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Ghost Fano resonance in a double quantum dot molecule attached to leads
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We study the electronic transport through a double-quantum dot molecule attached to leads and examine the
transition from a configuration in series to a symmetrical parallel geometry. We find that a progressive reduc-
tion of the tunneling through the antibonding state takes place as a result of the destructive quantum interfer-
ence between different pathways through the molecule. The Fano resonance narrows down, disappearing
entirely when the configuration is totally symmetric, so that only the bonding state participates in the trans-
mission. In this limit, the antibonding state becomes completely localized.
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I. INTRODUCTION

The tunneling of electrons through quantum dot structu
has been the subject of active research during the past y
For the confinement of electrons in all the three dimensio
quantum dots are characterized by the discreteness o
energy levels, and for this reason, are often called ‘‘artific
atoms.’’1,2 One of the main features of transport throu
quantum dots is that the coherence of electrons is gre
preserved, as manifested in phenomena such as
Aharonov-Bohm oscillations in multiply connecte
geometries,3 the Kondo effect in dots strongly coupled
electron reservoirs,4 and Fano-type line shapes in transp
through multiple channels.5

Two or more quantum dots can be coupled to form
‘‘artificial molecule,’’ in which electrons are shared by di
ferent sites. The formation of bonding and antibonding sta
in such molecules has been studied by means of transpo6–9

as well as spectroscopy experiments.10,11 Theoretical work
on electron transport through serial quantum dot configu
tions is contained in Refs. 12, and quantum interference
fects have been explored in parallel and ‘‘T-shaped’’
geometries.13–15Particular interest in quantum dot molecul
lies in their potential application in quantum computing d
vices. In this context, diverse proposals have been m
where the quantum bits are built with electron-spin state16

or with the coherent mode generated by discrete states i
artificial molecule.17

In this work, we study the electronic transport through
double-quantum dot molecule attached to leads, in a tra
tion from a connection in series to a completely symmetri
parallel configuration. We examine the linear conductanc
zero temperature and obtain the associated density of s
of each of the dots. We find that the conductance spectru
composed of a Lorentzian centered at the bonding ene
and a Fano line shape at the energy of the antibonding s
The latter arises due to the presence of a bound state o
molecule, immersed in the band continuum. A progress
line narrowing of the Fano peak is observed as the sys
transits from the series to the symmetrical parallel confi
ration. For the perfectly symmetrical geometry, the antibo
ing state is totally uncoupled of the leads, the bonding s
becoming the only one that participates in the transmiss
0163-1829/2003/67~19!/195335~6!/$20.00 67 1953
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In this extreme case, the antibonding state is localized, w
zero localization length. Although exponentially localize
states generally exist outside the band continuum, this s
is in the conduction band and acts like a ghost of the F
resonance.

II. MODEL

We consider two neighboring quantum dots forming
molecule, coupled to left and right leads as shown in Fig
Only one energy level in each dot is assumed relevant
the interdot and intradot electron-electron interactions are
glected. The system can be modeled by a noninteracting t
impurity Anderson Hamiltonian, which can be written as

H5Hm1Hl1HI , ~1!

whereHm describes the dynamics of the isolate molecule

Hm5(
i 51

2

« idi
†di2tc~d2

†d11d1
†d2!. ~2!

Here« i is the energy of doti, di (di
†) annihilates~creates! an

electron in doti, andtc is the interdot tunneling coupling.Hl
is the Hamiltonian for the noninteracting electrons in the l
and right leads,

Hl5 (
kaP$L,R%

«ka
cka

† cka
, ~3!

FIG. 1. Scheme of a quantum dot molecule coupled to left~L!
and right~R! leads.
©2003 The American Physical Society35-1
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wherecka
(cka

† ) is the annihilation~creation! operator of an

electron of quantum numberka and energy«ka
in the contact

a. Finally, HI accounts for the tunneling between dots a
leads,

HI5 (
kaP$L,R%

V1ka
d1

†cka
1H. c.

1 (
kaP$L,R%

V2ka
d2

†cka
1H. c., ~4!

with Vika
being the tunneling matrix element. The linear co

ductanceG is related to the transmissionT(«) of an electron
of energy« by the Landauer formula at zero temperature18

G5
2e2

h
T~«F!. ~5!

