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RESUMEN  

La densidad aparente del suelo (ρb) es una propiedad clave en física e hidrología de 

suelos. En la ausencia de mediciones en terreno, las Funciones de PedoTransferencia 

(FPTs) son típicamente utilizadas para estimar la ρb. Recientemente, y como resultado 

del avance de las Redes Neuronales Artificiales (RNAs), un nuevo método para formular 

ecuaciones para estimar la ρb ha sido desarrollado. Esta técnica es particularmente 

adecuada para formular un acercamiento jerárquico y para condiciones de cantidad 

limitada de datos de suelo. Es por esto que el objetivo de este estudio fue utilizar un 

acercamiento jerárquico para desarrollar una serie de FPTs utilizando RNAs para 

predecir la ρb, y comparar estas estimaciones con las obtenidas con 10 FPTs existentes 

reportadas en la literatura. Esta evaluación fue hecha con un set de datos independiente 

de 1.007 mediciones de ρb provenientes de un amplio rango de suelos de Chile Central. 

Los resultados probaron que el desempeño (en términos de exactitud y error global) es 

función de la cantidad de variables de entrada con un rango de r2 de 0,22 a 0,72 y un 

rango de RMSE de 0,32 a 0,17 Mg m-3. Los resultados demuestran que usando sólo 

información de la distribución de tamaño de partícula como variable de entrada para 

estimar la ρb no tiene una precisión adecuada y que un modelo basado en el contenido de 

carbono orgánico (CO) es capaz de estimar con más precisión que uno basado en la 

distribución de tamaño de partícula, incluso en suelos con bajo contenido de CO. 

Además, la inclusión del pH y los cationes básicos como variables de entrada mejora la 

exactitud de las estimaciones. Los resultados muestran que la mejor ecuación se generó 

con las variables de entrada de: distribución de tamaño de partícula, contenido de CO, 

profundidad de suelo y contenido de humedad a punto de marchitez permanente. 

Finalmente, con las mismas variables de entrada, las ecuaciones desarrolladas con RNAs 

incrementan la calidad de las estimaciones en comparación con las clásicas regresiones 

multi-variables, mejorando el r2 entre 0,02 y 0,14 y el RMSE entre 0,01 y 0,04 Mg m-3. 

Palabras Claves: Chile Central, densidad aparente del suelo, funciones de 

pedotransferencia, redes neuronales artificiales. 
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ABSTRACT  

 

Soil bulk density (ρb) is a key soil property in soil physics and hydrology. In the absence 

of field measurements, the ρb values are typically estimated using PedoTransfer 

Functions (PTFs). Recently, because of the progress of Artificial Neural Network 

(ANN) technique, a new method has been used to develop equations for predicting ρb. 

This technique is particularly suitable for developing a hierarchical approach for a range 

of conditions from very limited soil input data to a more extended set of predictors. 

Therefore, the objective of this study was to use a hierarchical approach to develop a 

series of PTFs using the ANN technique for predicting ρb and compare the estimates 

with those obtained using 10 existing PTFs. This study was conducted using an 

independent sample set of 1,007 measured ρb values from a wide range of soils from 

Central Chile. The results proved that the performance of the developed equations 

improved (in accuracy and overall error) with the addition of input parameters (r2 

improved from 0.22 to 0.72 and RMSE from 0.32 to 0.17 Mg m-3). The lowest 

performance was observed when using sand, silt, and clay contents as inputs. The results 

demonstrated that an equation based on the organic carbon (OC) content predicted the ρb 

values more effectively than those based on soil particle size distribution, even when 

used to predict ρb for soils with a low OC. Moreover, adding the pH and basic cations as 

inputs increased the accuracy of the estimates. The highest performance was found when 

using sand, silt, clay, OC, soil depth, and water content at wilting point as inputs. With 

the same input parameters, the equations developed with the ANN technique enhanced 

the quality of estimates compared with the 10 PTFs evaluated in this study, improved the 

r2 between 0.02 and 0.14, and reduced the overall error between 0.01 and 0.04 Mg m-3. 

 

 

 

Keywords: Artificial Neural Networks, Central Chile, pedotransfer functions, soil bulk 

density. 
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1. INTRODUCTION 

1.1. Overwiew 

 

Soil bulk density (ρb) is one of the key soil properties in soil physics and hydrology and 

is computed as the mass of an oven-dry sample of undisturbed soil per unit bulk volume 

(Mg m-3). The ρb has been incorporated as an essential input parameter in water, 

biophysical, sediment and nutrient transport models (Suuster et al., 2011). These models 

are very sensitive to ρb because it directly affects soil porosity and site productivity by 

controlling soil compaction, infiltration, and runoff rate (Brown and Heuvelink, 2005). 

Therefore, the ρb is considered as a major soil property that governs soil functioning in 

ecosystems and soil management. Data on ρb is used in research and applications in 

hydrology, agronomy, meteorology, ecology, environmental protection, and many other 

soil-related fields (Rawls et al., 2004). Moreover, the ρb is related to several soil 

parameters, such as soil organic fraction, soil texture, soil structure, water retention, 

carbon sequestration, nutrient mass of a soil layer and hydraulic conductivity (Dam et 

al., 2005). Furthermore, the ρb is used for soil unit conversions (from weight to area and 

volume), such as carbon reservoirs and stock of nutrients (Nanko et al., 2014). 

Two general ways to measure ρb are used. One is the core method, which uses a cylinder 

that is inserted in the soil layer. Later, the dry mass of the soil is determined by oven 

drying at 105°C in laboratory. Once the value of the dry mass is obtained is divided by 

the known value of the cylinder volume and the ρb is computed (Klute, 1986). 

The other way to measure the ρb is the clod method. This method extracts an undisturbed 

clod of soil and the sample is weighted and as the clod method, the dry mass of the soil 

is determined by oven drying at 105°C. After this, a length of thread is tied around the 

clod and is introduced in a container with melted paraffin. When the adhering paraffin 

solidifies, the clod and paraffin are weighted together and the clod is introduced in a 

graduated cylinder with water with known volume. The displaced volume corresponds 

to the soil volume of the clod. Finally, the ρb value is achieved with a formula that uses 
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the paraffin and water densities. It is recognized that the clod method gives slightly 

higher values of ρb because it does not incorporate the inter-pores in the soil (Blake and 

Hartge, 1986). 

For large-scale areas, measuring ρb is a labor-intensive and time-consuming task (Kaur 

et al., 2002; Benites et al., 2007); as a result, soil surveys usually do not report the ρb 

value and it is typically necessary to estimate it based on other soil properties (Hollis et 

al., 2012). A series of regression equations has been developed to compute ρb from more 

simple soil properties. These types of equations are called PedoTransfer Functions 

(PTFs) (Rawls, 1983; Bonilla and Cancino, 2001; Brahim et al., 2012). Without 

adequate PTFs many modeling tools would not have been improved simply because 

there are no resources to be able to measure all the parameters required by them. 

