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Abstract

The objective of this paper is to identify the channels that allow us to numerically replicate
the following scenarios: the first, in which firms compensate through wages an increase in the level
of risk associated with employment, better known as compensating wage differentials; the second,
in which firms do not compensate for risk, and there are jobs with low risk and high wages, and
jobs with high risk and low wages. For this we use a labor turnover model with search frictions
based on Burdett and Mortensen (1998), which also includes a job risk variable that depends on
the technology adopted by the firm. This novel extension influences both the firm’s decisions, since
it faces a trade-off between wage and safety technology to be adopted, and the workers’ decisions,
since they must not only make a wage decision but also a safety decision. Given this framework,
we obtain the equilibrium distributions of wages, technology and number of employees per firm for
different numerical cases, based on which we generate simulations that allow us to replicate the
above scenarios.
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Católica de Chile. I thank my guiding professors for their invaluable comments and guidance, and the Sociedad Nacional
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Thesis Reinaldo T. E. Salazar Grondona

1 Introduction

The theory of compensating wage differentials, initially mentioned by Adam Smith in his work The
Wealth of Nations, establishes that there are wage differentials that compensate for differences in the
level of risk associated with a job. Specifically, Smith (1776) states that “the wages of labor vary with
the ease or hardship, the cleanliness or dirtiness, the honourableness or dishonourableness of the em-
ployement” (p. 112). There is a vast literature associated with this topic and the calculation of VSL
(value of a statistical life) which, according to Ruser and Butler (2009), is defined as the amount a
society is willing to pay to avoid a loss of a statistical life. Ruser (1991) had already mentioned that
the increase in workers’ compensation benefits was associated with an increase in the accident rate,
i.e., the employee was given higher compensation for accepting a higher level of risk. Aldy and Viscusi
(2003) find evidence of this relationship between level of risk taken by workers and wages, predict-
ing that there is a positive correlation between the two variables. In addition, the work of Leeth and
Ruser (2003) identifies that women have three times greater compensating wage differentials than men,
while Hersch (1998) concludes that there is no evidence of compensation for men, but there is for women.

This positive correlation between wages and the associated risk level, confirmed by Aldy and Viscusi
(2003), will not necessarily hold true for all industries. Figure 1 shows the relationship between firm size
and the ratio of accidents per worker in the Chilean mining industry. It can be seen that as the size of
the firm increases, so does the accident ratio. However, after a certain size, this ratio begins to decline,
suggesting that larger firms (in terms of employees) have a lower accident ratio.

According to the yearbook published by Sernageomin (2010), the average salaries of large Chilean
mining companies far exceed those of medium-sized mining companies: US 69, 639versusUS24,585 per
worker (annual values). Under the assumption that larger firms offer higher wages than smaller firms
(since higher wages attract a larger number of employees), in the case described above, the prediction of
the theory of compensating wage differentials does not hold. The firms that pay the highest wages (the
large ones) are also the ones that have the least associated risk. Then, how can we explain that both
types of firms can coexist given the fact that there are firms that pay more and have a lower level of
associated risk? We are faced with a scenario in which up to a certain point the prediction of the theory
of compensating wage differentials is fulfilled, but then it ceases to be valid.

According to Ruser and Butler (2009), common criticisms of this approach are based on the assump-
tion of employee rationality and complete information. If workers underestimate the risks associated
with the job under consideration, or if they are unaware of it, they will not demand a wage premium
congruent with the risk that this job entails. This leads to an underestimation of the VSL and thus to
a lower wage. One of the works that tries to explain this is the one by Gegax et al. (1991), in which
the authors estimate wage compensation using workers’ perception of accident rates through a survey.
However, there seem to be no theoretical tools that can replicate this scenario in which there is both the
world confirmed by Aldy and Viscusi (2003) of compensating wage differentials and the case in which
higher wages are associated with less risky jobs.

The objective of this study is to test theoretically the existence of both scenarios. Brown (1980) finds
no evidence of compensating wage differentials even after using panel data controlling for individual fixed
effects. According to Manning (2003), this is because Brown does not consider the existence of frictions
in the labor market, since even workers with identical skills would receive different levels of utility.

In this way we intend to contribute, firstly, to the literature in the area of occupational health and
safety economics by identifying a channel through which these scenarios are generated. For this, the
inclusion of search frictions in a labor turnover model, as mentioned by Manning (2003), will be con-
sidered. Secondly, it is expected to make a contribution in the area of labor economics, specifically
in the literature related to search frictions and labor turnover models, through the inclusion of a risk
variable. To this end, we consider extending the Burdett and Mortensen (1998) model proposed in
the paper entitled Wage Differentials, Employer Size, and Unemployment. In this paper the authors,
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Figure 1: Ratio of accidents per worker vs. logarithm of total workers per site, average over all years of the
sample (2010 - 2021). Each point represents a mining site. Source: SONAMI (2022)

based on labor turnover, find that in equilibrium there is a non-degenerate distribution of wages (wage
dispersion) despite the fact that in the given economy all agents (workers and firms) are equal ex-ante.
Furthermore, they show that a minimum wage can exist and that it increases the level of employment
(as long as it does not exceed marginal product). Thus, this model will be extended using a labor risk
variable, which will depend on the technology adopted by the firm, and the scenarios observed in the
mining industry will be generated numerically.

With respect to the firms’ decision on which technology to use, a paper in this area is that of
Acemoglu and Shimer (2000), in which the firms in the model with search frictions they propose must
decide which technology to commit to and the wage level to offer to workers. The authors find that, first,
when labor search is costly, in equilibrium there will be wage dispersion among identical workers, even
when firms use the same technology. Second, with the framework they propose to analyze firm decisions,
they show that the forces that generate wage dispersion also generate technology dispersion. Third, they
show that in equilibrium the firms that offer higher wages are those that also adopt the best technologies.

A paper in the line of the literature related to hedonic wages (dealing with the relationship between
wage and job characteristics) is the one by Hwang et al. (1998) in which they investigate the conse-
quences of labor market search on that theory. For this, they extend Mortensen’s (1990) model in which
they reach a non-degenerate distribution of wages in equilibrium, adding a non-wage component that
influences agents’ decision making. The main difference with this work is that in the model presented
here, agents will make decisions based on values discounted by the probability of death, while in Hwang
et al. they discount at a fixed rate, since the wage component they include does not affect the future
values observed by workers.

The models of Burdett and Mortensen (1998) and Acemoglu and Shimer (2000) do not include an
occupational risk variable that influences the decisions of agents, both firms and workers. Both papers
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use wage as a method of employee retention, but not the level of risk. How do the distributions of labor
turnover, wage, and technology change in equilibrium when considering risk in decisions? It is then
hoped to contribute to the field of labor economics through the inclusion and analysis of this variable in
a model of labor search with frictions.

Therefore, in order to develop this research, the job search model proposed by Burdett and Mortensen
(1998) will be extended to generate numerical scenarios like those observed in the mining industry. The
extension of this model is mainly based on adding the probability of accidents through the inclusion of
technologies, which will determine the safety level of the firm. The better the technology adopted by the
firm, the safer its operation will be, and therefore the probability of an accident will be lower. However,
the safer the technology, the higher the cost for the company. Thus, the company will have to make two
decisions: the salary to offer (since this is the standard decision made by firms in these models) and the
technology to use. The agents will observe these decisions and discount the value of working in the firms
considering the wage paid and the probability of death, and with this information they will make their
decisions.

Finally, numerical results were obtained for different cases, among which both the positive and neg-
ative relationship between the salary offered by the firms and the level of associated risk observed in the
mining industry, an example used as a framework in this research, was confirmed. In this way, it was
possible to identify a mechanism by which both types of firms can coexist: both those that offer high
wages and safety levels, and those that offer low wages and safety levels. Thus, it is possible to observe
both the world where the theory of compensating wage differentials is fulfilled, and the world where it
does not exist.

