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Ecological models used to forecast range change (range change models; RCM) have 
recently diversified to account for a greater number of ecological and observational 
processes in pursuit of more accurate and realistic predictions. Theory suggests that 
process-explicit RCMs should generate more robust forecasts, particularly under novel 
environmental conditions. RCMs accounting for processes are generally more complex 
and data hungry, and so, require extra effort to build. Thus, it is necessary to under-
stand when the effort of building a more realistic model is likely to generate more 
reliable forecasts. Here, we review the literature to explore whether process-explicit 
models have been tested through benchmarking their temporal predictive performance 
(i.e. their predictive performance when transferred in time) and model transferability 
(i.e. their ability to keep their predictive performance when transferred to generate pre-
dictions into a different time) against simpler models, and highlight the gaps between 
the rapid development of process-explicit RCMs and the testing of their potential 
improvements. We found that, out of five ecological processes (dispersal, demography, 
physiology, evolution, species interactions) and two observational processes (sampling 
bias, imperfect detection) that may influence reliability of forecasts, only the effects of 
dispersal, demography and imperfect detection have been benchmarked using tem-
porally-independent datasets. Only nine out of twenty-nine process-explicit model 
types have been tested to assess whether accounting for processes improves temporal 
predictive performance. We found no benchmarks assessing model transferability. We 
discuss potential reasons for the lack of empirical validation of process-explicit models. 
Considering these findings, we propose an expanded research agenda to properly test 
the performance of process-explicit RCMs, and highlight some opportunities to fill the 
gaps by suggesting models to be benchmarked using existing historical datasets.
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Introduction

Effective management of biodiversity amidst ongoing and 
accelerating environmental change requires accurate predic-
tions of species range and community composition change 
(Evans 2012, Petchey et al. 2015, Dietze et al. 2018). Several 
factors may affect the capacity of ecological models used to 
forecast range change (range change models; RCMs) to gener-
ate accurate predictions over time, ranging from the amount 
of data fed into the model, to the inclusion of mechanistic 
descriptions in the modelling framework. Understanding 
the consequences of these factors on the accuracy of RCM 
predictions would help users to select modelling approaches 
that optimize the reliability of ecological forecasts, and conse-
quently better inform biodiversity conservation applications 
(Clark et al. 2001, Grenouillet and Comte 2014).

Studies suggest that implementation of mechanistic under-
standing in ecological models is key to achieve more reliable 
biodiversity forecasts (Cuddington et al. 2013, Fordham et al. 
2014, Evans et al. 2016, Singer et al. 2016). At least five eco-
logical mechanisms govern range dynamics: demography, 
physiological tolerance to the abiotic environment, evolu-
tion, dispersal and species interactions (Urban et al. 2016). 
In addition to these ecological mechanisms, observational 
processes such as sampling bias (bias driven by an uneven 
distribution of sampling effort across the environmental 
space) and imperfect detection (bias induced by recording 
false absences, with detection probabilities potentially vary-
ing across the environmental space) can have substantial 
impacts on the predictive performance of distribution mod-
els that are fitted to observational data (Elith and Leathwick 
2009, Lahoz-Monfort et al. 2014, Mesgaran et al. 2014). 
Consequently, the rate of development of novel modelling 
frameworks that incorporate one or more of these processes 
explicitly (so-called ‘process-explicit’ models; see Box 1 for 
more detailed definitions) has risen steadily during the last 
few decades (Briscoe et al. 2019).

Despite the growth of process-explicit models, few bench-
marking experiments have been conducted to test whether 
these more complex RCMs improve the reliability of eco-
logical forecasts compared to simpler models (Sequeira et al. 
2018). In this paper, we review the literature to evaluate the 
existing evidence on the impact of incorporating processes in 
RCMs on model temporal predictive performance and trans-
ferability, and highlight the gaps between the rapid devel-
opment of process-explicit RCMs and the testing of their 
potential improvements. We discuss the reasons for these 
gaps in empirical validation of process-explicit approaches. 
Considering this information, we propose an expanded 
research agenda to test the improvement in temporal pre-
dictive performance and transferability of process-explicit 
RCMs, and highlight opportunities to fill the identified gaps 
by suggesting models to be benchmarked using existing his-
torical datasets. Due to inconsistencies in relevant definitions 
in the literature and to facilitate communication, we also 
clarify some of these concepts in Boxes 1 and 2.

