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Abstract

This dissertation is divided into four chapters. The first chapter includes a brief literature
survey on life-cycle precautionary saving. It presents a stochastic life-cycle model of con-
sumption and savings and summarizes the empirical evidence on the degree of precautionary
saving.

The second chapter studies the savings behavior of households over the life-cycle by
revisiting Gourinchas and Parker (2002). I find that target wealth behavior differs substan-
tially from actual savings behavior in a finite-horizon consumption life-cycle model. While
the target value of wealth is a good indicator of the overall direction to which the distri-
bution of normalized cash-on-hand moves, it fails to describe the magnitude of household
overall savings. Furthermore, the age-profile of the target value of liquid wealth depends
crucially on the model’s assumptions instead of observed consumer behavior. Moreover,
the target value of cash-on-hand is sensitive to small changes (within confidence intervals
for such parameter values) in the model’s parameters, such as the interest rate, when the
marginal propensity to consume is less than one.

The third chapter examines the aggregate implications of the individual life-cycle be-
havior predicted by Gourinchas and Parker (2002) in light of Carroll (2000). I show that
the appropriateness of a representative-agent depends on the age of the population and the
retirement income profile. However, I find that the predicted distribution of cash-on-hand
does not match the wealth holdings in microeconomic data, despite the various combina-
tions of parameter values that are considered. This discrepancy sheds light in the suitability
of the life-cycle model to reproduce the observed saving behavior across U.S. households.

The fourth chapter evaluates the use of the endogenous grid-points solution method
when estimating a stochastic life-cycle model. The Monte Carlo results suggest that one
must be cautious when adopting this solution method when numerically minimizing the
Simulated Method of Moments estimators’ objective function. The mode of the SMM
estimates for the coefficient of risk aversion is approximately zero when its true value is
small.

vii



Chapter 1

Literature Review on Precautionary
Saving

1.1 Introduction

A vast amount of literature has investigated how individuals make optimal consumption and
savings decisions over their lifetime. Modigliani and Brumberg (1954)’s life-cycle model has
been the stem for most of the works on inter-temporal consumption and savings behavior.
Most of the implications derived from this model are inter-related and are all ultimately
derived from the proposition that agents keep the expected marginal utility of expenditure
constant. Overall, the standard life-cycle model predicts that a rational forward-looking
agent, who makes consumption and savings decisions taking into account her life-time re-
sources, will save when young and deccumulate her assets when old. The main prediction
of the standard life-cycle model, however, has been challenged by three empirical obser-
vations (mostly on U.S. data): excess sensibility of consumption to income (Carroll, Hall,
and Zeldes, 1992; Shea, 1995), fall in consumption at retirement (Banks, Blundell, and
Tanner, 1998; Bernheim, Skinner, and Weinberg, 2001), and slow deccumulation of assets
by the elderly (Kotlikoff and Summers, 1981; Hurd, 1989). In an attempt to reconcile
these empirical observations and the theoretical predictions, the life-cycle theory has been
extended and generalized into different ways relaxing progressively the standard life-cycle
assumptions as new economic methods have been developed over time. Similarly over the
past two decades and incited by advances in numerical solution methods, most empirical
works have emphasized in explaining and improving our understanding of the effect of un-
certainty on household consumption and savings behavior. In particular, the qualitative
and quantitative aspects of precautionary saving, i.e. the additional saving resulting from
future uncertainty, have been explored in depth.
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This literature survey provides a concise summary on precautionary saving. The re-
mainder of this document is structured as follows. Section 2 presents a life-cycle model of
consumption and savings under uncertainty, commonly used to study precautionary saving.
Section 3 summarizes the empirical evidence on the degree of precautionary saving. Finally,
Section 4 concludes.

1.2 Precautionary Saving

Precautionary saving is traditionally modeled as the outcome of a consumer’s optimal inter-
temporal allocation of resources under future uncertainty. Hall (1978) is one of the first
to consider labor income uncertainty in Modigliani and Brumberg’s life-cycle framework.
Assuming quadratic preferences for tractability, he finds out that consumption follows a
random walk. Because its implication for inter-temporal consumption and savings behavior
are equivalent to those in the perfect foresight model, his model is known as the certainty-
equivalent (CEQ) model. Nevertheless, the notion of precautionary saving first emerged in
Leland (1968). Based on a two-period model, he theoretically concludes that risk aversion
is not sufficient to guarantee positive precautionary savings. Subsequently, Kimball (1990)
shows that any utility function with a positive third derivative results in extra savings
compared to the CEQ case. He terms the additional savings behavior resulting from income
uncertainty as “prudence.” He further defines the degree of absolute prudence as −u′′′(c)

u′′(c) ,
where u(c) is any utility function with a positive third derivative. Thus, the degree of
absolute prudence measures the strength of the precautionary saving motive just as the
degree of absolute risk aversion measures the intensity of risk aversion. Despite the lack
of a closed-form solution implied by constant relative risk aversion (CRRA) preferences,
Zeldes (1989) and Kimball (1990) (among others) argue that this type of preferences is the
most realistic as it allows precautionary saving to depend on the level of individual wealth.

Based on the standard approach of time-invariant preferences,1 consider the following
discrete-time, life-cycle model of household consumption. Individuals live until age N
(assumed to be exogenous and fixed), and their preferences are represented by the standard
additively separable expected utility form:

E

[
N∑
t=1

βt
C1−ρ
t

1− ρ
+ βN+1VN+1(WN+1)

]
(1.1)

1Time-invariant preferences are assumed to avoid issues of time inconsistency analyzed by Strotz (1955),
Phelps and Pollak (1968), Laibson (1997), and others. The model described in this section is essentially
the same as the one in Zeldes (1989), Carroll (1997), and Gourinchas and Parker (2002). Furthermore, this
study focuses on the standard life-cycle model and does not encompass the growing literature on behavioral
models on saving and consumption decisions.
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where β is the time-discount factor, 1
ρ is the inter-temporal elasticity of substitution, Ct

is the total consumption at age t, Wt is the total financial wealth at age t, and VN+1 is
the value to the consumer of the remaining assets after death. At each age t ∈ [1, N ], the
individual receives a stochastic income Yt given by:

Yt = PtUt (1.2)

Pt = GtPt−1Nt

where labor income is divided into a permanent component Pt and a transitory component
Ut. The transitory shocks Ut are assumed to be independently and identically distributed;
moreover, there is a non-negative probability of a zero-income event, i.e. Ut = 0 with
probability p ∈ [0, 1). Ut is otherwise log-normally distributed, lnUt ∼ N(0, σ2U ). The
permanent component of income Pt follows a random walk with drift Gt (predictable growth
of income) and permanent shock Nt, which is independently and identically log-normally
distributed, lnNt ∼ N(0, σ2N ).2 While Nt is meant to capture the effects of job changes,
wage raises, and other persistent factors, Ut is meant to capture the effects of one-time
bonuses, unemployment spells, and other transitory factors.

The consumer’s goal at age τ is then to allocate resources between current consumption
and savings for future consumption by solving:

Vτ (Xτ , Pτ ) = max
Cτ ,...,CN

Eτ

[
N∑
t=τ

βt−τ
C1−ρ
t

1− ρ
+ βN+1−τVN+1(XN+1, PN+1)

]

given the labor income process defined in (1.2) and subject to:

Xt+1 = R(Xt − Ct) + Yt+1 (1.3)

XN+1 ≥ 0 (1.4)

where R is the constant, after-tax, gross real interest rate of the only asset available in the
economy, Xt is defined as the level of cash-on-hand (total liquid financial wealth) in period
t, i.e. Xt ≡Wt + Yt, and the last inequality reflects the fact that the consumer cannot die
in debt.

Note that the consumer’s problem is homogeneous of degree (1 − ρ) in Pt. Thus, by
denoting lowercase letters as normalized variables, e.g. xt ≡ Xt

Pt
, the Euler equation at age

2It is worth noting that under this income process formulation, consumers will never choose to borrow
against future labor income. As Carroll and Kimball (2001) show, precautionary saving motive can induce
self-imposed liquidity constraints. In particular, they provide an example in which the behavior of a
consumer facing a zero-income event is virtually indistinguishable from the behavior of a perfect foresight
but liquidity-constrained consumer as the probability of zero-income event approaches zero.
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t is given by:
u′(ct(xt)) = βRE

[
u′(ct+1(xt+1)Gt+1Nt+1)

]
(1.5)

where ct(xt) is the optimal consumption function. Assuming VN+1 = 0, the optimal con-
sumption function at the last period is cN (xN ) = xN . Hence, the set of optimal consump-
tion rules at each t can be found by solving problem (1.5) recursively. Figure 1.1a displays
the optimal consumption functions under the parameter values listed in Table 1.1. As can
be seen, the consumption at N is linear and equal to the 45o-line depicting the fact that
it is optimal to consume all the remaining wealth in the last period of life. On the other
hand, the consumption rules for t < N are increasing, positive, and concave in normalized
cash-on-hand.3 Figure 1.1b shows the optimal consumption functions in the absence of
income uncertainty. The consumption rules are increasing, positive, and linear in normal-
ized cash-on-hand. The magnitude of precautionary saving is calculated as the difference
between the consumption rules without and with income uncertainty, as depicted on Figure
1.1c. As can be observed, income uncertainty reduces the amount of optimal consumption,
and this reduction is higher as the horizon recedes and for consumers with low levels of
normalized cash-on-hand. In fact, precautionary saving is inversely related to cash-on-hand
with CRRA preferences.

Furthermore, assuming an infinite-horizon (N = ∞) and plausible parameter values,
Carroll, Hall, and Zeldes (1992), Carroll (1997), and Carroll (2019) show that consumers
have a target level of normalized cash-on-hand in the presence of income uncertainty. He
defines it as the level of normalized cash-on-hand at which cash-on-hand is expected to
remain unchanged from age t to age t+ 1, that is:

x̄t = Et [xt+1|xt = x̄t] (1.6)

Carroll points out that households must be both impatient and prudent for the existence of
this target in the presence of zero income risk. Impatience refers to consumers who would
like to consumer more now than save for the future, and prudence in regards to the the
propensity to prepare oneself in the presence of uncertainty.4 As a result, households engage
in “buffer-stock” savings behavior: they choose to accumulate some amount of wealth to
cushion against income risks at each age t.

The implications of the “buffer-stock” saving model have been explored on observed
wealth inequality, average marginal propensities to consume, business cycles, among other
things. For instance, Jappelli, Padula, and Pistaferri (2008) test the “buffer-stock” saving

3Carroll and Kimball (2001) show algebraically how income uncertainty creates non-linearities in the
consumption function for CRRA preferences.

4Kimball (1990) defines prudence as the “the sensitivity of the optimal choice of a decision variable to
risk.” (p. 54)
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model on Italian working-age individuals and find no evidence for buffer-stock behavior
even among young households. On the other hand, Carroll, Slacalek, and Tokuoka (2013)
calibrate the “buffer-stock” model to match the wealth distribution in various European
countries and find that the average marginal propensities to consume out of transitory
shocks are between 0.1 − 0.4. Similarly, Kaplan, Violante, and Weidner (2014) document
that approximately 30% of US households are living “hand-to-mouth,” i.e. with little or no
liquid wealth, and as a result they consume all of their disposable income every period.

1.3 Empirical Evidence

1.3.1 Euler Equation Estimation

As surveyed by Browning and Lusardi (1996), the early empirical literature aiming to
explore the strength of precautionary saving motives relied on estimating consumption
Euler equations. Note that although an analytical closed-form solution for the life-cycle
model in the previous section is not available, the solution must satisfy the Euler equation:

1 = RβEt

[(
Ct+1

Ct

)−ρ]
(1.7)

Taking a first-order Taylor expansion and making some approximations (for a step by step
derivation see Carroll (2001)), the Euler Equation becomes:

0 ≈ (r − δ)− ρEt [∆logCt+1]

Et [∆logCt+1] ≈
1

ρ
(r − δ) (1.8)

where δ is the time preference rate from β = 1
1+δ , r is the interest rate from R = (1+r), and

∆logCt+1 = logCt+1− logCt. Finally, defining the expectation error as εt+1 ≡ ∆logCt+1−
Et [∆logCt+1],

∆logCt+1 ≈
1

ρ
(r − δ) + εt+1. (1.9)

Hence, in order to estimate ρ, researchers often estimated regression equations of the form

∆logCt+1 = α0 + α1Et[rt+1] + εt+1 (1.10)

where α1, the coefficient on the interest rate r, is interpreted as an estimate of the in-
tertemporal elasticity of substitution, 1

ρ . Browning and Lusardi (1996) report that only
few studies using cross-sectional and time-series data have found significantly positive val-
ues of α1. Moreover, as Carroll (2001) criticizes, the presence of precautionary saving
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invalidates most of these log-linearized estimations as higher-order terms on the approxi-
mation of the Euler equation (which are usually absorbed into the regression error term)
are endogenous with respect to the first-order terms. In order to understand this criticism,
consider the second-order approximation of the Euler equation (1.7):

∆logCt+1 ≈
1

ρ
(r − δ) +

(
1 + ρ

2

)
Et[∆logC

2
t+1] + εt+1 (1.11)

where Et[∆logC2
t+1] is interpreted as a measure of volatility in consumption growth caused

by the uncertainty of income. Carroll (2001) argues the theory implies that risks generate a
positive correlation between interest rates and the variance of consumption growth through
precautionary savings. As consumers save more in order to reduce future consumption
volatility, precautionary saving depresses interest rates in a steady state. Hence, empirical
tests using the regression form (1.10) result in inconsistent estimations of α1. Carroll
further argues that the difficulty to find an observable and exogenous proxy for risk results
in biased estimations, even when trying to estimate the regression form (1.11), invalidating
most empirical tests using the usual log-linearized Euler equation approach.

1.3.2 Structural Estimation

As a response and fueled by advances in numerical solution methods, some researchers have
opted to calibrate preference parameters on observable data and use these values to simu-
late the life-cycle consumption model under uncertainty.5 The objective is to compare the
simulated and observed consumption trajectories to evaluate the predictions of the life-cycle
model. For instance, Zeldes (1989), Carroll, Hall, and Zeldes (1992), and Carroll, Hall, and
Zeldes (1992) examine a finite-horizon consumption problem where households face labor
income uncertainty without explicitly modeling retirement years. They find that both pre-
cautionary savings and marginal propensity to consume (MPC) are decreasing functions of
the level of liquid wealth. While the MPC is similar to the one implied by the certainty-
equivalent life-cycle hypothesis (CEQ-LCH) model for households with high wealth holdings
relative to expected future income, the MPC is higher for households with low liquid wealth
holdings relative to expected future income than for the rest of the population. Moreover,
Carroll, Hall, and Zeldes (1992) and Carroll (1997) document that impatient households
maintain a buffer-stock of assets as a response to income uncertainty over most of the work-
ing lifetime until approximately age 50, but impatience keeps buffer-stocks small. Similar
results are found by Deaton (1991) who considers an infinite-horizon problem augmented

5Analytical solutions to the life-cycle problem in (1.1) does not generally exist (except for the exponen-
tial utility functions) when certainty equivalence does not hold; thus, the optimal consumption is solved
employing numerical techniques.
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by borrowing constraints. In particular, he finds that buffer-stock emerges in the presence
of liquidity constraints as households save to guard against negative income shocks. Fur-
thermore, Hubbard, Skinner, and Zeldes (1995) show that income uncertainty can create
hump-shaped consumption age-profiles as individuals save early in life for precautionary
reasons and dissave during retirement years.

More recent empirical studies follow the influential work of Gourinchas and Parker
(2002) (henceforth GP). They take a step forward from the calibration technique by propos-
ing a full dynamic structural modeling approach to estimate the importance of precaution-
ary saving. The aim is to econometrically estimate the values of the preference parameters
of a life-cycle model by matching simulated average age-profiles of consumption with those
observed over the working ages of households in empirical data. The degree of the precau-
tionary motive emerges as an estimate of the coefficient of relative risk aversion.

In order to understand GP’s estimation methodology, recall the model in Section 2.
The consumption for individual i at age t depends on the parameters of the problem
(ψ ∈ Ψ ⊂ Rs), the realization of the permanent component of income (Pit) and the level
of cash on hand (Xit). Thus, based on the model, the data-generating process for each age
t can be assumed to be:

lnCit = ln(Ct(Xit, Pit;ψ)) + εit

where lnCit is the observed log-consumption of individual i of age t and εit is an idiosyn-
cratic shock. Due to the lack of a good quality panel data of consumption, assets, and
income for individual households, GP propose to estimate the model based on the follow-
ing condition for each age t:

E[lnCit − lnCt(ψ0)] = 0

where lnCt(ψ) is the unconditional expectation of log-consumption at each age t and ψ0 is
the true parameter vector. Partitioning the parameter vector into first-stage (χ ∈ Rr) and
second-stage (θ ∈ Θ ⊂ Rs where Θ is a compact set) parameters, the estimation procedure
proceeds by first estimating χ using additional data and moments, and then estimating
θ using the Simulated Method of Moments. Because lnCt(ψ) does not have an analytic
expression and depends on the parameters, it is simulated by solving the model numerically
for L households and computing the mean of the simulated consumption profiles (for each
age t). Thus, the SMM estimator solves:

min
θ
g(θ; χ̂)′Wg(θ; χ̂)
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where W is a T × T weighting matrix and g(θ; χ̂) ∈ RT is a vector with tth element:

gt(θ; χ̂) = ln C̄t − ln Ĉt(θ; χ̂)

where ln C̄t is the average consumption for age t observed in the empirical data and
ln Ĉt(θ; χ̂) is the simulated counterpart of lnCt(θ; χ̂). Thus, the SMM estimator chooses θ
that matches the means of the empirical and simulated distributions for each age t.6

Matching the simulated average age-profiles of consumption with those observed over
the working ages of U.S. households in the Consumer Expenditure Survey (CEX), GP find
that the average household has a coefficient of risk aversion of 0.1 − 0.6 and a discount
factor of 0.95−0.97 depending on the various assumptions considered. Based on the values
of the estimated parameters, GP conclude that the mean household exhibit “buffer-stock”
behavior until around age 40. Following the simulation strategy used by GP, Cagetti
(2003) structurally estimates the preference parameters of a life-cycle model of wealth
accumulation by matching simulated median wealth profiles with those observed in the
Panel Study of Income Dynamics and in the Survey of Consumer Finances. He finds larger
values for the coefficient of risk aversion compared to the ones reported by GP, usually
higher than 3.

It is worth noting that the quantitative results from these structural estimations depend
on the model’s assumptions and on choice of the moment conditions. Carroll and Kimball
(2006) warn that the degree of income uncertainty faced by households affect the estimates
of relative risk aversion in both Gourinchas and Parker (2002) and Cagetti (2003). Simi-
larly, Michaelides and Ng (2000) point out the choice of moment conditions for the SMM
estimation matters for the identification of the structural parameters when there are non-
linearities and serial dependence on the data. Nevertheless, the methodology proposed by
Gourinchas and Parker (2002) has been since applied by French (2005), Laibson, Repetto,
and Tobacman (2007), De Nardi, French, and Jones (2010), French and Jones (2011), and
Fella, Frache, and Koeniger (2016), among others.

1.3.3 Survey Evidence

Given the drawbacks mentioned above, some studies have focused their attention on survey
evidence. This alternative approach consists on asking survey participants direct questions
about their target level of precautionary wealth and hypothetical questions about their risk
behavior in order to gather information about the intensity of their underlying preferences.
For instance, Kimball, Sahm, and Shapiro (2008) construct a measurement of risk aversion

6A full description of the estimation methodology can be found in Section 3 of Gourinchas and Parker
(2002).
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based on survey responses about gambles over lifetime income in the 1992 and 1994 Health
and Retirement Study. They ask individuals to choose between a job with a certain lifetime
income and a risky job which can doble lifetime income or decrease it by a specific fraction
with equal chances. Based on the responses, they construct a cardinal proxy of risk pref-
erence and report a relative risk aversion with a mean of 8.2 and a median of 6.3. These
estimates imply a much stronger precautionary saving motive than those found empirically
when matching observed consumption or wealth data.

