PONTIFICIA
UNIVERSIDAD
CATOLICA

DE CHILE

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE
FACULTAD DE FISICA
Instituto de Fisica

CONTROL OF WAVE-PARTICLE DUALITY VIA
ATOM-FIELD INTERACTION IN DOUBLE-SLIT
SCHEMES

POR MARIO ERNESTO BRAYAN MIRANDA ROJAS

Tesis presentada al Instituto de Fisica de la Pontificia Universidad
Catodlica de Chile para optar al grado académico de Doctor en
Fisica
Profesor Guia: Dr. Miguel Antonio Orszag Posa
Enero 2022
Santiago, Chile



11

...ami familia!



Acknowledgments

We wish to acknowledge the financial support from the project FONDECYT 1180175, Beca
Doctorado Nacional CONICYT 21171247 and Vicerrectoria de Investigaciéon UC during the
development of this research.



Contents

Acknowledgments

Contents

List of Figures

Abstract

1 Introduction

2 Theoretical framework
Experimental and theoretical tests of complementarity . . . . . . . .. ... ..

2.1

2.2

2.1.1
2.1.2
2.1.3

Which-path detectors and loss of fringe visibility . . . .. .. ... ..
Quantum eraser and delayed choice . . .. ... ... .........
Balance among visibility, distinguishability and concurrence . . . . . .

Atom-field interaction . . . . . . . . ...

221
222

Quantum description . . . . ... L. oL
Atomic location based on atom-field interaction . . . . . . . . . .. ..

3 Controlling the wave-particle duality with quantum fields

3.1

3.2

Model

3.1.1

3.1.2
3.1.3

Results

3.2.1

322

323

Initial state . . . . . . . . ... e
3.1.1.1 Squeezed coherentstate . . . . .. ... .. ... ......
3.1.1.2 Catstate . . . . . . .. e e
3.1.1.3 Thermalstate . . . . . . . . . . . . . . ... ...
Timeevolution . . . . . . . . . . . . . ...

Coherentstate . . . . . . . . . . ... L
3.2.1.1 Wave-particle duality controlled by the coherent amplitude o/
3.2.1.2  Wave-particle duality controlled by the coherent phase ¢ . . .
Squeezed coherentstate . . . . . . ... ...
3.2.2.1 Wave-particle duality controlled by the squeeze amplitude r .
3.2.2.2  Wave-particle duality controlled by the squeeze phase v

Catstates . . . . . . . . ..
3.2.3.1 Interaction time: |g|*t/A=m . . . .. ... ... ... ..

v

iii

iv

vi



CONTENTS

324

3.2.3.2 Interaction time: |g|*t/A =3m/4 . . . ... ... ... ...
3.2.3.3 Interaction time: |g|*t/A=7/2 . . . . ... ... ... ...

Thermal state . . .

4 Wave-particle duality controlled by a classical radiation

4.1 Model
4.1.1

Initial state . . . .

4.1.2 Time evolutionof the system . . . . . .. ... ... ... .......
4.1.3 Quadrature measurement . . . . . . . . . ... e e e
4.1.4 Particle-wave duality and concurrence . . . . . . .. ... .. ... ..
4.2 Numerical results . . . . .
Stage 1: Atom passing through the double slit (no fields) . . . . . . ..
4.2.2 Stage 2: Atom passing through the double slit with the quantum field . .
4.2.3 Stage 3: Atom passing through the double slit with the quantum and

4.2.1

classical fields . . .

4.3  Effects of the evolution operator on the initial state of the quantum field |«) [ eq.

(4.8)].

5 Partial quantum eraser and delayed choices
5.1 Description of the model .
5.2 Partial quantum eraser and delayed choices . . . ... ... ... .......

Reading the path information from the quantum field . . . . . . .. ..

5.2.2  Erasing the path information from the quantum field . . ... ... ..

5.2.3 Measuring the internal atomicstate . . . . . . . . ... ... ... ..

5.2.1

6 Results and conclusions
6.1 Controlling the wave-particle duality with quantum fields . . . . . ... .. ..
6.2 Wave particle duality controlled by a classical radiation . . . . . ... ... ..
6.3 Quantum eraser and delayed choices . . . . .. ... ... ... ........

7 Appendix

7.1 Appendix subsection 2.1.3
Appendix subsection 2.2.1 . . . ... oL oL Lo
Appendix subsection 2.2.2 . . .. ..o oL Lo

7.1.1
7.1.2
7.1.3

Bibliography

Appendix chapter 3

43
43
44
45
47
50
51
52
53

53

56

59
59
61
62
63
63

65
65
67
68

69
69
70
73
80

82



List of Figures

2.1

22

2.3
24

2.5

2.6

2.7
2.8

29
2.10

2.11

2.12
2.13
2.14
2.15

2.16
2.17

2.18
2.19

a) Double-slit setup crossed by atoms, in which total interference is obtained due
to the interaction of 1); with 15, as in a typical Young’s experiment. b) External
devices used to obtain which-path information and to vanish the interference.

Double-slit setup crossed by atoms, in which interference can be vanished due to

the presence of external devices which allows to obtain total which-path information.

Double-slit setup to study the possibilities of implementing a quantum eraser.

Two-level atoms are located in the position 1 and 2. An incident pulse I, excites one
of the atoms to the level a to later emit a v photon. Since the final state of both atoms
is the same, no path information can be extracted from them, and total interference
isobtained. . . . . ...
Three-level atoms are located in the position 1 and 2. An incident pulse /; excites
one of the two atoms from the level c to the level a, then it emits a v photon and
ends up in the state b. In this case the internal atomic state can reavel which-path
information. . . . . . ..
Four-level atoms are located in the position 1 and 2. Two incident pulse, /; and
I, excite one of the atoms from the level c to the level a and from b to ¥, which
allows the emission of the photons v and ¢, respectively. As a consequence, the
final atomic state is the same and there is no path-information. . . . . .. ... ..
Theoretical delayed choice quantum eraser scheme. . . . . . . .. ... ... ...
Young’s two-slit scheme used to study the balance among wave, particle and con-
CUITENCE .« .« ¢ o v e e v e e e e e e e e e e e e e e e e e e e
Conditional probability P(x|x). . . . . . . . ... . .
Probability distribution of the atom after an X quadrature measurement of the field
with values yo = a (red) and Yo = —a(blue). . . . . . ... ... ... ... ...
Probability distribution of the atom after the X quadrature measurement of the field
withvalue xo = 0. . . . . . . . e
Probability distribution in functionof 2’y ¢'. . . . . . . ... ... ...
Postion probability distribution fort' = 0.015. . . . . . ... ... ... ... ...
Postion probability distribution for#’ =3. . . . . ... ... ... .00
Atomic probability distribution when the value y, = 0 is obteined after to perform

an X quadrature measurement. The initial atomic distribution is taken x(z) = 3\ /4.

Atomic probability distribution in function of z’ y ¢’ after field measurement when
R(T) =3N/4e o o
Atomic probability distribution in function of =’ for ¢/ = 0.015. . . . . . .. .. ..
Atomic probability distribution in function of ' for#/ =0.05. . .. ... ... ..
Atomic probability distribution in function of 2’ for#/ =3. . . .. .. .. ... ..

Vi

12

12

13
14

15
22

23
23
24
24
25

25



LIST OF FIGURES

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

Double-slit scheme. A two-level atom passes through the atomic beam splitter
(ABS) in the ground state. In the upper path |P;), the atomic mirror (AM) and
Ramsey field (RF) generate the internal atomic state |®4), while in the bottom path
|P) the initial atomic state remains the same. Finally, the atom crosses a node or
antinode of the quantum field. . . . . .. .. ... ..o

Unit sphere D2 + ViZ + C? = 1. The cases studied in this article are Cy = 1 (green
dot), Cy = Vj (orange dot) and Vo = 1 (reddot). . . . . . . ... ... ... ....
Spread of the atomic distribution once the atom crosses a typical double-slit scheme.
In this case, we consider the evolution of the distribution in absence of the quantum
field. Therefore, the images (a) — (b), (¢) — (d) and (e) — (f) correspond to the
cases Cp = 1(¢ = 7/2), Vo = Co(¢p = w/4) and Vj = 1(¢ = 0), respectively. On
the left are shown the atomic probability distributions as a function of both, time ¢’
and distance 2/, on the right are shown the patterns obtained for a flight time ¢’ = 3.
Phase-shift (counter-clock wise) produced by the interaction of an atom in the state
|b) (¢ = 0) and a coherent state with o’ = 3 and ¢ = 0. An X quadrature measure-
ment [vertical shadows in (c)] can reveal which-path information and no interfer-
ences appears. A Y quadrature measurement [horizontal shadow with red edges in

vii

35

(¢)] can not distinguish one phase from the other one and total interference is obtained. 36

For a coherent state with o/ = 1 and ¢ = 0 there is overlap between both, initial
and final phases [vertical shadow with red edges in (c¢)]. Therefore, an X quadrature
measurement becomes ambiguous and partial interference appears. A Y quadrature
measurement still shows total interference. . . . . . . . . .. .. ... ...

