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FELIPE NÚÑEZ RETAMAL
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ABSTRACT

Real-time charging strategies, in the context of vehicle to grid (V2G) technology, are

needed to enable the use of electric vehicle (EV) fleets batteries to provide ancillary ser-

vices (AS). In this work we develop tools to manage charging and discharging in a fleet

to track an Automatic Generation Control (AGC) signal when aggregated. We propose

a real-time controller based on convex optimization, that considers bidirectional charging

efficiency, and extend it to study the effect of looking ahead when implementing Model

Predictive Control (MPC). Different complexity levels are introduced to the controller,

by using approximations and/or relaxations, which hold under sufficient conditions that

are provided. Simulations show that more complex controllers improve tracking error as

compared with benchmark scheduling algorithms, as well as regulation capacity and bat-

tery cycling impacts. However, they face a trade-off between ease of implementation and

performance.

Keywords: Electric Vehicles, Resource Scheduling, Ancillary Services Market, Vehicle

to Grid Control, Model Predictive Control, Convex Optimization

ix



RESUMEN

Las estrategias de control en tiempo real, en el contexto de la tecnologı́a vehicle-to-

grid (V2G), son necesarias para permitir el uso de flotas vehı́culos eléctricos (EVs), me-

diate sus baterı́as, para proveer servicios complementarios a los sistemas eléctricos de

potencia. En este trabajo se desarrollan herramientas para administrar la carga y descarga

de las baterı́as de una flota, con el objetivo de seguir una señal de control automático

de generación (AGC) cuando los vehı́culos se usan de forma agregada. Se propone un

controlador en tiempo real basado en optimización convexa, que considera la eficiencia

bidireccional de carga de las baterı́as, y se extiende para estudiar el efecto de mirar hacia

el futuro con control predictivo (MPC). Se introducen diferentes niveles de complejidad

al controlador, mediante el uso de aproximaciones y/o relajación de restricciones, que

son válidas bajo condiciones suficientes que son indicadas. Simulaciones muestran que

los controladores más complejos mejoran el error en el seguimiento de la señal AGC, al

comparar con algoritmos alternativos, ası́ como también la capacidad de regulación y el

impacto en el cycling de las baterı́as. Sin embargo, enfrentan una disyuntiva entre facilidad

de implementación y rendimiento.

Palabras Clave: Vehı́culos Eléctricos, Planificación de Recursos, Servicios Complemen-

tar, Control de Vehicle-to-grid, Control Predictivo, Optimización Convexa

x
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1. INTRODUCTION

1.1. Context

High levels of penetration of renewable energy, such as wind and solar, have brought

increased intermittency, volatility and uncertainty to the operation of the electrical grid.

These salient characteristics of renewable energy sources create challenges for the achieve-

ment of the required equilibrium between supply and demand in energy systems. The sys-

tem’s ability of adapting to achieve such equilibrium is called flexibility in recent technical

literature.

Different ways of improving the flexibility of power systems have been studied over

the past few years, including flexibility from generation, transmission, demand and sys-

tem operation strategies/policies. Currently, the operation of electrical power systems is

dominated by large thermal generators, with high levels of CO2 emissions. Being able

to harness the potential for flexibility all the aforementioned resources have is the key to

achieve larger shares of intermittent, but environmentally friendly generation technolo-

gies.

New generation, demand, transmission and storage technologies present opportunities

to increase power system flexibility. In particular, distributed resources have emerged as

an alternative to traditional technologies. However, in order to capitalize on these opportu-

nities, new algorithms that coordinate distributed resources to provide aggregate response

are needed to make proper use of these assets (efficient and reliable). This work focuses on

the potential of a subset of flexible storage technologies: namely, plug-in electric vehicles.

The optimal amount of energy storage capacity in a power system scales with the

variability in demand and power generation (Gast et al., 2013); however stationary bat-

teries are still too expensive for most grid-tied applications despite their decreasing cost

(D. L. Anderson, 2009; Nykvist & Nilsson, 2015). Electric vehicle (EV) batteries can

be used during their idle time when parked to extract/inject power from/to the grid in the
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same way that stationary batteries might. By creating revenue for EV owners – and lower-

ing the total cost of EV ownership – this vehicle to grid (V2G) framework could provide

a cost-effective means to add storage capacity to the grid.

V2G technology is an ongoing research subject. The available energy V2G can provide

to the grid at any given time is considerable, since EVs are parked for most of the day, and

the high rate at which their batteries can be charged or discharged makes V2G specially

valuable to stabilize intermittency in the operation of the grid. However, there are many

challenges that need to be addressed before enabiling the large-scale implementation of

V2G technology. Since this technology turns EV owners into service providers, market

schemes for organizing the aggregate participation of these distributed resources in the

stabilization of the grid are being developed. These schemes must be designed in such a

way that incentives for aggregators and EV owners are proportional to the benefits they

bring to the operation of the grid.

1.2. Literature Review

Multiple sources of variability are currently being integrated into power grids, mainly

due to the large-scale integration of renewable energy sources driven by concerns about

environmental impacts and supply security issues. As a consequence, new ways of operat-

ing and controlling the grid are under development. Renewable generation has succeeded

in achieving great environmental benefits; however, resources with such volatility present

a great operational challenge for power systems operators. In fact, some authors show that

a threshold can be found on the variability of net load1 beyond which the value of these

resources is questionable (Meyn et al., 2010). In order to address these challenges and

crystallize the benefits of renewable energy sources, studying the concept of Flexibility in

power systems is of utmost importance.

1Net load is the demand curve minus non-dispatchable generation, such as wind or solar.
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1.2.1. Flexibility in Power Systems

Flexibility in power systems may be understood as the ability to respond to changes in

load and generation. According to Cochran et al. (2014), it is composed by:

• Generation flexibility: determined by minimum up and minimum down times,

ramping capabilities, and power output limits.

• Transmission flexibility: determined by the bottlenecks and access.

• Demand flexibility: determined by the availability of Demand Response (DR),

storage and load control capability.

• System operation flexibility: determined by institutional market structures to

support the deployment of physical flexibility. This may include the ability to

make decisions closer to real time and better information access.

Since early 80s, market structures have been developed in power and energy systems.

A common characteristic among these designs is the existence of forward markets, in ad-

dition to the spot market, for which they are referred to as multi-settlement markets. These

forward markets behave differently depending on the time scale in which they are cleared:

as they get closer to real time, the price is set by a market coordinator and competitors’

bids, rather than by bilateral negotiations between generators and consumers (S. C. An-

derson, 2004).

Electricity markets today typically consider the interaction between two coupled mar-

kets: day-ahead and real-time. While the day-ahead market is cleared one day ahead of

production, based on forecasts for the Independent System Operator (ISO) to schedule

generation at each hour, real-time market is in charge of fine-tuning this resource alloca-

tion to compensate deviations from day-ahead predictions, due to the unpredictable nature

of net demand2. Thus, resources able to provide flexibility, that helps making the fine-

tuning process easier and more efficient, can become specially valuable and are beginning

to be compensated.
2Net load.



4

The idea of exploiting the flexibility associated with the demand side has been widely

investigated (Albadi & El-Saadany, 2008; Spees & Lave, 2007), and markets aiming for

flexible loads to be serviced by zero-marginal cost renewable generation have been de-

signed as well (Nayyar et al., 2014). The consensus is that flexibility is an attribute that

needs to be compensated in electricity markets; however, there is no standardized metric

for measuring the flexibility of a system. In Ulbig & Andersson (2015), the authors define

operational flexibility as the ability of a power system unit to modulate electrical power

fed into the grid and/or power fed out from the grid over time, using four metrics from

Makarov et al. (2009):

• Power capability π for up and down regulation in [MW].

• Energy storage capability ε in [MWh].

• Power ramping capability ρ in [MW/min]

• Power ramping duration δ in [min]. This indicator is dependent of π and ρ,

δ = π
ρ
.

The role of the tuple {ρ, π, ε} in the flexibility of electrical systems is depicted in

Figure 1.1. When a system is capable of supporting steeper ramps, more power or larger

amounts of energy, it is considered more flexible than other system with less of those

capacities. These three terms are closely related through differentiation and integration.

There are many papers that consider the ramping capabilities of a system to be the

principal source of flexibility (M. Chen et al., 2006; Cho & Meyn, 2010). However, con-

sidering the capacity of the system to change in terms of power and energy provides a

richer concept of flexibility. The presence of three terms enables researchers to plot a

flexibility cube of maximum available flexibility of a generic power system and study its

evolution over time. The illustrations from Ulbig & Andersson (2015) show that aggre-

gation of different types of flexibility cubes can result in units that are even more flexible

than the exact sum of their volumes. These studies propose a whole new approach to study

flexibility, through the geometry of these units and how they interact with each other.
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Figure 1.1. Flexibility trinity. Source: Ulbig & Andersson (2015)

A particularly insightful characterization of the flexibility of a system is provided in

Petersen et al. (2013). Flexibility is defined as the ability to deviate from the plan, and the

authors focus on four constraints to characterize a flexible system: 1. Power Capacity, 2.

Energy Capacity, 3. Energy level at a specific deadline, and 4. Minimum runtime. Using

that set of characteristics, three simple flexibility models are built: The Bucket, The Battery

and The Bakery. The first model, The Bucket, is a power and energy constrained integrator

(1 and 2), and could be used for Thermostatically Controlled Loads (TCLs). The second

model, The Battery, adds the restriction of a specific deadline with an energy goal (1 to 3),

which could be used to describe Electric Vehicles (EVs). The third model, The Bakery,

adds the constraint that the process must run in one continuous stretch at constant power

consumption (1 to 4), which could be the case of a commercial green house.

Finally, knowing what the consequences of a lack of flexibility might be may be rele-

vant to understand its relevance. Signs of inflexibility in the physical operation of power
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systems include difficulties balancing demand with supply and significant Renewable En-

ergy Source (RES) curtailments, while in the economic operation it can result in negative

market prices and high price volatility.

1.2.2. Ancillary Services

1.2.2.1. General description

Power systems require Ancillary Services (AS) to deliver energy to the consumers

in a reliable way, which is achieved by properly managing supply-demand imbalances

at various time-scales. A definition of these services is provided by the Federal Energy

Regulatory Commission (FERC) (FERC, 2016):

Ancillary Services are those services necessary to support the trans-

mission of electric power from seller to purchaser, given the obliga-

tions of control areas and transmitting utilities within those control ar-

eas, to maintain reliable operations of the interconnected transmission

system.

Similarly, Kuzle et al. (2007) states that the ISO uses AS with the following objectives:

• Keeping the frequency of the system within certain bounds.

• Controlling the voltage profile of the system.

• Maintaining the stability of the system.

• Preventing overloads in the transmission system.

• Restoring the system or portions of the system after a blackout.

