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ABSTRACT

The non invasive nature of Magnetic Resonance Imaging (MRI) combined with its

flexibility have made it a popular medical imaging technique. However, long acquisition

times have limited its use for 3D and dynamic images. One approach used to overcome

this problem has been to undersample the k-space, allowing shorter acquisition times, fol-

lowed by a reconstruction algorithm that recovers the non-acquired data employing some

sort of prior information. Most reconstruction methods such as keyhole, sliding window

and k-t BLAST are prone to introduce spatial or temporal blurring. We propose to use

the information that allows to sort the pixels of an image from brightest to darkest as

the additional information. This order information can be obtained from low resolution

images, adjacent slices in 3D imaging or from prior reconstructions. The technique for re-

construction using intensity order (TRIO) finds the images by minimizing the discrepancy

between the acquired and reconstructed data, subject to the intensity order constraints.

The proposed method was used to reconstruct 2D dynamic cardiac images using the tem-

poral average image to provide the initial order information. TRIO was also applied as a

second stage reconstruction using first keyhole, sliding window or k-t BLAST to estimate

the order information. In all cases TRIO achieved reconstructions with less spatial and

temporal blurring as well as less structured error than the first reconstructions.

Keywords: MRI, Undersampling, Reconstruction, Order.
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RESUMEN

La naturaleza no invasiva de las Imágenes de Resonancia Magnética (MRI por sus

siglas en inglés) junto con su flexibilidad las han convertido en una técnica de imágenes

médicas muy usada. Sin embargo, los largos tiempos de adquisición han limitado su

uso para imágenes dinámicas y 3D. Una forma de resolver este problema ha sido el sub-

muestreo del espacio-k, permitiendo menores tiempos de adquisición, seguido por un al-

goritmo de reconstrucción que recupera la información que no fue adquirida usando algún

tipo de información previa. La mayorı́a de los métodos de reconstrucción tales como

keyhole, sliding window y k-t BLAST son susceptibles a introducir borrosidad espacial

o temporal en las imágenes. Proponemos usar la información que permite ordenar los

pı́xeles de una imagen desde el más brillante al más oscuro como información previa.

Esta información de orden se puede obtener de imágenes de baja resolución, de un corte

contiguo en imágenes 3D o de reconstrucciones previas. Esta técnica de reconstrucción

usando el orden de las intensidades (TRIO por sus siglas en inglés) encuentra las imágenes

mediante la minimización de la discrepancia entre los datos adquiridos y reconstruidos, su-

jeto a las restricciones dadas por el orden de intensidades. El método propuesto fue usado

para reconstruir una secuencia dinámica 2D de imágenes cardiacas usando el promedio

temporal como fuente inicial de la información de orden. TRIO también fue aplicado

como una segunda etapa de reconstrucción usando inicialmente keyhole, sliding window

y k-t BLAST para estimar la información de orden. En todos los casos, TRIO logró re-

construcciones con menos borrosidad espacial y temporal ası́ como un error menos estruc-

turado que las primeras reconstrucciones.

Palabras Claves: MRI, Submuestreo, Reconstrucción, Orden.
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1. GENERAL INTRODUCTION

1.1. MRI Basics

Magnetic resonance imaging (MRI) is a technique which allows to produce internal

images of an object based on its physical or chemical characteristics. MRI is based on the

nuclear magnetic resonance (NMR) phenomenon which was independently demonstrated

by Felix Bloch (Bloch, 1946) and Edward Purcell (Purcell et al., 1946) in 1946. Atoms

with an odd number of protons and/or an odd number of neutrons posses a nuclear spin

angular momentum. This atoms are simply referred to as spins and act as small magnetic

dipoles. It was not until 1973 when Paul Lauterbur (Lauterbur, 1973) obtained the first

MRI by spatially encoding the NMR signals and not until 1980 when MRI was introduced

to the medical field. The most common element detected by MRI Scanners is the single

proton Hydrogen (1H) which is present in water throughout the human body.

A typical MR scanner consists of a magnet, gradient coils, shimming coils and ra-

diofrequency (RF) coils together with the control and computer hardware. The magnet

produces the main magnetic field B0 which usually ranges from 0.1 to 3 Tesla for clinical

scanners. The main magnet field is produced by a permanent, a resistive or superconduc-

tive magnet. This last option is the preferred choice as it achieves higher strength fields.

This field is built to be as homogeneous as possible using the shimming coils to correct

any inhomogeneity. To achieve spatial localization it is necessary to apply three linear

gradient magnetic fields in the x, y and z directions in addition to B0 . These gradient

fields, produced by three sets of gradient coils, point in the same direction as B0 and can

be controlled to change in time. When turned on, the resulting magnetic field still points

in the direction of B0 (k̂) but the magnitude depends on the spatial position and is given

by

B(x, y, z, t) = B0 + (Gx(t)x + Gy(t)y + Gz(t)z)k̂ (1.1)
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The RF coils are used for spin excitation and for the reception of the NMR signals.

These coils are usually specific to the part of the human body which will be scanned.