An atom in the state |b) produces a counter-clockwise phase-shift in a coherent
state with o/ = 3 and ¢ = 15’—; The initial and final phases show overlap for
an X quadrature measurement [vertical shadows with red edges in (¢)] and thus
partial interference can be observed. On the contrary, a Y quadrature measurement

[horizontal shadows in (c¢)] can reveal which-path information (no overlap).

Atomic probability distribution obtained for an X quadrature measurement after
atom-field interaction, considering a quantum field represented by a coherent state.
The field and atomic parameters are varied in the vertical and horizontal directions,
respectively. . . . .. L L

Phase-shift for a squeezed coherent state with o/ = 3, ¢ = 0, 7 = 2 and ¥ = T,
considering interaction with an atom in the state |b). For these parameters there is
a considerable overlap between the initial and final phases. As a consequence, an
X quadrature measurement [vertical shadow in (c)] becomes ambiguous. On the
other hand, total interference is obtained if a Y quadrature measurement [horizontal
shadow in (c¢)]is performed. . . . . . . . . ... ... ...
The changes in the phases of the field show that for an X quadrature measurement
the overlap between the phases decreases when the squeeze phase increases [see
(c)]. Therefore, there is more which-path information and less interference, as com-
pared to the previous case. . . . . . . . . ... .o e e e e
Atomic probability distribution obtained for an X quadrature measurement. In this
case the quantum field corresponds to a squeezed coherent state. The field parame-

37

ters are varied vertically while ¢, which defines the atomic state, is varied horizontally. 39



viil

3.11

3.12

3.13

3.14

3.15

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

LIST OF FIGURES

A phase-shift 7 just interchanges clockwise or counterclockwise the position of the
distributions of the initial phase of the cat state, if the internal atomic state corre-
sponds to |a) or |b) [see (b)], respectively. Therefore, it is not possible to obtain
path-information if an X or Y quadrature measurement is performed [see (¢)]. . . .

A phase-shift equal to 37 /4 allows to differentiate the initial phase from the final
one for certain results of the quadrature measurements. Therefore, partial path-
information can be obtained with an X or Y quadrature measurement [see (c)].

A phase-shift equal to 7/2 allows a better phase differentiation. In this case, path-
information can be obtained for most results of an X or Y quadrature measurement.
Red lines in (c) represent the possible results for which these measurements become
ambiguoUS. . . . . . . e e e

Atomic probability distribution obtained for an X quadrature measurement consid-
ering different interaction times between an atom and a cat state with o/ = 3 and
¢ = 0. The atomic paramenter ¢ is varied horizontally and the interaction time
vertically. . . . . .. e e

For different values of (n)., the phase of the thermal state remains in the center of
the XY plane. Therefore, the possible phase-shifts in the evolution operator can not
be detected after the interaction. . . . . . . ... ... Lo

Scheme of the possible paths followed by the atom. ABS: Atomic Beam Splitter,
AM: Atomic Mirror, RF: Ramsey Field. The atom is either reflected or transmitted
by the ABS by taking the upper or lower path, respectively. Finally, the atom crosses
the double-slit and both, quantum (red) and classical (blue) fields. . . . ... . ..

Initial phase of the quantum field |a) for an amplitude o = /8, where X and Y
correspond to the amplitude and phase quadrature of the field, respectively.

A three-level atom crosses the double cavity with a quantum (red) and a classical
(blue) field. . . . . . . . e

If the internal atomic state in the top path is |b), there is no phase-shift in the quantum
field for « = v/8 and ¢ = 0. Therefore, no path-information is record on the
field. However, the own internal atomic states in the top and bottom path can give
information about which slit the atom passed through. . . . . . . . ... ... ...

If the internal atomic state in the top path is |c), it produces a phase-shift of 7 in the
quantum field, which reveals path-information. We consider o = V8ande = 0. In
this case the most probable result for an X quadrature measurement is xp—o = —a.

A'Y quadrature measurement does not reveal path information, because the most
probable result is obtained regardless of quantum field state. . . . . .. ... ...

Unit sphere D? + Vi + CZ = 1. The extreme cases Vo = 1, Dy = 1, Cy = 1 and
intermediate ones are shown on the surface by reddots. . . . . . ... .. ... ..

Stage 1: Atomic probability distribution obtained for each case shown on the sphere
Vi + D2 + C2 = 1fort’ = 3. The distance ' is expressed in units of A = Acp. a)

40

40

Vo=1,b) Vo = Dy, ¢) Dy = 1,d) Dy = Cy, e) Cy = 1,1) Cy = Vo, g) Vo = Dy = Cp. 52



LIST OF FIGURES

4.9

4.10

4.11

4.12

5.1

5.2

5.3

Stage 2: Atomic probability distribution obtained for each case shown on the sphere

Vi + D} + C2 = 1 in presence of the quantum field for ¢/ = 3 with o = /8 (blue)
and o = 1 (red). 2’ is expressed in units of A = Acp. The choice of the parameters
¢t and vy satisfies: a) Vp = 1,b) Vy = Dy, ¢c) Dy = 1,d) Dy = Cp, e) Cp = 1, 1)
Co=Vo, @ Vo=Dog=Cp. . . . .« o
Internal atomic state |b) in the top path: As the value of ¢ rises, the phase of the
quantum field begins to differentiate from the initial phase. Thus, now a X quadra-
ture measurement can reveal path-information. . . . . . . .. ... .00 L.
Internal atomic state |c) in the top path: In this case, as € increases, the phase of the
quantum field approaches to its initial value. So now, the X quadrature measurement
becomes ambiguous and the path-information decreases. . . . . .. ... ... ..
Stage 3: When ¢ = 3, the effects of the atomic states |b) and |c) on the phase of
the quantum field are similar [see figure4.10b and figure 4.11b]. Therefore, an X
quadrature measurement cannot reveal completely path-information and the atomic
distributions show partial interference in some cases and a faster evolution in other
ones (red lines). Blue lines correspond to the results obtained for € = 0 in the stage
2. Thecasesa) Vo =1,b) Vo = Dy, c) Dy =1,d) Dy = Cy,e) Cy =1, 1) Cy = Vj,
) Vo = Dy = () represent the choice of the parameters used in the stage 1. The
flight time is taken ¢’ = 3 with 2’ inunitsof A\=Acp. . . . . . . . . ... .. ...

Scheme of the possible paths followed by the atom. ABS: Atomic Beam Splitter,
AM: Atomic Mirror, RF: Ramsey Field. The atom is either reflected or transmitted
by the ABS by taking the upper or lower path, respectively. Finally, the atom crosses
the double-slit and the quantum field. . . . . . . . .. ... ... ... .. .....
Phase shifts for maximum atom-field interaction considering |g|*t/A = . If the
atom crosses the upper slit is in the state |b) (]a)) there is a counter-clock (clock)
wise phase shift in the coherent state. If an amplitude quadrature measurement
(black dotted lines) is performed, the results can give information about the path
followed by the atom, but cannot always reveal the internal its internal state. On
other hand, a phase quadrature measurement becomes ambiguous and it does not
reveal path information or the atomic state. . . . . . . . . .. .. ... ... ...
Patterns observed depending on the measurements performed on the atom and field.
We consider different values of the atomic parameter ¢, in order to show more pos-
sibilities of partial fringe visibility. . . . . . . . ... ... 0oL

iX

64



Abstract

The dual nature of light and matter represents an important challenge for science. Since the
origins of quantum mechanics, several theoretical and experimental works have studied the wave
and corpuscular properties of photons, atoms, electrons, etc. The main model that has been
considered in the development of them has been the Young’s double-slit scheme, by means of
which the wave nature of light was demonstrated. However, it also can be used to obtain the
particle-like properties of the systems. In case of considering identical slits, this model allows
to obtain total fringe visibility on a screen located at a certain distance from the double-slit, and
thus, null knowledge about the path followed by the object that crosses the scheme. Therefore,
the system shows a wave behavior.