The offer of these services may be managed in many ways, among which the market

approach is the one preferred by the most advanced power system operators in the world,

such as PJM3 and CAISO4. Therefore, AS markets can be understood as reward schemes

3Pennsylvania-New Jersey-Maryland Interconnection, plus 11 States
4California ISO
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to compensate resource owners for providing operational flexibility, for which different

mechanisms have been designed.

As explained in Kirby (2007), an important characteristic about AS is that they are

capacity services, not energy services, which means that their price is strongly tied with

the temporal volatility of the marginal price for power. Therefore, the costs of AS are

mainly due to opportunity costs, and consequently their prices are volatile as well.

There is no unique classification of Ancillary Services in the world, and it is common

for a particular service to have different names in different countries. As stated in Kuzle

et al. (2007), the European Union uses the European Directive 2003/54/EC (European

Parliament, 2003) as a general framework, and in USA FERC’s Order 888 (FERC et al.,

1996) defines 12 technical and non-technical AS, from which 6 are mandatory (providers

and customers are forced to sell and buy them). The main services are:

(i) Scheduling, System Control and Dispatch Service 5

(ii) Reactive Supply and Voltage Control from Generation Sources Service 5

(iii) Regulation and Frequency Response Service 6

(iv) Energy Imbalance Service 6

(v) Operating Reserve - Spinning Reserve Service 6

(vi) Operating Reserve - Supplemental Reserve Service 6

A description of the most common AS is shown in Table 1.1, where they are classified

according to the situations where they are required: Normal Conditions, Contingency

Conditions or Other Services. However, with the objective of comparing the different

names they receive around the world, Ancillary Services can also be classified according

to the time scale in which they are required (Table 1.2) (Beck & Scherer, 2010):

5 Transmission Provider must provide and Transmission Customer must purchase from Transmission
Provider.

6 Transmission Provider must offer to provide only to Transmission Customer serving load in Trans-
mission Provider’s control area and Transmission Customer must acquire, but may do so from Transmission
Provider, a third party or self supply.
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(i) Primary Control: Commonly known as Frequency Response, occurs within

the first few seconds following a change in system frequency to stabilize the

Interconnection. It is provided by Governor Action and Load. It will not return

frequency to normal, but only stabilize it.

(ii) Secondary Control: Typically includes the balancing services deployed in the

minutes time frame. This control is accomplished using Automatic Generation

Control (AGC)7 and the manual actions taken by the dispatcher to provide addi-

tional adjustments. Also includes initial reserve deployment for disturbances.

(iii) Tertiary Control: It encompasses actions taken to get resources in place to han-

dle current and future contingencies. Reserve deployment and Reserve restora-

tion following a disturbance are common types of Tertiary Control.
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Version 1.0 

Technically this is achieved within the synchronous electricity grid of the UCTE in Europe by a three-stage 
regulation procedure (primary, secondary, and tertiary control). The following example is of a power station 
failure in France. In the entire UCTE region, primary control is activated directly. After 30 seconds, secondary 
control power is automatically called up in France, and replaced after 15 minutes by tertiary control, in this 
example provided by power stations in France and Spain. 
 

49.935 Hz

50 Hz

50.065 Hz

 

Figure 1: Example of a power plant outage in France 

2.1 Primary control 

Primary control restores the balance between power generation and consumption within seconds of the 
deviation occurring. During this operation, the frequency is stabilised within the permissible limit values. 
Activation takes place directly in the power stations by means of turbine regulators. In this phase, the 
network frequency is monitored and, in the event of deviations, the primary control power needed is activated. 
All transmission system operators represented in the UCTE must fulfil the requirements in their country in 
accordance with the UCTE rules: the primary control power capacity which must be kept in reserve at any 
time is adjusted annually in November in accordance with ENTSO-E requirements (in Switzerland this is 
always approximately 70 MW with a frequency deviation of ±200 MHz). 

Product-specific information can be found in the document «Principles of ancillary services products» [1]. 

2.2 Secondary control 

Secondary control is used to maintain the desired energy exchange of a control area with the rest of the 
UCTE grid, with simultaneous, integral support to maintain the frequency at 50 Hz. In the event of an 
imbalance between production and consumption, secondary control power in the connected power stations 
is automatically actuated by the central grid controller. As a condition these power stations must be in 
operation but not generating the maximum or minimum possible nominal capacity, in order to meet the 
requirements of the central load frequency controller at all times. Secondary control is activated after a few 
seconds and is typically completed after 15 minutes. If the cause of the control deviation is not eliminated 
after 15 minutes, secondary control gives way to tertiary control. 

Product-specific information can be found in the document «Principles of ancillary services products» [1]. 

swissgrid ltd. ammstrasse 3 Box 22  70 Frick  one +41 58 580 21 11   +41 58 580 21 21 ww.swissgrid.ch |  D  |  P.O. |  CH-50 |  Teleph |  Fax  |  w

Figure 1.2. Example of a power plant outage in France. Source: Beck &
Scherer (2010)

7Automatic Generation Control consists in adjusting the power output of multiple generators in response
to changes in load. In order to do this, the dispatcher emits a signal to the generators that indicates them
how to adjust their power output.
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Table 1.1. Properties of key Ancillary Services. Source: Kirby (2007);
NERC (2011b).

Category Service Service Description
Response

Speed
Duration

Cycle

Time

Market

Cycle

Normal

Conditions

Regulating

Reserve

Online resources, on automatic generation

control, that can respond rapidly to system

operator requests for up and down movements;

used to track the minute-to-minute fluctuations

in system load and to correct for unintended

fluctuations in generator output to comply with

Control Performance Standards (CPSs) 1 and 2

of the North American Electric Reliability

Council (NERC 2006).

1 min Minutes Minutes Hourly

Load

Following or

Fast Energy

Markets

Similar to regulation but slower. Bridges

between the regulation service and the hourly

energy markets.

10 min
10 min to

hours

10 min to

hours
Hourly

Contingency

Conditions

Spinning

Reserve

Online generation, synchronized to the grid,

that can increase output immediately in

response to a major generator or transmission

outage and can reach full output within 10 min

to comply with NERC’s Disturbance Control

Standard (DCS).

Seconds to

<10 min

10 to 120

min

Hours to

days
Hourly

Non-spinning

Reserve

Same as spinning reserve, but need not respond

immediately; resources can be offline but still

must be capable of reaching full output within

the required 10 min.

<10 min
10 to 120

min

Hours to

days
Hourly

Replacement

or

Supplemental

Reserve

Same as supplemental reserve, but with a

30-60 min response time; used to restore

spinning and non-spinning reserves to their

pre-contingency status.

<30 min 2 hours
Hours to

days
Hourly

Other

Services

Voltage

Control

The injection or absorption of reactive power

to maintain transmission-system voltages

within required ranges.

Seconds Seconds Continuous Year(s)

Black Start

Generation, in the correct location, that is able

to start itself without support from the grid and

which has sufficient real and reactive capability

and control to be useful in energizing pieces of

the transmission system and starting additional

generators.

Minutes Hours
Months to

years
Year(s)
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Table 1.2. European Reserves, Sample North American and Chilean Des-
ignations. Source: NERC (2011b); CDEC-SIC (2016).

Primary Frequency

Control Reserves

Secondary Frequency

Control Reserves
Tertiary Frequency Control Reserves

PJM Frequency Response
Operating Reserve

Reserve Beyond 30 minutes
Regulation Spinning Reserve Quick Start Reserve

CAISO Spinning Reserve

Operating Reserve

Replacement Reserve and Supplemental EnergyRegulation Contingency Reserves

Spinning Reserve Non-Spinning Reserve

Germany Primary Reserve Secondary Reserve Minutes Reserve Hours Reserve and Emergency Reserve

France Primary Reserve Secondary Reserve
Tertiary Reserve

Rapid 15 Minute Reserve Complementary 30 Minute Reserve

Spain,

Netherlands,

Belgium

Primary Reserve Secondary Reserve Tertiary Reserve

Great Britain
Operating Reserve

(does not exist)
Operating Reserve Contingency Reserve

Response

Primary/Secondary

High Frequency

Regulating Reserve Standing Reserve Fast Start Warming and Hot Standby

Sweden
Frequency Reserve and

Disturbance Reserve
(does not exist) Seven different types of reserves

Australia
Contingency Reserve

Fast/Slow/Delayed

Regulating Service and

Network Loading

Control

Short Term Capacity Reserve

New Zealand

Instantaneous Reserve

Fast/Sustained Over

Frequency

Frequency Regulating

Reserve
(No name)

Chile
Primary Reserve

(Spinning Reserve)

Secondary Reserve

(Spinning Reserve)
(does not exist)

1.2.2.2. Regulation and Frequency Response Service

As described in Table 1.1, regulation is the use of on-line generation that is equipped

with Automatic Generation Control (AGC) and that can change output quickly to track

the moment-to-moment fluctuations in customer loads and to correct for the unintended

fluctuations in generation. It is the most expensive Ancillary Service (Kirby, 2007), and

all load serving entities have hourly Regulation Obligation, which can be satisfied by

self-scheduling own resources, bilateral transactions with other participants, or purchasing

from AS market (PJM, 2013; FERC et al., 1996).
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Figure 1.3. Regulation is a zero-energy service that compensates for
minute-to-minute fluctuations in total system load and uncontrolled gen-
eration while load following compensates for the slower, more predictable
changes in load. Source: Kirby (2007)

System frequency is an instantaneous estimator of how well the balance between gen-

eration and load is being done (it drops when load exceeds generation and rises when

generation exceeds load), so there is a bandwidth around the nominal system frequency

(50 Hz for Chile, 60 Hz for the US) within which it must be kept. Frequency can be in-

terpreted as the fundamental indicator of the health of a power system (NERC, 2011a).

The ISOs have a high willingness to pay for fast-response AS that will help keeping the

frequency within its tolerance, because it can otherwise result in power system collapse

and/or equipment damage.

Regulation can be provided by distributed resources, such as the ones mentioned in

PJM (2013):

• Generation: Steam, Hydroelectric, Combustion Turbines, Combined Cycle.

• Grid Energy Storage: Batteries, Flywheels.

• Behind-the-meter Storage: Water Heaters, Batteries, Plug-in Hybrid EVs
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• Demand Response: Variable Speed Pumps, Ceramic Thermal Storage.

These diverse resources have different capabilities of contributing to the regulation

of the system. Thus, FERC’s Order 755 establishes payment methodologies meant to

incentive the use of the resources that contribute the most to the network.

1.2.2.3. FERC’s Order 755: Capacity and Performance-based Payments

FERC’s Order 755, Frequency Regulation Compensation in the Organized Wholesale

Power Markets, states that a two-part payment methodology must be used to compensate

frequency regulation resources. The first part consists in a capacity payment, that accounts

for opportunity costs for holding capacity in reserve, and the second part consists in a

performance payment, that accounts for accuracy in responding to a transmission system

operator’s AGC signal and reflects the amount of work each resource performs in real-time

(mileage) in response to the system operator’s dispatch signal (Y. Chen et al., 2015).

