
PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

ESCUELA DE INGENIERÍA

A FAMILY OF CENTRALITY MEASURES

BASED ON SUBGRAPH

JORGE SALAS CORNEJO

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Advisor:

CRISTIAN RIVEROS

Santiago de Chile, November 2019

© MMXIX, JORGE SALAS

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

ESCUELA DE INGENIERÍA

A FAMILY OF CENTRALITY MEASURES

BASED ON SUBGRAPH

JORGE SALAS CORNEJO

Members of the Committee:

CRISTIAN RIVEROS

MARCELO ARENAS

CLAUDIO GUTIERREZ

FRANCISCO SUAREZ

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Santiago de Chile, November 2019

© MMXIX, JORGE SALAS

Gratefully to my parents, siblings,

Dominique, Cristian and every

teacher involved in my education

over the years.

ACKNOWLEDGEMENTS

In first place I would like to thank my parents, my siblings and my uncles for always

being supportive and worried about me. This work could not be possible without their

affection and efforts to provide me with everything I need. Also, thanks to my dear friends

for all the affection.

In second place, thanks to Cristian Riveros for his unconditional support during this

investigation. The completion of this thesis could not be possible without his constant

curiosity, commitment, guidance and hard work. I would like to thank Professor Marcelo

Arenas for his interest and help in this work. I would also extend my thanks to Gonzalo

Navarro, Sebastian Guerra, Pedro Bahamondes, Luis Daniel Ibáñez, Claudio Gutierrez

and Marcelo Mendoza who were present during different stages of this investigation.

Finally thank you to Dominique for all her love and support during all this years, for

always being present without hesitations whenever I needed it.

iv

TABLE OF CONTENTS

Acknowledgements iv

Abstract vi

Resumen vii

1. Introduction 1

1.1. Related work . 3

2. Preliminaries 5

3. The All-subgraphs Centrality 8

4. A Family of Centralities Based on Subgraphs 14

5. What Families of Subgraphs Define Good Centrality Measures? 17

6. Centrality Measures for Sets of Vertices 30

7. On Computing Centrality Measures Based on Subgraphs 35

7.1. A polynomial Time Algorithm for All-subgraphs centrality of bounded Tree

Width . 41

8. Conclusions 53

References 55

v

ABSTRACT

This thesis introduce the theoretical foundations of a new approach in centrality mea-

sures for graph data. The main principle of our approach is very simple: the more relevant

subgraphs around a vertex, the more central it is in the network. The notion of “relevant

subgraphs” is formalized by choosing a family of subgraphs that, give a graph G and a

vertex v in G, it assigns a subset of connected subgraphs of G that contains v. Any of such

families defines a measure of centrality by counting the number of subgraphs assigned to

the vertex, i.e., a vertex will be more important for the network if it belongs to more sub-

graphs in the family. Many examples of this approach are presented and, in particular, the

all-subgraphs centrality is proposed, a centrality measure that takes every subgraph into

account. It is studied fundamental properties over families of subgraphs that guarantee de-

sirable properties over the corresponding centrality measure. Interestingly, all-subgraphs

centrality satisfies all these properties, showing its robustness as a notion for centrality. Fi-

nally, it is proved the computational complexity of counting certain families of subgraphs

and shown a polynomial time algorithm to compute the all-subgraphs centrality for graphs

with bounded tree width.

Keywords: Graph data, centrality notions, counting complexity, tree width.
vi

RESUMEN

Esta tesis introduce las bases teóricas de un nuevo enfoque para las medidas de central-

idad sobre bases de datos de grafos. El principio fundamental de este enfoque es simple:

mientras más subgrafos relevantes envuelvan a un vértice, más central será dentro de la

red. La idea de ”subgrafos relevantes” se formaliza eligiendo una familia de subgrafos

que, dado un grafo G y un vértice v en G, esta asigna un conjunto de subgrafos conexos

de G que contienen a v. Cualquiera de estas familias define una medida de centralidad al

contar la cantidad de subgrafos asignados a cada vértice, i.e, un vértice será más impor-

tante para la red si pertenece a más subgrafos dentro de la familia. Se muestran ejemplo de

este enfoque, en particular, se propone all-subgraphs centrality, una medida de centralidad

que toma en cuenta todos los posibles subgrafos. Se analizan las propiedades fundamen-

tales sobre familias de subgrafos que garantizan propiedades deseables sobre la medida de

centralidad. Interesantemente, all-subgraphs centrality satisface todas estas propiedades,

mostrando su robustes como noción de centralidad. Finalmente, se prueba la compleji-

dad computacional del conteo de ciertas familias de subgrafos y se muestra un algoritmo

de tiempo polinomial para computar all-subgraphs centrality cuando el grafo posee tree

width acotado.

Palabras clave: Datos de Grafos, medidas de centralidad, complejidad de conteo, tree

width.
vii

1. INTRODUCTION

Which are the most important or “central” nodes in a network? This is a crucial ques-

tion that has been asked in several areas like social science (Leavitt, 1951), biology (Jeong,

Mason, Barabási, & Oltvai, 2001), computer science (Brin & Page, 1998) and essentially

every area where graph data is relevant (Newman, 2010). Given the graph structure of

data one expects that more central nodes are more important for the network and they will

be relevant in understanding its underlying structure. Several centrality measures has been

proposed like closeness (Bavelas, 1950), betweeness (Freeman, 1977), Page Rank (Brin

& Page, 1998), Katz index (Katz, 1953), among others (Newman, 2010), trying to give an

answer or explanation to our first question.

Which centrality measure is the most meaningful for network analysis? This has been

behind all proposals of centrality measures and it is an old question that has been dis-

cussed from the beginning of network analysis (Sabidussi, 1966; Freeman, n.d.; Borgatti

& Everett, 2006). Over the years, some axioms or properties have been risen as crucial

for a centrality measure and several centrality measures has been axiomatized (Skibski,

Rahwan, Michalak, & Yokoo, 2016; Skibski & Sosnowska, 2018; Was & Skibski, 2018).

However, as it was shown in (Boldi & Vigna, 2014) many commonly used centrality mea-

sures do not satisfy even a simple set of “desirable” axioms (i.e. properties). The question

above then remains unanswered: how to naturally and formally define a centrality measure

that has reasonable properties?

To motivate our approach that aims both questions, consider the following setting from

graph data management. Suppose a graph database G and a query language L for extract-

ing patterns from G. Further, suppose Q is a query in L such that the evaluation of Q over

G, denoted by Q(G), retrieves a set of nodes in G. How should we rank Q(G) in order to

output the most meaningful outputs first? More specifically, suppose that G is a property

graph and L is a language of basic graph patterns (Angles et al., 2017). Given that queries

1

dynamically change over time (Lorey & Naumann, 2013; Buil-Aranda, Ugarte, Arenas,

& Dumontier, 2015), one would expect that, if v ∈ Q(G) satisfies more patterns from L,

it will have more chances to appear latter as an extension of Q. More general, one would

expect that the more queries from L where v is included, the more important is v on G

with respect to L. Furthermore, depending whether L is designed to look for paths, trees,

or maybe triangles (Angles et al., 2017) on G, maybe the user would like its measure of

centrality to focus more on these patterns than in all basic graph patterns.

In this thesis, we tackle the first question following the simple idea motivated from

the graph data management setting: the more relevant subpatterns around a node, the

more central it is in the network. Several proposals in the literature (e.g degree, betwee-

ness (Freeman, 1977), cross-clique (Faghani & Nguyen, 2013)) already have considered

relevant subpatterns like edges, paths, or cliques to define meaningful centrality measures.

We generalize this approach by defining centrality measures based on families of sub-

graphs. Specifically, we formalize the notion of “relevant subgraphs” by choosing any

family of subgraphs that, given a graph G and a vertex v in G, it assigns a subset of

connected subgraphs from G that contains v. Any of such families defines a measure of

centrality by counting the number of subgraphs assigned to the vertex, i.e., a vertex will

be more important for the network if it belongs to more subgraphs in the family. We show

several examples that can be derived by following this approach. In particular, a natural

family of subgraphs is to consider all connected subgraphs around a vertex, that we called

all-subgraphs centrality, and we show that it defines a well-behaved notion of centrality.

With a family of centrality measures at hand we embark on answering the second ques-

tion. Generally speaking, we can consider any property on the family of subgraphs and see

what “axiom” it implies in the respectively centrality notion that it defines. With this strat-

egy, we no longer depend on comparing centrality measures of different nature (e.g. Page

Rank vs Betweenness). Instead, we can understand all centrality notions proposed in this

2

thesis by just understanding the properties that satisfy the families of subgraphs. We con-

sider simple axioms that has been proposed in the literature (e.g. monotonicity (Sabidussi,

1966) or isolated vertex (Freeman, n.d.)). Then, look for simple properties in the family

of subgraph that imply them. Interestingly, we can show natural examples of families of

subgraphs that do not satisfy these properties and whose corresponding centrality notions

do not satisfy the axioms. This allows to have a more deep understanding of why a central-

ity measure do not behave as expected and, moreover, to look into ways on how to “fix”

it. Finally, the all-subgraphs centrality proposed in this thesis satisfies all these properties

and axioms, showing its robustness as a measure for centrality.

The general definition of centrality based on subgraphs allows us to easily extend the

idea from vertices to sets of vertices. We propose an approach to extend every centrality

measure to sets of vertices, and prove a natural way to reduce the computation of all-

subgraph centrality from sets to vertices. We show that this extension over sets allows to

answer simple questions on the dynamic of graphs, like how to maximize the centrality of

a vertex when an edge is added.

Towards the end of the thesis, we study the computational complexity of counting

certain families of subgraphs. Unfortunately, we show that the centrality measures defined

from families of subgraphs like all subgraphs or trees lead to intractability. In terms of

good news, we show that these centralities can be efficiently computed in acyclic graphs

(i.e. trees). Moreover, we show that this result can be extended to more classes of graphs,

by showing a polynomial time algorithm to compute the all-subgraphs centrality over all

classes of graphs with bounded tree width.

1.1. Related work

Centrality measures have been extensively studied since the 50’s (Bavelas, 1950; Leav-

itt, 1951) and the subject is spread in different research areas. Moreover, the literature

3

contains several alternative proposals as exposed in (see (Newman, 2010)). In this section

we discuss the most relevant work in this area.

Centrality is related to the intuitive notion of importance in the network. Sometimes

we use those terms as synonyms. However, several attempts to formalize this intuition has

been made by the construction of centrality measures as PageRank, Betweeness, Close-

ness, etc. (Newman, 2010). Those definitions becomes a way to better understand the

order of importance from the vertices in a network, but still do not formalize the intuition

in a general way.

Centrality measures based on some relevant subgraphs have been studied before (e.g.

betweenness (Freeman, 1977), cross-clique (Faghani & Nguyen, 2013)). The difference

with our approach is that we take a step further and studied families of subgraphs in a more

general setting. In particular, to the best of our knowledge, all-subgraphs centrality and

trees centrality (see Section 3 and 4) are new measures and have not been studied before.

On the other hand, there are several papers that have studied centrality measures in

terms of properties (Sabidussi, 1966; Freeman, n.d.; Borgatti & Everett, 2006). Further-

more, in the last years there are several proposals to axiomatize standard centrality mea-

sures (Boldi & Vigna, 2014; Boldi, Luongo, & Vigna, 2017; Skibski et al., 2016; Skibski

& Sosnowska, 2018; Was & Skibski, 2018). In this thesis, we study properties and ax-

ioms in terms of families of subgraphs, which is a different goal compared to previous

approaches.

Finally, a centrality measure called subgraph centrality was proposed in (Estrada &

Rodriguez-Velazquez, 2005). Although the name resemble our approach and the paper

also motivates the use of subgraphs, subgraph centrality sums the number of closed-walks

weighted by its length and not all the connected subgraphs that contains a nodes, as in our

case.

4

2. PRELIMINARIES

For a finite set V , we denote by edges(V) = {{u, v} ⊆ V ∣ u ≠ v} all subsets of V of

size two. Sometimes, we consider a function f as a relation and write f ′ ⊆ f when f ′ is

a (partial) function resulting to take a subset of the order pairs from f . In the sequel, all

logarithms are in base 2 unless it is stated differently.