In order to obtain information about the path taken by the objects (photons, atoms, electrons,
etc), several authors have studied the coupling of external systems to double-slit schemes, which
allows to know the path followed by the particle. As a consequence, the implementation of
any type of path-detector results in the loss of fringe visibility, according to the principle of
complementarity postulated by Bohr.

In this research, we have considered the use of double-slit schemes and atom-field interac-
tions to control the balance between fringe visibility and which-path information. We consider
field cavities which act as path-detectors and they are represented by different quantum states.
Instead of photons, our schemes are crossed by atoms, whose internal levels are correlated to the
paths of the schemes. Therefore, based on the peparation of both, field and atom, we can study
the balance between distinguishability, visibility and the concurrence present in the system.

Our results show that the wave-particle duality can be controlled by atomic and field param-
eters, depending on the behavior that the experimenter wishes to observe, wave-like or particle-
like. Additionally, we present a model in which a classical field can control the quantum atom-
field interaction. Therefore, the amplitude of the classical field can also be considered as a
controlling parameter of the wave-particle duality.

Finally, based on our results, we propose a theoretical model to be implemented in quan-
tum eraser and delayed choice experiments, which nowadays arouses great interest among re-
searchers. Our results suggest that the wave-particle duality can be controlled even at times
after the atom is registered on a screen, which allows us to choose the behavior of the system,
wave-like or particle-like, at any moment.



Chapter 1

Introduction

Particle-wave duality represents one of the most important concepts within physics, and it has
played an essential role in the study of the behavior of light and matter in experimental and
theoretical contexts. Nowadays, different works associated to the duality are mainly focused
on the development of models based on quantum mechanics, in order to offer alternatives to
discussions that have been held for years. This is because the dual behaviour of light and matter
has been an interesting way to explain how the quantum world works around us, but at the same
time it has been a continuous source of controversy based on different proposals and the results
that have been obtained over the years, even at times giving rise to paradoxes hard to address.

To understand the evolution of the ideas related to the wave-particle duality, we must go
back to the first studies and observations that sought to understand the composition and nature
of light. As early as the 3rd century B.C. Euclid (325 B.C.-265 B.C) developed his studies on
the behavior of light, and how it propagated in different media, which led to one of his main
findings about the way in which light interacted with certain objects changing its direction of
propagation [8]. His observations led him to raise the law of reflection of light, establishing that
the angle with which a beam of light falls on a certain reflective surface, is the same with which
it is reflected [9]. Behind his results, we can note that Euclid’s vision of the nature of light was
to consider it simply as rays propagating in a straight line, which in the presence of a reflective
object could change its direction. That is, in no case was light considered as a wave or a particle.

Despite the development of various studies seeking understanding of the behavior of light,
it was not until several centuries later that wave-particle duality became a problem to be dis-
cussed among the scientific community. In the 17th century, the way in which light propagated
remained a topic of interest, which led to the carrying out of several works by different scien-
tists, including Willebrord Snell van Royen (1580-1626) and René Descartes (1596-1650), who
sought to understand the refraction of light, phenomenon that occurs when the beam passes from
one medium to another. As a result, light changes its direction, depending on the densities of
both media [40]. The results obtained led to an expression in terms of the angles of incidence 6;
and refraction 6,, and the refraction index of the media of propagation, n; and n,., respectively,
which today is called Snell’s Law:

n;sinf; = n, sinb,, (1.1)

1



2 CHAPTER 1. INTRODUCTION

where the refraction indexes are defined as n = £ with ¢ being the speed of light in the vacuum
and v the speed of light in a given medium. Therefore, the way the light spreads from one
medium to another will depend on the density of them [11].

Up to this point the concepts of particle or wave had not been considered as essential to
study the behavior of light or to describe it. However, other phenomena such as the diffraction
of light, studied by Francesco Maria Grimaldi (1618-1663), gave hints of its wave behavior,
which was not well received by the rest of the researchers of the time, who attributed these
results to possible experimental errors [41, 44]. Despite this, the fact that light had a wave-like
nature was not entirely discarded by other scientists like Christian Huygens (1629-1695), who
proposed that light propagated as waves traveling in a medium denominate ether. This led to a
better interpretation of phenomena such as diffraction, reflection and refraction of light through
the method of analysis that today we now know as the Huygens-Fresnel Principle [29, 30], due
to the mathematical complement made by Jean Fresnel (1788-1827) years later [60].

Despite Huygens’ contributions, the wave behavior of light had not been thoroughly studied
to establish it as definitive in the description of the nature of light. Between the 17th and 18th
centuries, Isaac Newton (1643-1727) postulated his ideas regarding the corpuscular nature of
light, which was based on the assumption that light could be understood as a set of particles that
propagated from a certain source to the human eye through the ether. Thus, the colors that could
be observed corresponded to different types of particles or combinations of these [48]. Although
the novelty of the proposal, it was discussed by another scientist of the time, like Robert Hooke
(1635-1703), who supported the idea that the nature of light had a wave behaviour [10], to
which Newton argued that, in fact, light was constituted by particles that generated waves in
the propagation medium, making the analogy with the waves created by stones in the water.
Newton argued that light could not be only wave-like, referring to the fact that the waves had a
spherical propagation, whereas the rays of light propagated in a straight line, which suggested
a corpuscular behavior [1, 47]. The above was largely accepted for several years despite the
contrary beliefs that certain scientists had with regard to Newton’s arguments, such as Hyugens,
who held that light was actually the movement of the ether particles, that is, the results of
oscillations of the propagation medium.

More than a hundred years later, it was Thomas Young (1773-1829), who contributed the
debate on the nature of light by revalidating the, then, discarded wave theory, which was put
aside for a long time because of the figure that Newton represented and the great support that
his theory maintained. Young developed several experiments that showed that light interfered,
the results of which were attributable to wave behaviour [36, 66, 69]. However, his ideas were
not fully accepted due to the lack of a solid mathematical development for his proposals and the
still-extant respect for the corpuscular theory proposed by Newton. The work done by Young
was later considered by Agustin Fresnel (1788-1827), who also relied on Huygens’ ideas about
the wave behavior of light to explain different optical phenomena [20]. Fresnel’s contribution
helped significantly to make ideas about the dual nature of light widely accepted. This also was
supported by the work of other researchers, such as the Christian Doppler (1803-1853), who
used these ideas to explain the shifts of stellar frequency spectra [14], or James Clerk Maxwell
(1831-1879), who considered that the phenomena associated with electromagnetism propagated



as waves, coming to the conclusion that light was an electromagnetic phenomenon [3, 42]. This
idea would later be demonstrated by Heinrich Hertz (1857-1894) [28].

Finally, it seemed that the wave theory of light managed to prevail and be widely accepted
by the scientific community thanks to the work done by scientists such as Huygens, Young,
Maxwell, Fresnel and Hertz, which put the corpuscular theory imposed by Newton in an awk-
ward position in front of the new advances made under the premise that light was actually a wave
and not a set of traveling particles, although this idea had not been refuted in any way. There-
fore, the coexistence of both theories could not yet be ruled out. However, we would have to
wait until the beginning of the 20th century to understand, with the birth of quantum mechanics,
the behavior of light.