Prior to Order 755, different Regional Transmission Organizations (RTOs) had differ-

ent mechanisms to compensate for frequency regulation services that considered capacity

but not performance. By the end of April 2012, all RTOs in USA (CAISO, ISO-NE8,

MISO9, NYISO10 and PJM) submitted compliance fillings to Order 755, which included

two-part regulation offers with a regulating capacity offer and a regulating performance

offer (that takes mileage into account) (Y. Chen et al., 2015). However, different schemes

were proposed for measuring performance by the different RTOs. This review will first

focus on PJM’s definitions, because it is the RTO that leads the fast-frequency regulation

market (Energy Storage Update, 2016) (PJM is also the largest wholesale electricity mar-

ket in the world, serving 61 million people), and will then describe CAISO’s definitions

because they are relevant for the Los Angeles Air Force Base (LAAFB) project and for

the proposed research, as it will be explained later. Nonetheless, there are recent works

8New England ISO
9Mid-continent ISO

10New York ISO
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describing how MISO (Y. Chen et al., 2015) and other authors (Papalexopoulos & Andri-

anesis, 2014) have designed their own performance-based payments.

PJM’s AS market Performance Metrics: PJM proposed to calculate an accuracy

score that reflects a regulation resource’s accuracy in response to PJM’s dispatch signal

(Y. Chen et al., 2015). The Performance Score is a weighed average of the Accuracy

Score, the Delay Score and the Precision Score (PJM, 2013):

(i) Accuracy: Maximum statistical correlation (ρ) or degree of relationship be-

tween two time series: the control signal S(t) and regulating unit’s response

R(t). It is a 5 minute rolling correlation with 10 second granularity, and it is

re-calculated with time shift (δ) from 10 seconds up to 5 minutes.

Accuracy Score := max
δ∈[0,5 min]

ρS(t∈[0,5 min]),R(t∈[δ,δ+5 min]) (1.1)

(ii) Delay: Time delay between the control signal S(t) and point of highest correla-

tion from the Accuracy calculation (δ). Calculated together with Accuracy, over

a 5 minute period with a 10 second propagation delay.

Delay Score :=
5 min− δ

5 min
(1.2)

(iii) Precision: Difference in the energy provided versus the energy requested by the

regulation signal, which is calculated as the difference between the areas under

the curve for the control signal S(t) and the regulating unit’s response R(t),

calculated hourly with a 10 second granularity.

Precision Score = 1−
∣∣∣
∑

t∈[0,1 hour] |R(t)| −
∑

t∈[0,1 hour] |S(t)|
∑

t∈[0,1 hour] |S(t)|

∣∣∣ (1.3)

Alternatively, it could be calculated as a function of the resource’s regulation

capacity assignment or Capability C, which is a constant measured in MW. In

order to do this, the average deviation of R(t) from S(t) is calculated (both time
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series’ length is n).

Precision Score = 1− 1

n

∑

t∈[0,1 hour]

∣∣∣R(t)− S(t)

C

∣∣∣ (1.4)

One of the major innovations PJM introduced into the performance-based payments

for AS is the distinction between different kinds of resources when it comes to send an

AGC signal, so that each resource receives a signal that is well suited for its physical char-

acteristics. On one hand, RegA signal is a low pass filter of PJM regulation requirements

or Area Control Error (ACE)11 sent to traditional ramp-limited resources, such as steam

and combined cycle units (Figure 1.4a), and on the other hand RegD signal is a high pass

filter of PJM ACE sent to dynamic or fast-response regulating resources, such as batteries

or flywheels, that are only limited by their energy capacity (Figure 1.4b). While RegA

signal may remain at full raise or lower for extended periods, RegD signal is balanced

around zero in the short term. There are some resources that may qualify for both, such as

hydroelectric and combustion engines (Xiao et al., 2014).

The Mileage concept becomes relevant because of the distinction between RegA and

RegD. It represents the absolute sum of movement12 of the regulation signal in a given

time period (PJM, 2013), so a resource that follows the dynamic regulation signal (RegD)

will show more Mileage than other that follows the traditional signal (RegA). Thus, there

is a Benefit Factor that increases the incentives for dynamic resources.

11The concept of ACE is a real-time value that englobes the Interchange Error and the Frequency Bias of
a particular ISO in an interconnected system, and represents to a particular ISO in an interconnection what
frequency represents for the whole system.

12For a time series xt, the absolute sum of movement during a time period T is understood as
∑

t∈T |xt−
xt−1|.
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Figure 1.4. Different types of PJM regulation signals.

Resources that qualify for providing regulation in PJM must pass the Regulation Qual-

ification Test, which consists of meeting the following criteria:

• Pass three consecutive tests with a Performance Score above 75%.

• Follow RegA or RegD signal for 40 minutes. No more than one test scheduled

in a day.

• Resources can qualify for RegA and RegD signal by completing additional tests.

Disqualification threshold is based on a 100 hour rolling average with an average per-

formance score below 50%. Once disqualified, resources can re-qualify, but their Perfor-

mance Score starts a new rolling average.

In PJM’s market clearing process for AS there are three major inputs that determine

the Capability Clearing Price and the Performance Clearing Price. These inputs are the

Adjusted Capability Cost, the Adjusted Performance Cost and the Adjusted Lost Oppor-

tunity Cost, for each resource that participates in the AS market, and are calculated as

follows (PJM, 2013):
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Adjusted Capability Cost ($) :=
(CO

BF

)
·
( C

HPS

)
(1.5)

Adjusted Performance Cost ($) :=
(PO

BF

)
·
( C

HPS

)
· (MR) (1.6)

Adjusted Opportunity Cost ($) :=
(ELO

BF

)
·
( C

HPS

)
(1.7)

Where:

• CO: Capability Offer ($/MW)

• BF: Benefit Factor

• C: Capability (MW)

• HPS: Historic Performance Score

• PO: Performance Offer ($/∆MW)

• MR: Mileage Ratio (∆MW/MW)

• ELO: Estimated Lost Opportunity ($/MW)

Notes: Historic Performance Score is the average of the last 100 hours of performance

scores, Benefit Factor translates fast moving resources MWs into traditional MWs and

Mileage Ratio is the 30 day average of historical mileage ratio of the offered resource

signal type.

Then, the regulation market clearing works as follows. A Rank Price is calculated for

each resource, by summing the costs described in Equations 1.5, 1.6 and 1.7 and dividing

that value by the Capability (MW). Afterwards, the resources are in increasing order by

their Rank Price, and they provide regulation MWs until the following constraint is met:

Regulation Capability Requirement (MW) ≤
∑

i∈Resources

(Ci) · (BFi) · (HPSi) (1.8)
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Once the constraint is met, the last resource that contributed regulating capacity is

designed as the marginal resource, and the clearing prices can be calculated. The Regula-

tion Market Total Clearing Price (RMTCP) corresponds to the marginal resource’s Rank

Price, which is the highest among the selected resources. Similarly, the Regulation Market

Performance Clearing Price (RMPCP) is equal to the marginal resource’s Adjusted Per-

formance Offer, and finally, the Regulation Market Capacity Clearing Price (RMCPC) is

equal to RMTCP minus RMPCP. A concrete example of this process is described in PJM

(2013).

Prior to performance-based payments, the regulation requirement in PJM was 1% of

the peak/valley load forecast. With the implementation of the performance-based regu-

lation, that percentage was reduced to 0.7% by the end of year 2012 while still meeting

the performance standards, as measured by CPS113 and BAAL14 (PJM, 2013; Xiao et al.,

2014), thus confirming its positive impact.

CAISO’s AS Market Performance Metrics: CAISO’s AS market is different than

PJM’s. As a result, different products are traded and different metrics are used to measure

performance. In CAISO, there are four types of AS products: Regulation Up, Regula-

tion Down, Spinning Reserve and Non-Spinning Reserve. This review will focus on the

resources used to control the system frequency responding to AGC signals, which are

Regulation Up and Regulation Down. They are subject to a capacity requirement and a

Mileage requirement, given that a minimum performance threshold is met.

CAISO’s accuracy measurement is based on a weighted average of 15 minute intervals

during a calendar month, using Mileage as the weight (CAISO, 2015a). If that value is less

than 25% for Regulation Up or Regulation Down, the performance threshold is not met

13Control Performance Standards: CPS1 is a statistical measure of ACE variability and its relationship
to frequency error, and is intended to provide a frequency-sensitive evaluation of how well PJM meets its
demand requirements with its supply resources (PJM, 2013).

14Balancing Authority ACE Limit: BAAL seeks to maintain interconnection frequency by measuring
ACE variations up or down that benefit or hurt system control, and adds an additional dimension that repre-
sents the amount of time the system operated within the upper and lower boundaries (PJM, 2013).
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for that resource, and the resource must be re-certified at the end of the calendar quarter

when the failure occurred.

The kind of resource relevant for this review is energy storage. In CAISO, non-

generator resources as batteries can be certified for a maximum Regulation Up and Reg-

ulation Down capacity of 4 times the maximum energy (MWh) the resource can generate

or consume in 15 minutes (1/4 hours), after issuance of a dispatch instruction (CAISO,

2015a).

The accuracy of a resource’s response to CAISO’s Energy Management System (EMS)

signals is calculated on a 15-min basis by comparing the sum of the total deviations of the

response R(t) from the AGC signal S(t) with the sum of the resource’s AGC signal set-

points, which results in a percentage, with data samples every 4 seconds (CAISO, 2015b;

Y. Chen et al., 2015; Papalexopoulos & Andrianesis, 2014):

Accuracy := 1−
∑

t∈[0,15 min] |R(t)− S(t)|
∑

t∈[0,15 min] |S(t)|
(1.9)

However, the monthly Regulation Up and Regulation Down performance is not a direct

average of the 15-minute Accuracy terms measured in Equation 1.9: each term must be

weighted according to the instructed mileage of its respective 15-minute time interval

(CAISO, 2014).

ACUr :=

∑
i∈MUr

IUMr,i · CUr,i∑
i∈MUr

IUMr,i

(1.10)

Where:

• ACUr: Monthly average performance accuracy for Regulation Up for resource

r for all market intervals.

• MUr: the set of 15-minute intervals for which the resource r is scheduled for

Regulation Up in each calendar month.
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• IUMr,i: the resource r instructed Regulation Up Mileage of 15 minute interval

i.

• CUr,i: the resource r Regulation Up performance accuracy of 15-minute interval

i (Calculated as in Eq. 1.9).

Similarly, ACDr can be calculated in the same way as in Equation 1.10 (with its re-

spective MDr, IDMr,CDr parameters), and represents the monthly average performance

accuracy for Regulation Down for resource r, for all market intervals (CAISO, 2014).

