
PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

ON THE COMPLEXITY OF

BIDIRECTIONAL CONSTRAINTS

FOR DATA EXCHANGE

GABRIEL SIMÓN DIÉGUEZ FRANZANI

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Advisor:

MARCELO ARENAS S.

Santiago de Chile, December 2014

c©MMXIV, GABRIEL DIÉGUEZ FRANZANI

c©MMXIV, GABRIEL DIÉGUEZ FRANZANI

Se autoriza la reproducción total o parcial, con fines académicos, por cualquier medio

o procedimiento, incluyendo la cita bibliográfica que acredita al trabajo y a su autor.

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

ON THE COMPLEXITY OF

BIDIRECTIONAL CONSTRAINTS

FOR DATA EXCHANGE

GABRIEL SIMÓN DIÉGUEZ FRANZANI

Members of the Committee:

MARCELO ARENAS S.

JUAN L. REUTTER D.

JORGE PÉREZ R.

JOSÉ LUIS ALMAZÁN C.

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Santiago de Chile, December 2014

c©MMXIV, GABRIEL DIÉGUEZ FRANZANI

To everyone who feels to be my

family.

ACKNOWLEDGEMENTS

I would like to thank the following people (in no particular order):

Marcelo Arenas for three reasons. First, for the opportunity of being part of such an

amazing research group, full of incredibly talented and fun people; second, for the huge

opportunity of giving lectures; and finally, for his dedication as my advisor, having always

an idea when things were not going through.

My “second advisor” Jorge Pérez for his time, encouragement and support, and for

always challenging me with new problems.

Juan Reutter for his incredibly useful insights for many proofs, for always having time

for a little talk, and for always having the right professional or personal advice.

José Luis Almazán, president of my thesis committee, for making the final part of this

long process fast and simple.

My office colleagues, the old and new (BANG!) guys, for all the good times in these

years. It is an honour to be the link between two “Fishbowl 10” generations.

All other friends in DCC / PUC: the ones from my undergraduate years, the ones

from the master’s times, the ones who laugh at Dinkleberg, etc., and all other people in the

“database gang” and the Nucleus for the fun trips and chats.

My parents, my brothers, my family and my friends for their invaluable love and

support, and for always believing in me.

And finally, Daniela for being such a great support through all these years. Without

the huge amounts of love, time, patience, kindness and fun she has given to me / had with

me, I would not be here finishing this thesis.

My postgraduate studies were partially funded by CONICYT Master’s scholarship CONICYT-
PCHA/Magı́ster Nacional/2013 - 221320842 and the Millennium Nucleus Center for Semantic Web Re-
search under Grant NC120004.

v

TABLE OF CONTENTS

Acknowledgements . v

LIST OF TABLES . viii

Abstract . ix

Resumen . x

1. Introduction . 1

Summary of contributions . 5

Thesis outline and structure . 7

2. Preliminaries . 8

2.1. Query languages . 8

2.2. Schema mappings . 9

2.2.1. Specifying schema mappings . 9

2.2.2. Data exchange: Universal solutions and Query answering 10

3. Complexity of the Existence of Solutions Problem 12

3.1. Data complexity . 13

3.2. Combined complexity . 18

4. Complexity of Query Answering . 28

4.1. Data Complexity . 29

4.1.1. The general case . 30

4.1.2. The full case . 35

4.2. Combined Complexity . 45

4.2.1. The general case . 45

4.2.2. The full case . 46

5. Concluding remarks . 58

vi

References . 60

vii

LIST OF TABLES

3.1 Complexity of EXISTENCEOFSOLUTIONS for bidirectional constraints 13

4.1 Data complexity of CERTAINANSWERS under bidirectional constraints 29

4.2 Combined complexity of CERTAINANSWERS under bidirectional constraints . 29

viii

ABSTRACT

Schema mappings are of fundamental importance in data management; they have

proved to be the essential building block for several data-interoperability tasks such as data

exchange, data integration and peer data management. Most of the research on schema

mappings has focused on mappings specified by st-tgds, which although natural and sim-

ple to specify, fail to impose enough conditions to unambiguously define what are the

instances that should be materialized when exchanging data. Recently, bidirectional con-

straints have been proposed to specify mappings; they impose at the same time constraints

over the source and target instances participating in them, and have the potential to mini-

mize the ambiguity in the description of the target instances.

In this thesis, we expand the formal study of bidirectional constraints; in particular,

we study the computational complexity of two fundamental problems in the context of

data exchange: checking the existence of solutions and answering queries. In the former,

we analyze both the data and combined complexity, providing upper and lower bounds

for different scenarios. In the latter, we also distinguish between several query languages

with different expressive powers. In the proofs we introduce some new techniques, like a

modified version of the classical chase procedure.

Keywords: Data exchange, Schema mappings, Bidirectional constraints, Query

answering, Computational complexity

ix

RESUMEN

Los mapeos de esquemas tienen una importancia fundamental en el manejo de datos,

pues han mostrado ser la base para numerosas tareas de interoperabilidad de datos como

intercambio de información, integración de datos y manejo de datos entre pares. La mayor

parte de la investigación sobre mapeos de esquemas se ha concentrado en mapeos descritos

por st-tgds, las cuales si bien son naturales y simples de especificar, no logran imponer

suficientes condiciones para definir sin ambigüedad cuáles son las instancias que debieran

materializarse al intercambiar información. Recientemente, se ha propuesto el uso de

dependencias bidireccionales en la especificación de mapeos de esquemas, siendo capaces

de imponer al mismo tiempo restricciones sobre las instancias del source y del target que

participan en ellos, y teniendo el potencial de minimizar la ambigüedad en la descripción

de las instancias target.

En esta tesis continuamos con el estudio formal sobre las dependencias bidireccionales.

En particular, estudiamos la complejidad computacional de dos problemas fundamentales

en el contexto de intercambio de información: verificar la existencia de soluciones y con-

testar consultas. En el primer caso, se analiza tanto la complejidad de los datos como la

complejidad combinada, mostrando cotas superiores e inferiores en distintos escenarios.

En el segundo caso, además distinguimos entre diversos lenguajes de consulta con dis-

tintos poderes expresivos. En las demostraciones introducimos algunas técnicas nuevas,

como una versión modificada del clásico algoritmo de chase.

Palabras Claves: Intercambio de información, Mapeo de esquemas, Dependencias

bidireccionales, Contestar consultas, Complejidad computacional

x

1. INTRODUCTION

A schema mapping is a high-level specification that describes how data from a source

schema is to be mapped to a target schema. Schema mappings are of fundamental impor-

tance in data management today. In particular, they have proved to be the essential build-

ing block for several data-interoperability tasks such as data exchange (Fagin, Kolaitis,

Miller, & Popa, 2005), data integration (Lenzerini, 2002), and peer data management (De

Giacomo, Lembo, Lenzerini, & Rosati, 2007).

In the relational-database context, schema mappings are usually specified by using a

logical language considering the set of relation names (or table names) of the database

schemas as vocabulary. For example, consider two independent database schemas:

S containing relation Employee(name, lives in, works in), and

T containing relation Shuttle(name, destination).

Relation Employee in schema S is used to store employee names and the places where

they live in and work in. Relation Shuttle in schema T is intended to store names of em-

ployees that must take the shuttle bus to reach the places where they work in (destination).

A possible way of relating schemas S and T is by using the following first-order logic

formula:

∀x∀z
(
∃y(Employee(x, y, z) ∧ y 6= z) → Shuttle(x, z)

)
. (1.1)

The above formula essentially states that if relation Employee stores an employee that

lives in a place different from which she/he works in, then the employee name and the

place where she/he works in should be stored in relation Shuttle.

Formula (1.1) describes a mapping between schemas S and T that is given by an im-

plication where the left-hand side of the implication is a query over S and the right-hand

side of the implication is a query over T. This class of implication formulas has been

the most widely used to specify schema mappings both in theoretical studies (Lenzerini,

1

2002; Fagin, Kolaitis, Miller, & Popa, 2005; Kolaitis, 2005; De Giacomo et al., 2007;

Arenas, Pérez, & Riveros, 2009; Arenas, Pérez, Reutter, & Riveros, 2010; Arenas, Pérez,

& Reutter, 2011; Arenas, Pérez, & Reutter, 2013; Pérez, 2011) and in practical appli-

cations (Hernández et al., 2002; Haas, Hernández, Ho, Popa, & Roth, 2005; Bernstein,

Green, Melnik, & Nash, 2006).

In particular, schema mappings specified by implication formulas have been the pre-

ferred formalism for exchanging data (Fagin, Kolaitis, Miller, & Popa, 2003, 2005; Fagin,

Kolaitis, & Popa, 2003; Libkin, 2006; Gottlob & Nash, 2006; De Giacomo et al., 2007).

In the data exchange context one is given a source database instance and a schema map-

ping. Then the problem is to find a target database instance that satisfies the constraints

imposed by the schema mapping. Consider Formula (1.1) above and the database D1 over

(the source) schema S given by

D1:

Emp name lives in works in

Juan Santiago Valparaiso

Diego Santiago Santiago

A possible solution for the data exchange problem is the database D2 over (the target)

schema T given by

D2:
Shuttle name destination

Juan Valparaiso

Notice that D1 together with D2 satisfy the constraints imposed by (1.1) (considering the

standard first-order logic semantics). Nevertheless, there are other solutions for this data

exchange problem. Consider the databases D3 and D4 given by

D3:

Shuttle name destination

Juan Valparaiso

Diego Santiago

D4:

Shuttle name destination

Juan Valparaiso

Juan Santiago

Alberto Curico

2

In this case we have thatD1 together withD3 satisfy Formula (1.1). We also have that

D1 and D4 satisfy Formula (1.1). Thus, the database instances D3 and D4, although less

natural than D2, are also solutions for the data exchange problem. This sort of anomaly

is caused by the semantics of the implication formula. Notice that the formula used to ex-

change data is not restricting the possibility of adding arbitrary tuples to relation Shuttle

in the target database.

The semantics of implication formulas has raised several issues in data exchange. One

of them is the problem of deciding what is a good solution for the data exchange problem.

In Fagin, Kolaitis, Miller, and Popa (2003) and Fagin, Kolaitis, Miller, and Popa (2005),

it was proposed to consider the minimal (or universal) solutions as the only solutions that

are good for data exchange. Although D2, D3 and D4 are considered valid solutions for

the data exchange problem, only D2 is considered a good solution according to Fagin,

Kolaitis, Miller, and Popa (2005). Towards solving the same problem, Libkin (2006) has

proposed to change the semantics of schema mappings given by implication formulas by

considering a closed-world assumption. Thus, formulas are no longer evaluated using

the standard first-order logic semantics. Under the semantics proposed by Libkin (2006),

D3 and D4 do not satisfy the constraints given by Formula (1.1), and thus, they are no

longer valid solutions for D1. Although this new semantics departs from a classical first-

order logic semantics, it has proved to have good properties in terms of materialization

of target instances. Other lines of research include the proposal of alternative notions

for answering target queries, in particular, non-monotone queries (Hernich, 2013) and

aggregate queries (Afrati & Kolaitis, 2008).

In Arenas, Diéguez, and Pérez (2014), it was argued that there is a more simple and

natural way of dealing with the above mentioned issue. In that work, we decided to fol-

low a different approach and, instead of using ad-hoc solutions for each of the mentioned

issues, we used a mapping-specification language that imposes enough constraints over

possible target instances in order to minimize the uncertainty when exchanging data. In

3

that way one can use standard first-order logic notions to define the semantics of map-

pings, the possible target solutions as well as the process of answering target queries. In

our example, if one wants D2 to be the solution for the data exchange problem, then that

should be clear in the specification of the schema mapping. Thus, instead of an implica-

tion formula, one should use a bidirectional implication. Therefore, our schema mapping

should be specified as:

∀x∀z
(
∃y(Employee(x, y, z) ∧ y 6= z) ↔ Shuttle(x, z)

)
. (1.2)

If one considers D1 as a source database and the schema mapping specified by For-

mula (1.2), then the only possible solution for the data exchange problem is D2, since

D2 is the only database instance over schema T that together with D1 satisfies (1.2).

Thus, in Arenas, Diéguez, and Pérez (2014) we proposed to use what we call bidi-

rectional constraints to specify mappings. These specifications impose at the same time

constraints over the source and target instances participating in a mapping, and have the

potential to minimize the ambiguity in the description of the target instances that should

be materialized when exchanging data. Bidirectional constraints are formulas of the form

∀x̄
(
ϕ(x̄) ↔ ψ(x̄)

)
where ϕ(x̄) is a formula over the source schema, and ψ(x̄) is a for-

mula over the target schema. One can obtain several different languages of bidirectional

constraints depending on the formulas allowed in the source and target parts.

Although bidirectional constraints are natural in several scenarios, they have been

almost disregarded in the study and use of schema mappings. The reason for that is man-

ifold. First of all, from a logical point of view, is more simple to deal with unidirectional

implications, since bidirectional implications impose more restrictions on the database

instances. Second, it is not clear how to use standard database techniques like the chase

procedure (Maier, Mendelzon, & Sagiv, 1979) with bidirectional implications. Notice that

the chase procedure lies in the core of almost all algorithms used in data exchange (Fagin,

Kolaitis, Miller, & Popa, 2003, 2005; Fagin, Kolaitis, & Popa, 2003; Gottlob & Nash,

2006). In Arenas, Diéguez, and Pérez (2014) it was shown that the chase is still a useful

4

tool in this scenario, and we expand upon that in this thesis. Last but not least, the interest

on dealing with schema mappings as first class citizens in the schema mapping manage-

ment area is very recent (Fagin, Kolaitis, Popa, & Tan, 2005; Madhavan & Halevy, 2003;

Fagin, 2007; Kolaitis, 2005; Fagin, Kolaitis, Popa, & Tan, 2008; Arenas, Pérez, & Riveros,

2008; ten Cate & Kolaitis, 2009, 2010; Arenas, Pérez, Reutter, & Riveros, 2009b, 2009a;

Arenas et al., 2010; Pérez, 2011; Melnik, Adya, & Bernstein, 2008; Bernstein, Halevy,

& Pottinger, 2000; Bernstein, 2003; Melnik, 2004; Melnik, Bernstein, Halevy, & Rahm,

2005). Thus, in the short life of the area, it is natural that the researchers decided to focus

in well-known and well-behaved classes of formulas to define mappings.

We do think that schema mappings specified by bidirectional implication formulas

deserve a deep investigation, mainly because in many applications they are more natural

than mappings defined by unidirectional implications. We also think that in several cases

when users map data they are implicitly thinking in bidirectional constraints and not in

unidirectional implication formulas. Thus, dealing directly with bidirectional constraints

would have a considerable impact in practice, and the research in this area has the potential

of laying the foundations for the the next generation data-interoperability tools. This thesis

continues with the work started in Arenas, Diéguez, and Pérez (2014) in order to study the

fundamental problems that arise in data exchange and schema mapping management when

mappings are specified by bidirectional constraints.

Summary of contributions

In this thesis we expand the formal study of bidirectional constraints started in Arenas,

Diéguez, and Pérez (2014). Specifically, we study the computational complexity of two

fundamental problems in the context of data exchange: checking whether there exists

a solution in a given data exchange setting, and answering queries in the data exchange

context. In both cases, we provide results for data and combined complexity (Vardi, 1982),

and we also distinguish between general dependencies and full dependencies. The latter

are a widely used class of dependencies, which will be defined in the next chapter.

5

In the first part of the thesis, we study the computational complexity of the existence

of solutions problem. Regarding this problem, we have the following results:

• Data complexity:

– PTIME-membership for mappings specified by full dependencies.

– NP-completeness for mappings specified by general dependencies.

• Combined complexity:

– ΠP
2 -completeness for mappings specified by full dependencies.

– NEXPTIME-completeness for mappings specified by general dependen-

cies.

In the second part, we study the problem of answering queries in the data exchange

context. In this case, besides analyzing data and combined complexity, and considering

general and full dependencies, we also distinguish between several query languages with

different expressive powers, including non-monotone queries. The results in this part are

the following:

• In data complexity, we analyzed the complexity of the problem for five widely

used query languages:

– For mappings specified by full dependencies, the results range from PTIME-

membership to coNP-completeness.

– For mappings specified by general dependencies, the problem is coNP-

complete for all the considered languages.

• In combined complexity, we again analyzed the complexity of the problem for

six widely used query languages:

– For mappings specified by full dependencies, the results range from ΣP
2 -

completeness to coNEXPTIME-completeness.