Undirected graphs. We consider finite undirected graphs of the form G = (V,E) where

V is a finite non-empty set and E ⊆ edges(V). Given a graph G, we will denote by V (G)
and E(G) the set of vertices and edges, respectively. We will usually use u and v for

denoting vertices and e and f for edges. Furthermore, we will use edges as sets and write

v ∈ e when e is an edge incident to v. We denote by N(v,G) = {u ∣ {u, v} ∈ E(G)} the

neighborhood of v in G. We say that a graph G′ is a subgraph of G, denoted G′ ⊆ G,

if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). If two graphs G1 and G2 are isomorphic, we

write G1 ≅ G2. Furthermore, we write G1, v1 ≅ G2, v2 for v1 ∈ V (G1) and v2 ∈ V (G2) if

G1 ≅ G2 and v1 is equivalent to v2 under the bijective function between G1 and G2.

Multigraphs. We also work with graphs with multiple edges between vertices, called

multigraphs. A multigraph M is a triple M = (V,E, r) such that V is a finite non-empty

set, E is a finite set, and r ∶ E → edges(V) (i.e. the edge-assignment function). Intu-

itively, E is a set of identifiers for edges and r assigns identifiers to edges (i.e. there could

be multiple edges between two pair of vertices). Similar than for graphs, we denote by

V (M), E(M), and r(M) the corresponding set of vertices, edges, and edge-assignment

of M , respectively. We say that a multigraph M ′ is a sub-multigraph of M , denoted by

M ′ ⊆M , if V (M ′) ⊆ V (M), E(M ′) ⊆ E(M), and r(M ′) ⊆ r(M).

Note that a simple graph is a multigraph M where r(M) is an injective function. For

this reason, in the future we will not make distinction between graphs and multigraphs.
5

Furthermore, we will usually work with graphs but all definitions and results also extend

to multigraphs. When this is not the case, we will make the distinction explicitly.

Connected graphs. A path in a graph G is a sequence of nodes π = v0, . . . , vn such that

{vi, vi+1} ∈ E(G) for every i < n and we say that the length of π is n. Note that v0 is the

trivial path from v0 to itself of length 0. We say that G is connected if there exists a path

between any pair of vertices. Furthermore, we say that G′ ⊆ G is a connected component

of G if G′ is connected and its maximal element over all subgraphs of G under ⊆. We

denote by ConnComp(G) the set of all connected components of G. For u, v ∈ V (G)
we say that u is at distance d of v if there exists a path from u to v of length d and every

path from u to v is of length at least d. We denote the distance d from u and v in G by

distG(u, v). Given this distance, the diameter of G is defined as maxu,v∈V (G) distG(u, v).

Families. We consider several families of graphs through the thesis to give examples or

show some properties of our centrality measures. Given a vertex v, we denote by Gv the

graphs with one vertex v (i.e. V (Gv) = {v}) and no-edges (i.e. E(Gv) = ∅). Given

an edge e = {u, v}, we denote by Ge the graph only containing e (i.e. V (Ge) = {u, v}
and E(Ge) = {e}). For any n ≥ 1, we write Sn for the star with n + 1 vertices such that

V (Sn) = {0,1, . . . , n} and all edges are connected to 0, namely, E(Sn) = {{0, i} ∣ 0 < i ≤
n}. Similarly, we write Ln for the line with n vertices where V (Ln) = {0, . . . , n − 1} and

E(Ln) = {{i, i + 1} ∣ 0 ≤ i < n − 1}. The circuit with n vertices is denoted by Cn with

V (Cn) = {0, . . . , n−1} andE(Cn) = {{i, (i+1) mod n} ∣ 0 ≤ i ≤ n−1}. Finally, the clique

of size n is denoted by Kn where V (Kn) = {0, . . . , n − 1} and E(Kn) = edges(V (Kn)).

Operations. Through the thesis, we use several operations to create, modify or combine

graphs. Given v ∈ V (G), we denote by G − v the result of removing v from G and all its

incident edges, namely, V (G−v) = V (G)∖{v} andE(G−v) = {e ∈ E(G) ∣ v ∉ e}. Given

e = {u, v}, we write G+e for the result of adding e into G, formally, V (G+e) = V (G)∪e
and E(G + e) = E(G) ∪ {e} (i.e. if u or v are not in G, then they are included as new

6

vertices). Instead, we write G − e for the result of removing all edges between u and v,

namely, V (G − e) = V (G) and E(G − e) = E(G) ∖ {e}. Note that if G is a (simple)

graph, then at most one edge is removed, but if G is a multigraph then all edges between

u and v are removed. For G1 and G2, we denote by G1 ∪G2 the union of the two graphs,

namely, V (G1 ∪G2) = V (G1)∪V (G2) and E(G1 ∪G2) = E(G1)∪E(G2). In particular,

G + e = G ∪Ge.

Let G be a graph and U ⊆ V (G). We define the set contraction of U on G as the

multigraph G/U by merging the vertices U to one vertex (called U) and keeping multi-

edges into U . Formally, G/U is the multigraph M such that V (M) = (V (G) ∖U) ∪ {U},

E(M) = {e ∈ E(G) ∣ e /⊆ U} and for every e ∈ E(M) either r(M)(e) = e whenever

e ∩ U = ∅, or r(M)(e) = {v,U} whenever e = {v, u} with v ∉ U and u ∈ U . Note that we

use U (i.e. the set) as the new vertex that represent the contraction in M/U . When G is a

multigraph, the set contraction G/U easily follows from the above definition.

7

3. THE ALL-SUBGRAPHS CENTRALITY

We start by introducing our first centrality measure based on all subgraphs, called

the all-subgraphs centrality. In the next section, we generalize this idea to any family of

subgraphs.

Fix a graph G and a vertex v ∈ V (G). We denote by A(v,G) the set of all connected

subgraphs of G that contains v, formally, A(v) = {G′ ⊆ G ∣ G′ is connected∧ v ∈ V (G′)}.

The all-subgraphs centrality of v in G is defined as:

CA(v,G) ∶= log (∣A(v,G)∣)

namely, the logarithm of the number of connected subgraphs of G that contains v. In-

tuitively, the all-subgraphs centrality of a node only considers connected graphs since it

captures the importance of the node in the neighborhood that it belongs. We add more im-

portance to a node if its neighborhood is richer in substructures. Furthermore, we consider

connected subgraphs since there is no argument to say that a node has more centrality by

counting another component that is not directly connected to it.

The function CA naturally induces a ranking between nodes: the higher the centrality

CA(v,G), the more important is v in G. We define the ranking <A over V (G) induced by

CA (or just A-ranking for short) such that u <A v if, and only if, CA(u,G) < CA(v,G).

Strictly speaking, <A is not an order in V (G), given that there could exist vertices u and v

such that CA(u,G) = CA(v,G) (e.g. u and v are isomorphic in G). In this case, we write

u =A v.

Example 3.1. Let v be a vertex. Recall that Gv is the trivial graph with one vertex v

and no edges. Then one can easily check that CA(v,Gv) = 0 given that A(v,Gv) = {Gv}
and then log(∣A(v,Gv)∣) = log(1) = 0. Note that this is the only vertex and graph (up to

isomorphism) where the centrality is equal to 0. This follows the intuition that an isolated

vertex must have 0 centrality since no one is connected to him.

8

Example 3.2. Recall that Sn denotes the star graph with n+1 vertices (see figure 3.1).

Note that every connected subgraph of Sn corresponds to a subset ofE(Sn), and there are

2n subsets of E(Sn). Therefore, the centrality of the center of the star (i.e. the 0 vertex) is

CA(0, Sn) = n. Interestingly, the all-subgraphs centrality of the center of a star coincides

with its degree-centrality (Newman, 2010), following the intuition of what should be the

centrality in this case. One can easily show that, for any i ≠ 0, CA(i, Sn) = n − 1 + ε with

ε ∈ o(1). Thus, in terms of ranking we have that i <A 0 and i =A j for every i, j > 0.

0

1
2

3

4

5
6

⋯
n

Figure 3.1. Star graph with n nodes, Sn.

The all-subgraphs centrality is measuring the worst-case entropy (Cover & Thomas,

2012; Navarro, 2016) of the set A(v,G), namely, the minimum number of bits that are

required to represent the setA(v,G) with bit-codes. Of course, using the size of ∣A(v,G)∣
will give the same ranking of centrality over the vertices of G. Nevertheless, the log-

function gives a better interpretation of the centrality in terms of information theory. More-

over, it normalizes the value ∣A(v,G)∣ in a scale that is in correspondence with the intuition

of a centrality notion, e.g. Examples 3.1 and 3.2 above.

The next lemma is another result that validates the use of worst-case entropy and it

will be useful for computing the all-subgraphs centrality over simple graphs. Recall that a

vertex v ∈ V (G) is a cut vertex of G if ∣ConnComp(G − v)∣ > ∣ConnComp(G)∣, namely,

whose removal increases the number of connected components of G.

Lemma 3.1. Let v be a cut-vertex of graph G and G1, . . . ,Gn are all the subgraphs

that partitionG and whose pairwise intersection is v, that is, V (G) = ∪ni=1V (Gi), E(G) =
9

∪ni=1E(Gi), and V (Gi) ∩ V (Gj) = {v} for i ≠ j. Then

CA(v,G) =
n

∑
i=1

CA(v,Gi).

Namely, the centrality of v in G is the sum of its centrality in all the components Gi.

PROOF. The argument is simply combinatorics (see Figure 3.2 for some intuition).

For each subgraph Gi the subgraphs that contains v does not depend on the subgraphs of

v

G1

G2

G3

⋯ Gn

v

Figure 3.2. An example of Lemma 3.1.

another Gk. This mean that all the possible subgraphs of G that contains v could be any

combination of each independent sub graph. Thus, we have

∣A(v,G)∣ =
n

∏
i=1

∣A(v,Gi)∣.

Applying logarithm in both sides we obtain the result. �

Example 3.3. Let G be any graph, u ∈ V (G), and v be a new vertex not in G. For

e = {u, v}, recall that Ge is the graph only containing e. Then one can easily see that

CA(u,Ge) = 1. Since G+ e = G∪Ge and u is a cut-vertex of G+ e, by Lemma 3.1 we get:

CA(u,G + e) = CA(u,G) +CA(u,Ge) = CA(v,G) + 1

10

Thus, by connecting one new vertex directly to u its centrality grows exactly in one unit.

This property is very appealing for a centrality measure and follows verbatim the intuition

of the monotonicity axiom in (Boldi & Vigna, 2014) (see Section 5 for more discussion).

On the other hand, one can check that the new vertex v in G + e absorbs part of the

centrality of u in G. Specifically, one can easily see that ∣A(v,G + e)∣ = ∣A(u,G)∣ + 1 and

then CA(v,G + e) = log(∣A(u,G)∣ + 1) = CA(u,G) + ε, where ε is a negligible factor.

Example 3.4. For n ≥ 1, recall that Ln is the line with n nodes starting from 0 and

ending in n−1. For the 0-vertex in Ln there are n-different subgraphs, one for each vertex,

and then CA(0, Ln) = log(n). The line graph is the most sparse graph with n vertices and

0 is the most extreme vertex in the graph. As one could expect, the centrality of 0 grows

very slow, logarithmic in the number of vertex.

For the i-vertex in Ln, we can easily compute its centrality by using Lemma 3.1. In-

deed, the centrality for i is the composition of two lines with i + 1 and n − i vertices,

respectively (see figure 3.3).

0 1 2 3 4 5 ⋯ n-1

n nodes

0 1 ⋯ i-1 i i+1 ⋯ n-2 n-1

(i + 1) nodes (n − i) nodes

Figure 3.3. Line graph partitioning.

Therefore, by Lemma 3.1:

CA(i,Ln) = CA(0, Li+1) +CA(0, Ln−i) = log(i + 1) + log(n − i).

If n is odd, the vertex with maximum centrality is reached by the middle node n−1
2 and

CA(n−12 , Ln) = 2(log(n + 1) − 1). Thus, the middle point of a line doubles the centrality

of the extreme vertices, nevertheless, the grow of its centrality is still logarithmic in n.

11

Finally, note that the centrality is maximized in the middle node (see figure 3.4) and the

ranking decreases towards the extremes (i.e. i <A i + 1 for every i < n−1
2).

0 1 ⋯ n−3
2

n−1
2

n+1
2 ⋯ n-1 n-1

n+1
2 nodes

n+1
2 nodes

Figure 3.4. Maximum centrality for graph Ln.

Example 3.5. Let beCn the circuit graph with n vertices. It is clear that All-subgraphs

centrality is the same for all vertices. Assume we start with the 0 vertex. Then we want to

count all the connected subgraphs of the circuit that contains 0. To do this, the strategy is

to take 0 and the nodes at its right. Adding nodes until we reach the node n − 1. In this

way it is easy to notice that there are n subgraphs starting from 0. In the same way there

are n−1 subgraphs starting from n−1 that contains the node 0. By doing this method and

finally add the whole circuit ,it is easy to see that:

CA(x,Cn) = log(1 +
n

∑
i=1

i) = log (1 + n(n + 1)
2

) = log (n
2 + n + 2

2
) .