1.3.4 Conclusion

Although the qualitative aspects of the theory of precautionary savings behavior are now
well-established, there is less agreement about the degree of precautionary saving motive
in the empirical literature. Earlier studies use log-linearized Euler equations and consump-
tion data to estimate the preference parameters, generally reporting a low risk aversion and
thus a low precautionary saving motive. However, Carroll (2001) shows that the presence
of precautionary saving invalidates most of these log-linearized estimations. On the other
hand, Gourinchas and Parker (2002), Cagetti (2003), and other works following their pro-
posed structural methodology find a degree of risk aversion that is less than the estimates
obtained based using survey evidence. This unresolved discrepancy is important as the
coefficient of risk aversion, and therefore the degree of precautionary saving motive, have
implications on the optimal savings behavior of households and their reactions to policy
changes.
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Figure 1.1: Consumption Functions and Precautionary Savings
(assuming ρ = 0.514, β = 0.96, R = 1.0344)

14



Parameter Value Source
ρ 0.514 Gourinchas and Parker (2002)
β 0.96 Gourinchas and Parker (2002)
R 1.03440 Moody’s AAA municipal bonds, Jan 1980 - March 1993
σ2U 0.0440 Carroll and Samwick (1997), PSID 1981-1987
σ2N 0.0212 Carroll and Samwick (1997), PSID 1981-1987
p 0.00302 Carroll, Hall, and Zeldes (1992), PSID 1976-1985
Gt: Gourinchas and Parker (2002), CEX 1980-1993
age .32643678179
age2 −.0148947085
age3 .00036342384
age4 −4.411685e−6

age5 2.056916e−8

constant 6.801368713

Table 1.1: Parameter Values from Gourinchas and Parker (2002)
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Chapter 2

Life-Cycle Savings Behavior

2.1 Introduction

The motivation of this chapter is to understand the savings behavior of households over the
life-cycle. In order to do so, I revisit Gourinchas and Parker (2002) (henceforth GP), an
influential article on asset accumulation and consumption over the life-cycle under income
uncertainty. Based on their calculations on target wealth, GP conclude that “consumer
behavior changes strikingly over the life-cycle. Young consumers behave as buffer-stock
agents. Around age 40, the typical household starts accumulating liquid assets for retire-
ment and its behavior mimics more closely that of a certainty equivalent consumer.”1 In
this document, I show that this assertion is inaccurate. I do not identify an age at which
consumer behavior changes strikingly over the life-cycle.

Precautionary saving is traditionally modeled as the outcome of a consumer’s optimal
inter-temporal allocation of resources under uncertainty of future income realizations. Hall
(1978) is one of the first to consider labor income uncertainty in a life-cycle framework.
Assuming quadratic preferences for tractability, he finds out that consumption follows a
random walk. Because its implication for inter-temporal consumption and savings behavior
are equivalent to those in the perfect foresight model, his model is known as the certainty-
equivalent (CEQ) model. The notion of precautionary saving first emerged in Leland (1968).
Based on a two-period model, he theoretically concludes that risk aversion is not sufficient
to guarantee positive precautionary savings. Subsequently, Kimball (1990) shows that any
utility function with a positive third derivative results in extra savings compared to the
CEQ case. Despite the lack of a closed-form solution implied by constant relative risk
aversion (CRRA) preferences, Zeldes (1989) and Kimball (1990), among others, argue that
this type of preferences are the most realistic as it allows precautionary saving to depend

1Gourinchas and Parker, 2002, p. 47.
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on the level of individual wealth. Following Zeldes (1989), the literature has used numerical
solution methods to calculate the optimal amount of precautionary saving in the presence
future labor income.

Buffer-stock savings behavior was first documented by Carroll, Hall, and Zeldes (1992)
and Carroll (1997). Using numerical solutions of an infinite-horizon model and plausible
parameter values, Carroll finds that households have a target level of cash-on-hand to per-
manent income ratio in the presence of income uncertainty. He points out that households
must be both impatient and prudent for the existence of this target. Impatience refers to
consumers who would like to consumer more now than save for the future. Prudence is
defined as the inclination to prepare oneself in the presence of uncertainty. As a result,
households engage in “buffer-stock” behavior: they choose to accumulate some amount of
wealth to cushion against income risks. In a recent work, Carroll (2019) further provides
sufficient theoretical conditions for the existence of the target level of cash-on-hand.

Following Carroll, GP calculate the target level of normalized cash-on-hand to study the
savings behavior of U.S. households. Using their estimated parameter values, they observe
that the target wealth is relatively constant until age 40 and increases substantially as
households get older and closer to retirement age 65. From this one observation, GP
conclude that there is a striking change of savings behavior over the life-cycle. However, it
is unclear how the target wealth to permanent to income ratio describes the optimal savings
behavior under a life-cycle model. The target itself can change “mildly” or “strikingly” with
age as income growth and consumption rules change over the life-cycle.

The current document differentiates target wealth behavior from actual savings behavior
by households based on GP’s life-cycle model. The main finding is that while the target
value of wealth is a good indicator of the overall direction to which the distribution of
normalized cash-on-hand moves, it fails to describe the magnitude of household overall
savings. Furthermore, the age-profile of the target value of liquid wealth depends crucially
on the retirement age’s consumption rules, retirement income risks, and on the systematic-
age variation of the consumption functions. Each of these factors are implied by the model’s
assumptions instead of observed consumer behavior. Moreover, by definition, the target
value of cash-on-hand is sensitive to small changes (within confidence intervals for such
parameter values) in the model’s parameters, such as the interest rate, when the marginal
propensity to consume is less than one.

The remainder of this document is structured as follows. Section 2 describes the base-
line life-cycle model estimated by GP. Section 3 characterizes household savings behavior
and target wealth behavior. Section 4 concludes.
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2.2 Life-Cycle Model in Gourinchas and Parker (2002)

2.2.1 The Model

GP consider the following discrete-time, life-cycle model of household consumption. In-
dividuals live until age N and retire at age T < N . Both T and N are assumed to be
exogenous and fixed. Preferences are represented by the standard additively separable
expected utility form:

E

[
N∑
t=1

βtu(Ct, Zt) + βN+1VN+1(WN+1)

]
(2.1)

where β is the time-discount factor, Ct is the total consumption at age t, Wt is the total
financial wealth at age t, Zt is the vector of deterministic household characteristics at age
t, and VN+1 is the value to the consumer of the remaining assets after death. Furthermore,
the Bernoulli function is assumed to take the following form:

u(C,Z) = v(Z)
C1−ρ

1− ρ

where 1
ρ is the inter-temporal elasticity of substitution. At each age t ∈ [1, T ], the individual

receives a stochastic income Yt and maximizes (2.1) subject to:

Wt+1 = R(Wt + Yt − Ct)

WN+1 ≥ 0

given an initial wealth level W1 and where R is the constant, after-tax, gross real interest
rate of the only asset available in the economy. Following Zeldes (1989) and Hall and
Mishkin (1982), the labor income process is given by:

Yt = PtUt (2.2)

Pt = GtPt−1Nt

where labor income is divided into a permanent component Pt and a transitory component
Ut.2 The transitory shocks Ut are assumed to be independently and identically distributed;
moreover, there is a non-negative probability of a zero-income event, i.e. Ut = 0 with
probability p ∈ [0, 1). Ut is otherwise lognormally distributed, lnUt ∼ N(0, σ2U ). The
permanent component of income Pt follows a random walk with drift Gt (predictable growth

2Labor income is defined as disposable income, net of Social Security taxes and contributions to illiquid
accounts.
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of income) and permanent shock Nt, which is independently and identically lognormally
distributed, lnNt ∼ N(0, σ2N ). WhileNt is meant to capture the effects of job changes, wage
raises, and other persistent factors, Ut is meant to capture the effects of one-time bonuses,
unemployment spells, and other transitory factors. Note that individuals will never choose
to borrow against future labor income as long as the Inada condition limc→0 =∞ is satisfied
(the assumed income process has a zero lower bound which imposes a natural borrowing
limit at 0).

GP make four additional assumptions. First, in order to reduce the number of state
variables in the model, they assume that the age variations in v(Zt) are deterministic,
common across households of the same age, and that they come from changes in family
size. Second, stating that most of the retirement wealth in U.S. households is accumulated
in illiquid assets (which are only available after retirement), GP assume that illiquid wealth
accumulates exogenously, cannot be borrowed against, and that illiquid wealth in the first
year of retirement is proportional to the last permanent component of income, i.e. HT+1 ≡
hPT+1 = hPT . These assumptions eliminate both illiquid assets as a state variable and
contributions to illiquid accounts as a control variable in the dynamic stochastic program.
Third, invoking Bellman’s optimality principle, the inter-temporal consumption problem is
truncated at the age of retirement to avoid modelling the retirement period. Lastly, due to
the truncation assumption, GP adopt the following retirement value function to condense
the consumer’s problem at retirement ages:

VT+1(XT+1, HT+1, ZT+1) = kv(ZT+1)(XT+1 +HT+1)
1−ρ (2.3)

for some constant k and where Xt is defined as the level of cash-on-hand (total liquid
financial wealth) in period t, i.e. Xt ≡Wt +Yt. According to GP, the functional form (2.3)
is chosen to maintain the tractability of the problem and for being flexible enough to allow
robustness checks.

In sum, the consumer’s problem at age τ can be expressed as:

Vτ (Xτ , Pτ , Zτ ) = max
Cτ ,...,CT

Eτ

[
T∑
t=τ

βt−τv(Zt)
C1−ρ
t

1− ρ
+ βT+1−τkv(ZT+1)(XT+1 + hPT+1)

1−ρ

]

given the labor income process defined in (2.2) and subject to:

Xt+1 = R(Xt − Ct) + Yt+1 (2.4)

XT+1 ≥ 0 (2.5)

where the last inequality reflects the borrowing constraint on liquid assets at retirement
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age, imposed by the assumption that illiquid wealth cannot be borrowed against.

2.2.2 Numerical Solution

Since an analytical closed-form solution for the above problem is not available, GP solve
the problem numerically by first normalizing all variables by the permanent component of
income. They note that the particular functional form for the retirement function makes the
household’s consumption problem homogeneous of degree (1− ρ) in Pt. Thus, by denoting
lowercase letters as normalized variables, e.g. xt ≡ Xt

Pt
, the following Euler equation holds

for ages t < T :

u′(ct(xt)) = βREt

[
v(Zt+1)

v(Zt)
u′(ct+1(xt+1)Gt+1Nt+1)

]
(2.6)

where ct(xt) is the optimal consumption function. In the last working period, the Euler
equation is replaced by:

u′(cT (xT )) = max

{
u′(xT ), βR

[
v(ZT+1)

v(ZT )
u′(cT+1(xT+1))

]}
(2.7)

since the illiquid wealth available in T + 1 imposes a liquidity constraint on the cash-on-
hand available at the age of retirement. Furthermore, under (2.3), the optimal retirement
consumption rule is linear in total wealth. Hence, the normalized consumption rule at T+1

is expressed as:

CT+1

PT+1
= γ1(

XT+1 +HT+1

PT+1
) (2.8)

cT+1 = γ1(xT+1 + h) = γ0 + γ1xT+1

where γ0 ≡ γ1h and γ1 is the marginal propensity to consume out of liquid wealth. Thus,
in order to find the set of optimal consumption rules for each age t, the problem can be
solved recursively by first finding cT (xT ) in (2.7) by using (2.8). The optimal solutions to
(2.7) and (2.6) then generate the consumption functions cT−1(xT−1), ..., c1(x1).

In order to implement the proposed solution algorithm, a grid of 100 points between
[0, 40] is created for cash-on-hand, with 50 points between 0 and 2 following GP’s discretiza-
tion method. The finer grid for x ∈ [0, 2] captures the curvature of the consumption rule
at low values of cash-on-hand. Furthermore, to evaluate the expectation in (2.6), a two-
dimensional Gauss-Hermite quadrature of order 12 is performed as GP.3 Table 2.1 reports
the assumed values for the variances of the income shocks (σ2U , σ

2
N ), the probability of

3For more details, see Appendix A.
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zero-income event (p), the initial distribution of liquid assets at age 26 (w1), the gross real
after tax interest rate (R), and the income and family-composition profiles (Gt, Zt). Lastly,
the age of retirement is set at 65, i.e., T = 40.

2.3 Results

2.3.1 Individual Consumption Behavior

Figure 2.1 reports the consumption rules of a typical consumer working from ages 26 to
65 (t = 1, ..., T ), whose consumption at T + 1 is characterized by (2.8). The preference
parameters are set to β = 0.960, ρ = 0.514, γ0 = 0.001, and γ1 = 0.071. These are the base-
line parameter values estimated from the structural estimation in Gourinchas and Parker
(2002), which matches simulated average age-profiles of consumption with those observed
over the working ages of U.S. households in the Consumer Expenditure Survey (CEX).4

As can be seen, normalized consumption is increasing, positive, and concave in nor-
malized cash-on-hand. The consumption rules also change over the life-cycle, i.e. there
is a systematic age-variation in consumption behavior. A typical young consumer has a
low level of liquid wealth; as a result, her marginal propensity to consume is high as the
consumption function is steep at low levels of cash-on-hand. Since labor income is ex-
pected to grow, young households prefer to borrow or save very little as more resources will
be available in the future. Moreover, these parameter values imply a low level of illiquid
wealth at T + 1; thus, households must save for retirement as they age. As liquid wealth is
accumulated to finance retirement years, consumption rules decrease as t→ T . Since most
middle-aged households will have saved to a large extent for retirement purposes by then,
their marginal propensity to consume will be low as the consumption function is relatively
flat at high levels of cash-on-hand.

Alternatively, Figures 2.2a and 2.2b show the consumption functions for households
facing two different retirement consumption rules γ0 = 0.594 and γ0 = 0.9, respectively.
Again, the optimal rules are concave in normalized cash-on-hand and vary systematically
with age. With a higher level of illiquid wealth implied by γ0, households do not accumulate
as much liquid wealth as in Figure 2.1, and consumption functions decline less as the
household ages. As can be seen, households accumulate less liquid wealth for retirement
purposes as γ0 increases: they can depend more on illiquid wealth to finance consumption
when retired.

The model is further solved for ρ = 1.5 and ρ = 3, assuming γ0 = 0.01, γ0 = 0.594,
and γ0 = 0.9. Figure 2.3 reports the consumption policy functions for ρ = 1.5, and Figure

4See Chapter 4, Section 3, for a description of the Simulated Method of Moments Estimation.
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2.4 depicts the ones for ρ = 3. As can be seen, the consumption functions are concave in
normalized cash-on-hand and vary systematically with age; however, as the coefficient of
risk aversion increases, the consumption functions are lower for all ages since consumers
save more for precautionary reasons.

2.3.2 Target Level of Normalized Cash-on-Hand

In order to answer how household savings behavior changes over the life-cycle, GP calculate
the target level of cash-on-hand to permanent income ratio for each age. Following Carroll,
Hall, and Zeldes (1992), Carroll (1997), and Carroll (2019), they define it as the level of
normalized cash-on-hand at which cash-on-hand is expected to remain unchanged from age
t to age t+ 1, that is:

x̄t = Et [xt+1|xt = x̄t] (2.9)

Since the target level of cash-on-hand is the fixed-point of the function Et [xt+1|xt], it is
worth characterizing Et [xt+1|xt] first. Taking expectations on normalized cash-on-hand:

xt+1 = R(xt − ct)
1

Gt+1Nt+1
+ Ut+1 (2.10)

Et [xt+1|xt] =
R

Gt+1
(xt − ct)Et

[
1

Nt+1

]
+ Et [Ut+1] . (2.11)

Since the transitory income shock Ut+1 is distributed lognormally with probability (1− p)
and is equal to 0 with probability p:

lnUt ∼ N(0, σ2U ) −→ Et [Ut+1] = e0+
1
2
σ2
U (1− p) = e

1
2
σ2
U (1− p).

Similarly, for the inverse of the permanent income shock:

ln
1

Nt
∼ N(0, σ2N ) −→ Et

[
1

Nt+1

]
= e0+

1
2
σ2
N = e

1
2
σ2
N

since if for random variable lnX ∼ N(µ, σ2), then ln 1
X ∼ N(−µ, σ2). Thus, Equation

(2.11) becomes

Et [xt+1|xt] =
R

Gt+1
(xt − ct)Et

[
1

Nt+1

]
+ Et [Ut+1] (2.12)

Et [xt+1|xt] =
R

Gt+1
(xt − ct)e

1
2
σ2
N + e

1
2
σ2
U (1− p). (2.13)
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It follows that

∂Et [xt+1|xt]
∂xt

=
R

Gt+1
Et

[
1

Nt+1

](
1− ∂ct(xt)

∂xt

)
(2.14)

∂Et [xt+1|xt]
∂xt

=
R

Gt+1
e

1
2
σ2
N

(
1− ∂ct(xt)

∂xt

)
. (2.15)

Note that the slope of the function Et [xt+1|xt] at age t depends on the interest rate,
the variance of the permanent income shocks, the income growth rate, and the marginal
propensity to consume at age t, which in turn depends on preference parameters, retirement
consumption rules, and variations in family size. Since the target level of cash-on-hand is
the fixed-point of the function Et [xt+1|xt], it is also sensitive to the model’s parameters
and varies with age as income growth Gt+1 and the marginal propensity to consume change
over the life-cycle.

Figure 2.5a reports the function Et [xt+1|xt] for selected ages, assuming the base-line
parameter values ρ = 0.514 and γ0 = 0.001. The functions are constant up to a “kink-
point” and then increasing in normalized cash-on-hand (these “kink-points” correspond to
the same value of normalized cash-on-hand from the “kink-points” in the consumption
functions). The points of intersection between the 45-degree line and each of the functions
Et [xt+1|xt] correspond to the target level of normalized cash-on-hand, x̄t, for those ages.

To further characterize the target, it is useful to make a linear approximation of the
consumption function such as:

ct(xt) =

xt for xt < x∗t

(1− ψt)x∗t + ψtxt for xt ≥ x∗t
(2.16)

where x∗t corresponds to the value of normalized cash-on-hand at which households are
no longer liquidity constrained, and ψt is the marginal propensity to consume at age t.
Although individuals technically do not face liquidity constraints during their working ages,
they do face a natural borrowing constraint. Their marginal propensity to consume is high
for low levels of normalized cash-on-hand and low for high levels of normalize cash-on-hand.
A linear approximation of the consumption function could thus give a simple but practical
description of the target value of cash-on-hand.

From Equation (2.16), it follows that:

Et [xt+1|xt] =

e
1
2
σ2
U (1− p) for xt < x∗t

R
Gt+1

e
1
2
σ2
N (1− ψt)(xt − x∗t ) + e

1
2
σ2
U (1− p) for xt ≥ x∗t .

(2.17)

Calculating the fixed-point of the function above, the target level of cash-on-hand at age t
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is:

x̄t =


e

1
2
σ2
U (1− p) for xt < x∗t

e
1
2σ

2
U (1−p)− R

Gt+1
e

1
2σ

2
N (1−ψt)x∗t

1− R
Gt+1

e
1
2σ

2
N (1−ψt)

for xt ≥ x∗t
(2.18)

where R
Gt+1

e
1
2
σ2
N (1− ψt) < 1 and e

1
2
σ2
U (1− p) > R

Gt+1
e

1
2
σ2
N (1− ψt)x∗t for x̄t to be positive.

Observe that x̄t is equal to the expected value of the transitory income shock when the
fixed-point is located at low values of cash-on-hand. On the other hand, if x̄t > x∗t , it will
vary with age as income growth Gt+1 and the marginal propensity to consume ψt change
over the life-cycle.

Sensitivity of the Target level of Cash-on-hand to R and σ2N

Since the target level of cash-on-hand is defined as the fixed-point of the function (2.17), its
stability will depend on the slope of Et [xt+1|xt] at xt = x̄t. For low values of normalized
cash-on-hand, the slope is zero and the function Et [xt+1|xt] is a constant. On the other
hand, for high values of normalized cash-on-hand, the marginal propensity to consume is
low and close to zero. Thus,

∂Et [xt+1|xt]
∂xt

=
R

Gt+1
e

1
2
σ2
N (1− ψt)

≈ R

Gt+1
e

1
2
σ2
N (2.19)

Note that this slope can be close to one at xt = x̄t for the parameters of the model. As a
result, the target value of cash-on-hand can be sensitive to small variations to the model’s
parameters such as the interest rate and the variance of the permanent income shock.