Therefore, it is imperative to use an accurate ρb value or a reliable estimate. 

Several studies have been done to identify and understand the factors controlling the ρb. 

Therefore, PTFs for estimating ρb have been developed worldwide and use different 

types of functions such as linear, polynomial, logarithmic and exponential (Nanko et al., 

2014). These studies have shown that ρb mainly depends on the organic matter (OM) 

content (Adams, 1973; Prévost, 2004; Hollis et al., 2012); however, when the OM 

content is low, soil particle size distribution becomes more significant for estimating ρb. 

Additionally, other studies have concluded that ρb changes with some chemical soil 

properties such as pH (Bernoux et al., 1998; Brahim et al., 2012) or basic cations (sum 

of Ca+2, Mg+2, and K+) (Benites et al., 2007) and some physical soil properties such as 

the soil water content at wilting point (θ1500) (Heuscher et al., 2005) and at field capacity 

(θ33) (Patil and Chaturvedi, 2012). Other functions have used qualitative factors such as 

morphological data, parent material (Calhoun et al., 2001; Jalabert et al., 2010), soil 

horizons (Alexander, 1980), vegetation (Jalabert et al., 2010), and soil type (Suuster et 

al., 2011). 

Recently, new methods have been developed to estimate the ρb, including the boosted 

regression trees model (Martin et al., 2009; Jalabert et al., 2010). Although this new 

technique generates an improvement in the calibration (Martin et al., 2009), it does not 

necessarily predict the ρb with more accuracy (Tranter et al., 2007; Martin et al., 2009). 
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Additionally, the Artificial Neural Networks (ANN) technique, which considers the 

complex relationships between input variables, are being used in order to build PTFs for 

predicting soil properties (Koekkoek and Booltink, 1999; Wösten et al., 2001; Merdun et 

al., 2006; Baker and Ellison, 2008; Lagos-Avid and Bonilla, 2017) and specifically for 

predicting ρb (Al-Qinna and Jaber 2013; Xiangsheng et al., 2016).  

The ANN technique use an iterative calibration procedure to find a relationship between 

soil properties, including the capability to detect complex nonlinear relationships 

between dependent and independent variables. Basically, an ANN consists of many 

interconnected simple computational elements called nodes, and the outputs of nodes are 

used as input to other nodes in the network (Fig. 1). When the number of inputs is larger 

than three, ANN usually do better than regression techniques, so they are a good 

alternative for the development of empirical models (Wösten et al., 2001).  

However, the performance of a PTF, independently of the method from which is 

generated, greatly depend on the sample set used for calibration (accuracy) and the 

sample set used for evaluation (reliability) (Pachepsky et al., 1999). Therefore, testing a 

PTF using an independent sample set including a wide range of soil types is essential to 

evaluate their performance and applicability for other site conditions. The ANN 

technique considers the above, by accounting a portion of the dataset for independent 

testing. Additionally, a hierarchical design with an increasing number of predictors to 

accommodate different levels of soil data that can be considered as potential predictors 

for ρb allows the use of limited and more extended sets of predictors that facilitate the 

practical use of the PTFs (Schaap et al., 2001). 
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Figure 1: Basic structure of an Artificial Neural Network. 

 

There are not yet equations for predicting ρb based on ANN and hierarchical approach 

with more than OC content, soil particle size distribution and depth as inputs. Moreover, 

the PTFs for estimating ρb have been developed worldwide but no previous studies have 

developed functions for estimating ρb using the soils of Chile. Therefore, the objective of 

this study was to use a hierarchical approach to develop a series of PTFs using the ANN 

technique for predicting ρb and to compare the estimates with those obtained using 10 

already existing PTFs for predicting ρb. This study used an independent sample set of 

1,007 measured ρb values from a wide range of soil conditions from Central Chile. 

Additionally, an external validation for these 10 PTFs was generated. 

 

1.2. Hypothesis 

 

This research is based on the hypothesis that it is possible to develop a set of equations 

hierarchically established for estimating the soil bulk density using the artificial neural 

network techniques based on different measured soil parameters and achieve high 

accuracy in the estimates. 
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1.3. Objective 

 

The overall objective of this study was to develop a set of equations hierarchically based 

to estimate the soil bulk density based on artificial neural network techniques. For this 

purpose, the following specific objectives were established: 

 

a) Review and select the equations already available for estimating the soil bulk 

density.  

b) Identify key variables that control and explain the soil bulk density. 

c) Building a soil dataset based on the Natural Resources Information Center soil 

surveys (CIREN, in spanish). 

d) Formulate and validate a hierarchical set of equations to estimate the soil bulk 

density using the artificial neural network techniques and based on the CIREN 

soil surveys. 

e) Compare the reliability of the equations developed with the 10 already published 

pedotransfer functions for estimating the soil bulk density. 

f) Generate an external validation for these 10 selected published pedotransfer 

functions by testing these functions with and without calibration with the soil 

dataset of CIREN.   

 

1.4.  Methodology 

 

The CIREN soil dataset was digitized and filtered. The resulting dataset consists of 

1,007 samples with soil bulk density data from 243 soil series collected in six different 

regions along Central Chile (from V to IX Region). Correlation and multiple regression 

analysis were used to identify the main variables controlling the soil bulk density. 

The main parameters influencing the soil bulk density were used for developing a 

hierarchical set of pedotransfer functions for estimating the soil bulk density with 
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artificial neural network, and the equations performance were compared with 10 already 

existing pedotransfer functions. The performance was evaluated with the coefficient of 

determination, the root mean square error, and the Nash-Sutcliffe model efficiency.  

Additionally, the equations collected from literature were tested with and without 

calibration as external validation for these equations. 

 

1.5. Results  

 

A hierarchical set of new equations developed with artificial neural network was built 

for estimating the soil bulk density. The input variables were: sand, silt and clay content; 

organic carbon content; pH; basic cations (sum of Mg+2, K+2, Ca+2); soil depth; and soil 

water content at wilting point. These inputs were settled in six equation types. These 

equations estimated the soil bulk density with r2 of 0.22, 0.38, 0.44, 0.49, 0.55, and 0.72, 

respectively. The equations were compared with 10 empirical published pedotransfer 

functions collected from literature. The generated equations showed better performance 

when predicting soil bulk density than classical multivariable regressions. 

 

1.6. Conclusions  

 

The main conclusions of this study were: 

 

1) The interaction between the soil properties is a complex relationship and 

soil bulk density cannot be accurately estimated with only one input parameter. 

2) The use of artificial neural network techniques proved to be a suitable 

method for building six equations for predicting ρb across a wide range of soil 

types and inputs, and their capability for predicting ρb was related to the number 

of parameters used in the network. 
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3) Depending on the field and soil survey data, these ANN are meant to be 

selected and used hierarchically to predict ρb values. 