Challenges to assessing temporal predictive 
performance and transferability of RCMs

The main constraint on assessing the temporal predictive 
performance and transferability of RCMs is that at least 
two temporally independent datasets with enough tempo-
ral separation to observe range changes are required: one to 
train the model, and another to assess its predictive perfor-
mance (Fig. 1). There are two ways to assess temporal predic-
tive performance of RCMs: to use retrospective forecasting 
of observed changes with a temporally-independent dataset 
for external model evaluations (Araújo et al. 2005, Araújo 
and Rahbek 2006) or to use simulated data (Zurell et al. 
2016). Authors seeking to forecast species distributions often 
deal with the lack of temporally independent model evalu-
ation data by reporting predictive performance based only 
on internal model evaluations conducted using a subsample 
of the dataset (e.g. using structured cross-validation proto-
cols; Roberts et al. 2017). However, predictive performance 
assessed this way may not hold over time, because predic-
tive performance usually decreases when models are used to 
generate predictions for a different time (Dobrowski et al. 
2011, Rapacciuolo et al. 2012, Uribe-Rivera et al. 2017). For 
instance, Morán-Ordóñez et al. (2017) reported an inverse 
relationship between the discrimination power of correlative 
species distribution models (cSDMs) and the length of time 
in which the model had been transferred.

Reporting predictive performance only for training con-
ditions (i.e. internal evaluation; Fig. 1) provides an unreal-
istic picture of both temporal predictive performance and 
model transferability, i.e. the degree to which the predic-
tive performance is maintained from training to transferred 
conditions (Boxes 1 and 2). We expect model transferability 
to be inversely related to the degree of extrapolation under 
transferred conditions (Fitzpatrick and Hargrove 2009, 
Mesgaran et al. 2014), and directly related to how well the 
model represents the study system (Fielding and Haworth 
1995, Randin et al. 2006). Temporal transferability might 
decrease if the model specification fails to account for non-
stationary relationships between independent and dependent 
variables through time (Dormann 2007). In such cases, model 
parameters (e.g. describing relationships between occupancy 
and environmental features) will not properly character-
ize true relationships in future times and model predictions 
will not be accurate (Blois et al. 2013, Gharari et al. 2013). 
Assessing improvement of both temporal predictive perfor-
mance and model transferability when processes are explicitly 
modelled therefore requires temporally-independent data for 
evaluation.

Knowledge gaps

In the last 20 years, an increasing number of models have 
been developed to incorporate ecological and observa-
tional processes in the pursuit of more reliable predictions.  
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Here we review the literature to determine what evidence 
we have for the improvement in temporal predictive perfor-
mance or transferability of RCMs that include ecological or 
observational processes.

Literature review methodology

We used combinations of three search terms on the Web 
of Science database (‘forecast*’ OR ‘predict*’ + ‘chang*’ OR 

‘range-shift*’ + ‘species-distribution*’ OR ‘species-compo-
sition*’) and included publications from January 2006 to 
December 2020. We excluded studies that generated pre-
dictions backwards in time because the processes involved 
in species range change are directional: temporal predictive 
performance and transferability may not be equivalent for 
forecasting and hindcasting (Rubidge et al. 2011, Tapia et al. 
2018). We focused on decadal range changes and did not 
incorporate evidence from studies with a broader temporal 

Box 1. Glossary

Accuracy: Degree of proximity between the predicted and the true value.

Hindcasting, forecasting and retrospective forecasting: These three terms describe model transference to generate predictions to 
a temporal window beyond that used to fit the model. Clarifying these concepts is necessary to avoid confusing terminology 
identified during the literature review, especially when referring to predictions made for the past. We use hindcasting to refer 
to generating predictions for an earlier point in time; forecasting to refer to transferring a model forward in time, commonly 
to generate predictions for future scenarios; and retrospective forecasting to refer to a specific type of forecasting where a 
model fitted to past data is transferred forward in time to generate predictions for the present or the recent past (Fig. 1).

Model extrapolation: Projection into novel regions of covariate space (Elith and Leathwick 2009). The extrapolation of a 
model occurs when predictions are generated for a combination of values of the predictive variables not observed in the 
data used for model training (novel conditions).