This allows to reduce the space between the coil and the anatomy and therefore, to obtain

a better image. In some applications, the same coil can be used for both excitation and

reception. The control and computer hardware consists of several computers and the elec-

tronic equipment necessary to control the scanner. One computer is used to control the

scanner, another is used to reconstruct the images and a third computer is the user console

which allows the modification of different parameters.

The process to obtain an image can be divided into 4 steps:

• Polarization

• Excitation

• Readout

• Reconstruction

1.1.1. Polarization

The spins within a human body are usually randomly oriented, thus the net macro-

scopic magnetization (M) is null. If an external magnetic field (B0) is applied, quantum

mechanics states that the spins will take one of two possible orientations, parallel or an-

tiparallel to the external field. The spins are not perfectly aligned with the external field

and will experience a torque proportional to it. This torque will produce a precession

motion around B0 at the resonant frequency ω0 called the Larmor frequency. The Larmor

frequency is proportional to the magnetic field and to the gyromagnetic ratio γ as shown in

(1.2). The gyromagnetic ratio is constant and unique for each element. For single proton

(hydrogen) γ = 42, 58 MHz/T. This means that for a 1.5 Tesla MRI scanner, the Larmor

frequency is 63, 87 MHz.

ω0 = γ ·B0 (1.2)
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After polarization, the spins will have a net macroscopic magnetization greater than

zero in the direction of the external field B0 (Fig. 1.1). This direction is usually called the

z-axis and is known as the longitudinal direction. The plane perpendicular to it is known

as the transverse plane.

FIGURE 1.1. Polarization of the spins when an external field (B0) is applied.
Left: Spins are randomly oriented in the absence of B0. Right: Spins are ori-
ented parallel or antiparallel to B0 and precess at ω0. A net magnetization M is
produced in the same direction of B0

1.1.2. Excitation

In this stage, an oscillatory magnetic field B1 (called RF field) is applied by the RF

coil at the Larmor frequency and in the transverse plane. By doing so, the spins absorb

energy and get thrown toward the transverse plane while still precessing around the main

field B0. The amount of time the RF field is turned on, and its strength will determine

the amount of energy absorbed by the spins. This will finally determine the flip angle in

which the spins move toward the transverse plane. If the main field is modified using the

gradient fields as in (1.1), spins will have a Larmor frequency that is dependent of their

position in space. If the RF pulse B1 is built to include a particular set of frequencies (by

modulating the original signal), it is possible to selectively excite different spins.

3



1.1.3. Readout

In this stage, the actual data is acquired. After the RF pulse is turned off, the net

macroscopic magnetization (M) has been tipped toward the transverse plane. The strength

and duration of B1 determine the flip angle which is optimized to maximize the image

contrast. At this point, M starts to return to its equilibrium position in the longitudinal

direction, governed by the Bloch equation (1.3).

dM(t)

dt
= M(t)× γB(t)− Mx̂i + My ĵ

T2

− (Mz −M0)k̂

T1

(1.3)

where Mx, My and Mz are the cartesian components of M and M0 is the equilibrium

magnetization due to B0; T1 and T2 are time constants which define the relaxation rate at

which M recovers its longitudinal magnetization and at which its transverse magnetiza-

tion decays respectively. Both of these constants are specific to the chemical composition

of the acquired substance. During this process, M still precesses at the Larmor frequency.

This precession will induce a voltage in the RF receiver coil due to the Faraday law of elec-

tromagnetic induction. Ignoring the T2 relaxation, the signal equation may be expressed

as:

s(t) =

∫
V

m(x)e−iφ(x,t)dx (1.4)

where m(x) is the density of spins at position x which have a phase φ(x, t). The

phase depends on the oscillation frequency (ω) of the spins

φ(x, t) =

∫ t

0

ω(x, τ)dτ = γ

∫ t

0

B(x, τ)dτ (1.5)

which we know is related to the magnetic field through (1.2). Assuming that the field

B0 is homogeneous and that the only other magnetic fields are the linear gradients, using

(1.5) and (1.1), (1.4) can be written as:

s(t) = e−iγB0t

∫
V

m(x)e−iγx·
∫ t
0 G(τ)dτdx (1.6)
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Changing variables and demodulating at ω0 = γB0 results in

s(t) =

∫
V

m(x)e−i2πk(t)·xdx (1.7)

where

k(t) =
γ

2π

∫ t

0

G(τ)dτ (1.8)

Equation (1.7) states that the signal detected by the receiver coil is the Fourier trans-

form of m(x) which is the density of spins (1H atoms) at position x. The Fourier domain

is presented through s(t) along the trajectory defined by k(t). This trajectory is called

the k-space trajectory as in MRI the frequency domain is called k-space. The k-space

trajectory can be changed by modifying the gradient fields G(t). The strength of G(t)

will determine the speed at which it is possible to move through k-space. Due to hardware

cost, security reasons and physical limitations, the maximum gradient strength is limited,

thus limiting the speed at which the k-space can be covered.

There are different k-space trajectories such as 2DFT, radial and spiral (Fig. 1.2), be-

ing 2DFT the most common. The main reason to choose 2DFT over others is its simplicity

for reconstruction as it acquires data on a cartesian grid. Due to the signal decay caused

by relaxation, this trajectory reads one line of the k-space at a time. Between each line it is

necessary to wait enough time to allow M to recover its longitudinal magnetization before

applying a new excitation. This pause between lines, which can be set by the user through

the repetition time (TR), is responsible for significantly increasing the total acquisition

time for a whole image whereas the time to cover each line is just a fraction of TR. The

direction in which each line is selected is called the phase encoding direction whereas the

direction in which the line is read is the readout direction as it is when the data is actually

acquired.