4) Sand, silt, clay, organic carbon, soil depth and soil water content at 

wilting point can be used to explain with high accuracy (r2=0.72) the soil bulk 

density.  

5) The results demonstrate that ANN technique is an option for building a 

robust relationship for predicting variable soil properties as bulk density. 

Therefore, it is highly recommended the use of this new set of equations.  

6) The inputs required for the networks are usually available in soil surveys 

and the networks can be easily coupled with other soil and hydrology models to 

provide an alternative for estimating ρb when its measured value is not available.  
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2. LITERATURE REVIEW 

 

Soil bulk density (ρb) is one of the key soil properties in soil physics and hydrology and 

is computed as the mass of an oven-dry sample of undisturbed soil per unit bulk volume 

(Mg m-3). The ρb has been incorporated as an input parameter in water, biophysical, 

sediment and nutrient transport models (Suuster et al., 2011). These models are very 

sensitive to ρb because it directly affects soil porosity and site productivity by controlling 

soil compaction, infiltration, and runoff rate (Brown and Heuvelink, 2005). Therefore, it 

is imperative to use an accurate ρb value or a reliable estimate. Moreover, ρb is related to 

other important soil properties such as soil structure, water retention, nutrient content, 

and hydraulic conductivity (Dam et al., 2005; Nanko et al., 2014). 

For large-scale areas, measuring ρb is a labor-intensive and time-consuming task (Kaur 

et al., 2002; Benites et al., 2007); as a result, soil surveys usually do not report the ρb 

value and it is typically necessary to estimate it based on other soil properties (Hollis et 

al., 2012). A series of regression equations has been developed to compute ρb from more 

simple soil properties. These types of equations are called PedoTransfer Functions 

(PTFs) (Rawls, 1983; Bonilla and Cancino, 2001; Brahim et al., 2012). 

Either a physically or empirically based approach has been used for building the PTFs 

for predicting ρb. For example, the physically based PTF developed by Adams (1973) 

uses the organic matter content (OM, %), the bulk density of organic matter fraction 

(ρb,o, Mg m-3), and the bulk density of mineral fraction (ρb,m, Mg m-3) for predicting the 

ρb value (Table 2). Several studies have used this equation and calibrated the ρb,o and 

ρb,m values for specific sites (Tremblay et al., 2002; De Vos et al., 2005; Han et al., 

2012). These studies used soils with high OM content (from 3% to 30%) and concluded 

that this property is essential for predicting ρb. 

On the other hand, the empirically based PTFs use different types of functions such as 

linear, polynomial, logarithmic, and exponential (Nanko et al., 2014). Previous studies 

have shown that ρb mainly depends on the OM content for these type of PTFs (Adams, 

1973; Prévost, 2004; Hollis et al., 2012); however, when the OM content is low (1% or 
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less), Bernoux et al. (1998) suggested that soil particle size distribution becomes more 

significant for estimating ρb. Additionally, other studies have concluded that ρb changes 

with some chemical soil properties such as pH (Bernoux et al., 1998; Brahim et al., 

2012) or basic cations (sum of Ca+2, Mg+2, and K+) (Benites et al., 2007) and some 

physical soil properties such as the soil water content at wilting point (θ1500) (Heuscher 

et al., 2005) and at field capacity (θ33) (Patil and Chaturvedi, 2012). Other functions 

have used qualitative factors such as morphological data, parent material (Calhoun et al., 

2001; Jalabert et al., 2010), soil horizons (Alexander, 1980), vegetation (Jalabert et al., 

2010), and soil type (Suuster et al., 2011). 

The performance of a PTF greatly depends on the sample set used for calibration 

(accuracy) and the sample set used for evaluation (reliability) (Pachepsky et al., 1999). 

Therefore, testing a PTF using an independent sample set including a wide range of soil 

types is essential to evaluate their performance and applicability for other site 

conditions. Nonetheless, few studies have tested PTFs using independent soil datasets 

(Boucneau et al., 1998; Kaur et al., 2002; De Vos et al., 2005; Han et al., 2012; Nanko et 

al. 2014; Vasiliniuc and Patriche, 2015). These studies showed significant differences 

among the PTFs when they were tested on different soils than those used for calibration, 

which established that PTFs depend on the specific soils from which they were 

developed.  

Recently, considering the complex relationships between soil properties, different 

studies have been conducted using the Artificial Neural Network (ANN) technique to 

build PTFs for predicting soil properties (Koekkoek and Booltink, 1999; Wösten et al., 

2001; Merdun et al., 2006; Baker and Ellison, 2008; Lagos-Avid and Bonilla, 2017) and 

specifically for predicting ρb (Al-Qinna and Jaber 2013; Xiangsheng et al., 2016). The 

ANN technique use an iterative calibration procedure to find a relationship between soil 

properties, including the capability to detect complex nonlinear relationships between 

dependent and independent variables. Basically, an ANN consists of many 

interconnected simple computational elements called nodes (Wösten et al., 2001). 

Additionally, a hierarchical design with an increasing number of predictors to 

accommodate different levels of soil data that can be considered as potential predictors 
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for ρb allows the use of limited and more extended sets of predictors that facilitate the 

practical use of the PTFs (Schaap et al., 2001).  

There are not yet equations for predicting ρb based on ANN and hierarchical approach 

with more than OC content, soil particle size distribution and depth as inputs. Moreover, 

the PTFs for estimating ρb have been developed worldwide but no previous studies have 

developed functions for estimating ρb using the soils of Chile. Therefore, the objective of 

this study was to use a hierarchical approach to develop a series of PTFs using the ANN 

technique for predicting ρb and to compare the estimates with those obtained using 10 

already existing PTFs for predicting ρb. This study used an independent sample set of 

1,007 measured ρb values from a wide range of soil conditions from Central Chile. 
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3. MATERIALS AND METHODS 

 

3.1. Soil samples 

 

The soil samples used in this study came from a series of soil surveys performed by the 

Natural Resources Information Center CIREN (1996a, 1996b, 1997a, 1997b, 1999, 

2002) from Chile’s Ministry of Agriculture between the years 1971 and 1983. The 

location of the sampled sites extended from latitudes 32°S to 40°S and longitudes 70° to 

73°W and covered the central region of Chile (Fig. 2), which has a wide range of climate 

conditions (Bonilla and Vidal, 2011). Most of the study area is in the Central Valley, a 

geological plain between the Western Andes Mountains and the coastal range that 

extends for approximately 1,000 km from the Valparaíso Region south to the Araucanía 

Region. This plain is approximately 70 km wide and is composed of a vast thick deposit 

of heavily mineralized alluvial soils formed by the principal rivers of the region (Bonilla 

and Johnson, 2012). Most farmland (72%) and national forest areas (54%) of the country 

are concentrated in this area (INE, 2007). 