One can easily check that CA(n−12 , Ln) < CA(n−12 ,Cn). So, the centrality of the middle

point of a line increases its centrality when the extreme points are connected as one could

expect, but not substantially.

A natural question at this point is to think in lower and upper bounds of the centrality

with respect to the number of edges of a graph. Indeed, the number of subgraphs A(v,G)
could be exponential in G but its entropy is bounded by the number of edges as follows.

PROPOSITION 3.1. For any connected graph G and v ∈ V , it holds that:

log(∣E(G)∣ + 1) ≤ CA(v,G) ≤ ∣E(G)∣.

PROOF. For the lower bound, let G be a connected graph. Then, if x is a fixed node

from G, every edge can be reached from x. Therefore we can define an order relation
12

between edges based on the distance from x. This is, given two edges e1 and e2,

e1 ≤ e2 ⇐⇒ dx(e1) ≤ dx(e2).

Using this order, we can start removing edges from the furthest nodes from x. The result-

ing graph is still connected and contains x. Every time an edge is removed we create a

new connected subgraph of G that contains x. We have to add the final subgraph with no

edges on it. In other words,

∣E(G)∣ + 1 ≤ ∣A(x,G)∣.

To prove the upper bound, we use the following argument. Whenever an edge is added

or removed from the graph G, a new graph is obtained. In this new graph there is always

a strongly connected component that contains x. But every time we make this process this

component could or could not change. In consequence, this strongly connected compo-

nent represents the connected subgraph that we need to count for the computation of the

centrality of x. Then,

∣A(x,G)∣ ≤ 2∣E(G)∣

applying logarithm we conclude the proof. �

From Example 3.2 above, we can infer that the upper bound is reached by the central

vertex of a star. This follows the intuition that the central vertex of a star must be the

most central vertex regarding the number of edges (i.e. all edges are pointing to him).

Furthermore, in Example 3.4 we show that the extreme vertex of a line Ln has centrality

log(n) = log(∣E∣ + 1). That is, the minimum centrality is reached in the extreme points

of a line, agreeing with the intuition that the line graph is the most sparsest graph over all

undirected graphs.

13

4. A FAMILY OF CENTRALITIES BASED ON SUBGRAPHS

The idea of measuring the centrality of a vertex based on relevant substructures is

not new (Freeman, 1977; Faghani & Nguyen, 2013). For example, the degree centrality

counts how many edges are incident to a vertex and the betweenness centrality (Freeman,

1977) counts how many geodesic paths passed through a vertex. In our case, all-subgraphs

centrality measures all connected subgraphs including v, but maybe for an expert not all

subgraphs are equally important and he will be interested in counting some of them. In

this section we generalize the notion of all-subgraphs centrality to propose a framework

of centrality notions based on measuring the worst-case entropy of relevant substructures

surrounding a vertex.

A family of substructures is a function F that, given a graph G and a vertex v ∈ V (G),

it assigns a non-empty subset of connected subgraphs in G that contains v. Formally, F
is a function such that F(v,G) ⊆ A(v,G) and F(v,G) ≠ ∅. We also assume that F
is closed under isomorphism, namely, if G1, v1 ≅ G2, v2 then F(v1,G1) is isomorphic

to F(v2,G2). For example, A is a family of substructures where A(v,G) contains all

connected subgraphs in G containing v and is closed under isomorphism. Given a family

of substructures we define the F-subgraph centrality (denoted by CF(v,G)) as:

CF(v,G) ∶= log (∣F(v,G)∣)

for any graph G and vertex v ∈ V (G). In other words, it measures the worst-case entropy

of the substructures F(v,G). Note that F(v,G) is non-empty and, therefore, CF(v,G) is

always well-defined. Similar to all-subgraphs centrality, the centrality measures induced

a ranking between nodes: we define the F-ranking <F over V (G) such that u <F v if, and

only if, CF(u,G) < CF(v,G).

Example 4.1. Given a graph G and v ∈ V (G), denote by T (v,G) all subgraphs

T ∈ A(v,G) such that T is a tree. Note that an isolated vertex is defined as a trivial tree,

14

so T (v,G) is always non-empty. Furthermore, the family T is closed under isomorphism.

Then CT measures the centrality of a vertex based on trees and we call it the trees cen-

trality. For example, if Ln is a line graph with n vertices (see Example 3.4) then we have

that CA(v,G) = CT (v,G). Indeed, if T is a tree, then CA(v, T) = CT (v, T) for every

v ∈ V (T). However, this is not always the case if G has cycles and one can find cases

where the two measures give different values and ranking.

Example 4.2. It is not trivial to show that exists a graph G and nodes u, v ∈ V (G)
such that u <A v and v <T u. In Figure 4.1a, the relative sizes of nodes give an intuition

for the all-subgraphs centrality rank of every node in G. On the other hand, Figure 4.1b

shows the trees centrality rank for the same graph G. In particular, we can notice that

6 <A 5 but 5 <T 6.

(a) All-Subgraph centrality ranking. (b) Trees centrality ranking.

Figure 4.1. Example of differing centrality

The motivation behind trees centrality is to considered substructures defined by acyclic

graphs like trees or paths. For example, path queries (Angles et al., 2017) are at the core

of graph queries languages and they are used to find path substructures between pair of
15

nodes. Also, basic graph patterns that are acyclic (e.g. tree-shaped queries) forms a well-

behaved core of graph query languages that can be evaluated efficiently (Gottlob, Greco,

Leone, & Scarcello, 2016). Therefore, if the query languages mostly uses queries that are

acyclic, maybe it makes sense to rank the results by a centrality notion based on trees.

The generalization of all-subgraphs centrality to any family of subgraphs opens the

possibilities of defining any centrality notion based on a particular group of relevant sub-

graphs. In the next section, we use this framework to understand which properties in the

family leads to desirable properties in the corresponding centrality measure. This will

help to guide the design of a centrality notion based on subgraphs and, moreover, to have

a better understanding of this framework and all-subgraphs centrality.

16

5. WHAT FAMILIES OF SUBGRAPHS DEFINE GOOD CENTRALITY MEA-

SURES?
Several attempts have been taken to define which properties a centrality measure

should satisfy and how to axiomatize them (Skibski & Sosnowska, 2018; Skibski et al.,

2016; Bandyopadhyay, Narayanam, & Murty, 2018). In our framework, each family of

subgraphs defines a new centrality measure, so it is not our purpose here to axiomatize

them. In some sense, each family of subgraphs captures the know-how of an expert who

knows what are the relevant subpatterns around a vertex. From this point of view, it does

not make sense to prefer one notion of centrality over the other. Instead, we study here

which properties over the family of subgraphs lead to desirable properties on the corre-

sponding centrality notion. We hope that these properties will guide experts on the design

of a centrality based on subgraphs and they will help to understand the benefits and prob-

lems of choosing one family over the other. Towards this goal, we consider several axioms

of centrality that has been proposed in the literature and study which natural property on

the family of subgraphs is enough to satisfy it. We also give several examples for showing

what happens when a property is not satisfied.

In the sequel, a centrality measure is any function C that given a graph G and v ∈
V (G), it outputs a non-negative value, i.e., C(v,G) ≥ 0.

Monotonicity. The monotonicity axiom is probably the property that more people (Boldi

& Vigna, 2014; Sabidussi, 1966; Skibski et al., 2016) agree that any centrality notion

should satisfy. This axiom says that if an edge is added to the graph, then the centrality of

the vertex that is incident with the new edge should not decrease. Clearly, a vertex is more

central the more edges it has and, thus, a new edge should help to increase it relevance in

the graph. We generalize this axiom as follows.

AXIOM 1 (Monotonicity). A centrality measure C satisfies the monotonicity axiom if

for every graph G, v ∈ V (G) and e ∉ E(G), it holds that C(v,G) ≤ C(v,G + e).

17

Note that the axiom implies that if G1 is a subgraph of G2 and v ∈ V (G1), then

C(v,G1) ≤ C(v,G2). This coincides with the intuition that v in G2 has the same or more

connections than in G1 and, thus, its relevance in G2 should be at least the one in G1.

What property should a family of subgraphs F satisfy in order that CF satisfy Ax-

iom 1? Intuitively, when edge e is added to G we have G ⊆ G + e and all subgraphs that

are relevant for v in G should also be relevant for v in G + e. Moreover, if a subgraph S

is relevant for v in G + e but S is a subgraph of v in G, then it should also be a relevant

subgraph of v in G. That is, all subgraphs of G that are relevant should also be relevant in

G + e and viceversa. We call this the containment property.

PROPERTY 5.1 (Containment). A family of subgraphs F satisfies the containment

property if for every graphs G1 and G2 such that G1 ⊆ G2 and for every v ∈ V (G1)
and S ∈ A(v,G1), it holds that S ∈ F(v,G1) if, and only if, S ∈ F(v,G2).

In particular, the containment property implies that F(v,G1) ⊆ F(v,G2) whenever

G1 ⊆ G2. As one could expect, the containment property is enough to satisfy the mono-

tonicity axiom.

Theorem 5.1. If a family of subgraphs F satisfies the containment property, then the

corresponding centrality measure CF satisfies the monotonicity axiom.

PROOF. Let F be any family satisfying the containment property. It is clear that G ⊆
G + e. Thus, by the containment property F(v,G) ⊆ F(v,G + e). Therefore, ∣F(v,G)∣ ≤
∣F(v,G+e)∣ and by monotonicity of logarithm it holds that CF(v,G) ≤ CF(v,G+e). �

One can easily see that the family of all-subgraphs and trees satisfies the containment

property and, therefore, the all-subgraphs centrality and trees centrality satisfy monotonic-

ity as expected. Next, we show that this is not always the case.

18

Example 5.1. Given a graph G and v ∈ V (G), denote by W(v,G) all subgraphs

P ∈ A(v,G) such that P = v0, . . . , vn is a geodesic path in G, namely, it is a path of

minimal distance between v0 and vn. We assume here that the isolated vertex v is the

only geodesic path from v to v. Then we define log-betweenness centrality v in G as

CW(v,G). Of course, CW(v,G) is not equivalent to Betweenness(v,G) as a value and

in how we aggregate the number of geodesic paths. Nevertheless, it will be useful below

to understand Betweenness in the context of counting subgraphs.

One can easily show that the family W does not satisfy the containment condition.

Consider just a line L3 (figure 5.1a).

(a) Line with 3 nodes.

(b) Clique with 3 nodes.

Figure 5.1

Then if we connect the black vertices and make a triangleK3 (figure 5.1b), then the ge-

odesic path L3 is inW(1, L3) but L3 is not inW(1,K3). Coincidentally, log-betweenness

centrality (and betweenness centrality as well) do not satisfy the monotonicity axiom. Ac-

tually, one can show pathological examples where monotonicity does not hold (Freeman,

n.d.). For example, if one compares the circuit Cn with the clique Kn one can see that

Cn <<Kn but CW(0,Cn) > CW(0,Kn), and Betweenness(0,Cn) > Betweenness(0,Kn)
as well.

19

Rank monotonicity. Another axiom that has been remarked as important in the literature

is rank monotonicity (Chien, Dwork, Kumar, Simon, & Sivakumar, 2004; Boldi & Vigna,

2014; Sabidussi, 1966; Boldi et al., 2017). Similar than for monotonicity, this axiom says

that if v is more central than u in G, then when we add a new edge e to v the ranking

between u and v is preserved. In particular, if v is the most central vertex in G, then it will

be the most central vertex in G + e as well. We generalize this intuition as follows.

AXIOM 2 (Rank monotonicity). A centrality measureC satisfies the rank monotonicity

axiom if for every graphG, u, v ∈ V (G) and e ∉ E(G) with v ∈ e, then C(u,G) ≤ C(v,G)
implies that C(u,G + e) ≤ C(v,G + e).

Note that with e = {u, v} it could happen that the increment in centrality for u is bigger

than the increment on v, but the axiom says that the centrality of v will be still bigger than

the centrality of u. In other words, if I meet Donald Trump, my centrality will rise more

than his centrality, however, Donald Trump will still be the president of US.

It is important to say that in (Boldi & Vigna, 2014) an axiom called density axiom was

proposed, which is a special case of rank monotonicity (see figure 5.2).