5



FIGURE 1.2. 2DFT, radial and spiral trajectories used to cover the k-space.

1.1.4. Reconstruction

In this stage, the data acquired is processed to obtain an image of the desired object.

If the data was acquired using a cartesian trajectory such as the 2DFT, the reconstruction

process is simply applying an inverse discrete Fourier transform to the acquired k-space

data. If a noncartesian trajectory is used, it is necessary to remap the acquired data to fit

a cartesian grid. In some cases, the data may have been acquired using multiple coils in

which the reconstruction will include the use of the coil sensitivities. In order to reduce

the acquisition time, the k-space data may have been undersampled, thus requiring a more

complex reconstruction process.

1.2. Undersampling

A traditional approach to speed up scanning times is to undersample the k-space.

This means that instead of sampling the full k-space, only a portion of it is acquired.

The amount of data in this portion is quantified through an undersampling factor (The

ratio between the number of samples of a fully acquired image over the actual number of

acquired samples). A higher undersampling factor means that less data is acquired. In

the case of a 2DFT trajectory, the undersampling is done in the phase encoding direction

meaning only some lines are acquired. As previously explained, moving from one line to

the next is responsible for most of the time spent in acquiring the data. The phase encoding

direction can be chosen, so lines may be rows or columns. To understand undersampling

6



and its effects, it is necessary to understand what the meaning of full k-space is. In standard

MRI

∆k =
1

FOV
(1.9)

where FOV stands for Field of view.

The Nyquist sampling theorem states that the uniform spacing between samples ∆k

in k-space must be smaller or equal to the inverse of the field of view which will be

reconstructed. If this criteria is not met, the image will not reconstruct properly and will

be subject to blurring, ringing or aliasing artifacts. Using the same principle, it is possible

to calculate the resolution of an image (∆x) as:

∆x =
1

2kmax

(1.10)

By undersampling, the Nyquist theorem is not met so it is not possible to apply the

inverse Fourier transform directly without producing artifacts that depend on the used

undersampling pattern (Fig. 1.3). Some sort of prior information must be used to recon-

struct the missing data. One example is the use of the partial matrix technique, which

reconstructs the image based on the assumption that it is real (not complex) and therefore

its Fourier transform would be hermitian. This would allow to acquire only half of the

k-space and the other half can be easily reconstructed by symmetry. However, there is

always some degree of field inhomogeneities and other factors so that the final reconstruc-

tion will always show some artifacts.
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FIGURE 1.3. Artifacts produced by undersampling the k-space with an under-
sampling factor of 4 in the phase encoding direction of a 2DFT. The fully sampled
image is presented with its corresponding k-space. A low resolution image is ob-
tained when the center of the k-space is acquired. The image is replicated and
overlapped if a uniform undersampling pattern is used. The image presents less
coherent artifacts for a random undersampling pattern.
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2. INTRODUCTION

Currently, MRI is the chosen medical imaging technique for many clinical studies.

However, the application of MRI to three-dimensional (3D) and dynamic data is still a

challenge due to the long acquisition times involved. Over the last years, several strategies

have been proposed to speed up the scanning time in MRI, without sacrificing spatial or

temporal resolution. This has been achieved by designing more efficient sequences and

trajectories which provide faster coverage of the k-space (Carr, 1958; Stehling et al., 1991;

Irarrazabal & Nishimura, 1995; Thedens et al., 1999); by using parallel imaging methods

which employ the spatial sensitivity of multiple coils as a complementary encoding infor-

mation (Sodickson & Manning, 1997; Pruessmann et al., 1999; Griswold et al., 2002); and

by developing methods for reconstructing images from undersampled data. The idea of

such reconstruction algorithms is to reduce the number of acquired samples and estimate

the non-acquired ones by using some prior information or extra assumptions.

Most of the undersampled reconstruction techniques exploit some kind of redundancy

(i.e. k-space redundancy, temporal redundancy or both) or take advantage of prior infor-

mation. Those methods include keyhole (Jones et al., 1993; Vaals et al., 1993), reduced

Field of View (rFOV) (Hu & Parrish, 1994), UNaliasing by Fourier-encoding the Overlaps

using the temporaL dimension (UNFOLD) (Madore et al., 1999), vastly undersampled

isotropic voxel radial projection imaging (VIPR) (Barger et al., 2002), k-t Broad-use

Linear Acquisition Speed-up Technique (k-t BLAST)(Tsao et al., 2003), reconstruction

employing temporal registration (Irarrazaval et al., 2005), HighlY constrained backPRo-

jection (HYPR)(Mistretta et al., 2006), reconstruction of undersampled dynamic images

by modeling the motion of objects elements (Prieto et al., 2007); and combinations of

parallel imaging with other techniques, such as k-t SENSE (Tsao et al., 2003), adaptive

sensitivity encoding incorporating temporal filtering (TSENSE) (Kellman et al., 2001),

UNFOLD-SENSE (Madore, 2004), TGRAPPA (Breuer et al., 2005) and k-t GRAPPA

(Huang et al., 2005). Other recent approach to reconstruct undersampled images is based

9



in the compressed sensing theory (Candes et al., 2006; Donoho, 2006). Those techniques

exploit the sparsity and compressibility of the MRI images. Some of the methods based

on this approach are found in (Lustig et al., 2007; Jung et al., 2007; Ye et al., 2007; Block

et al., 2007).