A total of 1,007 soil samples with ρb data (from 243 soil series) were identified in the 

study area. The samples corresponded to seven soil orders: Alfisols (26 series, 106 

horizons), Andisols (41 series, 181 horizons), Inceptisols (74 series, 313 horizons), 

Mollisols (83 series, 334 horizons), Entisols (10 series, 37 horizons), Ultisols (7 series, 

29 horizons), and Vertisols (2 series, 7 horizons). The 1,007 samples covered the 12 

USDA soil textures (Fig. 3). A summary of the soil properties is listed in Table 1. 
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Figure 2: Location of the soil data (soil pits) from soil surveys. 
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Table 1. Summary of properties of the soil samples used in the study.  

Variable N Mean Median 
Minimum 

(xmin) 

Maximum 

(xmax) 

Standard 

deviation 

Coef. of 

variation (%) 

        

Sand fraction 1,007 0.39 0.34 0.03 1.00 0.23 59 

Silt fraction 1,007 0.36 0.36 0.00 0.85 0.16 43 

Clay fraction 1,007 0.25 0.24 0.00 0.78 0.16 62 

Bulk density (Mg m-3) 1,007 1.33 1.37 0.56 2.10 0.36 27 

Depth (m) 1,007 0.48 0.41 0.03 2.25 0.34 71 

θ33 (% grav.) 754 30.48 27.00 1.80 107.27 16.78 55 

θ1500 (% grav.) 754 18.70 16.00 1.10 63.60 11.66 62 

Organic carbon (%) 1,007 1.74 1.02 0.00 13.03 2.03 117 

Basic cations (cmol kg-1) 880 11.70 9.67 0.27 43.10 8.79 75 

pH 997 6.52 6.40 4.60 9.20 0.81 12 
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Figure 3: Soil texture distribution among the 1,007 soil samples used in the study. 
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The soil analysis at the time of the field surveys was conducted according to the standard 

soil methods used in Chile (INIA, 2006). The ρb was determined by the clod method 

(Blake and Hartge, 1986), and the particle size distribution was determined by the 

Bouyoucos method (Bouyoucos, 1962) according to the USDA textural classification 

(sand 2-0.05 mm; silt 0.05-0.002 mm; clay <0.002 mm). The OC content was measured 

by the dichromate method (Walkley and Black, 1934), and the OM content was obtained 

by multiplying the OC value by the Van Bemmelen factor of 1.724 (Davis, 1974). The 

pH was measured by suspension and potentiometric determination (proportion 1:1 

soil/water), the water retention parameters (θ1500 and θ33) by the pressure plate method 

(Klute, 1986), and the calcium, magnesium, and potassium contents were measured 

using extraction with an ammonium acetate solution of 1 mol L-1 at pH 7.0 and 

spectrophotometric determination with atomic absorption and emission (using 

lanthanum suppression) (INIA, 2006). 

 

3.2. Artificial neural networks 

 

The hierarchical approach for predicting ρb using ANN was developed by building six 

different networks (named A to F) based on the type and number of input parameters 

collected from the literature. The first network (A) used sand, silt, and clay content as 

inputs, whereas the second network (B) used only OM content as input. The network C 

was a combination of networks A and B: it used sand, silt, and clay content in addition 

to the OM content. Networks D, E, and F used the same parameters as network C but 

included pH, basic cations, and soil depth and θ1500, respectively, as inputs. 

The ANN were built with a two-layer feed forward network (hidden layer and output 

layer) using the Levenberg-Marquardt back-propagation algorithm as the training 

function (Hagan and Menhaj, 1994). The transfer function used was a hyperbolic tangent 

sigmoid, and the performance function was the mean square error (MSE). The soil 

samples were randomly divided into three sets: (i) training (70%), (ii) validation (15%), 

and (iii) testing (15%). The training and validation sets were used to develop the 
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network, and the testing set was used to evaluate the equation independently of the 

development of the network. Every time an ANN was executed a different solution for 

the same problem was generated because of the randomization of these three sets 

(Tamari et al., 1996). For this reason, a total of 100 iterations were performed and the 

targets of the ANN were the measured ρb values. All simulations were performed with 

the neural network toolbox of MATLABTM (The MathWorks Inc., USA). The number of 

nodes in the hidden layer is commonly estimated based on the number of inputs (Hecht-

Nielsen, 1987; Sheela and Deepa, 2013); however, different numbers of nodes were 

tested (from 1 to 15) in this study in search of the optimal performance of the ANN, 

which generated 1,500 iterations per network. The criteria for choosing the best iteration 

per network were: (i) to obtain predicted values in the ρb range (from 0 to approximately 

2.5 Mg m-3), (ii) the MSE for training and validation must be the lowest, and (iii) the 

maximum and minimum values of the input variables must be part of the training set 

(Tamari et al., 1996). 

To reduce the “black box” effect usually associated with the ANN structure (Olden and 

Jackson, 2002) and to isolate the contribution of each input variable within the network, 

the Relative Importance (RI) of each input parameter in the ANN was computed using 

the algorithm developed by Garson et al. (1991) and described in detail by Olden and 

Jackson (2002). 

 

3.3. Equations tested for predicting soil bulk density 

 

Ten already existing PTFs were selected for comparing their performance with those 

developed with the ANN technique. These PTFs were chosen considering: (i) their being 

built with soil data from different territories or a wide range of soil types, (ii) their use of 

different numbers of input variables, and (iii) their generation based on relatively large 

sample sets. These 10 PTFs were grouped in the same categories as the equations 

developed with the ANN (from A to F) based on the inputs.  
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The main characteristics of each are listed in Table 2. As suggested by De Vos et al. 

(2005), all the available horizons were used for testing the PTFs. The PTFs were tested 

in their original (without calibration) and calibrated forms. The calibration procedure 

consisted of computing the equation constants by minimizing the Root Mean Square 

Error (RMSE) (Eq. 1) between the estimated and measured ρb values. Specifically, the 

Rawls et al. (2004) equation was evaluated for A-horizons (because this equation was 

developed for this soil layer) and also for the entire set of samples. On the other hand, 

the Brahim et al. (2012) equation uses the sand content computed for soil particles 

between 0.20 to 2 mm; because the same range was not available in this soil dataset, the 

closest range (between 0.25 and 2 mm) was used instead. 
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Table 2. Pedotransfer functions evaluated in the study. Sample sizes (n), mean ρb and r2 values from the original publications. 