1.2.3. Controllable Loads and Vehicle-to-Grid technology

Highly distributed loads in power systems can be aggregated and controlled to provide

power system services, such as AS. In order to balance systemic and local control objec-

tives, the authors in Callaway & Hiskens (2011) state that load control schemes must be

both fully responsive and non-disruptive. The former characteristic is defined as enabling

high-resolution system-level control across multiple time scales, and the latter is defined

as having an imperceptible effect on end-use performance. These goals can be managed

by quantifying metrics of load availability and willingness to participate in aggregated

control activities, which along with temporal constraints are considered critical for any

successful aggregated load control strategy. The authors explore a wide range of control

architectures, and state that hierarchical control may hold the most promise, because it al-

lows third parties to organize loads and bid them into energy and AS markets, and it allows

the ISO to conceptualize load groups managed by each aggregator as individual resources,

which would make it easier to fit these resources into the legacy control paradigm. Two

load control applications are discussed in depth in Callaway & Hiskens (2011): TCLs and

plug-in EVs. This last application is the main interest of this work.

The Vehicle-to-Grid (V2G) concept is a specific way of increasing the flexibility of

power systems, by enabling the charging and discharging of EV batteries during their

idle time. Unlike conventional generators, the fast bidirectional capability of EV batteries

is particularly well suited for supporting the integration of large amounts of renewable
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generation (Pillai & Bak-Jensen, 2009). In literature, both the concept (Mets et al., 2010;

Tomić & Kempton, 2007) and impact (Göransson et al., 2010; Pillai & Bak-Jensen, 2009)

of using EVs for grid stabilization have been extensively investigated, and it has been

shown that providing such services can be profitable. Moreover, simulations are shown

in Almeida et al. (2011) for an EV fleet providing primary frequency control during a

contingency in an islanded system where the fast response of EV batteries allowed the

ramping of hydro units to be smoothed and thus avoided the premature fatigue of their

mechanical parts. While Tomić & Kempton (2007) shows that EVs can indeed be used

to track frequency regulation signals, it does not propose a tracking mechanism. Though

implementation projects have been conducted (Kempton et al., 2008), a small amount of

work has been done concerning the distribution of power among aggregated resources in

real time.

Recently, Juul et al. (2015) stated a convex-optimization-based method for real-time

tracking of AGC signals, able to distribute the charging commands among a fleet of EVs,

while achieving State of Charge (SoC) goals when EV owners leave the parking lot (which

fits in the Battery definition stated in Petersen et al. (2013)). However, it can not handle

bidirectional charging with inefficiencies. In contrast, H. Liu et al. (2013) presents a de-

centralized strategy for primary frequency regulation that considers bidirectional charging

with inefficiencies, but it does not guarantee optimality of the charging controls.

As for the economic aspects, bidding strategies in the day-ahead market (González

Vayá & Andersson, 2015) and coordination with renewable resources for EV aggregators

(Haddadian et al., 2016), as well as game theory strategies for competition between EV

aggregators (Wu et al., 2016) have been studied, but none of them takes into account the

coordination of the control signals among the vehicles. Furthermore, in González Vayá &

Andersson (2016) a fleet of EVs is used to provide balancing services for wind power, but

the proposed self-scheduling algorithm works in an aggregated way as well. Regarding

the profitability of owning an EV fleet that provides AS, a study case for California was

presented where smart charge timing substantially reduced the cost of driving EVs, and
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when AS were provided, EV owners obtained a net profit (Rotering & Ilic, 2011). Finally,

Sarker et al. (2015) explored the profitability of an aggregator from trading energy and

providing regulation services in wholesale markets, while reimbursing EV owners for bat-

tery degradation and cycling, concluding that the aggregator would obtain greater benefits

from the latter.

1.2.4. Control Techniques

1.2.4.1. Real-Time Scheduling

Real-time scheduling consists in assigning resources to processes in a way that takes

into account the timing requirements of the processes, and it is critical in the develop-

ment of real-time systems (Herrtwich, 1990). Before 1990, real-time scheduling tech-

niques were mainly used in computer applications, specifically in Processor Time Allo-

cation (PTA), which involves scheduling a set of computation tasks on a single processor

(Subramanian et al., 2012). However, the use of computers for other real-time applications

has increased rapidly over the years, specially with the increasing popularity of microcom-

puters, such as Raspberry Pi or BeagleBone Black. As a consequence, real-time systems

have been extensively studied.

Some important definitions must be introduced before explaining common real-time

scheduling algorithms. These definitions are taken from Baruah & Goossens (2004).

• Job: A real-time job j = (a, e, d) is characterized by three parameters - an ar-

rival time a, an execution requirement e and a deadline d, with the interpretation

that this job must receive e units of execution over the interval [a, d). A real time

instance J is a finite or infinite set of jobs: J = {j1, j2, . . . , }.

• Schedule: For any set of jobs J , a (uniprocessor) schedule S is a mapping from

the Cartesian product of the real numbers and the set of jobs to {0, 1}:

S : R× J → {0, 1}
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with S(t, j) equal to one if schedule S assigns the processor to job j at time-

instant t, and zero otherwise. Hence, for all t, there is at most one j ∈ J for

which S(t, j) = 1.

• Active Job: A job j = (a, e, d) in J is defined to be active in some schedule

S of J at time instant t if both a ≤ t ≤ d and
∑t

t′=a S(j, t) < e. That is, an

active job is one that has arrived, has not yet executed for an amount equal to its

execution requirement, and has not yet had its deadline elapse.

By extending these basic definitions, real-time systems can be easily described. The

most common kinds of task systems are periodic or sporadic, which involve adding a

fourth parameter to the job definition: the period for the former (separation between arrival

times of successive jobs), and the minimum period15 for the latter. Thus, the set of jobs

defined with the period parameter is called a task Ti = (ai, ei, di, pi), and special kinds of

task systems can be described:

• Implicit-deadline task systems: Periodic and sporadic task systems in which

di = pi for all tasks Ti.

• Constrained-deadline task systems: Periodic and sporadic task systems in

which di ≤ pi for all tasks Ti.

• Synchronous task systems: Periodic task systems in which the offset (arrival)

of all tasks is equal.

An additional definition that is useful to describe real-time systems is laxity. It is

defined as the largest time for which the scheduler can safely delay the start of the process

before running it to completion without interrupts (Herrtwich, 1990).

According to Baruah & Goossens (2004), most single-processor scheduling algorithms

operate by sorting, at each time step, the active jobs by priority and executing the one

with the highest priority. Dynamic priority algorithms update the priority list between

15The minimum period is also known as dwell time.
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time steps, while static priority algorithms work with a fixed list. Two dynamic priority

algorithms will be reviewed:

(i) Earliest Deadline First: At each time-instant t schedule the job j active at

time-instant t whose deadline parameter is the smallest.

(ii) Least Laxity First: At each time-instant t schedule the job j active at time-

instant t whose laxity state is the smallest.

Earliest Deadline First (EDF) is an optimal scheduling algorithm which is capable

of achieving full processor utilization (C. L. Liu & Layland, 1973; Devi, 2003): if it

is possible to schedule a given set of independent jobs such that all of them meet their

deadlines, the EDF-generated schedule for that job set will meet all deadlines as well

(Baruah & Goossens, 2004). However, when there is more than one processor, EDF is not

always optimal. In contrast, Least Laxity First (LLF) is not only optimal when there is one

processor, but also for multi-processors provided that all processes have identical ready

times16 (Herrtwich, 1990). LLF is superior than EDF because laxity takes into account

more information, by considering not only the deadline but how long the job is going to

take as well. Examples are shown in Figures 1.5a and 1.5b to compare both scheduling

techniques.

Both EDF and LLF have limitations: they are short-sighted, which means that they

take decisions sequentially over time, with the information of currently active jobs but

with no knowledge about future arrivals. In practice, this means that a new arrival when

jobs are still being executed may cause the EDF or LLF generated schedule to be different

than the optimal.

The main advantage these scheduling techniques have is that they are based on simple

sorting algorithms, so they are extremely easy to implement (Subramanian et al., 2012).

This makes them an ideal choice for real-time control, in which the time the control deci-

sion takes to be calculated is a key constraint.

16Time when the job is ready to be executed.



24

job 1

job 2

job 3

deadline 1

deadline 2

deadline 3 time

time

job 3 job 2 job 1

job 2 job 3 job 1

EDF schedule

LLF schedule

(a) Uniprocessor scheduling. EDF and LLF
schedules. Source: Herrtwich (1990)

job 1

job 2

job 3

deadline 1

deadline 2

deadline 3 time

time

EDF schedule

LLF schedule

time

job 2

job 3

job 1

job 1

job 2 job 3

missed deadline

processor 1

processor 2

processor 1

processor 2

(b) Multiprocessor scheduling. EDF is not
optimal, LLF is optimal. Source: Herrtwich
(1990)

Figure 1.5. Uniprocessor vs. multiprocessor scheduling.

1.2.4.2. Trajectory Following Control

Trajectory Following (also known as Trajectory Tracking or Reference Tracking) is a

form of optimization-based control, which is a control strategy that is particularly useful

for constrained systems. This section is based on the formulations made by Stephen Boyd

from Stanford University in his lecture notes (Boyd, 2015).

In its general form, the problem consists in describing the dynamics of a system’s state

xt and deciding the optimal input ut to achieve a certain objective f(xt, ut), for each time

step t. Its simpler form is the linear time-invariant formulation, which is described next

for an infinite time horizon T = Z+
0 .

(i) Objective Function: A function that describes the distance between the state

and/or the control inputs and a reference. This function is minimized in standard

notation, but can also me maximized.

∑

t∈T

f(xt, ut)
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(ii) Dynamic Equation: An equation that describes how the future state depends

on the current state and the inputs.

xt+1 = Axt +But ∀t ∈ T

(iii) Output Equation: An equation that calculates an output that depends on the

current state and the inputs.

yt = Cxt +Dut ∀t ∈ T

(iv) Feasibility constraints: A set of constraints that describe the domain of the

state xt and the inputs ut.

xt ∈ X , ut ∈ U ∀t ∈ T

(v) Initial condition: A single constraint for the initial state.

x0 = z

The variables of this problem are the states xt ∈ Rn,∀t ∈ T , and the inputs ut ∈

Rn,∀t ∈ T . The input data of the problem is described next.

(i) Dynamics and input matrices A ∈ Rn×n, B ∈ Rn×m.

(ii) Convex state and input constraint sets X ⊆ Rn,U ⊆ Rm with 0 ∈ X , 0 ∈ U .

(iii) Convex stage cost function f : Rn × Rm → R, f(0, 0) = 0.

(iv) Initial state z ∈ X .

Note: matrices A and B must describe a controllable system.