The main problem with most of the known reconstruction algorithms is that they are

prone to introduce spatial or temporal blurring due to the use of low resolution images

or temporal averages in the reconstruction. For example, keyhole initially acquires a full

k-space but then only updates the central region of the k-space. By doing so, small image

regions which change their intensity and fall outside of the updated k-space region will

not be reconstructed, thus introducing spatial blurring. Another example is sliding window

(d’Arcy et al., 2002) in which different portions of k-space are acquired in different time

frames. The reconstruction is based on the fact that the temporal variations of k-space are

smooth and therefore missing data can be reconstructed by interpolation. By doing so,

sliding window is prone to introduce temporal blurring.

The main objective in this thesis is to present a new reconstruction method for under-

sampled data that is able to reduce both the spatial and temporal blurring. The new Tech-

nique for Reconstruction based on the Intensity Order (TRIO) is presented, which uses an

estimation of the image intensity order as prior information. We define the intensity order

as the information which allows sorting the pixels of an image from brightest to darkest.

Importantly, this prior information does not relate directly with the signal intensities of

the object, but only with the order relation of those intensities. With such information it

is possible to transform an image domain into a sorted domain. This information is strong

enough to allow the reconstruction of undersampled data. If the estimated image, with its

intensity values, which are obviously not the correct ones, are used as prior information,

one risks the possibility of propagating those error into the final reconstruction. That is

the motivation for discarding the actual intensity values and using only the intensity order.

Relaxation of the intensity order can be done to further improve the quality of the prior

information.

10



3. METHODS

3.1. Intensity Order

The main hypothesis of our method is that the intensity order information is powerful

enough to allow the reconstruction of undersampled images. Let us define the intensity or-

der information as a series of relations between pixels in which each relation states which

pixel is brighter and which is darker. These relations are defined through inequalities such

as

xa ≥ xb states that the pixel at position a is at least as bright as pixel at position b.

(3.1)

and will be called intensity order information.

Let Ω be the whole set of relations for an entire image which defines the intensity

order information. Importantly, Ω never includes the actual intensity values, but only

such relations. To sort an image correctly from brightest to darkest (Fig. 3.1), Ω must

be complete and accurate. The relation between all combinations of pairs of pixels must

be defined in order to consider Ω to be complete. This demands
(

N
2

)
inequalities for an

image with N pixels, although only N −1 inequalities are required because the remaining

relations are automatically defined by transitivity. For Ω to be considered accurate, every

relation must show no conflict with the actual intensity values of the fully sampled image.

For example, a complete and accurate definition of Ω for the sorting process shown in

Fig. 3.1 is given in (3.2), in which the complete set of
(
8
2

)
inequalities are defined with

their corresponding reduced set of (8− 1) inequalities obtained by transitivity.
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FIGURE 3.1. Example of the sorting process for an 8-point signal. Left: Original
(unsorted) signal. Right: Sorted signal using information provided in Ω.

Ω =



xg ≥ xa xg ≥ xb xg ≥ xc xg ≥ xd xg ≥ xe xg ≥ xf xg ≥ xh

xd ≥ xa xd ≥ xb xd ≥ xc xd ≥ xe xd ≥ xf xd ≥ xh

xe ≥ xa xe ≥ xb xe ≥ xc xe ≥ xf xe ≥ xh

xf ≥ xa xf ≥ xb xf ≥ xc xf ≥ xh

xa ≥ xb xa ≥ xc xa ≥ xh

xc ≥ xb xc ≥ xh

xb ≥ xh

=



xg ≥ xd

xd ≥ xe

xe ≥ xf

xf ≥ xa

xa ≥ xc

xc ≥ xb

xb ≥ xh

(3.2)

When the true intensity order information is not available and needs to be estimated,

there is in general a trade-off between completeness and accuracy. If Ω is complete but

not accurate, it is possible to remove relations between pixels to make it more accurate but

loosing completeness in the process. On the other hand, if the information is incomplete, it

is possible to arbitrarily define the missing relations to complete Ω but sacrificing accuracy.

We shall call Ωc to any complete set of relations built from an originally incomplete set Ω.

3.2. Minimization

The proposed method uses the intensity order information to compensate for the

loss of image information due to undersampling. The reconstruction is done through

an `2-norm minimization to reduce the data consistency error between the reconstructed

12



image and the acquired data, but bound by the constraints given by the intensity order

information supplied by Ω. The general reconstruction algorithm is therefore defined as

Min
∥∥WH ·U ·Wx− y

∥∥2

s.t. Ω
(3.3)

where x is the unknown variable that represents the intensity values of the image, W is the

Fourier transform operator, U is the under-sampling pattern and y is the aliased acquired

image.