It is expected that future research will focus on calibrating the parameters used in the model, since in
the present work they were used in such a way that they generate strong labor frictions. It is interesting
to see what happens in a more competitive labor market.

The rest of the paper is structured as follows: Section 2 presents the model developed, the assump-
tions behind it and a numerical algorithm to solve it. Section 3 describes the results obtained for different
parameterizations of the model. Finally, section 4 summarizes the main conclusions of this research and
possible next steps.
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2 Model

The model to be used is presented below. This is an extension of the model proposed by Burdett
and Mortensen (1998), in which they generate wage dispersion in the equilibrium of an economy where
all agents, both firms and workers are equal to each other ex-ante, respectively.

A continuum of both firms and workers will be assumed. Workers are equally productive ex-ante and
value leisure at b. The number of workers is defined by the variable m, while the measure of firms is set
to 1, for simplicity. These are infinitely small (individually) relative to the entire market. Workers may
be employed or unemployed, and will randomly search firms for jobs. They will choose those that offer
a higher wage than they receive if they are employed, or one that exceeds the value of leisure if they are
unemployed, but they will also consider the level of risk associated with such employment, which will
be characterized by the technology adopted by the firm. All workers receive offers at a rate of λi, where
i ∈ {employed, unemployed}. That is, the arrival of job offers depends on the employment status of the
worker. On the other hand, employed workers may lose their jobs at a δ rate.

Firms set wages w and the level of technology k to maximize their profits. All workers in the same
firm receive equal wages w. The technology k adopted by the firm will define the level of labor risk faced
by employees, and the marginal product received by the firm, defined by f(k). The joint distribution of
wages and technology offered by firms is given by Fw,k(w, k).

The novelty lies in the inclusion of a risk variable that will affect workers’ decision making. Firms,
by including in their decision set the level of technology to lease, influence the level of risk associated
with the job they offer. The higher the technology expenditure (higher level of k), the lower the risk
associated with the job offered. For such reasons, the rate d(k) is defined as the probability of death by
occupational accident of an employed worker. In addition, we define the variable d̄ as the probability of
death by natural causes of each worker, and n as the birth rate of new workers, who will enter the labor
market in an unemployed state.

Given that the worker faces both the wage level w and the technology level k (the latter through the
probability of death by occupational accident d(k)) offered by the firm to make his decision, the first
part of the analysis will focus on characterizing the equilibrium levels of this economy considering that
the worker, instead of deciding by observing (w, k), will do so by directly observing the value that these
combinations can give him if he is employed, i.e. V1(w, k) = V1.

In other words, in order to make his decision to be employed or to continue looking for a job, the
worker will face the combination (w, k) through the variable V1, which comes from a distribution defined
as:

FV1
(V1) = FV1

(V1(w, k))

Once the distribution FV1(V1) has been characterized, we will proceed to the second stage, which
consists of characterizing the individual distributions for wages w and technology k in equilibrium. With
these, we will try to generate with numerical exercises the scenario observed in the mining industry, in
which there is initially a positive correlation between wage and labor risk, and then a negative one.
Any factor that generates dispersion in V1 is expected to contradict what is predicted by the theory of
compensating wage differentials and, therefore, generate a negative or non-existent correlation between
wages and risk level.

The following is the problem that the worker must face.

5



Thesis Reinaldo T. E. Salazar Grondona

2.1 Worker problem

We define V0 as the value the worker obtains from being unemployed. Conversely, let V1(w, k) = V1

be the value he obtains from being employed in a firm that pays a wage w and possesses a technology
level k. The rate at which workers discount future benefits, rw, includes the rate of death from natural
causes, d̄. Then,

rw = r̃ + d̄

where r̃ is the discount rate. In addition, λ0 is the rate at which unemployed workers receive a job
offer, and λ1 is the rate at which employed workers receive offers.

2.1.1 Unemployment value

Equation (1) represents the expected value of a worker’s discounted income when unemployed.

rw · V0 = b+ λ0 · [
∫

[max(V0, Ṽ1)− V0] dFV1
(Ṽ1)] (1)

In other words, the opportunity cost of looking for a job while unemployed, the interest given by
rw ·V0, is equal to income while unemployed, b, plus the capital gain attributable to finding and accepting
a job (only if accepting the offer yields more value than remaining unemployed and continuing the search).

2.1.2 Employment value

Equation (2) represents the expected value of a worker’s discounted income when employed.

(rw + d(k)) · V1 = w + λ1 · [
∫

[max(V1, Ṽ1)− V1] dFV1(Ṽ1)] + δ · [V0 − V1] (2)

The interpretation of this equation is similar to (1): the opportunity cost of seeking employment
while employed, the interest given by (rw + d(k)) · V1, is equal to income while employed, w, plus the
capital gain attributable to finding and accepting a job (only if accepting the offer yields more value
than remaining in the same job and continuing to search), minus the value associated with a possible
loss of value from job destruction, given by δ · [V0 − V1].

Equation (2) shows two channels through which the desired scenarios can be generated. The first one
shows the positive correlation between salary and risk identified by Aldy and Viscusi (2003). For a fixed
V1, it is observed that there is a positive relationship between the wage w and the level of risk represented
by d(k). An increase (decrease) in the risk level must be compensated by an increase (decrease) in the
wage level for the employed worker to remain indifferent. This is just what the theory of compensating
wage differentials states. Thus, the following proposition arises:

Proposition 1 (Compensating wage differentials) Given a value of V1, the higher the risk d(k)
associated with the job, the higher the wage w with which the firm must compensate the worker.

However, since the base characteristics of the Burdett and Mortensen (1998) model hold, dispersion
in the distribution of V1 is expected. If this happens, the positive relationship between wage and risk
may break down, as an increase (decrease) in the level of risk through d(k) may be offset by a decrease
(increase) in V1 without altering the wage w, and still keep the employed worker indifferent. This is the
second channel, in which firms do not compensate through the wage for a higher level of associated risk.

Proposition 2 (Risk without salary compensation) Due to the existing dispersion in V1, a higher
risk d(k) associated with employment will not necessarily be offset by a higher wage w.
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Moreover, V1(.) is increasing in w and V0 is independent of w. Let R and C be the reservation wage
and reservation capital, respectively. An unemployed worker will not accept a job offer that pays a wage
less than R and has a capital level less than C.

Then,

V1(R,C) = V 1 (3)

where V 1 represents the reserve value below which no worker will accept to be employed. In equilib-
rium it will be satisfied that V 1 = V0.

The analysis of the worker’s problem is based on the use of equations (1), (2) and (3). Considering
the worker’s indifference condition between choosing V1 y Ṽ1, and under the condition stated in equation
(3), the following expression can be obtained, the development of which can be found in Appendices (2)
and (3):

R− rw + d(C)

rw
· b = [

rw + d(C)

rw
· λ0 − λ1] · [

∫ ∞

V 1

[1− FV1(Ṽ1)] d(Ṽ1)] (4)

Equation (4) represents an optimal strategy that an unemployed worker must follow to accept a job:
that it offers a wage greater than or equal to R, which is defined on the basis of the distribution FV1(V1).

On the other hand, by developing the equation (2), w can be obtained as a function of V1 and k (see
Appendix 5.3),

w(V1, k) = V1 · (rw + d(k) + λ1 · (1− FV1
(V1)) + δ)− λ1 · [

∫
Ṽ1 dFV1

(Ṽ1)]− δ · V0 (5)

From equation (5) we can obtain the marginal rate of substitution of ∂w(V1,k)
∂d(k) = V1. The higher

V1 offered by the firm, the higher the wage compensation w(V1, k) must be for the worker to remain
indifferent.