PTF Source Location Eq. ρb = ρb mean 

(Mg m-3) 

n r2 

       

1 Saxton et al. (1986)1 USA     0.922.65ClayLOG0.1276+Sand0.00072510.3321     NR 2,0002 NR 

2 Adams (1973)3 Merionethshire, 

Wales 

     mb,ob, /OM100+OM/100/    NR 77 NR 

3 Tomasella and 

Hodnett (1998) 

Brazil Clay0.004Silt0.006OC0.0541.578   NR 396 0.60 

4 Kaur et al. (2002) Utaranchal, India  Silt0.00432Clay^20.000476Clay0.02102+OC0.1910.313exp   1.36 224 0.62 

5 Rawls et al. (2004) USA, and other 

countries 

3222

32

3

2222

2

322

23

2

y0.0287001+yx0.0140902+y0.140381yx0.098737

y0.0237361x0.140911x0.256704+x0.256629+0.0771892=w

OM0.507094+1.55601=z

clay7.55319+1.70126=y

sand4.23123+1.2141=x

:where

)z0.00942183+

zy0.0797412zw0.179529z0.0450214zy0.0815752+

zyw0.192686zy0.298823+zw1.37484zw0.651673+

z0.601301y0.0886315+yw0.392736+y0.0722421

yw0.153337yw0.301816y0.0991862+w1.18871

w0.614038w0.701658+(0.08453970.185628+1.36411























 

NR 2,100 NR 
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Table 2. Continued 
PTF Source Location Eq. ρb = ρb mean 

(Mg m-3) 

n r2 

       

       

6 Hollis et al. (2012) Europe  
   














Clay0.0005164Sand0.0008687+

OC0.230355exp0.750636
+0.69794  

1.27 925 NR 

7 Bernoux et al. (1998) Brazil Sand0.001+pH0.045OC0.05Clay0.00381.524   1.18 323 0.56 

8 Brahim et al. (2012) Tunez pH0.031+CoreSand0.0036Clay0.0042OC0.1171.65   1.61 348 0.55 

9 Benites et al. (2007) Brazil BC0.0075+OC0.01Clay0.00051.56   1.36 1,396 0.66 

10 Heuscher et al. 

(2005) 

USA, and 

neighboring 

countries 
Silt0.0007Depth0.00014

+Clay0.0079+0.0133OC^0.50.1981.685 1500



 
 

NR 47,015 0.44 

1 According to del Grosso’s modification used in Century Model 4.0 (https://www.nrel.colostate.edu/projects/century/). 
2 Personal communication. 
3 Adams (1973) used ρb,o=0.224 Mg m-3 and ρb,m=1.27 Mg m-3.  

NR: Not reported. 

Sand (%) (fraction in Saxton et al., 1986; and in Rawls et al., 2004). Silt (%), Clay (%) (fraction in Saxton et al. (1986); and in Rawls et 

al., 2004; and g kg-1 in Benites et al., 2007). OC: organic carbon content (%) (g kg-1 in Benites et al., 2007). OM: organic matter content 

(%). CoreSand (%): range [0.2-2] mm. BC: basic cations (cmol kg-1). ρb: soil bulk density (Mg m-3). θ1500: soil water content at wilting 

point (% grav.). Depth (cm). 
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3.4. Statistical analysis 

 

The correlation between the variables in the soil dataset was assessed by computing the 

coefficient of Pearson (r). Additionally, the r2, RMSE, and the Nash-Sutcliffe Model 

Efficiency (ME) were used to test the predictive capabilities of the equations developed 

with the ANN and the existing PTFs. The RMSE and the ME were computed as follows: 

 

n
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ME                                       (2) 

 

where iy  and iŷ  are the measured and predicted ρb values, respectively; y  is the mean 

of measured values; and n is the number of observations. The r2 is a measure of the 

strength of the linear relationship between the measurements and predictions and 

indicates the fraction of the variation that is shared between them (De Vos et al., 2005). 

The RMSE is a measure of the overall error of the prediction, and the ME is a measure 

of the accuracy of the prediction and indicates how much the fit is related to the 1:1 line. 

Ideally, the r2 and ME should be close to 1 and the RMSE close to 0. 
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4. RESULTS AND DISCUSSION 

 

The main results of this study were (i) a description of the soil properties in the sample 

dataset, (ii) a description of the ANN networks developed and the characterization of the 

RI of their input parameters, (iii) the development of a new and hierarchical set of 

equations for estimating ρb using the ANN, (iv) a comparison of the performance of the 

10 PTFs collected from literature both without calibration and calibrated, and (v) a 

comparison between the equations developed with the ANN and the calibrated PTFs. 

 

4.1. Soil properties in the soil data set 

 

The mean ρb value in the soil dataset was 1.33 Mg m-3 (Table 1). As shown in Fig. 4, the 

histogram of ρb values did not show a normal distribution (p<0.005 by the Anderson-

Darling test) and most of the ρb were between 1.2 and 1.8 Mg m-3 (65% of the samples). 

The OC content in the samples ranged from 0.00 to 0.13, with a coefficient of variation 

(CV) of 117% (Table 1); as has been reported in previous studies (Bernoux et al., 1998; 

Brahim et al., 2012), this high CV value is because OC content is highly variable in 

soils. 
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Figure 4: Soil bulk density histogram for the soil samples (n=1,007). 

 

Table 3 shows the matrix of correlation among the soil properties based on the data from 

Table 1. When analyzing the entire soil sample set (n=1,007), the ρb value decreased as 

the OC content increased (r=−0.58). Despite diverse studies that have reported OC 

content as the main input parameter explaining the variation in ρb, OC content in this 

dataset explained only 34% of the variation in ρb. This low OC predictor score was 

caused by the low values of OC content (Table 1), which was also shown by Bernoux et 

al. (1998). In fact, the functions that used OC content as a main (or sole) input were 

developed in soils with high OC contents. Those studies included Curtis and Post 

(1964), Adams (1973), Alexander (1980), and Huntington et al. (1989). The study of 

Leonaviciute (2000) found that ρb changes with soil depth, whereas other studies have 

reported that these two soil properties are independent (Heuscher et al., 2005; Martin et 

al., 2009). The low Pearson coefficient with soil depth (r=-0.01) endorses the results of 

Heuscher et al. (2005) and Martin et al. (2009). Additionally, the differences in the ρb 

mean for each soil horizon in the soil dataset were not statistically significant. A low 

correlation was found between ρb and clay, silt, and sand content (r=−0.20 r=−0.37 
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r=0.38, respectively). In contrast, the correlation was higher with θ33 and θ1500 than with 

other soil properties (r=−0.82 and r=−0.79, respectively), the same result as was reported 

by Patil and Chaturvedi (2012) when they predicted ρb in waterlogged soils. This high 

negative correlation was caused by the fact that more water retention at specific suction 

requires more available pore space and thus more porosity and, consequently, a small ρb. 

 

 

Table 3. Correlation matrix (with the Pearson coefficient) between soil properties of Table 1 for 

the entire soil sample set.  