In 1890 Max Planck (1858-1947) was working on the study of black body radiation, based on
Wien’s law [52] and making use of his prior knowledge of Boltzmann’s theory about the second
law of thermodynamics [37]. As a result, Planck proposed a new constant (Planck’s constant
h), postulating that radiation energy was divided into small portions of energy which he called
quantum of energy, which was in complete agreement with the experimental results of the time
[38, 39]. Planck’s work is considered as the beginning of quantum mechanics and gave an
account of the corpuscular behavior of light. His ideas were subsequently considered by Albert
Einstein (1879-1955), who used them as a basis for his research on the photoelectric effect [59,
64, 65], in which it demonstrated the importance of light frequency in that process [15]. With
this, Einstein further endorsed Planck’s results, assuming that the processes of emission and
absorption of radiation were produced in small packets of energy, just as light was propagated
through space. Although Einstein’s work was still poorly accepted by some researchers, in
1922 Arthur Compton (1892-1962) conducted an experiment based on X-ray scattering, whose
results could be explained taking into consideration the idea of a corpuscular nature of light [19],
with which he could understand how light and matter related by exchanging moments as small
particles would, which was evident in their experimental results.

With the above, the idea of a corpuscular nature of light was again gaining strength among
scientists. However, it was still difficult to explain some observed phenomena using only corpus-
cular theory, such as interference, since these kinds of phenomena found a solid explanation in
the idea that radiation should have a wave behaviour. In this context, quantum mechanics would
play a leading role in the final understanding of the nature of light. In 1924, Louis de Broglie
(1892-1987) raised the idea that, as well as light, the rest of matter also presents a corpuscu-
lar behavior on certain occasions and undulatory in others [13]. That is, the idea of a duality
could also be extended to other entities such as atoms and electrons. Although this idea was not
entirely convincing in principle, it was subsequently tested on an experimental basis [12, 18].
With this, the concept of a wave-particle duality began to become increasingly present among
scientists seeking to explain the behavior of light and matter at the quantum level. However, this
implied the unfriendly idea that the world around us was actually particle and wave at the same
time.

Some time later, Niels Bohr (1885-1962) attempted to unify the idea of the corpuscular and
undulatory nature by establishing the Principle of Complementarity, which stated that both, light
and matter had a sometimes wave-like and sometimes particle-like behavior, and that both be-
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haviors cannot be observed simultaneously [7]. This idea also seemed to be supported by Werner
Heisenberg (1901-1976) through the uncertainty principle, which referred to the impossibility of
simultaneously measuring characteristics such as the position and momentum of quantum me-
chanical objects [55]. Since then the dual behavior of light and matter has been studied through
different works that seek to better understand how the nature around us behaves.

The Bohr’s Principle of Complementarity [7] states that two complementary properties of a
given quantum system cannot be obtained simultaneously. This implies that in a measurement
process of two complementary observables of a quantum-mechanical object, the total knowledge
of the first one makes that all possible outcomes of the second one are equally probable. The
wave-particle duality of nature represents the best example of mutually exclusive properties of
quantum systems, and several experimental and theoretical works have been developed in order
to study this behaviour [4, 16, 68]. For instance, in a double-slit Young-type scheme, the
particle-like properties are attributed to the knowledge of the path followed by the particle, i.e to
the distinguishability (D). On other hand, the wave-like properties are associated to the fringe
visibility (V') on the screen.

The obtaining of path-information can be achieved using an external device which acts like
a which-path detector [57, 58]. For instance, if an atom passes through the slits, a quantum field
can be located immediately after them and store path-information [61, 62]. This is because the
atom-field interaction affects the initial phase of the quantum field depending on the atom’s po-
sition with respect to the nodes and antinodes of the wave. Thus, if path-information is recorded
on the field, it can be extracted by performing a proper measurement in order to know the path
followed by the atom and obtain the particle-like properties of the system. However, the stored
path-information can also be erased [56, 58, 62] in order to restore the wave-like behaviour of
the system and thus observing the typical interference pattern on the screen.

In the wave-particle duality the wave-like and the particle-like properties are determined
via path-information or fringe visibility and has been quantified mathematically through the
inequality

VZyD?<1, (1.2)

which has been demonstrated by Englert [17] and also derived in other ways [25, 32]. Several
works have shown that depending on the initial setup of a double-slit experiment, the wave-
particle duality can be controlled in order to analyse the complementarity between distinguisha-
bility and visibility [31, 35]. Furthermore, it is possible to establish correlations between an
intrinsic degree of freedom of the particle passing through the double-slit and the possible paths
of the scheme. This implies that the inequality which controls the complementarity between
particle and wave, must be modified as to include this correlation as a third parameter. Recently,
concurrence has been considered in a double-slit experiment with single-photons, in order to
quantify the established correlations between the paths of the double-slit and the polarization of
the photons [33, 34, 53, 67]. The results have demonstrated that the inequality (1.2) in presence
of the concurrence turns into the equality:

VP+ D*+C* =1, (1.3)

where C' represents the degree of quantum entanglement between the polarization of photons



and the possible paths of the scheme. Therefore, as a result of the new equality, the defini-
tions of distinguishability and visibility may simultaneously vanish depending on the degree of
correlation present in the scheme.

In this research, instead of photons, we have atoms passing through a double slit schemes
and immediately after, crossing cavity fields, in order to study how the wave-particle duality can
be controlled depending on the choice of the atomic and field parameters. In addition, we show
that discussions based on duality still continue to this day, when we consider concepts such as
quantum eraser and delayed-choice experiments.



Chapter 2

Theoretical framework

2.1 Experimental and theoretical tests of complementarity

Particle-wave duality has been from the beginning of quantum mechanics one of the most in-
teresting topics among the scientific community, being to this day a source of controversy for
which answers have been sought through different experiments. In this sense, it is considered
that the systems can exhibit either wave or particle properties, provided that they can be at-
tributed a certain characteristic that defines their behavior, which will in many cases depend on
the configuration established in each experiment or theoretical proposal. In most cases, they are
considered Young-type models in order to analyze the duality. In these models, the wave-like
behavior of light or matter is defined based on the visualization of interference patterns on a
screen. On the other hand, the corpuscular behavior of the systems is typically defined based
on the knowledge of the path followed by the object under study that crosses the double-slit
scheme.

Even though in the 1920s, with the emergence of quantum mechanics, the discussion among
those who embraced the idea of an undulatory or corpuscular nature that explain the behavior of
light seemed to reach a consensus, the interpretation of a dual nature of the microscopic world
seemed not yet to convince scientists at all. In this sense, a common example to describe and
analyze complementarity was the impossibility of obtaining simultaneously some properties of
the quantum systems under study, such as position and momentum. Knowledge of the position
of the object involves immediately determining its corpuscular behavior, while a measurement
of momentum leads to attributing wave properties to it. Therefore, both behaviors cannot be
obtained simultaneously because two complementary properties, in this case position and mo-
mentum, cannot be observed at the same time. This is because the knowledge of one of them has
as a consequence the fact that all possible results of the other property to be measured become
equally probable.

From the point of view of the optics, the dual behaviour of light has been studied to this day
through the famous Young’s double-slit experiment, which was one principal works that con-
tributed to determine the wave behaviour of light. In this experiment the wave properties of light
become evident due to the presence of fringe visibility upon a screen located at a certain distance

6
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from the double-slit through which the beam crosses. With this observation in the the Young’s
experiment, there was no doubt that the nature of light responded to a wave phenomenon, similar
to the typical example of the propagation of waves in the water, where waves coming from dif-
ferent sources can interact causing constructive or destructive interference. In the 20th century
Louis de Broglie proposed that the rest of the particles, as electrons or atoms, also could exhibit
a dual behaviour since it was possible to attribute them a certain momentum. With his results,
and inspired also in the previous ideas proposed by Planck and Einsten, de Broglie postuled the
idea that not only light can be treated in a quantum way, but also all particles. Therefore, the
wave-particle duality could be considered to describe the behaviour of the whole matter, and it
was not an exclusive property of light.

In this section, instead of photons, we consider the study of the wave and corpuscular prop-
erties of a beam of atoms, which cross a double-slit scheme. This allows us to analize different
possibilities in order to determine the behaviour of the atoms, depending on the use or not of
which-path detectors. In this sense, we will consider cases in which the fringe visibility van-
ishes when an external device is correlated with de system, and thus the corpuscular properties
are obtained.

2.1.1 Which-path detectors and loss of fringe visibility

As we have seen in the previous section, in Young-type double-slit setup we always obtain an
interference pattern due to the wave nature of light or atoms, as appropriate. In sections later,
we will see that the interference can be modified if, for example, we vary the width of the slits
or establish some correlation in the system, in which properties of the atoms or photons are
involved. However, it is also possible to modify the interference pattern by adding an external
device which is correlated with the entire system, in such a way that it acts as which-path detec-
tor. In fact, we can even achieve the total loss of the fringe visibility at the expense of obtaining
the path followed by the atom or photon.