2.1.3 Equilibrium flows

We will now calculate the flow of workers in and out of unemployment in equilibrium. Let u be the
number of unemployed workers. The flow of workers out of unemployment is: λ0 · (1−FV1

(V 1)) ·u+ d̄ ·u
where d̄ is the probability of dying from natural causes. The flow of workers entering unemployment is:
δ · (m− u) + n, where n is the number of worker births.

Equating the flows gives the number of unemployed workers in equilibrium,

u =
m · δ + n

(1− FV1
(V 1)) · λ0 + d̄+ δ

(6)

where the exogenous rate of births of unemployed workers n can be defined as n.

n = m · d̄+ (m− u) ·
∫ ∞

C

d(k̃) dGk(k̃) (7)

where d̃ =
∫∞
C

d(k̃) dGk(k̃), and Gk(k) is the proportion of workers employed in a firm that offers a
level of technology no greater than k. From this, an expression for m can be obtained,
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m =
n+ u · d̃
d̄+ d̃

(8)

Replacing this expression in u, we obtain:

u =
n · (δ + d̄+ d̃)

[(1− FV1
(V 1)) · λ0 + d̄+ δ] · d̄+ ((1− FV1

(V 1)) · λ0 + d̄) · d̃
(9)

It can be seen from this expression that the level of unemployment rises with an increase in δ, but
falls with increases in d̄ and d̃ (see Appendix 5.4).

On the other hand, we define GV1
(V1, t) as the proportion of workers employed at t receiving a value

no greater than V1. Let GV1(V1, t) · (m− u(t)) be the number of workers employed receiving a value less
than or equal to V1 at t.

Its derivative can be defined as follows:

∂GV1
(V1, t) · (m− u(t))

∂t
= λ0 ·max(FV1(V1)− FV1(V 1), 0) · u(t)− [λ1 · [1− FV1(V1)]+

+ δ + d̄+ d̃] ·GV1
(V1, t) · (m− u(t)) (10)

The first term represents the flow in t of workers from being unemployed to employed in firms paying
less than or equal to V1. The second term represents the flow in t of workers who move from being
employed in a firm paying less than or equal to V1 to unemployed; who move to a firm offering higher
value; who die from natural causes; and who die from occupational accidents.

Considering that in the steady state both flows equalize, that V1 > V 1 and equation (9), we obtain
the following expression for GV1

(V1) (see development in Appendix 5.5)

GV1
(V1) =

(FV1
(V1)− FV1

(V 1))

λ1 · [1− FV1(V1)] + δ + d̄+ d̃
· δ + d̄+ d̃

(1− FV1
(V 1))

(11)

The equation (11) then represents the steady-state distribution of V1 values earned by workers who
are employed, such that V1 > V 1.

2.1.4 Number of workers per firm

As in Manning (2003), let N(V1, k, F ) be the number of workers in a firm offering V1 given the
distribution FV1(V1). Let s(V1, k, F ) be the separation rate of the same firm offering V1 and R(V1, F ) be
the recruitment flow. In equilibrium it is satisfied that

s(V1, k, F ) ·N(V1, k, F ) = R(V1, F ) (12)

where

s(V1, k, F ) = δ + λ1 · [1− FV1
(V1)] + d̄+ d(k) (13)

and

R(V1, F ) = λ0 · u · (1− FV1
(V 1)) + (m− u) ·G(V1, F ) · λ1 (14)
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Then, to determine the number of workers, N(V1, k, F ) is cleared, and the expressions for s(V1, k, F )
and R(V1, F ) are replaced. Under the assumption that F (V 1) = 0 we obtain (see Appendix 5.6).

N(V1, k, F ) =

[
n · λ0 · (δ + d̄+ d̃) · (λ1 + δ + d̄+ d̃)

([λ0 + d̄+ δ] · d̄+ (λ0 + d̄) · d̃) · (λ1 · [1− FV1
(V1)] + δ + d̄+ d̃)

]
· 1

δ + λ1 · [1− FV1
(V1)] + d̄+ d(k)

(15)

For firms offering the lowest value V1 = V 1, the number of workers they will hire is given by the
following expression

N(V 1, k, F ) =

[
n · λ0 · (δ + d̄+ d̃)

[λ0 + d̄+ δ] · d̄+ (λ0 + d̄) · d̃

]
· 1

δ + λ1 + d̄+ d(k)
(16)

In the next section, the problem faced by a profit maximizing firm is presented.

2.2 Firm Problem

The firm in this economy faces a profit maximization problem π. For this, it must decide the value V1

it offers to workers. This decision will be subject to a choice of safety technology k. The value it decides
to offer will directly affect its profit through the wage level itself; through the number of workers it
attracts, as higher value increases the number of workers; through the technology adopted; and through
the marginal product f(k(V1)).

The problem can be defined as follows

π = max
V1

[f(k(V1))− w(V1, k(V1))] ·N(V1, k(V1), F )− rf · k(V1) (17)

subject to

k(V1) = argmax
k̂

(f(k̂)− w(V1, k̂)) ·N(V1, k̂, F )− rf · k̂ (18)

whose first order condition with respect to k is(∂f(k̂)
∂k̂

− ∂w(V1, k̂)

∂k̂

)
·N(V1, k̂, F ) + (f(k̂)− w(V1, k̂)) ·

∂N(V1, k̂, F )

∂k̂
= rf (19)

where ∂f(k̂)

∂k̂
≥ 0.

Equation (19) presents new terms that differentiate it from the case of perfect competition, in which

it is obtained that ∂f(k)
∂k · N(V1, k) = rf . On the left-hand side of the equation (19) (which in perfect

competition is the marginal product), the new term that is added is (f(k)−w(V1, k))· ∂N(V1,k)
∂k − ∂w(V1,k)

∂k ·
N(V1, k). It is then observed that there are 3 effects that the capital decision has for a firm:

Proposition 3 (Effects of security technology on the firm) There are 3 effects of the security
technology decision:

1. A direct effect through the firm’s marginal product: ∂f(k)
∂k ·N(V1, k). This is the effect that

can also be found in the case of perfect competition, and is the mechanism through which capital
is productive for the firm.

9
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2. A labor security effect, which helps the firm to have a larger scale and thus generate

higher profits: (f(k)− w(V1, k)) · ∂N(V1,k)
∂k . Through this mechanism, the firm can influence the

number of workers it hires. Workers value security positively, so increases (decreases) in the level
of k will generate increases (decreases) in the level of employees.

3. A compensating wage differential effect: ∂w(V1,k)
∂k ·N(V1, k). This effect is of interest for the

study, because if it is negative, it can be affirmed that there are compensating wage differentials.

These are the 3 effects that affect the firm when it makes its decision on the level of technology k to
adopt.

2.3 Equilibrium

Under the assumption that F (k,N) = f(k) ·N(V1, k) = kα ·N(V1)
1−α, with 0 ≤ α ≤ 1, the problem

to be solved can be rewritten as follows.

π = max
V1

k(V1)
α ·N(V1, k(V1), F )1−α − w(V1, k(V1)) ·N(V1, k(V1), F )− rf · k(V1) (20)

subject to

k(V1) = argmax
k̂

k̂α ·N(V1, k̂, F )1−α − w(V1, k̂) ·N(V1, k̂, F )− rf · k̂ (21)

The first-order condition of (21) with respect to k̂ is

α · k̂α−1 ·N(V1, k̂, F )1−α + k̂α · (1− α) ·N(V1, k̂, F )−α · ∂N(V1, k̂, F )

∂k̂
−

− ∂w(V1, k̂)

∂k̂
·N(V1, k̂, F )− w(V1, k̂) ·

∂N(V1, k̂, F )

∂k̂
= rf (22)

where N(V1, k, F ) is given by the equation (15) and its derivative with respect to k is

∂N(V1, k, F )

∂k
= N(V1, k, F ) · −d′(k)

δ + λ1 · [1− F (V1)] + d̄+ d(k)
(23)

Both expressions obtained for N(V1, k, F ) y ∂N(V1,k,F )
∂k are replaced in the first order condition to

obtain the solution of k(V1). Due to the complexity of the solution, a numerical analysis is necessary to
find the desired solutions. The algorithm used for the numerical solution is presented below.