0

1
2

3

4

5
6

u

n
⋯

Kn

0

1

2

3

4

5

6

7

v

n

⋯

Cn

Figure 5.2. Density axiom graph.

Specifically, take a clique Kn, a circuit Cn, and vertices u ∈ V (Kn) and v ∈ V (Cn).

Then the density axiom says that if we connect u and v with an edge e = {u, v}, then

G = (Kn∪Cn)+e satisfiesC(u,G) > C(v,G) for a centrality measureC. Intuitively, given

that the neighborhood of u is more dense that in v, then its centrality should be bigger. One
20

can see that if C satisfies monotonicity (i.e. vertices inKn has more centrality than in Cn),

then rank monotonicity implies the density axiom (Boldi & Vigna, 2014). Therefore, we

can see rank monotonicity as a generalization of the density axiom in (Boldi & Vigna,

2014).

The containment property is useful to imply rank monotonicity but it is not enough.

One can easily find centrality measures that satisfies Axiom 1 but it does not satisfy Ax-

iom 2 (see Example 5.2 below). For this, one needs a notion of “fairness” in the family

of subgraphs. Intuitively, if S is a relevant subgraph for v in G and S contains a vertex u,

then S should also be relevant for u in S.

PROPERTY 5.2 (Fairness). A family of subgraphs F satisfies the fairness property if

for every graph G, u, v ∈ V (G) and S ⊆ G with u, v ∈ V (S) it holds that S ∈ F(u,G) iff

S ∈ F(v,G).

As we show next, fairness is what you need if you want to preserve the ranking between

vertices in a graph.

Theorem 5.2. If a family of subgraphs F satisfies the containment property and fair-

ness, then the corresponding centrality measure CF satisfies the rank monotonicity axiom.

PROOF. Let G be a graph and u, v ∈ V (G) and e /∈ E(G). If CF(u,G) ≤ CF(v,G)
then ∣F(u,G)∣ ≤ ∣F(v,G)∣. Let suppose that CF(u,G + e) > CF(v,G + e). We know that

F satisfies the containment property. Then, since G ⊆ G + e, for every subgraph S ⊆ G,

S ∈ F(u,G) if and only if S ∈ F(u,G + e). The same occurs for v. Thus, the only way

this could be true is that exists S ⊆ G + e such that e ∈ E(S) and S ∈ F(u,G + e) but

S /∈ F(v,G + e) which directly contradicts the Fairness property. �

The family of all-subgraphs, trees and even betweenness (i.e. geodesic paths) satisfy

fairness. Given that all-subgraphs and trees also satisfy the containment property, we
21

conclude that both satisfy the rank monotonicity axiom. Next we show a natural family

that satisfies the containment property but does not satisfy fairness.

Example 5.2. A natural approach to define a family of subgraphs is to consider sub-

patterns on a neighbourhood of bounded size around a vertex. Intuitively, an expert

would not care if a vertex v can reach a far vertex u as long as there are many other

substructures closed to v. To formalize this, let k ≥ 1. For a graph G, fix a vertex

v and let Nk be the induced subgraph of all vertices at distance at most k of v, i.e.,

V (Nk) = {u ∈ V (G) ∣ distG(u, v) ≤ k} and E(Nk) = {e ∈ E(G) ∣ e ⊆ V (Nk)}. We define

the family of subgraphs Nk such that Nk(v,G) = A(v,Nk), that is, all subgraphs in the

neighborhood of v with radius k. Then we define the k-neighborhood centrality of v on

G as CNk
(v,G). Note that if the diameter of the graph is less than k then Nk(v,G) and

A(v,G) coincide.

The family of k-neighborhood satisfies monotonicity but it does not satisfy fairness.

Moreover, it does not satisfy the rank monotonicity axiom. To see this, consider the family

N2 and G1 as shown in figure 5.3.

Figure 5.3

By counting, one can check that the left white vertex, called u, and the right white ver-

tex, called v, satisfy ∣N2(u,G1)∣ = 8 and ∣N2(v,G1)∣ = 5, respectively. Then CN2(u,G1) >
CN2(v,G1). However, if we add an edge e between the two and create the graph G1 + e
(see figure 5.4), then one can check that N2 does not satisfy fairness. For instance, the

22

whole graph G1 + e ∈ N2(v,G1 + e), contains u and v, but G1 + e ∉ N2(u,G1 + e). One

can also check by counting that ∣N2(u,G1 + e)∣ = 24 and ∣N2(v,G1 + e)∣ = 45. Thus,

CN2(u,G1+e) < CN2(v,G1+e) and 2-neighborhood does not satisfy the rank monotonic-

ity axiom as well.

Figure 5.4

The previous example shows that, if we want to approximate all-subgraphs centrality

by only counting subgraphs up to a certain radius, one will have to loose some natural

properties, like rank monotonicity.

Isolated vertex. Everyone would agree that any reasonable notion for centrality should

assign 0 centrality to an isolated vertex (Skibski et al., 2016; Bandyopadhyay et al., 2018).

Basically, there is nothing less central to a community than the vertex that is not connected

to any other vertex. One can generalize this idea by considering, what is the most sparse

connected graph with n vertices. Clearly, the line Ln should be this graph: it is the only

graph with n vertices that maximizes the diameter. Then the most isolated vertex in Ln

are its extreme points 0 and n − 1 and one would expect that this should be the vertices

that have less centrality over all connected graphs with n-vertices. We propose this axiom

as the natural generalization of the axiom called isolated vertex.

AXIOM 3 (Isolated vertex). A centrality measure C satisfies the isolated vertex axiom

if for every n and every connected graph G with ∣V (G)∣ = n it holds that C(0, Ln) ≤
C(v,G) for every v ∈ V (G).

23

All centralities that we consider in this thesis satisfy the isolated vertex axiom. Of

course, one can manage to find unnatural families of subgraphs that produce centrality

measures not satisfying this axiom. Still, one would like to find under which circumstances

a centrality measure defined from a family of subgraphs satisfies it. For this, we need to

introduce the following property.

PROPERTY 5.3 (Inclusion). A family of subgraphs F satisfies the inclusion property if

for every graph G, v ∈ V (G), and S ∈ F(v,G), if S′ ⊆ S, then S′ ∈ F(v,G).

Intuitively, this property is saying that every subgraph of a relevant subgraph should

also be relevant for the family. Actually, this property is satisfied by all families of sub-

graphs proposed so far.

Theorem 5.3. If a family of subgraphs F satisfies the containment and inclusion prop-

erties, then the corresponding centrality measure CF satisfies the isolated vertex axiom.

PROOF. Let F be a family of substructures satisfying the containment and inclusion

property. Let fix k = max
S∈F(0,n)

∣V (S)∣, i.e the size of the biggest substructure in the family

for Ln that contains 0. Because of the inclusion property, for every i ≤ k we have that

Li ∈ F(0, Ln). Therefore, ∣F(0, Ln)∣ = k. Now, let G be any graph with n vertices and

v ∈ V (G). We define the radius from v as d = max
u∈V (G)

dG(v, u). If d ≥ k it means that exists

a simple path π from v to some u ∈ V (G) where ∣π∣ ≥ k. Using the containment property,

if i ≤ k we know that Li ∈ F(v,G) because Lk ⊆ G and Li ∈ F(0, Lk). 1 On the other

hand, if d < k, then for every v ∈ V (G), since G is connected, there exists a simple path

from v to u let say πu. Every path πu is a connected subgraph starting in v and finishing

with u. Then, if u /= w we have that πu /= πw. We also know that πu ∈ F(v,G) because

∣πu∣ ≤ d < k and using the same argument as before, exists an isomorphism from πu to a

subgraph L∣πu∣ ∈ F(0, Ln). This implies that ∣F(v,G)∣ ≥ n ≥ ∣F(0, Ln)∣. In both cases

1Here is important to notice that families are close under graph isomorphism.

24

we conclude that ∣F(0, Ln)∣ ≤ ∣F(v,G)∣. In consequence CF satisfies the isolated vertex

axiom. �

Continuity. The inclusion property plus the containment property actually imply a natural

property over centrality measures defined by family of subgraphs. Given that all subgraphs

of a relevant subgraph are also included, it gives a sense of “continuity” in the centrality

notion. Specifically, each time that we add a set of edges that rises the centrality of a

vertex, there exists a way to add them, one at a time, in such a way that the centrality of

the vertex always increases. We formalize this intuition as follows.

AXIOM 4 (Continuity). A centrality measure C satisfies the continuity axiom if for

every graph G and F , and v ∈ V (G), if C(v,G) < C(v,G ∪ F), then there exists edges

e1, . . . , ek ∈ E(F) such that: C(v,G) < C(v,G + e1) < . . . < C(v,G + e1 + . . . + ek) =
C(v,G ∪ F).

To the best of our knowledge, the continuity axiom has not been proposed before in

the literature. Furthermore, the inclusion and containment property implies the continuity

axiom over the corresponding centrality measure.

Theorem 5.4. If a family of subgraphs F satisfies the inclusion and containment prop-

erties, then the corresponding centrality measure CF satisfies the continuity axiom.

PROOF. For a node v ∈ V (G), let define M as the minimal connected subgraph in the

following sense. F(v,G∪M) = F(v,G∪F) and for any S ⊆ F , if F(v,G∪S) = F(v,G∪
F) then M ⊆ S. This means, because M is minimal and containment property of F , that

if K ⊂M then F(v,G ∪K) ⊂ F(v,G ∪M). Therefore, CF(v,G ∪K) < CF(v,G ∪M).

Since M is a connected graph, we can add edges to G in an order such that every

time we add an edge there is only one connected component. Let define the ordered set

as X = {e1, e2, ..., ek} = E(M). From this point we are going to prove two facts. First,
25

let fix i ∈ {1,2, ..., k − 1}. Thus, for every subgraph S ∈ F(v,G + e1 + e2 + ... + ei) then

S ∈ F(v,G + e1 + ... + ei+1). Second, there exists S ∈ F(v,G + e1 + ... + ei+1) such that

S /∈ F(v,G + e1 + e2 + ... + ei). The first result is a direct consequence of the containment

property since G + e1 + e2 + ... + ei ⊆ G + e1 + e2 + ... + ei+1. For the second fact let

suppose that every subgraph S ∈ F(v,G+ e1 + ...+ ei+1) is in F(v,G+ e1 + ...+ ei). Then

ei+1 /∈ E(S). If there exists j > i + 1 such that for some S′ ∈ F(v,G + e1 + ... + ej) it

is true that ei+1 ∈ S′. For the inclusion property and because the order of X ensure the

connectivity of K = S′ − {ei+2, ..., ej} ⊆ S′, we have that K ∈ F(v,G+ e1 + ...+ ej). Then,

using containment property, we have that K ∈ F(v,G + e1 + ... + ei+1). This contradicts

the fact that every subgraph in F(v,G+ e1 + ...+ ei+1) do not use the edge ei+1. Therefore,

j does not exists. In consequence, F(v,G+ e1 + ...+ ei) = F(v,G+ e1 + ...+ ej) for every

j > i which contradicts the definition of M . Concluding that CF satisfies the continuity

axiom. �

All families of subgraphs so far satisfy the inclusion property and, therefore, their cen-

trality measure satisfy the continuity axiom as well. We give below a centrality measure

based on cliques as a counter-example of this theorem.

Example 5.3. Cliques are relevant substructure in network analysis and they are usu-

ally used to measure the importance of vertices (Newman, 2010). In (Faghani & Nguyen,

2013), this idea has been taken a step further by counting the number of cliques that a

vertex belongs, which is called the cross-clique centrality. We can define this centrality

with families of subgraphs as follows. Define the family K such that K(v,G) contains all

subgraphs K ∈ A(v,G) such that K is a clique of size 1 (i.e. v) or size greater than 2 for

every graph G and v ∈ V (G). Then the clique centrality of v on G is defined as CK(v,G).

Note that CK(v,G) = log(Cross-Clique(v,G) + 1) and, thus, we can use CK as a proxy

to understand cross-clique centrality.

26

CliquesK is a family that does not satisfy the inclusion property. Indeed, any subgraph

of a clique is not necessarily a clique. One can also check that its centrality CK also does

not satisfy the continuity property. For example, consider a single edge G (figure 5.5a)

where the white vertex v has clique centrality CK(v,G) = 0. Then, if a triangle F (fig-

ure 5.5b) is added to G, producing the graph G + F (figure 5.5c) with CK(v,G + F) = 1,

there is no way to rise the centrality of v from 0 to 1 by adding the edges of the triangle

one-by-one.

(a) Edge graph.

(b) Triangle graph. (c) Fusion graph from an edge
and a triangle.