The aforementioned problem is time-invariant, which means that the whole time hori-

zon is solved in one problem. However, real-life implementations need to solve the prob-

lem in a sequential way. The simpler way to do this is using greedy control: just minimize

the current stage cost, ignoring the effects of the chosen input ut for the future states,

except for xt+1 ∈ X . This is also called myopic control along this work. Using greedy
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control typically works very poorly, and can lead to divergent objective functions for future

time steps. The formal expression of greedy control is defined as follows:

ut = argminw{f(xt, w)|w ∈ U , Axt +Bw ∈ X} (1.11)

A special case of the Trajectory Tracking problem is the linear quadratic regulator,

that consists in using a quadratic objective function:

f(xt, ut) = xTt Qxt + uTt Rut, Q � 0, R � 0 (1.12)

When written in its general form, the evaluated objective function is designed for both

the states and controls to converge to 0. This problem can be solved using Dynamic

Programming, as the optimal policy has been shown to be a linear state feedback, in which

the terms are calculated with an algebraic Ricatti Equation (Willems, 1971).

There are two major modifications that can be made to the Trajectory Tracking prob-

lem. The first is to use a reference trajectory for the state xrt and/or the inputs urt in the

objective function, which is done by offsetting the variables by those values (xt − xrt in-

stead of xt, and/or ut − urt instead of ut). The second is adding an output yt of the system

to the objective function.

1.2.4.3. Model Predictive Control (MPC)

Also known as Receding Horizon Control (RHC). This strategy consists in solving the

previously presented time-invariant problem, for a finite horizon of length N beyond the

present time step t, and then using only ut. Then, the new state of the system is calculated,

and the same problem of length N is solved again. Thus, this strategy is taking into

account the future trajectory of both the state and the inputs of the system when making

a decision on the current input. The general form of the problem for time step t is shown

next (Camacho & Bordons, 2013; Garcı́a et al., 1989).
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min
t+N∑

τ=t

f(xτ , uτ )

s.t. xτ+1 = Axτ +Buτ ∀τ ∈ t, ..., t+N

xτ ∈ X , uτ ∈ U ∀τ ∈ t, ..., t+N

xt+N = 0

(1.13)

The variables of the problem are xt+1, ..., xt+N , ut, ..., ut+N−1, and the variables xt,

A, B, f,X ,U are known. The solution of the optimization problem is a plan of action for

next N steps, denoted by x̃t+1, ..., x̃t+N , ũt, ..., ũt+N−1, but only ũt is implemented. In

general, there is a trade-off between the length ofN and the performance of the algorithm:

choosing a longer N increases the dimensionality and the computation time, but achieves

a better value for the objective function. However, it is common to find a threshold for N

above which the performance does not improve much.

Some variations of this problem may include replacing the terminal constraint xt+N =

0 by a terminal cost, converting other constraints to soft constraints (violation penalties),

or using the plan of action for more than one step each time. For Trajectory Following

problems, the main concern is to ensure the recursive feasibility (for all feasible initial

states feasibility is guaranteed at every state along the trajectory) and stability (the effect

of uncertainty is bounded and the objective function’s value will always converge) of the

system, for which the authors usually seek sufficient conditions. An example of this is

presented in Bansal et al. (2014), where the authors ensure those key features by ensuring

that the trajectory the controller is following is both periodic and reachable, as explained

in detail in Chu & Chen (2012) and Limon et al. (2012).

MPC is a well studied technique with solid theoretical background, for which con-

ditions can be found so that feasibility and stability are guaranteed, but it is usually not

used for high-speed real-time applications due to its computational burden. In general,
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there are two main paradigms to solve MPC problems: online MPC, in which the opti-

mization is made online; and offline MPC, in which the control action is pre-computed

for each possible case and stored offline (Explicit MPC). While the former requires large

processing capabilities, the latter requires large storage capacity. The gap between MPC

theory and practice may be reduced by using methods that combine online and offline

appproaches, with other techniques such as warm-start (helping the solver with an initial

solution) (M. N. Zeilinger et al., 2011).

Real-time MPC is an ongoing research subject (M. Zeilinger, 2011). The main goal

of real-time online MPC is to have guarantees that within the real-time constraint, a fea-

sible solution satisfying a stability criteria for any admissible initial state is found. While

the real-time constraint requires early termination of the optimization process, feasibil-

ity of the solution requires a Robust MPC formulation and stability requires using the

so-called Lyapunov constraints (for the objective function to behave like a Lyapunov func-

tion) (M. N. Zeilinger et al., 2009, 2014).

As for the implementation of real-time MPC, efficient optimization methods that ex-

ploit the highly structured nature of MPC problems17 are still being proposed (Wang &

Boyd, 2010; Domahidi et al., 2012). It has also been shown that certain computational

architectures can achieve high performance, even at sample rates beyond 1 MHz (Jerez et

al., 2014).

The application of real-time MPC on Smart Grid is an ongoing research subject as

well. Schemes for controlling deferrable loads using real-time MPC have been proposed

with different focuses: for example, N. Chen (2014) seeks to reduce the variance of aggre-

gate load with demand response in a high renewable generation context, while the work

presented in Zhou & Cai (2015) describes a controller to maximize user comfort level

when exploiting the flexibility of a heating ventilation and air-conditioning (HVAC) sys-

tem.

17Most MPC problems can be described using the aforementioned set of constraints: Dynamic Equation,
Output Equation, Feasibility Constraints and Initial Condition.
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Figure 1.6. Overview of the hierarchical control framework in the LAAFB
project.

1.3. Los Angeles Air Force Base (LAAFB) project

The V2G concept is being demonstrated on an operational fleet at the LAAFB. This

project uses a hierarchical control framework, in which day-ahead and hour-ahead elec-

tricity market participation and charging schedule are handled by an optimization plat-

form called DER-CAM (Distributed Energy Resources Customer Adoption Model) de-

veloped at Lawrence Berkeley National Laboratory (LBNL). DER-CAM optimizes dis-

tributed energy resources operation over economic and environmental objectives (Marnay

et al., 2013). DER-CAM performs a constrained economic optimization to generate bids

for bulk energy and AS markets based on the forecasts of vehicle usage by calculating the

vehicles’ state of charge (SoC).

However, DER-CAM’s optimization is not granular nor fast enough to respond to

uncertain Automatic Generation Control (AGC) signals within a few seconds, which is key

for achieving an accurate response to such signals. Scheduling methods must be designed

to allow real-time operation of the fleet, and these methods must distribute power among

the vehicles while following an uncertain AGC signal. Figure 1.6 depicts a schematic
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diagram of the control hierarchy for the LAAFB V2G project, showing the interaction of

the real-time distribution developed for that project with the rest of the project. In previous

work (Juul et al., 2015), a real-time controller based on convex optimization was described,

and it was shown that better results can be achieved with that controller as compared to

alternative suboptimal approaches. This control algorithm is currently integrated into the

EV fleet management platform developed by Kisensum, Inc. (Kisensum, 2016) for the

project.

1.4. Contributions

This work (1) develops a real-time charging controller to operate a fleet of EVs par-

ticipating in the AS market and (2) assesses the importance of accurately describing

battery efficiency and forecasted EV availability and AGC signals in allocating charg-

ing resources. We extend and refine an earlier conference paper (Juul et al., 2015) to

first configure the controller to explicitly consider bidirectional efficiency. This improves

regulation capacity and accuracy when following regulation signals18 when compared to

simpler approaches. Second, we develop methods to incorporate estimates of batteries’

future SoC trajectories and the expectation of AGC signals into a predictive controller.

Model Predictive Control (MPC) is used along with forecasts of the AGC signal to do

this. We investigate the performance of these innovations (and compare them to other my-

opic benchmarks) via simulations under a range of scenarios for both the regulation signal

and the efficiency of the batteries. More complex controllers achieve better performance,

but depending on the scenario, the improvement may not be worth losing simplicity.

This work is organized as follows. Chapter 2 describes the models used for the batter-

ies, the task concept and market participation. Chapter 3 presents the proposed controller

and the benchmarks. Chapter 4 describes an MPC version of the controller. Simulation

18Accuracy is particularly relevant because of performance payments. The more accurate the response
is, the less regulation is required by the system.
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results are presented and discussed in Chapter 5, and Chapter 6 explains this work’s main

conclusions.
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2. PROBLEM SETUP

In the proposed framework, the functional unit is the battery, and it must be character-

ized in terms of a set of parameters. The task concept is used to describe the characteristics

of a battery when it is active, and thus can be used within its physical limits by the EV

aggregator to provide frequency regulation services, as opposed to an inactive task. The

laxity concept is used as well to describe each task’s flexibility (Subramanian et al., 2012).

2.1. Tasks and Batteries

An aggregator coordinating a fleet of EVs in real time faces, at each time step k ∈

{1, . . . , T}, the challenge of fulfilling the energy requirements associated with each EV

i ∈ {1, . . . , V }, together with the power requirements associated with the AGC signal.

While the nominal trajectory, calculated by DER-CAM, is a parameter for vehicle i at

time k, a feasible trajectory is defined as any path for the SoC of a particular EV such that

both physical and scheduling requirements are fulfilled. This means that for any vehicle i

at time k, its SoC must lie within the interval [β−i , β
+
i ] to respect the limits of the battery.

Likewise, each vehicle arrives at time ai with a known SoC and is scheduled to leave at

time di with a minimum level of energy for the EV to be able to operate normally, so

Eidi ∈ [E−i , E
+
i ]. For simplicity, β+

i = E+
i is assumed. There are power limits for the

operation of each battery as well, so the charging/discharging (positive/negative) rate is

pik ∈ [m−i ,m
+
i ]. This is illustrated in Figure 2.1.

DEFINITION 2.1. The laxity, φik, is defined as the amount of time left until vehicle i

must charge at its maximum charge rate to reach its minimum SoC goal, E−i at time di.

φik = di − k −
E−i − Eik
m+
i

(2.1)
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Table 2.1. Parameter description for task i

Parameter Description

rik Nominal trajectory for time step k
Eik State of Charge for time step k

β+
i , β

−
i State of Charge physical limits

E+
i , E

−
i State of Charge goal limits

ai, di Arrival/departure time
pik Charging/discharging rate for time step k

m+
i ,m

−
i Charging/discharging rate limits

η+i , η
−
i Charging/discharging efficiency

φik Laxity for time step k

Boundaries
Nominal Trajectory 
Real Trajectory 

Time

En
er

gy

m

Figure 2.1. Battery model for EV i and feasible trajectories.

It is common for battery models to consider an efficiency scalar 0 < η < 1 to account

for the difference between the power they received and the power they were able to trans-

form into energy for storage. In the context of bidirectional charging, this effect must be

considered both ways, as it is shown in Figure 2.2.

When the power variable is positive, the batteries are being charged and when it is

negative, the batteries are being discharged. Let xik be the power necessary from a source
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pk = η+xk

xkxk = η−pk
pk

Figure 2.2. Efficiency of the batteries when charging and discharging.

to charge the battery of vehicle i with pik, and pik be the power necessary from a battery

to provide the grid with xik. This can be written in a compact way:

pik =
(η+i

2
+

1

2η−i

)
xik +

(η+i
2
− 1

2η−i

)
|xik| (2.2)

The inverse relationship is defined F (pik) = xik and can be easily derived from Equa-

tion 2.2.