– For mappings specified by general dependencies, the problem is

coNEXPTIME-complete for all the considered languages.

• Finally, we proved that the problem is undecidable for unrestricted first-order

queries, even when the mapping is specified by full dependencies.

6

Additionally, in the proofs we introduce some new techniques, like a modified version

of the classical chase procedure, showing that some typical tools from the field are still

useful in our setting.

Thesis outline and structure

Chapter 2 introduces all necessary notation and concepts, including notions from rela-

tional databases, data exchange and bidirectional constraints. Chapter 3 contains the com-

plexity analysis of the EXISTENCEOFSOLUTIONS problem in several scenarios, while

Chapter 4 contains it for the CERTAINANSWERS problem. Finally, Chapter 5 presents

some final remarks and future lines of research.

7

2. PRELIMINARIES

We assume some familiarity with first-order logic, computational complexity

(Papadimitriou, 1994), database theory (Abiteboul, Hull, & Vianu, 1995), and data ex-

change (Fagin, Kolaitis, Miller, & Popa, 2005). We also assume that data is represented

in the relational model. A relational schema, or just schema, is a finite set {R1, . . . , Rn}

of relation symbols, each relation having a fixed arity. Given a schema R, we denote by

Inst (R) the set of all instances of R.

2.1. Query languages

Information stored in databases is retrieved via queries. In this thesis we focus on

queries expressed by using logical formulas, and in particular formulas in fragments of

first-order logic (FO). A query Q over a schema R is a first-order logic formula using R

as vocabulary. Given a query Q(x̄), where x̄ is the tuple of free variables mentioned in Q,

the answer of Q on a particular instance J is the set Q(J) = {t̄ | J |= Q(t̄)}, where |=

denotes the standard satisfaction of FO formulas. A query without free variables is called

a boolean query, and then we say that Q(J) = true if J |= Q, and Q(J) = false if J 6|= Q.

Besides FO, the main query languages that we consider in this thesis are the languages

of conjunctive queries (CQ), unions of CQ (UCQ), and the languages obtained from them

by adding the equality predicate, the inequality predicate and the negation operator (e.g.

UCQ=, CQ 6= and UCQ¬). Additionally, some restrictions to queries with negation are

considered; in particular, CQs with one and two negations, and UCQs with one negation

per disjunct (denoted by CQ1-¬, CQ2-¬ and UCQ1-¬ respectively).

We also consider the class of monotone queries, denoted by MON. This class contains

all queries Q over a schema R that satisfy the following property: given two instances

J1, J2 over R such that J1 ⊆ J2, it holds that Q(J1) ⊆ Q(J2). Note that this is a semantic

class of queries, while the previous were syntactic classes.

8

2.2. Schema mappings

Schema mappings are used to define a semantic relationship between two schemas. In

this thesis, we use a general definition of a schema mapping; given two schemas with no

relation symbol in common, S and T, a schema mapping (or just a mapping)M between

S and T is a set of pairs (I, J), where I is an instance of S, and J is an instance of T.

That is, a mappingM is just a subset of Inst (S) × Inst (T). Given an instance I of S, a

mappingM associates to I a set of possible solutions for I , denoted by SOLM(I), given

by the set SOLM(I) = {J ∈ Inst (T) | (I, J) ∈M}. From now on, assume that we have

such schemas S and T.

2.2.1. Specifying schema mappings

In practice, schema mappings are represented by using logical formulas. Again, we

focus on using fragments of FO to specify mappings. Given a set Σ of FO sentences

over vocabulary S ∪ T, we say that a mapping M is specified by Σ if for every pair of

instances (I, J) ∈ Inst (S)× Inst (T) it holds that (I, J) ∈ M if and only if (I, J) |= Φ

for every Φ ∈ Σ. For convenience, we write the last statement as (I, J) |= Σ. Therefore,

we usually refer to a mapping as a triple M = (S,T,Σ), and to the set of solutions as

SOLM(I) = {J ∈ Inst (T) | (I, J) |= Σ}.

The usual way to specify schema mappings was introduced by Fagin, Kolaitis, Miller,

and Popa (2005). A source-to-target dependency from S to T is a formula of the form

∀x̄(ϕ(x̄)→ ψ(x̄)) (2.1)

where ϕ(x̄) is an FO-formula over S and ψ(x̄) is an FO-formula over T, both formulas

with x̄ as its tuple of free variables. We usually drop the outermost universal quantification

when specifying these constraints, and thus we only write ϕ(x̄)→ ψ(x̄) for formula (2.1).

A mapping defined by source-to-target dependencies is called an st-mapping. Depending

on which fragments of FO we use to define formulas ϕ(x̄) and ψ(x̄), we obtain a wide

range of possible fragments of source-to-target dependencies. Given fragments L1 and

9

L2 of FO=, an L1-TO-L2 dependency is a formula of the above form in which ϕ(x̄) is

an L1-formula over S and ψ(x̄) is an L2-formula over T. In Fagin, Kolaitis, Miller,

and Popa (2005), the language of CQ-TO-CQ dependencies was chosen as the preferred

formalism for specifying schema mappings, calling it source-to-target tuple-generating

dependencies (st-tgds). In this work, we will also consider full L-TO-CQ dependencies,

which are formulas in which the target part is a CQ without existential quantifiers.

In this thesis, we study mappings specified by sets of formulas of the following form

∀x̄
(
ϕ(x̄) ↔ ψ(x̄)

)
, (2.2)

where ϕ(x̄) is an FO-formula over S and ψ(x̄) is an FO-formula over T, both formulas

with x̄ as tuple of free variables. We call this formula a bidirectional constraint. We also

usually drop the outermost universal quantification when specifying these constraints, and

thus we only write ϕ(x̄) ↔ ψ(x̄) for formula (2.2). We say that a sentence Φ is an

〈L1,L2〉-dependency between S and T, if Φ is a bidirectional constraint of the form (2.2)

in which ϕ(x̄) is in L1 and ψ(x̄) is in L2. When the source and target schemas are clear

from the context, we will only talk about 〈L1,L2〉-dependencies. For example, consider

schemas S = {Mother(·, ·), Father(·, ·)} and T = {Parent(·, ·)}. Then the following

sentence

(Father(x, y) ∨ Mother(x, y)) ↔ Parent(x, y) (2.3)

is an example of a 〈UCQ,CQ〉-dependency, which states that x is a parent of y if and

only if it is whether her/his father or her/his mother. As before, an 〈L,CQ〉-dependency

in which the target part is a CQ without existential quantifiers is called a full 〈L,CQ〉-

dependency.

2.2.2. Data exchange: Universal solutions and Query answering

In the context of data exchange, the main task is to materialize a target instance for

a given source instance. Given a mapping M specified by FO=-TO-CQ dependencies

10

and a source instance I , one can define a particular class of solutions in SOLM(I) called

universal solutions. These solutions are the most general among all the possible solutions

for I under M (Fagin, Kolaitis, Miller, & Popa, 2005). Moreover, a particular class of

universal solutions, called canonical universal solutions, can be generated (in polynomial

time) by means of the classical chase procedure (Maier et al., 1979). We refer the reader

to Fagin, Kolaitis, Miller, and Popa (2005) for precise definitions of these notions. We

denote by chaseΣ(I) the result of applying the chase procedure to an instance I with a set

Σ of dependencies. We call USOLM(I) and CUSM(I), the set of universal solutions and

canonical universal solutions for I underM, respectively. In general, for st-mappings, we

have that CUSM(I) (USOLM(I) (SOLM(I).

Another important aspect in data exchange is how to answer queries over the target

schema. The most accepted semantics for query answering in data exchange is the certain

answers semantics: given a mappingM, a source instance I and a query Q over T, the

certain answers of Q with respect to I underM is the set

CERTAINM(Q, I) =
⋂

J∈SOLM(I)

Q(J).

In other words, a tuple t̄ ∈ CERTAINM(Q, I) if t̄ ∈ Q(J) for every solution J for I

underM. For boolean queries, we say that CERTAINM(Q, I) = true if Q(J) = true for

every solution J , and that CERTAINM(Q, I) = false if there exists a solution J such that

Q(J) = false.

11

3. COMPLEXITY OF THE EXISTENCE OF SOLUTIONS PROBLEM

As it was defined in Chapter 2, in a data exchange settingM = (S,T,Σ) each source

instance I has a corresponding set of solutions, denoted by SOLM(I). This set represents

all the possible ways in which data from the source instance can be exchanged to the target

according to the setting. Then, a natural question arises: is there any way in which we can

exchange data? Or, more formally, is SOLM(I) 6= ∅?

In the framework introduced by Fagin et al. (2005), in which Σ consists of st-tgds,

this problem is trivial: for every source source instance I one can always find a solution.

However, in the presence of bidirectional constraints this does not necessarily hold.

Example 1. Take a simple settingM = (S,T,Σ), with Σ consisting of the st-tgds

A(x)→ R(x)

B(x)→ R(x)

and a source instance I = {B(1)}. It is clear that the target instance J = {R(1)} is a

solution for I underM. Now consider the settingM′ = (S,T,∆), with ∆ consisting of

the bidirectional constraints

A(x)↔ R(x)

B(x)↔ R(x)

Note that we only changed the implication. The previous source instance I does not

have any solution underM′. �

The previous example shows that asking for the existence of solutions for a particular

source instance is worth studying under the settings specified by bidirectional constraints,

and, in particular, for the fragment of 〈UCQ=,CQ〉-dependencies introduced by Arenas,

Diéguez, and Pérez (2014). In the following sections, we study the computational com-

plexity of solving this problem in several scenarios. The results are summarized in table

3.1, showing the references to the theorems where each result is proved.

12

full 〈CQ,CQ〉 full 〈UCQ=,CQ〉 general 〈CQ,CQ〉 general 〈UCQ=,CQ〉

data complexity in PTIME
Theorem 2

in PTIME
Theorem 2

NP-complete
Theorem 1

NP-complete
Theorem 1

combined complexity ΠP
2 -complete
Theorem 4

ΠP
2 -complete
Theorem 4

NEXPTIME-complete
Theorem 3

NEXPTIME-complete
Theorem 3

TABLE 3.1. The complexity of EXISTENCEOFSOLUTIONS for bidirectional constraints.

3.1. Data complexity

In this section we study the data complexity (Vardi, 1982) of the

EXISTENCEOFSOLUTIONS problem; this is, when the mapping is considered to be fixed,

and the input is only the source instance. This is a natural way of studying the complexity

of this problem, since in practice is usual that databases are much larger than mapping

specifications. Formally, the problem is defined as follows:

Problem: EXISTENCEOFSOLUTIONS(M)

Input: An instance I over S.

Question: Is SOLM(I) 6= ∅?

The following result establishes the upper and lower bounds of the complexity of this

problem, when we consider mappings specified by 〈UCQ=,CQ〉-dependencies without

any further restrictions. We show that the problem is provably intractable, and the lower

bound holds even when equalities and disjunctions are banned.

THEOREM 1.

(1) EXISTENCEOFSOLUTIONS(M) is in NP for every mappingM specified by a

set of 〈UCQ=,CQ〉-dependencies.

(2) There exists a mapping M specified by 〈CQ,CQ〉-dependencies such that

EXISTENCEOFSOLUTIONS(M) is NP-hard.

13

PROOF.

(1) Let M = (S,T,∆) be a mapping, where ∆ is a set of

〈UCQ=,CQ〉-dependencies. Consider the following set of UCQ=-TO-CQ st-

dependencies:

∆→ = {∀x̄ (ϕ(x̄)→ ∃ȳψ(x̄, ȳ)) | ∀x̄ (ϕ(x̄)↔ ∃ȳψ(x̄, ȳ)) ∈ ∆}.

Consider the following Proposition:

PROPOSITION 1. Given a source instance I , if there exists a solution J for I

under M, there exists a solution J∗ for I under M of polynomial size (with

respect to I).

The result follows directly from Proposition 1, since checking that J∗ is a solu-

tion can be done in polynomial time. Now we prove Proposition 1:

First, note that since J is a solution, it holds that (I, J) |= ∆, and then (I, J) |=

∆→. In this proof we use the solution-aware chase procedure as it is used in

Fuxman, Kolaitis, Miller, and Tan (2006): we chase (I,∅) with ∆→ and (I, J),

obtaining an instance (I, J∗) such that J∗ ⊆ J and (I, J∗) |= ∆→. It is clear

that (I,∅) ⊆ (I, J), so by the results in Fuxman et al. (2006) it holds that J∗

is of polynomial size w.r.t. (I,∅) (since (I, J) |= ∆→ and J∗ is the result of a

solution-aware chase of (I,∅) with ∆→ and (I, J)).

Now we need to show that J∗ is a solution for I under M, i.e. (I, J∗) |= ∆.

By contradiction, suppose that all previous statements hold, but (I, J∗) 6|= ∆.

Since (I, J∗) |= ∆→, the only way this could happen is if there exists a de-

pendency δ = ∀x̄(ϕδ(x̄) ↔ ∃ȳψδ(x̄, ȳ)) ∈ ∆, where ψδ(x̄, ȳ) is a conjunc-

tion of target relations, such that for a tuple of constants ā it holds that I 6|=

ϕδ(ā) and J∗ |= ∃ȳψδ(ā, ȳ). Since J∗ ⊆ J , by monotonicity we know that

{b̄ | J∗ |= ∃ȳψδ(b̄, ȳ)} ⊆ {b̄ | J |= ∃ȳψδ(b̄, ȳ)}, and therefore it is clear that

J |= ∃ȳψδ(ā, ȳ). Given that J is a solution, it holds that (I, J) |= ∆, and in par-

ticular (I, J) |= δ, and thus I |= ϕδ(ā), which contradicts our initial supposition.

14

(2) We will perform a reduction from graph 3-COLORABILITY to the

EXISTENCEOFSOLUTIONS(M) problem, for a mapping M built as follows.

Let G = (V,E) be a graph with 2 connected components: K3 and the graph

itself. Let M = (S,T,∆) be a data exchange setting such that S consists of

binary relation E and unary relations V,H and Error, T consists of binary re-

lations E ′ and C, and the dependencies in ∆ are the following:

V (x) ↔ ∃uC (x, u) (3.1)

E (x, y) ↔ E ′ (x, y) (3.2)

H (u) ↔ ∃xC (x, u) (3.3)

Error (x) ↔ ∃y∃uC (x, u) ∧ C (y, u) ∧ E ′ (x, y) (3.4)

Consider the source instance I (G) = (V,E,H,Error), where H = {r, g, b} is

a set of three colors, none of which is an element of V , and Error = ∅. It is

clear that I (G) can be constructed in polynomial time from G. We claim that G

is 3-colorable if and only if there is a solution for I (G) underM.

(⇒) Since G is 3-colorable, there exists a 3-coloration col (x). Without loss

of generality, we assume the colors assigned by col (x) are the ones in H . We

construct the solution J as follows:

• Start with J = ∅.

• For each x ∈ V , we add the tuple C (x, col (x)) to J .

• For each (x, y) ∈ E, we add the tuple E ′ (x, y) to J .

Now we show that (I (G) , J) |= ∆, showing that (I (G) , J) satisfies each rule:

(3.1) and (3.2) by construction.

(3.3) [→] This side of the dependency states that every color is assigned to at

least one vertex. As G contains K3 and is 3-colorable, this holds for G.

15

[←] This side of the dependency states that every color that is assigned to a

vertex is in H . Since col (x) only assigns colors in H , every color mentioned in

any tuple C (x, u) is in H .

(3.4) Since Error = ∅, the right-hand side of this dependency must be always

false. In other words, for every vertex x, it must not exist an adjacent vertex y

such that x and y have the same color assigned in C. As the colors in C come

from col (x), and G is 3-colorable, this always holds.

(⇐) Given J such that (I (G) , J) |= ∆, we generate a coloration col (x) using

dependencies (3.1) and (3.3) to choose, for every vertex x ∈ V , a color c ∈ H

such that C (x, c). Then, col (x) = c. We now show that col (x) is a 3-coloration:

By contradiction, suppose that col (x) is not a 3-coloration. Therefore, there

exists an edge (y, z) ∈ E such that col (y) = col (z). Using dependency (3.2),

we know (y, z) ∈ E ′. Since the colors in col (x) are all obtained from C, the

right-hand side of (3.4) holds for vertex y. Since J is a solution for I (G), it

follows that y ∈ Error, which is a contradiction sinceError = ∅ in I (G). �

A usual restriction in data exchange is to consider mappings specified by full de-

pendencies. In this scenario, the EXISTENCEOFSOLUTIONS problem can be efficiently

solved.