For a complete and accurate set Ω, let P be the permutation operator constructed

from such information allowing to sort the pixels of image x in intensity descending order.

Knowing P, the sorted domain s is given by

s = P · x (3.4)

Writing (3.3) in terms of s lead us to

Min
∥∥WH ·U ·W ·PT s− y

∥∥2

s.t. ∀i > j : si ≥ sj

(3.5)

where s becomes the new unknown variable that replaces x through (3.4), defining the

sorted image domain. This change is done to simplify the formulation of the constraints

for the minimization problem (now the constraints can easily be written as inequalities).

The true order information is in general not available, and therefore it needs to be

estimated. An approximation of a complete Ω can be easily estimated but it would proba-

bly be inaccurate. A complete but inaccurate order information applied to the constraints

of the minimization problem would cause the reconstruction to fail. To avoid this, it is

necessary to relax the constraints by building an incomplete but more accurate version of

Ω, giving some freedom to the optimization variables. This freedom allows the pixels to

take an intensity value which would change their original positions in the sorted domain.
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This is done by creating disjoint groups (named αk) of n pixels each and defining the re-

lations between every two groups. The relations between pixels within each group is left

undefined so that every pixel has a limited scope where it can move without constraints

(Fig. 3.2). In the modified minimization problem defined as

Min
∥∥WH ·U ·W ·PT s− y

∥∥2

s.t. min {s ∈ αk} ≥ max {s ∈ αk+1} for 1 ≤ k ≤ N

n
− 1

(3.6)

Ω is incomplete so P has to be built from a complete (but inaccurate) version Ωc. If

the group size n is set to one, then the problem is reduced to the perfectly known order

information case, where (3.5) applies.

FIGURE 3.2. Example of the relaxed sorting process for an 8-point signal. The
original signal is sorted using a complete but innacurate Ωc to construct P , which
produces a mistake in the signal in the sorted domain at the right. Four groups are
created for every n=2 pixels. Pixels in α1 ≥ α2 ≥ α3 ≥ α4. These last relations
are incomplete as they do not define the relations between all pixels, but they are
accurate.

The fact that an inaccurate Ωc was used to construct P means that the sorting process

is in general wrong. It is possible however to correct such mistakes defining the constraints

of the minimization problem with disjoint groups αk.

The minimization of the data consistency error (3.6) is done in the image domain

rather than in Fourier space to improve convergence. The optimum is the best estimation

of the actual intensity value for each pixel, bound by the order information constraints. The

initial intensity values for the minimization must be different from those used to obtain the

14



order information. A natural way to do so is to set the initial values to zero. Obviously, if

the order information is complete and accurate the undersampling factor can be increased.

3.3. Estimation of the sorted domain

Reasonable estimations of the sorted domain can be obtained from low resolution im-

ages, statistics learned from training data, adjacent slices in volumetric images, temporal

correlation in dynamic sequences, and images reconstructed with other conventional al-

gorithms for undersampled data. In this last case, TRIO can be applied as a second stage

to overcome the problems of the previous reconstructions (spatial or temporal blurring)

improving the overall quality of the image.

As previously stated, any mistake in the estimation of the sorted domain will produce

errors in the reconstruction, which can be solved by increasing the size n for each disjoint

group αk. For example, when taking a low resolution (60% of k-space) version of a

particular image it generates an Ω with a 16.8% of wrong relations when checked with

the fully sampled image. If n is increased to 4 and 8, this value decreases to 7.7% and

4.5% respectively. When using the adjacent slice of such image to contruct Ω, errors of

22.2%, 19.3% and 16.0% are obtained for group sizes of 1, 4 and 8 respectively. If the

slice thickness of the acquired image is reduced, adjacent slices would be more similar

and would reduce the errors of Ω. If TRIO is used as a second stage reconstruction, then

the quality of the estimated sorted domain will depend on the quality of the reconstruction

achieved by the previous algorithm. By increasing the group size in this case, some of the

errors produced by the first method will be avoided, thus allowing TRIO to improve the

first stage reconstruction.

15



3.4. Experiments

The proposed reconstruction algorithm was tested in 2D static and dynamic images.

Fully sampled images were acquired and subsequently undersampled retrospectively us-

ing uniform, cartesian random and pseudo random undersampling patterns. Three experi-

ments were performed differing mainly on the source of the order information.

3.4.1. Experiment I

To prove the feasibility of using order information, 2D static images were first re-

constructed using the order information from the fully sampled image which means that

a complete and accurate Ω was supplied. This test was repeated for undersampling fac-

tors of 4, 8, 16 and 32 and for group sizes (n) of 4, 8 and 16 pixels. In this case a

random undersampling pattern in the phase-encoding direction was used, but always en-

suring that the center of the k-space was acquired. The two fully sampled images used for

this experiments are shown in Fig. 3.3. The second image was used to show that TRIO is

independent of the sparsity of the image domain.