DEFINITION 2.2. A task Ti can be represented by its parameters (m−i , m
+
i , η

−
i , η

+
i ,

ai, di, β
−
i , β

+
i , E

−
i , E

+
i ), with states Eik and φik, as described in Table 2.1. The index set

Tk = {i|k ∈ [ai, di)} contains the indexes of all active tasks in time step k. Each active

task models an EV that is available to provide regulation.

For notation simplicity, vectors are defined in bold symbols when referring to their

components associated with active tasks: xk = {xik, i ∈ Tk}, pk = {pik, i ∈ Tk},

Ek = {Eik, i ∈ Tk}, rk = {rik, i ∈ Tk}, and Γ+,−
k = {Γ+,−

ik , i ∈ Tk}.

2.2. Limits

If a task is close to its boundaries, depending on the energy state, it is possible that the

charging rate may need to be reduced. The limits that guarantee that no upper or lower

boundaries are violated for task i at time step k are denoted Γ+
ik and Γ−ik, respectively. These

limits include all the information needed to ensure that the SoC stays within physical limits

and is able to fulfill the task’s minimum energy requirements (Juul et al., 2015).
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Γ+
ik = min

[
m+
i ,
E+
i − Eik

∆t

]
(2.3)

Γ−ik = min
[

max[max[m−i ,
β−i − Eik

∆t
], (1− φik)m+

i ],Γ+
ik

]
(2.4)

The additional terms of Γ−ik are only relevant when φik < 2. When laxity is in that

range, the lower bound of pik will be pushed in order to be able to fulfill the minimum

energy requirement at the time the task ceases to be active, and saturated by physical limits.

Additionally, when aggregating these expressions for the fleet, the regulation capacity of

the system can be calculated.

R+
k =

∑

i∈Tk

F (Γ+
ik), R−k =

∑

i∈Tk

F (Γ−ik) (2.5)

Therefore, the feasible regulation region for time step k will be defined as the interval

[R−k , R
+
k ].

2.3. Market Participation

LAAFB project is being developed using CAISO’s rules for AS, which take into ac-

count both energy and AS when optimizing the system as a whole. Therefore, the EV fleet

participates, in aggregate, in two markets: the energy market and the frequency regula-

tion market1. From these, every four seconds the aggregate resource receives a frequency

regulation signal every four seconds, which that must be distributed among the individual

vehicles. This AGC signal gk for each time step k has two components: a fixed level of

generation from the energy market award (gEMk ), and a variable regulation quantity from

the hourly AS market award (gFRk ). The generation signal gk = gEMk + gFRk must be

followed as accurately as possible for different magnitudes of the variable component.

1While the resource settles its electricity costs at the retail price, in order to effectively participate in
frequency regulation, the EV fleet must create a baseline electricity consumption on which it will regulate
around, which is done in the wholesale energy market.
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Figure 2.3. AGC signal components

The error is defined as the difference between the loads associated with the vehicles

and the generation signal:

ek =
∑

i∈Tk

xik − gk (2.6)

Thus, to maximize the performance, |ek| must be minimized. The relevant metric is

the Accuracy, defined next for a time interval T .

Accuracy := 1−
T∑

k=1

|ek|/
T∑

k=1

|gFRk | (2.7)

This metric is tied to payments for AS providers, which according to FERC’s order 755

(FERC, 2011), are proportional to capacity and performance, which was already adopted

by CAISO’s AS market (CAISO, 2015a).
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3. MYOPIC CONTROL

A myopic or short-sighted controller is presented, along with benchmarks that use

simpler approaches. The ease of implementation is a relevant subject, so it will be useful

to compare simulation results.

3.1. Trajectory Following (TF)

The proposed TF controller relies on previously calculated reference trajectories rk

for the SoC of each EV in a fleet, considering their departures and arrivals, made by an

external optimizer (DER-CAM (Marnay et al., 2013)). It takes as an input the reference

SoC trajectories, and reschedules at each operational time the actual charging trajectory

for each vehicle in order to achieve the frequency regulation requirements, given by the

realization of an AGC signal that tells the fleet which instantaneous aggregated power

input/output it should have. These prespecified trajectories are calculated based on opti-

mizing the participation of the fleet in the frequency regulation market and the charging of

each EV under a retail electricity tariff. The trajectories can be understood as a nominal

path for the SoC of each vehicle, which enables the TF controller to incorporate informa-

tion about future arrivals and departures.

For each time step k, the following convex optimization problem returns the optimal

power vector, given the SoC of the previous time step Ek−1. The proposed controller is

defined as TF(k) :=
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min
pc
k,p

d
k

α1||rk −Ek||2 + α2|ek|+ ||α3 ◦ pck||1 + ||α3 ◦ pdk||1

s.t. Ek = Ek−1 + (pck + pdk)∆t (3.1)

ek =
∑

i∈Tk

pcik/η
+
i + pdikη

−
i − gk (3.2)

Γ−k−1 ≤ p
c
k + pdk ≤ Γ+

k−1 (3.3)

pck ≥ 0, pdk ≤ 0 (3.4)

Where || · ||p stands for the `p norm1, and ◦ stands for element-wise vector multiplica-

tion, also known as the Hadamard product. In the formulation of TF controller, due to the

non-convex relationship between pk and xk (Equation 2.2), we split the power variable in

the EVs’ side into charging (pc) and discharging (pd) power, given that one of them is 0.

We relaxed the non-convex constraint pck ·pdk = 0, and added a penalty for the variables so

that the solution fulfills that requirement. This penalization also achieves non-aggressive

control moves, thus reducing the cycling of the batteries compared to other benchmarks.

The real-time Trajectory Following (TF) controller consists of an objective function

that sums three terms with different purposes: (1) tracking the SoC trajectories, (2) fol-

lowing the AGC signal and (3) penalizing the power variables for feasibility, with strictly

positive penalties α1, α2,α3. As for the constraints, Eq. 3.1 represents the dynamics of

the batteries, Eq. 3.2 represents the error in following the AGC signal and Eqs. 3.3 and

3.4 bound the decision variables.

If efficiencies η+, η− are 100%, the optimal solution always requires that pck · pdk =

0 ∀k. When they are lower, it can be shown that the constraint also holds when a suffi-

cient condition is fulfilled. Then, a convex relaxation based on tuning the penalties in the

objective function is described in Theorem 3.1.

1A class of vector norms, called a p-norm and denoted || · ||p, is defined as ||x||p = (|x1|p + · · · +
|xn|p)1/p p ≥ 1,x ∈ Rn.
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THEOREM 3.1. If the penalties α2,α3 are such that:

α3i > α2
1− η+i η−i

2η+i
∀i,

the optimal solution to TF(k) will satisfy pcik · pdik = 0 ∀i ∈ Tk.

PROOF 3.1. Assume that the optimal solution for some i, k is given by pcik = t1 +

t2, p
d
ik = −t2 such that t1 > 0, t2 > 0 (so that (t1 + t2)t2 6= 0). For simplicity also assume

that η+i = η+, η−i = η− ∀i. When comparing the cost of the solution (t1 + t2,−t2) with

the cost of the solution (t1, 0), the first term of the objective function, α1||rk − Ek||2, is

the same in both cases. Thus, the rest of the objective function remains to be compared.

Condition pcik · pdik = 0 would always hold if a sufficient condition was found so that the

value of the objective function is always lower for (t1, 0) than for (t1 + t2,−t2). When

replacing, the following expression is obtained:

f(t1, 0) < f(t1 + t2,−t2)

α2

∣∣∣ t1
η+
− gk

∣∣∣+ α3i|t1| < α2

∣∣∣t1 + t2
η+

− t2η− − gk
∣∣∣+ α3i(|t1 + t2|+ | − t2|)

⇐⇒ α2

∣∣∣ t1
η+
− gk

∣∣∣ < α2

∣∣∣ t1
η+

+ t2

( 1

η+
− η−

)
− gk

∣∣∣+ 2α3it2

(3.5)

Note that because of the assumption on t2 and 0 < η < 1, t2( 1
η+
− η−) is a strictly

positive term. There are some cases that must be analyzed:

(i) t1
η+
− gk > 0:

α2

( t1
η+
− gk

)
< α2

( t1
η+

+ t2

( 1

η+
− η−

)
− gk

)
+ 2α3it2

⇐⇒ 0 < α2t2

( 1

η+
− η−

)
+ 2α3it2

(3.6)

Which holds because all the terms are positive.
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(ii) t1
η+
− gk = 0:

0 < α2t2

( 1

η+
− η−

)
+ 2α3it2 (3.7)

Holds as well.

(iii) t1
η+
− gk < 0:

This case must be split into three more cases:

(a) t1
η+

+ t2

(
1
η+
− η−

)
− gk > 0

−α2

( t1
η+
− gk

)
< α2

( t1
η+

+ t2

( 1

η+
− η−

)
− gk

)
+ 2α3it2

⇐⇒ 0 < 2α2

( t2
η+

+ t2

( 1

η+
− η−

)
− gk

)
+ 2α3it2 − α2t2

( 1

η+
− η−

) (3.8)

Because of the assumption,

2α2

( t2
η+

+ t2

( 1

η+
− η−

)
− gk

)
> 0 (3.9)

So, a condition can be obtained if the rest is also positive:

2α3it2 − α2t2

( 1

η+
− η−

)
> 0

⇐⇒ α3i > α2
1− η+η−

2η+

(3.10)

(b) t1
η+

+ t2

(
1
η+
− η−

)
− gk = 0

− α2

( t1
η+
− gk

)
< 2α3it2 (3.11)

Because of the assumption,

α2t2

( 1

η+
− η−

)
< 2α3it2

⇐⇒ α3i > α2
1− η+η−

2η+

(3.12)

The same condition is obtained.

(c) t1
η+

+ t2

(
1
η+
− η−

)
− gk < 0
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−α2

( t1
η+
− gk

)
< −α2

( t1
η+

+ t2

( 1

η+
− η−

)
− gk

)
+ 2α3it2

⇐⇒ 0 < −α2t2

( 1

η+
− η−

)
+ 2α3it2

⇐⇒ α3i > α2
1− η+η−

2η+

(3.13)

Again, the same condition is obtained.

Therefore, if the sufficient condition is respected for every i, there is an analytical

guarantee that pcik · pdik = 0 will be satisfied for every i, k in the optimal solution:

α3i > α2
1− η+η−

2η+
∀i

�

The rationale behind Theorem 3.1 is intuitive: there should be a threshold for the

penalties of the control moves above which it is not optimal to charge and discharge si-

multaneously, because it would imply a higher cost for the objective function while not

making the fleet response more accurate. If there was no penalty for pc and pd, the con-

troller could do double-charging (pck · pdk 6= 0) if it implied better accuracy.