THEOREM 2. EXISTENCEOFSOLUTIONS(M) is solvable in polynomial time for ev-

ery mappingM specified by full 〈UCQ=,CQ〉-dependencies.

PROOF. Let M = (S,T,∆) be a mapping, where ∆ is a set of full 〈UCQ=,CQ〉-

dependencies. Consider the following set of full UCQ=-TO-CQ st-dependencies:

∆→ = {∀x̄ (ϕ(x̄)→ ψ(x̄)) | ∀x̄ (ϕ(x̄)↔ ψ(x̄)) ∈ ∆}.

In this proof we use the chase procedure as it is used in Fagin, Kolaitis, Miller, and

Popa (2005) with the dependencies in ∆→. Note that we chase with full UCQ=-TO-CQ

16

dependencies, and then every chase has the same result. Now call chase∆→(I) to the chase

result for a source instance I . Consider the following Proposition regarding full mappings:

PROPOSITION 2. Given a source instance I , it has a solution underM if and only if

chase∆→(I) is a solution for I underM.

Since this chase procedure uses UCQ=-TO-CQ dependencies, it terminates in poly-

nomial time, and then chase∆→(I) is of polynomial size. Therefore, if Proposition 2 holds,

theorem 2 holds: we only need to compute the chase and check whether it is a solution,

which can be done in polynomial time. Now we prove Proposition 2:

(⇐) This direction is trivial, since chase∆→(I) is a solution.

(⇒) By contradiction, suppose that SOLM(I) 6= ∅ but J = chase∆→(I) 6∈ SOLM(I).

Thus, we have that (I, J) 6|= ∆, and then it must exist a dependency δ = ∀x̄(ϕδ(x̄) ↔

ψδ(x̄)) ∈ ∆, where ψδ(x̄) is a conjunction of target relations, such that for a tuple of

constants ā one of the following holds:

(1) I |= ϕδ(ā) and J 6|= ψδ(ā).

(2) I 6|= ϕδ(ā) and J |= ψδ(ā).

Note that the first scenario is not possible: given that I |= ϕδ(ā), the chase proce-

dure would have generated the atoms in ψδ(ā). Now, suppose statement 2 holds, and

name Q the conjunctive query ψδ(ā). Since J |= ψδ(ā), there exists a homomorphism

h1 : IQ → J , where IQ is the canonical instance of Q. Consider now the st-mapping

M→ = (S,T,∆→). As SOLM(I) 6= ∅, there exists a target instance J∗ that is a so-

lution for I under M, and therefore (I, J∗) |= ∆. Moreover, (I, J∗) |= ∆→, and thus

J∗ ∈ SOLM→(I). Now, from the results in Fagin, Kolaitis, Miller, and Popa (2005)

we know that J ∈ USOLM→(I), and then we know there exists a homomorphism h2 :

J → J∗. Thus, there exists a homomorphism h = h2 ◦ h1 : IQ → J∗, and then it

follows that J∗ |= ψδ(ā). We also have that (I, J∗) |= δ, and therefore I |= ϕδ(ā),

which contradicts statement 2. We conclude that it cannot be that SOLM(I) 6= ∅ but

chase∆→(I) 6∈ SOLM(I). �

17

3.2. Combined complexity

In this section, we study the combined complexity (Vardi, 1982) of the

EXISTENCEOFSOLUTIONS problem, when both the mapping and the source instance are

part of the input. This is the most well-known notion of complexity, when one does not

distinguish between different parts of the input. Formally, the problem is defined as fol-

lows:

Problem: EXISTENCEOFSOLUTIONS

Input: Mapping M = (S,T,∆) where ∆ is a set of bidirectional

constraints, and an instance I over S.
Question: Is SOLM(I) 6= ∅?

Like in the previous section, we begin by analyzing the complexity of the

EXISTENCEOFSOLUTIONS problem with unrestricted 〈UCQ=,CQ〉-dependencies. We

prove that an exponential blow-up happens with respect to the data complexity. As before,

the lower bound holds without equalities nor disjunctions.

THEOREM 3.

(1) EXISTENCEOFSOLUTIONS is in NEXPTIME for the class of mappings specified

by 〈UCQ=,CQ〉-dependencies.

(2) For the class of mappings specified by 〈CQ,CQ〉-dependencies,

EXISTENCEOFSOLUTIONS is NEXPTIME-hard.

PROOF.

(1) It is clear that this problem is in NEXPTIME: we non-deterministically guess a

target instance J , and then check if J ∈ SOLM(I), which can be done in ex-

ponential time. Notice that a solution J of exponential size with respect toM

and I is guaranteed to exist if SOLM(I) 6= ∅, applying a solution-aware chase.

As we already noted, every solution-aware chase sequence is polynomial in the

18

size of the source instance, as it was shown in Fuxman et al. (2006), and this

expression is exponential when the schema is not fixed.

(2) To prove that the problem is NEXPTIME-hard, we will show a reduction from

TILING (Papadimitriou, 1994): given a set of tile types T = {t0, . . . , tm}, re-

lations H,V ⊆ T × T (which represent horizontal and vertical adjacency con-

straints between tile types) and an integer n in unary, the problem is to determine

if there exists a tiling of a 2n×2n square with tiles in T , starting with the first tile

type in the origin that satisfies the constraints imposed by H and V . Formally, a

tiling is a function f : {0, . . . , 2n−1}×{0, . . . , 2n−1} → T such that f(0, 0) =

t0 and for all i, j (f(i, j), f(i+ 1, j)) ∈ H , and (f(i, j), f(i, j+ 1)) ∈ V . Given

this, we build a data exchange settingM = (S,T,∆), with

S = {T (·), T0(·), . . . , Tm(·), T0(·), H(·, ·), V (·, ·), Bin(·, ·),

Zero(·), One(·), A(·), B,Error(·, ·), Error′}

T = {Tile, T ′0, . . . , T ′m, T0
′
, H
′
, V
′
, Bin′, Zero′, One′}

Intuitively, source relations T , Ti, T0, H and V come directly from the problem

(where H is the complement of H , the same for V and T0). Relation A will be

used to compute all possible positions in the square in binary, but it also includes

positions with 2, in order to overcome some limitations. Bin, Zero and One

will be used to distinguish values. Predicate B has arity 2n and will be used to

represent a special position, which will be necessary to simulate that every tile

type is used in the tiling. Predicates Error and Error′ will represent errors in

the tiling and initial condition, respectively. Relation Error′ has arity 2n + 1.

Finally, the target relation Tile has arity 2n + 1, where the first 2n parameters

represent a position in the square, and the last parameter is the tile type assigned

to it, and the remaining target relations will be copies of the corresponding source

relations.

19

Source instance I will contain the following relation instances:

T = T, T0 = {t0}, . . ., Tm = {tm}, T0 = T\{t0}, H = T × T\H ,

V = T × T\V , Bin = {0, 1}, A = {0, 1, 2}, Zero = {0}, One = {1},

B = {(2̄, 2̄)}, Error = Error′ = ∅

From now on, x̄ will be shorthand for the tuple of variables (x1, . . . , xn), and the

analogous applies to ȳ. The set ∆ will have the following dependencies:

• Copying dependencies:

T0(x)↔ T ′0(x), . . . , Tm(x)↔ T ′m(x) (3.5)

T0(x)↔ T0
′
(x) (3.6)

H(x, y)↔ H
′
(x, y) (3.7)

V (x, y)↔ V
′
(x, y) (3.8)

Bin(x)↔ Bin′(x) (3.9)

Zero(x)↔ Zero′(x) (3.10)

One(x)↔ One′(x) (3.11)

• A dependency that assigns to each position in the square a tile type, which

are computed using predicate A. We also assign tile types to special posi-

tions that include 2’s.

A(x1) ∧ . . . ∧ A(xn) ∧ A(y1) ∧ . . . ∧ A(yn)↔ ∃zT ile(x̄, ȳ, z) (3.12)

• A dependency that ensures that every tile type assigned by equation (3.12)

comes from the given set:

T (z)↔ ∃x̄∃ȳT ile(x̄, ȳ, z) (3.13)

20

Note that this dependency also forces to use each tile type, a restriction that

it is not part of the problem. The following dependency solves this:

B(x̄, ȳ)↔ ∃z0 . . . ∃zmTile(x̄, ȳ, z0) ∧ . . . ∧ Tile(x̄, ȳ, zm)

∧T ′0(z0) ∧ . . . ∧ T ′m(zm) (3.14)

This dependency (from left to right) assigns to special position (2̄, 2̄) all tile

types. Note that it also says (from right to left) that if a position has all

tile types assigned to it, it must be this special one. Note that this is not a

problem, since a valid tiling never uses more than one tile per position, and

therefore we are not discarding possible tilings.

• A dependency that sets the first position to tile type t0:

Error′(x̄, ȳ, z)↔Tile(x̄, ȳ, z) ∧ T0
′
(z)

∧
n∧
i=1

(
Zero′(xi) ∧ Zero′(yi)

)
(3.15)

The intuition behind this dependency is that relation Error′ contains er-

ronous positions. Since it is empty in I , the right part must be false in every

solution, and therefore position (0̄, 0̄) must contain a tile of type t0.

Finally, now we explain how to check horizontal and vertical constraints. As it

was noted by Kostylev and Reutter (2013), horizontally adjacent positions in the

square have the form

(wh01n−k−1, wv), (wh10n−k−1, wv) (3.16)

where k ∈ {0, . . . , n − 1}, wh is a binary word of length k and wv is a binary

word of length n. Similarly, vertically adjacent positions in the square have the

form

(wh, wv01n−k−1), (wh, wv10n−k−1)

21

where wh is a binary word of length n and wv is a binary word of length k. Thus,

for each k ∈ {0, . . . , n− 1} we will have dependencies

Error(z1, z2)↔ ∃p̄∃q̄∃r̄∃w1∃w2∃ȳT ile(p̄, w1, q̄, ȳ, z1)

∧Tile(p̄, w2, r̄, ȳ, z2) ∧H ′(z1, z2) ∧ αk(p̄, q̄, r̄, w1, w2, ȳ) (3.17)

Error(z1, z2)↔ ∃p̄∃q̄∃r̄∃w1∃w2∃x̄T ile(x̄, p̄, w1, q̄, z1)

∧Tile(x̄, p̄, w2, r̄, z2) ∧ V ′(z1, z2) ∧ αk(p̄, q̄, r̄, w1, w2, x̄) (3.18)

that will check horizontal and vertical constraints respectively, where

p̄ = (p1, . . . , pk), q̄ = (q1, . . . , qn−k−1), r̄ = (r1, . . . , rn−k−1) and

αk(p̄, q̄, r̄, w1, w2, x̄) =
k∧
i=1

Bin′(pi) ∧
n−k−1∧
i=1

(
One′(qi) ∧ Zero′(ri)

)
∧

Zero′(w1) ∧One′(w2) ∧
n∧
i=1

Bin′(xi).

Here the intuition is the same as before, since relation Error is empty in I , and

therefore it cannot be that there exist two adjacent positions which tile types are

in the complements of the horizontal or vertical relations, respectively. Note that

we only check the restrictions for positions in binary. Positions that contain 2’s

are ignored.

It is clear that we can buildM and I in polynomial time. Now we will show that

there exists a 2n×2n tiling that satisfies the constraints if and only if there exists

a solution for I underM:

(⇒) Given that there exists a tiling, we have the function f , which we will use

to build a solution J as follows:

• Start with J = ∅.

• For each x ∈ Ti, 0 ≤ i ≤ m, we add the tuple T ′i (x) to J .

• For each x ∈ T0, we add the tuple T0
′
(x) to J .

• For each (x, y) ∈ H , we add the tuple H
′
(x, y) to J .

• For each (x, y) ∈ V , we add the tuple V
′
(x, y) to J .

22

• For each x ∈ Bin, we add the tuple Bin′(x) to J .

• For each x ∈ Zero, we add the tuple Zero′(x) to J .

• For each x ∈ One, we add the tuple One′(x) to J .

• For each position (i, j) ∈ {0, . . . , 2n − 1}2, we add the tuple

Tile(x̄i, ȳj, f(i, j)) to J , where x̄i, ȳj are the binary representations of i

and j respectively.

• For each x̄, ȳ of size n composed by 0, 1 or 2’s, and such that one of them

mentions at least a 2, we add the tuple Tile(x̄, ȳ, t0).

• For each t ∈ T , we add the tuple Tile(2̄, 2̄, t) to J .

Now we show that (I, J) |= ∆, showing that they satisfy each rule:

(3.5), (3.6), (3.7), (3.8), (3.9), (3.10), (3.11) and (3.12) by construction.

(3.13) [→] This side of the dependency states that every tile type is assigned to

at least one position. Since special position (2̄, 2̄) is assigned every tile type, this

is true.

[←] This side of the dependency states that every tile type assigned to a position

comes from the original set T , which is true by the way J was built.

(3.14) By construction.

(3.15) Since Error′ is empty in I , the right-hand side must be always false. This

holds in J , because position (0̄, 0̄) is the only that satisfies the first atoms, and it

has assigned only tile type t0, and therefore the last atom is not satisfied.

(3.17) Since Error is empty in I , the right-hand side must be always false.

This means that it cannot be that two non-compatible tile types (i.e. (z1, z2) ∈

H
′
) are assigned to horizontally adjacent positions, which are encoded as it was

explained before. To give some more detail, note that any position that mentions

value 2 does not satisfy the right-hand side, because all bits are forced to be

1’s or 0’s. Then, this could only happen for positions represented by binary

words. Now, let word p̄w1q̄ represent some number i ∈ {0, . . . , 2n − 2}. As

it was explained before, word p̄w2r̄ would then represent number i + 1. Also,

23

let ȳ represent number j ∈ {0, . . . , 2n − 1}. Since f is a tiling, it holds that

(f(i, j), f(i + 1, j)) ∈ H , and then (z1, z2) ∈ H , which implies that (z1, z2) 6∈

H
′
, and therefore the right-hand side is always false.

(3.18) Analogous to (3.17).

In conclusion, given that there exists a tiling, we built a solution for I underM.

(⇐) Given J such that (I, J) |= ∆, we generate a tiling f using dependencies

(3.12) and (3.13) to choose, for every position (i, j) ∈ {0, . . . , 2n − 1}2, a tile

type tl ∈ Tl (and then tl ∈ T) such that Tile(x̄i, ȳj, tl), where x̄i, ȳj are the

binary representations of i and j respectively, and then we make f(i, j) = tl.

Without loss of generality, suppose that we choose tile type t0 for position (0, 0)

(this is possible because (I, J) must satisfy dependency (3.15)). Now we show

that f is a valid tiling:

By contradiction, suppose that f is not a valid tiling. Therefore, there exist i, j

such that (f(i, j), f(i + 1, j)) 6∈ H or (f(i, j), f(i, j + 1)) 6∈ V . For sim-

plicity suppose that the first statement holds (the other is analogous). Then,

(f(i, j), f(i + 1, j)) ∈ H , and by dependency (3.7) it holds that (f(i, j), f(i +

1, j)) ∈ H
′
. By dependency (3.12) (and by how f was built) we know

Tile(x̄i, ȳj, f(i, j)) and Tile(x̄i+1, ȳj, f(i+1, j)) hold. Now, by equation (3.16)

we know that it exists some k ∈ {0, . . . , n− 1} such that x̄i = p1 . . . pk01n−k−1

and x̄i+1 = p1 . . . pk10n−k−1, and then for such k we know that J satisfies the

right-hand side of dependency (3.17), with z1 = f(i, j) and z2 = f(i + 1, j).

Therefore, since J is a solution, it must be that I |= Error(f(i, j), f(i + 1, j)),

which is a contradiction because Error = ∅ in I .

�

Regarding full dependencies, even if we restrict to them we are no longer capable of

solving the problem efficiently, in terms of combined complexity. Thus, now we prove

both upper and lower bounds, showing that the problem becomes complete for a com-

plexity class in the Polynomial Hierarchy, which contains NP, and therefore is believed to

24

be intractable (see (Papadimitriou, 1994) for details). Again, the lower bound is still true

without equalities nor disjunctions.

THEOREM 4.

(1) EXISTENCEOFSOLUTIONS is in ΠP
2 for the class of mappings specified by full

〈UCQ=,CQ〉-dependencies.

(2) For the class of mappings specified by full 〈CQ,CQ〉-dependencies,

EXISTENCEOFSOLUTIONS is ΠP
2 -hard.

PROOF.