To obtain G explicitly, we use the equation of motion ap
proach for Green’s function.18 The retarded Green’s functio
is defined by

Gi j
r ~ t !52 iu~ t !^$di~ t !,dj

†~0!%&, i , j 51,2, ~6!

whereu(t) is the step function. In the absence of interactio
the total transmissionT(«) can be expressed as

T~«!5tr $Ga~«!GRGr~«!GL%, ~7!

whereGr (a)(«) is the Fourier transform of the retarded~ad-
vanced! Green’s function of the molecule, and the matr
GL(R) describes the tunneling coupling of the two quantu
dots to the left~right! lead, with

G i j
L(R)52p (

kL(R)

VikL(R)
VjkL(R)

* d~«2«kL(R)
!, i , j 51,2.

~8!

The equation of motion method uses the Heisenberg e
tions for the Fermi operators of the molecule, which are
serted in the time derivatives of Green’s functions of Eq.~6!.
This leads to first-order differential equations forGi j

r ’s, con-
taining Green’s functions for different dot operators as w
as others involving dot and lead operators. Through the s
procedure, equations for these new Green’s functions are
tained, until having a closed set. A Fourier transform of su
a set of equations takes it to an algebraic linear system
Gi j

r («)’s, the solution of which leads to the following expre
sion for Gr :

Gr~«!5
1

V S «2«21 i
G22

2
2tc1 i

G21

2

2tc1 i
G12

2
«2«11 i

G11

2

D , ~9!

where
19533
-

,

a-
-

ll
e

b-
h
or

V5S «2«11 i
G11

2 D S «2«21 i
G22

2 D
2S 2tc1 i

G12

2 D S 2tc1 i
G21

2 D , ~10!

with G i j 5G i j
L 1G i j

R . A useful quantity that provides insigh
into the electronic distribution is the local density of states
dot i. It can be written in terms of the diagonal matrix el
ments of the retarded Green’s function,

r i~«!52
1

p
ImGii

r ~«!, i 51,2. ~11!

We are interested in the particular situation described
Fig. 1, in which G11

R 5G22
L [g1 and G11

L 5G22
R [g2, so that

g250 represents a connection in series andg25g1 repre-
sents a symmetrical configuration in parallel. For this ca
the nondiagonal matrix elements of the matricesGL,R obey
G21

L 5G12
L 5G21

R 5G12
R [Ag1g2.

III. CONDUCTANCE AND LOCAL DENSITY OF STATES

Introducing Eqs.~9! and ~10! in Eq. ~7! and then in~5!,
and using the above values of theGL,R matrix elements, we
obtain the following expression for the conductance:

G~«!5
2e2

h

4

C1
@ tcḡ2g12~«2 «̄ !#2, ~12!

where

C15F ~«2 «̄ !22~D«/2!22tc
22

~Dg!2

4 G2

14@ ḡ~«2 «̄ !2tcg12#
2, ~13!

with «̄5(«11«2)/2, D«5«12«2 , ḡ5(g11g2)/2, Dg
5g12g2, andg125Ag1g2. The densities of states at eac
of the quantum dots are, in turn,

r1~«!5
1

pC1
H ḡF tc

21
~Dg!2

4
1S «2 «̄1

D«

2 D 2G
14tcg12S «2 «̄1

D«

2 D J ~14!

and

r2~«!5
1

pC1
H ḡF tc

21
~Dg!2

4
1S «2 «̄2

D«

2 D 2G
14tcg12S «2 «̄2

D«

2 D J , ~15!

with C1 being the same as Eq.~13!.
First, let us consider the case withD«50. It follows from

Eqs. ~12! and ~13! that G(«) has two resonances, corre
sponding to the bonding and antibonding states, at
energies
5-2
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«65 «̄6Atc
22

~Dg!2

4
, ~16!

which in general differ from the eigenvalues for the isola
molecule,«6

0 5 «̄6tc . The resonances can be distinguish
only when utcu.uDgu/2, and the separation between the
decreases asuDgu/2 approachesutcu. Thus, the level of at-
traction produced by the connection to the leads beco
smaller as the coupling strengthg2 increases, up to vanishin
wheng25g1, where the bonding and antibonding states
incide with those of the isolated molecule. A similar lev
attraction is reported by Kubalaet al. in Ref. 19 in an
Aharonov-Bohm ring with a quantum dot in each of its arm