It should be noted that TF controller will provide a fast and feasible solution due to

its convexity. Evidence suggests that if pck · pdk = 0 ∀k constraint is included by using

binary variables instead of tuning the α3 penalty according to Theorem 3.1, the results

of the non-convex problem are the same as in the convex problem, but computation time

grows significantly.
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3.2. Benchmarks

To benchmark the performance of the TF controller we consider two methods from

the Processor Time Allocation (PTA) literature that have been applied to electric load

scheduling (Subramanian et al., 2012), as well as version of the TF controller that assumes

100% round trip battery efficiency, all of which are applied in a sequential optimization

simulation. In addition, a time-invariant benchmark was used.

3.2.1. Earliest Deadline First (EDF)

EDF creates a priority list based on the departure time of the tasks, and therefore will

allow vehicles with the latest deadlines to remain at a low SoC until sufficient resources

are available to charge them. We adapt this algorithm for discharging by coordinating

vehicles such that those with the latest departure times are discharged first.

3.2.2. Least Laxity First (LLF)

LLF creates a merit order list sorted by laxity (see Eq. 2.1), and therefore will allow

vehicles with larger laxity to remain at a low SoC until sufficient resources are available

to charge them. Similarly to EDF, we adapt the algorithm for discharging such that the

vehicles with the highest laxity are discharged first.

3.2.3. Trajectory Following with Approximate Battery State (TFAPPROX)

We remove the nonconvexity that results from bidirectional charging by making the

approximation pik ≈ xik in the battery dynamics equation. However, the quality of the

approximation degrades with declining efficiency.
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3.2.4. Time-invariant Trajectory Following (Oracle)

We developed an Oracle benchmark that solves the complete run time at once. This

additional benchmark provides a best-possible-performance case.
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4. MODEL PREDICTIVE CONTROL

This section will explain how to extend the TF myopic controller by implementing

a predictive controller. We employ model predictive control, which takes into account

not only the present current state of a system, but also its forecasted states over a finite

time horizon (of length N ), when making a decision. The underlying motivation is that

MPC should allow the algorithm to achieve better Accuracy, because it will consider the

EV arrivals and departures as well as a forecast of the AGC signal when deciding how to

update the SoC of the vehicles.

4.1. Trajectory Following with Model Predictive Control (TFMPC)

A first approach to use MPC with TF would be to sum up the objective function values,

while interpreting the bounds Γ+,−
ik as functions of the SoC. Including the upper bound

constraint with the future Eik as a variable is not a problem, due to its concavity, but

including the lower bound constraint would imply using a nonconvex expression as a

lower bound:

pik ≥ min[max[max[m−i ,
β−i − Eik

∆t
], (1− φik)m+

i ]
︸ ︷︷ ︸

convex

, Γ+
ik︸︷︷︸

concave

] (4.1)

In the myopic problem, this constraint’s objective was to fulfill the task’s minimum

energy requirements at departure, which can also be achieved by transforming the laxity

part of the lower bound for power into an energy constraint, so that the MPC problem

is convex. For energy constraints to work, efficiency effects must be fully considered by

the MPC controller in the time steps along the forecast horizon, so that the SoC can be

properly estimated. Before formulating the MPC problem, some additional definitions are

necessary:

• ĝj|k is the forecast for signal g in period j, made in time step k, so k < j.
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• The set of time steps in the forecast horizon for time step k is {k+1, . . . , k+N}.

• Bold symbols must include all tasks that may be active: {i ∈ ∪j∈{k,...,k+N}Tj}.

For simulation purposes, the SoC of inactive tasks has to be updated using a previously

calculated vector for the power variable. This represents the energy used by the EVs when

they are not grid connected, and the values for E−i must be consistent with that vector.

Thus, the MPC problem solved for each time step k, with feasible region Zk, is defined as

TFMPC(k) :=

min
pc
j ,p

d
j

∑

j∈{k,...,k+N}

α1||rj −Ej||2 + α2|ej|+ ||α3 ◦ pcj||1 + ||α3 ◦ pdj ||1

s.t. Ej = Ej−1 + (pcj + pdj )∆t ∀j ∈ {k, . . . , k +N} (4.2)

ek =
∑

i∈Tk

pcik/η
+
i + pdikη

−
i − gk (4.3)

ej =
∑

i∈Tj

pcij/η
+
i + pdijη

−
i − ĝj|k ∀j ∈ {k + 1, . . . , k +N} (4.4)

Zk =
{
m−i ≤ pcij + pdij ≤ m+

i , (4.5)

pcij ≥ 0, pdij ≤ 0, (4.6)

β−i ≤ Eij ≤ β+
i , (4.7)

Eij ≥ E−i − (di − j)m+
i ∆t

}
∀i ∈ Tj, ∀j ∈ {k, . . . , k +N} (4.8)

The terms in objective function of the real-time MPC controller have the same meaning

as in TF. As shown in Theorem 3.1, properly tuning the penalties α2,α3 is critical for

satisfying the pck · pdk = 0 constraint.

The constraints consider (1) the dynamics of the batteries (Eq. 4.2), (2) the present and

future error in following the AGC signal (Eqs. 4.3 and 4.4) and (3) the constraint set Zk,

that ensures feasibility for both the power variables and the energy state (Eqs. 4.5 to 4.8).
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The purpose of Eq. 4.8 is twofold. First, it is needed to ensure that the task’s minimum

energy requirements are fulfilled. Second, it acts as a terminal constraint to ensure the

feasibility of the MPC controller, regardless of the length of the forecast horizon.

4.2. Automatic Generation Control Signal Forecast

As mentioned earlier, the generation signal gk has a random component gFRk . As this

work handles uncertainty with the MPC approach, sequential forecasts are considered for

gFRk by using an ARIMA approach with the information available up to each time step.

This assumes that gFR is a zero-mean signal, which may not be true in real applications

(when defining drive cycles, non-zero means can be compensated (Hafen et al., 2011)).

To compare results, a comparison was made between simulations with (1) an ARIMA

forecast and (2) a perfect forecast. More information about the forecasts can be found in

Appendix C.
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5. NUMERICAL RESULTS

The data set used in our numerical simulations is the same as in Juul et al. (2015), with

a fleet of 18 EVs, with a maximum regulation capacity of±15 kilowatts [kW] per vehicle,

and a run time of two days with time steps every five minutes, during which the number

of available vehicles changes according to a fixed task schedule described in Appendix A.

TFMPC used a forecast horizon of N = 10. Simulations were run using the MATLAB

toolbox YALMIP (Löfberg, 2004) along with the solver Gurobi (Gurobi Optimization,

Inc., 2015), following the simulation flowchart described in Appendix B. The variable

component of the generation signal, gFRk , was simulated offline as an ARIMA time series,

based on historical data for PJM’s regd test signal, meant to be used for fast regulation

resources such as EV batteries (PJM, 2013). For each time step, a forecast was made

with the information of past realizations of the AGC signal. These forecasts were done

offline as well. Input data were obtained from PJM’s AS website (PJM, 2015), where

normalized dynamic (regd) and traditional (rega) regulation signals are provided from

seven days in May 2014. The dynamic regulation signal was used for this experiment. In

terms of computation time, the simulations were run in on a 2.5 GHz Intel Core i5-3210M

processor, and the TFMPC algorithm with N = 10 (the most computationally expensive)

took always less than 0.1 seconds to be solved.

5.1. Accuracy Results

All of the proposed versions of the algorithms were tested with six different test AGC

signals and the Accuracy results were averaged. These represent the performance of each

algorithm. Figure 5.1 shows the results for different magnitudes of the AGC signal and dif-

ferent battery efficiencies (η+ = η− = η). Note that the AGC Magnitude value represents

the a higher bound for the signal’s absolute value.

Figure 5.2 shows the average Accuracy of each controller, relative to the Oracle case,

which represents a higher bound for the controllers’ performance.
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Figure 5.1. Accuracy for different algorithms, AGC signal magnitudes and
battery efficiencies η ∈ {0.92, 0.85, 0.8}.

The results must be discussed separately depending on the efficiency of the batteries.

When η = 0.92, the effective plugged in power capacity of each EV is ±13.8 [kW], and

sorting the performance of the algorithm and its benchmarks gives the following list: (1)

Oracle, (2) TFMPC Perfect Forecast, (3) TFMPC ARIMA Forecast, (4) TF, (5) TFAP-

PROX, (6) LLF, and (7) EDF. The Accuracy results for LLF and EDF, the only algorithms

that do not track predefined SoC trajectories, are noticeably worse than for the other algo-

rithms, for all the magnitudes of the AGC signal; for the remainder of the algorithms the

performance is similar.

When the efficiency of the batteries is decreased to η = 0.85, the effective plugged

in power capacity of each EV is reduced to ±12.75 [kW], and the performance of all the

algorithms degrades but keeps the same order. In percentage terms, EDF and LLF are
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Figure 5.2. Average Accuracy for each algorithm, relative to Oracle

farther from the rest for low magnitudes of the AGC signal, and closer for high magni-

tudes. This happens because the benefits of trajectory following are greatest when real

SoC trajectories are close to the reference trajectories – which happens to be when the

AGC magnitude is smallest. On the other hand, when the AGC signal is large, the dif-

ference between real and reference trajectories is inevitably large – therefore reference

trajectory following provides little benefit relative to EDF and LLF.

Finally, when η = 0.8, the effective plugged in power capacity of each EV is reduced

to ±12 [kW], and the tendency described in the former paragraph is confirmed: EDF and

LLF show bad performance for low AGC magnitudes, but their performance for high mag-

nitudes compared to the other algorithms is similar, due to the limited benefits to reference

trajectory following when real trajectories are substantially different (as described in the

previous paragraph). Note that both TFMPC options achieve Accuracy results that dom-

inate over all the non-predictive algorithms. These are close to the Oracle’s, but there is

still some room to improve, which could be done with longer forecast horizons and more

accurate forecasts.
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5.2. Regulation Capacity Results

We define the feasible regulation region [R−k , R
+
k ] as the range of power in which a

generation signal gk should lie so that the fleet can provide regulation with no error, while

being able to fulfill the minimum energy requirements.

Outside the feasible region, the algorithms with a myopic approach behave differently

than TFMPC. For myopic algorithms, their behavior is easy to understand: in that situ-

ation, all the difference between gk and the fleet’s capacity to provide regulation results

in error. In contrast, the look-ahead characteristic of the latter provides other possibility.

TFMPC algorithms may choose to save battery energy in a given time step, resulting in

avoidable error in the short run in favor of reducing long-run error to minimize total error.

This emphasizes the relevance of properly tuning the parameters α1, α2,α3 in a way that

the system makes desirable decisions in the face of these trade-offs. The results for R+

and R− are shown in Figure 5.3.
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Figure 5.3. Mean R+ and R− for different algorithms, AGC signal magni-
tudes and battery efficiencies η ∈ {0.92, 0.85, 0.8}.
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When sorting the algorithms by the width of the mean feasible regulation region they

achieved, in general the order is the same as in the ranking shown for Accuracy (not

including Oracle).