(1) If the dependencies are full, then Proposition 2 holds. Therefore, we can use a

non-deterministic machine with an NP oracle that does the following:

• Guess a dependency ϕ(x̄) ↔ ψ(x̄) in ∆, where ϕ is a UCQ= query over

S and ψ is a CQ query over T without existential quantifiers. Let ψ(x̄) =

R1(x̄1) ∧ . . . ∧Rn(x̄n), with each x̄i ⊆ x̄.

• Guess n dependencies of the form ϕk(v̄k) ↔ ψk(v̄k), 1 ≤ k ≤ n, in ∆,

where ϕk is a UCQ= query over S and ψk is a CQ query over T without

existential quantifiers, such that ψk(v̄k) = ψk1(w̄k) ∧ Rk(ȳk) ∧ ψk2(z̄k),

where ψk1 and ψk2 are (possibly empty) conjunctions of target atoms, and

w̄k, ȳk, z̄k ⊆ v̄k.

• Guess tuples of constants t̄1, . . . , t̄n of the same arities as R1, . . . , Rn re-

spectively, such that t̄1 ∪ . . . ∪ t̄n = t̄ is of the same arity as ϕ and has the

same pattern on the right-hand side. This is, t̄1, . . . , t̄n should match with

x̄1, . . . , x̄n.

• Guess tuples of constants āk and b̄k for each 1 ≤ k ≤ n, of the same arity

as ψk1 and ψk2 respectively, such that āk ∪ t̄k ∪ b̄k = s̄k is of the same arity

as ϕk and has the same pattern on the right-hand side. This is, āk, t̄k and b̄k

should match w̄k, ȳk and z̄k respectively.

• Ask the oracle if I |= ϕ1(s̄1) ∧ . . . ∧ ϕn(s̄n), and then if I |= ϕ(t̄).

25

• If the answers are YES and NO, the machine accepts. Otherwise, it rejects.

In other words, the machine accepts if and only if the target instance produced by

the chase is not a solution, which is equivalent to saying that there is no solution

for I underM. Thus, the complement of the existence-of-solutions problem is

in ΣP
2 , and then the existence-of-solutions problem is in co-ΣP

2 = ΠP
2 .

(2) We will show a reduction from Q3SAT (Stockmeyer, 1976; Wrathall, 1976),

the problem of determining if a QBF formula of the form ∀x̄∃ȳϕ(x̄, ȳ), where

ϕ is in 3-CNF and x̄ and ȳ form a partition of the variables mentioned in ϕ, is

true. First, suppose that x̄ = (x1, . . . , xn). Given such a formula, we build a

data exchange setting M = (S,T,∆), with S consisting of unary relation V

and ternary relations N0, N1, N2 and N3, and T consisting of n-ary relation R.

The set ∆ will have two dependencies:

V (x1) ∧ . . . ∧ V (xn)↔ R(x1, . . . , xn)

∃ȳψ(x̄, ȳ)↔ R(x̄)

where ψ is a CQ built from ϕ as it is explained now. First, let ϕ = C1∧ . . .∧Cm,

where each Ci is a clause with three literals. Without loss of generality, suppose

that negated literals are mentioned at the end of the clauses. Each clause will

be replaced with a source predicate among N0, . . . , N3 depending on how many

negated literals it mentions, and using the same variables in the same order. For

example, a clause without negated literals will be replaced by N0 over the same

variables mentioned in the clause, while a clause with two negated literals will

be replaced byN2; e.g. clause p∨q∨¬r is replaced byN1(p, q, r). Then, ψ is the

CQ obtained by replacing all clauses in ϕ following this method and removing

the quantifiers.

Finally, the source instance I contains the following tuples for source relations:

V = {0, 1}, N0 = {0, 1}3 − {(0, 0, 0)}, N1 = {0, 1}3 − {(0, 0, 1)}, N2 =

26

{0, 1}3 − {(0, 1, 1)} and N3 = {0, 1}3 − {(1, 1, 1)}. Intuitively, the tuples in

N0, . . . , N2 are the truth asignments that make true each kind of clause.

It is clear that bothM and I can be built in polynomial time. Now we show that

∀x̄∃ȳϕ(x̄, ȳ) is true if and only if there exists a solution for I underM:

(⇒) It is clear that R = {0, 1}n is a solution for I underM. In the first place, it

is the only way the first dependency would be satisfied (since the source query is

satisfied with every assignment for x1, . . . , xn, because V (0) and V (1) are true

in I). Now, the second dependency is satisfied given that ∀x̄∃ȳϕ(x̄, ȳ) is true,

taking exactly the same assignments, since the N predicates are defined using

the propositional logic semantics (note that truth assignments are nothing more

than a function from propositional variables to {0, 1}, the same we need to do

for the variables in ψ).

(⇐) If there exists a solution for I under M, the only possibility is that the

solution contains all possible tuples for predicate R, since the source query is

satisfied with every assignment for x1, . . . , xn as we mentioned before. Now, if

a target instance such thatR = {0, 1}n is a solution, then {ā | I |= ∃ȳψ(ā, ȳ)} =

{0, 1}n, and therefore ∀x̄∃ȳϕ(x̄, ȳ) is true, since for each possible assignment for

the variables in x̄, there is an assignment for the variables in ȳ that satisfies ψ, and

since the definition of N predicates is the same as the semantics of propositional

logic, we can take exactly the same assignments for ϕ.

�

27

4. COMPLEXITY OF QUERY ANSWERING

Answering queries is of fundamental importance in databases, since it is the way one

can obtain the information stored in them. In the context of data exchange, a usual task is

to answer queries over the target schema. Then, a natural question is how to effectively

answer such queries. This question has been addressed by defining which target instance

one should materialize in order to answer queries in a way that is consistent with the data

on the source instance.

In the work by Fagin, Kolaitis, Miller, and Popa (2005), the authors showed that one

can use a universal solution to obtain the certain answers semantics for positive queries.

However, in our setting a universal solution is not even guaranteed to exist.

PROPOSITION 3. There exists a mapping M = (S,T,∆), where ∆ is a set of

〈UCQ=,CQ〉-dependencies, such that there is a source instance I for which there is no

universal solution underM.

PROOF. Take an st-mapping with the following dependencies:

A(x)↔ ∃y (R(y) ∧ S(y))

B(x)↔ R(x)

and a source instance I = {A(3), B(1), B(2)}. Applying the second dependency, it

is clear that each solution for I must contain tuples R(1) and R(2). Furthermore, it

cannot contain any other tuples in relation R. Then, in any solution we will have that

R = {1, 2}. Given this, it is easy to see that both J1 = {R(1), R(2), S(1)} and J2 =

{R(1), R(2), S(2)} are solutions, but there is no homomorphism from one onto the other.

Moreover, it is mandatory that any solution contains S(1) or S(2), and therefore it is

impossible to have a solution with homomorphisms to all solutions. �

28

Given this new scenario, it is worth studying how we can answer queries over the

target schema in the presence of 〈UCQ=,CQ〉-dependencies. Moreover, as it was shown

in Arenas, Diéguez, and Pérez (2014), these dependencies have the potential to specify

more tightly which solutions should we consider, and therefore it is interesting to analyze

the query answering behaviour of non-monotone queries.

In this chapter, we present the results of the complexity analysis of the

CERTAINANSWERS problem in several scenarios, including data and combined complex-

ity analysis, and many query languages. Tables 4.1 and 4.2 summarize the results, showing

the references to the theorems where each result is proved.

CQ MON UCQ1-¬ CQ2-¬ UCQ¬ FO

full 〈UCQ=,CQ〉 in PTIME
Theorem 8

in PTIME
Theorem 8

in PTIME
Theorem 9

coNP-complete
Theorems 10 & 6

coNP-complete
Theorems 10 & 6

undecidable
Theorem 11

general 〈UCQ=,CQ〉 coNP-complete
Theorems 7 & 5

coNP-complete
Theorems 7 & 5

coNP-complete
Theorems 7 & 6

coNP-complete
Theorems 7 & 6

coNP-complete
Theorems 7 & 6

undecidable
Theorem 11

TABLE 4.1. The data complexity of CERTAINANSWERS under bidirectional constraints.

CQ UCQ 6= CQ1-¬ UCQ1-¬ CQ2-¬ UCQ¬

full 〈UCQ=,CQ〉 ΣP
2 -complete

Theorem 13
ΣP

2 -complete
Theorem 13

EXPTIME-
-complete
Theorem 14

EXPTIME-
-complete
Theorem 14

coNEXPTIME-
-complete

Theorems 15 & 12

coNEXPTIME-
-complete

Theorems 15 & 12

general 〈UCQ=,CQ〉
coNEXPTIME-

-complete
Theorem 12

coNEXPTIME-
-complete
Theorem 12

coNEXPTIME-
-complete
Theorem 12

coNEXPTIME-
-complete
Theorem 12

coNEXPTIME-
-complete
Theorem 12

coNEXPTIME-
-complete
Theorem 12

TABLE 4.2. The combined complexity of CERTAINANSWERS under bidirec-
tional constraints.

4.1. Data Complexity

In this section, we study the data complexity (Vardi, 1982) of the CERTAINANSWERS

problem. Similar to Chapter 3, we consider that the mapping and the query are fixed, and

the input is only the source instance, along with the tuple we wish to check. As we said

before, this is a natural way of studying the complexity of this problem, since in practice is

usual that databases are much larger than mapping specifications. Formally, the problem

is defined as follows:

29

Problem: CERTAINANSWERS(M, Q)

Input: n-tuple ā, and an instance I over S.

Question: Is ā in CERTAINM(Q, I)?

4.1.1. The general case

The following results consider the general case; i.e., when the mapping is specified

by unrestricted 〈UCQ=,CQ〉-dependencies. Our first result establishes the upper bound

for monotone queries, based on the results in Chapter 3.

THEOREM 5. CERTAINANSWERS(M, Q) is in coNP for every mappingM specified

by 〈UCQ=,CQ〉-dependencies and every query Q in MON.

PROOF. From Proposition 1 we know that given a source instance I , if there exists a

solution J for I under M, there exists a solution J∗ for I under M of polynomial size

(with respect to I). The proof of that Proposition uses the solution-aware chase to obtain

such a solution, which also is contained in J . Note that chasing any solution for I will

produce another solution that satisfies the previous conditions.

Now, given a n-ary monotone query Q and a n-tuple ā, we want to know if ā ∈

CERTAINM(Q, I). Therefore, a witness for the complement of this problem is a solution

Jw of polynomial size such that ā 6∈ Q(Jw). Suppose that there exists some solution J ′

such that ā 6∈ Q(J ′). If we perform a solution-aware chase, we obtain a solution Jw of

polynomial size such that Jw ⊆ J ′. To conclude, we need to show that ā 6∈ Q(Jw), which

follows directly from the fact that Q is a monotone query: since Jw ⊆ J ′, it can’t be that

ā ∈ Q(Jw) but ā 6∈ Q(J ′). Finally, the algorithm is to guess a polynomial-size solution

Jw and check if ā 6∈ Q(Jw). �

As we mentioned before, given the greater expressive power of

〈UCQ=,CQ〉-dependencies, it is worth studying its query answering capabilities regard-

ing non-monotone queries. In particular, the following result establishes the upper bound

30

of the problem for queries with negation. This proof uses a custom version of the chase

procedure, which is defined in detail in the proof.

THEOREM 6. CERTAINANSWERS(M, Q) is in coNP for every mappingM specified

by 〈UCQ=,CQ〉-dependencies, and every query Q in UCQ¬.

PROOF. Given a query Q as described, we assume it is a boolean query as in Fagin,

Kolaitis, Miller, and Popa (2005). We also suppose thatQ = Q1∨Q2, whereQ1 is a UCQ

query without negation, and Q2 is a UCQ¬ with at least one negated atom per disjunct.

Each of these disjuncts has the form:

∃x̄
(
ϕ(x̄) ∧

(∧
i

¬Ri(ȳi)

))
, ȳi ⊆ x̄

where ϕ is a conjunction of atoms and the Ri’s are target relations. Thus, it is easy to

see that the negation of Q2 yields a conjunction of a set of disjunctive tgds Σ of the form:

∀x̄
(
ϕ(x̄)→

(∨
i

Ri(ȳi)

))
It is clear that certain(Q, I) = false if and only if there exists a solution J for I under

M such that J |= Σ and J 6|= Q1. Consider the following Proposition:

PROPOSITION 4. Given a source instance I and a queryQ as described, if there exists

a solution J for I underM such that J |= Σ and J 6|= Q1, there exists a solution J∗ of

polynomial size with respect to I with the same properties.

Theorem 6 follows directly, since checking the above conditions can be done in poly-

nomial time. We will prove Proposition 4 by using a combination of both chase and

disjunctive chase procedures defined in Fagin, Kolaitis, Miller, and Popa (2005), with

the solution-aware chase defined in Fuxman et al. (2006), which we conveniently call

Disjunctive Solution-Aware Chase. As we are only using tgds, the definitions are rather

straightforward.

31

Definition 1 (Disjunctive Solution-Aware Chase Step). Let K be an instance and

let d be a disjunctive tgd ∀x̄ (ϕ(x̄)→ (R1(ȳ1) ∨ . . . ∨Rm(ȳm))). Let K ′ be an instance

that contains K and satisfies d. Denote by di the tgds obtained from d of the form

ϕ(x̄) → Ri(ȳi) for each i ∈ {1, . . . ,m}, which we say are associated with d. Note

that, because K ′ satisfies d, K must satisfy at least one of the tgds associated with d.

Then, let D ⊆ {1, . . . ,m} be the set of the indexes of the tgds associated with d that K ′

satisfies. Let h be a homomorphism from ϕ(x̄) to K such that there are no extensions of

h to homomorphisms h′i from ϕ(x̄) ∧ Ri(ȳi) to K, for each i ∈ {1, . . . ,m}. We say that

d can be applied to K with homomorphism h and solution K ′. Note that at all the di’s

can be applied to K with homomorphism h and solution K ′, according to the definition in

Fuxman et al. (2006).

For each j ∈ D, let Kj be the result of applying dj to K with h and solution K ′,

according to the definition in Fuxman et al. (2006). We say that the result of applying d to

K with h and solution K ′ is the set {Kj | j ∈ D}, and write K
d,h,K′
→ {Kj | j ∈ D}. �

In addition to the chase steps defined above, we will use solution-aware chase steps

as they were defined in Fuxman et al. (2006).

Definition 2 (Disjunctive Solution-Aware Chase). Let ∆ be a set of tgds and let Σ be

a set of disjunctive tgds. Let K be an instance and K ′ be an instance that contains K and

satisfies ∆ ∪ Σ.

• A solution-aware chase tree of K with ∆ ∪ Σ and K ′ is a tree such that:

– the root is K, and

– for every node Kp in the tree, let {Kp1, . . . , Kpr} be the set of its children.

Then there must exist some dependency d in ∆ ∪ Σ and homomorphism h

such that Kp
d,h,K′
→ {Kp1, . . . , Kpr}

• A finite disjunctive solution-aware chase of K with ∆ ∪ Σ and K ′ is a finite

solution-aware chase tree such that for each leaf Kl, there is no dependency d in

32

∆ ∪ Σ and there is no homomorphism h such that d can be applied to Kl with h

and K ′. �

It follows directly from the results in Fagin, Kolaitis, Miller, and Popa (2005) and

Fuxman et al. (2006) that if the tgds are weakly acyclic, the disjunctive solution-aware

chase is finite and polynomial:

PROPOSITION 5. Let ∆ be a set of weakly acyclic tgds, Σ a set of disjunctive tgds,

K an instance, and K ′ an instance such that K ⊆ K ′ and K ′ satisfies ∆ ∪ Σ. Then

every solution-aware chase tree of K with ∆ ∪ Σ and K ′ is finite. Moreover, there exists

a polynomial in the size of K that bounds the depth of every such tree.