Figure 2.5b displays the function Et [xt+1|xt] for selected ages when the interest rate
is increased to R = 1.038, assuming ρ = 0.514, β = 0.96, γ0 = 0.001 and γ1 = 0.071. This
small increase in R is within one standard deviation of the estimation of the interest rate
reported in Gourinchas and Parker (2002). At age 35, the fixed-point is at 3.68, more than
twice as high in value as the one when R = 1.0344.

On the other hand, Figure 2.6 shows that the the target value of cash-on-hand is not
as sensitive to changes in σ2N as it is to changes in R. Figure 2.6a reports the function
Et [xt+1|xt] for selected ages when the variance of the permanent income shock is σ2N =

0.024 instead of σ2N = 0.0212. This change corresponds to an increase of one standard
deviation of its estimated value reported in Gourinchas and Parker (2002). The target
value of cash-on-hand at age 35 increases by 0.0034 compared to when σ2N = 0.0212. Since
the small change in σ2N translates to an increase of only 0.0014 in the expected value of
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the permanent income shock, the target value of cash-on-hand remains almost unchanged.
Alternatively, Figure 2.6b displays Et [xt+1|xt] when σ2N = 0.06. An increase of fourteen
standard deviation is necessary to increase the target value of normalized cash-on-hand at
age 35 to 3.2667.

Sensitivity of the Target level of Cash-on-hand to γ0

As discussed previously, the target level of cash-on-hand at age t depends on the marginal
propensity to consume at age t, which in turn depends on the retirement rule parameters
(among other parameters). Figure 2.7a displays the target level of cash-on-hand x̄t over
the life-cycle for γ0 = 0.001. As can be seen, it varies with age as there is a systematic
age-variation in the consumption rules. It is relatively constant until around age 40, and
then it increases substantially. GP conclude from this graph that there is a striking change
in savings behavior. Alternatively, Figures 2.7b and 2.7c show the age-profile of target
wealth for γ0 = 0.594 and γ0 = 0.9. As illiquid wealth increases implied by the value of
γ0, the target level of cash-on-hand is constant until around age 45 for γ0 = 0.594 and
until around age 50 for γ0 = 0.9. As these figures reveal, the age-profile of target value of
normalized cash-on-hand depends on the retirement consumption rule’s parameters, i.e. it
crucially depends on the retirement value function assumed by GP.

Sensitivity of the Target level of Cash-on-hand to Retirement Income

Since the age-profile of target value of normalized cash-on-hand depends on the retirement
phase assumed by GP, it is worth examining the effect of retirement income and risks during
retirement years. First, consider a life-cycle model with no retirement phase, but in which
individuals die at age 87 (N = 62), receiving income shocks throughout their life-time
with a constant income growth rate and no changes in family size. This alternative model
corresponds to the finite-horizon version of the buffer-stock model in Carroll (2019). In
this case, the consumption rules converge to a limiting consumption function as shown by
Carroll and depicted in Figure 2.8b; thus, the age-profile of target value of cash-on-hand is
relatively flat until a few years prior to N as seen in Figure 2.8a.

Alternatively, suppose individuals retire at age 65 (T = 40) but receive a proportion α
of their labor income during retirement ages such that, for t ≥ T :

xt+1 =
R

ΓNt+1
(xt − ct) + αUt+1 (2.20)

where 0 < α ≤ 1 is a retirement replacement rate. For α < 1, there is a structural change
in the life-cycle model as people need to save for retirement purposes when approaching age
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T . Consumption policy functions converge to different limiting functions before and after
retirement age T . For instance, with a 70% replacement rate, the target value of cash-on-
hand is constant until approximately age 50, increases gradually until age 65, and drops to
a lower but constant value during retirement ages as shown in Figure 2.9a and consistent
with the consumption rules in Figure 2.9b. Furthermore, note that when the replacement
rate is 100% (α = 1), this alternative specification is equivalent to the finite-horizon buffer-
stock model mentioned previously. As the replacement rate decreases, the age-profile of
the target value of cash-on-hand has a higher peak as shown in Figure 2.10. The peak
is higher as households expect to receive less retirement income as the replacement rate
decreases. Thus, consumption is lower over normalized cash-on-hand as people need to save
for retirement purposes as they approach age T .

Next, consider the case in which individuals receive no income during retirement. This
example is similar to GP’s model under its base-line parameters with γ0 = 0.001. With
a constant income growth rate and no changes in family size, the target value of cash-
on-hand is constant until age 35 and increases substantially until age 65, after which it
falls to 0 as there is no income uncertainty during retirement ages as illustrated in Figure
2.11. Alternatively, by setting the income growth rate and family size to GP’s values, the
working ages of the age-profile of target cash-on-hand is similar to Figure 2.7a as shown
in Figure 2.12.5 Note that the assumed values for Gt create a “bump” in the age-profile of
target value of cash-on-hand between ages 55 and 65 and heighten the slope at which the
target value of cash-on-hand increases after age 40. Thus, the age-profile of target value of
normalized cash-on-hand crucially depends on the retirement phase assumptions as well as
the growth rate of labor income.

2.3.3 Savings Behavior

In order to characterize household savings behavior over the life-cycle, the model is first
solved and simulated for the base-line parameter values. A sequence of 20, 000 income pro-
cesses is generated over 40 years and households’ initial financial wealth, w1, is assumed to
be lognormally distributed as in Gourinchas and Parker (2002).6 The simulated distribu-
tion of normalized cash-on-hand at selected ages is displayed in Figure 2.13. It also reports
the function Et[xt+1|xt].

As can seen, normalized cash-on-hand at age 26 is relatively tightly distributed near the
“kink-point” of the function Et[xt+1|xt] with a mean value of 1.3179 and a median value
of 1.1285. The bottom one forth of the distribution faces borrowing constraints and have

5The age-profile of target level of cash-on-hand is not numerically exact since a death age of 87 implies
a marginal propensity to consume γ1 = 0.0715 instead of γ1 = 0.071 at age 66.

6For more details, see Appendix A.
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high marginal propensities to consume (close to one) in contrast to the top three forths of
the distribution. The target level of normalized cash-on-hand is 1.2470, which is greater
than the 50th percentile value of the distribution.

However, households quickly adjust their consumption and savings decisions so as to
avoid the region where borrowing constraints are binding. At age 30, half of the distribution
of normalized cash-on-hand is above the target value of 1.2634, with a mean value of 1.4061

and median value of 1.2755. By age 37, three forths of the cash-on-hand distribution is
below the target level of cash-on-hand 1.8566, with a mean value of 1.5249 and a median
value of 1.4085. Between ages 37 and 38, the target value of cash-on-hand increases by
0.6072, whereas the mean and median values increase by 0.0521 and 0.0411, respectively.
By the late thirties, the target thus fails to describe the distribution of normalized cash-on-
hand as its located at the right tail of the distribution. At age 40, most of the distribution
of cash-on-hand is to the right of the “kink-point” of the function Et[xt+1|xt], but it is left to
the target level of cash-on-hand 4.1525. In fact, the probability of normalized cash-on-hand
being greater than the “kink-point” of the function Et[xt+1|xt] increases with age as seen
in Figure 2.14. It rises from 87.6% to 98.5% between ages 26 and 40, reaching 100% by
age 47. This result indicates that once a household reaches its forties, the probability that
it will hold a low amount of liquid wealth is negligible; thus, it will continue to accumulate
positive amounts of wealth as its marginal propensity to consume is low. During the forties
and fifties, households continue accumulating cash-on-hand at a relatively constant rate,
while the target level of cash-on-hand increases substantially. At age 45, the median value
of the cash-on-hand distribution is 2.1510, which jumps to 7.5320 by age 60; meanwhile,
the target level of cash-on-hand increases from 10.6717 to 105.3635 (not illustrated).

Figure 2.15 reports the age-profile of the target level of cash-on-hand with the mean,
25th percentile, 50th percentile, and 75th percentile values of the distribution of normalized
cash-on-hand for each age. As discussed above, most of the cash-on-hand distribution is
close to its target value between ages 30 and 35 as seen in Figure 2.15a. As the target level
of cash-on-hand increases substantially after age 37, households are expected to save and
their cash to rise as xt < x̄t. However, it is clear from these graphs that households do
not exhibit a striking change in savings behavior as concluded by GP. The change in the
distribution of normalized cash-on-hand is rather slow and gradual. Moreover, while the
target drops drastically at around age 60, the distribution of normalized cash-on-hand keeps
increasing. Furthermore, Figure 2.16a illustrates the mean, 25th percentile, 50th percentile,
and 75th percentile values of the distribution of normalized consumption for ages 26 to
65. Note that normalized consumption is tightly distributed between 0.8 and 1.01; thus,
households’ normalized consumption is relatively constant over the life-cycle. Alternatively,
Figure 2.16b depicts the distribution of consumption (i.e. Ct = ctPt) between ages 26 and
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65. The observed hump-shape of the consumption profile is mainly due to the fluctuations
in the permanent component of income, i.e. the variations in the growth of rate of income,
and partly due to the slight decrease in the normalized consumption profile after age 45.

Next, consider the special case in which the growth rate of income is constant over
the life-cycle. As discussed previously, the age-profile of target level of cash-on-hand is
sensitive to small changes in Gt, but the distribution of normalized cash-on-hand is similar
to the case with variations in Gt as seen in Figure 2.17. In both scenarios, most households
have low marginal propensity to consume by age 40; thus, their consumption and cash
holdings are not as sensitive to changes in the growth rate of income as the target level of
cash-on-hand.

Furthermore, consider the case in which households do not possess any initial financial
wealth at age 26 as shown in Figure 2.18. Most of the young households have cash holdings
that are lower than the target level of cash-on-hand. As target behavior indicates, house-
holds save and cash holding rises. As households reach age 30, most of the cash-on-hand
distribution is close to its target value. However, as the target level increases substantially
after age 38, households do not increase their savings at the same rate. In contrast, assume
the initial financial wealth age 26 is equal to 2 for all households as depicted in Figure 2.19.
In this alternative scenario, households have cash holdings higher than the target level of
cash-on-hand. As target behavior suggests, households save less and decrease their cash
holdings. Note that as soon as median household’s normalize cash-on-hand reaches the
target level at age 37, all households start saving as x̄t increases substantially. Nonetheless,
the change in the distribution of normalized cash-on-hand is again gradual. Thus, while the
target level of cash-on-hand is a good indicator of the overall direction to which the distri-
bution of normalized cash-on-hand moves, it fails to describe the magnitude of household
savings.

Finally, Figure 2.20 reports the decomposition of total saving and wealth for each age
into how much the mean household saves for precautionary motives and how much it saves
for life-cycle or retirement motives. Following GP, total saving is defined as:

Si,t =
Wi,t+1 −Wi,t

R
=
R− 1

R
Wi,t + Yi,t − Ci,t (2.21)

where Wi,t+1 = R(Xi,t−1 − Ci,t−1), and life-cycle saving is defined as:

SLCi,t =
WLC
i,t+1 −WLC

i,t

R
(2.22)

where WLC is the financial wealth holdings from households that do not face any income
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risk: Nt = Et[Nt], Ut = Et[Ut]. Lastly, precautionary savings is defined as:

SPSi,t = Si,t − SLCi,t . (2.23)

For the base-line parameter values, young households who do not face any income risk have
negative life-cycle savings as they would like to borrow early in life. On the other hand, they
hold a positive amount of savings in the presence of income risk; thus, precautionary saving
is positive early in life. During their mid-forties, life-cycle saving exceeds precautionary
saving which explains the negative value for buffer saving. Similarly, total wealth holdings
by the mean household facing income uncertainty is higher than the wealth holdings (life-
cycle wealth) by a mean household in the absence of income shocks displaying the presence
of income risk.

2.4 Conclusion

This document explores the difference between target level of normalized cash-on-hand
and actual savings behavior of households in a life-cycle model. Although the age-profile
of target level of cash-on-hand pinpoints the direction which households’ accumulate (de-
accumulate) liquid wealth, it does not indicate its magnitude. Furthermore, the age-profile
of the target value of liquid wealth depends crucially on the retirement age’s consumption
rules, retirement income risks, and on the systematic-age variation of the consumption
functions. Each of these factors are implied by the model’s assumptions instead of observed
consumer behavior. Moreover, by definition, the target value of cash-on-hand is sensitive
to small changes (within confidence intervals for such parameter values) in the model’s
parameters, such as the interest rate, when the marginal propensity to consume is less than
one.

An interesting extension of the current work would be to consider the presence of health-
care costs and survival risks during retirement years. Although labor income risks are not
relevant for most of the retirees, the elderly face substantial medical expenditure risks.
Despite the fact that a large fraction of health care costs risk is covered by Medicare,
Medicaid and private health insurance, the elderly still face nursing home admission risks
and its associated cost, as well as the risk of catastrophic medical expenses (Feenberg and
Skinner, 1994; Palumbo, 1999; Hurd, 2002; French and Jones, 2004; De Nardi, French,
and Jones, 2010; French and Jones, 2011). Assuming that consumers do not derive any
utility from medical goods and services (they only “compensate” the affliction caused by
bad health), the health-care cost uncertainty can induce a risk on the disposable income
available to finance retirement consumption. As Carroll and Kimball (1996) show, income
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uncertainty also creates concavities in the consumption function which impinge on prior
periods’ consumption functions inducing precautionary savings. I expect that a richer
representation of the retirement period would improve the understanding of households
savings behavior over the life-cycle and contribute to the on-going discussion of the degree
of precautionary savings motive in the empirical literature.
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Figure 2.1: Consumption Functions for Base-line Parameters

(ρ = 0.514, γ0 = 0.001, β = 0.96, γ1 = 0.071, R = 1.0344)
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(a) γ0 = 0.594
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(b) γ0 = 0.9

Figure 2.2: Consumption Functions for γ0 = 0.594 and γ0 = 0.9

(ρ = 0.514, β = 0.96, γ1 = 0.071, R = 1.0344)
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(c) γ0 = 0.9

Figure 2.3: Consumption Functions for ρ = 1.5

(β = 0.96, γ1 = 0.071, R = 1.0344)
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Figure 2.4: Consumption Functions for ρ = 3

(β = 0.96, γ1 = 0.071, R = 1.0344)
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Figure 2.5: Function Et [xt+1|xt] for R = 1.0344 and R = 1.038

(ρ = 0.514, γ0 = 0.001, β = 0.96, γ1 = 0.071)
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Figure 2.6: Function Et [xt+1|xt] for σ2N = 0.024 and σ2N = 0.06

(ρ = 0.514, γ0 = 0.001, β = 0.96, γ1 = 0.071, R = 1.0344)

40



30 35 40 45 50 55

age

0

2

4

6

8

10

12

14

16

18

20

n
o

rm
a

liz
e

d
 c

a
s
h

-o
n

-h
a

n
d

Target Value of Normalized Cash-on-hand

(a) ρ = 0.514, γ0 = 0.001, β = 0.96, γ1 =
0.071, R = 1.0344
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(b) ρ = 0.514, γ0 = 0.594, β = 0.96, γ1 =
0.071, R = 1.0344
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Figure 2.7: Target Value of Normalized Cash-on-Hand
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(b) Consumption policy functions

Figure 2.8: Target Cash-on-Hand and Consumption Functions assuming no Retirement
Phase

For stochastic income assuming constant income growth rate and no changes in family size
for parameter values ρ = 0.514, β = 0.96, R = 1.0344
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(a) Target value of normalized cash-on-hand
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(b) Consumption policy functions

Figure 2.9: Target Cash-on-Hand and Consumption Functions assuming 70% Replacement
Rate

For stochastic income during retirement, assuming constant income growth rate and no
changes in family size during working ages, for parameter values ρ = 0.514, β = 0.96, R =
1.0344
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Figure 2.10: Target Cash-on-Hand for Various Replacement Rates

For stochastic income during retirement, assuming constant income growth rate and no
changes in family size during working ages, for parameter values ρ = 0.514, β = 0.96, R =
1.0344

44



30 40 50 60 70 80

Age

0

20

40

60

80

100

120
Target Value of Normalized Cash-on-hand

(a) Target value of normalized cash-on-hand
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(b) Consumption policy functions

Figure 2.11: Target Cash-on-Hand and Consumption Functions with Perfect Foresight
during Retirement

Assuming no retirement income, constant income growth rate and no changes in family size
during working ages, for parameter values ρ = 0.514, β = 0.96, R = 1.0344
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(a) Target value of normalized cash-on-hand
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(b) Consumption policy functions

Figure 2.12: Target Cash-on-Hand and Consumption Functions without Retirement Income

Assuming variations in income growth rate and changes in family size as in Gourinchas and
Parker (2002) during working ages, for parameter values ρ = 0.514, β = 0.96, R = 1.0344
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(a) Age 26
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(b) Age 30
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(c) Age 37
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(d) Age 38
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(e) Age 40
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Figure 2.13: Function Et[xt+1|xt] and Distribution of Cash-on-Hand

Assuming variations in income growth rate and changes in family size as in Gourinchas and
Parker (2002) for parameter values ρ = 0.514, γ0 = 0.001, β = 0.96, γ1 = 0.071, R = 1.0344
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Figure 2.14: Probability of Holding High amounts of Cash-on-Hand

This probability is calculated as the probability of cash-holdings being greater than the
“kink-point” of the consumption function at each age t. It considers 20, 000 simulated indi-
viduals who are followed throughout their life-cycle, based on the distribution of transitory
and permanent income shocks. The parameters assumed are ρ = 0.514, γ0 = 0.001, β =
0.96, γ1 = 0.071, R = 1.0344.
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(a) Selected ages
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(b) Working ages

Figure 2.15: Target Value and Distribution of Cash-on-Hand for Base-line Parameters

Target value of normalized cash-on-hand and selected percentiles of the distribution of cash-
on-hand, assuming initial financial wealth is lognormally distributed with mean −2.794 and
s.d. 1.784, variations in income growth rate and changes in family size as in Gourinchas and
Parker (2002) for parameter values ρ = 0.514, γ0 = 0.001, β = 0.96, γ1 = 0.071, R = 1.0344
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(b) Consumption Ct = ctPt

Figure 2.16: Distribution of Consumption for Base-line Parameters

Selected percentiles of the distribution of normalized consumption and consumption in
dollars, assuming initial financial wealth is lognormally distributed with mean −2.794 and
s.d. 1.784, variations in income growth rate and changes in family size as in Gourinchas and
Parker (2002) for parameter values ρ = 0.514, γ0 = 0.001, β = 0.96, γ1 = 0.071, R = 1.0344
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Figure 2.17: Target Value and Distribution of Cash-on-Hand for constant Gt and Zt

Target value of normalized cash-on-hand and selected percentiles of the distribution of cash-
on-hand, assuming initial financial wealth is lognormally distributed with mean −2.794 and
s.d. 1.784, constant income growth rate and no changes in family size for parameter values
ρ = 0.514, γ0 = 0.001, β = 0.96, γ1 = 0.071, R = 1.0344
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Figure 2.18: Target Value and Distribution of Cash-on-Hand for w1 = 0

Target value of normalized cash-on-hand and selected percentiles of the distribution of
cash-on-hand, assuming initial financial wealth is 0 for all households, variations in income
growth rate and changes in family size as in Gourinchas and Parker (2002) for parameter
values ρ = 0.514, γ0 = 0.001, β = 0.96, γ1 = 0.071, R = 1.0344

52



26 28 30 32 34 36 38 40 42

Age

0

1

2

3

4

5

6

7

N
o

rm
a

liz
e

d
 C

a
s
h

-o
n

-H
a

n
d

Target Level of Cash-on-Hand
Mean
25th percentile
50th percentile
75th percentile

(a) Selected ages

30 35 40 45 50 55 60

Age

0

20

40

60

80

100

120

N
o

rm
a

liz
e

d
 C

a
s
h

-o
n

-H
a

n
d

Target Level of Cash-on-Hand
Mean
25th percentile
50th percentile
75th percentile

(b) Working ages

Figure 2.19: Target Value and Distribution of Cash-on-Hand for w1 = 2

Target value of normalized cash-on-hand and selected percentiles of the distribution of
cash-on-hand, assuming initial financial wealth is 2 for all households, variations in income
growth rate and changes in family size as in Gourinchas and Parker (2002) for parameter
values ρ = 0.514, γ0 = 0.001, β = 0.96, γ1 = 0.071, R = 1.0344
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Figure 2.20: Age-profiles of Mean Savings and Financial Wealth

(ρ = 0.514,γ0 = 0.001, β = 0.96,γ1 = 0.071, R = 1.0344)
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Parameter Value Source
R 1.03440 Moody’s AAA municipal bonds, 01/1980− 03/1993

σ2U 0.0440 Carroll and Samwick (1997), PSID 1981-1987
σ2N 0.0212 Carroll and Samwick (1997), PSID 1981-1987
p 0.00302 Carroll, Hall, and Zeldes (1992), PSID 1976-1985
w̄1 −2.7944810 Gourinchas and Parker (2002), CEX 1980-1993
σw1 1.7838679

Gt: Gourinchas and Parker (2002), CEX 1980-1993
age .32643678179
age2 −.0148947085
age3 .00036342384
age4 −4.411685e−6

age5 2.056916e−8

constant 6.801368713

Zt: Gourinchas and Parker (2002), CEX 1980-1993
age 0.13964975
age2 −0.0047742190
age3 8.5155210e−5

age4 −7.9110880e−7

age5 2.9789550e−9

Table 2.1: Parameter Values from Gourinchas and Parker (2002)
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Chapter 3

Estimation of Consumption over the
Life Cycle: Implications for a
Representative Agent

3.1 Introduction

The aggregate implications of individual consumption and savings behavior have been ad-
dressed widely since the relationship between the two is essential for understanding the
impacts of economic policies on interest rates, aggregate consumption and savings. A sur-
vey by Blundell and Stoker (2005) find that there is substantial evidence on individual
heterogeneity which generates discrepancies between individual and aggregate variables.
Thus, aggregation problems must be taken into account. In this chapter, I first explore
the implications of the life-cycle behavior predicted by Gourinchas and Parker (2002) for
average liquid wealth, average consumption, and average marginal propensity in light of
Carroll (2000). Second, I assess the suitability of the life-cycle model by comparing the
predicted distribution of liquid wealth to the one observed in microeconomic data across
U.S. households. Lastly, I study the effect of the retirement rule assumptions by considering
a stochastic retirement phase with replacement rates.