2.4 Resolution algorithm

Given the complexity of the problem to be solved, the following algorithm is used to numerically
determine a solution.

1. We perform a guess of the distribution of values offered in equilibrium by the firms, F (V1), and of
the minimum that workers accept to be employed, V0.

2. The solution to the capital choice problem k(V1) = argmaxk̂(f(k̂)−w(V1, k̂)) ·N(V1, k̂, F )− rf · k̂
is found. For this, the first order condition of the problem is used.

3. Using the equation (5) we determine w(V1, k(V1)).

10
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4. The firm’s profits are calculated with equation (20).

5. In Burdett and Mortensen (1998) it is obtained that in equilibrium all firms receive the same profit
π. Thus, if for every element of the distribution F (V1) such that V1 > V0 the firms get the same
profit π, then a solution has been found. If not, one must return to the first step.

6. The obtained distribution F (V1) must be fitted to the equation (1) with V0. For this, the distri-
bution is fitted with Pr(V1|V1 ≥ V0), and based on this result the value of V0 is updated with the
equation (1).

7. If the updated value for V0 is not equal to the initial realized guess, then use a combination of the
initial guess and the updated value of V0 as the new guess and return to step 1.

8. If the updated value for V0 is equal to the initial guess realized, then an equilibrium has been
found.

9. Once the equilibrium distributions of wages, capital and employment are obtained, they can be
used to generate simulations. With these, we try to replicate the scenario proposed in Figure 1.
For this purpose, a random sample of 1000 firms is generated, which choose wage and capital levels
according to the equilibrium distributions obtained. These simulations are performed for different
values of α.

2.5 Model parameterization

This section lists the parameters used to perform the numerical exercises and the values assigned to
them. In general, these were adjusted in an ad hoc manner in order to replicate the case of the mining
industry, in which the risk-wage ratio is positive in one section and negative in another.

Since the numerical analysis requires the use of grids, the first parameters presented in the table are
the points in each grid and the upper bound for the variables k and V1. Parameters b, λ0, δ and d̄ were
kept constant in all cases.

Table 1: Parameters per case - Numerical analysis

Parameters Values
α=0 α=1/4 α = 0.5 α = 3/4 α = 0.9

k grid points 10000 1000 1000 1000 1000
Maximum k 300 300 300 300 300
V grid points 30 30 30 30 30
Maximum V 150 150 100 150 100
b 0.1 0.1 0.1 0.1 0.1
r 0.01 0.05 0.15 0.2 0.01
n 0.5 0.3 0.2 0.1 0.5
λ0 0.1 0.1 0.1 0.1 0.1
λ1 0.3 0.5 0.5 0.5 0.3
δ 0.05 0.05 0.05 0.05 0.05
d̄ 0.01 0.01 0.01 0.01 0.01
V0 guess 67 46 24 22 1
Simulated firms 1000 1000 1000 1000 100

The results of these numerical exercises are presented below.
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3 Results

3.1 Firm problem when α = 0

When α = 0, the first point of the proposition 3 ceases to have an effect, since it is multiplied by the
parameter α (see development in Appendix (5.7)). The following figures show the simulations performed
with the equilibrium distributions. In particular, the relationship between the level of risk taken by firms
and the wages they pay is presented. The objective was to replicate the case of the mining industry
presented in the first section, in which an increasing and also a decreasing risk-wage relationship was
observed.

Figure 2: Probability of death d(k) vs wage w offered by firms when α = 0. Each point represents one firm.

Figure 2 shows the relationship between the level of risk, given by the variable d(k), and wages
w(V1, k). It can be seen that, in general, the relationship between the two variables is negative. This
result implies that, for the parameters used, the firms that pay the best wages are at the same time the
safest.

However, it can also be observed that part of this relationship is indeed positive. This does not rule
out the possibility that these firms are complying with the theory of compensating wage differentials, so
that the framework presented for the mining industry in which the two types of firms coexist could be
replicated.

12
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Figure 3: Probability of death d(k) vs number of employees when α = 0. Each point represents one firm.

Since figure 1 shows the relationship between risk and number of employees, it is interesting to observe
this same relationship but in the model. This is shown in figure 3. This again shows this decreasing
relationship observed in figure 2, i.e., the largest firms have the lowest probability of death.

3.2 Firm problem when α = 1
4

Figure 4: Probability of death d(k) vs wage w offered by firms when α = 1
4
. Each point represents one firm.

Figure 4 shows the relationship between the level of risk, given by the variable d(k), and wages
w(V1, k). It can be seen that, in general, the relationship between the two variables is negative. In fact,
the slope of this case is first relatively constant, and then falls faster than in the case of α = 0. This
result implies that, for the parameters used, the firms that pay the best wages are at the same time the
safest.

However, there is again a section in which there are firms that have a positive relationship between
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risk level and wages, which does not rule out the possibility that the theory of compensating wage
differentials is fulfilled in this section.

Figure 5: Probability of death d(k) vs number of employees when α = 1
4
. Each point represents one firm.

Figure 5 shows the relationship between risk and number of employees. This again shows the de-
creasing relationship observed in figure 4, i.e., the largest firms have the lowest probability of death.
However, the slope falls with a constant speed, unlike the previous case.

3.3 Firm problem when α = 1
2

Figure 6: Probability of death d(k) vs wage w offered by firms when α = 1
2
. Each point represents one firm.

Figure 6, like the previous ones, shows the relationship between the level of risk, given by the variable
d(k), and wages w(V1, k). It is observed that, in general, firms pay high wages, as they accumulate on
the right-hand side of the figure. It is also observed that the slope changes strongly, as it has steep
inflection points that invert the relationship between wages and risk. The upward slope of this figure is
higher than in the previous cases, which may imply the presence of risk compensation: the higher the
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probability of an accident, the higher the wage paid.

It can be observed that firms reach a minimum wage level (which is among the highest) before they
start to decrease the risk associated with the job they offer. Once this level is reached, the risk drops
sharply.

Figure 7: Probability of death d(k) vs number of employees when α = 1
2
. Each point represents one firm.

Figure 7 shows the relationship between risk and number of employees. This curve differs from the
previous cases in that it now takes a convex shape, whereas the others were linear. At the beginning,
smaller firms can reduce their risk which allows them to slowly increase the number of workers they
employ. However, as the firm decreases its risk further, the increase in the number of employees starts
to become larger, because the rate of substitution between the two increases.

3.4 Firm problem when α = 3
4

Figure 8: Probability of death d(k) vs wage w offered by firms when α = 3
4
. Each point represents one firm.
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Figure 8 presents the relationship between the risk level given by d(k) and the wages obtained from
the simulation. Unlike the previous cases, for these parameters this relationship is decreasing. This
implies that no trade-offs are paid for risk level, but that the firms that pay the best are at the same
time the firms that have the least associated risk.

Figure 9: Probability of death d(k) vs number of employees when α = 3
4
. Each point represents one firm.

The figure 9 follows the same pattern as in the previous case (α = 1
2 ), as it becomes even more

convex. The notion is similar to that of the previous case.

3.5 Firm problem when α = 0.9

Figure 10: Probability of death d(k) vs wage w offered by firms when α = 0.9. Each point represents one firm.

Finally, figure (10) shows a concave relationship between the level of risk and wages. In general,
the findings of this figure do not differ from the previous cases in that there is no section where the
relationship is increasing. Thus, for this parameterization, no evidence of the presence of compensating
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wage differentials is found.