PROOF. Let Σ′ be the set of all tgds that are associated to some disjunctive tgd in

Σ. Let T be a solution-aware chase tree of K with ∆ ∪ Σ and K ′. Then, every path

in T that starts in the root is a solution-aware chase sequence of K with K ′, as it was

defined in Fuxman et al. (2006), which uses dependencies in ∆ ∪ Σ′. Moreover, it only

uses dependencies in Σ′ that K ′ satisfies. Now, since all the tgds in Σ′ are full, they form

a weakly acyclic set together with ∆, and then by the results in Fuxman et al. (2006) there

exists a polynomial in the size of K that bounds the length of every such path. �

Finally, we now prove Proposition 4. First, note that since J is a solution, it holds

that (I, J) |= ∆, and then (I, J) |= ∆→. Then, we non-deterministically perform a

disjunctive solution-aware chase of (I,∅) with ∆→∪Σ and (I, J), guessing the sequence

of dependencies and homomorphisms to be applied as well as the branch we pick at each

step, arriving at a leaf J∗. Since (I,∅) ⊆ (I, J) and (I, J) |= ∆→ ∪ Σ, by Proposition

5 we know that J∗ is of polynomial size. It is easy to see that J∗ ⊆ J , and then J∗ is a

solution for I underM (as it was shown in the proof of theorem 1). Moreover, it holds

that J∗ |= Σ, since it is a leaf in the chase tree. Finally, by monotonicity it must be that

J∗ 6|= Q1, and therefore J∗ is the instance we were looking for. �

33

Following directly from the results in Chapter 3, the CERTAINANSWERS problem

in the general case is intractable. Unfortunately, this even holds for boolean conjunctive

queries, and dependencies without equalities nor disjunctions.

THEOREM 7. There exists a mappingM specified by 〈CQ,CQ〉-dependencies, and a

queryQ in CQ, such that CERTAINANSWERS(M, Q) is coNP-hard, even ifQ is boolean.

PROOF. This proof is almost entirely based on Theorem 1’s proof. We will again

perform a reduction from 3-COLORABILITY.

Recall that we have a graph G = (V,E) with no self-loops, and with 2 connected

components: K3 and the graph itself. LetM = (S,T,∆) be a data exchange setting such

that S consists of binary relation E and unary relations V and H , T consists of binary

relations E ′ and C, and the dependencies in ∆ are the following:

V (x) ↔ ∃uC (x, u) (4.1)

E (x, y) ↔ E ′ (x, y) (4.2)

H (u) ↔ ∃xC (x, u) (4.3)

Finally, let q be the following query over T:

∃x∃y∃uC (x, u) ∧ C (y, u) ∧ E ′ (x, y)

Given a graph G, consider the source instance IG = (V,E,H), where H = {r, g, b}

is a set of three colors, none of which is an element of V . It is clear that IG can be

constructed in polynomial time from G. We claim that G is 3-colorable if and only if

certain(q, IG) = false. In other words, we need to show that there exists a 3-coloration of

G if and only if there exists a solution J for IG underM such that q(J) = false.

(⇒) We build a solution J exactly as in the proof of Theorem 1, where we showed

it was indeed a solution. In this case the latter follows immediately, because we need to

satisfy less dependencies. Now, it is clear that q(J) = false, since otherwise there would

34

exist adjacent vertices x and y with the same color assigned in predicate C, which cannot

be since these were assigned using the 3-coloration from G.

(⇐) Similar to the proof of Theorem 1, given J such that (IG, J) |= ∆ and q(J) =

false, we generate a coloration col (x) using dependencies (4.1) and (4.3) to choose, for

every vertex x ∈ V , a color c ∈ H such that C (x, c). Then, col (x) = c. We now show

that col (x) is a 3-coloration:

By contradiction, suppose that col (x) is not a 3-coloration. Therefore, there exists an

edge (y, z) ∈ E such that col (y) = col (z). Using dependency (4.2), we know (y, z) ∈ E ′.

Since the colors in col (x) are all obtained from C, then q(J) = true, taking y, z and col(y)

for the existential quantifiers, which contradicts our initial setting. �

4.1.2. The full case

Now we restrict the problem to full dependencies. In the case of monotone queries,

the problem can be efficiently solved.

THEOREM 8. CERTAINANSWERS(M, Q) can be solved in polynomial time for every

mappingM specified by full 〈UCQ=,CQ〉-dependencies, and every query Q in MON.

PROOF. Consider the following Proposition:

PROPOSITION 6. If Q is a monotonic query over T, then for every source instance I

such that SOLM(I) 6= ∅, it holds that certain(Q, I) = Q(chase∆→(I)).

Theorem 8 follows directly from the previous Proposition. First, we need a useful

Lemma regarding the full scenario:

LEMMA 1. Given a data exchange settingM = (S,T,∆), where ∆ is a set of full

UCQ= dependencies, for every source instance I such that SOLM(I) 6= ∅, it holds that

chase∆→(I) ⊆ J for every J ∈ SOLM(I).

PROOF. By contradiction, suppose that there exists a solution J such that

chase∆→(I) 6⊆ J . Thus, there exists a tuple R(ā) ∈ chase∆→(I) such that R(ā) 6∈ J .

35

Since R(ā) is produced by the chase procedure, there is a dependency ϕ(x̄) ↔ ψ(x̄) in

∆, where ϕ is a UCQ= query and ψ(x̄) = ψ1(w̄) ∧ R(ȳ) ∧ ψ2(z̄) with w̄ ∪ ȳ ∪ z̄ = x̄

and where ψ1 and ψ2 are (possibly empty) conjunctions of target atoms, and there exists

an assignment σ : V ar → Const such that I |= ϕ(σ(x̄)) and σ(ȳ) = ā. Then, as J

is a solution, it must be that J |= ψ(σ(x̄)), and therefore J |= R(σ(ȳ)) = R(ā), which

contradicts our initial supposition. �

Now we prove the Proposition, showing the containment if both directions:

(⊆) Given that SOLM(I) 6= ∅, by Proposition 2 we know that chase∆→(I) is a solution,

and then for every tuple t̄ ∈ certain(Q, I) it holds that t ∈ chase∆→(I).

(⊇) SinceQ is a monotonic query, by Lemma 1 we know that {t̄ | t̄ ∈ Q(chase∆→(I))} ⊆

{t̄ | t̄ ∈ Q(J)} for every solution J for I under M. Therefore, it holds that

Q(chase∆→(I)) ⊆ certain(Q, I). �

Moreover, we have been able to find a polynomial algorithm to answer unions of

conjunctive queries with restricted use of negations.

THEOREM 9. CERTAINANSWERS(M, Q) can be solved in polynomial time for every

mapping M specified by full 〈UCQ=,CQ〉-dependencies, and every query Q in UCQ¬

with at most one negated atom per disjunct.

PROOF. Given a query Q as described, we assume it is a boolean query as in Fagin,

Kolaitis, Miller, and Popa (2005). We also suppose thatQ = Q1∨Q2, whereQ1 is a UCQ

query without negation, and Q2 is a UCQ¬ with exactly one negated atom per disjunct.

Each of these disjuncts has the form:

∃x̄ (ϕ(x̄) ∧ ¬R(ȳ)), ȳ ⊆ x̄

where ϕ is a conjunction of atomic formulas. Thus, it is easy to see that the negation

of Q2 yields a conjunction of a set of full tgds Σ of the form:

∀x̄ (ϕ(x̄)→ R(ȳ))

36

Suppose that we are given a source instance I such that it has a solution under M

(otherwise, the certain answers problem is trivial). From Proposition 2 we know that

K = chase∆→(I) can be computed in polynomial time, and is a solution. Moreover, any

chase procedure using full tgds on K terminates in polynomial time. Consider now the

following Proposition:

PROPOSITION 7. There exists a solution J for I under M such that J |= Σ if and

only if chaseΣ(K) is a solution for I underM.

PROOF. (⇐) This direction is trivial, since chaseΣ(K) |= Σ and is a solution.

(⇒) By contradiction, suppose that there exists such a solution J , but chaseΣ(K) is not

a solution. Since K is a ground instance and the tgds in Σ are full, it holds that K ⊆

chaseΣ(K). Thus, there must be a dependency ϕ(x̄)↔ ψ(x̄) in ∆ and a tuple of constants

ā such that I 6|= ϕ(ā), K 6|= ψ(ā) and chaseΣ(K) |= ψ(ā). For the second statement to

hold, there must exist target relations R1, . . . , Rn and an assignment σ : V ar → Const

such that:

• ψ(x̄) = R1(ȳ1) ∧ . . . ∧ Rn(ȳn) ∧ ψ′(z̄), with x̄ = ȳ1 ∪ . . . ∪ ȳn ∪ z̄ and ψ′ a

conjunction of target atoms (we reorder the atoms without loss of generality),

• σ(x̄) = ā,

• K |= ψ′(σ(z̄)), and

• K 6|= R1(σ(ȳ1)), . . . , K 6|= Rn(σ(ȳn)).

For simplicity consider that σ(ȳi) = āi. Now, given that chaseΣ(K) |= ψ(ā), there

must exist tgds in Σ of the form:

αj(x̄j)→ Rj(ȳ
′
j), with 1 ≤ j ≤ n,

and an assignment σ′ : V ar → Const such that K |= α(σ′(x̄j)) and σ′(ȳ′j) = āj . In

other words, there must exist tgds that produce the atoms which made the dependency in

∆ false with K.

Now, from Lemma 1 we know that K ⊆ J , and then J |= α(σ′(x̄j)). Given that J |=

37

Σ, we know that J |= Rj(σ
′(ȳ′j)) = Rj(āj) = Rj(σ(ȳj)), for every j ∈ {1, . . . , n}.

Moreover, it also holds that J |= ψ′(σ(z̄)), and therefore J |= ψ(ā), which contradicts the

fact that J is a solution. �

Now we present the algorithm that solves the certain answers problem:

(1) Compute K = chase∆→(I).

(2) Compute J = chaseΣ(K).

(3) If J is not a solution for I underM, return certain(Q, I) = true.

(4) If J is a solution and satisfies at least one conjunctive query in Q1, return

certain(Q, I) = true.

(5) Otherwise, return certain(Q, I) = false.

It is clear that this algorithm runs in polynomial time. Finally, we show that it is

correct:

• If the algorithm stops in step 3, by Proposition 7 we know that there is no solution

that satisfies Σ. Therefore, certain(Q2, I) = true, and then certain(Q, I) =

true.

• If the algorithm stops in step 4: we know that K is a universal solution, and then

it is easy to see that J is a universal solution for target instances that satisfy Σ.

From the halting of the algorithm we know J |= Q1, and therefore every solution

that satisfies Σ does too. In other words, every solution that does not satisfy Q2

satisfies Q1, and then every solution satisfies either Q1 or Q2. In conclusion,

every solution satisfies Q, and then certain(Q, I) = true.

• If the algorithm stops in step 5, it means that J 6|= Q1. Since J |= Σ, it holds

that J 6|= Q2, and therefore J 6|= Q. As J is a solution, we conclude that

certain(Q, I) = false.

�

38

However, the previous bound is tight, in the sense that allowing just one more negation

makes the problem intractable, even without unions.

THEOREM 10. There exists a mappingM specified by full 〈CQ,CQ〉-dependencies

and a query Q in CQ¬ with two negated atoms, such that CERTAINANSWERS(M, Q) is

coNP-complete.

PROOF. By Theorem 6 we know this problem is in coNP. Now we show it is coNP-

hard, performing a reduction from the well-known 3CNF-SAT problem to the comple-

ment of the certain answers problem. Let M = (S,T,∆) be a data exchange setting,

with

S = {N0, N1, N2, N3, Error, Error
′}

T = {N ′0, N ′1, N ′2, N ′3, V ar, T, F}

and with the set ∆ consisting of the following dependencies:

N0(x, y, z)↔ N ′0(x, y, z) ∧ V ar(x) ∧ V ar(y) ∧ V ar(z) (4.4)

N1(x, y, z)↔ N ′1(x, y, z) ∧ V ar(x) ∧ V ar(y) ∧ V ar(z) (4.5)

N2(x, y, z)↔ N ′2(x, y, z) ∧ V ar(x) ∧ V ar(y) ∧ V ar(z) (4.6)

N3(x, y, z)↔ N ′3(x, y, z) ∧ V ar(x) ∧ V ar(y) ∧ V ar(z) (4.7)

Error(x, y, z)↔ N ′0(x, y, z) ∧ F (x) ∧ F (y) ∧ F (z) (4.8)

Error(x, y, z)↔ N ′1(x, y, z) ∧ F (x) ∧ F (y) ∧ T (z) (4.9)

Error(x, y, z)↔ N ′2(x, y, z) ∧ F (x) ∧ T (y) ∧ T (z) (4.10)

Error(x, y, z)↔ N ′3(x, y, z) ∧ T (x) ∧ T (y) ∧ T (z) (4.11)

Error′(x)↔ T (x) ∧ F (x) (4.12)

Consider also a CQ¬ query Q = ∃x(V ar(x) ∧ ¬T (x) ∧ ¬F (x)).

39

Now, given a 3CNF formula ϕ, we build a source instance Iϕ as follows. We start

with I = ∅. Let ϕ = C1 ∧ . . .∧Cn, where each Ci is a clause with three literals. Without

loss of generality, suppose that negated literals are mentioned at the end of the clauses.

Thus, there are four possible clause types, depending of how much negated literals they

have. These types will be represented by predicates N0 to N3, and then we will add a

tuple of the corresponding relation to Iϕ for each clause. For example, if we have a clause

p ∨ q ∨ ¬r, we add tuple N1(p, q, r) to Iϕ. Finally, predicates Error and Error′ will be

empty in Iϕ.

It is clear that Iϕ can be built in polynomial time w.r.t the size of ϕ. Now we claim

that ϕ is satisfiable if and only if certain(Q, Iϕ) = false. Then, we have to show that there

is a truth assignment that makes ϕ true if and only if there exists a solution J for Iϕ under

M such that Q(J) = false.

(⇒) Given that there exists a truth assignment σ : P → {0, 1}, where P is the set

of propositional variables mentioned in ϕ, such that σ(ϕ) = 1, we build a solution J as

follows:

• Start with J = ∅.

• For each tuple (x, y, z) ∈ N0, we add tuples N ′0(x, y, z), V ar(x), V ar(y) and

V ar(z) to J .

• We do the same for predicates N1, N2 and N3.

• For each x ∈ V ar such that σ(x) = 1, we add tuple T (x) to J .

• For each x ∈ V ar such that σ(x) = 0, we add tuple F (x) to J .

It is easy to see that Q(J) = false, since we added each x ∈ V ar to either T or F

depending on the value assigned by σ. Note that each x ∈ V ar is indeed assigned a value

by σ, since they all come from the propositional variables mentioned in ϕ. Now we show

that (Iϕ, J) |= ∆, showing it satisfies each rule:

(4.4), (4.5), (4.6) and (4.7) by construction.

40

(4.8) Since Error is empty in Iϕ, the right-hand side must be always false. Given that

every tuple (x, y, z) ∈ N ′0 comes fromN0, for each tuple there exists a clauseCi = x∨y∨z

in ϕ, for which it must hold that σ(Ci) = 1. Then, it can’t be that the three variables are

assigned 0 by σ, and therefore at least one of them is in T and not in F , since they are all

in V ar. Thus, the right-hand side is false.

(4.9), (4.10) and (4.11) are analogous to (4.8), with the corresponding changes to the

values assigned by σ to the variables, and to the memberships to T and F .

(4.12) Since Error′ is empty in Iϕ, the right-hand side must be always false, which

holds in J since we only added each x to T or F , not both.

In conclusion, given that there exists a truth assignment which makes ϕ true, we built

a solution J for Iϕ underM such that Q(J) = false.

(⇐) Given J such that (Iϕ, J) |= ∆ andQ(J) = false, we generate a truth assignment

σ just be checking, for each tuple (x, y, z) in N0, N1, N2 or N3, whether the constants in

the tuple are in T or F , and assigning 1 or 0 to them in σ respectively. Now we show that

σ is a truth assignment, and that it makes ϕ true:

• First we need to prove that σ assigns a value for each propositional variable x

in ϕ. Since they are all mentioned in at least one of the tuples in N0, N1, N2

or N3, by dependencies (4.4) to (4.7) it must be that V ar(x) ∈ J . Now, as

Q(J) = false, either T (x) or F (x) hold, and then either σ(x) = 1 or σ(x) = 0.

• Second, we show that σ assigns a unique value to each propositional variable x

in ϕ. As we mentioned before, it holds that each x is in T or F . By dependency

(4.12), it can’t be that x ∈ T and x ∈ F together, and then σ(x) = 1 or σ(x) = 0,

not both.

• Finally, we need to show that σ(ϕ) = 1. By contradiction, assume that σ(ϕ) = 0.

Therefore, there exists a clause Ci = l1 ∨ l2 ∨ l3 in ϕ such that σ(Ci) = 0. Let

us assume that Ci has no negated atoms, with l1 = p, l2 = q and l3 = r. Then,

it holds that σ(p) = σ(q) = σ(r) = 0. Also, there is a tuple N0(p, q, r) ∈ J .