This chapter builds on the aggregation result of Carroll (2000). He claims that the
“representative- consumer model should be abandoned in favor of a model that matches
key microeconomics facts.”1 He argues that un-insurable risk prevents aggregation because
risk causes concavities in the consumption policy function; in turn, this concavity implies
that the distribution of wealth affects the average marginal propensity to consume and the
level of aggregate consumption. Carroll further points out that the structure of wealth

1Carroll, 2000, p. 110.
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accumulation is important to understand the difference between the aggregate dynamics
resulting from a stochastic microeconomic model and the one predicted by a representative-
agent model. He states that a significant dispersion in aggregate wealth will predict an
aggregate behavior that does not resemble the behavior of a representative agent whose
wealth is equal to the mean of the distribution. As shown by Carroll, this discrepancy is a
key factor in understanding the effects of economic policies, especially when the distribution
of wealth across U.S. households, as well as in most modern economies, is extremely skewed
and the mean marginal propensity to consume is high.

Carroll further suggests that the most appealing explanation of the skewness of the
wealth distribution is one where there is a systematic age-variation in consumption behav-
ior like the model in Gourinchas and Parker (2002) (henceforth GP). Gourinchas (2000)
explores the implications of individual life-cycle behavior on aggregate dynamics in a general
equilibrium model following Krusell and Smith (1998). The calibration results in Gourin-
chas (2000) conclude that the distribution of capital holdings does not affect aggregate
variables; however, this finding depends on the specifics of the setup and the computation
of the approximate equilibrium.

I find three main results. First, the aggregation result of the life-cycle model depends
on the age distribution of the population and on the assumed values of the preference and
retirement rule parameters. For the base-line parameters, individuals optimally choose to
accumulate a substantial amount of liquid wealth: they quickly adjust their consumption
and saving decisions so as to avoid the regions where borrowing constraints are binding. In
fact, households’ probability to hold low amounts of liquid wealth is almost zero by age 45;
as a result, all individuals have the same marginal propensity to consume in their mid-forties
and up. Thus, the aggregate dynamics of a representative-consumer model possessing liquid
wealth equal to the mean of the distribution would resemble the aggregate predictions of
the life-cycle model for middle-aged individuals. Second, despite the various combinations
of parameter values that are studied, I find that the predicted distribution of cash-on-hand
does not match the one observed on microeconomic data. This discrepancy sheds light in
the suitability of the life-cycle model to reproduce the observed savings behavior across
U.S. households.2 Lastly, these results suggest that the main weakness of GP’s life-cycle
model is its retirement rules assumptions as the model disregards consumption risks during
retirement years.

The remainder of this document is structured as follows. Section 2 describes the life-
cycle model estimated by GP. Section 3 shows how the model’s aggregation prediction is

2This observation has also been pointed out by Deaton (1991), among others. Deaton states that most
life-cycle models predict “the existence of substantial asset accumulation at least at some points of the life
cycle”(p. 1222). He further reports that this prediction is challenged by multiple surveys that estimate that
U.S. households own very few financial assets.
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sensitive to the assumed values of the preference and retirement rule parameters. Section
4 concludes.

3.2 Life-Cycle Model in Gourinchas and Parker (2002)

3.2.1 The Model

GP consider the following discrete-time, life-cycle model of household consumption. In-
dividuals live until age N and retire at age T < N . Both T and N are assumed to be
exogenous and fixed. Preferences are represented by the standard additively separable
expected utility form:

E

[
N∑
t=1

βtu(Ct, Zt) + βN+1VN+1(WN+1)

]
(3.1)

where β is the time-discount factor, Ct is the total consumption at age t, Wt is the total
financial wealth at age t, Zt is the vector of deterministic household characteristics at age
t, and VN+1 is the value to the consumer of the remaining assets after death. Furthermore,
the Bernoulli function is assumed to take the following form:

u(C,Z) = v(Z)
C1−ρ

1− ρ

where 1
ρ is the inter-temporal elasticity of substitution. At each age t ∈ [1, T ], the individual

receives a stochastic income Yt and maximizes (3.1) subject to:

Wt+1 = R(Wt + Yt − Ct)

WN+1 ≥ 0

given an initial wealth level W1 and where R is the constant, after-tax, gross real interest
rate of the only asset available in the economy. Following Zeldes (1989), the labor income
process is given by:

Yt = PtUt (3.2)

Pt = GtPt−1Nt

where labor income is divided into a permanent component Pt and a transitory component
Ut.3 The transitory shocks Ut are assumed to be independently and identically distributed;

3Labor income is defined as disposable income, net of Social Security taxes and contributions to illiquid
accounts.
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moreover, there is a non-negative probability of a zero-income event, i.e. Ut = 0 with
probability p ∈ [0, 1). Ut is otherwise log-normally distributed, lnUt ∼ N(0, σ2U ). The
permanent component of income Pt follows a random walk with drift Gt (predictable growth
of income) and permanent shock Nt, which is independently and identically log-normally
distributed, lnNt ∼ N(0, σ2N ). WhileNt is meant to capture the effects of job changes, wage
raises, and other persistent factors, Ut is meant to capture the effects of one-time bonuses,
unemployment spells, and other transitory factors. Note that individuals will never choose
to borrow against future labor income as long as the Inada condition limc→0 =∞ is satisfied
(the assumed income process has a zero lower bound which imposes a natural borrowing
limit at 0).

GP make four additional assumptions. First, in order to reduce the number of state
variables in the model, they assume that the age variations in v(Zt) are deterministic,
common across households of the same age, and that they come from changes in family
size. Second, stating that most of the retirement wealth in U.S. households is accumulated
in illiquid assets (which are only available after retirement), GP assume that illiquid wealth
accumulates exogenously, cannot be borrowed against, and that illiquid wealth in the first
year of retirement is proportional to the last permanent component of income, i.e. HT+1 ≡
hPT+1 = hPT . These assumptions eliminate both illiquid assets as a state variable and
contributions to illiquid accounts as a control variable in the dynamic stochastic program.
Third, invoking Bellman’s optimality principle, the inter-temporal consumption problem is
truncated at the age of retirement to avoid modelling the retirement period. Lastly, due to
the truncation assumption, GP adopt the following retirement value function to condense
the consumer’s problem at retirement ages:

VT+1(XT+1, HT+1, ZT+1) = kv(ZT+1)(XT+1 +HT+1)
1−ρ (3.3)

for some constant k and where Xt is defined as the level of cash-on-hand (total liquid
financial wealth) in period t, i.e. Xt ≡Wt +Yt. According to GP, the functional form (3.3)
is chosen to maintain the tractability of the problem and for being flexible enough to allow
robustness checks.

In sum, the consumer’s problem at age τ can be expressed as:

Vτ (Xτ , Pτ , Zτ ) = max
Cτ ,...,CT

Eτ

[
T∑
t=τ

βt−τv(Zt)
C1−ρ
t

1− ρ
+ βT+1−τkv(ZT+1)(XT+1 + hPT+1)

1−ρ

]
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given the labor income process defined in (3.2) and subject to:

Xt+1 = R(Xt − Ct) + Yt+1 (3.4)

XT+1 ≥ 0 (3.5)

where the last inequality reflects the borrowing constraint on liquid assets at retirement
age, imposed by the assumption that illiquid wealth cannot be borrowed against.

3.2.2 Numerical Solution

Since an analytical closed-form solution for the above problem is not available, GP solve
the problem numerically by first normalizing all variables by the permanent component of
income. They note that the particular functional form for the retirement function makes the
household’s consumption problem homogeneous of degree (1− ρ) in Pt. Thus, by denoting
lowercase letters as normalized variables, e.g. xt ≡ Xt

Pt
, the following Euler equation holds

for ages t < T :

u′(ct(xt)) = βREt

[
v(Zt+1)

v(Zt)
u′(ct+1(xt+1)Gt+1Nt+1)

]
(3.6)

where ct(xt) is the optimal consumption function. In the last working period, the Euler
equation is replaced by:

u′(cT (xT )) = max

{
u′(xT ), βR

[
v(ZT+1)

v(ZT )
u′(cT+1(xT+1))

]}
(3.7)

since the illiquid wealth available in T + 1 imposes a liquidity constraint on the cash-on-
hand available at the age of retirement. Furthermore, under (3.3), the optimal retirement
consumption rule is linear in total wealth. Hence, the normalized consumption at T + 1 is
expressed as:

CT+1

PT+1
= γ1(

XT+1 +HT+1

PT+1
) (3.8)

cT+1 = γ1(xT+1 + h) = γ0 + γ1xT+1

where γ0 ≡ γ1h and γ1 is the marginal propensity to consume out of liquid wealth. Thus,
in order to find the set of optimal consumption rules for each age t, the problem can be
solved recursively by first finding cT (xT ) in (3.7) by using (3.8). The optimal solutions to
(3.7) and (3.6) then generate the consumption functions cT−1(xT−1), ..., c1(x1).

In order to implement the proposed solution algorithm, a grid of 100 points between
[0, 40] is created for cash-on-hand, with 50 points between 0 and 2 following GP’s discretiza-
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tion method. The finer grid for x ∈ [0, 2] captures the curvature of the consumption rule
at low values of cash-on-hand. Furthermore, to evaluate the expectation in (3.6), a two
dimensional Gauss-Hermite quadrature of order 12 is performed as GP.4 Table 3.1 reports
the assumed values for the variances of the income shocks (σ2U , σ

2
N ), the probability of

zero-income event (p), the initial distribution of liquid assets at age 26 (w1), the gross real
after tax interest rate (R), and the income and family-composition profiles (Gt, Zt). Lastly,
the age of retirement is set at 65, i.e., T = 40.

3.3 Results

3.3.1 Individual Consumption Behavior

Figure 3.1 reports the individual consumption behavior of a typical consumer working from
ages 26 to 65 (t = 1, ..., T ), whose consumption at T + 1 is characterized by (3.8). The
preference parameters are set to β = 0.960, ρ = 0.514, γ0 = 0.001, and γ1 = 0.071. These
are the base-line parameter values estimated from the structural estimation in Gourinchas
and Parker (2002) which matches simulated average age-profiles of consumption with those
observed over the working ages of U.S. households in the Consumer Expenditure Survey
(CEX).5

As can be seen, normalized consumption is increasing, positive, and concave in nor-
malized cash-on-hand. Moreover, consumer behavior changes over the life-cycle, i.e. there
is a systematic age-variation in consumption behavior. A typical young consumer has a
low level of liquid wealth; as a result, her marginal propensity to consume is high as the
consumption function is steep at low levels of cash-on-hand. Since labor income is ex-
pected to grow, young individuals prefer to borrow or save very little as more resources
will be available in the future; however, they optimally choose to accumulate wealth to
guard against negative income shocks. They never consume all of their financial wealth
even when x is low; however, they do consume most of their financial wealth at low values
of normalized cash-on-hand. Moreover, these parameter values imply a low level of illiquid
wealth at T + 1; thus, individuals must save for retirement as they age. As liquid wealth is
accumulated to finance retirement years, consumption rules decrease as t→ T . Since most
middle-aged consumers will have saved to a large extent for retirement purposes by then,
their marginal propensity to consume will be low as income uncertainty becomes negligi-
ble and the consumption function is relatively flat at high levels of cash-on-hand. In fact,
households’ probability to hold low amounts of liquid wealth decreases with age as seen in
Figure 3.2. It is almost 0 by age 45. This result indicates that once a household reaches its

4For more details, see Appendix A.
5See Chapter 4, Section 3, for a description of the Simulated Method of Moments Estimation.
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mid-forties, the probability that it will hold low amounts of cash-on-hand in the future is
negligible; thus, it will continue to accumulate positive amounts of wealth as its marginal
propensity to consume is low.

Alternatively, Figures 3.3a and 3.3b show the consumption functions for households
facing two different retirement consumption rules γ0 = 0.594 and γ0 = 0.9, respectively.
Again, the optimal rules are concave in normalized cash-on-hand and vary systematically
with age. With a higher level of illiquid wealth implied by γ0, households do not accumulate
as much liquid wealth as in Figure 3.1, and consumption functions decline less as the
household ages. As can be seen, households accumulate less liquid wealth for retirement
purposes as γ0 increases: they can depend more on illiquid wealth to finance consumption
when retired.

The model is further solved for ρ = 1.5 and ρ = 3, assuming γ0 = 0.01, γ0 = 0.594

and γ0 = 0.9. Figure 3.4 reports the consumption policy functions and wealth distribution
at retirement age for ρ = 1.5, and Figure 3.5 depicts the ones for ρ = 3. As can be seen,
the consumption functions are concave in normalized cash-on-hand and vary systematically
with age; however, as the coefficient of risk aversion increases, the consumption functions
are lower for all ages since consumers save more for precautionary reasons.

3.3.2 Aggregate Behavior

Carroll (2000) argues that the concavity in the consumption functions imply that the dy-
namic of the distribution of wealth affects the average marginal propensity to consume and
the level of aggregate consumption. A significant dispersion in aggregate wealth will predict
an aggregate behavior that does not resemble the behavior of a representative agent whose
wealth is equal to the mean of the distribution. To analyze the aggregate implications of
GP’s life-cycle model, the consumer problem is first solved and simulated for the base-line
parameter values. A sequence of 20, 000 income processes is generated over 40 years. The
economic aggregate to be considered and modeled in this section is average (arithmetic
mean) cash-on-hand, average consumption, and average marginal propensity to consume
over time.

Figure 3.6 reports the consumption function, the marginal propensity to consume, and
the distribution of normalized cash-on-hand at various ages. At age 26, normalized cash-
on-hand is distributed around the “kink-point” of the consumption function with a mean
value of 1.3040 and a median value of 1.1288. The bottom one forth of the distribution
faces borrowing constraints and have high marginal propensities to consume in contrast to
the top three forths of the distribution. However, households seem to quickly adjust their
consumption and savings decisions so as to avoid the region where borrowing constraints
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are binding. By age 35, most of the cash-on-hand distribution is in the flat region of the
consumption function. At age 45, the distribution of normalized cash-on-hand is to the
right of the “kink-point” of the consumption function. This implies that all households of a
given age have the same marginal propensity to consume, which in this case is close to seven
percent. As households age and accumulate liquid wealth, the distribution of cash-on-hand
keeps gradually moving to the right. At age 55, the median value of the cash-on-hand
distribution is 4.9834, which jumps to 10.9432 by age 65 (not illustrated). Thus, under the
base-line parameter values, the aggregate behavior predicted by the life-cycle model would
resemble the behavior of a representative-agent whose cash-on-hand is equal to the mean
of the distribution starting at age 45.

However, note that the predicted distribution of cash-on-hand does not match the one
observed across U.S. households during the years considered for the SMM estimation of the
preference parameters in Gourinchas and Parker (2002). Figure 3.7a presents the distribu-
tion of liquid wealth at retirement age across U.S. households based on the Panel Study of
Income Dynamics. This data is provided by GP, who construct measures of cash-on-hand
in 1989 for households whose head has retired in 1991, 1992 or 1993 and is between 60

and 70 years old in 1992. An can be seen, the wealth distribution is highly skewed to the
left. The median of the distribution is $40, 447.41 and the mean is $53, 156.09. Figure
3.7b shows the distribution of normalized cash-on-hand, which is also skewed to the left.
Most of the distribution is below 3, with a median value of 0.95 and a mean value of 1.02.
These values are well below the median of the cash-on-hand distribution at age 65 pre-
dicted by the life-cycle model with a γ0 = 0.01. Recall that γ0 = 0.01 imply a low level
of illiquid wealth at retirement; thus, households in the life-cycle model must save enough
wealth to finance their retirement years’ consumption. Table 3.2 shows that the two-sample
Kolmogorov-Smirnov test rejects the null hypothesis that the predicted distribution for the
base-line parameters and the empirical distribution are the same at a 5% significance level.

Figure 3.8 presents the simulated average age-profiles for consumption and cash-on-
hand for the base-line parameters. The life-cycle profiles are constructed by calculating
the arithmetic mean (averaging across 20, 000 households) for each age. The consumption
profile increases until age 45 and then decreases, while cash-on-hand is increasing over the
life-cycle.6 As can be seen, the mean household accumulates a substantial amount of liquid
wealth starting early in the life-cycle as discussed previously.

Alternatively, Figures 3.9 and 3.10 show the consumption function, the marginal propen-
sity to consume, and the distribution of normalized cash-on-hand at various ages for
γ0 = 0.594 and γ0 = 0.9, respectively. As can be seen, the cash-on-hand distributions

6It is worth noting that the observed hump-shape of the consumption profile is heightened by variations
in the growth of rate of income.
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at age 26 in both cases are similar to the one in the base-line case. However, as γ0 in-
creases, households do not accumulate assets as quickly since they can rely on illiquid
assets to finance consumption during retirement years. At age 45, there is still a small
fraction of households in the area where borrowing constraints are binding. Only at age
65, the entire distribution of cash-on-hand is right of the “kink-point” of the consumption
function when γ0 = 0.594. On the other hand, there are still a few households at age 65 that
face borrowing constraints when γ0 = 0.9. Figure 3.11 confirms this result. With a higher
level of illiquid wealth implied by γ0, households do not accumulate as much liquid wealth
as in Figure 3.8b. However, despite increasing the value of γ0, the predicted distribution
of cash-on-hand does not match the one observed in the PSID data. As can be seen, the
median value of normalized cash-on-hand is around 4.9 and 2.4 for γ0 = 0.594 and γ0 = 0.9,
respectively. Table 3.2 shows that the two-sample Kolmogorov-Smirnov test rejects the null
hypothesis that the predicted distributions (for γ0 = 0.594 and γ0 = 0.9, respectively) and
the empirical distribution are the same at a 5% significance level. Similarly, the predicted
distributions of normalized cash-on-hand when ρ = 1.5 and ρ = 3 (assuming γ0 = 0.001

γ0 = 0.594 and γ0 = 0.9) are also different from the observed distribution in the PSID data
at a 5% significance level.

