PHYSICAL REVIEW B 67, 195335 (2003

Ghost Fano resonance in a double quantum dot molecule attached to leads
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We study the electronic transport through a double-quantum dot molecule attached to leads and examine the
transition from a configuration in series to a symmetrical parallel geometry. We find that a progressive reduc-
tion of the tunneling through the antibonding state takes place as a result of the destructive quantum interfer-
ence between different pathways through the molecule. The Fano resonance narrows down, disappearing
entirely when the configuration is totally symmetric, so that only the bonding state participates in the trans-
mission. In this limit, the antibonding state becomes completely localized.
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[. INTRODUCTION In this extreme case, the antibonding state is localized, with
zero localization length. Although exponentially localized
The tunneling of electrons through quantum dot structurestates generally exist outside the band continuum, this state
has been the subject of active research during the past yeai$.in the conduction band and acts like a ghost of the Fano
For the confinement of electrons in all the three dimensiongesonance.
guantum dots are characterized by the discreteness of the
energy levels, and for this reason, are often called “artificial Il. MODEL
atoms.™? One of the main features of transport through _ . . _
quantum dots is that the coherence of electrons is greatly We consider two neighboring quantum dots forming a
preserved, as manifested in phenomena such as thBolecule, coupled to left and right leads as shown in Fig. 1.
Aharonov-Bohm  oscillations in  multiply connected Only one energy level in each dot is assumed relevant and
geometries, the Kondo effect in dots strongly coupled to the interdot and intradot electron-electron interactions are ne-
electron reservoird,and Fano-type line shapes in transportdlected. The system can be modeled by a noninteracting two-

through multiple channefs. impurity Anderson Hamiltonian, which can be written as
Two or more quantum dots can be coupled to form an
“artificial molecule,” in which electrons are shared by dif- H=Hn+tH+H, 1)

ferent sites. The formation of bonding and antibonding states , ) i
in such molecules has been studied by means of trafisport whereH,,, describes the dynamics of the isolate molecule,
as well as spectroscopy experimett&! Theoretical work
on electron transport through serial quantum dot configura-
tions is contained in Refs. 12, and quantum interference ef-
fects have been explored in parallel andr-shaped”
geometries®~**Particular interest in quantum dot molecules Heree;, is the energy of dat, d; (d) annihilatescreatesan
lies in their potential application in quantum computing de-electron in doi, andt, is the interdot tunneling coupling,
vices. In this context, diverse proposals have been madgs the Hamiltonian for the noninteracting electrons in the left
where the quantum bits are built with electron-spin stites and right leads,
or with the coherent mode generated by discrete states in an
artificial molecule'’

In this work, we study the electronic transport through a H= E skacﬁ Ck,,» 3
double-quantum dot molecule attached to leads, in a transi- } ‘
tion from a connection in series to a completely symmetrical
parallel configuration. We examine the linear conductance at
zero temperature and obtain the associated density of states
of each of the dots. We find that the conductance spectrum is
composed of a Lorentzian centered at the bonding energy,
and a Fano line shape at the energy of the antibonding state.
The latter arises due to the presence of a bound state of the
molecule, immersed in the band continuum. A progressive
line narrowing of the Fano peak is observed as the system
transits from the series to the symmetrical parallel configu- QD2
ration. For the perfectly symmetrical geometry, the antibond-
ing state is totally uncoupled of the leads, the bonding state FIG. 1. Scheme of a quantum dot molecule coupled to(left
becoming the only one that participates in the transmissiorand right(R) leads.

2
Hn= 2>, &idid—t.(d,'d;+dld,). )
i=1
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Wherecka (cla) is the annihilation(creation operator of an P F_n B 1“_22
electron of quantum numbéy, and energy;in the contact SleTEaTligr) e e
a. Finally, H, accounts for the tunneling between dots and
leads T2 T
; —| =te+i—=|| —t.+i—=], (10)
2 2
H= S vy dlc, +H.c. with [';;=I}+Tf . A useful quantity that provides insight
k,e{L.R a1 into the electronic distribution is the local density of states in
doti. It can be written in terms of the diagonal matrix ele-
+ > Vo dofe, +H. c. (4) ments of the retarded Green’s function,
k,eTLR} @ a ’
1
T r P
with V. being the tunneling matrix element. The linear con- pi(e)=——ImGj(e), i=1.2. (11)
ductanceG is related to the transmissidr(s) of an electron
of energys by the Landauer formula at zero temperattire, We are interested in the particular situation described in
Fig. 1, in whichT§,=T5,=y, andT'};=T'5=1v,, so that
262 v,=0 represents a connection in series ane= y; repre-
G= TT(SF)' (5  sents a symmetrical configuration in parallel. For this case,