41

By dependency (4.4) it holds that N ′0(p, q, r), V ar(p), V ar(q), V ar(r) ∈ J , and

then by dependency (4.8) it must be that either p 6∈ F , q 6∈ F or r 6∈ F . Since

Q(J) = false, p, q and r must be in T or F , and thus either p ∈ T , q ∈ T or

r ∈ T . Therefore, either σ(p) = 1, σ(q) = 1 or σ(r) = 1, which contradicts our

initial suposition that σ(Ci) = 0. Note that the proof for the other three clause

types is analogous, with the corresponding predicates and dependencies.

�

Finally, the following result states that, already in data complexity, the problem be-

comes undecidable for unrestricted queries in FO=, even with 〈CQ,CQ〉-dependencies.

THEOREM 11. There exists an FO=-query Q and a mapping M specified by full

〈CQ,CQ〉-dependencies, such that CERTAINANSWERS(M, Q) is undecidable.

PROOF. We will perform a reduction from the embedding problem for finite semi-

groups: given a partial finite algebra B = (B, g), to determine if B is embeddable in

some finite semigroup; this is, there exists a finite semigroup A = (A, f) such thatB ⊆ A

and f is an extension of g. Recall that A is a finite semigroup if A is a finite nonempty set,

and f is a binary associative function over A. This problem was shown to be undecidable

by Kolaitis, Panttaja, and Tan (2006), based on the results by Evans (1951, 1953, 1978)

and Gurevich (1966).

Based on the proof by Arenas, Barceló, Libkin, and Murlak (2014), we define a

mapping M = (S,T,∆) as follows: S consists of relation U and T consists of rela-

tion V , with arities 3 and 4 respectively. Both encode binary functions using the first

three components; the fourth is used to overcome the limitations on solutions imposed

by bidirectional constraints. The source instance I will have the tuples coming from g:

I = {U(a, b, c) | g(a, b) = c}. The set ∆ consists of a single dependency

U(x, y, z)↔ V (x, y, z, z) (4.13)

42

which simply copies the source instance, but only checks it when the third and fourth

components are the same. This lets us complete V with additional tuples, where the third

and fourth components are distinct.

Consider now the following formulas:

• Q1 := V (x, y, z, w) ∧ V (x, y, z′, w′) → z = z′ ∧ w = w′, that asserts that V

encodes a function,

• Q2 := V (x, y, u, t1) ∧ V (y, z, v, t2) ∧ V (u, z, w, t3) → ∃t4V (x, v, w, t4), that

asserts that V encodes an associative function, and

• Q3 := V (x1, x2, x3, x4) ∧ V (y1, y2, y3, y4)

→
∧

1≤i,j≤3

∃zij∃wijV (xi, yi, zij, wij), that asserts that the function encoded by V

is total.

Let Q′ = Q1 ∧ Q2 ∧ Q3 and Q = ¬Q′. It is clear that certain(Q, I) = false iff

there exists a solution J for I such that J 6|= Q iff there exists a solution J for I such

that J |= Q′. Now we show that B is embeddable in a finite semigroup if and only if

certain(Q, I) = false:

(⇒) Suppose that B is embeddable in some finite semigroup A = (A, f). We build

a target instance J as follows: for each a, b ∈ A, if g(a, b) is defined we add tuple

V (a, b, f(a, b), f(a, b)); otherwise, we add tuple V (a, b, f(a, b), c), where c is a constant

such that c 6= f(a, b). It is clear that J is a solution, since by definition it contains all

the tuples in U , and all other tuples satisfy the dependency trivially (because they do not

match with the right-hand side). Now we show that J |= Q′:

• J |= Q1: we only add one tuple for each pair a, b ∈ A, so this formula is true in

J .

• J |= Q2: since f is associative and considering we added all possible triples

a, b, c ∈ A such that f(a, b) = c, then this formula is true in J , given that it only

checks it using the frst three components of V .

• J |= Q3: analogous to Q2.

43

(⇐) Given a solution J such that J |= Q′ (and then also J |= Qi), we build a finite

semigroup A = (A, f) where A consists of all constants mentioned in the first three

components of some tuple in V , and for each tuple (a, b, c, d) ∈ V we make f(a, b) = c.

Now we show that A is a finite semigroup and B is embeddable in A:

(1) A is a finite semigroup:

• A is finite and nonempty: since J is a solution, it is finite and nonempty,

and then A is too.

• f is a function: since J |= Q1, for every pair a, b ∈ dom(J) there is at most

one tuple (a, b, c, d) ∈ V , for some values c, d. Thus, we only add one value

for f(a, b), and then f is a function.

• f is total: since J |= Q3, for each pair a, b of values mentioned in the first

three components of any tuple in V , there exists a tuple (a, b, c, d) ∈ V .

Thus, by construction, for every pair a′, b′ ∈ A there exists c′ ∈ A such that

f(a′, b′) = c′, and then f is a total function.

• f is associative: since J |= Q2, if we ignore the fourth component we have

exactly the definition of an associative function encoded in V . Thus, as we

only use the first three components to build f , it is clear that f is associative.

(2) B is embeddable in A: since J is a solution, it holds that dom(I) ⊆ dom(J).

Moreover, this even holds if we restrict the domain of J to the first three compo-

nents, since the dependency in ∆ duplicates the third component in the fourth.

Thus, it is straightforward that B ⊆ A. Also, note that U ⊆ V , and then for

each pair a, b such that both U(a, b, c, d) and V (a, b, c′, d′) exist (for some values

c, c′, d, d′) it must be that c = c′ and d = d′ (since J |= Q1, and then there is

only one tuple in V per pair). Therefore, whenever g(a, b) is defined, it holds

that f(a, b) = g(a, b).

�

44

4.2. Combined Complexity

Now we analize the combined complexity (Vardi, 1982) of the CERTAINANSWERS

problem, when the mapping, the query and the source instance are part of the input. For-

mally, the problem is defined as follows:

Problem: CERTAINANSWERS

Input: Mapping M = (S,T,∆) with ∆ a set of bidirectional constraints,

n-ary query Q over T, n-tuple ā, and an instance I over S.
Question: Is ā in CERTAINM(Q, I)?

4.2.1. The general case

In the general scenario, an exponential blow-up occurs again, due to the mapping and

the query being part of the input. The following result establishes both the upper and lower

bound in this case. Note that we do not include analysis for monotone queries, since they

can no longer be answered in polynomial time when the mapping and the query are not

fixed.

THEOREM 12.

(1) CERTAINANSWERS is in coNEXPTIME for the class of mappings specified by

〈UCQ=,CQ〉-dependencies and queries in UCQ¬.

(2) For the class of mappings specified by 〈CQ,CQ〉-dependencies and queries in

CQ, CERTAINANSWERS is coNEXPTIME-hard.

PROOF.

(1) In the proof of Theorem 6 we used the fact that every solution-aware chase

sequence is polynomial in the size of the source instance, as it was shown in

Fuxman et al. (2006). This expression is exponential when the schema is not

fixed, and then one can modify Proposition 4, stating that J∗ is of exponential

size. Since checking that J∗ |= Σ and J∗ 6|= Q1 can be done in exponential time,

45

it follows that computing the certain answers of UCQ¬ queries is in coNEXP-

TIME.

(2) Recall from Theorem 3 that we showed that the existence of solutions problem

is NEXPTIME-hard, by building a mapping M = (S,T,∆) and a source in-

stance I from a TILING instance. Let Q be a conjunctive query consisting of the

right-hand side of a dependency 3.18 with a fixed k (which we call δ19) with all

variables existentially quantified:

Q :=∃z1∃z2rhs(δ19)

:=∃z1∃z2∃p̄ ∃q̄ ∃r̄ ∃w1 ∃w2 ∃x̄ T ile(x̄, p̄, w1, q̄, z1)

∧ Tile(x̄, p̄, w2, r̄, z2) ∧ V ′(z1, z2) ∧ αk(p̄, q̄, r̄, w1, w2, x̄)

LetM′ = (S,T,∆′), where ∆′ = ∆ − {δ19}. Note that ∀z1∀z2I 6|= lhs(δ19).

Then:

certainM′(Q, I) = false⇔ ∃J ∈ SOLM′(I) s.t. J 6|= Q

⇔ ∃J s.t. (I, J) |= ∆′ and J 6|= ∃z1∃z2rhs(δ19)

⇔ ∃J s.t. (I, J) |= ∆′ and ∀z1∀z2J 6|= rhs(δ19)

⇔ ∃J s.t. (I, J) |= ∆′ and ∀z1∀z2(I, J) |= δ19

⇔ ∃J s.t. (I, J) |= ∆

⇔ ∃J ∈ SOLM(I)

and thus computing the certain answers of Q is coNEXPTIME-hard.

�

4.2.2. The full case

When we considered full dependencies in the data complexity analysis, the problem

was polynomial even for queries with a restricted use of negation. However, this does

46

not hold when studying the combined complexity of the problem. Thus, a more careful

analysis can be carried, considering less expressive query languages. In particular, for

queries with inequalities one can exploit the fact that only a polynomial witness is needed

to check its satisfaction, and thus we were able to lower the complexity. Specifically, the

problem is complete for another class in the polynomial hierarchy, which is the comple-

ment of the one considered in Theorem 4. This is consistent with the other results, in

which the CERTAINANSWERS problem usually falls in the complement of the complexity

class corresponding to the EXISTENCEOFSOLUTIONS problem.

THEOREM 13.

(1) CERTAINANSWERS is in ΣP
2 for the class of mappings specified by full

〈UCQ=,CQ〉-dependencies and queries in UCQ 6=.

(2) For the class of mappings specified by full 〈CQ,CQ〉-dependencies, and queries

in CQ, CERTAINANSWERS is ΣP
2 -hard.

PROOF.

(1) We will use a non-deterministic turing machine with an NP oracle to decide

whether certain(Q, I) = true. First, the machine performs the same procedure

as the one in Theorem 4 to determine if I has a solution at all. If the answers

from the oracle are YES and NO, the machine accepts. Otherwise, we know

there exists a solution, so the machine performs the procedure described in the

proof of Theorem 8 to check the property. Moreover, we can now use the oracle

to ask for the satisfaction of the formulas.

(2) From Theorem 4 we know that the existence of solutions problem is ΠP
2 -hard,

via a reduction from Q3SAT. Take M = (S,T,∆) and I as defined in the

proof, which were built from a formula ∀x̄∃ȳϕ(x̄, ȳ). Consider now a mapping

M′ = (S′,T′,∆′), where S′ = S ∪ {A(·, ·)}, T′ = T ∪ P (·, ·)} and ∆′ =

∆ ∪ {A(x, y) ↔ P (x, y)}. Let I ′ = I ∪ {A(a, b)}. Finally, consider a boolean

conjunctive queryQ = ∃xP (x, x). Note that it still holds that the formula is true

47

if and only if there exists a solution for I ′ underM′. It is clear that this query is

false in every solution for I ′, and then

certainM′(Q, I ′) = true⇔ SOLM′(I ′) = ∅⇔ ∀x̄∃ȳϕ(x̄, ȳ) is false.

Therefore, the certain answers problem is ΣP
2 -hard. �

Interestingly, we found that when one knows that the instance has a solution, the

problem is slightly easier to solve. This is only valid in the full scenario, since we can use

the results of Proposition 2.

PROPOSITION 8.

(1) For the class of mappings M specified by full 〈UCQ=,CQ〉-dependencies,

queries in UCQ 6=, and instances I such that SOLM(I) 6= ∅,

CERTAINANSWERS is in NP.

(2) For the class of mappingsM specified by full 〈CQ,CQ〉-dependencies, queries

in CQ, and instances I such that SOLM(I) 6= ∅, CERTAINANSWERS is NP-

hard.

PROOF.

(1) Since we know that I has a solution under M, from proposition 2 we know

that J = chase∆→(I) is a solution, which we can use J to answer monotone

queries. This instance J can be of exponential size, but for UCQ 6= queries we

only need a witness of polynomial size; i.e., a polynomial subset J ′ of J . There-

fore, we guess a polynomial sequence of dependencies, each with a tuple of

constants, and we chase by checking if the left-hand side is satisfied by I (a

problem known to be in NP) and then adding the corresponding tuples to J ′.

Then, we check if J ′ |= Q (in NP again). This algorithm can be implemented by

a non-deterministic Turing machine running in polynomial time, and decides if

certain(Q, I) = true.

(2) We will perform a reduction from 3-COLORABILITY, which is very similar to

the proof of the combined complexity of conjunctive query evaluation. Given a

48

graph G = (V,E), we construct a mappingM = (S,T,∆), where S = {R},

T = {R′} and ∆ has a single copying dependency R(x, y) ↔ R′(x, y). It

is easy to prove that any source instance I has a solution under M, which is

unique. Also, as the mapping is full, this unique solution is chase∆→(I), and

then it is isomorphic to I .

Suppose that V = {x1, . . . , xn}. Consider now a source instance I with R =

{(r, g), (r, b), (g, r), (g, b), (b, r), (b, g)} and a boolean conjunctive query

Q = ∃x1 . . . ∃xn

(∧
(xi,xj)∈E

R′(xi, xj) ∧R′(xj, xi)

)
.

Let ϕ(x̄) be the non-quantified part of Q. We claim that G is 3-colorable if and

only iff certain(Q, I) = true, or equivalently, chase∆→(I) |= Q:

(⇒) First, note that

J = chase∆→(I) = {R′ = {(r, g), (r, b), (g, r), (g, b), (b, r), (b, g)}}.

Given that G is 3-colorable, there exists an assignment c : V → {r, g, b} such

that for every pair x, y ∈ V where E(x, y), it holds that c(x) 6= c(y). Then, we

can construct an assignment σ such that σ(xi) = c(xi), and therefore (J, σ) |=

ϕ(x̄). This is true because each xi, xj has a color assigned, and they are not equal

when they are connected. Thus, since J contains all possible distinct pairs, the

query is satisfied.

(⇐) If J |= Q, there exists an asignment σ : {x1, . . . , xn} → {r, g, b} such

that (J, σ) |= ϕ(x̄). We construct a coloration c, with c(xi) = σ(xi). Suppose

that it is not a 3-coloration, and then there are vertices (xj, xk) ∈ E such that

c(xj) = c(xk). This means that ϕ(x̄) has a conjunct R′(xj, xk)∧R′(xk, xj), and

by the way c was built, is such that σ(xj) = σ(xk). However, there is no pair

in J of the form R′(x, x), which contradicts the fact that J |= Q. Then, c is a

3-coloration, which concludes our proof.

�

49

Similar to the results regarding data complexity, when considering queries with nega-

tion we found different bounds when restricting the number of negations. When only one

negation is allowed (per disjunct in the case of unions of queries), the expected exponential

blow-up is confirmed.

THEOREM 14.

(1) CERTAINANSWERS is in EXPTIME for the class of mappings specified by full

〈UCQ=,CQ〉-dependencies and queries in UCQ¬ with at most one negated

atom per disjunct.

(2) For the class of mappings specified by full 〈CQ,CQ〉-dependencies and queries

in CQ¬ with exactly one negated atom, CERTAINANSWERS is EXPTIME-hard.

PROOF.

(1) This result follows directly from Theorem 9. We can use the same algorithm

described in its proof, which runs in exponential time in combined complexity

(since both chase procedures produce instances of at most exponential size, and

then checking satisfaction of FO formulas can also be done in exponential time).

(2) We will perform a reduction from the SGF sirup problem (Kolaitis et al., 2006):

given a Datalog program P with one rule and at most one ground fact (i.e. an

SGF sirup), a database D and a ground fact δ, is δ derivable from D via P ? This

problem is EXPTIME-complete in combined complexity (Gottlob & Papadim-

itriou, 2003).