We notice also that the conductance vanishes at the F
energy

«A5 «̄1tcḡ/g12 ~17!

providedg2Þ0,g1. This antiresonancelike behavior, chara
terized by strictly zero transmission, is a consequence of
structive quantum interference between different pathw
through the dots, and is not present for the connection
series, where only one possible pathway exists. Also, it
be shown thatG(«) reaches the quantum limit 2e2/h at spe-
cific values of the energy providedutcu>uDgu/2. For the
molecule connected in series perfect transmission requ
that the interdot coupling strength be at leastg1/2, while in
the parallel configuration with a weak interdot coupling
behaves as an ideal channel if the dot-lead coupling stren
are all of similar magnitude. Without loss of generality w
can set«̄50, a convention we adopt in what follows.

In Fig. 2 we have plotted the conductance as a function
the Fermi energy forD«50, tc5g1, and different values of

FIG. 2. Conductance as a function of the Fermi energy,
D«50, tc5g1 and different values ofg2: ~a! g250, ~b! g2

50.3g1, ~c! g250.6g1, and~d! g25g1. The dash and dotted line
in ~b! correspond, respectively, to the Breit-Wigner and Fano l
shapes of Eqs.~19! and ~20!.
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g2. For the configuration in series@Fig. 2~a!#, the bonding
and antibonding resonances are clearly resolved. Forg2
Þ0,g1, as in Figs. 2~b! and 2~c!, the conductance exhibit
the antiresonance mentioned above, and there is a prog
sive increase~reduction! of the width of the bonding~anti-
bonding! resonance, asg2 becomes larger (g2,g1). When
g25g1 @Fig. 2~d!# the antiresonance and the peak associa
to the antibonding state are no longer present.

It can be shown that the conductance forD«50 is com-
posed by a Breit-Wigner and a Fano line shape centere
the bonding and antibonding energies, respectively. Defin
the quantitiesG2 andG1 by

G65ḡ6g12, ~18!

in the limit G1@G2 and around«52tc , G(«) can be ap-
proximated by

G~«!.
2e2

h

G1
2

G1
2 1~«1tc!

2
, ~19!

and around«5tc , by the Fano line shape of widthG2

G~«!.
2e2

h

G1
2

G1
2 14tc

2

~Q1e2!2

11e2
2

, ~20!

where Q522tc /G1 and e25(«2tc)/G2 (G2Þ0). The
width of the bonding resonanceG1 ranges fromg1/2 for the
connection in series to 2g1 in the symmetrical case, while
G2 decreases fromg1/2 to become infinitely small wheng2
approachesg1. A similar line reduction in the conductanc
spectrum is discussed in Ref. 20 in a junction with two re
nant impurities. This line narrowing~widening! in the con-
ductance can be interpreted as an increase~reduction! of the
lifetime t5\/G of the corresponding molecular state, withG
being the associated linewidth. The strong narrowing of
Fano peak wheng2 is close tog1 is a signal of slow transi-
tions between the antibonding state and the leads. The
time of the antibonding state becomes infinitely long wh
g2 approachesg1 . Typically, the g ’s are of the order of
meV’s, so that the lifetimes of quantum dots attached
leads in series are of the order ofpicoseconds. However, if in
the present configurationg1510 meV andg259.9 meV,
one obtainsG255.531024 meV, then the lifetime of the
antibonding state ist2.33 ns, that is, four orders of mag
nitude larger. It is interesting to note that, as follows fro
expressions~12! and ~13! and as displayed by Fig. 2~d!,
when g25g1, the Fano resonance entirely disappears a
the conductance reduces exactly to the Lorentzian

G~«!5
2e2

h

4g1
2

~«1tc!
214g1

2
, ~21!

expression with the form of the conductance of a sing
quantum dot centered at the bonding energy, with an ef
tive line broadeningge52g1. This would indicate that only
the bonding state contributes to the transmission through
molecule.
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Additional insight into the physics underlying these r
sults can be obtained by examining the local density of st
in each of the quantum dots. ForD«50, the density of states
at both quantum dots is the same, and the electron has
same probability of being found at one or the other~covalent
limit !. It is straightforward to show thatr1,25r is a super-
position of two Lorentzians of widthsG1 and G2 at the
bonding and antibonding energies, respectively,

r~«!5
1

2p F G1

~«1tc!
21G1

2
1

G2

~«2tc!
21G2

2 G . ~22!

Figure 3 shows this quantity as a function of the ene
for the same parameters used in Fig. 2. As we see,
local density of states is the simple superposition of t
Lorentzians, one wide and one narrow as one approa
the symmetric configuration. Forg25g1, the Lorenztian
centered at the bonding energy acquires the width 2g1,
while that at the antibonding energy becomes ad function.
This last result indicates that the antibonding state tu
totally localized in the molecule. In fact, it is straightforwa
to show that the Green function of this state (Gaa

r (t)
52 iu(t)^$da(t),da

†(0)%&, where da5(d12d2)/A2) obeys
the equation of motion of an isolated state.