Variable Sand Silt  Clay    ρb Depth   θ33  θ1500  OC   BC  pH 

Sand 1               

Silt -0.74 1         

Clay -0.74 0.09 1        

ρb 0.38 -0.37 -0.20 1       

Depth 0.01 -0.07 0.06 0.02 1      

θ33 -0.74 0.67 0.45 -0.82 0.00 1     

θ1500 -0.74 0.59 0.54 -0.79 0.05 0.92 1    

OC -0.31 0.35 0.11 -0.58 -0.39 0.68 0.61 1  

BC -0.24 0.22 0.15 0.31 0.03 -0.06 -0.13 -0.28 1  

pH 0.14 -0.01 -0.20 0.38 0.20 -0.25 -0.30 -0.35 0.60 1 

ρb: soil bulk density. θ33: soil water content at field capacity. θ1500: soil water content at wilting 

point. OC: organic carbon. BC: basic cations.  

 

4.2. Artificial neural networks 

 

The ANN developed for predicting ρb had three steps (pre-processing, neural network, 

and post-processing). After testing a wide range of numbers of nodes, no statistically 

significant improvement in the r2 values was found when using four or more nodes in 

each type of equation. Therefore, the equations were built with three nodes and the input 

for equations A to F. 

The pre-processing (input variables standardization) was accomplished by using the 

following equation: 
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minminminmaxminmax  + )())/((= xpxxxxxpxpxp               (3) 

 

where xp is the standardized input variable, xpmin and xpmax are the minimum and 

maximum values for xp (equal to -1 and 1, respectively), x is the input value of the 

variable, and xmin and xmax are the minimum and maximum values for the input variable. 

The values for xmin and xmax are listed in Table 1 for each variable. 

The general form of the neural network is presented in Eq. 4. The normalized inputs xpk 

(k=1 to K) for the node j (j=1 to 3) are multiplied by the weights IWjk and summed with 

the bias term b1j. Then, the sigmoid function is applied and multiplied by the layer 

weights (LWj) and summed together with the constant b2 to generate the output a2 as 

follows: 

 

2

K

1jkjkj
2 bbxpIWLWa +)+tansig(=

1=k

3

1j=

                (4) 

 

where the values for LWj, IWjk, b1j, and b2 are listed in Table 4 to write and use the 

equations. Because the output a2 is standardized, it must be reverse-processed to obtain 

the predicted values. This is accomplished by using Eq. 5: 

 

minminminmaxminmax
ˆ + )())/(ˆˆ(=ˆ yaaaayyy 2222                         (5) 

 

where ŷ  is the predicted ρb value, maxŷ  and minŷ  are the maximum and minimum value 

of ŷ  (2.1 and 0.56 Mg m-3 for this soil set, respectively), a2
max and a2

min are 1 and -1, 

respectively, and a2 is the network output of Eq. 4. 
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Table 4. Values of parameters LWj, IWjk, b1j and b2 for the Artificial Neural Network equations. 

Type A IW B1 LW B2 

k/j 1 2 3 1 2 3 1 2 3  

Sand -3.916 1.349 -1.472 6.103 0.495 -0.217 -0.164 0.302 0.450 -0.159 

Silt -16.624 -1.141 -2.965        

Clay 18.548 -2.076 0.937        

Type B IW B1 LW B2 

k/j 1 2 3 1 2 3 1 2 3  

OC -3.006 13.775 21.172 -0.314 8.150 20.146 0.225 -0.210 -0.214 -0.179 

Type C IW B1 LW B2 

k/j 1 2 3 1 2 3 1 2 3  

Sand -21.503 0.981 2.074 90.575 -0.249 1.605 -0.120 0.465 0.253 -0.318 

Silt -27.942 -0.416 0.021        

Clay -19.216 1.324 -2.272        

OC 115.213 -2.292 0.138        

Type D IW B1 LW B2 

k/j 1 2 3 1 2 3 1 2 3  

Sand -1,710.493 1.543 -0.704 209.298 -4.553 0.055 -0.143 0.317 0.457 0.109 

Silt 673.488 -0.172 -0.361        

Clay 1214.670 0.308 0.347        

OC 1567.943 -5.798 0.342        

pH 525.105 -5.098 4.255        

Type E IW B1 LW B2 

k/j 1 2 3 1 2 3 1 2 3  

Sand 6.710 0.706 0.754 -25.336 0.848 3.818 0.193 0.565 0.262 -0.347 

Silt 6.402 -0.513 -0.428        

Clay 5.717 0.076 -0.158        

OC -33.069 -1.489 4.270        

BC 3.246 2.024 -1.945        



26 

  

Table 4. Continued          

Type F IW B1 LW B2 

k/j 1 2 3 1 2 3 1 2 3  

Sand -0.541 212.413 0.799 -0.998 -866.738 0.547 1.391 0.144 0.862 -0.176 

Silt -0.362 279.561 0.265        

Clay 0.668 165.583 -1.525        

OC -0.850 0.137 0.398        

Depth 0.070 109.134 -0.854        

θ1500 -1.828 82.895 2.256        
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The RI of the variables showed that in equation A, the three inputs (sand, silt, and clay) 

had almost the same contribution (RI=34%, 34%, and 32%, respectively). For equation 

C and D, the most important input was the clay content (RI=35% and 32%, 

respectively). However, clay had the lowest correlation with ρb among the inputs of 

equation C and D (Table 3), which proved that the effect of clay was relevant but non-

linear in these equations. However, for equation E and F, OC content was the most 

significant input (RI=31% and 22%, respectively) and is consistently with the fact that 

OC content showed the highest correlation with ρb within the inputs of equation E. 

However, in the case of equation F, OC content has not the highest correlation with ρb 

among their inputs (Table 3), which proved that the effect of OC content was relevant 

but non-linear in this equation. The results of the RI analysis on input variables indicate 

that the process of estimating ρb cannot be explained for a single variable and cannot be 

simplified to a correlation analysis. 

 

In terms of network performance, Table 5 shows the ME and RMSE obtained with the 

ANN for the entire sample dataset and the training, validating and testing sample sets. 

The relationships between the measured and predicted ρb are shown in Fig. 5. These 

equations were developed with measured ρb values in the range of 0.56 to 2.1 Mg m-3 

(Table 1) and the estimates can be different when using for soils out of this range. 

 

Table 5. Evaluation for equations A through F developed with the Artificial Neural Network 

techniques.  