Figure 5.5

Size. The last axiom that we study here is the one proposed in (Boldi & Vigna, 2014)

about size (see figure 5.6). This was formalized as follows: for any n > 0 if we consider

clique Kn and a circuit Cn, for a centrality measure C one would expect that C(0,Kn) >
C(0,Cn). Then no matter how big is C(0,Kn), there should exists a value m > n where

the centrality of the cycle Cm passes the centrality of the clique Kn, namely, C(0,Kn) <
C(0,Cm). This argument is related to the size of graphs in the sense that no matter how

slow the centrality of Cm grows, at some point it should beat the clique of size n. We

propose a generalization of this axiom as follows.

AXIOM 5 (Size). A centrality measure C satisfies the size axiom if for every infinite

sequence {Gn}0≤n of connected graphs with V (Gn) = {0, . . . , n} and for every value N

there exists m such that C(0,Gm) ≥ N .

27

0

1
2

3

4

5
6

x

n
⋯

Kn

0

1

2

3

4

5

6

7

y

m

⋯

Cm

Figure 5.6. Size axiom graph.

Here the sequence {Gn}0≤n is playing the role of the circuits and N the role of the

centrality in the clique. Thus, if a centrality measures satisfies Axiom 5 then it satisfies

the size axiom of (Boldi & Vigna, 2014), but the converse of course is not true.

This axiom is clearly satisfied by all-subgraphs and trees centrality. Indeed, by Propo-

sition 3.1 we know that CA(v,G) is always bounded below by log(n) and thus the all-

subgraphs satisfy the axiom (similar argument can be given for trees centrality). Typical

centrality measures that do not satisfy the size axiom are “local measures” that only con-

sider subgraphs of bounded size, i.e., degree or k-neighborhood centrality. However, there

are families of subgraphs of unbounded size that also do not satisfy this axiom, i.e., clique

centrality. In both cases, if we consider the sequence of lines {Ln}0≤n, we can see that

the centrality on the vertex 0 is not growing and, thus, for a reasonable N the axiom does

not hold. Actually, the next theorem shows that this counter-example is enough to show

whether a centrality measure satisfy the size axiom or not.

Theorem 5.5. Let F be a family of subgraphs that satisfies the isolated vertex axiom.

Then CF satisfies the size axiom if, and only if, limn→∞ ∣F(0, Ln)∣ =∞.

PROOF. Let F be a family of substructures satisfying the isolated vertex axiom. If CF

satisfies the size axiom let choose the infinite sequence {Ln}0≤n. We know that for every

N ∈ N exists m > 0 such that CF(0, Lm) ≥ N . This means that limn→∞ 2CF(0,Ln) =∞. On

the other hand, if we know that limn→∞ ∣F(0, Ln)∣ =∞ then for every N ∈ N exists m > 0

such that log(∣F(0, Lm)∣) ≥ N . Now, if {Gn}n≥0 is any sequence of connected graphs
28

such that ∣V (Gn)∣ = n, using the isolated vertex axiom we know that for every m > 0 it

holds that N ≤ CF(0, Lm) ≤ CF(0,Gm). Which means CF satisfies the size axiom.

�

We remark that all centrality measures consider in this thesis satisfies the isolated

vertex axiom. Therefore, it is enough to check whether the family of subgraphs grows on

the line to see whether the centrality notion is “local” or not.

We want to end this section by pointing out that in (Boldi & Vigna, 2014) it was shown

that all standard notions of centrality in the literature (like closeness (Bavelas, 1950),

betweeness (Freeman, 1977), Page Rank (Brin & Page, 1998), Katz index (Katz, 1953),

etc) do not satisfy at least one of its axioms and, therefore, do not satisfy at least one of

the general axioms stated above. This shows that all the standard notions for centrality

studied in the literature are incomparable with all-subgraphs centrality.

29

6. CENTRALITY MEASURES FOR SETS OF VERTICES

Any natural centrality measure should come with a simple extension to measure the

centrality of sets of vertices. Although this is a desirable property, it is not always clear

how to do it (i.e. not many centrality measures in the literature have a standard extension to

sets of vertices). In this section, we embark on extending our families of centralities from

vertices to sets and give a natural characterization for all-subgraphs centrality. Towards

the end, we show an application of this notion regarding the centrality maximization of a

vertex.

Given an arbitrary family of subgraphs F , what should be its extension from vertices

to sets? A first approach is to consider all connected subgraphs in F that contains all

elements in the sets. Formally, given U ⊆ V (G) one could consider the family of relevant

subgraphs:

F∗(U,G) = {S ⊆ G ∣ U ⊆ V (S) ∧ ∃v ∈ U. S ∈ F(v,G) }.

In other words, all relevant subgraphs of vertices in U that cover U . Although this is the

direct extension for connected subgraphs, this definition rises two issues. First, some local

families (e.g. k-neighborhood) could not keep the restriction of having all vertices in U

inside a subgraph (i.e. U ⊆ V (S)). Moreover, if the size of U grows then there will be less

subgraphs satisfying such restriction, making the definition impractical for some families

of subgraphs. Second, sets that have more relevant subgraphs under this definition are

likely to be closer in the graph. For example, if we look at the extension of all-subgraphs

A∗(U,G), then in a circuit Cn a set U of k-vertices that has maximum centrality will be

any set of k contiguous vertices. Clearly, if one looks for a central group of k-vertices in

Cn, one would prefer a set of k-vertices that are equidistant in Cn because they cover more

relevant structures of the graph as a group.

30

Given the previous discussion, we define the extension of F to sets of vertices U on

G, denoted as F(U,G), as follows:

F(U,G) = {S ⊆ G ∣ U ⊆ V (S) ∧ ∀H ∈ ConnComp(S). ∃v ∈ U. H ∈ F(v,G) }.

Note that this extension is similar to the one discussed above (i.e. F∗(U,G)), but we asked

that each connected component from S comes from a relevant subgraph of a vertex in U .

This allows to use disconnected subgraphs to cover U and, at the same time, each con-

nected component comes from connected subgraphs in F . Unlike our first extension, this

definition is not local anymore and gives meaningful results for any set U . In particular,

when U = {v} this definition generalizes the family of subgraphs for vertices given that

F(U,G) = F(v,G).

With a family of subgraphs for sets of vertices, it is natural to develop its corresponding

centrality measure for sets. Similar than for vertices, given a set U ⊆ V (G) from a graph

G, we define the F-centrality measure of U in G as the worst-case entropy of F(U,G),

namely:

CF(U,G) = log (∣F(U,G)∣) .

All families introduced in previous sections have a corresponding centrality measure over

sets. From now, we restrict our analysis to the all-subgraphs family and its centrality over

sets, and leave the understanding of other families for future work.

Example 6.1. Let Cn be a circuit of length n ≥ 3 and consider all sets U ⊆ V (Cn) of

two vertices. Then one can check that the set U that maximizes CA(U,Cn) is any pair of

vertices that are at distance n
2 (assuming n even). Furthermore, if U are sets of k vertices

with k a factor of n, then CA(U,Cn) is maximized when all vertices in U are distributed

in Cn with equal distance. Intuitively, this is the best way of covering a circuit Cn with k

vertices.

31

Next we show that all-subgraphs centrality over a set U can be reduced to computing

the centrality over a vertex. Recall that we denote by G/U the set contraction of U on

G, namely, to merge the vertices U to one vertex and keeping multi-edges into U (see

Section 2). In particular, recall that U is a vertex in the multigraph G/U .

Theorem 6.1. Let G be a graph and U ⊆ V (G). Then:

CA(U,G) = CA(U,G/U) + ∣{e ∈ E(G) ∣ e ⊆ U}∣

PROOF. For any set U ⊆ V (G), if G[U] is the induced graph in G by the nodes in

U , the amount A(U,G[U]) represent every subgraph not necessarily connected in G[U]
that contains every node in U . This means that every edge in E(G[U]) could be added or

removed to make a new subgraph. Thus,

∣A(U,G[U])∣ = 2∣E(G[U])∣.

On the other hand, let G′ be a subgraph of G where every strongly connected compo-

nent has at least one node from U . Then, G′ can be divided into two parts. The one that is

completely contained in G[U] and the one that only has edges outside of G[U]. Then we

have the following inequality

∣A(U,G)∣ ≤ ∑
G′∈A(U,G[U])

∣A(U,G/U)∣ = ∣A(U,G/U)∣∣A(U,G[U])∣.

In the other direction, for every element in ∣A(U,G/U)∣∣A(U,G[U])∣ there is a cor-

responding subgraph of G where every strongly connected component has non empty

intersection with S. Therefore,

∣A(U,G)∣ ≥ ∣A(U,G/U)∣∣A(U,G[U])∣.

Finally, applying logarithm we conclude the proof. �

32

The all-subgraphs centrality of a set U in G is then reduced to the centrality of U (i.e.

as a vertex) in the set-contraction of U on G plus the number of edges between vertices

in U . Note that, in particular, this shows that if we look for k-sets of high centrality, then

the all-subgraphs centrality is balancing between the number of edges of the set (i.e. how

similar is the set to a clique) versus how central it is if we contract it into a vertex.

This connection between both definitions (i.e. vertices and sets) for all-subgraphs

centrality is strictly related to the properties of the family. Given two subgraphs G1 and

G2 of G with V (G1) ∩ V (G2) ≠ ∅, we can generate a new subgraph G1 ∪G2 by merging

the nodes they share. Unfortunately, this is not possible for all families like the family of

trees T , that is, the union of two trees is not necessarily in T . This means that Theorem 6.1

cannot be directly extended for families like trees, in particular, for trees centrality.

To end this section, we show an example how the all-subgraphs centrality for sets al-

lows us to study simple questions regarding the maximization of the centrality of a vertex.

Given a graph G and a vertex v ∈ V (G), with whom should we connect v in G in order

to maximize its centrality? In other words, if I am in a social network, with who should I

connect myself in order to maximize my centrality? A naive answer to this question is to

connect v to the most central vertex in G. Actually, from the perspective of all-subgraphs

centrality this is not the right answer: connecting to the most central node will rise its

centrality but maybe the centrality of the most central vertex is highly dependent of v’s

centrality. Instead, all-subgraphs centrality says that v must be connected to the vertex u

where {u, v} (as a set) is more central in G.

Theorem 6.2. Given G and v ∈ V (G) with {u ∈ V (G) ∣ {u, v} ∉ E(G)} ≠ ∅, it holds

that:

arg max
u∈V (G)

CA(v,G + {v, u}) = arg max
{u,v}∉E(G)

CA({v, u},G)

PROOF. Let u be any node not directly connected with v. Then for e = {v, u} we need

an expression for ∣A(v,G + e)∣. Any subgraph in G + e that contains v has the option to
33

use e or not. For S ∈ A(v,G+ e) such that e /∈ E(S) then S ∈ A(v,G). On the other hand,

if e ∈ E(S) then there is a corresponding subgraph H ∈ A({v, u},G/{v, u}) that satisfies

two properties. First, for all e ∈ E(H) if e = {{v, u},w} then exists an edge e′ ∈ E(S)
where e′ = {w, v} or e′ = {w,u}. In second place, for every e ∈ E(H) such that {v, u} /∈ e
then e ∈ E(S). In other words

∣A(v,G + e)∣ = ∣A(v,G)∣ + ∣A({v, u},G/{v, u})∣.

From here we can notice that maximizing the variation is equivalent to maximize the

amount of subgraphs in A({v, u},G/{v, u}). The result follows from Theorem 6.1 and

monotonicity of logarithm.

�

34

7. ON COMPUTING CENTRALITY MEASURES BASED ON SUBGRAPHS

We study here the problem of computing centrality measures based on subgraphs. In

particular, we study the problem of computing the all-subgraphs centrality. We state the

problem as follows: given a family of subgraphs F , consider the problem

Problem: COUNT(F)

Input: A graph G and a vertex v ∈ V (G)
Output: ∣F(v,G)∣

Furthermore, given a class of graphs G we write COUNT(F)[G] for the parametrized

version of COUNT(F) when input graph G is restricted to G. Of course, given a family F
computing its centralityCF requires also taking the logarithm to the output of COUNT(F).

Although these are not the same problems, the conclusions obtained here sheds light on

the pitfalls of computing a centrality based on a family F .

We start by giving an algorithm for computing COUNT over all-subgraphs A. Al-

gorithm 1 shows a simple recursive algorithm for counting all connected subgraphs that

contains a vertex v ∈ V (G) in a (multi)graph G. The main idea is indeed very simple.