the nondiagonal matrix elements of the matrid¢s: obey

L _1L _17R_TR_
To obtain G explicitly, we use the equation of motion ap- 5= === V7172
proach for Green’s functiotf The retarded Green’s function

is defined by I1l. CONDUCTANCE AND LOCAL DENSITY OF STATES
. . Introducing Eqgs(9) and (10) in Eq. (7) and then in(5),
r _ . T —
Gij(h=—16{di(1),dj(0)}), 1,j=12, (6 zpq using the above values of the&'R matrix elements, we

. . . . in the following expression for th n nce:
whered(t) is the step function. In the absence of mteractlon,Obta the following expression for the conductance

the total transmissiofi(¢) can be expressed as 202 4 _ o

G(e)= 1 o [tey—yile—o) 1% (12

T(e)=tr{G%e)I'RG'(¢)I'"}, (7) 1
where

whereG'®(¢) is the Fourier transform of the retardéat-

vanced Green’'s function of the molecule, and the matrix —, 5 2 (Ay)?)?
I'*® describes the tunneling coupling of the two quantum Ci=|(e—e)"—(Ael2)"—te——)—
dots to the leftright) lead, with
+aly(s— &)~ teyial’, (13
F:-j(R): 27Tk2 VikL(R)VJ?\—kL(R)é(S_skL(R))’ ihj=1,2. with e=(e1t€,)/2, Ae=g1—ey, y=(y1+7y2)/2, Ay
LR ® =n v and y;,=y17,. The densities of states at each
of the quantum dots are, in turn,
The equation of motion method uses the Heisenberg equa- 5 5
tions for the Fermi operators of the molecule, which are in- _ i[‘{ 2, (A7) - A_S)
. . L , . pi(e) Y| tet tle—et
serted in the time derivatives of Green'’s functions of &). mC 4 2
This leads to first-order differential equations mfj ’s, con- As
taining Green'’s functions for different dot operators as well +4tcy12( e—g+— ] (14
as others involving dot and lead operators. Through the same 2
procedure, equations for these new Green’s functions are ol g
tained, until having a closed set. A Fourier transform of such
a set of equations takes it to an algebraic linear system for 1 (Ay)? _ Ag\?
Gi’j (e)’s, the solution of which leads to the following expres- pa(e)= Th{tﬁ 2 tle—e— 7)
sion forG':
— As
Ty Ty +4t v e—&— it (15
1 8—82+I7 —tc+l7
G'(e)=— , (9  with C; being the same as E(L3).
ol e Tu First, let us consider the case witle =0. It follows from
€ 2 S 2 Egs. (12 and (13) that G(e) has two resonances, corre-
sponding to the bonding and antibonding states, at the
where energies
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v,. For the configuration in serig€ig. 2(a)], the bonding
10{ (a) (b) _ )
and antibonding resonances are clearly resolved. for
§0~8 #0,y4, as in Figs. &) and Zc), the conductance exhibits
“© 06 the antiresonance mentioned above, and there is a progres-
- sive increasdreduction of the width of the bondinganti-
O 04 bonding resonance, ay, becomes largery,<vy,). When
03 B AR | v>= v, [Fig. 2(d)] the antiresonance and the peak associated
’ / to the antibonding state are no longer present.
0.0 It can be shown that the conductance fo¥=0 is com-
10} (C) 1(d) posed by a Breit-Wigner and a Fano line shape centered at
—08 ] the bonding and antibonding energies, respectively. Defining
= the quantitied” _ andT | by
© 06
a _
Goa ] I'i=y*y, (18
02 (\ in the limit I" , >T"_ and arounce=—t., G(&) can be ap-
proximated by
00 4 2 0 2 4 4 2 0 2 4
2 2
€ 2e r
) Gle)="p 5 19
FIG. 2. Conductance as a function of the Fermi energy, for < +(e+ty)
Ae=0, t,=vy; and different values ofy,: (@ 7y,=0, (b) v, _ . .
— 031, (6) 7,=0.67,, and(d) o= 7,. The dash and dotted lines and arounce=t;, by the Fano line shape of widih_
in (b) correspond, respectively, to the Breit-Wigner and Fano line 5 5 5
shapes of Eqg(19) and (20). G(e)= 2e” 'Y (Q+e.) (20)
h 124412 1+
— |, (Ay)?
ex=et\Jlcm——, (16)  where Q=—2t,/T', ande_=(e—t.)/[_ (I'_#0). The