Model transferability: Represents the ability of a model developed for a specific site and/or time and/or taxon to keep 
its predictive performance when it is transferred to generate predictions into a different time or place or for a different 
taxon. It is a measure of the generality of the model and can be measured as the difference/ratio of predictive performance 
under the training and the transferred conditions (Randin et al. 2006, Dobrowski et al. 2011, Heikkinen et al. 2012). 
A model with good transferability is a model with similar predictive performance in the training and new conditions. 
Transferability may depend on the degree of novelty of the new conditions (i.e. how different are the new conditions to 
which the model is transferred from the original conditions, that is, the degree of extrapolation; Mesgaran et al. 2014).

Model transference: The exercise of using a model to generate predictions beyond the range of observed conditions in 
which it was trained. There are three types of transference: in time, in space or across taxonomic groups. It may result in 
model extrapolation.

Precision: Amount of uncertainty in the predictions. Also known as sharpness. Precise predictions convey low uncertainty 
(i.e. are closely grouped around the mean prediction). Imprecise predictions convey high uncertainty.

Predictive performance: A measure of how useful a prediction is, usually some function of accuracy and or precision. Also 
known as predictive skills (modified from Petchey et al. 2015).

Process-explicit models: Models that explicitly account for potentially relevant processes when predicting species’ ranges. 
Definitions for this concept are not consistent in the literature, and usually refer to ecological processes only, including 
demography, physiology, dispersal, evolution and species interactions. We acknowledge that there is a range of possible 
ways to account for processes into an ecological model.

Range change models (RCM): Here we define range change models as a group of ecological models designed, used or 
potentially useful to predict species redistribution and community reassembly (as an emergent property of a single model 
or derived from stacking individual species predictions). This implies that we do not consider as RCM those models 
unable to make predictions of the distribution for every considered species individually (e.g. macroecological models, or 
community-level models with the ‘assemble first predict later’ strategy, sensu Ferrier and Guisan 2006).

Temporal predictive performance: The performance of predictions made beyond the temporal observation window (i.e. 
when the model is transferred in time beyond the training conditions). This concept differs from ‘temporal transferabil-
ity’, which represents the relative decay in predictive performance with respect to the training conditions when models 
are transferred in time (Box 2).

Uncertainty: For predictive modelling, the spread of the distribution of predictions around the mean predicted value.
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scale (i.e. geological timescales) in order to match the tem-
poral scale of management measures that will benefit from 
ecological forecasts (Petchey et al. 2015).

We first classified studies as having ‘testable’ or ‘non-test-
able’ model predictions based on the feasibility of collecting 
the temporally-independent data necessary for an external 
model evaluation (in case it is not already available). Testable 
studies transferred models trained in the past forward in time 

to generate predictions into a more recent time in which the 
range of species can be observed. These studies either test 
temporal predictive performance using a second temporally-
independent dataset, or they do not test temporal predictive 
performance but could do so by generating such a dataset. 
Non-testable studies, on the other hand, have transferred the 
models into a future scenario for which observations required 
to contrast the predictions cannot be obtained (as depicted in 

Figure 1. Schematic illustration of generating and evaluating predictions of species ranges across time (x-axis). Observations of the biological 
phenomena (i.e. observed occupancy or abundance patterns; blue boxes) can come from several times in the past. Model predictions (green 
boxes) are obtained from modelling the observed data (solid arrows) and can be generated with (B) or without (A) temporal transference. 
Dashed lines represent comparisons between model predictions and observed data that allow us to do model evaluation (diamonds). Most 
range change models are designed with the objective of producing forecasts into the future, but these forecasts cannot be evaluated as they 
predict to a time period for which there are no observed data (B). Given the constraint of temporally independent data for model evaluation 
of forecasts into the future, the predictive performance is often assessed through data partitioning of the training dataset: a subsample of the 
biological data not used for model training is used to evaluate non-transferred predictions (Internal evaluations; A). In contrast, hindcasts 
or retrospective forecasts (B) can be evaluated with external evaluations, using temporally independent observations to assess the perfor-
mance of transferred predictions.
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Fig. 1). We designated all the retrospective forecasts as test-
able regardless of whether they used temporally-independent 
observations to assess the predictive performance.

In addition to needing a temporally independent dataset 
for assessing temporal predictive performance, understand-
ing the effect of incorporating ecological and observational 
processes in RCMs requires comparison of models through 
systematic inclusions and exclusion of the focal process (here-
after, benchmarking experiments). This is important because 
more complex models (e.g. process-explicit models) should 
only be favored over simpler models (e.g. correlative models) 
if they improve predictive performance compared to simpler 
models (Zurell 2017). Of the studies classified as testable, we 
identified and examined those that benchmarked RCMs to 
assess the effects of explicitly modelling ecological or obser-
vational processes on either temporal predictive performance 
or transferability (Table 1). In order to match the processes 
modelled in the RCMs listed in Table 1, and the five eco-
logical and two observational processes presented across the 
manuscript, we considered adaptation as an evolutionary 
process; community assembly as a result of species interac-
tions; colonization-extinction dynamics as a result of demog-
raphy and dispersal; and phenotypic plasticity as a result of 
evolutionary processes.