Let the rule be of the form A(x̄) ← A1(x̄1), . . . , An(x̄n), where each Ai is an

extensional predicate or the predicate A. Suppose that A is mentioned in the

body of the rule (otherwise the problem is rather easy), and then it is initialized

by a ground fact A(a1, . . . , ak)←. We are also given a database D and a fact δ :

A(b1, . . . , bk). We build a data exchange settingM = (S,T,∆), a conjunctive

query with one negation Q and a source instance I as follows: let the schemas

50

be

S = {R1, . . . , Rm, Rδ, A, C,Error}

T = {R′1, . . . , R′m, R′δ, A′, C ′}

where R1, . . . , Rm are the extensional database predicates, each with its corre-

sponding arity; Rδ has arity k and will represent the fact δ; A is of arity k+1 and

will be used to initialize A; C has arity 1 and will store a constant; and Error

has arity k + 1 and will be used to check the fact. The set ∆ consists of the

following dependencies:

• Copying dependencies:

Ri(x̄)↔ R′i(x̄), 1 ≤ i ≤ m (4.14)

A(x1, . . . , xk, xk)↔ A′(x1, . . . , xk, xk) (4.15)

Rδ(x̄)↔ R′δ(x̄) (4.16)

C(x)↔ C ′(x) (4.17)

• A dependency that will check if the fact is not derivable:

Error(x̄, y)↔ R′δ(x̄) ∧ A′(x̄, y) (4.18)

Let Q be the following conjunctive query with one negated atom:

Q = ∃x̄1 . . . ∃x̄n∃x̄∃yA′1(x̄1) ∧ . . . ∧ A′n(x̄n) ∧ C ′(y) ∧ ¬A′(x̄, y)

where the tuples follow the same patterns as in the sirup rule, except forA′ which

has an additional fresh variable, because it has arity k + 1. Also, the variable y

is fresh too.

Finally, I will have the relations R1, . . . , Rm coming from D, and the tuples

A(a1, . . . , ak, ak), Rδ(b1, . . . , bk) and C(c), where c is a constant that does not

appear elsewhere in I .

51

We claim that certain(Q, I) = false if and only if P ∪ D 6|= δ. Note that

certain(Q, I) = false iff there exists a solution J such that J 6|= Q, or equiva-

lently J |= ¬Q. Note that the negation of Q yields a target tgd:

¬Q = A′1(x̄1) ∧ . . . ∧ A′n(x̄n) ∧ C ′(y)∧ → A′(x̄, y)

Therefore, we will prove that P ∪D 6|= δ if and only if there exists a solution J

such that J |= ¬Q:

(⇒) We first chase I with ∆→, obtaining a target instance J ′ that is obviously

a solution. Then, we chase J ′ with ¬Q, which is a full tgd, and then the chase

ends. Call this instance J . Note that this last chase procedure only adds tu-

ples of the form A′(d1, . . . , dk, c), where c is distinct from all di (because the

di’s come from D); also, c is the same for all this tuples. Therefore, none of

the new tuples matches the right-hand side of dependency 4.15, so (I, J) satis-

fies 4.15. Now, given that P ∪ D 6|= δ, we know there is no tuple of the form

A′(b1, . . . , bk, b
′
k) in J ′, with b′k any constant, because A(b1, . . . , bk) 6∈ D. More-

over, tuple A′(b1, . . . , bk, c) is not produced when chasing J ′ with ¬Q. Thus,

(I, J) satisfies 4.18, and then J is a solution such that J |= ¬Q.

(⇐) Let J be a solution as described. Then, there is no tuple of the form

A′(b1, . . . , bk, b
′
k) in J , with b′k any constant, according to dependency 4.18.

Furthermore, as J |= ¬Q, a tuple of this form (or any additional tuples) can-

not be obtained by chasing J with ¬Q. Now, by Lemma 1 we know that

chase∆→(I) ⊆ J , and then one can neither obtain a tuple as described by chasing

chase∆→(I) with ¬Q. Thus, by the way I , ∆ and Q were constructed, is easy to

see that δ cannot be derived from D via P .

�

Finally, with only two negations the problem is more difficult, as it was in data com-

plexity.

52

THEOREM 15. For the class of mappings specified by full 〈CQ,CQ〉-dependencies

and queries in CQ¬ with two negated atoms, CERTAINANSWERS is

coNEXPTIME-complete.

PROOF. From Theorem 12 we know this problem is in coNEXPTIME. To show

coNEXPTIME-hardness, we will again perform a reduction from TILING (Papadimitriou,

1994). Given the same definitions as in Theorem 3, we build a data exchange setting

M = (S,T,∆), with

S = {T0(·), T0(·), H(·, ·), V (·, ·), S(·, ·), Last(·), A(·), Zero(·), One(·),

Error, Error′, Error′′, C(·)}

T = {Tile, F irst, T0
′
, H
′
, V
′
, S ′, Last′, Zero′, One′, C ′}

Intuitively, source relations T0, T0, H and V come directly from the problem (where

H is the complement of H , the same for V and T0). Predicate S will store an order of the

tile types, while Last will be used to distinguish a special tile that ends the order. Relation

A will be used to compute all possible positions in the square in binary, Zero and One

will be used to distinguish those values, and C will store a constant. Predicates Error,

Error′ and Error′′ will represent errors in the tiling, initial condition and last tile, with

arities 3n + 2, 2n + 1 and 2n + 2, respectively. Target relation Tile has arity 2n + 1,

where the first 2n parameters represent a position in the square, and the last parameter is

the tile type assigned to it. Finally, predicate First has arity 2n + 2 and will be used to

store positions in the target and to choose the tiles. The remaining target relations will be

copies of the corresponding source relations.

Source instance I will contain the following relation instances:

T0 = {t0}, T0 = T\{t0}, H = T × T\H , V = T × T\V ,

S = {(t0, t1), (t1, t2), . . . , (tm−1, tm), (tm, tlast)}, Last = {tlast},

A = {0, 1}, Zero = {0}, One = {1}, Error = Error′ = Error′′ = ∅,

53

and C = {c}, where c is a constant not present elsewhere in I .

From now on, x̄ will be shorthand for the tuple of variables (x1, . . . , xn), and the

analogous applies to ȳ. The set ∆ will have the following dependencies:

• Copying dependencies:

T0(x)↔ T0
′
(x) (4.19)

H(x)↔ H
′
(x) (4.20)

V (x)↔ V
′
(x) (4.21)

S(x, y)↔ S ′(x, y) (4.22)

Last(x)↔ Last′(x) (4.23)

Zero(x)↔ Zero′(x) (4.24)

One(x)↔ One′(x) (4.25)

C(x)↔ C ′(x) (4.26)

• A dependency that, using predicate A, computes each position in the square

storing it in First, while stating that t0 is the first tile type that can be assigned

to the position.

A(x1) ∧ . . . ∧ A(xn) ∧ A(y1) ∧ . . . ∧ A(yn) ∧ T0(z)↔ First(x̄, ȳ, z, z) (4.27)

• A dependency that sets the first position to tile type t0, which is the same as in

Theorem 3:

Error′(x̄, ȳ, z)↔ Tile(x̄, ȳ, z) ∧
n∧
i=1

(
Zero′(xi) ∧ Zero′(yi)

)
∧ T0

′
(z) (4.28)

• A dependency that ensures every position is assigned a tile type, by stating that

the last tile cannot be used in predicate First:

Error′′(x̄, ȳ, z, z′)↔ First(x̄, ȳ, z, z′) ∧ Last′(z) (4.29)

54

• For each k ∈ {0, . . . , n − 1}, two dependencies for checking horizontal and

vertical constraints, which are basically the same as in Theorem 3 (refer to its

proof for details):

Error(p̄, w1, q̄, p̄, w2, r̄, ȳ, z1, z2)↔ Tile(p̄, w1, q̄, ȳ, z1)

∧Tile(p̄, w2, r̄, ȳ, z2) ∧H ′(z1, z2) ∧ αk(w1, w2, q̄, r̄) (4.30)

Error(p̄, w1, q̄, p̄, w2, r̄, x̄, z1, z2)↔ Tile(x̄, p̄, w1, q̄, z1)

∧Tile(x̄, p̄, w2, r̄, z2) ∧ V ′(z1, z2) ∧ αk(w1, w2, q̄, r̄) (4.31)

Finally, we construct a conjunctive query with two negated atoms Q:

∃x̄∃ȳ∃z1∃z′1∃z2∃w
(
First(x̄, ȳ, z1, z

′
1) ∧ S ′(z1, z2) ∧ C ′(w)

∧¬Tile(x̄, ȳ, z1) ∧ ¬First(x̄, ȳ, z2, w)
)

Note that ¬Q is a disjunctive tgd, which states that each position must be assigned a

tile type in T . It does so recursively, trying to assign the first tile type or any that follows

in the order S:

First(x̄, ȳ, z1, z
′
1) ∧ S ′(z1, z2) ∧ C ′(w)→ Tile(x̄, ȳ, z1) ∨ First(x̄, ȳ, z2, w) (4.32)

It is clear that we can build M, I and Q in polynomial time. Recall that

certain(Q, I) = false iff there exists a solution J such that J 6|= Q, or equivalently,

J |= ¬Q. Now we will show that there exists a 2n × 2n tiling that satisfies the constraints

if and only if there exists a solution J for I underM such that J |= ¬Q:

(⇒) Given that there exists a tiling, we have the function f , which we will use to

build a solution J as follows:

• Start with J = ∅.

55

• We copy relations T0, H , V , S, Last, Zero, One and C from I to their corre-

sponding relations in J .

• For each position (i, j) ∈ {0, . . . , 2n − 1}2, where f(i, j) = tl for some l ∈

{0, . . . ,m}, we add tuples First(x̄i, ȳj, t0, t0) and Tile(x̄i, ȳj, tl) to J , where

x̄i, ȳj are the binary representations of i and j respectively. We also add tuples

First(x̄i, ȳj, tp, c) for each p ∈ {1, . . . , l}.

Now we show that (I, J) |= ∆ and J |= ¬Q:

(4.19), (4.20), (4.21), (4.22), (4.23), (4.24), (4.25) and (4.26) by construction.

(4.27) [→] By construction.

[←] This side of the dependency states that every tuple in First with its last two

variables equal must consist of a position in the square and tile type t0 in the last two

variables. This is true given that all tuples in First that mention another tile type do not

have the last two variables with the same value, since they mention constant c in the last

position, which is distinct from every other constant in I , and in particular from every ti.

(4.28), (4.30) and (4.31): refer to the proof for Theorem 3.

(4.29) This dependency states that there cannot be a tuple in First with tile type tlast

second-to-last, which is true by construction.

(4.32) For each position (i, j) let f(i, j) = tl. Regarding the left-hand side, it holds

that First(x̄i, x̄j, t, t′) ∈ J for each t ∈ {t0, . . . , tl} and some constant t′. Then, the tgd

is satisfied for each t ∈ {t0, . . . , tl−1} by the second disjunct, and for tl is satisfied by the

first disjunct.

In conclusion, given that there exists a tiling, we built a solution J for I under M

such that J |= ¬Q.

(⇐) Given J such that (I, J) |= ∆ and J |= ¬Q, we generate a tiling f using

tgd (4.32) to choose, for every position (i, j), a tile type tl mentioned in S ′ such that

Tile(x̄i, ȳj, tl), making f(i, j) = tl. Note that we can always choose such tl, since by

56

dependency (4.29) we cannot use tlast in First, and then Tile must hold at some point.

Moreover, this also ensures that every tl comes from T . Without loss of generality, suppose

that we choose tile type t0 for position (0, 0) (this is possible because (I, J) must satisfy

dependency (4.28)). Now we show that f is a valid tiling:

By contradiction, suppose that f is not a valid tiling. Therefore, there exist i, j such

that (f(i, j), f(i + 1, j)) 6∈ H or (f(i, j), f(i, j + 1)) 6∈ V . For simplicity suppose that

the first statement holds (the other is analogous). Then, (f(i, j), f(i+ 1, j)) ∈ H , and by

dependency (4.20) it holds that (f(i, j), f(i+1, j)) ∈ H ′. By tgd (4.32) (and by how f was

built) we know Tile(x̄i, ȳj, f(i, j)) and Tile(x̄i+1, ȳj, f(i+ 1, j)) hold. Now, by equation

(3.16) we know that it exists some k ∈ {0, . . . , n − 1} such that x̄i = p1 . . . pk01n−k−1

and x̄i+1 = p1 . . . pk10n−k−1, and then for such k we know that J satisfies the right-hand

side of dependency (4.30), with z1 = f(i, j) and z2 = f(i + 1, j). Therefore, since

J is a solution, it must be that I |= Error(x̄i, x̄i+1, ȳj, f(i, j), f(i + 1, j)), which is a

contradiction because Error = ∅ in I . �

57

5. CONCLUDING REMARKS

In this work we have continued the formal study of bidirectional constraints, which

was started by Arenas, Diéguez, and Pérez (2014). In particular, we have thoroughly

analyzed the computational complexity of two fundamental problems in data exchange:

EXISTENCEOFSOLUTIONS and CERTAINANSWERS. We have done this in both data and

combined complexity, and in the case of query answering, for several query languages

including non-monotone fragments. The results show that bidirectional constraints are an

interesting field of research in database theory, which was not studied from a theoreti-

cal point of view prior to Arenas, Diéguez, and Pérez (2014) and this thesis. We should

mention that there has been some related work driven from practical motivations, most

notably Melnik et al. (2008) and Bernstein, Jacob, Pérez, Rull, and Terwilliger (2013),

where bidirectional constraints based on project-select relational algebra expressions are

considered in an object-to-relational mapping system. Nevertheless, to the best of our

knowledge, both Arenas, Diéguez, and Pérez (2014) and this thesis present the first theo-

retical results on the fundamental properties of bidirectional constraints.

A natural extension of this work would be the definition of tractable fragments of bidi-

rectional constraints, restricting the query languages involved to obtain lower complexity

bounds. Moreover, restricting the dependencies to GAV constraints (Levy, Mendelzon,

Sagiv, & Srivastava, 1995; Halevy, 2001; Lenzerini, 2002) would probably be a succesful

line of research.

Another possibility for future research arises from the results by Arenas, Diéguez,

and Pérez (2014). Bidirectional constraints have a greater expressive power in terms of

better specifying the desired solutions in data exchange when compared to st-tgds, as it

was shown by Arenas, Diéguez, and Pérez (2014) for full dependencies, and then several

lines of research are possible regarding this, including the analysis of general dependen-

cies, and the definition of alternative semantics for mappings specified by st-tgds using

these constraints. Interesting semantics have been proposed by Libkin (2006) and Hernich

58

(2013), and we believe a new semantics defined in terms of bidirectional constraints would

compare favourably to them.

Besides the motivation that comes from defining more strictly what are the possible

target instances in data exchange, mappings specified by bidirectional constraints have

several other applications. Most notably, these specifications are expressive enough to

define how source constraints should be transformed into target constraints. If one has a

source schema with, for example, key constraints, and creates a new schema and a data

exchange setting to migrate the data, it is natural to expect the source key constraints to be

somehow reflected in the new schema. This issue is closely related with the recently raised

topic of exchanging (or transforming) knowledge bases (Arenas et al., 2013). Mappings

specified by st-tgds are not expressive enough to describe these type of transformations.

We argue that bidirectional constraints are a good formalism to study these complex trans-

formation scenarios, and it would be very interesting to explore these possibilities in future

work. Another motivation comes from schema mapping management, where the inputs

for schema mapping operators such as the merge, extract and diff operators are naturally

defined using bidirectional mappings (Bernstein & Melnik, 2007; Arenas et al., 2010).

This is also part of our future work.

59

References

Abiteboul, S., Hull, R., & Vianu, V. (1995). Foundations of databases. Addison-
Wesley.

Afrati, F. N., & Kolaitis, P. G. (2008). Answering aggregate queries in data exchange.
In M. Lenzerini & D. Lembo (Eds.), Pods (p. 129-138). ACM.

Arenas, M., Barceló, P., Libkin, L., & Murlak, F. (2014). Foundations of data ex-
change. Cambridge University Press. Retrieved from http://www.cambridge

.org/9781107016163

Arenas, M., Diéguez, G., & Pérez, J. (2014). Expressiveness and complexity of bidi-
rectional constraints for data exchange. In G. Gottlob & J. Pérez (Eds.), Proceedings
of the 8th alberto mendelzon workshop on foundations of data management, carta-
gena de indias, colombia, june 4-6, 2014. (Vol. 1189). CEUR-WS.org. Retrieved
from http://ceur-ws.org/Vol-1189/paper 15.pdf

Arenas, M., Pérez, J., & Reutter, J. L. (2011). Data exchange beyond complete data.
In M. Lenzerini & T. Schwentick (Eds.), Proceedings of the 30th ACM SIGMOD-
SIGACT-SIGART symposium on principles of database systems, PODS 2011, june
12-16, 2011, athens, greece (pp. 83–94). ACM. Retrieved from http://doi.acm

.org/10.1145/1989284.1989293 doi: 10.1145/1989284.1989293

Arenas, M., Pérez, J., & Reutter, J. L. (2013). Data exchange beyond complete data.
J. ACM, 60(4), 28.