In this section, we will explain a model proposed by Scully et al., [57, 58] in which the slits
are crossed by atoms and an external device is used to determine the path followed by them.
As a consequence, the interference is completely lost. On the left side of the figure 2.1 we can
observe a typical double-slit setup, in which the atoms are collimated before going through the
slits. In that case, since there is no external devices in the setup, we would hope to obtain a
typical interference pattern. However, in order to modify the observed pattern, we can consider
a laser beam and cavities micromasers , which are shown on the right side of the figure 2.1.

Let us analyze the setup in which the laser and micromasers are not included in the system
yet. In this case, the state which describes the atom after it crosses the double-slit corresponds
to

1

V2

where |7) represents the initial atomic state. The probability density for a position 7 = R of the

U(7) [1(7) + o (7)] |2), 2.1)



8 CHAPTER 2. THEORETICAL FRAMEWORK

a) b) Micromasers
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Cavity
1
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Yy Cavity
2

Plane atom wave

Figure 2.1: a) Double-slit setup crossed by atoms, in which total interference is obtained due to
the interaction of ¢); with 15, as in a typical Young’s experiment. b) External devices used to
obtain which-path information and to vanish the interference.

center-of-mass is given by the square modulus of w(ﬁ), such that

—» 1
P(R) = 5 [ + [tha2l* + titba + 3an ] (ili). (2.2)

Therefore, from the red terms, it is clear that an interference pattern is obtained on the screen. As
a consequence, we have a wave-like behaviour for the atom, since we cannot determine which
slit it passed through. However, if we want to know the path followed by the atom we can
include the laser and micromasers considering the scheme shown in the figure 2.2

Micromasers
Collimators
Cavity 1
1
RN (RRARRRRRAN
NUNANRINEN (ARREAARIE
Cavity
Laser beam 2 V2

Plane atom wave

Figure 2.2: Double-slit setup crossed by atoms, in which interference can be vanished due to the
presence of external devices which allows to obtain total which-path information.

When the set laser-micromasers is included in the system, the cavities 1 and 2 are located
after the laser beam in the upper and lower paths, respectively. The task of the beam laser is
to excite the atoms to the long-lived Rydberg state |a). Once the atom is excited, it crosses the
cavities making a transition |a) — |b) by spontaneous emission of a photon. Therefore, the state
of the total sytem is now given by

) = i r r
Y(r) = ﬂ[w )1102) + 1a(7)[0:12)] |D), (2.3)



2.1. EXPERIMENTAL AND THEORETICAL TESTS OF COMPLEMENTARITY 9

where the state |105) (|0;12)) denotes the presence of a photon in cavity 1(2) and no photon in
cavity 2(1). It is important to note that the initial system (Young-type setup) and the which-path
detector have become entangled. In this case, the new probability density for a position of the
center of mass given by i = R corresponds to

(1| + [af],

(2.4)

N~ DN~

because (1;02|0112) = (0115|1;02) = 0. As a consequence, the terms (in red) which produce
interference are cancelled and no fringe visibility is observed on the screen. Therefore, we
can conclude that the cavities act as a which-path detector, since the atom leaves a photon in
one of them depending on the slit that it crossed, i.e. the path-information is available in the
micromasers and it can be extracted by performing a proper measurement of the number of
photons. However, we must keep in mind that the change produced by the extra photon left in
the cavity, should be detectable. In this sense, we can consider that the easier way to achieve
that is to prepare a cavity with no photon initially. This allow us to detect the emitted photon
and determine the path followed by the atom.

2.1.2 Quantum eraser and delayed choice

Through the years, serveral works have studied the dual behaviour of light and matter consid-
ering different models both, theoretical and experimental. Although in the most of cases the
results have helped to better understand the properties of photon, atoms, electrons, etc, and the
way these behave under certain conditions, some results have increased discrepancies among
scientists. In this section, we consider theoretical setups in which we study the concepts quan-
tum eraser and delayed choice, and the controversial ideas on which they are based.

Let us go back to the last scheme studied in the previous section. In that case, we saw
how the interference can be completely removed by introducing a path detector device in the
system, which allows us to distinguish unambigously the path followed by the atom based on the
measurement of the number of photons in the micromaser cavities. Therefore, at this point we
wonder whether if it possible to retrieve the interference by erasing the which-path information
contained in the detectors (cavities). This is precisely the purpose behind of the concept of the
quantum eraser, which we will study considering the setup shown in the figure 2.3.

In this case, the atoms also cross a laser beam and immediately after enter in the micro-
masers, where they can leave a photon which can reveal the path followed by the atom. However,
now we consider that the which-path detector (cavities) are separated by a shutters-detector wall
combination. Therefore, after the atom leaves a photon in one of the cavities, we can choose
to “erase” the path-information, since as long as shutters are closed, the radiation remains con-
tained either in the upper or the lower cavity. However, if the shutters are opened, the radiation
will interact with the photodetector wall. Thus, the photon that was initially left in the upper or
lower cavity is absorbed. As a consequence, the memory of the passage of the atom is erased.
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Micromasers

Collimators
Cavity 1
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Shutter
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Plane atom wave

Figure 2.3: Double-slit setup to study the possibilities of implementing a quantum eraser.

The interesting point here is that one can open the shutters even long after the atom crosses
the entire system. That is, once the atom is away from the micromaser cavities, no physical
influence on the wave function of the atomic center of mass can be thought of. Therefore,
one could define the behavior of the system during the time of flight of the atom by erasing or
keeping the path information in the cavities. In this sense, the patterns are formed considering
the events in which a photocount is produced in the detector wall or not, which can be controlled
by the experimenter through the shutters. This is precicely the paradox in this and other quantum
eraser models.

In order to study the previously presented model, we analyze the mathematical description
of the problem considering that the detector wall is a two-level atom initially in its ground state
|d) and it can be found in the excited state |¢) when the shutters are opened. Thus, the state of
the system immediately after the atom crosses the micromasers can be described as

1 -
2 [41(7)[1102) + 1b2(7)[0112) ] b)|d), (2.5)

where |b) is the internal atomic state. Moreover, we can introduce symmetric and antisymmetric
states of the atom and the radiation fields contained in the cavities, which are defined respectively
as 1+ and |1):

() =

V() = 7 [wl (7) £ %(7_’7] (2.6)

|4+) = [[1:02) £1011)] (2.7)

7

Now we can rewrite (2.5) as

U(F) = f[m(f)lﬂ + 9 (F)|=)][b)|d). (2.8)
Therefore, we now consider the interaction between the radiation field in the cavities and the
detector wall, which corresponds to an atom with a lower state |d) and an excited state |e). Here
we have to consider that the Hamiltonian between the radiation and the detector wall depends
on the symetric cominations of the field variables, and thus only |+) will couple to the fields.
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As a consequence, if the shutters are opened, the state of the system after the radiation-detector
interaction can be written as

B(F) = = [ (M0105)]e) + b (7) =) 18), 2.9)

=

and the probability density corresponds to

(U1 (R)n(R) + 93 (R)yda(R)],  (2.10)

P = Ly, () + 02 (R ()] = L

From (2.10) we now can obtain the probability density P.(R) [P,(R)] for finding the detector
excited[deexcited] and the atom in a position R on the screen, which are given as

P.(R) = [0+ (B)]? = S[[en(R)P + [a(R)P] + Re[V] (R)u2(R)], (2.11)

N | —

PiR) = 16 (B = S [ln (B + [ R)P] = Re[i(ua(A]. @12)

— —

The terms in red show fringes and antifringes for P,(R) and P,(R), respectively. These patterns
are obtained considering that once the atom has travelled from the source to the screen, crossing
the micromaser, we can measure the state of the detector wall detector. If we observe a pho-
tocount, the path-information is erased and we observe fringes on the screen. After that, other
atom crosses the setup and we perform a measurement upon the detector wall again. If this time
we observe no photocount, we obtain antifringes since no path-information has been revealed.
This sequence must be repeated many times to form the whole patterns. On the other hand, if
the eraser photon signal is disregarded, we obtain no fringe visibility, due to the superposition
of fringes and antifringes, which can be represented by the equation (2.13). This is, no measure-
ment on the detector wall implies that the path-information is still available in the radiation and
it can be extracted with a proper measurement of the number of photons in the cavities.