Model classification

Models were classified in families primarily by model com-
plexity: the first level of classification depends on whether or 
not the models incorporate time as a model dimension (static 
versus dynamic models), and the second level of classification 
depends on the ecological level of the approach (individual-
based, population or single-species models and multi-species 
models) (Table 1). Hybrid-SDMs refer to models that couple 
habitat suitability predictions across time, obtained from stan-
dard correlative species distribution models (cSDMs), with at 
least one extra sub-model that describes ecological processes. 
In the case of hybrid-SDMs, we decided to not group them 

by model type and left them as individual models because 
each of them used different types of process-explicit submod-
els. For example, even though Demoniche (Nenzén et al. 
2012) and Lolipop (Cabral and Schurr 2010) both model 
population dynamics and dispersal, the population dynamics 
submodel for the first is based on transition matrices, while 
Lolipop uses demographic models (e.g. Beverton–Holt or 
Ricker models; Cabral and Schurr 2010). Meta-models also 
couple two or more submodels, but do not rely on habitat 
suitability predictions obtained from cSDMs. Note that indi-
vidual-based models could also be classified as hybrid-SDMs 
or meta-models, but due to the different ecological level at 
which they are trained (i.e. individual organisms), for clarity 
we decided to separate them as an independent family.

Results of the review

The results of the review showed that, out of 1769 individual 
studies, 649 transferred models to generate predictions for-
ward in time. Only 36 (~ 6%) of them generated predic-
tions that were potentially testable with either empirical or 
simulated temporally-independent data (Fig. 2). Of these, 
28 used retrospective forecasting and nine used simulated 
data (for the complete list and classification see Supporting 
information). In the majority of the 36 studies (~ 87%) that 
generated testable predictions, predictions were created using 
cSDMs. Only nine out of the 29 process-explicit model 
types referred to in Table 1 were benchmarked against sim-
pler models using temporally independent datasets, in six 
papers (Engler and Guisan 2009, Pagel and Schurr 2012, 
Zurell et al. 2016, Uribe-Rivera et al. 2017, Fordham et al. 
2018, Briscoe et al. 2021). Of these nine benchmarked pro-
cess-explicit model types, five were benchmarked through 
retrospective forecasting only (Uribe-Rivera et al. 2017, 
Fordham et al. 2018, Briscoe et al. 2021), one (MigClim) 
was benchmarked in three different studies using either simu-
lated or empirical data (Engler and Guisan 2009, Zurell et al. 
2016, Uribe-Rivera et al. 2017), and the remaining three were 

Box 2. Distinguishing model predictive performance from model transferability

Most assessments of transferred predictive performance use the term ‘transferability’ as a synonym for predictive perfor-
mance under transferred conditions. Transferability has been defined as ‘the ability of a model developed for a specific site 
and/or time and/or taxon to predict biodiversity in a different time or place or for a different taxon’ (Sequeira et al. 2018) 
or as the ‘capacity of a model to produce accurate and precise predictions for a new set of predictors that differ from those 
on which the model was trained’ (Yates et al. 2018). Although these definitions capture the essence of what is sought from 
predictions beyond model training conditions, they do not explicitly separate processes that confer predictive perfor-
mance at or near the training conditions to those that confer strong performance by maintaining predictive performance 
when transferred to new conditions. We propose to define ‘model transferability’ as the capacity of a model to maintain 
its predictive performance when transferred to new conditions. This definition therefore distinguishes whether a model 
has been properly specified (e.g. choosing the proper predictors) for the specific conditions in which it was trained, from 
whether it can maintain its predictive performance under transferred conditions. Hence, model transferability should 
measure the rate of change in, or loss of predictive performance (e.g. accuracy and precision) when moving from internal 
evaluation to external evaluation (Fig. 1). Its calculation should therefore be informed by the performance under both 
training and transfer conditions, and not only by the performance at the time of transfer.
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Table 1. Classification of models used for predicting species range change under environmental change. Eight broadly defined model fami-
lies subsume 30 model types. The processes explicitly modelled are shown in column three and coupled with key references. Whether or 
not the model temporal predictive performance has been benchmarked against simpler models using temporally independent (empirical or 
simulated) data and relevant references are indicated in the last column. Adapt = adaptation; CA-Co = community assembly through co-
occurrence patterns; CA-S = community assembly through community saturation patterns; Dem = accounting for demography directly 
through modelling demographic rates; Col-Ext = accounting for demography and dispersal indirectly through modelling local colonization 
and extinction dynamics; Disp = dispersal capacity; ID = imperfect detection; Phy = physiology; Plas = phenotypic plasticity; SI = species 
interactions. E = using empirical data (i.e. using retrospective forecast); S = using simulated data. SDM = species distribution models; 
FIDIMO = fish dispersal model; dynamic-FOAM = dynamic framework of occurrence allocation in metacommunities; M-SET = metacom-
munity – space, environment, time; SESAM = spatially explicit species assemblage modelling. *Applications currently limited to plants or 
fish species.