FIGURE 3.3. The two fully sampled images that were used to test the feasibility
of using the order information to reconstruct undersampled data. (a) T2W-TSE
Axial Brain image. (b) Portion of a T1W-SE sagittal brain image

The first image is a T2 weighted turbo spin echo (T2W-TSE) axial brain image ac-

quired with a Philips Achieva 1.5T, TR/TE = 4438 ms/100 ms, FOV = 230 × 230 mm2,
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flip angle = 90 ◦, resolution = 0.9 × 0.9 mm2, slice thickness = 5 mm, acquisition matrix

= 256 × 256, TSE factor = 15.

The second image is a 256 × 256 portion of an originally larger image. The original

image is a T1 weighted spin echo (T1W-SE) sagittal brain image acquired with a Philips

Intera 1.5T, TR/TE = 400 ms/15 ms, FOV = 180× 180 mm2, flip angle = 90 ◦, resolution

= 0.35 × 0.35 mm2, slice thickness = 3 mm, acquisition matrix = 512 × 512.

3.4.2. Experiment II

In this experiment a set of 2D dynamic cardiac images were used. The raw data was

undersampled retrospectively by employing a pseudo-random pattern with a factor (Q)

of 4. This pattern is random in k-space and uniform in time, i.e. all lines in k-space

are acquired once every Q frames. The order information from the temporal average of

the undersampled dynamic sequence was used to estimate Ω for the first frame. For the

remaining frames, Ω was built using the order information of the pixels from the recon-

structed previous frame as shown in Fig. 3.4. Images were reconstructed with TRIO using

a group size of 4 pixels.

The images were acquired in a Philips Intera 1.5T using a 2D balanced fast field echo

(B-FFE) cardiac-gated sequence, TR/TE = 3 ms/1.46 ms, FOV = 400 × 320 mm2, flip

angle = 50 ◦, resolution = 1.56× 2.08 mm2, slice thickness = 8 mm, acquisition matrix =

256× 154, 50 frames, five channel cardiac coil, and breath-hold duration close to 25s. The

parallel acquisition from the five coils was first reconstructed using SENSE (Pruessmann

et al., 1999) to obtain the set of images that were used in this experiment.

3.4.3. Experiment III

TRIO was also tested as a second stage reconstruction to improve the performance of

keyhole, k-t BLAST and sliding window. In every case, Ω was constructed from the inten-

sity values obtained from the first stage reconstruction as shown in Fig. 3.5. The images

were compared before and after applying TRIO as a second stage. For this experiment we
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FIGURE 3.4. Dynamic sequence reconstruction using TRIO. The temporal av-
erage image computed in the Fourier domain is used to estimate the order infor-
mation (Ω1) for the first frame. Using Ω1 and the corresponding undersampled
data allows TRIO to reconstruct the first frame. The second frame is reconstructed
using Ω2 which is obtained from the first frame and its k-space data. Every follow-
ing frame is reconstructed using the estimated order information from the previous
frame combined with its own undersampled k-space data.

used the same set of 2D dynamic cardiac images as in experiment II and the same pseudo-

random undersampling pattern. The uniformity in time of the undersampling pattern is

required to allow good reconstructions when using k-t BLAST and sliding window.

FIGURE 3.5. TRIO used as a second stage reconstruction to keyhole,
k-t BLAST or sliding window. The actual intensity values obtained from the first
stage reconstructions are discarded while keeping the order information necessary
to construct Ω.

For a fair comparison, the data was also reconstructed using k-t BLAST with a uni-

form under-sampling pattern. For keyhole and k-t BLAST, 18 extra central phase-encoding

lines were collected for each time frame with which a net undersampling factor of 3.7 was
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achieved. The k-t BLAST algorithm was implemented using a conjugate gradient method

(Hansen et al., 2006).
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4. RESULTS

4.1. Experiment I

As Figs. 4.1 and 4.2 show, TRIO can reconstruct without a noticeable loss in image

quality with an undersampling factor of 4x and group sizes (n) of 1, 4 and 8 pixels. When

using an undersampling factor of 8 it is possible to achieve a good reconstruction when

the group size is set to 1 pixel for the axial brain dataset (Fig. 4.1) and up to n=8 for

the sagittal brain dataset (Fig. 4.2). Increasing the undersampling factor or n results in

artifacts in the phase encoding direction. A closer look to one line of the axial brain image

reconstructed with 8x and n=1 is presented in Fig. 4.3.

FIGURE 4.1. Reconstruction of the axial brain image (Fig. 3.3a) using TRIO with
a complete and accurate Ω. Results for undersampling factors of 4x, 8x and 16x
combined with group sizes (n) of 1, 4 and 8 pixels.
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FIGURE 4.2. Reconstruction of the sagittal brain image (Fig. 3.3b) using TRIO
with a complete and accurate Ω. Results for undersampling factors of 4x, 8x and
16x combined with group sizes (n) of 1, 4 and 8 pixels.

From tables 4.1 and 4.2 it is possible to verify quantitatively that TRIO produces good

results for 4x even with a group size of 16. The results show a better reconstruction for

the sagittal brain data set (Fig. 3.3b) than for the axial brain data set (Fig. 3.3a) which

suggests that the image does not need to be sparse in the image domain for the algorithm

to work properly.

4.2. Experiment II

As can be seen in Fig. 4.4 (only two representative frames are included) the difference

between the fully sampled data and the TRIO reconstruction shows that the main errors

are produced on the edges of the left ventricle, although these are very low, specially for
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FIGURE 4.3. One line of the reconstruction of the axial brain image (Fig. 3.3a)
using 8x and n=1. The error between the reconstructed and fully sampled image
is also shown.