P(R) = % (Pe(ﬁ) n Pd(é)) 2.13)

In order to clarify the concepts of quantum eraser and delay choice, now we will qualitatively
discuss a particular model in which, instead of slits, two atom are located in specific positions
[4]. We will consider the scattering of light from the atoms, whose position are defined as 1 and
2. First, we analyze the case in which resonant light impinges from the left on two-level atoms,
thus an atom can be excited from the level b to a and then emit a v photon. Since both atoms
are finally in the state b, it is not possible to determine from which atom the photon v came.
Therefore, the resulting pattern obtained upon the screen shows fringe visibility after repeating
the process many times. As a consequence, there is no path-information (see figure [2.4]).

Analogously to the model of micromasers, we can modify the system in order to obtain path-
information at the expense of losing wave properties. In this case, we consider three-level atoms
and a field /;. One of the atoms can be excited from the state ¢ to the state a, and then emit
a photon 7. As a consequence, that atom ends up in the state b while the other atom remains
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Figure 2.4: Two-level atoms are located in the position 1 and 2. An incident pulse I; excites
one of the atoms to the level a to later emit a v photon. Since the final state of both atoms is the
same, no path information can be extracted from them, and total interference is obtained.

in ¢ . Therefore, in this case it is possible to determine which atom the photon came from by
performing a measurement of the internal state of both atoms. Consequently, no fringe visibility
is observed upon the screen (see figure 2.5).

Figure 2.5: Three-level atoms are located in the position 1 and 2. An incident pulse /; excites
one of the two atoms from the level c to the level a, then it emits a v photon and ends up in the
state b. In this case the internal atomic state can reavel which-path information.

Finally, we show the case in which the atoms located in 1 and 2 have four levels and a pair of
photons can be emitted by one of them due to the radiations /; and I,, which excite the atom as
shown in the figure 2.6. When the atom decays from a to b, the v photon proceeds to the screen
in the right where is registered by a detector D at a location xy. On other hand, when the atom
decays from b’ to ¢, a ¢ photon is emitted. As a consequence, the final state of both atoms is the
same, and no path-information can be obtained via an atomic measurement which implies that
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total interference is obtained. However, if we perform a position measurement of the ¢ photon,
we could obtain path-information of the v photon.

Figure 2.6: Four-level atoms are located in the position 1 and 2. Two incident pulse, /; and /5,
excite one of the atoms from the level ¢ to the level a and from b to o', which allows the emission
of the photons 7 and ¢, respectively. As a consequence, the final atomic state is the same and
there is no path-information.

In order to study the effects of the measurement of the ¢ photon, we consider the scheme
shown in the figure 2.7. We consider only those cases where the ¢ photons scattered from
the atom located at 1[2] proceeds to the 50/50 beam splitter B,[B5]. Therefore, the ¢ photon
can be detected by the detectors D3 or Dy, which gives information about which atom it came
from, since when D3[D,] clicks, neccesarily the ¢ photon came from the atom in 1[2]. As a
consequence, we conclude that the corresponding v photon was also scattered from the same
atom. On other hand, if after crossing the 50/50 beam splitter B, the ¢ photon is detected in D
or Ds, there is equal probability that it may have come from the atom in the position 1 or 2. In
this case, the path-information of ¢ is erased, and thus there is no path-information for + photon
either.

Therefore, we can consider that the protocol for this model works by following the next steps

* We separately identify the events where photons ¢ are detected at ports Dy, Dy, D3 and
Dy.

* For each of these events we locate the positions of the detected photons + on screen D.

* For detection at D3 and D, the pattern formed by the photons « does not show interfer-
ence fringes on screen D.

* For detection at Dy and D-, the pattern formed by the photons v shows interference
fringes.
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Figure 2.7: Theoretical delayed choice quantum eraser scheme.

The paradoxical character of this situation is that we can consider that the ¢ photon detectors
are located far away from the atoms, in comparisson with the distance between atoms and the
~ photon detector. Therefore, the measurement of the ¢ photons (measured later) would have
an influence on the behavior of the v photons (measured before), which suggests that a future
event could have consequences on a previously occurring event. For this reason, this and other
delayed choice quantum eraser models have been a source of controversy to this day. In Chapter
5 we will return to this topic in order to implement a theoretical model based on the atom-field
interaction.

2.1.3 Balance among visibility, distinguishability and concurrence

In the previous sections, we have seen that the wave-like and particle-like properties can be
obtained depending on the setup of the model under study. The wave-like and particle-like
behaviour have been defined based on the fringe visibility (/) and which-path information or
distinguishability (D), respectively. Typically, double-slit Young-type schemes are considered
in the realization of different theoretical and experimental models which study the duality [31,
35]. In that case, which-path information and visibility can be controlled by the probabilities c¢;
and c that a particle crosses the upper or bottom slit. When ¢ = ¢; we obtain total interference
and null distinguishability. However, different devices can be used in order to detect the pass of
the particle through one of the slits and which-path information can be obtained at the expense of
losing interference [57, 58]. Considering this, the relation between V' and D can be represented
by the inequality [17]

VP4 D* <1 (2.14)

This relation has also been studied considering a degree of entanglement between some intrin-
sical property of the particle and the paths of the schemes. This correlation has been quantified
through the concurrence (C'), included as an additional parameter in the balance between dintin-
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guishability and visibility [31, 34, 35, 53, 67], resulting in the equality
V24 D?*4+C? =1. (2.15)

For instance, in case we send atoms through the double-slit, we can correlate the upper and
bottom paths with two different internal states of the atom. In a similar way, if the scheme
is crossed by photons, we can considere the same kind of correlation, but this time using the
polarization of the photons as intrinsical property.

To study how the equality (2.15) is obtained and how the concurrence can control this bal-
ance, we consider a doble-slit scheme crossed by photons, whose polarizations are correlated
with the possible paths of the scheme [53]. Each hole of the double-slit is defined as a and b
(see figure 2.8), with which we can identify the field corresponding to the pass of the photons
through the holes as:

Figure 2.8: Young’s two-slit scheme used to study the balance among wave, particle and con-
currence

E,=EM + EO) ~ ageve 4 gl emiee

2 A1) | () oo i At —i (2.16)
Ey,=E"+ E, ' ~ e+ ae "

where @ and a' correspond to the annihilation and creation operators, respectively, while ¢,

represent the phases asociated to each field. After crossing the double-slit, the quantum state of

the photon can be described as

|\II> - Ca|1]-a> X |¢a> + cb|1]-b> X |¢b> = Ca|]]-a’¢a> + cb|]]-b7¢b>7 (217)

with ¢, and ¢, normalized coefficients such that |c,|? + |c3|* = 1. On other hand, |1,) and
|1,) represent a photon in the modes a and b, respectively, while |¢,) and |¢;) correspond to
normalized states of an intrinsical property of the photon, in this case the polarization, with

‘<¢a‘¢b>‘ = ”Y’ < 1.

Once defined the state of the photon after it crosses the double-slit, we analize the wave-
particle duality consider the definitions of path distinguibishability (D) and fringe visibility (V')
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as [25, 31, 32]

D — pCL - pb
Pa +pb
and ’
y=be —Pe
p::nax _’_pzmn
where

A

Pa X (EAC(L*)EC(LH% Detected probability of photon passing through the slit a.
Py X (Z?é*)l?éﬂ): detected probability of photon passing through the slit b.
pe < (E() EM): Detected probability of photon registered at the screen c.

Therefore, using (2.16) and (2.17) we obtain (see Appendix)
(EDEM) = |eaf
(BB = |af
(ECVEDY = |, + ctepye’Pa=9a) 4 chegyte 0e%e) 4 |c,|?

Then, D y V can be written as

D = |lcal* = cs]®

V = 2|cqepyl.

On other hand, the concurrence (C') can be defined as [67]
C= 2|Cacb| I |7|27

with which it is fulfilled that

V24 D? 4 C? = dlcaeyy|* + |cal* = 2lcal?|es|® + lep|* + 4lcacs|?(1 — |]?)