Model family Model type
Processes explicitly 
declared Key references

Temporal predictive 
performance tested?

Static correlative  
species distribution  
models  
(static-cSDMs)

Standard cSDM None Guisan and Zimmermann 
2000, Ferrier et al. 2002, 
Elith et al. 2010

Yes (E and S)

Mechanistic niche models Phy Kearney and Porter 2004, 
Kearney and Porter 2009

No

Static occupancy detection  
models (static-ODM)

ID MacKenzie et al. 2002, 
Tyre et al. 2003, Kéry and 
Royle 2008

No

Joint SDM (jSDM) CA-Co Pollock et al. 2014, 
Ovaskainen et al. 2017

No

Detection-corrected jSDM CA-Co, ID Tobler et al. 2019 No
Integrated-SDM SB, ID Dorazio 2014,  

Fithian et al. 2015, 
Koshkina et al. 2017 

No

SESAM CA-S Guisan and Rahbek 2011 No
The α-adjusted SDM CA-S Gavish et al. 2017 No

Dynamic correlative  
species distribution  
models  
(dynamic-cSDMs)

Dynamic occupancy  
models (DOM)

Col-Ext Royle and Kéry 2007, 
Kéry et al. 2013

No

Dynamic occupancy detection 
models (dynamic-ODM)

Col-Ext, ID Mackenzie et al. 2003, 
Kéry et al. 2013

Yes (E)

Dynamic jSDM CA-Co, Col-Ext Thorson et al. 2016 No
Hybrid-SDMs  

(h-SDMs)
MigClim Disp Engler and Guisan 2009 Yes (E and S)
KISSMig Disp Nobis and Normand 2014 No
BioMove Dem, Disp Midgley et al. 2010 No
Metapop Dem, Disp Fordham et al. 2013 Yes (E and S)
Demoniche Dem, Disp Nenzén et al. 2012 Yes (S)
SDM + FIDIMO* Disp Radinger et al. 2017 No
Lolipop Dem, Disp Cabral and Schurr 2010 Yes (S)
Adapt-R Adapt, Disp,  

Phy, Plas
Bush et al. 2016 No

Coupled stochastic population 
models with dynamic habitat 
suitability models

Dem, Disp Keith et al. 2008, 
Thuiller et al. 2008, 
Dullinger et al. 2012

Yes (E)

Individual-based  
Models (IBM)

RangeShifter Adapt, Dem, Disp Bocedi et al. 2014 No
Dynamic ecoevolutionary model Adapt, Dem, Disp Cotto et al. 2017 No
ALADYN Adapt, Dem, Disp Schiffers and Travis 2014 No

Meta-models Dynamic-FOAM CA-S Mokany et al. 2011 No
Coupled stochastic population 

models with mechanistic niche 
models

Phy, Dem, Disp, SI Cabral and Kreft 2012 No

Dynamic range models Dem, Disp Pagel and Schurr 2012 Yes (S)
DynamicFOAM+M-SET CA-S, Disp, Col-Ext Mokany et al. 2012 No
Spatially-explicit integrated 

population models (IPM)
Dem, ID Chandler and Clark 2014, 

Riecke et al. 2019
No

Demographic Distribution models Dem Diez et al. 2014, 
Merow et al. 2014

No

Δtrait-SDMs* Plas, Adapt +  
(Phy or Dem)

Benito-Garzón et al. 2019 No
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tested with simulated datasets only (Pagel and Schurr 2012, 
Zurell et al. 2016). The bias towards non-testable future fore-
casts is expected because RCMs are ultimately designed to 
inform management under alternative scenarios of future 
global change. However, it is concerning that most of the 
RCMs that were explicitly designed to account for ecological 
and observational processes have not been compared against 
baseline simpler models.