Furthermore, Figure 3.12 reports the average age-profile of the marginal propensity
to consume for various value combinations of ρ and γ0. It is calculated as the average
across age of the slope of the normalized consumption function evaluated at the simulated
normalized value of cash-on-hand at each age t. As can be seen, the average marginal
propensities to consume converges to a relatively stable value around seven percent which
is the marginal propensity to consume implied by the assumed retirement consumption
rule. However, this convergence occurs faster as the level of illiquid wealth decreases and
the coefficient of risk aversion rises. For instance, when ρ = 0.514, the average marginal
propensity to consume reaches the stable value at age 45 when γ0 = 0.001, at age 60

when γ0 = 0.594, and at age 65 when γ0 = 0.9. On the other hand, the average marginal
propensity to consume converges to the stable value at age 35 when ρ = 1.5 and at age 30

when ρ = 3. This convergence further implies that all individuals have identical marginal
propensities to consume at those mentioned ages. This result is further confirmed by Figure
3.13. It reports the standard deviation of the marginal propensity to consume at each age.
For ρ = 1.5 and ρ = 3, the standard deviation converges rapidly to zero regardless of
γ0. The rapid convergence of the average marginal propensity to consume reflects that
consumers accumulate enough liquid wealth to stay on the flat portion of the consumption
function, and thus, avoiding the region where borrowing constraints are binding. Note,
however, that the rate of convergence of the standard deviation depends on the value of γ0
for individuals with ρ = 0.514. When expecting to receive a large amount of illiquid wealth
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at retirement (high value of γ0), households do not accumulate as much liquid wealth.
There is a significant fraction of households with low level of liquid wealth that boosts the
value of average marginal propensity to consume at each age consistent with Figures 3.9
and 3.10.

3.3.3 Stochastic Retirement Years

The predicted consumption and savings behavior in the previous sections ignores the con-
sumption risks associated with retirement years. Although labor income risks are not
relevant for most of the retirees, the elderly face substantial medical expenditure risks
(Feenberg and Skinner, 1994; Palumbo, 1999; Hurd, 2002; French and Jones, 2004; De
Nardi, French, and Jones, 2010; French and Jones, 2011). Health-care cost uncertainty can
induce risks on the disposable income available to finance retirement consumption, affecting
individuals’ consumption and saving decisions during their working ages. In this section, I
explore the aggregate predictions of a modified version of the life-cycle model allowing for
a simple stochastic retirement period.

Consider a life-cycle model in which individuals die at age 87 (N = 62), retire at age
65 (T = 40), but receive a proportion α of their income during retirement ages such that,
for t ≥ T :

xt+1 =
R

Gt+1Nt+1
(xt − ct) + αUt+1 (3.9)

where 0 < α ≤ 1 is a retirement replacement rate.7

Figure 3.14 presents the average and the standard deviation of the marginal propensity
to consume for ages 26 to 65 for various replacement rates. As can be seen, the average
marginal propensities to consume converge to approximately 0.07 at age 65 for replacement
rates 50%, 60%, and 70%. This convergence implies that all individuals have the same
identical marginal propensities to consume at age 65. However, as the replacement rate
increases, this convergence is less obvious: the standard deviation of the marginal propensity
to consume increase as well as the average marginal propensity to consume. When α = 1,
the average marginal propensity to consume is about 0.2 between ages 40 and 65, with a
standard deviation of approximately 0.16. Furthermore, Figure 3.15 depicts the average
age-profile of consumption and cash-on-hand. Until age 45, both the consumption and
cash-on-hand age-profiles are almost identical regardless of the value of α. During the
late-forties, households with higher replacement rates start to consume more and save less
liquid wealth.

7When the replacement rate is 100% (α = 1), this alternative model corresponds to the finite-horizon
version of the buffer-stock model in Carroll (2019).
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Figure 3.16 displays the consumption function, the marginal propensity to consume,
and the distribution of normalized cash-on-hand at retirement age for various replacement
rates. When α = 0.5, the entire distribution of cash-on-hand lies on the flat region of the
consumption, with an average propensity to consume of 0.075 and a standard deviation of
0.001 implying that all individuals have the same marginal propensity to consume at age 65.
As the replacement rate increases, households accumulate less wealth during their working
ages as they expect to receive a higher fraction of their income during retirement years. As a
result, the predicted distribution of normalized cash-on-hand for α = 1 is the one that most
resembles the one observed in the PSID data, with a mean value of 1.620 and a median value
of 1.521. However, for all these replacement rates, Table 3.3 shows that the two-sample
Kolmogorov-Smirnov test rejects the null hypothesis that the predicted distributions and
the empirical distribution are the same at a 5% significance level. Furthermore, Table 3.4
shows that the average and the standard deviation of the marginal propensity to consume
increase as the replacement rate increases. For instance, the average propensity to consume
is 0.078 with a standard deviation of 0.006 for a replacement rate of 60%, and the average
propensity to consume is 0.2126 with a standard deviation of 0.160 for a replacement rate
of 100%. When α = 1, there is a measurable fraction of households that face borrowing
constraints that boosts both the value of the average marginal propensity to consume and
its standard deviation.

3.4 Conclusion

The current chapter studies the implications of life-cycle behavior predicted by GP for aggregate
dynamics. The non-linearity of the consumption functions and the systematic variation in age
imply that the structure and dynamics of the wealth distribution are important in understanding
aggregate behavior over the life-cycle. However, this study shows that the aggregation prediction
of the life-cycle model in Gourinchas and Parker (2002) is sensitive to the assumed values of the
preference parameters and the income profile during retirement years. For the base-line parameters,
households optimally choose to accumulate a substantial amount of liquid wealth, moving the
entire distribution of cash-on-hand to the region where the consumption function is flat. In fact,
households’ probability to hold low amounts of liquid wealth is almost zero by age 45; as a result, all
individuals have the same marginal propensity to consume in their mid-forties and up. Thus, the
aggregate dynamics of a representative-consumer model possessing liquid wealth equal to the mean
of the distribution would resemble the aggregate predictions of the life-cycle model for middle-aged
individuals. The same conclusion extends for households with high coefficients of risk aversion. In
contrast, when households expect to receive a large amount of illiquid wealth at retirement, there
is a significant fraction of households in the region where borrowing constraints are binding as they
do not accumulate as much liquid wealth. This, in turn, boosts the value of the aggregate marginal
propensity to consume. Thus, the appropriateness of a representative-agent depends on the age
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distribution of the population and on the assumed values of the preference and retirement rule
parameters. Furthermore, despite the various combinations of parameter values that are studied,
the predicted distribution of cash-on-hand does not match the one observed across U.S. households.
This discrepancy sheds light in the suitability of the life-cycle model to reproduce the observed
savings behavior across U.S. households. Lastly, these results suggest that the main weakness
of GP’s life-cycle model is its retirement rules assumptions as the model disregards consumption
risks during retirement years. A richer representation of the retirement period would improve the
understanding of individuals’ savings behavior over the life-cycle.
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Figure 3.1: Consumption Function for Base-line Parameters

(ρ = 0.514, γ0 = 0.001, β = 0.96, γ1 = 0.071, R = 1.0344)
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Figure 3.2: Probability of Holding High Amounts of Cash-on-Hand

This probability is calculated as the probability of normalized cash-holdings being greater
than the “kink-point” of the consumption function at each age t. It considers 20, 000
simulated individuals who are followed throughout their life-cycle, based on the distribution
of transitory and permanent income shocks. The parameters assumed are ρ = 0.514, γ0 =
0.001, β = 0.96, γ1 = 0.071, R = 1.0344.

73



0 0.5 1 1.5 2 2.5 3

Normalized Cash-on-hand

0

0.5

1

1.5

2

2.5

3

N
o
rm

a
liz

e
d
 C

o
n
s
u
m

p
ti
o
n

C
64

C
55

C
45

C
35

C
26

(a) γ0 = 0.594

0 0.5 1 1.5 2 2.5 3

Normalized Cash-on-hand

0

0.5

1

1.5

2

2.5

3

N
o
rm

a
liz

e
d
 C

o
n
s
u
m

p
ti
o
n

C
64

C
55

C
45

C
35

C
26

(b) γ0 = 0.9

Figure 3.3: Consumption Functions for γ0 = 0.594 and γ0 = 0.9

(ρ = 0.514, β = 0.96, γ1 = 0.071, R = 1.0344)
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Figure 3.4: Consumption Functions for ρ = 1.5 (β = 0.96, γ1 = 0.071, R = 1.0344)
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Figure 3.5: Consumption Functions for ρ = 3

(β = 0.96, γ1 = 0.071, R = 1.0344)
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Figure 3.6: Consumption Function, MPC, and Distribution of Cash-on-Hand

(ρ = 0.514, γ0 = 0.001, β = 0.96, γ1 = 0.071, R = 1.0344)
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Figure 3.9: Consumption Function, MPC, and Distribution of Cash-on-Hand

(ρ = 0.514, γ0 = 0.594, β = 0.96, γ1 = 0.071, R = 1.0344)
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(e) Age 55
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Figure 3.10: Consumption Function, MPC, and Distribution of Cash-on-Hand

(ρ = 0.514, γ0 = 0.9, β = 0.96, γ1 = 0.071, R = 1.0344)
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Figure 3.11: Age-Profiles of Mean Ct and Mean Xt

(β = 0.96, γ1 = 0.071, R = 1.0344)
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Figure 3.12: Average Marginal Propensity to Consume

(β = 0.96, γ1 = 0.071, R = 1.0344)
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Figure 3.13: Standard Deviation of Marginal Propensity to Consume

(β = 0.96, γ1 = 0.071, R = 1.0344)
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Figure 3.14: Average and Standard Deviation MPC with Replacement Rates

Assuming death age 87(N = 62), retirement age 65(T = 40), ρ = 0.514, β = 0.96
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Figure 3.15: Age-Profiles of Mean Ct and Mean Xt with Replacement Rates

Assuming death age 87(N = 62), retirement age 65(T = 40), ρ = 0.514, β = 0.96
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Figure 3.16: Consumption Function, MPC, and Distribution of Cash-on-Hand at age 65

(ρ = 0.514, β = 0.96, R = 1.0344)
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Parameter Value Source
R 1.03440 Moody’s AAA municipal bonds, Jan 1980 - March 1993
σ2U 0.0440 Carroll and Samwick (1997), PSID 1981-1987
σ2N 0.0212 Carroll and Samwick (1997), PSID 1981-1987
p 0.00302 Carroll, Hall, and Zeldes (1992), PSID 1976-1985
w̄1 −2.7944810 Gourinchas and Parker (2002), CEX 1980-1993
σw1 1.7838679

Gt: Gourinchas and Parker (2002), CEX 1980-1993
age .32643678179
age2 −.0148947085
age3 .00036342384
age4 −4.411685e−6

age5 2.056916e−8

constant 6.801368713

Zt: Gourinchas and Parker (2002), CEX 1980-1993
age 0.13964975
age2 −0.0047742190
age3 8.5155210e−5

age4 −7.9110880e−7

age5 2.9789550e−9

Table 3.1: Parameter Values from Gourinchas and Parker (2002)
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Parameters 25th 50th 75th KS Statistic P-value
ρ = 0.514, γ0 = 0.001 8.905 10.943 13.674 0.999 0.0000
ρ = 0.514, γ0 = 0.594 4.028 4.928 6.128 0.948 0.0000
ρ = 0.514, γ0 = 0.9 1.870 2.396 3.082 0.747 0.0000

ρ = 1.5, γ0 = 0.001 10.804 13.620 17.580 0.999 0.0000
ρ = 1.5, γ0 = 0.594 5.996 7.649 9.981 0.9856 0.0000
ρ = 1.5, γ0 = 0.9 3.690 4.831 6.450 0.9285 0.0000

ρ = 3, γ0 = 0.001 12.003 15.396 20.242 0.9999 0.0000
ρ = 3, γ0 = 0.594 7.607 9.932 13.3130 0.987 0.0000
ρ = 3, γ0 = 0.9 5.512 7.390 10.123 0.978 0.0000

PSID Data 0.481 0.950 1.230 − −

Table 3.2: Distribution of Cash-on-Hand at Retirement Age and Kolmogorov-Smirnov Test

Selected percentiles for the predicted distribution of normalized cash-on-hand assuming
β = 0.96, γ1 = 0.071, R = 1.0344. The two-sample Kolmogorov-Smirnov test rejects the
null hypothesis that the empirical and simulated distributions are the same distribution at
a 5% significance level.
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α 25th 50th 75th KS Statistic P-value
50% 3.435 4.167 5.130 0.935 0.0000
60% 2.754 3.361 4.150 0.894 0.0000
70% 2.168 2.671 3.317 0.837 0.0000
80% 1.712 2.126 2.652 0.709 0.0000
90% 1.414 1.752 2.174 0.622 0.0000
100% 1.245 1.521 1.866 0.526 0.0000

PSID Data 0.4811 0.9503 1.2303 − −

Table 3.3: Distribution of Cash-on-Hand at Retirement Age and Kolmogorov-Smirnov Test

Selected percentiles for the predicted distribution of normalized cash-on-hand for various
replacement rates, assuming ρ = 0.514, β = 0.96, R = 1.0344. The two-sample Kolmogorov-
Smirnov test rejects the null hypothesis that the empirical and simulated distributions are
the same distribution at a 5% significance level.
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Replacement Rate Mean MPC Standard Deviation of MPC
α = 50% 0.075 0.0014
α = 60% 0.078 0.0060
α = 70% 0.084 0.0165
α = 80% 0.101 0.0456
α = 90% 0.142 0.0990
α = 100% 0.213 0.1602

Table 3.4: Average and Standard Deviation of MPC at Retirement Age
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Chapter 4

Implementing the Simulated Method
of Moments: A Cautionary Note

4.1 Introduction

Estimating structural models often involve a non-linear optimization with respect to unknown
parameters. For instance, in order to implement a structural estimation of a dynamic stochastic
life-cycle model, the procedure involves two layers of optimization. The inner layer solves the
model numerically using an optimization algorithm; it typically involves solving the model’s Euler
equations through backward induction and calculating numerical integration over random variables.
Once the model is solved and simulated, the outer layer minimizes the objective function of the
estimator as a function of the parameters. As Low and Meghir (2017) discuss, the main obstacle with
structural estimation is the absent of an analytical relationship between the model’s control variables
and the unknown parameters; thus, in order to evaluate the marginal effect of the parameters on
the model’s dependent variables, the entire model needs to be re-solved.

The current document finds that the numerical solution method to the stochastic life-cycle
problem can affect its structural estimation. Most recent empirical studies on life-cycle models use
the Simulated Method of Moments (SMM) first developed by McFadden (1989) and Pakes and Pol-
lard (1989). Gourinchas and Parker (2002) (henceforth GP) are the first to estimate the structural
parameters of a dynamic stochastic model of life-cycle consumption with exogenous and stochastic
labor income processes using SMM.1 Due to the non-linearity of the consumption problem, the
traditional root-finding solution to the Euler equations is computationally burdensome; thus, in
order to reduce computation time, recent empirical works have performed structural estimations
using the endogeneous grid-points solution method proposed in Carroll (2006).2 The Monte Carlo

1Following GP, SMM on life-cycle models has also been performed by Cagetti (2003), French (2005),
Laibson, Repetto, and Tobacman (2007), De Nardi, French, and Jones (2010), Low, Meghir, and Pistaferri
(2010), French and Jones (2011), Bucciol (2012), and Fella, Frache, and Koeniger (2016), among many
others.

2The endogenous grid-points solution method has been applied in structural estimations by Abe, In-
akura, and Yamada (2007), Jørgensen (2013), Jørgensen (2014), Jørgensen (2017), Bucciol (2012), Rendon
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results from this study suggest that although this alternative solution method is effective when
solving the life-cycle model, one must be cautious when adopting it when numerically minimizing
the SMM estimators’ objective function. I find that the mode of the SMM estimates for the coeffi-
cient of risk aversion is approximately zero when its true value is small. The “zero trap” refers to
this estimation result, i.e. the estimated parameter is zero even though the true parameter value is
positive but close to zero. This result is related to other potential problems with SMM. Carroll and
Kimball (2006) warn that the degree of income uncertainty faced by households affect the estimates
of relative risk aversion in Gourinchas and Parker (2002). Similarly, Michaelides and Ng (2000) and
Low and Meghir (2017) point out that the choice of moment conditions for the SMM estimation
matters for the identification of the structural parameters when there are non-linearities and serial
dependence on the data.

The remainder of this document is structured as follows. Section 2 presents the life-cycle
model in Gourinchas and Parker (2002). Section 3 describes the Simulated Method of Moments
Estimation. Section 4 reports the Monte Carlo experiment results and characterizes the “zero trap”.
Section 5 concludes the analysis.

4.2 Life-Cycle Model

Gourinchas and Parker (2002) consider the following discrete-time, life-cycle model of household
consumption. Individuals live until age N and retire at age T < N . In this standard model, both
T and N are assumed to be exogenous and fixed. Preferences are represented by the standard
additively separable expected utility form:

E

[
N∑
t=1

βtu(Ct, Zt) + βN+1VN+1(WN+1)

]
(4.1)

where β is the time-discount factor, Ct is total consumption at age t, Wt is total financial wealth,
Zt is a vector of deterministic household characteristics, and VN+1 is the value to the consumer
of the remaining assets after age N , allowing for any bequest motive. Furthermore, the Bernoulli
function is assumed to take the following form:

u(C,Z) = v(Z)
C1−ρ

1− ρ
(4.2)

where ρ > 0 and 1
ρ is the inter-temporal elasticity of substitution. At each age t ∈ [1, T ], the

individual receives a stochastic income Yt and maximizes (4.1) subject to:

Wt+1 = R(Wt + Yt − Ct) (4.3)

WN+1 ≥ 0 (4.4)

and Quella-Isla (2015), Yamana (2016), Yao, Fagereng, and Natvik (2015), Fella, Frache, and Koeniger
(2016), Liu (2017), and Crawford and O’Dea (2020), among others.
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given an initial wealth level W1 and where R is the constant, after-tax, gross real interest rate of
the only asset available in the economy. Following Zeldes (1989), the labor income process is given
by:

Yt = PtUt (4.5)

Pt = GtPt−1Nt (4.6)

where labor income Yt is divided into a permanent component Pt and a transitory component Ut.3

The transitory shocks Ut are assumed to be independently and identically distributed; moreover,
there is a non-negative probability of a zero-income event, i.e. Ut = 0 with probability p ∈ [0, 1).
Ut is otherwise log-normally distributed, lnUt ∼ N(0, σ2

U ). The permanent component of income
Pt follows a random walk with drift Gt and permanent shock Nt, which is also independently and
identically log-normally distributed, lnNt ∼ N(0, σ2

N ).4

GP make four additional assumptions in order to estimate this model with household data.
First, in order to reduce the number of state variables in the model, they assume that the age
variations in v(Zt) are deterministic, common across households of the same age, and that they
come from changes in family size. Second, stating that most of the retirement wealth in U.S.
households is accumulated in illiquid assets (which are only available after retirement), GP assume
that illiquid wealth accumulates exogenously, cannot be borrowed against, and that illiquid wealth
in the first year of retirement is proportional to the last permanent component of income, i.e.
HT+1 ≡ hPT+1 = hPT . These assumptions eliminate both illiquid assets as a state variable and
contributions to illiquid accounts as a control variable in the dynamic stochastic program. Third,
invoking Bellman’s optimality principle, the inter-temporal consumption problem is truncated at
the age of retirement; thus, there is no need to define the sources of risks during retirement ages
and the functional form to capture any bequest motive. Lastly, due to the truncation assumption,
GP adopt the following retirement value function VT+1 to condense the consumer’s problem at
retirement ages:

VT+1(XT+1, HT+1, ZT+1) = kv(ZT+1)(XT+1 +HT+1)1−ρ (4.7)

for some constant k and where Xt is cash-on-hand in period t, defined as total liquid financial
wealth: Xt = Wt + Yt. The functional form (4.7) is chosen by GP to maintain the tractability
of the problem and for being flexible enough to allow robustness checks. In sum, the consumer’s
problem at age τ can be expressed as:

Vτ (Xτ , Pτ , Zτ ) = max
Cτ ,...,CT

Eτ

[
T∑
t=τ

βt−τv(Zt)
C1−ρ
t

1− ρ
+ βT+1−τkv(ZT+1)(XT+1 + hPT+1)1−ρ

]
(4.8)

3Labor income is defined as disposable income, net of Social Security taxes and contributions to illiquid
accounts.