= lcal” + 2lcal’es]* + |l
= (|Ca|2 + |Cb|2)2
=1

(2.18)

(2.19)

(2.20)

2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

Therefore, the concurrence can be considered as third parameter which can contribute to the
balance between the wave-like and particle-like behaviour. In fact, we can choose certain values
of the parameters that define C' in order to obtain C' = 1 and thus V' = D = 0. This leads us
to the question: can be the wave-particle duality turned off? We will discuss this question in the

chapter 3 based in our atom-field interaction model.
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2.2 Atom-field interaction

In a typical configuration of a double-slit Young’s experiment, the interference patterns are ob-
served due to the incidence of a electromagnetic radiation on both slits. As a consequence, these
act as point sources of waves, which interfere constructively or destructively depending on the
difference in their phases. This allows obtaining a certain interference pattern at a certain dis-
tance from the slits, which proves the wave-like behavior of light. Therefore, we can describe
this phenomenon as the result of the interaction between the light emitted by some particular
source and the slits, that is, as the interaction between electromagnetic radiation and matter.

In this section, we consider a model analogous to the one used in Young’s experiment, in
which instead of a beam of photons crossing a double-slit, we will consider a beam of atoms
crossing a cavity with an electromagnetic field. This will allow us to study the interaction
between traveling atoms and field cavities, which, due to the wave-like behavior of matter, will
lead us to implement this interaction in a double-slit model that allows us to use quantum fields
as which-path detectors.

2.2.1 Quantum description

To analyze the proposed model with atom-field interaction, we consider the coupling between an
atom, considered as a two-level system, and a quantum field in a cavity with only one radiation
mode, which corresponds to a model presented by Walls et al. [62]. The Hamiltonians are
given respectively by the expressions (2.27) and (2.28), while the Hamiltonian that models the
interaction between both is given by (2.29).

- hwoé—z ﬁ2
Hatom = — 2.27
¢ 5 + o ( )
. 1
Hyicla = hwa(a'a + 3)- (2.28)
Hiny = heos(kz + €)(g*o_al + go,.a). (2.29)

Where

@,a' : annihilation and creation operators
0, = [1 0 } Lo = [O 1] ,O_ = {O 01 : internal atomic operators
0 -1 0 0 10
w, : mode frequency in cavity (field) (230
wp : atomic transition frequency
k : Wavenumber of the standing wave in the cavity (field)
A = wy — w, : Detuning
lg| : coupling constant
Therefore, the total system is described by the sum of the three Hamiltonians shown above, such

that R R K R
Hsystem = Hfield + Hatom + Hint' (231)
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In the regime of a high detuning we can obtain the effective Hamiltonian considering
H = Hy + H, (2.32)

where o5
. . o
Hy = hw,ala + —2=

(2.33)

and H = I—Lm defined in (2.29). Therefore, the Schrodinger equation that describes the evolu-
tion of the system corresponds to

it s (0)) = (Ho + Hr)us(0) (2.34)

. . . . . . . ~ iHgt
If we considere the interaction picture using the free Hamiltonian and the operator Uy = e~ ,

we have

Dr(t)) = ¢ fus(t)) = U s 0), 235)
and thus (see Appendix)
d d -
th— 11 (t)) = ihE[Ust(tm
= [inlly" 0o+ 5 HOO 0) (230
= Wi(t)|vi(t)),

where WI(t) corresponds to the perturvative term in the interaction picture, which can be rewrit-
ten as

A ~ .d ~ N NN
W[(f) == —ZhUo_laU() —|— UO_IHUQ
ifgt d - ifgt ilgt ~  iflgt

]

N iHgt At _iHpt iHgt _ iHgt
:hcos(kx+§)[ge Rog_a'e h 4ge h gpae h

= heos(kx + &) [g*o_ae " + goae™],

where we have use ¢4 Be=4 = B+[A, B +5; [A, [A, B]]+... and (2.33) to obtain (see Appendix)

iHgt . iHgt a4 i
e n o alen =g ale ™, (2.38)

and analogously
iHogt iHgt
e h orae h

= G,ae™. (2.39)

Now we can study the evolution of the system considering the perturbative term W[(t) and the
evolution equation ih-£ |y (t)) = W;(t)|1r(t)) to show that (see Appendix)

it [hlg|* cos®(kx + &) . . .
- — o

e~ o Wit _ q ; A (6 a,6_a']| + ... (2.40)
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and thus
R ﬁ 2 2 ]{3
iy Mo ) o
thCos kx + & At a o ata
91 A( ) ( Lo_aal — o_a+aTa)
_ h|g|2 COS (]{/’ZL’ +€) ( + (1 + de> — 5 O'_i_(AlTCL)
A _
h|g|? cos®(kx + £ R bAoA ata 2.41
= 91 A( ) (646_+06406_a'a—o6_6.a'a) (24D
A z
2 2 2 2
_ h|g| COSA(]{?:L‘ —I—f)&#%_ N h|g] COSA(ICI + O@cﬂd.

Once an expression for Wf 7 is found, we obtain the total effective Hamiltonian that describes
the atom-field interaction, which corresponds to:

h|g|? cos?(kx + &) . . h|g|2005 (kx + &) .
ooz

H, ¢ = hwoo, + hwgala + _
ff 00 a'a A + A

G.ata  (2.42)

The third term, which is present even in the absence of photons, is a kind of atomic Kerr
effect induced in the cavity field [21]. Therefore, we consider the final H. ;¢ simply as:

h|g|? cos®(kx + €) .

Hepp = hwod, + hwaala + A g.ata
BlgP? cos? (k
=t + o+ IEC I 5 iy, b, 24
BlgP? cos? (k
— s, + hudla 1+ 1 COSA( T+8) 5 ata+ hhe.,

From the previous expresion, we can observe that the potential experienced by the atom as it
passes through the standing wave (field) is

h|g|? cos?(kx + &) 5.4t

V= A

a'a+ hAo,. (2.44)

Therefore, in the next section we consider (2.44) to study the interaction between atoms and
field cavities, in order to implement a model in which this interaction can be used to control the
wave-particle duality.

2.2.2 Atomic location based on atom-field interaction

Once the effective Hamiltonian that governs the atom-field interaction is found, we can study
the possibilities that it can offers us if we want to consider a double-slit scheme crossed by



20 CHAPTER 2. THEORETICAL FRAMEWORK

atoms. In this section, we discuss a Young-type double-slit model in which, after crossing the
slits, the atom passes through a standing wave, whose quantum state is modified depending on
the relative postition of the atom with respect to nodes and antinodes of the wave. Therefore,
after atom leaves the setup, a field measurement could reveal the position that the atom passed
through. For this purpose, we previously consider only the effects of the atom-field interaction
on the quantum state of the fied. After that, in the next chapter, we will explain how the standing
wave must be located in order to meet the goal of locating the atom once it crossed the double-
slit.

Before the atom-field interaction, the quantum field is described as coherent state of ampli-
tude « given by

2
—lo

19(0)) fieta = |a) = e 2

3 \‘;‘—%W = D(a)|0), (2.45)

with D being the displacement operator

~

D(a) = @' —o"a, (2.46)

On other hand, we assume that the atom enters in the cavity in the groundstate |g) with a
probability function of the transverse position to its trajectory given by (x). Therefore, we can
describe its state before the interaction as

0(0)atom = / dz)z, g){, g1t(0)) atomn = / dzi(x)|z, g). (2.47)

Therefore, the total initial state of the system corresponds to
9(0) = 0) & [6(0)om = [ dan(x)]a) @ Jo.9), 2.48)
whose evolution, using (2.44), is given by (see appendix 2.3.2)

(1)) = / drw(z)e ¥ |a) ® |z, g)

B t|g|? cos®(kx + &)
N A

—/dx/i(x)e“Aem(w)dTﬂ@@|x,g> with  n(z) (2.49)

= ¢itA /da:/f(x)|aei"(“”)> ® |z, g).

Therefore, since the position of the atom x is contained in 7(z), it is recorded in the final state of
the field, due to the entanglement between them. As a consequence, since the final state of the
field depends on the postition of the atom during the interaction, we can perform a quadrature
measurement on the field to determine the position of the atom when it crossed the wave.