RMS error[%]
n = 1 n = 4 n = 8 n = 16

4x 0.1 0.3 0.5 0.9
8x 1.2 1.9 2.9 4.6

16x 4.3 5.9 7.6 9.5
32x 8.9 10.8 12.6 14.4

TABLE 4.1. Root mean square (RMS) errors in percentage for reconstructions
shown in Fig. 4.1 compared to the fully sampled image. The values for a group
size of n = 16 and for an undersampling factor of 32x are also included.

RMS error[%]
n = 1 n = 4 n = 8 n = 16

4x 0.1 0.3 0.5 0.8
8x 0.7 1.0 1.4 2.1

16x 2.3 2.8 3.3 4.0
32x 6.1 6.7 7.2 7.6

TABLE 4.2. Root mean square (RMS) errors in percentage for reconstructions
shown in Fig. 4.2 compared to the fully sampled image. The values for a group
size of n = 16 and for an undersampling factor of 32x are also included.
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frame 2. Quantitatively, we found that the root mean square (RMS) error for the whole

sequence when compared to the fully sampled data was 0.74%.

FIGURE 4.4. 4x TRIO reconstruction for 2 representative frames of the cardiac
sequence with their respective difference image for a region of interest (ROI). The
order information for the first frame is obtained from the temporal average while
every frame provides the order information for the next frame. (a) Fully sampled
image for frame 2. The white rectangle marks the ROI. (b) Reconstructed image
using TRIO for frame 2. The order information is obtained from frame 1. (c)
Difference image between the ROI in (a) and (b) windowed to reveal the details.
(d) Fully sampled image for frame 26. The white rectangle marks the ROI. (e)
Reconstructed image using TRIO for frame 26. The order information is obtained
from frame 25. (f) Difference image between the ROI in (d) and (e) windowed to
reveal the details.

By plotting the temporal evolution of a particular line across the left ventricle (Fig. 4.5),

it is possible to note that TRIO introduces negligible temporal blurring.

4.3. Experiment III

As can be seen from Fig. 4.6, TRIO improves the reconstruction achieved by keyhole,

sliding window and k-t BLAST (Figs. 4.6b, 4.6c and 4.6d respectively) when it is applied
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FIGURE 4.5. Temporal evolution along the y-axis across the left ventricle for (a)
the fully sampled sequence and (b) 4x TRIO reconstruction.

as a second stage reconstruction (Figs. 4.6f, 4.6g and 4.6h). Remarkably, TRIO allows to

reduce the errors on edges and spatial blurring produced by the alternative methods.

As can be seen from Fig. 4.7, after TRIO is applied, it reduces the RMS errors for

all frames when compared to keyhole, sliding window and k-t BLAST (with uniform and

random undersampling).
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FIGURE 4.6. TRIO reconstruction for frame 26 of the 2D cardiac sequence com-
pared to keyhole, k-t BLAST and sliding window with their respective RMS er-
rors and difference image of a ROI. The RMS error presented corresponds to the
complete sequence. (a) Fully sampled image. The white rectangle marks the ROI.
(b) 4x reconstruction using keyhole. (c) 4x reconstruction using sliding Window.
(d) 4x reconstruction using k-t BLAST. (e) 4x reconstruction using TRIO as in
experiment II. The order information for the first frame was obtained from the
temporal average. Each frame provides the order information for the next frame.
(f) TRIO reconstruction using (b) as the order information. (g) TRIO reconstruc-
tion using (c) as the order information. (h) TRIO reconstruction using (d) as the
order information.

FIGURE 4.7. Temporal evolution of the RMS error for TRIO when used as a sec-
ond stage reconstruction compared to the first stage methods.
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5. DISCUSSION

The results show that the proposed method is able to reconstruct the images from

undersampled static and dynamic sequences with an RMS error no greater than 0.74%

when using an undersampling factor of 4. Furthermore, the error produced by the recon-

struction using TRIO is less structured, achieving less spatial and temporal blurring than

traditional undersampled reconstruction techniques.

The fact that the prior information used for the reconstruction is obtained from the

image domain and that it is as simple as the relations between the intensity of every pixel

makes it possible to easily obtain such information. The use of order information differs

from the traditional use of prior information because it discards the actual intensity value.

This would be similar to having a perfectly intensity equalized version of the image. The

use of the `2-norm favors the error to be scattered across all pixels rather than having

big errors in a specific pixel or set of pixels. By combining this with the transformation

between the sorted and the image domains it is possible to reduce the structure in the

errors. The result is a noise-like error spread over the whole image.

The results showing a low spatial and temporal blurring prove that even by using the

temporal average as a starting point, TRIO is able to avoid the introduction of significant

temporal blurring. This also validates the use of prior frames as a valid source for the

estimation of the order information.

The results also show that TRIO can be used as a second stage reconstruction to key-

hole, k-t BLAST and sliding window. With TRIO, it is also possible to observe less struc-

tured errors in the reconstructed image, particularly in edges which were blurred by the al-

ternatives or previous reconstruction methods. This was true for random or pseudo random

undersampling pattern and also for a uniformly spaced undersampling pattern considered

for k-t BLAST.