4It is worth noting that under this income process formulation, consumers will never choose to borrow
against future labor income. As Carroll and Kimball (2006) show, precautionary saving motive can induce
self-imposed liquidity constraints. In particular, they provide an example in which the behavior of a
consumer facing a zero-income event is virtually indistinguishable from the behavior of a perfect foresight
but liquidity-constrained consumer as the probability of zero-income event approaches zero.
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given the labor income process defined in (4.5) and subject to:

Xt+1 = R(Xt − Ct) + Yt+1 (4.9)

XT+1 ≥ 0. (4.10)

where the last inequality reflects the borrowing constraint on liquid assets at retirement age, imposed
by the assumption that illiquid wealth cannot be borrowed against.

Since an analytical closed-form solution for the above problem is not available, it can be solved
numerically by first normalizing all variables by the permanent component of income. GP note
that the particular functional form for the retirement function makes the household’s consumption
problem homogeneous of degree (1 − ρ) in Pt. Thus, by denoting lowercase letters as normalized
variables, e.g. xt ≡ Xt

Pt
, the following Euler equation holds for ages t < T :

u′(ct(xt)) = βREt

[
v(Zt+1)

v(Zt)
u′(ct+1(xt+1)Gt+1Nt+1)

]
(4.11)

where ct(xt) is the optimal consumption function. The Euler equation in the last working period is

u′(cT (xT )) = max

{
u′(xT ), βR

[
v(ZT+1)

v(ZT )
u′(cT+1(xT+1))

]}
(4.12)

since the assumption that illiquid wealth cannot be borrowed against imposes a liquidity constraint
on the total financial wealth available at the age of retirement. Furthermore, under (4.7), the
optimal consumption at retirement is linear in total wealth. Hence, the normalized consumption in
T + 1 is expressed as:

CT+1

PT+1
= γ1

(
XT+1 +HT+1

PT+1

)
(4.13)

cT+1 = γ1(xT+1 + h)

= γ0 + γ1xT+1

where γ0 ≡ γ1h and γ1 is the marginal propensity to consume out of liquid wealth. Thus, in order
to find the set of optimal consumption rules for each age t, the problem can be solved recursively
by first finding cT (xT ) in (4.12) by using (4.13). The optimal solutions to (4.12) and (4.11) then
generate the consumption functions cT−1(xT−1), ..., c1(x1).5

4.3 Simulated Method of Moments Estimation (SMM)

Based on the life-cycle model in Gourinchas and Parker (2002), the consumption for individual i
at age t depends on the parameters of the problem (ψ ∈ Ψ ⊂ Rs), the realization of the permanent
component of income (Pit) and the level of cash on hand (Xit). Thus, based on the model, the

5For more details, see Appendix A.
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data-generating process for each age t can be assumed to be:

lnCit = ln(Ct(Xit, Pit;ψ)) + εit

where lnCit is the observed log-consumption of individual i of age t and εit is an idiosyncratic
shock. Due to the lack of a good quality panel data of consumption, assets, and income for
individual households, GP propose to estimate the model based on the following condition for each
age t:

E[lnCit − lnCt(ψ0)] = 0

where lnCt(ψ) is the unconditional expectation of log-consumption at each age t and ψ0 is the true
parameter vector. Due to the difficulty of estimating all the parameters in one step, GP partition
the parameter vector into first-stage (χ ∈ Rr) and second-stage (θ ∈ Θ ⊂ Rs where Θ is a compact
set) parameters; the estimation procedure proceeds by first estimating χ using additional data and
moments, and then estimating θ using the Simulated Method of Moments.

The first-stage parameters χ consist of the variances of the permanent and transitory shocks
(σU , σN ), the probability of unemployment (p), the gross real after tax interest rate (R), the initial
distribution of liquid assets at age 26, and the family-composition and income profiles. Although
each of these parameters are estimated separately using different data, GP interpret them as GMM
estimators. Thus, the parameters χ are estimated according to the moment condition E [µ(χ)],
where µ ∈ Rr. The first-stage sample moments can then be defined as m(χ) = 1

J

∑J
j=1 µj(χ),

where J is the number of observations for the first-stage.
Because lnCt(ψ) does not have an analytic expression and depends on the parameters, it is

simulated by solving the model numerically for L households and computing the mean of the
simulated consumption profiles (for each age t). Thus, the SMM estimator solves:

min
θ
g(θ; χ̂)′Wg(θ; χ̂) (4.14)

where W is a T × T weighting matrix and g(θ; χ̂) ∈ RT is a vector with tth element:

gt(θ; χ̂) = ln C̄t − ln Ĉt(θ; χ̂) (4.15)

where ln C̄t is the average consumption for age t observed in the empirical data and ln Ĉt(θ; χ̂)

is the simulated counterpart of lnCt(θ; χ̂). The SMM estimator then chooses θ that matches the
means of the empirical and simulated distributions for each age t.6

4.4 Monte Carlo Experiment

To evaluate the SMM estimator, the life-cycle consumption and saving model described above is
used as the structural model to simulate data. The dimension of the second-stage parameters θ is
two: θ = {β, ρ}. The retirement consumption rule’s parameters are fixed exogeneously: γ0 = 0.594,

6See Appendix B for MATLAB codes.
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γ1 = 0.077. The Monte Carlo experiment consists of 500 simulations (m = 1, ..., 500). For the mth

Monte Carlo:

1. Set the true parameters θ0 equal to base-line parameter values estimated from the SMM
structural estimation in Gourinchas and Parker (2002): β0 = 0.96 and ρ0 = 0.514.

2. Solve the consumption problem numerically using Equations (4.11) and (4.12), based on the
parameter values listed in Table 4.1.

3. Generate sequence of income processes for 1, 000 households; for each household l, income
shocks Ul,t and Nl,t are generated for t = 1, ..., T .

4. Calculate the consumption profile for each household l facing these income shocks by using
the optimal consumption functions from Step 2.

5. Calculate the average of the logarithm of the simulated consumption profiles for each age t
across all 1000 simulated households.

6. Generate a sequence of income processes for 20, 000 households over T years.

7. Begin at initial guess parameter values: θ0 = {0.959, 0.513}.

8. For a given θi, generate the log consumption profiles for all 20, 000 households and calculate
its mean.

9. Calculate moment condition (4.15) and minimize objective function (4.14).

10. Update m and go to Step 3.

In order to solve the consumption model in Section 4.2, the continuous state variable x must
be discretized. The standard solution method calculates their values at a finite grid of possible
values of normalized cash-on-hand: {xj}Jj=1 ⊂ [0, xmax]. With known ct+1, the standard approach
solves a numerical root-finding routine to find, for each value of cash-on-hand on the grid xj , the
associated consumption cj that satisfies the Euler equation (4.11). The points {xj , cj} are then used
to generate a interpolated approximation to ct. Given the interpolated function ct, the solution for
the previous periods is then found by backward recursion. GP suggest a grid of 100 points between
[0, 40] for normalized cash-on-hand, with 50 points between 0 and 2.

However, as the standard solution method has proven to be computationally burdensome, the
Monte Carlo experiments are done following the endogeneous grid-points solution method described
by Carroll (2006). He proposes an alternative approach that does not require numerical root-finding
and saves a substantial amount of computational time. Instead of using a grid of values for cash-
on-hand, this alternative approach uses an exogenous grid of values for end-of-period assets (i.e.
at = xt−ct): {aj}Jj=1 ⊂ [0, amax]. Noting that xt+1 = R

Gt+1Nt+1
at+Ut+1, the Euler equation (4.11)

can be expressed as

u′(ct(xt)) = βREt

[
v(Zt+1)

v(Zt)
u′
(
ct+1

(
R

Gt+1Nt+1
at + Ut+1

)
Gt+1Nt+1

)]
. (4.16)

With ct+1 in hand, the alternative approach calculates, for each value of end-of-period asset on the
grid aj , the associated consumption cj based on equation (4.16). Further note that the dynamic
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budget constraint implies that xj = aj + cj . Thus, the grid-points for the state variable x are
endogenously generated from the exogenous grid of end-of-period assets a. The points {xj , cj}
are then used as before to construct an approximation to the consumption function ct. Given the
interpolated function ct, the solution for the previous periods is found by backward recursion.7

Furthermore, to evaluate the expectation in (4.16), a two dimensional Gauss-Hermite quadrature
of order 12 is performed as GP.

In order to minimize the SMM objective function (4.14), the solver fminsearch in MATLAB
is used. It is a non-linear programming solver that uses the Nelder-Mead simplex search method
proposed by Lagarias, Reeds, M. H. Wright, and P. E. Wright (1998). Based on the life-cycle
model in section 2, the parameter space is defined as Θ = {(β, ρ) ∈ R2

+ : 0 < β < 1, ρ > 0}. The
algorithm is stopped when both the change in the value of the objective function and the norm of
the parameter vector during a step are less than 1.0× 10−6. The calculations are performed on an
3.2 and 3.6 GHz Intel Core i7 processor.

4.4.1 Results

Table 4.2 reports the results of the Monte Carlo experiment for the SMM estimator using moment
conditions (4.15). The SMM estimator has a tendency to underestimate ρ. Its mean across 500

experiments is 0.4606 while its median is 0.4545 with a standard deviation of 0.4250 and a mean
squared error of 0.1831. On the the hand, the SMM estimate of β is more precise with a mean
of 0.9592 and a median of 0.9609, with standard deviation of 0.0077 and a mean squared error of
0.0001 across the 500 experiments.

Figure 4.1 sums up the properties of the SMM estimators for the life-cycle consumption model.
Figure 4.1a displays the density plot of ρ. As can be seen, the mode of the SMM estimates for ρ is
near 0, far from the true value of 0.514. This explains the smaller mean and median biases reported
in Table 4.2. In contrast, the mode of the SMM estimates for β is closer to 0.9667 as displayed in
Figure 4.1b. In fact, the mode values of ρ and β are related as can be seen in Figure 4.2: when
ρ̂ ≈ 0, then β̂ = 0.9667 = 1/R. Moreover, when β and ρ are estimated together, the estimates are
inversely related.

Estimating the preference parameters separately improves the efficiency of the SMM estimates
significantly. As displayed in Figure 4.3, the estimated values are centered around the true value
of the parameters for both β an ρ, respectively. Across 500 experiments, the estimates for β have a
mean of 0.9599 and a median of 0.9600 with a standard deviation of 0.0001 when fixing ρ = 0.514.
On the other hand, the estimates for ρ have a mean value of 0.5131 and a median value of 0.5123

with a standard deviation of 0.0477 when fixing β to its true parameter value of 0.96. These
results are aligned with the Monte Carlo results in Jørgensen (2013); he evaluates the endogenous
grid-points method when estimating an infinite horizon version of the consumption model through
(partial) Maximum Likelihood. Jorgensen finds that the Monte Carlo standard deviation of the ρ̂
estimate is 0.006 when β = 0.95.

Next, the Monte Carlo experiments are repeated assuming that the true parameter values are
θ0 = (1.5, 0.96) and θ0 = (4, 0.96). When the preference parameters are estimated jointly, the SMM

7See Appendix B for MATLAB codes.

98



estimates of ρ have a mean of 1.4540 and 3.9772 respectively, as reported in Table 4.2. Similarly,
the estimated values of β have a mean and a median approximately equal to its true value of 0.96

for both sets of Monte Carlo experiments. As presented in Figures 4.4 and 4.5, the SMM estimates
for ρ and β are centered around the true value of the parameters for both β an ρ. Moreover, Figure
4.6 shows that the inverse relationship between the preference parameter is preserved regardless of
the true value of ρ0.

4.4.2 The Zero Trap

Recall when the true value of the coefficient of risk aversion is assumed to be 0.514, the Monte
Carlo experiments find that the mode of the SMM estimates is (β̂ = 0.9667, ρ̂ = 0.0000), far from
the true value of ρ0 = 0.514. The “zero trap” refers to this estimation anomaly when ρ0 is small,
and it emerges from the adoption of the endogenous grid-points solution method when solving the
life-cycle consumption problem.8

In order to implement SMM, the life-cycle consumption model must be first solved numerically.
For instance, in the last working period, the individual solves the following optimality condition:

cT (xT )−ρ = max

{
x−ρT , βR

[
v(ZT+1)

v(ZT )
cT+1(xT+1)−ρ

]}

This is a root-finding problem as xT+1 = R(xT − cT ). Thus,

cT = min

xT , 1

(Rβ)
1
ρ

(
v(ZT+1)
v(ZT )

) 1
ρ

+ γ1R

(γ0 + γ1RxT )

 (4.17)

since cT+1 = γ0 + γ1xT+1. Alternatively, the endogenous grid-points solution method solves

cT (xT )−ρ = βR

[
v(ZT+1)

v(ZT )
cT+1(RaT )−ρ

]
cT (xT ) =

1

(Rβ)
1
ρ

(
v(ZT+1)
v(ZT )

) 1
ρ

(γ0 + γ1RaT ) . (4.18)

Note that as ρ approaches 0, the consumption function (4.18) goes to positive infinity since its
denominator approaches 0 when Rβ < 1 (the limit of the consumption function is finite when
Rβ = 1 and is equal to zero when Rβ > 1 ).9 Similarly, for any t < T ,

ct(xt) =
1

(Rβ)
1
ρ

(
v(Zt+1)
v(Zt)

) 1
ρ

(
Et

[
cT+1(

R

Gt+1Nt+1
at + Ut+1)−ρ(Gt+1Nt+1)−ρ

]− 1
ρ

)
. (4.19)

8As the Monte Carlo results show previously, this problem only arises when jointly estimating β and ρ.
9When implementing the endogenous grid-points solution method, liquidity constraints are handled by

adding 0 as the lowest point in the grid over at since at = 0 implies ct = xt; thus by adding the interpolation
point (xt, ct) = (0, 0) ensures the correct implementation of the liquidity constraints.
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As previously stated, the Monte Carlo experiments use the endogenous grid-points solution to solve
the optimality conditions. Therefore, since the SMM estimation matches finite positive consumption
means and the parameter space is Θ = {(β, ρ) ∈ R2

+ : 0 < β < 1, ρ > 0}, the optimization
algorithm can result in estimates (β̂ = 1

R , ρ̂ ≈ 0) when solving the consumption problem through
backward induction. Since ρ̂ ≈ 0 implies u(c) = c, the parameter space must be compactified.
One way to avoid the “zero trap” when ρ is small is restricting the parameter space, such that
Θε = {(β, ρ) ∈ R2

+ : 0 < β < 1, ρ > ε} for any fixed ε > 0. This alternative compactification of
the parameter space would force the SMM parameters to stay out of the “zero trap” but is not a
satisfying solution. Since the life-cycle model’s utility function restricts ρ to be positive, choosing
any positive value for ε is rather arbitrary.

Nonetheless, when the SMM estimation is performed using the traditional root-finding solution
method, the estimations do not fall into the “zero trap” since the limit of the consumption functions
as ρ approaches 0 is finite as seen in equation (4.17). Although the first term in the denominator
approaches 0 as ρ → 0, the second term is constant; thus, as long as γ0

γ1R
> 0, the solution to the

root-finding problem is cT (xT ) = xT .
For instance, Table 4.3 displays the SMM estimation results from two separate Monte Carlo

exercises. The true parameter values are assumed to be ρ0 = 0.514 and β0 = 0.96, and the life-cycle
model is solved using both the endogeneous grid-points and root-finding solution methods. As can
be seen, the SMM estimates using the endogenous grid-points solution are θ̂ = (0.0000, 0.9667)

for both Monte Carlo exercises. The minimum of the SMM objective function is reached at those
parameter values as seen in Figure 4.7. However, the SMM estimations using the root-finding
solution method do not fall into the “zero trap,” although the ρ̂ estimates are far from the true
parameter values. Lastly, Figure 4.8 shows the SMM objective function when the true parameter
values are assumed to be ρ0 = 4 and β0 = 0.96 using the endogeneous grid-points solution method.
As can be seen, the “zero trap” is not a problem when the true value of ρ is positive and far from
zero.

4.5 Conclusion

The Monte Carlo results from this study suggests that one must be cautious when adopting the
endogenous grid-points solution method when numerically calculating SMM estimates in a life-cycle
model. Even though, this solution approach is computationally more efficient than the root-finding
method to solve the consumption model, the optimization algorithm of the SMM estimations can
fall into the “zero trap” when the true parameter values are near zero. It would be interesting to
check whether this estimation anomaly extends to other simulation estimators and to find a general,
non ad-hoc solution to compactify the parameter space.
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Figure 4.7: SMM Objective Function for θ0 = {0.96, 0.514}

(SMM objective function as a function of β and ρ for Monte Carlo exercise #1)
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Parameter Value Source
R 1.03440 Moody’s AAA municipal bonds, Jan 1980 - March 1993

σ2U 0.0440 Carroll and Samwick (1997), PSID 1981− 1987
σ2N 0.0212 Carroll and Samwick (1997), PSID 1981− 1987

p 0.00302 Carroll, Hall, and Zeldes (1992), PSID 1976− 1985

w̄1 −2.7944810 Gourinchas and Parker (2002), CEX 1980− 1993
σw1 1.7838679

Gt: Gourinchas and Parker (2002), CEX 1980− 1993
age .32643678179
age2 −.0148947085
age3 .00036342384
age4 −4.411685e−6

age5 2.056916e−8

constant 6.801368713

Zt: Gourinchas and Parker (2002), CEX 1980− 1993
age 0.13964975
age2 −0.0047742190
age3 8.5155210e−5

age4 −7.9110880e−7

age5 2.9789550e−9

Table 4.1: First-stage Parameter Values from Gourinchas and Parker (2002)
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θ0 = (0.96, 0.514) Mean Median S.D. MSE
Joint Estimation: θ̂ = (β̂, ρ̂)

β̂ 0.9592 0.9609 0.0079 0.0001
ρ̂ 0.4606 0.4545 0.4250 0.1831
Individual Estimation: fixing ρ = 0.514

β̂ 0.9599 0.9600 0.0001 0.0000
Individual Estimation: fixing β = 0.96
ρ̂ 0.5131 0.5123 0.0477 0.0023

θ0 = (0.96, 1.5) Mean Median S.D. MSE
Joint Estimation: θ̂ = (β̂, ρ̂)

β̂ 0.9601 0.9603 0.0039 0.0000
ρ̂ 1.4540 1.4741 0.2390 0.0591
Individual Estimation: fixing ρ = 1.5

β̂ 0.9598 0.9599 0.0013 0.0000
Individual Estimation: fixing β = 0.96
ρ̂ 1.4899 1.4891 0.0749 0.0057

θ0 = (0.96, 4) Mean Median S.D. MSE
Joint Estimation: θ̂ = (β̂, ρ̂)

β̂ 0.9600 0.9602 0.0068 0.0000
ρ̂ 3.9772 3.9853 0.2413 0.0586
Individual Estimation: fixing ρ = 4

β̂ 0.9598 0.9598 0.0023 0.0000
Individual Estimation: fixing β = 0.96
ρ̂ 3.9905 3.9874 0.0822 0.0068

Table 4.2: Results from 500 Monte Carlo Experiments
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θ0 = (0.96, 0.514) Endogeneous grid-points Root-Finding
Monte Carlo Exercise #1:
β̂ 0.9667 0.9664
ρ̂ 4.547× 10−7 0.0496
Monte Carlo Exercise #2:
β̂ 0.9667 0.9661
ρ̂ 2.220× 10−5 0.0531

Table 4.3: SMM estimations from two Monte Carlo experiments when θ0 = {0.96, 0.514}

115



Appendices

116



Appendix A

Numerical Solution to the Consumer
Problem

This appendix outlines the MATLAB codes used in this dissertation in order to solve and simulate
the life-cycle problem in Gourinchas and Parker (2002). The codes are divided into three main
files: SettingUp.m, BackwardInduction.m, and Simulation.m. These m-files should be ran in
that specific order.