width of the bonding resonandé, ranges fromy,/2 for the
which in general differ from the eigenvalues for the isolateconnection in series to2 in the symmetrical case, while
molecule,s% =¢+t.. The resonances can be distinguished! - decreases frony,/2 to become infinitely small whem;
only when |_t0|>|Ay|/2, and the separation between themapproachgs;/l._ A S|m|Iar line redupnon in the cqnductance
decreases a\ y|/2 approachest,|. Thus, the level of at- spectrum is Fi|scus§ed_ in Ref. 20.|n a_Junqt|on_W|th two reso-
traction produced by the connection to the leads becomd@nt impurities. This line narrowingvidening in the con-

smaller as the coupling strengfh increases, up to vanishing ductance can be interpreted as an increesguction of the
when y,= y;, where the bonding and antibonding states colifetime 7=7/1" of the corresponding molecular state, with

incide with those of the isolated molecule. A similar level 2€ing the associated linewidth. The strong narrowing of the
attraction is reported by Kubalatal. in Ref. 19 in an Fano peak whery, is close toy, is a signal of slow transi-
Aharonov-Bohm ring with a quantum dot in each of its arms.lions between the antibonding state and the leads. The life-

We notice also that the conductance vanishes at the Ferrf{e of the antibonding state becomes infinitely long when

energy v, approachesy,. Typically, the y's are of the order of
meV'’s, so that the lifetimes of quantum dots attached to

eamett ) (17) leads in series are of the orderm€osecondsHowever, if in

A cVi712 the present configuratiory;=10 meV andy,=9.9 meV,

providedy,# 0,y,. This antiresonancelike behavior, charac-One obtainsI'_=5.5x10"* meV, then the lifetime of the
terized by strictly zero transmission, is a consequence of deantibonding state is_=33 ns, that is, four orders of mag-
structive quantum interference between different pathway#itude larger. It is interesting to note that, as follows from
through the dots, and is not present for the connection igXpressions12) and (13) and as displayed by Fig.(@,
series, where only one possible pathway exists. Also, it cahen y,=vy;, the Fano resonance entirely disappears and
be shown thaG (&) reaches the quantum limie2/h at spe-  the conductance reduces exactly to the Lorentzian
cific values of the energy provided.|=|Ay|/2. For the
molecule connected in series perfect transmission requires 2e? 43/%
that the interdot coupling strength be at leggt2, while in Gle)= n (+t)—2+42 (21
the parallel configuration with a weak interdot coupling it el "
behaves as an ideal channel if the dot-lead coupling strengthspression with the form of the conductance of a single-
are all of similar magnitude. Without loss of generality we quantum dot centered at the bonding energy, with an effec-
can sete=0, a convention we adopt in what follows. tive line broadeningy,=2vy;. This would indicate that only

In Fig. 2 we have plotted the conductance as a function ofthe bonding state contributes to the transmission through the
the Fermi energy foAe =0, t.= y,, and different values of molecule.
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FIG. 3. Density of stateg as a function of the Fermi energy, for €

Ae=0, t,=7; and different values ofy,: (@ y,=0, (b) v,

=0.3y,, (C) y,=0.6y,, and(d) y,= ;. FIG. 4. Conductance as a function of the Fermi energy, for