 

 Samples dataset 

 Entire Testing Training Validating  

Equation N ME RMSE N ME RMSE N ME RMSE N ME RMSE 

A 1,007 0.22 0.32 705 0.20 0.32 151 0.22 0.32 151 0.28 0.31 

B 1,007 0.38 0.28 705 0.40 0.28 151 0.39 0.28 151 0.33 0.29 

C 1,007 0.44 0.27 705 0.39 0.29 151 0.47 0.26 151 0.36 0.28 

D 997 0.49 0.26 697 0.40 0.29 150 0.50 0.25 150 0.49 0.25 

E 880 0.55 0.24 616 0.47 0.26 132 0.57 0.23 132 0.56 0.26 

F 754 0.72 0.17 528 0.69 0.19 113 0.72 0.17 113 0.76 0.16 
All the networks have three nodes. The r2 is not shown because it is equal to the ME value.
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Figure 5: Comparison between measured soil bulk density (Mg m-3) and predicted values using 

the equations developed with the ANN technique for the entire soil sample set. The lines around 

the fitted curve are the 95% confidence intervals. 

 

The performance of the equations improved (accuracy and overall error) as the number 

of inputs increased (from A to F). The lowest performance was found with equation A, 

which used only sand, silt, and clay content (ME=0.22, RMSE=0.32 Mg m-3). This is 

explained because sand, silt, and clay were not highly correlated with ρb (Table 3). In 

contrast, equation B, with only OC content, performed better than equation A (ME=0.38, 

RMSE=0.28 Mg m-3). This result indicates that an equation based on OC (or OM) 

provides better ρb estimates than a soil particle size distribution-based equation, even 

when applied to soils with low OC (or OM) content such as those used in this study. 

Equation C, which used OC, sand, silt, and clay content, had better performance for 

accuracy but was just slightly better for overall error compared with equation B 

(ME=0.44, RMSE=0.27 Mg m-3). Moreover, the performance improvement between 
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equations B and C was smaller compared with the increment between equations A and 

B. However, a significant improvement was found when pH (equation D, ME=0.49, 

RMSE=0.26 Mg m-3) and basic cations (equation E, ME=0.55, RMSE=0.24 Mg m-3) 

were included.  

The best estimates were found when using equation F, with the highest ME (0.72) and 

the lower RMSE (0.17 Mg m-3). Differently from the other equations, equation F uses 

θ1500 and a high correlation was found between ρb and θ1500 (Table 3).  

Based on 332 soil samples, Al-Qinna and Jaber (2013) used ANN to develop an 

equation for predicting ρb based on OC, sand, silt, and clay content (the same as 

equation C). Using six nodes, their results showed an r2 and RMSE of 0.63 and 0.11 Mg 

m-3, and 0.27 and 0.14 Mg m-3 in calibration and validation, respectively. Their results 

had a higher r2 and a lower RMSE compared with this study. Their soils were more 

compacted (mean ρb = 1.68 Mg m-3) and had less variability (CV of 10%). On the other 

hand, Xiangsheng et al. (2016) used 495 soil samples as well as ANN to develop three 

equations for predicting ρb. Depending on the inputs, they obtained r2=0.69 and 

RMSE=0.15 when using OC content, r2=0.71 and RMSE=0.14 when clay and silt were 

added, and r2=0.71 and RMSE=0.14 when the soil depth was added to the previous 

variables. Their results showed better r2 and RMSE values compared with the results 

presented in this study although the soils used in their study were almost negligible in 

clay (mean of 0.01). However, their results showed the same pattern as this study; the 

performance of the equations improved with the number of inputs, even though the 

increments were very small. 

An analysis based on textural classes was also performed with the ANN. All the 

equations overestimated the ρb values when measured ρb was low (silt loam, silty clay, 

and silty clay loam) and underestimated the values when measured ρb was high (sand, 

loamy sand, and sandy clay loam). 
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4.3. Evaluation of the previous PTFs 

 

The performance of the 10 previous PTFs without calibration and calibrated is shown in 

Table 6 for the entire soil dataset. The comparison between the measured and predicted 

ρb values for the calibrated PTFs is shown in Fig. 6. Without calibration, all the 

equations overestimated ρb when the measured value was low. Only the equations 

developed by Bernoux et al. (1998), Tomasella and Hodnett (1998), and Heuscher et al. 

(2005) could predict ρb values as low as 0.60 Mg m-3. On the other hand, the equations 

consistently underestimated ρb when the measured value was high, and only the Saxton 

et al. (1986) and Heuscher et al. (2005) equations could predict values as high as 2 Mg 

m-3. 
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Table 6. Performance of the tested pedotransfer functions using the entire soils dataset. 

     Without calibration  Calibrated 

PTF Eq. Reference  n r2 ME RMSE  ME RMSE 

           

       Mg m-3   Mg m-3 

           

1 A Saxton et al. (1986)  1,007 0.05 -0.03 0.36  0.17 0.33 

2 B Adams (1973)  1,007 0.36 -0.02 0.36  0.36 0.29 

3 C Tomasella and Hodnett (1998)  1,007 0.36 0.13 0.33  0.39 0.28 

4 C Kaur et al. (2002)  1,007 0.38 -0.51 0.44  0.41 0.28 

5a C Rawls et al. (2004)-A horizons  167 0.39 0.28 0.24  0.48 0.21 

5b C Rawls et al. (2004)-All horizons  632 0.26 0.23 0.30  0.32 0.28 

6 C Hollis et al. (2012)  1,007 0.38 0.33 0.29  0.39 0.28 

7 D Bernoux et al. (1998)  997 0.25 -0.25 0.40  0.42 0.27 

8 D Brahim et al. (2012)  901 0.33 0.16 0.34  0.44 0.27 

9 E Benites et al. (2007)  880 0.22 -0.61 0.46  0.41 0.28 

10 F Heuscher et al. (2005)  754   0.43 0.24  0.29   0.67     0.19 
The r2 in the calibrated section is not shown because is equal to the ME value. 
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Figure 6: Comparison between measured soil bulk density (Mg m-3) and predicted values with 

the existing pedotransfer functions calibrated for the entire soil sample set. The lines around the 

fitted curve are the 95% confidence intervals. 

 

The estimates showed an ME between -0.61 and 0.33. The equations developed by 

Adams (1973), Saxton et al. (1986), Bernoux et al. (1998), Kaur et al. (2002), and 

Benites et al. (2007) showed negative ME values, which means that it is better to use the 

average ρb value of the soil dataset of this study instead these equations. However, the 

calibration reduced the difference between the predicted and measured ρb values, with an 

ME between 0.17 and 0.67. The RMSE for these equations without calibration was 

between 0.29 Mg m-3 and 0.46 Mg m-3. With a ρb mean of 1.33 Mg m-3, the RMSE was 

between 19% and 35% of the mean ρb. The calibration reduced the overall prediction 

error to between 0.19 Mg m-3 and 0.33 Mg m-3, or between 14% and 25% of the mean 

ρb.  
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When the equations were calibrated with this new soil dataset, the performance followed 

the same trend as the equations developed with ANN in section 3.2: the estimates 

improved with the number of inputs in the equations. The estimates that differed more 

from the measured ρb values were obtained with equation A (Saxton et al., 1986), which 

used only sand and clay. Equations C (Tomassella and Hodnett, 1998; Kaur et al., 2002; 

Rawls et al., 2004 and Hollis et al., 2012), which used OC (or OM) and sand, silt and/or 

clay, had similar accuracy and overall error (Table 6) and provided better estimates than 

equation A. In terms of ME, equation B (Adams, 1973) was similar to equations C but 

with a larger overall error as a result of using only OM content as input (RMSE=0.34 

Mg m-3). 