Now, let us discuss how a finite difference in the energ
of the different quantum dots modifies the results found
the fully symmetrical situation. When«1Þ«2 and g25g1,
the conductance takes the form

G~«!5
2e2

h

4g1
2~ tc2«!2

C2
~23!

with

C25F S D«

2 D 2

1~ tc2«!~ tc1«!G2

14g1
2~ tc2«!2. ~24!

FIG. 3. Density of statesr as a function of the Fermi energy, fo
D«50, tc5g1 and different values ofg2: ~a! g250, ~b! g2

50.3g1, ~c! g250.6g1, and~d! g25g1.
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Now the antiresonance takes place in«A5tc and the reso-
nances are further apart than forD«50, as one would ex-
pect, with their positions depending quadratically onD«. As
before, the conductance is a convolution of a Lorentzian
the bonding energy and a Fano line shape at the antibon
energy. ForD«&tc the Lorentzian has a constant line broa
ening 2g1,

G~«!.
2e2

h

4g1
2

~«2«b!214g1
2

, ~25!

with «b52@ tc1(D«)2/(8tc)#. The Fano line shape has
width dependent on the difference of energies of the quan
dots levels,Ga5g1(D«)2/@8(tc

21g1
2)#,

G~«!.
2e2

h

g1
2

g1
21tc

2

~ea1Q!2

11ea
2

, ~26!

whereea5@«2tc(11Ga /g1)#/Ga and Q5tc /g1. Figure 4
shows the conductance forD«5g1/2 and tc5g1, together
with the corresponding pure Breit-Wigner and Fano curv
given by Eqs.~25! and~26!. Notice that the line broadening
of the Fano peak depends quadratically on the value ofD«,
but differences of energyD« of the order ofg1 result in Fano
peaks narrow enough; for instance, ifD«5g15tc , Ga
5g1/16!g1.

The local densities of statesr1 andr2 are, respectively,

r1~«!5
1

p

~D«22tc12«!2

4C2
, ~27!

FIG. 4. Conductance as a function of the Fermi energy,
D«5g1/2, tc5g1, andg25g1. The dash and dotted lines are th
Lorentzian and the Fano line shape of Eqs.~26! and ~26!, respec-
tively.
5-4
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r2~«!5
1

p

~D«12tc22«!2

4C2
, ~28!

and, as observed in Fig. 5, are the superposition of a B
Wigner resonance close to the bonding energy and a F
line shape around the antibonding energy, similar to the c
ductance. It can be seen from the above analysis that

FIG. 5. Local densities of statesr1 ~solid line! and r2 ~dash
line! as a function of the Fermi energy, forD«5g1/2, tc5g1, and
g25g1.
ir,
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quantum dots with different energies, both molecular sta
always contribute to the conductance.

IV. CONCLUSIONS

In this work, we studied the conductance and density
states at zero temperature of a quantum dot molecule
tached to leads in the range between a connection in se
and a symmetric parallel configuration. We found that t
conductance is composed of Breit-Wigner and Fano l
shapes at the bonding and antibonding energies, respecti
with their line broadenings controlled by the asymmetry
the configuration. The narrowing~widening! of a line in the
conductance can be interpreted as an increase~reduction! of
the lifetime of the corresponding molecular state. From
densities of states, it can be deduced that the antibon
state becomes progressively more localized as the asym
try of the configuration is reduced. Surprisingly, when t
configuration is completely symmetrical, the tunnelin
through the antibonding state is totally suppressed and
bonding state is the only one participating in the transm
sion. In this limit, the antibonding becomes a coherent loc
ized state with zero localization length. The strong reduct
of the decoherence processes exhibited by the present sy
may have applications in quantum computing.
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