A.1 The Consumer Problem

Since an analytical closed-form solution for the consumer problem is not available, it must be solved
numerically. Recall the Euler equation for ages t < T :

u′(ct(xt)) = βREt

[
v(Zt+1)

v(Zt)
u′(ct+1(xt+1)Gt+1Nt+1)

]
(A.1)

where ct(xt) is the optimal consumption function. At age T , the Euler equation is replaced by:

u′(cT (xT )) = max

{
u′(xT ), βR

[
v(ZT+1)

v(ZT )
u′(cT+1(xT+1))

]}
(A.2)

where cT+1 = γ0 + γ1xT+1. In order to find the set of optimal consumption rules for each age t,
the problem is solved recursively by first finding cT (xT ) in (A.2). The optimal solutions to (A.2)
and (A.1) then generate the consumption functions cT−1(xT−1), ..., c1(x1).

A.2 Setting-up Parameters and other Inputs

The settingup.m file starts by declaring the global variables needed to solve the consumer problem
(explained in the next section). Next, the code sets up the model’s parameters and generates a
grid for normalized cash-on-hand. Then, the income growth rates are constructed as well as the
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ratio of the shift in marginal utility caused by changes in family size. Finally, the code performs a
two-dimensional Gauss-Hermite quadrature of order 12 for both transitory and permanent income
shocks. Please read the comments below when considering the settingup.m file:

1. Following GP’s discretization method, a grid of 100 points between [0, 40] is created for
normalized cash-on-hand, with 50 points between 0 and 2. The finer grid for x ∈ [0, 2]

captures the curvature of the consumption rule at low values of cash-on-hand. The code uses
the linspace function from MATLAB.

2. GP construct smooth age-profiles for the logarithm of income and for the shift in marginal
utility caused by family size using fifth polynomials in age.

(a) The age-profile of the logarithm of income is constructed as:

lnYt = b1(age) + b2(age)2 + b3(age)3 + b4(age)4 + b5(age)5 + b6

where the vector of coefficients ypoly = [b1, b2, b3, b4, b5, b6] is estimated and provided
by GP. The growth rate of income is calculated as

Gt+1 =
Yt+1

Yt

(b) In Appendix C of Gourinchas and Parker (2002), GP define the shift in marginal utility
caused by family size as:

v(Zt)
1/p = k exp(Zt)

Its smooth profile is constructed as:

v(Zt)
1/p = a1(age) + a2(age)2 + a3(age)3 + a4(age)4 + a5(age)5

where the vector of coefficients fampoly = [a1, a2, a3, a4, a5] is estimated and provided
by GP. The ratio of shift in marginal utilities caused by changes in family size is then
caculated as: (

v(Zt)

v(Zt−1)

) 1
ρ

=
exp(Zt)

exp(Zt−1)

3. Since the labor income shocks N and U are both log-normally distributed, a two dimensional
Gauss-Hermite quadrature of order 12 is performed following GP. The function gauher.m
constructs the nodes and weights that will be used to approximate the expectation in (A.1)
when solving the consumer problem in the next section.

118



A.3 Solving the Model

The BackwardInduction.m file solves the consumer model through backward induction. The solu-
tion algorithm involves two main steps:

1. The policy rule cT (xT ) is found by solving Equation (A.2) where cT+1 = γ0+γ1xT+1. In order
to find cT (xT ), the fsolve root-finding routine in MATLAB is used. It requires Equation
(A.2) to be expressed as:

EET = u
′−1
(

max

{
u

′
(xT ), βR

[
v(ZT+1)

v(ZT )
u

′
(cT+1(xT+1))

]})
− cT (xT )

which is recorded in the function EET. This is the function to be solved by fsolve, given an
initial guess (e.g. xT

2 ).

2. Once cT (xT ) is found, Equation (A.1) can be solved sequentially to find cT−1(xT−1), cT−2(xT−2),
..., c1(x1). First, in order to approximate the expectation in the Euler equation, Equation
(A.1) needs to be slightly modified to use the Gauss-Hermite quadrature nodes and weights.
It can be rewritten as:

u′(ct(xt)) = βR
v(Zt+1)

v(Zt)
(pEt[u

′(ct+1(xt+1)Gt+1Nt+1)|Ut+1 = 0]

+ (1− p)Et[u′(ct+1(xt+1)Gt+1Nt+1)|Ut+1 > 0])

where

Et[u
′(ct+1(xt+1)Gt+1Nt+1|Ut+1 = 0] =

∫
u′
(
ct+1

(
(xt − ct)

R

Gt+1N

)
Gt+1N

)
dF (N)

Et[u
′(ct+1(xt+1)Gt+1Nt+1|Ut+1 > 0] =

∫
u′
(
ct+1

(
(xt − ct)

R

Gt+1N
+ U

)
Gt+1N

)
dF (U)dF (N)

Since U and N are log-normally distributed:

Et[u
′(ct+1(xt+1)Gt+1Nt+1|Ut+1 = 0] =

∫
u′
(
ct+1

(
(xt − ct)

R

Gt+1N

)
Gt+1N

)
dF (N)

=

∫
u′
(
ct+1

(
(xt − ct)

R

Gt+1N

)
Gt+1N

)
f(N)dN

=

∫
u′
(
ct+1

(
(xt − ct)

R

Gt+1eσN n̄

)
Gt+1e

σN n̄

)
e−

1
2
n̄2

√
2π

dn̄

=

∫
1√
π
u′
(
ct+1

(
(xt − ct)

R

Gt+1
e−
√

2σNn

)
Gt+1e

√
2σNn

)
e−n

2

dn (A.3)
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where the last equation uses the change of variables n = n̄√
2
, and

Et[u
′(ct+1(xt+1)Gt+1Nt+1|Ut+1 = 0] =

∫
u′
(
ct+1

(
(xt − ct)

R

Gt+1N
+ U

)
Gt+1N

)
dF (N)

=

∫
u′
(
ct+1

(
(xt − ct)

R

Gt+1N
+ U

)
Gt+1N

)
f(N)f(U)dNdU

=

∫
u′
(
ct+1

(
(xt − ct)

R

Gt+1eσnn̄
+ eσU ū

)
Gt+1e

σnn̄

)
e−

1
2
n̄2

√
2π

e−
1
2
ū2

√
2π

dn̄dū

=

∫
1

π
u′
(
ct+1

(
(xt − ct)

R

Gt+1
e−
√

2σNn + e
√

2σUu

)
Gt+1e

√
2σNn

)
e−n

2

e−u
2

dndu (A.4)

where the last equation uses the change of variables n = n̄√
2
and u = ū√

2
.

Equations (A.3) and (A.4) can then be approximated as a weighted-sum using the Gauss-Hermite
quadrature nodes (nj , ui) and weights (ωj , ωi):

Et[u
′(ct+1(xt+1)Gt+1Nt+1|Ut+1 = 0]

≈
12∑
j=1

1√
π
u′
(
ct+1

(
(xt − ct)

R

Gt+1
e−
√

2σNnj

)
Gt+1e

√
2σNnj

)
ωj

(A.5)

Et[u
′(ct+1(xt+1)Gt+1Nt+1|Ut+1 = 0]

≈
12∑
j=1

12∑
i=1

1

π
u′
(
ct+1

(
(xt − ct)

R

Gt+1
e−
√

2σNnj + e
√

2σUui

)
Gt+1e

√
2σNnj

)
ωjωi (A.6)

Equations (A.5) and (A.6) are recorded in the function EEworkingages. This is the function to be
solved by fsolve, given an initial guess (e.g. xt

2
).

A.4 Simulation

The Simulation.m file simulates the life-cycle model after the consumer problem is solved. The
code first generates 20, 000 initial financial wealth values from a lognormal distribution. Then, a
sequence of 20, 000 income processes is generated over 40 years. The initial permanent component
of income is assumed to be 18690.96 following GP. Given the initial parameters, the simulation
starts from t = 1 to t = T using the budget constraint and the interpolation function Cdash.m.
Lastly, non-normalized variables are constructed by multiplying the respective normalized variables
by Pt.
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A.5 MATLAB Codes

A.5.1 SettingUp.m File

% 1. Dec lare g l oba l v a r i a b l e s needed to s o l v e l i f e −cy c l e model :
global T R rho beta gamma0 gamma1 sN sU probUnEmp gr idx . . .

ZList GList GListT ZListT nodes weights Cons Cashonhand t

% 2 . Set up model parameters :
T = 40 ; % re t i r ement age
R = 1 . 0344 ; % i n t e r e s t r a t e
beta = 0 . 9 6 0 ; % time d i scount f a c t o r
rho = 0 . 5 1 4 ; % c o e f f i c i e n t o f r i s k ave r s i on
gamma0 = 0 . 0 0 1 ; % re t i r ement ru l e : i l l i q u i d wealth
gamma1 = 0 . 0 7 1 ; % re t i r ement ru l e : MPC out o f wealth
sN = sqrt ( 0 . 0 2 1 2 ) ; % stand . dev . o f permanent income shock
sU = sqrt ( 0 . 0 4 4 0 ) ; % stand . dev . o f t r a n s i t o r y income shock
probUnEmp = 0 .00302 ; % p r obab i l i t y o f ze ro income

% 3 . Create g r id f o r normal ized cash−on−hand :
xmin = 0 .000001 ; % minimum value f o r cash−on−hand
xmax = 40 ; % maximum value f o r cash−on−hand
x int = 2 ; % Inter im value f o r cash−on−hand
xn = 100 ; % t o t a l number o f po in t s in g r id
xn1 = xn /2 ;
xn2 = xn−xn1+1;
ngr idx1 = linspace ( xmin , xint , xn1 ) ’ ;
ngr idx2 = linspace ( xint , xmax , xn2 ) ’ ;
g r idx = [ ngr idx1 ; ngr idx2 ( 2 :end ) ] ;

% 4 . Set up income growth ra t e and changes in fami ly s i z e :

% Age vec to r to use with polynomia l s :
age = 26:1:26+T;
agep = [ age ’ ( age .^2 ) ’ ( age .^3 ) ’ ( age .^4 ) ’ ( age . ^ 5 ) ’ ] ;
agep1 = [ agep ones ( s ize ( agep , 1 ) , 1 ) ] ;

% Polynomials f o r income and fami ly s i z e :
ypoly = [ .32643678179 −.0148947085 . 0 0 0 3 6342384 . . .

−4.411685e−06 2.056916 e−08 6 . 801368713 ] ;
fampoly = [0 .13964975 −0.0047742190 8.5155210 e −005 . . .

−7.9110880e−007 2.9789550 e−009] ;

% Income growth ra t e :
lnY=agep1∗ypoly ’ ; % log ( income )
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Y= exp( lnY ) ; % income
for i =2: length (Y)

YY( i , : )=Y( i , : ) /Y( i −1 , : ) ;
end
GList ( 1 :T)=YY( 2 : length (Y) , : ) ; % G_{ t+1}
GListT=GList (T) ;

% Var i a t i on s in fami ly s i z e :
Z= agep∗ fampoly ’ ; % marginal u t i l i t y ( fami ly s i z e )
for i =2: s ize (Z , 1 )

ZZ( i , : )=exp(Z( i , : ) ) / exp(Z( i −1 , : ) ) ;
end
ZList ( 1 :T)=ZZ ( 2 : length (Z ) , : ) ; %[ v (Z_t)/v (Z_{t−1})]^{1/p}
ZListT=ZList (T) ;

% 5 . Set up income shocks us ing Gauss Hermite Quadrature o f order 12 :
[ nodes , weights ] = gauher ( 1 2 ) ;
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A.5.2 BackwardInduction.m File

% Backward Induct ion
Cons=zeros ( length ( g r idx ) ,T) ;
Cashonhand=zeros ( length ( gr idx ) ,T) ;

Cashonhand ( 1 :end ,T) = gr idx ;
Cons ( 1 :end ,T)= f s o l v e (@EET, gr idx /2 , opt imset ( ’ Display ’ , ’ o f f ’ ) ) ;
for t=T−1:−1:1

disp ( [ ’ pe r iod ’ , num2str( t ) ] ) ;
Cons ( 1 :end , t )= f s o l v e (@EEworkingages , g r idx /2 , opt imset ( ’ Display ’ , ’ o f f ’ ) ) ;
Cashonhand ( 1 :end , t ) = gr idx ;

end
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A.5.3 Simulation.m File

% Simulate Model
MM=T; % Length o f s imulated s e r i e s
nsimppl=20000; % Number o f s imulated households

% 1 . I n i t i a l f i n a n c i a l wealth (w26) i s lognormal ly d i s t r i b u t i o n :
sb =1.7838670; % standard dev i a t i on
mu_b=−2.7944810; % mean
bb0 = randn (1 , nsimppl ) ; % generate w26 from Normal d i s t r i b u t i o n
bb0 = exp( bb0∗ sb )∗exp(mu_b) ; % transform to lognormal

% 2 . Permanet Income Shock :
Nt = randn(MM, nsimppl ) ; % generate N from Normal d i s t r i b u t i o n
Nt = exp(Nt∗sN ) ; % trans form to lognormal

% 3 . TransitoryIncome Shock :
Ut = randn(MM, nsimppl ) ; % generate U from Normal d i s t r i b u t i o n
Ut = exp(Ut∗sU ) ; % trans form to lognormal
v = rand (MM, nsimppl ) ; % take in to account Ut=0 with prob . p
Ut = (v>probUnEmp ) . ∗Ut ;

% 4 . S imulat ion :
cc=zeros (MM, nsimppl ) ; xx=zeros (MM, nsimppl ) ;
aa=zeros (MM, nsimppl ) ; bb=zeros (MM, nsimppl ) ;
yy=zeros (MM, nsimppl ) ; pp=zeros (MM, nsimppl ) ;

for nn=1: nsimppl
pp (1 , nn ) = 18690.96∗Nt (1 , nn ) ;
bb (1 , nn ) = bb0 (1 , nn ) ;
yy (1 , nn ) = Ut (1 , nn ) ;
xx (1 , nn ) = bb (1 , nn ) + yy (1 , nn ) ;
cc (1 , nn ) = max( realmin , Cdash ( xx (1 , nn ) , Cons ( : , 1 ) , Cashonhand ( : , 1 ) ) ) ;
aa (1 , nn ) = xx (1 , nn)−cc (1 , nn ) ;

end
for t=2:MM

for nn=1: nsimppl
pp( t , nn ) = pp( t−1,nn)∗GList ( t−1)∗Nt( t , nn ) ;
bb ( t , nn ) = (R/( GList ( t−1)∗Nt( t , nn ) ) )∗ aa ( t−1,nn ) ;
yy ( t , nn ) = Ut( t , nn ) ;
xx ( t , nn ) = bb( t , nn ) + yy ( t , nn ) ;
cc ( t , nn ) = max( realmin , Cdash ( xx ( t , nn ) , Cons ( : , t ) , Cashonhand ( : , t ) ) ) ;
aa ( t , nn ) = xx ( t , nn)−cc ( t , nn ) ;
end

end
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% 5. Non−normal ized Consumption , Cash−on−hand , and Income :
C=pp .∗ cc ;
X=pp .∗ xx ;
Y=pp .∗ yy ;
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A.5.4 Functions for SettingUp.m, BackwardInduction.m, Simulation.m

gauher.m

f unc t i on [ x ,w] = gauher (n)
% Input : n− order o f quadrature
% Output : x− nodes o f quadrature (n x 1 ) ; w− weights (n x 1)

x=zeros (n , 1 ) ;
w=zeros (n , 1 ) ;
maxit=10;
pima=(pi )^(−1/4);
m=(n+1)/2;

i =1;
while i<=m

i f i ==1;
z= sqrt (2∗n+1)−1.85575∗((2∗n+1)^(−0.16667));

e l s e i f i ==2;
z= z−1.14∗((n^0 .426))/ z ;

e l s e i f i ==3;
z= 1.86∗ z−0.86∗x ( 1 ) ;

e l s e i f i ==4;
z= 1.91∗ z−0.91∗x ( 2 ) ;

else
z=2.0∗z−x ( i −2);

end

i t s =1;
while i t s <= maxit ;

p1=pima ;
p2=0.0 ;
j =1;
while j<=n ;
p3=p2 ;
p2=p1 ;
p1=z∗sqrt ( 2 . 0/ j )∗p2−sqrt ( ( j −1)/ j )∗p3 ;
j=j +1;

end
pp=sqrt (2∗n)∗p2 ;
z1=z ;
z=z1−p1/pp ;
i f abs ( z−z1 ) <= eps ;

break ;
end ;
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i t s=i t s +1;
end

i f ( i t s >maxit ) ;
disp ( ’ too ␣many␣ i t e r a t i o n s ␣ in ␣gauher ’ ) ;
end ;

x ( i )=z ;
x (n+1− i )=−z ;
w( i )=2.0/(pp∗pp ) ;
w(n+1− i )=w( i ) ;
i=i +1;

end
end
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EET.m

% Root−f i n d i n g f o r Euler Equation at age T
func t i on f = EET( c )
global gr idx rho beta gamma0 gamma1 R ZListT
f=invlambda (max( lambda ( gridx , rho ) , beta .∗R.∗ ZListT .^ rho . . .

∗ lambda ( (gamma0 + gamma1 . ∗ (R. ∗ ( gr idx−c ) ) ) , rho ) ) , rho)−c ;
end

EEworkingages.m

% Root−f i n d i n g f o r Euler Equation at age t<T
func t i on f = EEworkingages ( c )
global ZList beta R rho x t GList gr idx Cons Cashonhand sN sU . . .

probUnEmp nodes weights
% when U>0

EpU=0;
for j =1: length ( nodes )
for i =1: length ( nodes )

xdashU = ( gridx−c ) . ∗R./ GList ( t ) . ∗ exp(−sqrt (2)∗ sN∗nodes ( j ) ) . . .
+ exp( sqrt (2)∗ sU∗nodes ( i ) ) ;

cdashU = max( realmin , Cdash (xdashU , Cons ( : , t +1) ,Cashonhand ( : , t +1)) ) ;
EpU = EpU + (1/pi ) ∗ lambda ( cdashU∗GList ( t )∗exp( sqrt ( 2 ) . . .

∗sN∗nodes ( j ) ) , rho ) ∗ weights ( j )∗ weights ( i ) ;
end
end

% when U=0:
Ep0=0;
for j =1: length ( nodes )

xdash0 = ( gridx−c ) . ∗ R./ GList ( t ) . ∗ exp(−sqrt (2)∗ sN∗nodes ( j ) ) ;
cdash0 = max( realmin , Cdash ( xdash0 , Cons ( : , t +1) ,Cashonhand ( : , t +1)) ) ;
Ep0 = Ep0 + (1/pi ^(0 . 5 ) )∗ lambda ( cdash0∗GList ( t )∗exp( sqrt ( 2 ) . . .