Figure (11) is also presented, but it is similar to that of the previous cases.

Figure 11: Probability of death d(k) vs number of employees when α = 0.9. Each point represents one firm.

3.6 Firm problem when d(k) = d

In the latter case we analyze what would happen if a firm cannot affect the probability of death
through the technology level k. The simplicity of this model allows for a theoretical development. If it
is assumed that d(k) = d ⇒ d̃ = d ∀ k, the firm’s problem is defined as follows.

π = max
w

(f(k(w))− w) ·N(w,F )− r · k(w) (24)

subject to

k(w) = argmax
k̂

(f(k̂)− w) ·N(w,F )− r · k̂ (25)

The firm no longer attracts workers through capital. For this reason, the only decision that influences
the number of employees a firm has is the wage w it offers. Replacing the assumption made in the previous
cases in that f(k(w)) ·N(w,F ) = kα ·N1−α, the above problem can be rewritten as follows.

π = max
w

k(w)α ·N(w,F )1−α − w ·N(w,F )− r · k(w) (26)

subject to

k(w) = argmax
k̂

k̂α ·N(w,F )1−α − w ·N(w,F )− r · k̂ (27)

Obtaining the CPO of the second problem with respect to k̂ we obtain

α · k̂α−1 ·N(w,F )1−α = r (28)

where

k̂∗ = N(w,F ) ·
(α
r

) 1
1−α

= k(w) (29)
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To solve the first problem, we use the same procedure as Burdett and Mortensen (1998), in which
they obtain that in equilibrium all firms receive the same π. Thus, a firm that offers the lowest wage w
will obtain a profit level π, which will be equal to the profit of a firm that offers a wage w ≥ w. Then
π = π, which implies that (see development in Appendix 5.9)

N(w,F ) = N(w,F ) ·

[(α
r

) α
1−α · (1− α)− w(

α
r

) α
1−α · (1− α)− w

]
(30)

Then, using the definition of N(w,F ) one can clear F (w), which is similar to that obtained by
Burdett and Mortensen (1998).

Fw(w) =
λ1 + δ + d̄+ d̃

λ1
·

[
1−

(
(αr )

α
1−α · (1− α)− w

(αr )
α

1−α · (1− α)− w

) 1
2
]

(31)

The density function for wages is obtained by deriving (41) with respect to w.

fw(w) =
dFw(w)

dw
=

1

2
· λ1 + δ + d̄+ d̃

λ1
· 1

[(αr )
α

1−α · (1− α)− w]
1
2 [(αr )

α
1−α · (1− α)− w]

1
2

(32)

Then, to obtain the job distribution F (N) we use f(w) and the equation (40), and we obtain the
following expression

fN (N) =
1

2
· λ1 + δ + d̄+ d̃

λ1
·

(
N(w,F )

N3

) 1
2

(33)

To obtain the cumulative function

FN (N) =

∫ N

−∞
f(Ñ)dÑ

FN (N) =
1

2
· λ1 + δ + d̄+ d̃

λ1
·N(w,F )

1
2 · (−2) ·N− 1

2 (34)

To obtain the distribution of k we use the expression obtained for f(N) and the CPO, and we obtain
the following expression

fk(k) =
1

2
· λ1 + δ + d̄+ d̃

λ1
·

[(
N(w,F )

k3

)
·
(α
r

) 1
1−α

] 1
2

(35)

Fk(k) =

∫ k

−∞
f(k̃)dk̃

Fk(k) =
1

2
· λ1 + δ + d̄+ d̃

λ1
·N(w,F )

1
2 ·
(α
r

) 1
2

1−α · (−2) · k− 1
2 (36)

Thus, we have obtained expressions for all distributions of interest in equilibrium.
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4 Conclusion

The literature associated with the theory of compensating wage differentials establishes that workers
exposed to higher risk should be compensated with higher wages compared to workers in the same jobs
but with lower levels of risk. Authors such as Aldy and Viscusi (2003) found evidence of this positive
relationship between wages and occupational risk. However, Brown (1980) found no evidence after using
even panel data controlling for individual fixed effects. Manning (2003) asserts that this is so because
Brown does not consider the existence of job search frictions.

The objective of this paper is precisely to test the validity of this theory using a model of labor
turnover with job search frictions. For this, we extended the model of Burdett and Mortensen (1998) in
which agents are ex ante equal, but the equilibrium wage distribution is non-degenerate. A risk variable
was also added, which is observed by workers as well as the wage through an aggregating variable defined
by V1. Workers make their employment decision based on risk-wage combinations expressed through V1.
Given a value of V1, the higher the risk associated with employment, the higher the wage with which
the firm must compensate the worker to remain employed in that firm. However, given that there is
dispersion in V1, this positive correlation can be broken. This would generate the scenario where firms
do not compensate workers for facing a higher level of risk.

The risk variable depends on the technology adopted by the firm, which has 3 effects on the firm:
a direct effect through marginal product, as in the case of perfect competition; a labor security effect,
which helps the firm to have a larger scale and thus generate higher profits; and a compensating wage
differential effect.

Numerical results were obtained for different cases, among which both the positive and negative
relationship between the wage offered by firms and the level of associated risk observed in the mining
industry, the example used as a framework in this research, was confirmed. Thus, the most important
conclusion is that it was possible to identify a mechanism by which both types of firms can coexist:
both those that offer high wages and security levels, and those that offer low wages and security levels.
Therefore, it is possible to observe both the world where the theory of compensating wage differentials
is fulfilled, and the world where it does not exist.

Finally, the parameters used make the simulated labor market one where there are many labor fric-
tions. A next step is to calibrate the parameters in a way that diminishes the effect of these frictions,
to see how the results vary in a more competitive labor market.
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5 Appendix

5.1 Development of equation (4)

Under the assumption that the support of the distribution FV1
(V1) is found in the interval [V1, V1]

1

r + d(C)
·[R+λ1·[

∫ V1

V 1

[max(V1, Ṽ1)−V1] dFV1
(Ṽ1)]+δ·[V0−V1]] =

1

r
·[b+λ0·[

∫ V1

V 1

[max(V0, Ṽ1)−V0] dFV1
(Ṽ1)]]

R− r + d(C)

r
· b = r + d(C)

r
· λ0 · [

∫ V1

V 1

[Ṽ1 − V0] dFV1
(Ṽ1)]− λ1 · [

∫ V1

V 1

[Ṽ1 − V1] dFV1
(Ṽ1)]

R− r + d(C)

r
· b = [

r + d(C)

r
· λ0 − λ1] · [

∫ V1

V 1

[Ṽ1 − V0] dFV1
(Ṽ1)] (37)

because Ṽ1 = V0 = V1. Note that the integral of the equation (37) can be treated with integration
by parts as follows: ∫ V1

V 1

[Ṽ1 − V0] dFV1(Ṽ1) =

∫ V1

V 1

[1− FV1(Ṽ1)] d(Ṽ1)

Replacing this expression in (37), the following expression is obtained:

R− r + d(C)

r
· b = [

r + d(C)

r
· λ0 − λ1] · [

∫ V1

V 1

[1− FV1
(Ṽ1)] d(Ṽ1)]

5.2 Integration by parts

To demonstrate that ∫ V1

V 1

[Ṽ1 − V0] dFV1(Ṽ1) =

∫ V1

V 1

[1− FV1(Ṽ1)] d(Ṽ1)

Let

u = Ṽ1 − V0

dv = dFV1
(Ṽ1)

Then

du = dṼ1

v = FV1
(Ṽ1)