Recall that N(v,G) denotes the neighborhood of v in G (see Section 2). If N(v,G) = ∅,

the vertex v is an isolated vertex and there is exactly one subgraph. Otherwise, v is con-

nected to at least one vertex, called it u ∈ N(v,G), and by some edge e = {u, v}. Then we

can partition the set of connected subgraphs A(v,G) into those that u and v are directly

connected by some edge, and those that are not. For the former, we can compute the exact

number recursively as COUNTALL(G − e, v) (recall here that G − e contains no edges be-

tween u and v). For the latter, letw(e) be the number of edges between u and v inG (recall

that G could be a multigraph). Then all connected subgraphs where u and v are directly

connected by some edge can be formed by choosing a non-empty set of edges between u

and v (i.e. 2w(e) − 1 many possibilities) plus a connected subgraph from A(e,G/e) where

35

Algorithm 1. All-
subgraphs counting

1: Require: A graph G and vertex v ∈ V (G)
2: procedure COUNTALL(G, v)
3: if N(v,G) = ∅ then
4: return 1
5: else
6: let u ∈ N(v,G)
7: e← {u, v}
8: return COUNTALL(G − e, v) +

9: (2w(e) − 1) ⋅ COUNTALL(G/e, e)

Algorithm 2. All-
subgraphs on trees

1: Require: A tree T and vertex v ∈ V (T)
2: procedure COUNTTREES(T , v)
3: if N(v, T) = ∅ then
4: return 1
5: else
6: let u ∈ N(v, T)
7: e← {u, v}
8: return COUNTTREES(T − e, v) ⋅
9: (COUNTTREES(T − e, u) + 1)

G/e is the set contraction of e on G (i.e. COUNTALL(G/e, e) many possibilities). There-

fore, we can compute COUNTALL(G,v) by recursively computing COUNTALL(G− e, v)
and COUNTALL(G/e, e). In both cases, the number of edges or the number of vertices is

reduced, and COUNTALL will eventually finish.

Although Algorithm 1 is easy to implement, it could take exponential time in the

number of edges. Actually, this is the best that one can hope as we show in the next

result. Recall that #P is the class of counting problems that can be defined as counting

the number of accepting runs of a polynomial-time non-deterministic Turing machine.

Further, a counting problem is #P-complete if it is in #P and all counting problems in

#P can be reduced to it (Valiant, 1979). It is known that a polynomial-time algorithm for

solving a #P-complete problem, if it existed, would imply that P = NP. For this reason,

#P-complete is a class of counting problems considered as hard (Arora & Barak, 2009).

Unfortunately, some family of substructures make the computation of centrality an

intractable task in the size of the graph.

Theorem 7.1. COUNT(A) and COUNT(T) are #P-complete.

The proof is mainly based on the one made in (Jerrum, 1994) where Jerrum proved that

counting labelled trees is complete for the class #P. In order to prove that COUNT(A)
and COUNT(T) are #P-complete we need some auxiliary problems.

36

(i)

Problem: #3-HAM

Input: A cubic graph G

Output: Number of Hamiltonian paths in G.

(ii)

Problem: φ

Input: A graph G, S ⊆ V (G) and k > 0

Output: Number of connected subgraphs containing S

with exactly k nodes from G.

(iii)

Problem: ψ

Input: A graph G and S ⊆ V (G)
Output: Number of connected subgraphs from G

covering S.

(iv)

Problem: COUNTALL(F)
Input: A graph G

Output: ∣⋃v∈V (G)F(v,G)∣.

In this section we say that a problem A has a reduction to problem B if we can solve

A using an algorithm for B within a polynomial time gap. We denote this as A ≤ B. The

strategy for the proof is to reduce #3 − HAM to COUNT(A). Since #3 − HAM is hard

for the class #P (Jerrum, 1994) then COUNT(A) will be as well.

Theorem 7.2. #3 − HAM ≤ φ.

PROOF. As seen in (Jerrum, 1994), the problem of counting the amount of labelled

trees with k edges covering a set S of nodes is #P − COMPLETE. This is proven by

a weak parsimonius reduction from this problem to #3 − HAM. In this procedure the

author generates a graph G′ such that any connected graph with k = 4n−3 nodes covering

a set S must be a tree corresponding to a Hamiltonian path in the original graphG. We can

use the same reduction to prove that φ is hard, we just use the exact same graph, k = 4n−3
37

and the set S of nodes inside the gadget defined in that reduction. This is correct since the

only connected subgraphs we can count with k nodes are trees. �

Theorem 7.3. φ ≤ ψ.

PROOF. Given a graphG, a set S ⊆ V (G) and k > 0, we want to count every connected

sub graph of G covering S with exactly k nodes. We define the following elements:

(i) The set of nodes V (Gi) = V (G) ∪ V (G) × {0,1, ..., i − 1}.

(ii) The set of edges E(Gi) = E(G) ∪ {(v, (v, j)) ∣ v ∈ V (G) and 0 ≤ j ≤ i − 1}.

For every i, j ∈ {1, ..., n} define ai as the amount of subgraph containing S in the

graph Gi and Nj the number of subgraphs from G containing S with j nodes. From the

construction of every Gi we can notice that

ai =
n

∑
j=1

2ijNj.

Thus, if we can compute every ai it is possible to recover the vector with values Nj . Since

the matrix with values 2ij is non singular, we can invert that matrix in polynomial time.

This is the commonly used technique of interpolation. Then, the amount of subgraphs

fromG containing S with k nodes will be the component k from the vector, i.eNk. Finally,

this reduction is clearly polynomial time and concludes the proof.

�

Theorem 7.4. ψ ≤ COUNTALL(A).

PROOF. Finally, given a graph G and a set S ⊆ V (G), we want to count every con-

nected subgraph of G containing S. To prove this reduction we define the following ele-

ments similar to the previous proof:

(i) The set of nodes V (Gi) = V (G) ∪ S × {0,1, ..., i − 1}.

(ii) The set of edges E(Gi) = E(G) ∪ {(v, (v, j)) ∣ v ∈ S and 0 ≤ j ≤ i − 1}.
38

Therefore, if Nk is the amount of connected subgraphs covering exactly k nodes from S,

then the number of connected subgraphs from Gi is

∣A(Gi)∣ =
∣S∣

∑
k=0

2ikNk.

From here we can use the interpolation technique and recover N∣S∣ which is the value

we are looking for. �

Theorem 7.5. COUNTALL(A) ≤ COUNT(A).

PROOF. According to theorem 7.4 we know that COUNTALL(A) is hard. Given an

arbitrary graphGwe can enumerate its nodes as V (G) = {v1, v2, ..., vn} then we can count

the amount of sub graphs in G as

∣A(G)∣ = ∣A(v1,G)∣ + ∣A(v2,G − {v1})∣+

∣A(v3,G − {v1, v2})∣ + ... + ∣A(vn,G − {v1, v2, ..., vn−1})∣

=
n

∑
i=1

∣A(vi,G − (∪j<i{vj}))∣.

To show this, let S be any connected sub graph of G. Let V (S) the nodes in S and let i

be the minimum integer such that vi ∈ V (S). For every j < i then vj /∈ V (S). Thus we can

not count S in ∣A(vj,G − {v1, ..., vj−1})∣. On the other hand, since vi ∈ V (S) then S can

not be counted in ∣A(vk,G− {v1, v2, ..., vi, ..., vk−1})∣ for every k > i. Then, we only count

S in ∣A(vi,G − (∪j<i{vj}))∣ �

Corollary 7.1. If F is a family of substructures such that COUNTALL(F) is #P-hard,

then COUNT(F) is #P-hard.

PROOF. Using the same technique to prove Theorem 7.5. If we could solve COUNT(F)

for a every node v ∈ V (G) then we can use those values to compute COUNTALL(F). �

39

In (Jerrum, 1994), Jerrum proves that COUNTALL(T) is #P-hard. Corollary 7.1

shows that COUNT(T) is also #P-hard. On the other hand, since #3 − HAM is #P −
HARD, then all of the problems in this sections are also hard for this class.

To conclude the proof of theorem 7.1 we need to show that COUNT(A) and COUNT(T)
are actually in the class #P. We can construct a non deterministic Turing machine that

compute the following procedure. First, enumerate the edges in E(G). Then, non de-

terministically, for every edge chooses too add it to the subgraph or not by following the

enumeration. Finally, the machine checks if the subgraph defined by those edges is con-

nected and contains v and finally accepts. Which can be done in polynomial time. In the

case of COUNT(T), determining if a subgraph is a connected tree is also doable in poly-

nomial time. Since every connected subgraph is related with one and only one acceptation

path, this proves that COUNT(A) and COUNT(T) are in #P.

Theorem 7.1 is a negative result for using all-subgraphs centrality or trees centrality

in practice. Nevertheless, we believe that this should not overshadow the impact that both

measures can have in defining good centrality notions. As we show in Section 5, both

notions behaved well as centrality measures and, although they are difficult to compute,

they can still be used, for example, to guide the definition of new centrality measures or to

design new efficient algorithms for computing the most relevant vertices in a graph.

Given that computing all-subgraphs over any graph is a difficult problem, our next

step is to consider classes of graphs G where COUNT(F)[G] can be solved efficiently.

A natural class to start here are trees. Indeed, when G is a tree every internal vertex is

a cut-vertex and we can use the ideas of Lemma 3.1 for computing ∣A(v,G)∣ efficiently.

More specific, from the proof of Lemma 3.1 one can show that if v is a cut-vertex of a

graph G and G1, . . . ,Gn are subgraphs that partitions G on v (i.e. V (G) = ∪ni=1V (Gi),

E(G) = ∪ni=1E(Gi), and V (Gi) ∩ V (Gj) = {v} for i ≠ j), then A(v,G) = ∏n
i=1A(v,Gi).

40

We can exploit this in a tree by considering all subtrees T1, . . . , Tn hanging from v and

computing A(v,G) as the product of A(v, Ti).

In the procedure COUNTTREES of Algorithm 2 we use the previous idea for com-

puting ∣A(v, T)∣ when T is a tree and v ∈ V (T). It follows a similar approach than

in Algorithm 1. First, if v is an isolated vertex (i.e. N(v, T) = ∅), then it outputs 1.

Otherwise, it takes a vertex u ∈ N(v, T), defines the edge e = {u, v}, and decompose

T in two subtrees by removing e from the graph. Notice that, if we remove e from T ,

we create two connected components Tv and Tu, where Tv and Tu contains v and u,

respectively. One can easily check that Tv and Tu + e partitions T on v and we have

∣A(v, T)∣ = ∣A(v, Tv)∣ ⋅ ∣A(v, Tu + e)∣ by the previous discussion above. Furthermore, it is

straightforward to check that ∣A(v, Tv)∣ = ∣A(v, T −e)∣ and ∣A(v, Tu+e)∣ = ∣A(u,T −e)+1∣.
Thus, we can compute ∣A(v, T)∣ by recursively computing COUNTTREES(T − e, v) mul-

tiplied by COUNTTREES(T − e, u) + 1.

In contrast to Algorithm 1, the recursion in COUNTTREES separates the graph in two

disjoint subtrees. This implies that the recursion eventually finishes and, moreover, it

takes linear time in the size of the tree. Interestingly, we can extend this idea to any graph

of bounded tree-width. In the following section we show a polynomial time algorithm to

compute All-subgraphs centrality over graph with bounded tree width. Despite that graphs

have high tree-width in practice (Maniu, Senellart, & Jog, 2019), this result gives some

clues on how to tackle the problem of computing the all-subgraphs centrality.

7.1. A polynomial Time Algorithm for All-subgraphs centrality of bounded Tree

Width

This section is dedicated to prove that All-subgraphs centrality can be computed in

polynomial time when the input graph has bounded tree width. We introduce some defini-

tions and notation needed for this proof.

41

Given a graph G, we call the structure T = (T,B) a tree decomposition of G if it

satisfies the following conditions:

(i) T = (V (T),E(T)) is a tree graph.

(ii) The set of bags B has sets of nodes from G, i.e B ⊆ 2V (G).

(iii) The union of all the sets(bags) in B is equal to V (G).

(iv) For every edge (u, v) ∈ E(G) there is a bag B ∈ B such that v, u ∈ B.

(v) For a vertex x ∈ V (T), we denote Bx as the bag associated with x. Let u, v be

two nodes of V (T). For every vertex w ∈ V (T) that belongs to the unique path

connecting u, v in T then Bu ∩Bv ⊆ Bw.