The results of applying TRIO as a second stage reconstruction show that the quality

of the reconstruction is dependent on the accuracy of the estimated order information used
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to construct Ω. The errors incorporated during the estimation of such information in the

first stage reconstruction are inherited by TRIO, but the errors are subsequently reduced

by creating a group size greater than 1, allowing to improve the reconstruction. However,

increasing the group size much further would result in poor reconstruction as shown in

Figs. 4.1 and 4.2.

The high computational load of this technique is a problem, and has limited its use

to undersampling in the phase encoding direction but with full readouts. This allows the

reconstruction to be done one line at a time, greatly reducing the number of simultaneous

variables. For a 256×256 image this reduces the amount of variables (pixels) calculated at

any given time from 65536 to 256 thus allowing the problem to become manageable. The

problem with this approach is that it does not allow full 2D undersampling patterns which

greatly reduce the coherence in the aliased image and would allow the reconstruction of

3D images. To reduce the computational load it is necessary to reduce the amount of

constraints which are the same as the number of pixels in the image for the best case

scenario (when the group size n = 1). To achieve this, some work has been done to

parameterize the smooth curve obtained by sorting the image as in the example shown in

Fig. 3.1. For an image of 65536 pixels (256 × 256) it is possible to describe accurately

such curve with a parametric curve (e.g. B-splines) with nearly 30 parameters. Using

this approach, TRIO is able to reconstruct with a negligible error an image with a 16x

2D undersampling pattern. Furthermore, the reconstruction is done in just a few seconds

instead of 3 to 7 hours as the original method. However, this last approach carries the

problem that it has not yet been possible to include an equivalent to the group size to allow

freedom to the pixels. This is necessary if an inaccurate order information is supplied.

Further work is being done to overcome this problem in order to be able to apply this

promising results to real cases.

While writing this thesis, we noticed that another research team has also used simi-

lar concepts relating to intensity order in under-sampled image reconstruction (Adluru &
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DiBella, 2008). They use an approach in which the intensity order helps to improve the

convergence of the minimization problem in a Compressed Sensing framework.
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6. CONCLUSIONS

A Technique for Reconstruction using Intensity Order (TRIO) has been proposed. The

method allows to reconstruct undersampled images using an estimation of the intensity or-

der information. This information is used to construct the constraints to a minimization

problem that provides the consistency to the acquired data. Such constraints are relaxed to

allow some movement between the pixels within a group to correct errors in the estimation

of the order information. The estimation is easily obtained from low resolution images,

adjacent slices, prior reconstructions, temporal average or prior frames. The feasibility

of using order information to reconstruct was proved by reconstructing 2D static images

with different undersampling factors and group sizes to relax the constraints. These re-

construction were done providing TRIO with the correct order information. The method

was then tested using a 2D cardiac sequence with an undersampling factor of 4. Such

reconstruction was compared to keyhole, sliding window and k-t BLAST. The source

for the prior information was obtained from temporal averaging and prior frames for one

experiment. Other experiments were done where TRIO was applied using the order infor-

mation estimated by the reconstruction achieved by the other techniques. In every case

TRIO shows an improvement in the reconstruction by reducing both spatial and temporal

blurring. This improvement is shown by a reduced root mean square error and a less struc-

tured error. The high computational load is a problem that limits the use of this algorithm,

but ongoing work has proved that higher undersampling factors can be achieved using the

same order information if this problem is solved. This would allow the use of this method

in 3D imaging with 16 or greater undersampling factors.
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7. FUTURE WORK

The high computational load of the proposed method is the main obstacle to be solved.

Once this problem is solved, the method can be easily applied to 3D imaging and higher

undersampling factors can be achieved. Different strategies are proposed to reduce the

computational burden.

• Improve the efficiency of the optimization code to reduce the high memory

consumption of the current code without overloading the CPU.

• Continue the work with the use of B-splines to describe the image in the sorted

domain to reduce the amount of variables in the minimization problem. The

main problem with this approach, that has not yet been solved, is to include the

ability to introduce some flexibility to the constraints, allowing the algorithm to

correct the errors inherited by the use of incorrect order information.

• A similar approach as that using B-splines, is to describe the smooth curve

produced in the image domain using only the central Fourier coefficients of

such curve. The missing flexibility is still the main problem with this approach.

• Include the use of equalities in the constraints besides the exclusive use of in-

equalities. The idea is to group all pixels which should be similar in intensity

(such as a black background) in only one variable.

• Look for new ways of reducing the total amount of variables without sacrificing

the required flexibility in the constraints.

In addition to reducing the computational load, two new approaches which involve

variations in the use of the order information are proposed.

• The use of order information as prior information is very similar as using an

intensity equalized version of the image. In fact, using the order information

and assigning a linearly decreasing value from the brightest pixel to the darkest
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constructs an equalized version of the image. The use of the equalized image as

prior information should be further investigated.

• In the same line of investigation, the maximization of the mutual information

between the equalized image (constructed from the intensity order information)

and the reconstructed image could also be used, instead of explicitly defining

the order constraints.
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