Evidence from benchmarking studies

Benchmarking studies have been used to compare temporal 
predictive performance for only two of the five ecological 
processes we considered; dispersal and demography. Out of 
the observation processes, only imperfect detection has been 
bechmarked. None of the benchmarks, however, compared 
temporal transferability. Dispersal and demography are the 
most commonly included processes in RCMs (Fig. 3), so 
although this bias is expected, it implies a significant gap in our 
understanding. The evidence provided by the limited number 
of benchmarking studies supports the hypothesis that incor-
porating dispersal constraints may improve temporal predic-
tive performance of RCMs (Engler and Guisan 2009, Pagel 
and Schurr 2012, Uribe-Rivera et al. 2017, Fordham et al. 
2018). Improved performance may arise from incorporating 
dispersal constraints because the false presence predictive rate 
is likely to be reduced (Uribe-Rivera et al. 2017).

The evidence for improved predictive performance 
through incorporation of demographic processes is mixed 
(Zurell et al. 2016, Fordham et al. 2018). For example, 
Fordham et al. (2018) found that demographic hSDMs 
(accounting for metapopulation dynamics) tended to outper-
form cSDMs only when land use was incorporated as a pre-
dictor (see outstanding questions 1 and 2, Table 3). Evidence 
from simulated dynamic communities (Zurell et al. 2016) 
suggests that some inconsistency is due to differing perfor-
mance of models that predict occupancy patterns compared 
to those that predict spatial distribution of abundances. 
Similarly, Briscoe et al. (2021) found that dynamic occu-
pancy models (which indirectly account for demographic 
processes through modelling colonization and extinction 
dynamics) tend to outperform cSDMs when used to predict 
population trends, but tend to be less accurate in predict-
ing spatial patterns of occurrence. In general, inconsistency 
in the improvement of RCMs with addition of demographic 
processes may be explained by the oversimplification of pop-
ulation dynamics in the evaluated RCMs, or of the virtual 
community used to test models through simulation studies. 
Difficulties in model selection with the increased number of 
parameters may contribute too (Briscoe et al. 2021).

The impacts of modelling species interactions in RCMs pre-
dictive performance or transferability has not been assessed. 
Modelling this process requires multi-species RCMs, which 
can model interactions directly (Cabral and Kreft 2012) or 

Figure 2. The emergence of RCM studies that make predictions forward in time, expressed as the cumulative number of papers published 
between January 2006 and December 2020 and available on Web of Knowledge database (accessed on 13 October 2019). Dark blue rep-
resents testable predictions (i.e. retrospective forecasting or simulated data) and light blue represent forecasting future scenarios (i.e. impos-
sible to test using currently available observations).
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indirectly via modelling the resulting community-assembly 
processes (Guisan and Rahbek 2011, Mokany et al. 2012; 
Table 1). The consequences of incorporating these processes 
either directly or indirectly with multi-species RCMs remain 
unknown (outstanding questions 3 and 4, Table 3).

Rapid (generational) evolution in response to selective 
pressures is rarely accounted for in RCMs, and we found 
no studies that benchmarked the impact of including these 
processes on temporal predictive performance or transfer-
ability (Fig. 3). Rapid evolutionary processes such as evolu-
tion of dispersal or persistence related traits can generate 
eco-evolutionary dynamics with consequences for species 
range change that are poorly understood (Donelson et al. 
2019, Nadeau and Urban 2019, Peterson et al. 2019). 
Implementations of these dynamics in RCMs are likely to 
improve ecological forecasts (Waldvogel et al. 2020) and 
represent another key knowledge gap (outstanding ques-
tions 5 and 6, Table 3).

Incorporation of imperfect detection was examined in 
only two model types in a single study (Fig. 3; Briscoe et al. 
2021). Temporal predictive performance was not signifi-
cantly improved over the baseline models across the 69 bird 
species studied, but there was improvement for species with 
lower detection probabilities (Briscoe et al. 2021). Imperfect 
detection is common in wildlife surveys, and the ODM 
framework allows estimating environment–occupancy rela-
tionships while accounting for imperfect detection (Lahoz-
Monfort et al. 2014). More studies are needed to assess the 
benefits of accounting for imperfect detection on RCM pre-
dictions, including for multi-species and dynamic ODMs 
(outstanding question 7, Table 3).