And ∫ V1

V 1

[Ṽ1 − V0] dFV1(Ṽ1) = (Ṽ1 − V0) · FV1(Ṽ1)
∣∣∣V1

V 1

−
∫ V1

V 1

FV1(Ṽ1) dṼ1

∫ V1

V 1

[Ṽ1 − V0] dFV1
(Ṽ1) = (Ṽ1 − V0) · FV1

(Ṽ1)
∣∣∣V1

V 1

−
∫ V1

V 1

FV1
(Ṽ1) dṼ1

Considering that when evaluated over the entire support FV1(V1) = 1 and that when evaluated at
FV1(V 1) = 0, then
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∫ V1

V 1

[Ṽ1 − V0] dFV1
(Ṽ1) =

∫ V1

V 1

dṼ1 −
∫ V1

V 1

FV1
(Ṽ1) dṼ1

∫ V1

V 1

[Ṽ1 − V0] dFV1
(Ṽ1) =

∫ V1

V 1

[1− FV1
(Ṽ1)] d(Ṽ1)

5.3 Development of equation (5)

(rw + d(k)) · V1 = w + λ1 · [
∫ +∞

−∞
[max(V1, Ṽ1)− V1] dFV1

(Ṽ1)] + δ · [V0 − V1]

(rw+d(k))·V1 = w+λ1·
∫ V1

−∞
[max(V1, Ṽ1)−V1] dFV1

(Ṽ1)+λ1·
∫ +∞

V1

[max(V1, Ṽ1)−V1] dFV1
(Ṽ1)+δ·[V0−V1]

(rw + d(k)) · V1 = w + λ1 ·
∫ V1

−∞
[V1 − V1] dFV1(Ṽ1) + λ1 ·

∫ +∞

V1

[Ṽ1 − V1] dFV1(Ṽ1) + δ · [V0 − V1]

(rw + d(k)) · V1 = w + λ1 ·
∫ +∞

V1

[Ṽ1 − V1] dFV1
(Ṽ1) + δ · [V0 − V1]

(rw + d(k)) · V1 = w + λ1 ·
∫ +∞

V1

Ṽ1 dFV1(Ṽ1)− λ1 ·
∫ +∞

V1

V1 dFV1(Ṽ1) + δ · [V0 − V1]

(rw + d(k)) · V1 = w + λ1 ·
∫ +∞

V1

Ṽ1 dFV1
(Ṽ1)− λ1 · V1 + λ1 · V1 · (1− FV1

(V1)) + δ · [V0 − V1]

(rw + d(k)) · V1 = w + λ1 ·
∫ +∞

V1

Ṽ1 dFV1(Ṽ1)− λ1 · V1 + λ1 · V1 · FV1(V1) + δ · [V0 − V1]

(rw + d(k)) · V1 = w + λ1 ·
∫ +∞

V1

Ṽ1 dFV1
(Ṽ1)− λ1 · V1 · (1− FV1

(V1)) + δ · [V0 − V1]

w(V1, k) = V1 · (rw + d(k) + λ1 · (1− FV1(V1)) + δ)− λ1 · [
∫

Ṽ1 dFV1(Ṽ1)]− δ · V0

5.4 Unemployment level u

Equation (9) determines the level of unemployment in equilibrium,

u =
n · (δ + d̄+ d̃)

[λ0 + d̄+ δ] · d̄+ (λ0 + d̄) · d̃
To show how unemployment varies when its main parameters vary, the derivative is applied.
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∂u

∂δ
= n · (λ0 + d̄+ δ) · d̄+ (λ0 + d̄) · d̃− (δ + d̄+ d̃) · d̄(

[λ0 + d̄+ δ] · d̄+ (λ0 + d̄) · d̃
)2

= n · (δ + d̄+ d̃) · d̄+ λ0 · (d̄+ d̃)− (δ + d̄+ d̃) · d̄(
[λ0 + d̄+ δ] · d̄+ (λ0 + d̄) · d̃

)2
= n · λ0 · (d̄+ d̃)(

[λ0 + d̄+ δ] · d̄+ (λ0 + d̄) · d̃
)2

≥ 0

∂u

∂d̄
= n · (λ0 + d̄+ δ) · d̄+ (λ0 + d̄) · d̃− (δ + d̄+ d̃) · (d̄+ (λ0 + d̄+ δ) + d̃)(

[λ0 + d̄+ δ] · d̄+ (λ0 + d̄) · d̃
)2

= n · (λ0 + d̄+ δ) · d̄+ (λ0 + d̄) · d̃− (δ + d̄+ d̃) · d̄− (δ + d̄+ d̃) · (λ0 + d̄+ δ)− (δ + d̄+ d̃) · d̃(
[λ0 + d̄+ δ] · d̄+ (λ0 + d̄) · d̃

)2
= n · (λ0 + d̄+ δ) · d̄+ (λ0 + d̄) · d̃− (δ + d̄+ d̃) · d̄− (δ + d̃) · (λ0 + d̄+ δ)− d̄ · (λ0 + d̄+ δ)− (δ + d̄+ d̃) · d̃(

[λ0 + d̄+ δ] · d̄+ (λ0 + d̄) · d̃
)2

= n · (λ0 + d̄) · d̃− (δ + d̄+ d̃) · d̄− δ · (λ0 + d̄+ δ)− d̃ · (λ0 + d̄)− δ · d̃− (δ + d̄+ d̃) · d̃(
[λ0 + d̄+ δ] · d̄+ (λ0 + d̄) · d̃

)2
= n · −(δ + d̄+ d̃) · d̄− δ · (λ0 + d̄+ δ)− δ · d̃− (δ + d̄+ d̃) · d̃(

[λ0 + d̄+ δ] · d̄+ (λ0 + d̄) · d̃
)2

= (−1) · n · (δ + d̄+ d̃) · d̄+ δ · (λ0 + d̄+ δ) + δ · d̃+ (δ + d̄+ d̃) · d̃(
[λ0 + d̄+ δ] · d̄+ (λ0 + d̄) · d̃

)2
≤ 0
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∂u

∂d̃
= n · (λ0 + d̄+ δ) · d̄+ (λ0 + d̄) · d̃− (δ + d̄+ d̃) · (λ0 + d̄)(

[λ0 + d̄+ δ] · d̄+ (λ0 + d̄) · d̃
)2

= n · (λ0 + d̄) · d̄+ δ · d̄+ δ · λ0 − δ · λ0 + (λ0 + d̄) · d̃− (δ + d̄+ d̃) · (λ0 + d̄)(
[λ0 + d̄+ δ] · d̄+ (λ0 + d̄) · d̃

)2
= n · (λ0 + d̄) · d̄+ (d̄+ λ0) · δ − δ · λ0 + (λ0 + d̄) · d̃− (δ + d̄+ d̃) · (λ0 + d̄)(

[λ0 + d̄+ δ] · d̄+ (λ0 + d̄) · d̃
)2

= n · (δ + d̄+ d̃) · (λ0 + d̄)− δ · λ0 − (δ + d̄+ d̃) · (λ0 + d̄)(
[λ0 + d̄+ δ] · d̄+ (λ0 + d̄) · d̃

)2
= n · −δ · λ0(

[λ0 + d̄+ δ] · d̄+ (λ0 + d̄) · d̃
)2

= (−1) · n · δ · λ0(
[λ0 + d̄+ δ] · d̄+ (λ0 + d̄) · d̃

)2
≤ 0

5.5 Obtaining G(V1)

Considering the steady state, both flows are equalized

λ0 · max(FV1
(V1) − FV1

(V 1), 0) · u = [λ1 · [1 − FV1
(V1)] + δ + d̄ + d̃] · GV1

(V1) · (m − u)

Under the assumption that V1 > V 1 and considering the equation (9) we obtain the following ex-
pression for GV1(V1):

GV1(V1) =
λ0 · (FV1

(V1)− FV1
(V 1))

