximation to I({). For 
transition metals kF is typically of the order of l-2 
(A-‘) and the lattice parameter a is of the order of 34 
(A), so that values of (=2kFx < 6 are unphysical. Thus, 
the limiting form can be used most of the time. 

We now proceed with a proper discrete 3-D treatment 
of the RKKY interaction, as given by Eq. ( 1). The results, 
which were obtained numerically, are given in Figs. 2 and 
3. They illustrate the exchange coupling, for a simple cubic 
structure, in units of m*J2S1S2/25~3+?, both for the con- 
tinuum model of Eq. (3)) and for the discrete one I&. 
(l)]. Adopting the typical values12 for the above parame- 
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FIG. 2. I(& vs 6, for kF= 1.1 (A-‘), in units of m*J2S,S2/25d#. The 
solid line corresponds to the exchange coupling 1(g) for the discrete 3-D 
calculation. The dotted line illustrates the coupling for the pseudo 1-D 
treatment. 
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FIG. 3. Same as Fig. 2, but for k,=4/3. 

ters J/A=: 1 (eV/cm2) and Sj=l, we obtain 
m*J2SlS2/2Jn%~2 (erg cmm2). The results displayed 
in Figs. 2 and 3 imply a maximum coupling energy of the 
order of 1 (erg cm-‘), across a spacer 3 monolayers 
thick, in good agreement with experimental results.1~3~4 

The computations were carried out for several values 
of kF a. For kF a < S- the results for I(& obtained from a 
discrete pseudo 1-D and from’a full 3-D calculation are 
indistinguishable, and quite similar to those illustrated in 
Fig. 1. But, as kF a grows, a significant difference between 
the two calculations becomes apparent. While in a contin- 
uum 1-D approach I(c) shows regular oscillations, these 
are severely modified when a discrete 3-D calculation is 
carried out, as illustrated in Figs. 2 and 3. We observe that 
the interaction has a rich structure, quite different from a 
simple damped periodic function. For kF a > n- a severe 
pattern modification, due to the discrete character of the 
lattice, is observed. A derivation of the critical value 
kyt=r/a is given in the Appendix. Moreover, in!Fig. 3 it 
is observed that these effects are so strong as to induce a 
breakdown in the periodicity, generated by the interference 
of the different terms that contribute to the summation in 
Eq. Cl). 

As far as experimental evidence for this effect we no- 
tice that, when the magnetic patterns of the Fe/G-/Fe 
multilayer system (especially Fig. 3 of the paper of Un- 
guris et aL4) are carefully examined, deviations from per- 
fect periodicity are quite apparent. Further evidence in this 
direction can also be found in Ref. 13. Moreover, elements 
commonly used as spacers are copper, silver, and gold. If 
the ferromagnetic layers are made of a transition metal 
element (TM), then multilayer systems like TM/Cu/TM, 
TM/Ag/TM, and TM/Au/TM do satisfy the requirement 
that kF > kFf ==z-/a, and thus also are likely candidates for 
the observation of the above described interference pat- 
terns. 

We have also estimated the magnitude of atomic finite 
size effects, that is, the consequences of considering mag- 
netic moments which are spread out over a finite volume, 
rather than localized at the lattice site. Our calculations 
convinced us that finite size effects, in this instance, are 
quite negligible. 

In conclusion, for small values of kF a there is no dif- 
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FIG. 4. I(x), in arbitrary units, vs x (A), for kF a=54 

ference between the results of the 1-D and discrete 3-D 
treatments. However, for kF > kpt, considerable deviations 
do result, which are missed by pseudo 1-D continuum 
treatments. The magnitude of the effect is large enough and 
cannot always be ignored. 

FIG. 5. Lower order contributions to I(x), in arbitrary units, vs x (A), 
for kF 4=5.4. The dot-dashed line corresponds to p = 1, the dashed line 
to the p= & the dotted line to p= 4, and the solid line to p= 6. 

z,,n(2kFr’)~=Z,,nf1(2kFr”), WI 

where r’= dm and r”=== dm The vectors p’ 
and p” denote the position of a pair of nearest neighbors on 
the magnetic layer, and thus P”~ = P’~ f u2. Consequently 
r r~2~rt2=pt12~pf2~ Since the peculiar interference pat- 
terns occur for x) a, we have 2r’(r”-r’)zp”2-p’2. 
Equation (A2), for two zeros to concur, is thus satisfied 
when both 

The authors gratefully acknowledge enlightening con- 
versations with Dr. Rafael Benguria. This research was 
supported by FONDECYT under Grant Nos. 90-05 1 and 
92-753. 

APPENDIX: CRITICAL WAVEVECTOR 2k,r’= (n+&- and 2kFr”= (n+$)~, (A3) 

In this Appendix we derive the critical magnitude of which readily yields 
the Fermi wavevector k$‘, for the onset of interference 
effects. Consider a magnetic moment Si interacting with all 

7-r r” - r’ 

the moments S2 on a yz-layer located a distance x away. w= r’ ’ (A4) 

The interaction strength I(x) is given by Eq. ( 1 ), where 
r= dr is the distance between S, and SZ, while 

so that kF(p”2-p’2) =: d, but pn2-pt2=a2, and thus 

P--s 
kF a2sd. Due to the discreteness of the lattice r’>a, one 

p=\y+ * finally obtains the for the critical kF value: 
On the other hand, the spherical Bessel function 

ii(u) =-uL2sin u - U-kos U, and thus 
kk?‘a=n. (A5) 

jl C&r) 
I(x) a CT . i- (AlI 

The function j,(u) has an infinite number of zeros, de- 
noted by z~,~( u). The asymptotic form for their location is 
U+ (n+$r, for n s 1. It is observed that these zeros 
coincide with the zeros of the expression in the summation 
OfEq. (1). 

In Fig. 4 we display the function I(X) of Eq. (Al), 
generated by a magnetic moment Si interacting with a 
square lattice magnetic layer, with nearest neighbor dis- 
tance a = 3 (A), for k,=1.8 (A-“). It is noticed that 
I(x) is far from being a periodic function, showing a pe- 
culiar pattern in the region 15 <x < 17. This anomaly can 
be traced to the simultaneous pairwise cancelling of the 
lowest order contributions to the summation of Eq. ( 1 ), in 
the region of interest. In particular, as can be noticed in 
Fig. 5, an almost total cancelling of the nearest neighbor 
contributions develo s between the pairs {p= fi, 
p= $1, and {p- 2, p= ,k?}, for 15 <x< 17. For this 4 
cancelling to occur 
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