On the other hand, given a tree decomposition T = (T,B), the width of T is W (T) =
maxB∈B ∣B∣ − 1. At the same time we can define the tree width of a graph G as TW (G) =
infT ∈TD(G)W (T). Where TD(G) represents the set of every possible tree decomposi-

tion of G. In other words, the tree width of G is the minimum possible width for a tree

decomposition of G.

A class G of graphs has bounded tree width if there exists a uniform bound k such that

TW (G) ≤ k for every G ∈ G. For example, all trees is a class that has tree-width bounded

by 1.

Given a tree decomposition T = (T,B) and B ∈ B. We denote the node associated

with B as ε(B) ∈ V (T). We also say that a node v from a tree graph T is a leaf in T if v

has degree 1.

Now, given two bagsBv,Bu ∈ B from a tree decomposition T = (T,B). If v is a leaf in

T , we define the operator FUSION ∶ B2×TD(G)→ TD(G) such that FUSION(Bv,Bu,T) =
(T ′,B′) if and only if T ′ = (V (T) − {v},E(T) − {v, u}) and B′ = (B − {Bv,Bu}) ∪ (B′

u)
where B′

u = Bu ∪Bv. In other words, we merge a leaf with its father and generate a new

tree decomposition where the bag associated with the father contains the nodes in the leaf.

42

In order to formalize a way to recover a graph G from a tree decomposition T we use

the notion of recomposing tree. This construction is necessary to compute all-subgraphs

centrality recursively. For a tree decomposition T = (T,B) of a graph G, the tree graph

H = (V,E,L) is a recomposing tree graph of G if L are the set of labels for the nodes in

V , H is rooted, directed and satisfies the following conditions:

(i) For every v ∈ LEAVES(H), L(v) ∈ B.

(ii) For every u /∈ LEAVES(H), L(u) = FUSION.

(iii) If {v, u} ⊆ LEAVES(H), such that PARENT(v) = PARENT(u) then there exists

x, y ∈ V (T) such that {x, y} ∈ E(T), L(v) = Bx, L(u) = By and {x, y} ∩
LEAVES(T) /= ∅.

(iv) ⋃v∈LEAVES(H) L(v) = V (G).

(v) For u, v ∈ LEAVES(H), such that u /= v then L(u) /= L(v).

The most important property of a recomposing tree graph is stated in the following

lemma.

Lemma 7.1. Let H = (V,E,L) be a recomposing tree graph of a tree decomposi-

tion T = (T,B) for G. If {v, u} ∈ LEAVES(H) such that for a vertex w ∈ V (H),w =
PARENT(v) = PARENT(u). Then the graph H ′ = (V − {u, v},E − {(u,w), (v,w)}, L′)
where L′(z) = L(z) if z /∈ {u, v,w} and L′(w) = L(u)∪L(v) is a recomposing tree graph

of the tree decomposition T ′ = FUSION(Bε(L(u)),Bε(L(u)),T) for G.

PROOF. We just have to show that H ′ satisfies the conditions for a recomposing tree

graph.

(i) Let v ∈ LEAVES(H ′). Notice that the node z is now in the leaves of H ′. Then,

If v /= z then L′(v) = L(v) ∈ B. If v = z then by the definition of the FUSION

operator we have that L′(z) = Bε(L(u)) ∪Bε(L(v)) ∈ B′.
43

(ii) Since we did not change any node v /∈ LEAVES(H) except for z, this property is

still satisfied.

(iii) If exists x ∈ LEAVES(H ′) such that PARENT(x) = PARENT(z) then there is a

node w = ε(L′(x)) ∈ LEAVES(T) such that L′(x) = Bw because H ′ satisfies

the first property of a recomposing tree graph. On the other hand, we know that

H satisfies the property 3 of a recomposing tree graph. Which means that the

node w was connected to s ∈ V (T). Without loss of generality let assume s =
ε(L(u)). Therefore, y will be connected to s in T ′ which implies the property

since B′
s = L′(z). In any other case if the vertex z is not involved, the property

holds because H was a recomposing tree graph.

(iv) From the definition of FUSION(Bε(L(u)),Bε(L(u)),T) we know that T ′ is a tree

decomposition for G. On the other hand, for any other node different than z we

are maintaining the labels in L. Then, H ′ will satisfy that ∪v∈LEAVES(H′)L′(v) =
V (G).

(v) This holds from the fact that H is a recomposing tree graph and L′(z) /= L′(v)
for any v /= z.

�

This property shows the way to re use a recomposing tree graph after merging two bags

of a tree decomposition. We call this operation MERGE(v, u,H) =H ′. Moreover, it gives

a recursive method to use the structures defined before. Now we show that recomposing

trees are easy to compute. Which is necessary in order to use this tool.

Lemma 7.2. Given a tree decomposition T = (T,B) of a graph G, there exist a poly-

nomial time algorithm that generate a recomposing tree graph for G from T .

PROOF. Intuitively we can assign every leaf v in V (T) to a leaf x in H . Then, L(x) =
Bv. Now for a node u ∈ V (T) such that {u, v} ∈ E(T) we add two nodes to V (H). First

w which is associated with u and L(w) = Bu. Second is an auxiliary node containing the
44

fusion operator, let say z and L(z) = FUSION. Then we add {w, z} and {v, z} to E(H).

It is clear that this can be done recursively following an order in the tree T from leaves to

the root. �

Now that we know how to recompose the graph from a tree decomposition, we need

an especial definition for tree decompositions that satisfies desirable properties when com-

puting All-subgraphs Centrality. Given a graph G = (V,E), we define a subgraph tree

decomposition as T = (T, (B, τ)). Where (T,B) is an usual tree decomposition of G and

τ ∶ B → 2E is a function from bags of T to a set of edges from G. In other words τ maps

every bag of nodes to a subset of edges which defines completely a subgraph of G. In

order to T defines a correct subgraph tree decomposition, τ must satisfy that for every

pair of bags A,B in B, τ(A) ∩ τ(B) = ∅ and for every edge e in τ(A) then e ∩A = e.

This kind of tree decomposition let us to not count twice an edge when recomposing

the graph. The definition of the FUSION operator is equivalent, we just have to maintain

the edges after the fusion. We are not proving the fact that we can efficiently construct

a subgraph tree decomposition from a conventional tree decomposition. Intuitively, we

just have to assign every edge e = {u, v} ∈ E(G) to one bag Bw such that e ⊆ Bw. From

now on we consider a set of shared nodes from two adjacent bags as D ⊆ Bv ∩Bu. Since

we want to count every possible connected subgraph we can partition them by the nodes

they have. Anyways, it is important to explicitly exclude the nodes that we do not want to

appear at the counting. In order to simplify our notation, we write N (v,G) = ∣A(v,G)∣.
For a set of sets of nodes P ⊆ 2V (G), we also define

N (P,G) = ∣{S ⊆ G ∣ For every A ∈ P, exists H ∈ ConnComp(S) such that A ⊆ V (H)}∣

. In other words, N (P,G) is the amount of subgraphs where every connected component

cover some set in P . The main idea of the algorithm is based on the following result.

45

Lemma 7.3. Given a graph G and a set of nodes D from G. The size of the All-

Subgraph family of a node v ∈D is

N (v,G) = ∑
A⊆D,v∈A

N ({A},G − (D −A)).

PROOF. For every subgraph S of G containing v, we have just one maximal subset of

D that has x and is a subset of node from S, lets say A. Since A is maximal, every node in

D −A is not in S. Thus, S will be counted in N ({A},G − (D −A)). Then, we have that

N (v,G) ≤ ∑
A⊂D,v∈A

N ({A},G − (D −A)).

On the other hand, the family of the set {A} will count subgraphs that have the nodes in

A and only one connected component. Since v ∈ A, we are counting connected subgraph

of G containing v. Then we have that

N (v,G) ≥ ∑
A⊂D,x∈A

N ({A},G − (D −A)).

�

Since we can count subgraphs containing a vertex v ∈ D in this way, our goal is to

know the value of N ({A},G − (D − A)) for every set A ⊆ D such that v ∈ A. Now

we need a tool to compute those values by taking advantage from the structure of a tree

decomposition. Here we introduce partitions to accomplish this. For every A ⊆ D, we

define a partition of A as a collection {Pi}ki=1 satisfying the following conditions:

(i) For all i, j in {0,1, ..., k}, if j /= i then Pi ∩ Pj = ∅.

(ii) The union of every Pi is equal to A.

Given A ⊆D the set of all partitions of A is denoted as Part(A).

It is important to notice that given a set A ⊆ D when we fuse two bags B1,B2 from

a subgraph tree decomposition, there are some connected subgraphs in the merged graph
46

that will have every node in A. Thus, we can look to this subgraph as two separated parts.

The one that belongs toG(B1) and the part that was inG(B2). It is important to notice that

this two parts can look like unconnected subgraphs inside the corresponding graphG(Bi).

Nevertheless, in the merged graph they generate a connected subgraph. This situation is

captured by an order in partitions. Let P1 and P2 two partitions from a set A ⊆D. We say

that P1 ≤ P2 if for every set B in P1 exists a set C in P2 such that B ⊆ C. In other words,

P1 refine P2.

It is a well known result that Part(A) is a partially order set with the relation defined

above. Even more, this conform a lattice which means that every subset from Part(A)
has an infimum and supremum. The supremum under this order is exactly what we needed

to generate a connected subgraph based in partitions.

Now, let assume we have G in two separated parts G1,G2 such that V (G1)∩V (G2) =
D, E(G1) ∩E(G2) = ∅ and G1 ∪G2 = G. In other words, we can generate G by merg-

ing this two separated parts. The following result shows a way to compute the values

N ({A},G − (D −A)) from those two parts.

Lemma 7.4. Let T = (T, (B, τ)) be a subgraph tree decomposition of a graph G. Let

G1 and G2 two graphs defined by two adjacent bags of T . Let D be a set of nodes that

both bags share, i.e D ⊆ B1 ∩B2. If P ∈ Part(D −R) we denote the substructures of P

without R in the graph Gi as N (P,Gi −R) where i = 1,2. Thus, the substructures of P

without R in the graph (G1 ∪G2) is

N (P, (G1 ∪G2) −R) = ∑
P1,P2∈Part(D−R)

P=sup(P1,P2)

N (P1,G1 −R)N (P2,G2 −R).

PROOF. The main idea is to count subgraphs containing P using the information we

already know before the fusion. Let S be a subgraph of G1 ∪G2 where every set A in P

is contained exclusively in one connected component of S and every node from R is not

in V (S). We denote CC(A,G1 ∪G2) as the connected component associated with the set
47

A in G1 ∪ G2. At the same time, we can separate every CC(A,G1 ∪ G2) in the section

corresponding to each bag Bi for i ∈ {1,2}. Each of this sections will have mi(A) ≥ 1

connected components in the corresponding graph G(Bi) and A appears in both sections.

From here is easy to notice that for every k in {1,2, ...,mi(A)} there is a set Lik(A) ⊆ A
such that ⋃k∈{1,2,...,mi}L

i
k(A) = A. We can do this for every set A. Finally, we define

Pi = ⋃
A∈P

mi(A)

⋃
k=1

{Lik(A)}.

It is clear that every Pi do not contain R because it is not in S. Moreover, Pi is a

partition of D −R and P = sup{P1, P2}. Concluding that

N (P, (G1 ∪G2) −R) ≥ ∑
P1,P2∈Part(D−R)

P=sup(P1,P2)

N (P1,G1 −R)N (P2,G2 −R).

In the other direction, we know that if two partitions P1, P2 of D − R have P as its

supremum. Then for every set A from P there are two collection of sets L1(A) ⊆ P1 and

L2(A) ⊆ P2 such that

⋃
L∈Li(A)

L = A.

This means that for every setH in L1(A) exists a set J in L2(A) such thatH∩J =K /= ∅.

The same can be verified forL2(A). In other words, every connected component havingH

in the bag B1 will be connected in B2 through the nodes in K. Since this is true for every

set in Li(A) we can create a complete connected component in S by merging a subgraph

counted inN (P1,G1−R) and other subgraph counted inN (P2,G2−R). Concluding that

N (P, (G1 ∪G2) −R) ≤ ∑
P1,P2∈Part(D−R)

P=sup(P1,P2)

N (P1,G1 −R)N (P2,G2 −R).

�

48

This result is assuming we have stored the values of N (P,Gi − R) for both graphs

Gi and for every possible partition P which depends on the set D. To make a recursive

procedure, we have to use information from previous iteration in order to maintain it as a

polynomial time algorithm. The main issue left arises after merging two bags from a tree

decomposition. After one iteration we have all the information for every sub partition as

in lemma 7.4. Then, for the next iteration of the algorithm we would like to merge the

graph generated during last iteration with one bag from the original tree decomposition.