The impacts of accounting for sampling bias on RCMs 
temporal predictive performance and transferability are 
still unknown. Recent simulation studies have shown that 
accounting for sampling bias through model-based data inte-
gration (the only model type accounting for sampling bias; 
Table 1) may generate more accurate predictions of species 
distributions than using a single data source (Simmonds et al. 
2020, Ahmad Suhaimi et al. 2021). Testing whether these 
improvements are kept when projecting the models forward 
in time should, therefore, be considered another knowledge 
gap (outstanding question 8, Table 3).

Reasons for the knowledge gaps

The use of retrospective forecasts for benchmarking experi-
ments in ecology lags other disciplines (Urban 2019, Xia et al. 
2020). Several factors may discourage or prevent researchers 
from conducting benchmarking experiments. Historically, 
limiting factors were computational power, statistical 
methods and data availability (Luo et al. 2011). Arguably, 
improvements in computational capacity and development 
of statistical advances have cleared some of the main obsta-
cles. The most likely reason for this lag is data limitation. 
Data limitation is not necessarily overcome by having two 
temporally-independent distributional datasets for training 
and testing RCMs. While contemporary distribution data-
sets are relatively easy to come by, the main constraint on 
benchmarking RCMs using retrospective forecasts is the lack 
of information-rich, accurately georeferenced data necessary 
for training process-explicit models in the past. If resources 

Figure 3. Number of RCM model types that implement ecological and observational processes and the proportion that are benchmarked. 
Of 29 model types that explicitly model ecological or observational processes only 9 were benchmarked. Light blue represents model types 
in which the process has been implemented but its effects on model temporal predictive performance or temporal transferability have not 
been benchmarked. Dark blue represents model types for which their temporal predictive performance has been benchmarked against a 
simpler model using temporally independent datasets. None of the benchmarking experiments compared model temporal transferability.
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are available, high quality contemporary testing datasets can 
be collected. However, high quality historical data sets can-
not generally be created. This issue is particularly acute for 
long-lived organisms. For example, little opportunity exists 
for testing retrospective forecasts produced by dynamic 
RCMs because most require very detailed spatio-temporally 
explicit distribution data to be trained (e.g. time-series of 
abundance/occurrence for many sites across the landscape or 
multi-temporal presence-absence maps; outstanding ques-
tion 1, Table 3). Simulated data had been used to overcome 
this limitation. One of the model types that is likely restricted 
by this kind of data limitation is the dynamic range models 
(Pagel and Schurr 2012), which has only been tested using 
simulated data. Commonly, these simulations force an equi-
librium between species and their environment at baseline 
time (i.e. the time in which the models are trained, or in some 
cases the center of the time-series used to train the models) 
for the virtual model-testing experiment (Pagel and Schurr 
2012, Zurell et al. 2016). Establishing equilibrium baseline 
conditions during simulation testing may mask the improve-
ments of accounting for non-equilibrium demographic, dis-
persal or evolutionary dynamics. Hence, it is also necessary 
to test whether the magnitude or direction of the effects of 
accounting for ecological processes on the temporal predic-
tive performance of these models will change when simulat-
ing populations that are not in equilibrium when training 
data are collected (outstanding question 2, Table 3).

Other reasons that could explain the lack of benchmark-
ing studies of process-explicit RCMs include lack of access to 
documentation and accessible tutorials to guide the param-
eterization of complex models (Briscoe et al. 2019), and the 
data-specificity of process-explicit models (Evans et al. 2016, 
Urban et al. 2022). The data required to train one particular 
process-explicit RCM may not be applicable to an alternative 
model, making it more difficult to collect the data required 
for benchmarking. Differences in the format of predictions 
may also induce some hesitance about embarking in bench-
marking exercises. For example, individual-based models 
usually predict population densities and not probabilities 
of occurrence. This may limit the direct use of commonly 
used predictive performance metrics such as AUC-ROC and 
AUC-PR, which are better suited for probabilistic predic-
tions (but we note that estimates of occurrence probability 
can be derived from mean density estimates). Finally, using 
theoretical knowledge of range change drivers to develop 
models that explicitly account for processes may increase the 
risk of confirmation bias, making researchers less inclined to 
interrogate models to reveal their weaknesses and limitations 
(Connolly et al. 2017).