As for R+ results (charging capacity), TF approaches achieve better levels than EDF

and LLF in all cases, which is another benefit of tracking SoC trajectories. As the system

receives AGC signals with higher magnitude or uses less-efficient batteries, batteries get

drained, and therefore R+ increases because there is more room for the batteries to get

charged.

On the other hand, R− (discharging capacity) is the real bottleneck of the system for

large AGC signals, because the battery SoC is typically well below what is required to

follow the AGC signals. Furthermore, minimum energy requirements at a task’s departure

also constrain the discharging capacity of each EV. Results forR− are similar to the Accu-

racy results when sorting the performance of the algorithms, except for TFAPPROX when

η = 0.8; the bad quality of the pik ≈ xik approximation directly impacts the discharging

capacity of the batteries. It is clear that implementing MPC improves the capacity of the

EV fleet to discharge its batteries, and this effect is magnified and therefore can be seen

more clearly when the efficiency of the batteries decreases. Thus, the importance of using

MPC as opposed to myopic strategies is greater when the system works closer to its limits.

5.3. Cycling Results

Here we examine the impact of the control approaches on cycling – which is believed

to degrade battery state of health – by using the arc length of the SoC curves as a proxy.

Figure 5.4 shows the average value of this metric over all the experiments, relative to the

results of EDF.

TF approaches lead to less cycling, and we attribute this result to one key factor: by

penalizing deviations from an SoC trajectory, each of the TF approaches tend to cycle all

batteries in roughly the same way. This results in roughly equal distribution of ramping
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across all the EVs, rather than distributing power changes to EVs in the most extreme states

(as with EDF and LLF). We also see that, as one might expect, appropriately penalizing

the control variables (as with TF vs TFAPPROX) results in better performance
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6. CONCLUSIONS

In this work, we focus on the design of charging schedules of EVs for the provision

of frequency regulation services. In particular, we propose several real-time scheduling

schemes differentiated by the way of handling future information (myopic/non-myopic),

the level of accuracy on following regulation signals and the resulting cycling on the bat-

teries. A method for considering bidirectional efficiency while enabling the estimation of

the future state of charge of the EVs in the fleet is provided, which allows the use of model

predictive control schemes.

Extensive simulation results show the trade-off between the complexity of the con-

trollers and their accuracy on following regulation signals: for practical implementations,

both the ease of use and the performance are relevant. A key insight is that higher ac-

curacy in following regulation signals coincides with less cycling of the batteries and, in

most cases, with better regulation capacity. This highlights the importance of keeping

the state of charge of the batteries away from their physical boundaries when providing

frequency regulation services.

The generality of the approach enables the use of the same framework for any kind

of energy battery, such as water reservoirs or HVAC loads. Other stochastic fast-response

resources suitable for demand response, such as buildings or industrial processes, can be

integrated into the proposed controller as well. Future work should take into account un-

certainty in the EVs’ arrival and departure, in which MPC along with advanced forecasting

techniques can be specially valuable.
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APPENDIX A. INPUT DATA

Table A.1. Arrival, departure and trip data used for simulations.

Arrival 1 Arrival 2 Arrival 3 Physical Parameters

Vehicle a d E− a d E− a d E− Initial SoC β− β+ m+ m−

[×5 min] [×5 min] [kWh] [×5 min] [×5 min] [kWh] [×5 min] [×5 min] [kWh] [kWh] [kWh] [kWh] [kW] [kW]

1 0 72 18.9 137 380 18.3 440 576 6 15 6 30 15 -15
2 0 97 11.25 141 397 13.75 450 576 5 12.5 5 25 15 -15
3 0 115 12.6 151 396 18.6 431 576 6 15 6 30 15 -15
4 0 137 14.7 168 388 14.7 428 576 6 15 6 30 15 -15
5 0 98 15.5 148 429 16.5 449 576 5 12.5 5 25 15 -15
6 0 91 16.75 121 447 14.25 460 576 5 12.5 5 25 15 -15
7 0 129 16.25 147 466 14.5 479 576 5 12.5 5 25 15 -15
8 0 114 25.55 166 454 16.8 467 576 7 17.5 7 35 15 -15
9 0 122 13.5 167 410 16.8 431 576 6 15 6 30 15 -15

10 0 129 14.7 160 378 24.15 458 576 7 17.5 7 35 15 -15
11 0 110 14.25 171 393 11.25 455 576 5 12.5 5 25 15 -15
12 0 144 10.5 185 415 12.25 450 576 5 12.5 5 25 15 -15
13 0 107 18.3 141 406 12.9 456 576 6 15 6 30 15 -15
14 0 95 12.5 156 421 10.5 440 576 5 12.5 5 25 15 -15
15 0 125 18.55 153 371 16.8 453 576 7 17.5 7 35 15 -15
16 0 101 20.3 149 412 22.4 435 576 7 17.5 7 35 15 -15
17 0 84 15.3 152 419 14.1 452 576 6 15 6 30 15 -15
18 0 101 10.5 166 421 14 459 576 5 12.5 5 25 15 -15
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APPENDIX B. SIMULATION FLOWCHART

Specify  Algorithm a
  E�ciency
  Forecast f
  Seed s

η

Initialize tasks data

DER-CAM
SoC trajectories

Initialize AGC = [20,40,...,260]
  gEM 

  gFR(s) (Normalized AGC)

k = Initial Time

g = gEM + AGC(i)*gFR (s)

i=1

External Input

Run Algorithm(a) for time step k

η
a in {EDF, LLF, TFAPPROX, TF, TFMPC}

in {0.8, 0.85, 0.92}
f in {PERFECT, ARIMA}

k>TMAX

Save Outputs

i>iMAX

k++

i++

Forecast N steps 
of gFR(s) using f

End

Yes

Yes

No

No

a=TFMPC
Yes

No

Figure B.1. Simulation flowchart
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APPENDIX C. AGC SIGNAL GENERATION AND FORECASTS

ARIMA stands for Auto-Regressive Integrated Moving Average. These models were

developed in the 1970s by statisticians G. Box and G. Jenkins, so they are sometimes

referred as Box-Jenkins Models. ARIMA models are a general way of identifying a time

series, under some assumptions, in terms of its own characteristics, with the objective of

estimating future values of the time series.

An ARIMA model can be explained by three parameters:

• p: the amount of autoregressive terms.

• d: the amount of nonseasonal differences.

• q: the amount of moving average terms.

Thus, they are called ARIMA(p,d,q) models. A common simplification is that d = 0,

so the model can be abbreviated and called an ARMA(p,q) model.

Some definitions are necessary to further understand ARIMA models, which were

taken from Shumway & Stoffer (2006):

DEFINITION C.1. We define the backshift operator by

Bxt = xt−1 (C.1)

and extend it to powers B2xt = B(Bxt) = Bxt−1 = xt−2, and so on. Thus,

Bkxt = xt−k (C.2)

Then, the first difference∇xt = xt − xt−1 can be written as:

∇xt = (1−B)xt (C.3)
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DEFINITION C.2. Differences of order d are defined as

∇d = (1−B)d (C.4)

DEFINITION C.3. An autoregressive model of order p, abbreviated AR(p), is of the

form

xt = φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p + wt (C.5)

where xt is stationary, φ1, φ2, ...φp are constants (φp 6= 0). Unless otherwise stated, we

assume that wt is a Gaussian white noise series with mean zero and variance σ2
w. The

mean of xt in Eq. C.5 is zero. If the mean, µ, is not zero, replace xt by xt − µ in Eq. C.5,

i.e.,

xt − µ = φ1(xt−1 − µ) + φ2(xt−2 − µ) + · · ·+ φp(xt−p − µ) + wt (C.6)

or write

xt = α + φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p + wt (C.7)

where α = µ(1− φ1 − · · · − φp).

A useful form of writing this is by using the autoregressive operator,

DEFINITION C.4. The autoregressive operator is defined as

φ(B) = 1− φ1B − φ2B
2 − · · · − φpBp (C.8)

So the AR(p) model can be concisely written as:

φ(B)xt = wt (C.9)

DEFINITION C.5. The moving average model of order q, or MA(q) model, is defined

to be

xt = wt + θ1wt−1 + θ2wt−2 + · · ·+ θqwt−q, (C.10)

where there are q lags in the moving average and θ1, θ2, ..., θq (θq 6= 0) are parameters.

The noise wt is assumed to be Gaussian white noise.
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A useful of writing this is by using the moving average operator:

DEFINITION C.6. The moving average operator is

θ(B) = 1 + θ1B + θ2B
2 + · · · θqBq (C.11)

So the MA(q) model can be concisely written as:

xt = θ(B)wt (C.12)

DEFINITION C.7. A time series {xt; t = 0,±1,±2, ...} is ARMA(p,q) if it is stationary

and

xt = φ1xt−1 + · · ·+ φpxt−p + wt + θ1wt−1 + · · ·+ θqwt−q, (C.13)

with φp 6= 0, θq 6= 0, and σ2
w > 0. The parameters p and q are called the autoregressive

and the moving average orders, respectively. If xt has a nonzero mean µ, we set α =

µ(1− φ1 − · − φp) and write the model as

xt = α + φ1xt−1 + · · ·+ φpxt−p + wt + θ1wt−1 + · · ·+ θqwt−q. (C.14)

Unless stated otherwise, {wt, t = 0,±1,±2, ...} is a Gaussian white noise sequence.

Finally, all the definitions needed to define an ARIMA model were stated.

DEFINITION C.8. A process, xt is said to be ARIMA(p,d,q) if

∇dxt = (1−B)dxt (C.15)

is ARMA(p,q). In general, we will write the model as

φ(B)(1−B)dxt = θ(B)wt. (C.16)

If E(∇dxt) = µ, we write the model as

φ(B)(1−B)dxt = α + θ(B)wt, (C.17)
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where α = µ(1− φ1 − · · · − φp).

With the aforementioned theoretical background, the procedure used to both generate

the AGC signals used in the simulations for all the controllers, and forecast these signals

for the MPC controllers, can be described in Figure C.1. The resulting AGC signals that

were used for the simulations are shown in Figure C.2.

gFR (seed)

seed=1

Output: AGC signal

time++

End

time>runtime

Read original
RegD data

Sample RegD 

Fit Arima 
Model using R

Simulate Model 
using R, for 

time=1..runtime

Period: 4 secs

Each sample: Mean every 5 mins

model = arima.�t(sampled_regd)

gFR (seed) = arima.sim(model)

time=1

Forecast gFR  for 
next N time steps, 

based on earlier data fcast(time) = forecast(�t,N)
�t=arima(g(1:time),model)
g = gFR (seed) 

No

seed>6

seed++

No

Yes

Yes

Output: Forecast
for time..time+N

Figure C.1. AGC signal generation and forecast
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