Arenas, M., Pérez, J., Reutter, J. L., & Riveros, C. (2009a). Composition
and inversion of schema mappings. SIGMOD Record, 38(3), 17–28. Retrieved
from http://doi.acm.org/10.1145/1815933.1815938 doi: 10.1145/
1815933.1815938

60

http://www.cambridge.org/9781107016163
http://www.cambridge.org/9781107016163
http://ceur-ws.org/Vol-1189/paper_15.pdf
http://doi.acm.org/10.1145/1989284.1989293
http://doi.acm.org/10.1145/1989284.1989293
http://doi.acm.org/10.1145/1815933.1815938

Arenas, M., Pérez, J., Reutter, J. L., & Riveros, C. (2009b). Inverting schema map-
pings: Bridging the gap between theory and practice. PVLDB, 2(1), 1018–1029.
Retrieved from http://www.vldb.org/pvldb/2/vldb09-775.pdf

Arenas, M., Pérez, J., Reutter, J. L., & Riveros, C. (2010). Foundations of schema
mapping management. In J. Paredaens & D. V. Gucht (Eds.), Pods (p. 227-238).
ACM.

Arenas, M., Pérez, J., & Riveros, C. (2008). The recovery of a schema mapping:
bringing exchanged data back. In M. Lenzerini & D. Lembo (Eds.), Proceedings
of the twenty-seventh ACM SIGMOD-SIGACT-SIGART symposium on principles
of database systems, PODS 2008, june 9-11, 2008, vancouver, bc, canada (pp.
13–22). ACM. Retrieved from http://doi.acm.org/10.1145/1376916

.1376920 doi: 10.1145/1376916.1376920

Arenas, M., Pérez, J., & Riveros, C. (2009). The recovery of a schema mapping:
Bringing exchanged data back. ACM Trans. Database Syst., 34(4).

Bernstein, P. A. (2003). Applying model management to classical meta data
problems. In CIDR. Retrieved from http://www-db.cs.wisc.edu/cidr/

cidr2003/program/p19.pdf

Bernstein, P. A., Green, T. J., Melnik, S., & Nash, A. (2006). Implementing map-
ping composition. In U. Dayal et al. (Eds.), Proceedings of the 32nd interna-
tional conference on very large data bases, seoul, korea, september 12-15, 2006
(pp. 55–66). ACM. Retrieved from http://www.vldb.org/conf/2006/

p55-bernstein.pdf

Bernstein, P. A., Halevy, A. Y., & Pottinger, R. (2000). A vision of management
of complex models. SIGMOD Record, 29(4), 55–63. Retrieved from http://doi

.acm.org/10.1145/369275.369289 doi: 10.1145/369275.369289

Bernstein, P. A., Jacob, M., Pérez, J., Rull, G., & Terwilliger, J. F. (2013). Incremen-
tal mapping compilation in an object-to-relational mapping system. In K. A. Ross,
D. Srivastava, & D. Papadias (Eds.), Sigmod conference (p. 1269-1280). ACM.

61

http://www.vldb.org/pvldb/2/vldb09-775.pdf
http://doi.acm.org/10.1145/1376916.1376920
http://doi.acm.org/10.1145/1376916.1376920
http://www-db.cs.wisc.edu/cidr/cidr2003/program/p19.pdf
http://www-db.cs.wisc.edu/cidr/cidr2003/program/p19.pdf
http://www.vldb.org/conf/2006/p55-bernstein.pdf
http://www.vldb.org/conf/2006/p55-bernstein.pdf
http://doi.acm.org/10.1145/369275.369289
http://doi.acm.org/10.1145/369275.369289

Bernstein, P. A., & Melnik, S. (2007). Model management 2.0: manipulating richer
mappings. In C. Y. Chan, B. C. Ooi, & A. Zhou (Eds.), Sigmod conference (p. 1-12).
ACM.

De Giacomo, G., Lembo, D., Lenzerini, M., & Rosati, R. (2007). On reconciling
data exchange, data integration, and peer data management. In L. Libkin (Ed.), Pods
(p. 133-142). ACM.

Evans, T. (1951). The word problem for abstract algebras. Journal of the London
Mathematical Society, 26, 64–71.

Evans, T. (1953). Embeddability and the word problem. Journal of the London Math-
ematical Society, 28, 76–80.

Evans, T. (1978). Word problems. Bulletin of the American Mathematical Society,
84(5), 789–802.

Fagin, R. (2007). Inverting schema mappings. ACM Trans. Database Syst., 32(4).
Retrieved from http://doi.acm.org/10.1145/1292609.1292615 doi:
10.1145/1292609.1292615

Fagin, R., Kolaitis, P. G., Miller, R. J., & Popa, L. (2003). Data exchange: Semantics
and query answering. In D. Calvanese, M. Lenzerini, & R. Motwani (Eds.), Database
theory - ICDT 2003, 9th international conference, siena, italy, january 8-10, 2003,
proceedings (Vol. 2572, pp. 207–224). Springer. Retrieved from http://dx.doi

.org/10.1007/3-540-36285-1 14 doi: 10.1007/3-540-36285-1 14

Fagin, R., Kolaitis, P. G., Miller, R. J., & Popa, L. (2005). Data exchange: semantics
and query answering. Theor. Comput. Sci., 336(1), 89-124.

Fagin, R., Kolaitis, P. G., & Popa, L. (2003). Data exchange: getting to the core.
In F. Neven, C. Beeri, & T. Milo (Eds.), Proceedings of the twenty-second ACM
SIGACT-SIGMOD-SIGART symposium on principles of database systems, june 9-
12, 2003, san diego, ca, USA (pp. 90–101). ACM. Retrieved from http://doi

.acm.org/10.1145/773153.773163 doi: 10.1145/773153.773163

62

http://doi.acm.org/10.1145/1292609.1292615
http://dx.doi.org/10.1007/3-540-36285-1_14
http://dx.doi.org/10.1007/3-540-36285-1_14
http://doi.acm.org/10.1145/773153.773163
http://doi.acm.org/10.1145/773153.773163

Fagin, R., Kolaitis, P. G., Popa, L., & Tan, W. C. (2005). Composing schema
mappings: Second-order dependencies to the rescue. ACM Trans. Database
Syst., 30(4), 994–1055. Retrieved from http://doi.acm.org/10.1145/

1114244.1114249 doi: 10.1145/1114244.1114249

Fagin, R., Kolaitis, P. G., Popa, L., & Tan, W. C. (2008). Quasi-inverses of schema
mappings. ACM Trans. Database Syst., 33(2). Retrieved from http://doi.acm

.org/10.1145/1366102.1366108 doi: 10.1145/1366102.1366108

Fuxman, A., Kolaitis, P. G., Miller, R. J., & Tan, W. C. (2006). Peer data exchange.
ACM Trans. Database Syst., 31(4), 1454-1498.

Gottlob, G., & Nash, A. (2006). Data exchange: computing cores in polynomial time.
In S. Vansummeren (Ed.), Proceedings of the twenty-fifth ACM SIGACT-SIGMOD-
SIGART symposium on principles of database systems, june 26-28, 2006, chicago,
illinois, USA (pp. 40–49). ACM. Retrieved from http://doi.acm.org/10

.1145/1142351.1142358 doi: 10.1145/1142351.1142358

Gottlob, G., & Papadimitriou, C. H. (2003). On the complexity of single-rule datalog
queries. Inf. Comput., 183(1), 104–122. Retrieved from http://dx.doi.org/

10.1016/S0890-5401(03)00012-9 doi: 10.1016/S0890-5401(03)00012-9

Gurevich, Y. (1966). The word problem for certain classes of semigroups. Algebra
and Logic, 5, 25–35.

Haas, L. M., Hernández, M. A., Ho, H., Popa, L., & Roth, M. (2005). Clio grows up:
from research prototype to industrial tool. In F. Ozcan (Ed.), Proceedings of the ACM
SIGMOD international conference on management of data, baltimore, maryland,
usa, june 14-16, 2005 (pp. 805–810). ACM. Retrieved from http://doi.acm

.org/10.1145/1066157.1066252 doi: 10.1145/1066157.1066252

Halevy, A. Y. (2001). Answering queries using views: A survey. VLDB J., 10(4),
270–294. Retrieved from http://dx.doi.org/10.1007/s007780100054

doi: 10.1007/s007780100054

63

http://doi.acm.org/10.1145/1114244.1114249
http://doi.acm.org/10.1145/1114244.1114249
http://doi.acm.org/10.1145/1366102.1366108
http://doi.acm.org/10.1145/1366102.1366108
http://doi.acm.org/10.1145/1142351.1142358
http://doi.acm.org/10.1145/1142351.1142358
http://dx.doi.org/10.1016/S0890-5401(03)00012-9
http://dx.doi.org/10.1016/S0890-5401(03)00012-9
http://doi.acm.org/10.1145/1066157.1066252
http://doi.acm.org/10.1145/1066157.1066252
http://dx.doi.org/10.1007/s007780100054

Hernández, M. A., Popa, L., Velegrakis, Y., Miller, R. J., Naumann, F., & Ho, C.
(2002). Mapping XML and relational schemas with clio. In R. Agrawal & K. R. Dit-
trich (Eds.), Proceedings of the 18th international conference on data engineering,
san jose, ca, usa, february 26 - march 1, 2002 (pp. 498–499). IEEE Computer Soci-
ety. Retrieved from http://dx.doi.org/10.1109/ICDE.2002.994768

doi: 10.1109/ICDE.2002.994768

Hernich, A. (2013). Semantics for non-monotone queries in data exchange and data
integration. In P. G. Kolaitis, M. Lenzerini, & N. Schweikardt (Eds.), Data exchange,
information, and streams (Vol. 5, p. 161-184). Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik.

Kolaitis, P. G. (2005). Schema mappings, data exchange, and metadata manage-
ment. In C. Li (Ed.), Proceedings of the twenty-fourth ACM SIGACT-SIGMOD-
SIGART symposium on principles of database systems, june 13-15, 2005, baltimore,
maryland, USA (pp. 61–75). ACM. Retrieved from http://doi.acm.org/

10.1145/1065167.1065176 doi: 10.1145/1065167.1065176

Kolaitis, P. G., Panttaja, J., & Tan, W. C. (2006). The complexity of data exchange.
In S. Vansummeren (Ed.), Pods (pp. 30–39). ACM. Retrieved from http://doi

.acm.org/10.1145/1142351.1142357 doi: 10.1145/1142351.1142357

Kostylev, E. V., & Reutter, J. L. (2013). Answering counting aggregate queries over
ontologies of the dl-lite family. In M. desJardins & M. L. Littman (Eds.), Aaai. AAAI
Press.

Lenzerini, M. (2002). Data integration: A theoretical perspective. In L. Popa,
S. Abiteboul, & P. G. Kolaitis (Eds.), Pods (p. 233-246). ACM.

Lenzerini, M., & Lembo, D. (Eds.). (2008). Proceedings of the twenty-seventh acm
sigmod-sigact-sigart symposium on principles of database systems, pods 2008, june
9-11, 2008, vancouver, bc, canada. ACM.

64

http://dx.doi.org/10.1109/ICDE.2002.994768
http://doi.acm.org/10.1145/1065167.1065176
http://doi.acm.org/10.1145/1065167.1065176
http://doi.acm.org/10.1145/1142351.1142357
http://doi.acm.org/10.1145/1142351.1142357

Levy, A. Y., Mendelzon, A. O., Sagiv, Y., & Srivastava, D. (1995). Answering queries
using views. In M. Yannakakis (Ed.), Proceedings of the fourteenth ACM SIGACT-
SIGMOD-SIGART symposium on principles of database systems, may 22-25, 1995,
san jose, california, USA (pp. 95–104). ACM Press. Retrieved from http://doi

.acm.org/10.1145/212433.220198 doi: 10.1145/212433.220198

Libkin, L. (2006). Data exchange and incomplete information. In S. Vansummeren
(Ed.), Pods (p. 60-69). ACM.

Madhavan, J., & Halevy, A. Y. (2003). Composing mappings among data sources. In
VLDB (pp. 572–583). Retrieved from http://www.vldb.org/conf/2003/

papers/S18P01.pdf

Maier, D., Mendelzon, A. O., & Sagiv, Y. (1979). Testing implications of data de-
pendencies. ACM Trans. Database Syst., 4(4), 455–469. Retrieved from http://

doi.acm.org/10.1145/320107.320115 doi: 10.1145/320107.320115

Melnik, S. (2004). Generic model management: Concepts and algorithms (Vol.
2967). Springer. Retrieved from http://dx.doi.org/10.1007/b97859

doi: 10.1007/b97859

Melnik, S., Adya, A., & Bernstein, P. A. (2008). Compiling mappings to bridge
applications and databases. ACM Trans. Database Syst., 33(4).

Melnik, S., Bernstein, P. A., Halevy, A. Y., & Rahm, E. (2005). Supporting exe-
cutable mappings in model management. In F. Ozcan (Ed.), Proceedings of the ACM
SIGMOD international conference on management of data, baltimore, maryland,
usa, june 14-16, 2005 (pp. 167–178). ACM. Retrieved from http://doi.acm

.org/10.1145/1066157.1066177 doi: 10.1145/1066157.1066177

Ozcan, F. (Ed.). (2005). Proceedings of the ACM SIGMOD international conference
on management of data, baltimore, maryland, usa, june 14-16, 2005. ACM.

Papadimitriou, C. H. (1994). Computational complexity. Addison-Wesley.

65

http://doi.acm.org/10.1145/212433.220198
http://doi.acm.org/10.1145/212433.220198
http://www.vldb.org/conf/2003/papers/S18P01.pdf
http://www.vldb.org/conf/2003/papers/S18P01.pdf
http://doi.acm.org/10.1145/320107.320115
http://doi.acm.org/10.1145/320107.320115
http://dx.doi.org/10.1007/b97859
http://doi.acm.org/10.1145/1066157.1066177
http://doi.acm.org/10.1145/1066157.1066177

Pérez, J. (2011). Schema mapping management in data exchange systems (Unpub-
lished doctoral dissertation). Escuela de Ingenierı́a, Pontificia Universidad Católica
de Chile.

Stockmeyer, L. J. (1976). The polynomial-time hierarchy. Theor. Comput. Sci., 3(1),
1-22.

ten Cate, B., & Kolaitis, P. G. (2009). Structural characterizations of schema-
mapping languages. In R. Fagin (Ed.), Database theory - ICDT 2009, 12th
international conference, st. petersburg, russia, march 23-25, 2009, proceed-
ings (Vol. 361, pp. 63–72). ACM. Retrieved from http://doi.acm.org/10

.1145/1514894.1514903 doi: 10.1145/1514894.1514903

ten Cate, B., & Kolaitis, P. G. (2010). Structural characterizations of schema-
mapping languages. Commun. ACM, 53(1), 101–110. Retrieved from http://doi

.acm.org/10.1145/1629175.1629201 doi: 10.1145/1629175.1629201

Vansummeren, S. (Ed.). (2006). Proceedings of the twenty-fifth acm sigact-sigmod-
sigart symposium on principles of database systems, june 26-28, 2006, chicago, illi-
nois, usa. ACM.

Vardi, M. Y. (1982). The complexity of relational query languages (extended ab-
stract). In H. R. Lewis, B. B. Simons, W. A. Burkhard, & L. H. Landweber (Eds.),
Proceedings of the 14th annual ACM symposium on theory of computing, may
5-7, 1982, san francisco, california, USA (pp. 137–146). ACM. Retrieved from
http://doi.acm.org/10.1145/800070.802186 doi: 10.1145/800070
.802186

Wrathall, C. (1976). Complete sets and the polynomial-time hierarchy. Theor. Com-
put. Sci., 3(1), 23-33.

66

http://doi.acm.org/10.1145/1514894.1514903
http://doi.acm.org/10.1145/1514894.1514903
http://doi.acm.org/10.1145/1629175.1629201
http://doi.acm.org/10.1145/1629175.1629201
http://doi.acm.org/10.1145/800070.802186

	Acknowledgements
	LIST OF TABLES
	Abstract
	Resumen
	1. Introduction
	Summary of contributions
	Thesis outline and structure

	2. Preliminaries
	2.1. Query languages
	2.2. Schema mappings
	2.2.1. Specifying schema mappings
	2.2.2. Data exchange: Universal solutions and Query answering

	3. Complexity of the Existence of Solutions Problem
	3.1. Data complexity
	3.2. Combined complexity

	4. Complexity of Query Answering
	4.1. Data Complexity
	4.1.1. The general case
	4.1.2. The full case

	4.2. Combined Complexity
	4.2.1. The general case
	4.2.2. The full case

	5. Concluding remarks
	References