Data and opportunities to improve model 
testing

Recent efforts to make consolidated databases more available 
are diminishing the barrier of historical data for benchmark-
ing temporal predictive performance. We briefly reviewed Ta
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e 
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consolidated datasets potentially useful for performing 
benchmarking experiments between alternative RCMs 
through retrospective forecasting of observed range-shifts. 
For this illustrative exercise, we limited the search to one 
of the taxa that has been more closely studied and so more 
data-rich, the plants (i.e. Plantae kingdom). However, most 
of the listed databases are not limited to plants (e.g. GBIF, 
GlobTherm, EMBL-EBI) or have analogue consolidation 
databases for other taxa (e.g. COMADRE is the equiva-
lent to COMPADRE, but for animal species). Our findings 
highlight data of value for model development and testing, 
including opportunistic occurrence records (such as GBIF), 
occupancy, demographic and molecular and functional traits 
data for tree and other plant species (Table 2). Many of these 
consolidated databases have global coverage and include 
data collected as early as the 19th century. One of them, 
ForestREplot, was specifically designed to investigate tem-
poral changes in species abundance, distribution, composi-
tion and other changes in biological diversity of understory 
plants.

Even though huge efforts have been recently directed 
to make data accessible on these platforms, the opportuni-
ties still come with challenges. Two of the main ones are 1) 
developments to verify the veracity and variety of the data 
are not keeping pace with the velocity of data accumulation 
(but see Sabatini et al. 2021); and 2) the velocity to assimilate 
data lags the velocity of data collection and model develop-
ments (Xia et al. 2020). The recent release of a new version 
of sPlot (Table 2; Bruelheide et al. 2019) is an indication that 
part of these challenges are being targeted. This new open-
access dataset, implemented in an R package, subsampled the 
vegetation plots from sPlot to ensure a more environmen-
tally balanced version for global comparisons (sPlotOpen; 
Sabatini et al. 2021). More efforts need to be redirected to 
coordinate not only filling the data gaps, but also to generate 
platforms and cyber-structures that will help identify issues 
and devote the resources in the necessary direction (Fer et al. 
2020, Urban et al. 2022).

To stimulate future research on understanding the tempo-
ral predictive performance and transferability of RCMs, we 
collate the outstanding questions identified in previous sec-
tions, models requiring benchmarking and the data required 
to train and test them (Table 3). The proposed research would 
help fill the knowledge gaps identified in this review. We do 
not intend to answer the question of whether the data nec-
essary for performing retrospective forecast, and particularly 
for training process-based RCMs in the past, is available for 
any of the proposed model benchmarking. However, we sug-
gest a couple of databases in which researchers may find data 
potentially useful for benchmarking retrospective forecasts 
across RCMs. Generating simulated data to perform model 
benchmarking may remain the only plausible option in the 
short term for benchmarking some types of models. Ideally, 
benchmarking RCMs to better understand temporal predic-
tive performance and transferability will be undertaken using 
a combination of empirical retrospective forecasting and sim-
ulation data studies.

Conclusions

Forecasting species distributions under changing environments 
remains a key challenge for biodiversity conservation policy 
and management. Our understanding of how explicitly mod-
elled ecological and observational processes may influence the 
temporal predictive performance and transferability of RCMs 
is far from complete. Here we highlighted and described the 
gap between the diversification of RCMs that incorporate rel-
evant processes and the assessment of the potential improve-
ments to range change prediction that they may bring. We 
found that past assessments have been largely restricted to 
RCMs that included dispersal and demographic processes. 
Lack of rigorous assessments of models that incorporate other 
relevant processes such as local adaptation or sampling bias 
is concerning because there remains little basis on which to 
prioritize their inclusion in models that inform conservation 
management priorities (Román-Palacios and Wiens 2020).

Considering the identified knowledge gaps and range 
dynamics theory, we propose research to better understand the 
influence of ecological and observational processes on tempo-
ral predictive performance and transferability of RCMs. The 
use of historical databases and simulation exercises to explore 
key methodological questions, including relative predictive 
performance of process-explicit and process-implicit models, is 
an opportunity to fill knowledge gaps. Efforts to compile and 
improve the accessibility of biodiversity data, and guidelines 
to perform simulation exercises are crucial to making bench-
marking experiments the standard protocol to test whether the 
modelling of processes actually improve range change forecasts.
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