∗sN∗nodes ( j ) ) , rho ) ∗ weights ( j ) ;
end

Ep = beta .∗R.∗ ZList ( t ) .^ rho ∗(probUnEmp∗Ep0 + (1−probUnEmp)∗EpU ) ;
f=invlambda (Ep , rho)−c ;
%f=invlambda (max( lambda ( gridx , rho ) ,Ep) , rho)−c ;
end
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lambda.m

% Marginal U t i l i t y
func t i on lamb = lambda ( c , rho )
i f (abs ( rho−1.0)<sqrt (eps ) ) ;

lamb=c .^(−1);
else

lamb=c .^(− rho ) ;
end
end

invlambda.m

% Inve r s e Marginal U t i l i t y
func t i on invlamb = invlambda ( cc , rho )
i f (abs ( rho−1.0)<sqrt (eps ) ) ;

invlamb=cc .^(−1);
else

invlamb=cc .^(−(1/ rho ) ) ;
end
end

Cdash.m

% Generates next−per iod consumption by i n t e r p o l a t i n g c_{ t+1}(x_{ t+1})
func t i on c=Cdash ( xdash ,C,X)
xtp1=X( : , end ) ; % Cash−on−hand vec to r in per iod t+1
ctp1=C( : , end ) ; % Consumption vec to r in per iod t+1
c = zeros ( s ize ( xdash ) ) ;

% ex t r apo l a t e above when xdash i s g r e a t e r than maximum value o f xtp1 :
iAbove = xdash>=xtp1 (end ) ;
slopeAbove = ( ctp1 (end)−ctp1 (end−1))/( xtp1 (end)−xtp1 (end−1)) ;
c ( iAbove ) = ctp1 (end) + ( xdash ( iAbove)−xtp1 (end ) )∗ slopeAbove ;

% ex t r apo l a t e below when xdash i s lower than minimum value o f xtp1 :
iBelow = xdash<=xtp1 ( 1 ) ;
s lopeBelow = ( ctp1 (2)− ctp1 ( 1 ) ) / ( xtp1 (2)−xtp1 ( 1 ) ) ;
c ( iBelow ) = ctp1 (1 ) + ( xdash ( iBelow)−xtp1 (1 ) )∗ s lopeBelow ;

% i n t e r p o l a t e when xdash i s in between min and max value o f xtp1 :
i I n t e r p = ~( iAbove | iBelow ) ;
c ( i I n t e r p ) = interp1 ( xtp1 , ctp1 , xdash ( i I n t e r p ) ) ;
end
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Appendix B

Estimation of the Life-Cycle Problem

This appendix outlines the MATLAB codes to estimate the life-cycle model through the Simulated Method
of Moments. The main file is called SmmEstimation.m. For the Monte Carlo experiments in Chapter 4, these
codes are iterated 500 times using simulated data for 1, 000 households and the endogeneous grid-points
solution method to solve the consumer problem. The MATLAB code for this alternative solution method
is included in the last section of this appendix as endogenousgridsolution.m.

B.1 Simulated Method of Moments

Recall that the SMM estimator solves the objective function:

min
θ
g(θ; χ̂)′Wg(θ; χ̂) (B.1)

where W is a T × T weighting matrix and g(θ; χ̂) ∈ RT is a vector with tth element:

gt(θ; χ̂) = ln C̄t − ln Ĉt(θ; χ̂) (B.2)

where ln C̄t is the average consumption for age t observed in the empirical data and ln Ĉt(θ; χ̂) is the
simulated counterpart of lnCt(θ; χ̂). Thus, the SMM estimator chooses θ that matches the means of the
empirical and simulated distributions for each age t.

B.2 SMM estimation

The SMMestimation.m file begins by setting up the model’s parameters needed to perform the SMM esti-
mation. It calls the setupdata.m file to load the consumption data and to generate the matrix Ω (needed
to construct the weighting matrix W = Ω−1). The SMM estimation is performed by calling the smm func-
tion. This function minimizes the objective function (B.1) and calculates the variance of the estimated
parameters. The output “resultSMM” gives the values of estimated parameters, their standard errors, the
value of the objective function at the estimated parameters, and the over-identifying restrictions.

B.2.1 The smm Function

Please read the comments below for an outline of the smm function:
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1. The function starts off by declaring the global variables needed to estimate the consumption problem,
setting up the parameter vector to be used as an initial guess for the SMM optimization problem,
generating income growth rates and shifts in marginal utility caused by changes in family size,
and performing a two-dimensional Gauss-Hermite quadrature of order 12 for both transitory and
permanent income shocks.

2. The SMM estimation is performed by using fminsearch, a nonlinear programming solver from
MATLAB. The objective function to be minimized is recorded in the function ObjectFunction.

3. ObjectFunction solves and simulates the consumer problem by calling BackwardInduction.m and
Simulation.m (from Appendix A). The file then calculates the geometric mean of the simulated
consumption profiles and constructs the SMM objective function (B.1). Alternatively, the model
can be solved using the endogeneous grid-points solution method in the endogenousgridsolution.m
file. In order to do so, “gridx” must be replaced by a grid of the end-of-period assets (i.e. at = xt−ct)
: {aj}Jj=1 ⊂ [0, amax].

4. Once the SMM parameters are estimated, the smm function calculates the standard error of the
estimated parameters and the over-identifying restrictions based on Appendix B of Gourinchas and
Parker (2002). The function dscore calculates the derivatives of the moment conditions with respect
to the parameters. It uses the moments function whose output is the moment conditions in (B.2).
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B.3 MATLAB Codes

B.3.1 SMMestimation.m File

clear ;
clc ;

% Parameters :
T = 40 ;
R = 1 . 0344 ;
beta = 0 . 9 6 ;
rho = 0 . 5 1 4 ;
gamma0 = 0 . 0 0 1 ;
gamma1 = 0 . 0 7 7 ;
probUnEmp = 0 .00302 ;

% Grid f o r cash−on−hand
xmin = 0 .000001 ; xmax = 40 ; x in t = 2 ;
xn = 100 ;
xn1 = xn /2 ;
xn2 = xn−xn1+1;
ngr idx1 = linspace ( xmin , xint , xn1 ) ’ ;
ngr idx2 = linspace ( xint , xmax , xn2 ) ’ ;
g r idx = [ ngr idx1 ; ngr idx2 ( 2 :end ) ] ;

% Vector o f parameters used as i n i t i a l guess
mu= [ rho beta gamma0 gamma1 R ] ;

% Fixes parameters (R i s always f i x ed )
fixedgamma=0;
i f fixedgamma==1

f i x ed ={[gamma0 ] [ gamma1 ] [R] } ; %#ok<NBRAK>
else

f i x e d ={[ ] [ ] R} ;
end

% Loads consumption data and gene ra t e s Omega and itm
setup_data ;
data_logC=mean_logC ;

% SMM Estimation
resultSMM = smm(mu, f ixed , probUnEmp , gridx ,T, data_logC ,Omega , itm ) ;
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B.3.2 Setupdata.m File

% 1. Loads households data and mean log ( consumption )
data = x l s r ead ( ’GPCEXdata ’ ) ;
mean_logC=log ( x l s r e ad ( ’GPCEXdata_mean ’ ) ) ;

consumption=data ( : , 1 ) ;
age=data ( : , 2 ) ;
NumObs=length ( consumption ) ;

% 2 . Ca l cu l a t e s Omega
v = zeros (NumObs , 1 ) ;
for i =1:NumObs

v ( i )=( log ( consumption ( i ))−mean_logC( age ( i )−25))^2;
end

vAge=zeros (T,NumObs+1);
for i =1:NumObs
for age i =1:T

i f data ( i ,2)−25==age i
vAge ( age i ,1 :1+ i )=[vAge ( age i , 1 : i ) v ( i ) ] ;

else
end

end
end

Sum_vAge=zeros (T, 1 ) ;
nAge=zeros (T, 1 ) ;
for age i =1:T

Sum_vAge( age i ,1)=sum( vAge ( age i , : ) ) ;
nAge ( age i ,1)=sum( data (: ,2)== age i +25);

end
itm = sum(nAge)/ s ize (nAge , 1 ) ; % average number o f obs per age in data

Omegadiag=Sum_vAge . / nAge ;
Omega=diag (Omegadiag ) ;
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B.3.3 smm.m Function

f unc t i on r e s u l t=smm(mu, f ixed , probUE , xgrid ,T, data_logC ,Omega , itm )

global sN sU ZList GList nodes weights Cons Cashonhand . . .
probUnEmp ZListT gr idx x

% Sets I n i t i a l Parameters : non−nega t i v i t y r e s t r u c t i o n
theta = [ sqrt (mu(1 ) ) sqrt(−log (mu( 2 ) ) ) sqrt (mu ( 3 ) ) . . .

sqrt(−log (mu( 4 ) ) ) sqrt (mu( 5 ) ) ] ;

% Fix ing parameters
gg0 = [ f i x ed { 1 } ] ; gg1 = [ f i x ed { 2 } ] ; RR= [ f i x ed { 3 } ] ;
i f isempty ( gg0 ) == 0 . 0 ;

theta = theta ( [ 1 2 4 5 ] ) ;
i f isempty ( gg1 ) == 0 . 0 ; theta = theta ( [ 1 2 4 ] ) ;

i f isempty (RR) == 0 . 0 ; theta = theta ( [ 1 2 ] ) ; end
e l s e i f isempty ( gg1 ) == 1 ;

i f isempty (RR) == 0 . 0 ; theta = theta ( [ 1 2 3 ] ) ; end
end

e l s e i f isempty ( gg0 ) == 1.0
i f isempty ( gg1 ) == 0 . 0 ; theta = theta ( [ 1 2 3 5 ] ) ;

i f isempty (RR) == 0 . 0 ; theta = theta ( [ 1 2 3 ] ) ; end
e l s e i f isempty ( gg1 ) == 1 . 0 ;

i f isempty (RR) == 0 . 0 ; theta = theta ( [ 1 2 3 4 ] ) ; end
end

end

%Income growth and fami ly s i z e :
age=26:1:26+T;
agep=[age ’ ( age .^2 ) ’ ( age .^3 ) ’ ( age .^4 ) ’ ( age . ^ 5 ) ’ ] ;
agep1=[agep ones ( s ize ( agep , 1 ) , 1 ) ] ;

fampoly = [0 .13964975 −0.0047742190 8.5155210 e −005 . . .
−7.9110880e−007 2.9789550 e−009] ;

Ypoly = [ .32643678179 −.0148947085 . 0 0 0 363 42384 . . .
−4.411685e−06 2.056916 e−08 6 . 801368713 ] ;

%Family s i z e
Z= agep∗ fampoly ’ ;
for i =2: s ize (Z , 1 )

ZZ( i , : )=exp(Z( i , : ) ) / exp(Z( i −1 , : ) ) ; %#ok<AGROW>
end
ZList (1:40)=ZZ ( 2 : length (Z ) , : ) ;
ZListT=ZList (T) ;
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%Income Growth
Y= exp( agep1∗Ypoly ’ ) ;
for i =2: length (Y)
YY( i , : )=Y( i , : ) /Y( i −1 , : ) ; %#ok<AGROW>
end
GList (1:40)=YY( 2 : length (Y) , : ) ;

% Income shocks
probUnEmp=probUE ;
sN = sqrt ( 0 . 0 2 1 2 ) ; sU = sqrt ( 0 . 0 4 4 0 ) ;
[ nodes , weights ] = gauher ( 1 2 ) ;

% Grid f o r cash−on−hand
gr idx=xgr id ;

% ESTIMATION
W=Omega^(−1);
opt ions=opt imset ( ’ Display ’ , ’ i t e r ’ , ’MaxFunEvals ’ ,5000 , ’ MaxIter ’ , 5 0 0 0 , . . .

’ t o l x ’ , 1 . 0000 e−6, ’ t o l f un ’ , 1 . 0000 e−6);

[ theta , f va l , ~ ,~] = fminsearch ( @ObjectFunction , theta , opt ions , f i xed , . . .
data_logC ,W,T) ;

i f s ize ( theta ,2)==2
disp ( [ ( theta (1))^2 exp(−( theta (2 )^2) ) ] ) ;
e l s e i f s ize ( theta ,2)==4
disp ( [ ( theta (1))^2 exp(−( theta (2 )^2) ) ( theta (3))^2 exp(−( theta ( 4 ) ^ 2 ) ) ] ) ;
else
end

%Asymptotic Variance−Covariance Matrix
F = ObjectFunction ( theta , f i xed , mean_logC ,W,T) ; %#ok<NASGU>

nsimppl=20000;
tau = itm/nsimppl ;

D = dsco r e s (@MPscoresV , theta , f i xed , data_logC ,W,T) ;
g = moments ( theta , theta , f i xed , data_logC ,W,T) ;

W=Omega^(−1);

%Params Variance
invDWD = inv (D’∗W∗D) ;
VV_robust = invDWD∗(1+tau )/ itm ; %#ok<MINV>
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%Ove r i d e n t i f i c a t i o n Test :
Ov = itm/(1+tauuuu )∗g ’∗W∗g ;

%Parameters
paramsR = [ ( theta (1) )^2 , exp(−( theta ( 2 ) ^ 2 ) ) ] ;
i f numel ( theta )>2; paramsR = [ paramsR ( theta ( 3 ) ) ^ 2 ] ;

i f numel ( theta )>3; paramsR = [ paramsR exp(−( theta ( 4 ) ^ 2 ) ) ] ;
i f numel ( theta )>4; paramsR = [ paramsR ( theta ( 5 ) ) ^ 2 ] ;
end

end
end

r e s u l t . paramsR = paramsR ;
r e s u l t . f i x e d = f i x ed ;
r e s u l t .moment = f v a l ;
r e s u l t . seRobust = sqrt (diag (VV_robust ) ) ’ ;
r e s u l t .OvR = Ov;

end

f unc t i on F=ObjectFunction ( theta , f i xed , data_logC ,W,T)

global ZList GList t Cons Cashonhand R sN sU nodes . . .
we ights rho beta gamma0 gamma1 pUE ZListT x gr idx probUnEmp

rho = ( theta ( 1 ) )^2 ;
beta = exp(−( theta ( 2 ) )^2 ) ;
gamma0 = [ f i x ed { 1 } ] ;
gamma1 = [ f i x ed { 2 } ] ;
R = [ f i x ed { 3 } ] ;

i f numel ( theta ) == 5 ;
gamma0 = ( theta ( 3 ) )^2 ;
gamma1 = exp(−( theta ( 4 ) )^2 ) ;
R = ( theta ( 5 ) )^2 ;
e l s e i f numel ( theta ) == 4 ;
i f ~isempty ( [ f i x e d { 1 } ] ) ; gamma1=exp(−( theta ( 3 ) )^2 ) ; R=(theta ( 4 ) )^2 ;end
i f ~isempty ( [ f i x e d { 2 } ] ) ; gamma0=(theta ( 3 ) )^2 ; R=(theta ( 4 ) )^2 ;end
i f ~isempty ( [ f i x e d { 3 } ] ) ; gamma0=(theta ( 3 ) )^2 ; gamma1=exp(−( theta ( 4 ) )^2 ) ;end
e l s e i f numel ( theta ) == 3 ;
i f isempty ( [ f i x e d { 1 } ] ) ; gamma0=(theta ( 3 ) )^2 ;end
i f isempty ( [ f i x e d { 2 } ] ) ; gamma1=exp(−( theta ( 3 ) )^2 ) ;end
i f isempty ( [ f i x e d { 3 } ] ) ; R=(theta ( 3 ) )^2 ;end
end
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% Solves Model :
x=gr idx ;
BackwardInduction ;

% Simulates Model ;
S imulat ion ;

sim_logC=zeros (T, 1 ) ;
log_cons=log (C) ;
for i =1:T

sim_logC ( i )=sum( log_cons ( i , : ) ) / nsimppl ;
end

% SMM Object ive Function :
g=data_logC−sim_logC ;
F=g ’∗W∗g ;

end

f unc t i on g=moments ( theta , f i xed , data_logC ,T)

global ZList GList t Cons Cashonhand R sN sU nodes . . .
we ights rho beta gamma0 gamma1 pUE ZListT x gr idx probUnEmp

rho = ( theta ( 1 ) )^2 ;
beta = exp(−( theta ( 2 ) )^2 ) ;
gamma0 = [ f i x ed { 1 } ] ;
gamma1 = [ f i x ed { 2 } ] ;
R = [ f i x ed { 3 } ] ;

i f numel ( theta ) == 5 ;
gamma0 = ( theta ( 3 ) )^2 ;
gamma1 = exp(−( theta ( 4 ) )^2 ) ;
R = ( theta ( 5 ) )^2 ;
e l s e i f numel ( theta ) == 4 ;
i f ~isempty ( [ f i x e d { 1 } ] ) ; gamma1=exp(−( theta ( 3 ) )^2 ) ; R=(theta ( 4 ) )^2 ;end
i f ~isempty ( [ f i x e d { 2 } ] ) ; gamma0=(theta ( 3 ) )^2 ; R=(theta ( 4 ) )^2 ;end
i f ~isempty ( [ f i x e d { 3 } ] ) ; gamma0=(theta ( 3 ) )^2 ; gamma1=exp(−( theta ( 4 ) )^2 ) ;end
e l s e i f numel ( theta ) == 3 ;
i f isempty ( [ f i x e d { 1 } ] ) ; gamma0=(theta ( 3 ) )^2 ;end
i f isempty ( [ f i x e d { 2 } ] ) ; gamma1=exp(−( theta ( 3 ) )^2 ) ;end
i f isempty ( [ f i x e d { 3 } ] ) ; R=(theta ( 3 ) )^2 ;end
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end

% Solves Model :
x=gr idx ;
BackwardInduction ;

% Simulates Model ;
S imulat ion ;

sim_logC=zeros (T, 1 ) ;
log_cons=log (C) ;
for i =1:T

sim_logC ( i )=sum( log_cons ( i , : ) ) / nsimppl ;
end

% MSM moment func t i on :
g=data_logC−sim_logC ;

end

f unc t i on dscore = dsco r e s ( f , x , vara rg in )
h = max(abs ( x ) , 1 ) . ∗ ( eps^(1/3 ) ) ;
xh1 = x + h ;
xh0 = x − h ;
h = xh1 − xh0 ;
for j =1: length ( x )

xx = x ;
xx ( j ) = xh1 ( j ) ; f 1=feval ( f , xx , vararg in { : } ) ;
xx ( j ) = xh0 ( j ) ; f 0=feval ( f , xx , vararg in { : } ) ;
dscore ( : , j ) = ( f1−f 0 )/h( j ) ; %#ok<AGROW>

end
end

f unc t i on g = MPscoresV (x , vararg in )
g = moments (x , vararg in { : } ) ;

end
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B.3.4 endogenousgridsolution.m File

% Endogenous Gr idpo ints So lu t i on Method :
Cons = zeros ( length ( g r ida ( : ,T))+1 ,T) ;
Cashonhand = zeros ( length ( g r ida ( : ,T))+1 ,T) ;
Cons ( 2 :end ,T) = invlambda (beta∗R∗ZList (T) .^ rho .∗ lambda ( (gamma0 . . .

+ gamma1∗(R. ∗ ( g r ida ) ) ) , rho ) , rho ) ;
Cashonhand ( 2 :end ,T) = gr ida ( : ,T) + Cons ( 2 :end ,T) ;

for t=T−1:−1:1
disp ( [ ’ pe r iod ’ , num2str( t ) ] ) ;
EpU=0;
for j =1: length ( shocks )
for i =1: length ( shocks )
xdashU = gr ida .∗R./ GList ( t ) . ∗ exp(−sqrt (2)∗ sN∗ shocks ( j ) ) . . .

+ exp( sqrt (2)∗ sU∗ shocks ( i ) ) ;
cdashU = max( realmin , Cdash (xdashU , Cons ( 2 :end , t +1) ,Cashonhand ( 2 :end , t +1)) ) ;
EpU = EpU + (1/pi ) ∗ lambda ( cdashU∗GList ( t )∗exp( sqrt ( 2 ) . . .

∗sN∗ shocks ( j ) ) , rho )∗ weights ( j )∗ weights ( i ) ;
end
end

Ep0=0;
for j =1: length ( shocks )
xdash0 = gr ida .∗R./ GList ( t ) . ∗ exp(−sqrt (2)∗ sN∗ shocks ( j ) ) ;
cdash0 = max( realmin , Cdash ( xdash0 , Cons ( 2 :end , t +1) ,Cashonhand ( 2 :end , t +1)) ) ;
p0 = Ep0 + (1/pi ^(0 . 5 ) )∗ lambda ( cdash0∗GList ( t )∗exp( sqrt ( 2 ) . . .

∗sN∗ shocks ( j ) ) , rho )∗ weights ( j ) ;
end

Ep = beta .∗R.∗ ZList ( t ) .^ rho ∗( pUE∗Ep0 + (1−pUE)∗EpU ) ;
Cons ( 2 :end , t ) = invlambda (Ep , rho ) ;
Cashonhand ( 2 :end , t )= gr ida+Cons ( 2 :end , t ) ;
end
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