Ae=vy4/2, t.;=y,, and y,= y;. The dash and dotted lines are the

Additional insight into the physics underlying these re- Lorentzian and the Fano line shape of EG6) and (26), respec-

sults can be obtained by examining the local density of state&/ely-

in each of the quantum dots. Fag =0, the density of states

at both quantum dots is the same, and the electron has th¢ow the antiresonance takes placesig=t. and the reso-
same probability of being found at one or the ottmvalent ~hances are further apart than fde =0, as one would ex-
limit). It is straightforward to show thai, ,=p is a super- Pect, with their positions depending quadraticallys. As
position of two Lorentzians of width§+' andT_ at the before, the conductance is a convolution of a Lorentzian at

bonding and antibonding energies, respectively, the bonding energy and a Fano line shape at the antibonding
energy. ForAe <t the Lorentzian has a constant line broad-

() 1 r, . r_ 22 ening 2y,,
E)— — .
P 2w (41924 T2 | (s—t)2+T2 ) ,
2e 4
Figure 3 shows this quantity as a function of the energy G(s):—$ (25

for the same parameters used in Fig. 2. As we see, the
local density of states is the simple superposition of two
Lorentzians, one wide and one narrow as one approach&th e,=—[t.+(Ae)%(8t.)]. The Fano line shape has a
the symmetric configuration. Foy,=7,, the Lorenztian Wwidth dependent on the difference of energies of the quantum
centered at the bonding energy acquires the width,2 dots levels]';= yl(As)2/[8(t§+ yi)],
while that at the antibonding energy becomeé function.
This last result indicates that the antibonding state turns
totally localized in the molecule. In fact, it is straightforward
to show that the Green function of this stat&p((t)
= —i6(t)({da(1),d}(0)}), whered,=(d;—d,)/\2) obeys
the equation of motion of an isolated state. wheree,=[e—t.(1+T,/v,)]/T, and Q=t./vy,. Figure 4
Now, let us discuss how a finite difference in the energieshows the conductance fdre =y,/2 andt.=vy,, together
of the different quantum dots modifies the results found inwith the corresponding pure Breit-Wigner and Fano curves
the fully symmetrical situation. When,#¢, and y,=7,,  given by Eqs(25) and(26). Notice that the line broadening
the conductance takes the form of the Fano peak depends quadratically on the valu& Qf
but differences of energe of the order ofy, result in Fano
peaks narrow enough; for instance, Ke=y;=t;, T',
= y,/16< v;.
The local densities of statgg andp, are, respectively,

262 15 (e,+Q)?
Gl 5 2,2
vi+tg 1+ea

(26)

2e? 4y§(tc— 8)2
G(e)= T Toc, (23
with

2

2 1 (Ae—2t.+2¢)?
+(te—e)(tete) Qe

+4rit—e)® (29 pi(e)= - e 27)

o
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0.4— quantum dots with different energies, both molecular states
always contribute to the conductance.

IV. CONCLUSIONS

0-31 In this work, we studied the conductance and density of

)

(

|

1

|

)

I

: states at zero temperature of a quantum dot molecule at-
| tached to leads in the range between a connection in series
! and a symmetric parallel configuration. We found that the

' conductance is composed of Breit-Wigner and Fano line
X shapes at the bonding and antibonding energies, respectively,
! with their line broadenings controlled by the asymmetry of

1 the configuration. The narrowingvidening of a line in the

\ conductance can be interpreted as an incr@askiction of

\ the lifetime of the corresponding molecular state. From the

DOS

N densities of states, it can be deduced that the antibonding

oo state becomes progressively more localized as the asymme-
/I\\ try of the configuration is reduced. Surprisingly, when the
2 4 configuration is completely symmetrical, the tunneling

through the antibonding state is totally suppressed and the
bonding state is the only one participating in the transmis-
FIG. 5. Local densities of statgs, (solid line) and p, (dash §ion. In this !imit, the anti'bon'ding becomes a coherent qual—
line) as a function of the Fermi energy, fdrs = y,/2, t.=v,, and ized state with zero localization Ier}g_th. The strong reduction
Yo= 1. of the decoherence processes exhibited by the present system
may have applications in quantum computing.
2
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