λ1 · [1− FV1
(V1)] + δ + d̄+ d̃

· u

m− u

G(V1) =
λ0 · (FV1(V1)− FV1(V 1))

λ1 · [1− FV1
(V1)] + δ + d̄+ d̃

· δ + d̄+ d̃

(1− FV1
(V 1)) · λ0

GV1
(V1) =

(FV1
(V1)− FV1

(V 1))

λ1 · [1− FV1(V1)] + δ + d̄+ d̃
· δ + d̄+ d̃

(1− FV1
(V 1))

To obtain u
m−u , we start by replacing the equation (9) in the expression for m (equation (8))

m =
n+ u · d̃
d̄+ d̃

=
n+ n·(δ+d̄+d̃)

[(1−FV1
(V 1))·λ0+d̄+δ]·d̄+((1−FV1

(V 1))·λ0+d̄)·d̃ · d̃

d̄+ d̃

Ordering terms,
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m =
n

d̄+ d̃
· [(1− FV1

(V 1)) · λ0 + d̄+ δ] · d̄+ ((1− FV1
(V 1)) · λ0 + d̄) · d̃+ d̃ · (δ + d̄+ d̃)

[(1− FV1(V 1)) · λ0 + d̄+ δ] · d̄+ ((1− FV1(V 1)) · λ0 + d̄) · d̃

From this expression for m we subtract u, whose expression was obtained in the equation (9)

m− u =
n

d̄+ d̃
· [(1− FV1

(V 1)) · λ0 + d̄+ δ] · d̄+ ((1− FV1
(V 1)) · λ0 + d̄) · d̃+ d̃ · (δ + d̄+ d̃)

[(1− FV1
(V 1)) · λ0 + d̄+ δ] · d̄+ ((1− FV1

(V 1)) · λ0 + d̄) · d̃
−

− n · (δ + d̄+ d̃)

[(1− FV1(V 1)) · λ0 + d̄+ δ] · d̄+ ((1− FV1(V 1)) · λ0 + d̄) · d̃

Rearranging terms it can be obtained

m− u =
n · (1− FV1(V 1)) · λ0

[(1− FV1
(V 1)) · λ0 + d̄+ δ] · d̄+ ((1− FV1

(V 1)) · λ0 + d̄) · d̃

Then, u
m−u can be obtained

u

m− u
=

δ + d̄+ d̃

(1− FV1
(V 1)) · λ0

5.6 Number of employed workers

N(V1, F ) =
R(V1, F )

s(V1, k, F )

N(V1, k, F ) =
λ0 · u · (1− FV1(V 1)) + (m− u) ·GV1(V1, F ) · λ1

δ + λ1 · [1− FV1
(V1)] + d̄+ d(k)

N(V1, k, F ) =
(
λ0 ·

n · (δ + d̄+ d̃)

[(1− FV1
(V 1)) · λ0 + d̄+ δ] · d̄+ ((1− FV1

(V 1)) · λ0 + d̄) · d̃
· (1− FV1

(V 1))+

+
n · (1− FV1

(V 1)) · λ0

[(1− FV1(V 1)) · λ0 + d̄+ δ] · d̄+ ((1− FV1(V 1)) · λ0 + d̄) · d̃
·GV1(V1, F )·λ1

)
· 1

δ + λ1 · [1− FV1
(V1)] + d̄+ d(k)

24



Thesis Reinaldo T. E. Salazar Grondona

N(V1, k, F ) =
(
λ0 ·

n · (δ + d̄+ d̃)

[(1− FV1(V 1)) · λ0 + d̄+ δ] · d̄+ ((1− FV1(V 1)) · λ0 + d̄) · d̃
· (1− FV1(V 1))+

+
n · (1− FV1

(V 1)) · λ0

[(1− FV1(V 1)) · λ0 + d̄+ δ] · d̄+ ((1− FV1(V 1)) · λ0 + d̄) · d̃
· (FV1

(V1)− FV1
(V 1))

λ1 · [1− FV1(V1)] + δ + d̄+ d̃
· [δ + d̄+ d̃]

(1− FV1(V 1))
·λ1

)
·

· 1

δ + λ1 · [1− FV1
(V1)] + d̄+ d(k)

Rearranging the terms, we obtain

N(V1, k, F ) =

[
n · λ0 · (δ + d̄+ d̃) · [(1− FV1

(V 1)) · (λ1 · (1− FV1
(V1)) + δ + d̄+ d̃) + λ1 · (FV1

(V1)− FV1
(V 1)]

([(1− FV1(V 1)) · λ0 + d̄+ δ] · d̄+ ((1− FV1(V 1)) · λ0 + d̄) · d̃) · (λ1 · [1− FV1(V1)] + δ + d̄+ d̃)

]
·

· 1

δ + λ1 · [1− FV1(V1)] + d̄+ d(k)

Assuming F (V 1) = 0,

N(V1, k, F ) =

[
n · λ0 · (δ + d̄+ d̃) · (λ1 + δ + d̄+ d̃)

([λ0 + d̄+ δ] · d̄+ (λ0 + d̄) · d̃) · (λ1 · [1− FV1(V1)] + δ + d̄+ d̃)

]
· 1

δ + λ1 · [1− FV1(V1)] + d̄+ d(k)

5.7 Firm problem with α = 0

π = max
V1

k(V1)
α ·N(V1, k(V1), F )1−α − w(V1, k(V1)) ·N(V1, k(V1), F )− rf · k(V1) (38)

subject to

k(V1) = argmax
k̂

k̂α ·N(V1, k̂, F )1−α − w(V1, k̂) ·N(V1, k̂, F )− rf · k̂

Obtaining the CPO of the second problem with respect to k̂ we obtain

α·k̂α−1·N(V1, k̂, F )1−α+k̂α·(1−α)·N(V1, k̂, F )−α·∂N(V1, k̂, F )

∂k̂
−∂w(V1, k̂)

∂k̂
·N(V1, k̂, F )−w(V1, k̂)·

∂N(V1, k̂, F )

∂k̂
= rf

Using the expressions obtained for N(V1, k, F ) and ∂N(V1,k,F )
∂k , and considering that from the equation

(2) it was obtained that w(V1, k) = V1 · (rw + d(k) + λ1 · (1−FV1(V1)) + δ)− λ1 · [
∫
Ṽ1 dFV1

(Ṽ1)]− δ · V0,
and using the assumption that α = 0, the CPO can be rewritten as

∂N(V1, k̂, F )

∂k̂
− ∂w(V1, k̂)

∂k̂
·N(V1, k̂, F )− w(V1, k̂) ·

∂N(V1, k̂, F )

∂k̂
= rf

The first thing to notice is that the level of technology chosen by the firm, k(V1), is no longer
productive, since the first effect mentioned in proposition 3 is lost. The other two effects remain valid.
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N(V1, k, F ) · −d′(k)

δ + λ1 · [1− F (V1)] + d̄+ d(k)
− d′(k) · V1 ·N(V1, k̂, F )−

− w(V1, k̂) ·N(V1, k, F ) · −d′(k)

δ + λ1 · [1− F (V1)] + d̄+ d(k)
= rf

Reorganizing terms,

rf = −d′(k) ·N(V1, k, F ) ·

[
V1 +

1− w(V1, k̂)

δ + λ1 · [1− F (V1)] + d̄+ d(k)

]
In addition, from equation (2),

(rw + d(k)) · V1 = w + λ1 · [
∫ +∞

−∞
[max(V1, Ṽ1)− V1] dFV1

(Ṽ1)] + δ · [V0 − V1]

(rw+d(k))·V1 = w+λ1·
∫ V1

−∞
[max(V1, Ṽ1)−V1] dFV1(Ṽ1)+λ1·

∫ +∞

V1

[max(V1, Ṽ1)−V1] dFV1(Ṽ1)+δ·[V0−V1]