Compared with equation C, and differently from the relationships developed with the 

ANN, no significant improvement in the quality of the estimates was observed when pH 

was added (equation D: Bernoux et al., 1998 and Brahim et al., 2012) or basic cations 

were added (equation E: Benites et al., 2007). However, the best estimates were obtained 

with equation F (Heuscher et al., 2005). The ME and RMSE demonstrated that this PTF 

was the most reliable for this soil dataset when predicting ρb. The other PTFs showed 

some limitations when tested on Chilean soils as reported by Casanova et al. (2016) after 

testing 10 PTFs in two soils of Central Chile. 

In the case of equations C, the PTF developed for the A-horizons (Rawls et al., 2004) 

worked better for those horizons than when used to predict ρb in the entire soil profile. 

However, when compared with the other equations C, the estimates were similar in 

RMSE and better in ME. This improvement in accuracy was highly related to complex 

combinations of variables in the original equation (Table 2). 

Moreover, to remove any possible bias related to the number of samples used in the 

comparison, an additional test was performed for all the PTFs with the same number of 

soil samples (n=611). The results were not significantly different from those presented in 

Table 6 when using different number of soil samples. Furthermore, the calibrated form 

of the PTFs evaluated are shown in Table 7 for practical use. 
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Table 7. Mathematical form of the calibrated pedotransfer functions developed in this study. 

PTF Source Eq. ρb = 

   

1 Saxton et al. (1986)     0.9592.65ClayLOG0.076+Sand0.0040.7081     

2 Adams (1973)      586.1/OM100+181.0OM/100/   

3 Tomasella and Hodnett (1998) Clay0.003Silt0.004OC0.0891.710   

4 Kaur et al. (2002)  Silt0.003Clay^20.0001Clay0.006+OC0.0870.332exp   

5 Rawls et al. (2004) 

3222

32

3

2222

2

322

23

2

y0.0287001+yx0.0140902+y0.140381yx0.098737

y0.0237361x0.140911x0.256704+x0.256629+0.0771892=w

OM0.507094+1.55601=z

clay7.55319+1.70126=y

sand4.23123+1.2141=x

:where

)z0.040+

zy0.058zw0.254z0.219zy0.139+

zyw0.090zy0.113+zw1.308zw0.844+

z0.335y0.084+yw0.606+y0.333

yw0.290yw1.473y0.491+w4.223

w1.075w3.085+(0.0880.223+1.303























 

6 Hollis et al. (2012)  
   














Clay0.0007Sand0.003+

OC0.127exp1.142
+0.238  

7 Bernoux et al. (1998) Sand0.005+pH0.097OC0.075Clay0.0030.574   

8 Brahim et al. (2012) pH0.119+CoreSand0.004Clay0.0006OC0.0750.639   

9 Benites et al. (2007) BC0.008+OC0.09Clay0.0041.477   

10 Heuscher et al. (2005) 

Silt0.001Depth0.002

-Clay0.0006-0.015OC^0.50.1601.820 1500



 
 

 



35 

  

In addition, as shown in section 3.2, an analysis based on textural classes was also 

performed for the calibrated PTFs. As the equations developed with ANN, the same 

condition was found. However, equations C and D overestimated the ρb values in sandy 

soils, which indicates that these types of PTFs are less accurate in soils either with 

extremely high sand or low clay contents (0.94 and 0.01 on average, respectively). 

 

4.4. Comparison between the ANN and the calibrated PTFs 

The performance of the ANN was compared with those of the calibrated PTFs evaluated 

in section 3.3. This test provided a fair comparison because the constants in both groups 

of equations were computed with the same soil sample set. The results showed a better 

ME and RMSE in all the ANN compared with the already existing PTFs. The 

improvement in ME was between 0.02 and 0.14. However, the increment in the ME in 

equation B was not statistically significant after the Fisher test (p=0.24) because the 

ANN technique cannot significantly enhance the quality of estimates with one input 

(Hecht-Nielsen, 1990). 

Equations A, C, D, E, and F provided statistically significant improvements in the ME 

(p=0.04, p=0.04, p=0.04, p=0.00 and p=0.03, respectively) compared with the previous 

PTFs, which demonstrates the convenience of using the ANN technique compared with 

classical multivariable regression analysis. The highest increment in ME was with 

equation E, which proved the suitability of the use of basic cations as input compared 

with the use of pH in equation D. However, the improvement in the RMSE was not 

relevant (between 0.01 Mg m-3 and 0.04 Mg m-3) and the error was on the order of the 

error of the core and clod analytical methods (Blake and Hartge, 1986). 
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5. CONCLUSIONS  

 

The use of artificial neural network techniques proved to be a suitable method for 

building six equations for predicting ρb across a wide range of soil types and inputs. The 

ANN developed in this study were two-layer feed forward networks with 3 nodes, and 

their capability for predicting ρb was related to the number of parameters used in the 

network. The networks were established with the inputs of sand, silt and clay content 

(r2=0.22); organic carbon content (r2=0.38); sand, silt, clay and organic carbon content 

(r2=0.44); sand, silt, clay, organic carbon content and pH (r2=0.49); sand, silt, clay, 

organic carbon content and basic cations (r2=0.55); and sand, silt, clay, organic carbon 

content, depth and soil water content at wilting point (r2=0.72). Depending on the field 

and soil survey data, these ANN are meant to be selected and used hierarchically to 

predict ρb values. The inputs required for the networks are usually available in soil 

surveys, and the networks can be easily coupled with other soil and hydrology models to 

provide an alternative for estimating ρb when its measured value is not available.   

Compared with other existing PTFs developed for predicting ρb, the equations developed 

with ANN enhanced the quality of estimates when they were evaluated with the same 

type and number of input parameters. This condition demonstrates that this technique is 

a promising option for relationships for predicting variable soil properties such as bulk 

density. Although the classical regression relationships are still useful for predicting the 

soil bulk density because of their simplicity and intuitive formulation, the use of this 

new set of equations is highly recommended to produce a more robust estimate and 

reduce the overall error. The set of ρb values used in this study came from many soil 

horizons and pits and covered a wide range of soil types, including cultivated and forest 

soils, in addition to a variety of climate conditions. Finally, if the data are available, the 

network based on sand, silt, clay and organic carbon content, soil depth, and soil water at 

the wilting point should be used with the set of the equations presented in this study to 

obtain the best estimates. 
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