The problem is that the actual set D′ of vertices that both bags share is different from the

one in the previous iteration.

Lemma 7.5. Let T = (T, (B, τ)) be a subgraph tree decomposition of a graph G, B

be a bag from B and D ⊆ B. For a vertex v /∈ B define D′ = (D ∪ v). If H is the subgraph

induced by B and S the subgraph induced by B ∪ {v} then for any P ∈ Part(D′ −R)

(i) If {{v}} ∩ P = ∅ and v /∈ R. Then N (P,S −R) = 0.

(ii) If {{v}} ∩ P = ∅ and v ∈ R. Then N (P,S −R) = N (P,H − (R − {v})).
(iii) If {{v}} ∩ P /= ∅ then N (P,S −R) = N (P − {{v}},H −R).

PROOF. The idea behind this procedure is to use previous information to compute

values associated with v. Since v did not belong to the bag where we want to compute the

partition then none of the previous nodes is connected with v.

In the first case, we have that v /∈ R, then must be a set A in P such that v ∈ A /= {k}.

Then, we are counting subgraphs where the node v must be connected with others. Which

is impossible since we say that v will have no connections.

In the second case, we want subgraphs that do not contain v. Which is the same as

counting the subgraphs before adding v to the bag.
49

Finally we would want to count the amount of subgraphs that has v as a separated

connected component. This clearly is the same amount of subgraphs of the partition P −
{{v}} in the graph H because v is disconnected in S.

�

Lema 7.5 shows the way to add a new vertex to the bag that is not connected to any

vertex inside and update the information about the subgraphs of every partition. For a bag

B ∈ B and a node v ∈ V (G) we call this operation as ADD(v,B). At the same time, there

may be some vertex u in the previous iteration belonging to D, that the algorithm will not

use anymore for the computation. Here we would like to forget the information related

to u and use it to include a new vertex needed for a future iteration. The following result

show how to update the values of every sub partition in a new set D′ =D − {u}.

Lemma 7.6. Let T = (T, (B, τ)) be a subgraph tree decomposition of a graph G, B

be a bag from B and D ⊆ B. For a vertex u ∈ B define D′ = (D − {u}). If H is the

subgraph induced by B then for any P ∈ Part(D′ −R)

N (P,H −R) = ∑
A∈P

N ([P −A] ∪ {A ∪ {u}},H −R) +N (P,H − (R ∪ {u})).

PROOF. We want to forget the information associated with u and pass it to other par-

titions. In other words, we will count every possible subgraph containing the partition P

which is not computed when u is not present in R nor P . For this we sum over different

sub partitions, P ′ = [P −A] ∪ [A ∪ {u}] which cover every possibility for a sugraph con-

taining u. Finally, it is possible that u did not belong to any connected component of a

subgraph we want to count. This is why we add the final term N (P,H −R ∪ {u}). �

50

Whenever we want to forget the information from an specific node without losing the

computation for the partitions we use the previous procedure. For a bag B and a node

v ∈ B, we call this operation FORGET(u,B).

Finally, the following algorithm compute All-subgraph centrality in polynomial time

for bounded tree width.

(i) Given a graph G of bounded tree width andv ∈ V (G), compute a subgraph tree

decomoposition T = (T, (B, τ)).

(ii) Compute a recomposing tree graph H = (V,E,L) for G such that exists u ∈
LEAVES(H) where v ∈ L(u) and PARENT(u) = ROOT(H).

(iii) For every bag B ∈ B define DB = B. Then, for every R ⊆ DB and every

P ∈ Part(DB −R) compute N (P,G(B)) using algorithm 1.

(iv) Choose {w, z} ⊆ LEAVES(H) − {u}. Such that PARENT(w) = PARENT(z). If

ε(L(w)) ∈ LEAVES(T) define D = DL(z) ∩DL(w). Then y1 ∈ DL(z) −D and

y2 ∈DL(w) −D. Then apply ADD(y1, L(w)).

(v) Redefine T = FUSION(L(w), L(z),T) and H = MERGE(w, z,H). Define

DL(z) =D.

(vi) For every R ⊆ DL(z) and for every P ∈ Part(DLz −R), using lemma 7.4 com-

pute N (P,L(z)).

(vii) Apply FORGET(y2, L(z)).

(viii) If ∣B∣ > 1 go to 4.

(ix) Output CA(v,G) using lemma 7.3 and the information for B ∈ B.

The correctness of this algorithm follows from the proof of every result in the section.

Now, we need to show that this is a polynomial time algorithm in the size of G. In first

place, as stated in (Bodlaender, 1996), if TW (G) = k, there is an algorithm that takes

time O(2kn) to get a tree decomposition T of width k. Therefore, we know a subgraph

tree decomposition can be obtained in time O(n). Second, by lemma 7.2 we can compute

51

a recomposing tree graph in time O(n). In third place, we know that for every bag B ∈ T
then ∣B∣ ≤ k. Therefore, the size of every partition P is bounded by k. This means that

at most we are computing 2k values N (P,G(B)) in every iteration. It is also known

that ∣V (T)∣ ≤ n. Then, in step 3 we are running algorithm 1 at most n2k times, which

still lineal in n since ∣G(B)∣ ≤ k. Then, every iteration after step 3 is merging two bags

and updating the values N (P,G). This update will take O(2k) by the same argument as

before. Step 7 is necessary to avoid storing unnecessary values, which also takes time

O(2k). Since ∣B∣ ≤ n we are not repeating this process for more than n iterations. Finally

we apply lemma 7.3 which only use the information of a few partitions. This concludes

that the algorithm takes time O(f(k)n).

52

8. CONCLUSIONS

In first place, this work establish theoretical foundations to study centrality measures

based in sub structures of the graph. Unlike previous approaches to study centrality, our

proposal focused the study in the robust notion of connected subgraphs. This allows to

define different centrality measures with desirable properties answering our first question:

The most important or central node in a network is the one belonging to more important

substructures. This leads us to answer our second question: the centrality measure that is

more meaningful for the network analysis is defined by the context of the case of study.

Which means an expert is necessary to define important substructures, i.e the family of

interest to define centrality as we showed during this work. Our approach, at the same

time, is useful to determine which properties are relevant for an expert and how to ensure

the corresponding centrality measure will satisfy such properties.

Second, the extension to sets is a natural property that every centrality measure should

have. This allows a better understanding of the graph structure and more potential appli-

cations for this approach.

In third place, we are aware that generality has a prize. The complexity of computing

our all-subgraphs centrality comes in compensation of the powerful properties it has. In

other words, it is natural to expect that a centrality that satisfies every property we pro-

pose is likely to be hard to compute. Nevertheless, this is not an impediment to seek for

theoretical understanding of such a rich centrality measure.

Finally, this contribution arises several research opportunities regarding centrality mea-

sures based on subgraphs, which are briefly discussed here. One of the most important

question is whether all-subgraphs centrality can be approximated efficiently, or even if the

rank order given by this measure can be approximated. Another interesting question is to

consider when a family of graphs can approximate another family over some particular

class of graphs (e.g. plain graphs). For the sake of simplification, we only considered

53

undirected graphs but another relevant question is to study how to extend these results to

directed graphs or to hypergraphs. Furthermore, the initial motivation of our approach

came from centrality measures for graph query languages, but in order to incorporate this

approach, several properties must be understood like, for example, how to mix the cen-

trality measures to the output of a query. Finally, it would be interesting to consider a

randomized version of our approach where not all subgraphs have the same chances to

appear. Instead of considering the worst-case entropy, one could study the entropy of a

family given a particular distribution and study their properties. We leave this and other

questions for future work.

54

REFERENCES

Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J. L., & Vrgoc, D. (2017).

Foundations of modern query languages for graph databases. ACM Comput. Surv., 50(5),

68:1–68:40.

Arora, S., & Barak, B. (2009). Computational complexity: a modern approach. Cam-

bridge University Press.

Bandyopadhyay, S., Narayanam, R., & Murty, M. N. (2018). A generic axiomatic charac-

terization for measuring influence in social networks. In 2018 24th international confer-

ence on pattern recognition (icpr) (pp. 2606–2611).

Bavelas, A. (1950). Communication patterns in task-oriented groups. The Journal of the

Acoustical Society of America, 22(6), 725–730.

Bodlaender, H. L. (1996). A linear-time algorithm for finding tree-decompositions of

small treewidth. SIAM Journal on computing, 25(6), 1305–1317.

Boldi, P., Luongo, A., & Vigna, S. (2017). Rank monotonicity in centrality measures.

Network Science, 5(4), 529–550.

Boldi, P., & Vigna, S. (2014). Axioms for centrality. Internet Mathematics, 10(3-4),

222–262.

Borgatti, S. P., & Everett, M. G. (2006). A graph-theoretic perspective on centrality.

Social networks, 28(4), 466–484.

Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine.

Computer networks and ISDN systems, 30(1-7), 107–117.

55

Buil-Aranda, C., Ugarte, M., Arenas, M., & Dumontier, M. (2015). A preliminary in-

vestigation into sparql query complexity and federation in bio2rdf. In Alberto mendelzon

international workshop on foundations of data management (p. 196).

Chien, S., Dwork, C., Kumar, R., Simon, D. R., & Sivakumar, D. (2004). Link evolution:

Analysis and algorithms. Internet mathematics, 1(3), 277–304.

Cover, T. M., & Thomas, J. A. (2012). Elements of information theory. John Wiley &

Sons.

Estrada, E., & Rodriguez-Velazquez, J. A. (2005). Subgraph centrality in complex net-

works. Physical Review E, 71(5), 056103.

Faghani, M. R., & Nguyen, U. T. (2013). A study of xss worm propagation and detection

mechanisms in online social networks. IEEE transactions on information forensics and

security, 8(11), 1815–1826.

Freeman, L. C. (n.d.). Centrality in social networks conceptual clarification. Social

Networks, 1(1978/79), 215–239.

Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry,

35–41.

Gottlob, G., Greco, G., Leone, N., & Scarcello, F. (2016). Hypertree decompositions:

Questions and answers. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI sym-

posium on principles of database systems, PODS 2016, san francisco, ca, usa, june 26 -

july 01, 2016 (pp. 57–74).

Jeong, H., Mason, S. P., Barabási, A.-L., & Oltvai, Z. N. (2001). Lethality and centrality

in protein networks. Nature, 411(6833), 41.

Jerrum, M. (1994). Counting trees in a graph is #p-complete. Information Processing

56

Letters, 51, 111–116.

Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrika,

18(1), 39–43.

Leavitt, H. J. (1951). Some effects of certain communication patterns on group perfor-

mance. The Journal of Abnormal and Social Psychology, 46(1), 38.

Lorey, J., & Naumann, F. (2013). Detecting sparql query templates for data prefetching.

In Extended semantic web conference (pp. 124–139).

Maniu, S., Senellart, P., & Jog, S. (2019). An experimental study of the treewidth of

real-world graph data. In 22nd international conference on database theory, ICDT 2019,

march 26-28, 2019, lisbon, portugal (pp. 12:1–12:18).

Navarro, G. (2016). Compact data structures: A practical approach. Cambridge Univer-

sity Press.

Newman, M. (2010). Networks: an introduction. Oxford university press.

Sabidussi, G. (1966). The centrality index of a graph. Psychometrika, 31(4), 581–603.

Skibski, O., Rahwan, T., Michalak, T. P., & Yokoo, M. (2016). Attachment centrality: An

axiomatic approach to connectivity in networks. In Proceedings of the 2016 international

conference on autonomous agents & multiagent systems (pp. 168–176).

Skibski, O., & Sosnowska, J. (2018). Axioms for distance-based centralities. In Thirty-

second aaai conference on artificial intelligence.

Valiant, L. G. (1979). The complexity of computing the permanent. Theoretical computer

science, 8(2), 189–201.

Was, T., & Skibski, O. (2018). An axiomatization of the eigenvector and katz centralities.

57

In Thirty-second aaai conference on artificial intelligence.

58

	Acknowledgements
	Table of Contents
	Abstract
	Resumen
	1. Introduction
	1.1. Related work

	2. Preliminaries
	3. The All-subgraphs Centrality
	4. A Family of Centralities Based on Subgraphs
	5. What Families of Subgraphs Define Good Centrality Measures?
	6. Centrality Measures for Sets of Vertices
	7. On Computing Centrality Measures Based on Subgraphs
	7.1. A polynomial Time Algorithm for All-subgraphs centrality of bounded Tree Width

	8. Conclusions
	References