(rw + d(k)) · V1 = w + λ1 ·
∫ V1

−∞
[V1 − V1] dFV1

(Ṽ1) + λ1 ·
∫ +∞

V1

[Ṽ1 − V1] dFV1
(Ṽ1) + δ · [V0 − V1]

(rw + d(k)) · V1 = w + λ1 ·
∫ +∞

V1

[Ṽ1 − V1] dFV1
(Ṽ1) + δ · [V0 − V1]

(rw + d(k)) · V1 = w + λ1 ·
∫ +∞

V1

Ṽ1 dFV1(Ṽ1)− λ1 ·
∫ +∞

V1

V1 dFV1(Ṽ1) + δ · [V0 − V1]

(rw + d(k)) · V1 = w + λ1 ·
∫ +∞

V1

Ṽ1 dFV1(Ṽ1)− λ1 · V1 + λ1 · V1 · (1− FV1(V1)) + δ · [V0 − V1]

(rw + d(k)) · V1 = w + λ1 ·
∫ +∞

V1

Ṽ1 dFV1
(Ṽ1)− λ1 · V1 + λ1 · V1 · FV1

(V1) + δ · [V0 − V1]

(rw + d(k)) · V1 = w + λ1 ·
∫ +∞

V1

Ṽ1 dFV1
(Ṽ1)− λ1 · V1 · (1− FV1

(V1)) + δ · [V0 − V1]

V1 =
w(V1, k) + λ1 · [

∫
Ṽ1 dFV1

(Ṽ1)] + δ · V0

rw + d(k) + λ1 · (1− FV1
(V1)) + δ

Replacing this equation in the CPO, recalling that rw = r̃+ d̄ and under the assumption that r̃ = 0,
one has that,

rf = −d′(k) ·N(V1, k, F ) ·

[
1 + λ1 · [

∫
Ṽ1 dFV1

(Ṽ1)] + δ · V0

δ + λ1 · [1− FV1
(V1)] + d̄+ d(k)

]
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5.8 Firm problem with α = 0.9

As an example, all the results are presented for one of the cases presented above, that of α = 0.9.

Figure 12: Probability of death d(k) and its derivative d′(k), number of employees N(V1, k) for different levels
of V1 and k, and distribution of V1 offered at equilibrium given by F (V1) for α = 0.9.

Figure 13: First-order condition of the firm problem.
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Figure 14: Levels of k that solve the first-order condition of the firm problem.

Figure 15: Level of benefits obtained by firms for each V1 offered.
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Figure 16: Initial guess for the distribution F (V1), and F (V1) in equilibrium.

Figure 17: Probability of death d(k) vs wage w offered by firms when α = 0.9. Each point represents one firm.
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Figure 18: Probability of death d(k) vs wage w offered by firms when α = 0.9. Each point represents one firm.

5.9 Obtaining distributions when d(k) = d

π = π (39)

k(w)α ·N(w,F )1−α − w ·N(w,F )− rf · k(w) = k(w)α ·N(w,F )1−α − w ·N(w,F )− rf · k(w)

N(w,F )α·
( α

rf

) α
1−α ·N(w,F )1−α−w·N(w,F )−rf ·N(w,F )·

( α

rf

) 1
1−α

= k(w)α·N(w,F )1−α−w·N(w,F )−rf ·k(w)

N(w,F ) ·
[( α

rf

) α
1−α · (1− α)− w

]
= N(w,F ) ·

[( α

rf

) α
1−α · (1− α)− w

]

N(w,F ) = N(w,F ) ·

[( α
rf

) α
1−α · (1− α)− w(

α
rf

) α
1−α · (1− α)− w

]
(40)

Then, using the definition of N(w,F ), F (w) can be obtained.

Fw(w) = 1−

(
n·λ0·(δ+d̄+d)(λ1+δ+d̄+d)

(λ0+d̄+δ)·d̄+(λ0+d̄)·d · 1
N(w,F ) ·

[ ( α
rf

)
α

1−α ·(1−α)−w

( α
rf

)
α

1−α ·(1−α)−w

]) 1
2

− δ − d̄− d

λ1

replacing the definition of N(w,F ) gives

Fw(w) = 1− Ψ− δ − d̄− d

λ1

where

Ψ = (λ1 + δ + d̄+ d) ·

(
( α
rf
)

α
1−α · (1− α)− w

( α
rf
)

α
1−α · (1− α)− w

) 1
2
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Rearranging terms, we obtain an expression similar to that obtained by Burdett and Mortensen
(1998) as an expression of the wage distribution in equilibrium.

Fw(w) =
λ1 + δ + d̄+ d̃

λ1
·

[
1−

(
( α
rf
)

α
1−α · (1− α)− w

( α
rf
)

α
1−α · (1− α)− w

) 1
2
]

(41)

The density function for wages is obtained by deriving (41) with respect to w.

fw(w) =
dFw(w)

dw
=

1

2
· λ1 + δ + d̄+ d̃

λ1
· 1

[( α
rf
)

α
1−α · (1− α)− w]

1
2 [( α

rf
)

α
1−α · (1− α)− w]

1
2

(42)

Then, to obtain the distribution of jobs FN (N) we use fw(w) and the equation (40), and we obtain
the following expression

fN (N) =
1

2
· λ1 + δ + d̄+ d̃

λ1
· g′(N)

[( α
rf
)

α
1−α · (1− α)− g(N)]

1
2 [( α

rf
)

α
1−α · (1− α)− w]

1
2

(43)

where

g(N) = (
α

rf
)

α
1−α · (1− α)− N(w,F )

N
· [( α

rf
)

α
1−α · (1− α)− w]

and

g′(N) =
N(w,F )

N2
· [( α

rf
)

α
1−α · (1− α)− w]

Rearranging the terms of fN (N),

fN (N) =
1

2
· λ1 + δ + d̄+ d̃

λ1
·

·
N(w,F )

N2 · [( α
rf
)

α
1−α · (1− α)− w]

[( α
rf
)

α
1−α · (1− α)− (( α

rf
)

α
1−α · (1− α)− N(w,F )

N · [( α
rf
)

α
1−α · (1− α)− w])]

1
2 [( α

rf
)

α
1−α · (1− α)− w]

1
2

fN (N) =
1

2
· λ1 + δ + d̄+ d̃

λ1
·

·
N(w,F )

N2 · [( α
rf
)

α
1−α · (1− α)− w]

1
2

[( α
rf
)

α
1−α · (1− α)− ( α

rf
)

α
1−α · (1− α) + N(w,F )

N · [( α
rf
)

α
1−α · (1− α)− w]]

1
2

fN (N) =
1

2
· λ1 + δ + d̄+ d̃

λ1
·

N(w,F )
N2 · [( α

rf
)

α
1−α · (1− α)− w]

1
2

(N(w,F )
N · [( α

rf
)

α
1−α · (1− α)− w])

1
2

fN (N) =
1

2
· λ1 + δ + d̄+ d̃

λ1
·

(
N(w,F )

N3

) 1
2

(44)

To obtain the cumulative function

FN (N) =

∫ N

−∞
fN (Ñ)dÑ
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FN (N) =
1

2
· λ1 + δ + d̄+ d̃

λ1
·N(w,F )

1
2 · (−2) ·N− 1

2

To obtain the distribution of k we use the expression obtained for fN (N) and the CPO, and we
obtain the following expression

fk(k) =
1

2
· λ1 + δ + d̄+ d̃

λ1
·

[(
N(w,F )

k3

)
·
(α
r

) 1
1−α

] 1
2

(45)

Fk(k) =

∫ k

−∞
f(k̃)dk̃

Fk(k) =
1

2
· λ1 + δ + d̄+ d̃

λ1
·N(w,F )

1
2 ·
(α
r

) 1
2

1−α · (−2) · k− 1
2
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