To perform the quadrature measurment of the field, we consider the projection of the eigen-

state |xg) of the quadrature operator Xy = M on (2.49), such that

2

[ ())atom = N / dak(x) (xolaet 5 O ETOY gy (2.50)
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Here Xy_o = X (Xy—r/2 = Y) represents an amplitude (phase) quadrature measurement of the
field and x, the resulting value. To obtain an expression for the atom state after the quadrature
measurement, we consider that |y,), corresponds to a maximally squeezed state defined as (see
appendix 2.3.2):

1
- _ (aT
’X@) %exp[ 2(& e
z(n+2)9

zn@
:\/12_7r€ {Z \/19| ——Z\/ (n+2)! X9|n+2>

(n+4)6 1 i(n+6)0

2%§:¢———‘” +@—§§§:¢@:61—;:ﬁm+m

; 1
0+ 1110

(2.51)

moreover, we recall that the state of the quantum field after the interaction can be written as

al?t 2 ~ a2 (™)™
i cos? (kz+&) in
oe' A = |y = e 2 E ———|n). (2.52)

Therefore (see Appendix)

L l(01=28)2 iz (01 —x0)]

v 21 (2.53)

<X9’04€m> =

with o + i = aelillgl’t/B) cos®(kae+6)=0)] — in=0) which allows us to obtain the final state of
the atom given by

V() atom = N/d{ljlﬁl

Otherwise, considering (2.50), we can obtain the position probability distribution P(x|xg)
of the atom given that the value yy has been measured for the field when the quadrature mea-
surement is performed

—[(a1 =2 )2 +iaz(a1—x0)] |z, g). (2.54)

lg‘Q cos? (kz+¢) i 1 —[(a1—%2)2+ica (a1 —x0)] i
P(X9|l’> - Xo|&e = Te
L (2.55)
_ L tmwr L el

V2r Vo

with aq(x) = «cos [% cos?(kz + &) — 9} , which implies that for a specific position z, the
probability of measuring Y, has a Gaussian dependence, which can be observed in the figure
(2.9), where we have considered the amplitude of the field o = /8. For a certain results of the
quadrature measurement, we can obtain a specific position probability distribution. For instance,
if the result of the measurement is yy = « or Yo = —«, the probability distribution is the one
shown in the figure (2.10) by the red and blue lines, respectively. For X = 0, the probabiility
distribution is shown in figure (2.11).
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Figure 2.9: Conditional probability P(y|z).

Therefore, if a field mesurement is performed, we can express the atom state as the density
matrix

pat0m<t) - |¢(t)>atom <1/}<t)| (256)

with
1

[ ()Y atom = N/dx/-i(x)ﬁe

where N is obtained from the normalization condition () ()] (t)) = 1:

—[(al—XT")2+i0¢2(o‘1_X‘9)]|x, g>’ (2.57)

On other hand, if any measurement is performed on the system, we obtain pg., (t) through
the partial trace over field

Patom(t) = T pieraf [¢ (1)) (L ()]}, (2.58)

where
lg|?

et "t cos2(km+£)> |Z‘, g> (2.59)

(1)) = / dzk(z)

If the atom leaves the cavity and it propagates freely, its final state at a time ¢’ after crossing
the cavity will correspond to

Patom(t) = U () patom (0)UT (') (2.60)
with o
! it 23
) = -z 2.61
0(0) =exp( - 52 ). 261
and

Patom (0) = [¢(t))atom (¥ (1) (2.62)
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Figure 2.10: Probability distribution of the atom after an X quadrature measurement of the field

with values yo = « (red) and xyg = —a (blue).
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Figure 2.11: Probability distribution of the atom after the X quadrature measurement of the field
with value o = 0.

In order to observe the way in which the atom propagates after it leaves the cavity, we show
a case in wich we assume that the specific value y, = 0 is obtained when an X, quadrature
measurement is performed over the field. Thus, from (2.57) we obtain

it! p>

’w<t/)>at0m =e ham W(t»atom
_iﬁ 1 —[a?(z)+ias(z) o (z
_ YL [N/dm(x) e i@ Fiaa(@ea (]| g) (2.63)

it p>

:e_h2m/d{L‘|JZ,g><IL',g|¢(t)>atom'

Projecting (z/, g| on the state |¢)(¢')) we can obtain an expression of the wavefuncion v (z',t')
of the atom in terms of the time ¢’ and the position x’, which describes the system after the atom
leaves the cavity (see appendix 2.3.2).

(@', gly(t)) = /dfv<x’,g|€‘i5ilxagﬂx,gll/f(t)) = (e, 1), (2.64)

Therefore, the probability of finding the atom in a position z’ in a time ¢’ after the atom-
field interaction is given by [¢(z’,t')|?, which is plotted in the figure 2.12. In the image we
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can observe how the peaks of probability propagate causing interference in certain value of t'.
For instance, if we take ¢ = 0.015, the interference pattern is shown in the figure 2.13. On the
other hand, for ¢/

3, the pattern in the figure 2.14 shows that peaks of probability are spatially
separated due to the temporal evolution of the system, and thus there is no interference.

. "
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Figure 2.12: Probability distribution in function of =’ y #'.
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Figure 2.13: Postion probability distribution for ' = 0.015.

So far we have considered that the initial atomic distribution extends in a width equal to \/2
and & = 0. Thus, it is only possible to obtain the two central peaks of the figure 2.11 and their
time evolution shown in 2.13. In order to exemplify another case, we consider that the initial
atomic distribution previous to the entry of the atom in the cavity spans 3\ /4 and £ = 1/8. This

implies to obtain a new normalization constant, which is shown in the appendix (2.3.2), and a
new probability distribution after performing the quadrature measurement figure 2.15.

In this case, the central peak scrolls left during a time " after the atom-field interaction, while
the rest of peaks scroll right, as the figure 2.16 shows.
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Figure 2.14: Postion probability distribution for ¢’ = 3.
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Figure 2.15: Atomic probability distribution when the value x, = 0 is obteined after to perform
an X, quadrature measurement. The initial atomic distribution is taken x(x) = 3\ /4.
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Figure 2.16: Atomic probability distribution in function of 2" y ¢’ after field measurement when
k(x) = 3\/4.
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Finally, to visualize the interference effects we take some values ¢ which show different
pattern as the atom moves away from the cavity field.

probability
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Figure 2.17: Atomic probability distribution in function of z’ for t' = 0.015.
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Figure 2.18: Atomic probability distribution in function of z’ for ¢’ = 0.05.
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Figure 2.19: Atomic probability distribution in function of 2’ for ' = 3.
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Up to this point, we can notice that the atom-field interaction allows us to measure the state
of the quantum field by performing a quadrature measurement, and from the obtained results one
may study the behavior of the atom after it crosses the cavity field. Therefore, this offers us the
possibility of implementing a model based on the atom-field interaction, by which to study the
wave-particle duality in a double-slit scheme. In the next chapters, we present the models that
we have proposed in order to analyze how the duality can be controlled by different atomic and
field parameters, depending of the behaviour that we want to obtain, wave-like or particle-like,
once the atom crosses the scheme. Also, we give all the details about the preparation of the
atomic and field states, as well as the measurement processes.



Chapter 3

Controlling the wave-particle duality with
quantum fields

As we have seen previously, quantum fields can be used to determine atomic postions depending
on the amplitude of the field and the quadrature measurements performed. This is because the
interaction atom-field interaction depends on the position in which the standing wave is crossed
by the atom. Therefore, by locating the slits of Young-type scheme in front of specific positions
of the quantum field, we could detect unambiguously the path followed by the atom. As a
consequence, the wave-like properties of the system are lost.

In this section, we consider a two-level atom crossing a double-slit scheme, which is located
immediately before a cavity with a standing wave represented by a quantum field. This allows
us to establish only two possible paths on which the atom passes through the cavity. The slits
are located in front of a node and an antinode of the wave, in such a way that the interaction is
maximum when the atom crosses the antinode and null when it crosses a node, causing a max-
imum or null shift of the phase of the field, respectively. Therefore, an adequate measurement
of the quadratures of the quantum field offers us the possibility of detecting the position of the
atom during the interaction and thus, its trajectory.

For a coherent state, it is known that the path information can be controlled by the amplitude
of the quantum field, causing partial interference as its value decreases [62]. In this section we
consider in addition to the coherent states, different quantum states such as squeezed states, cat
states and thermal states, in order to analyze how the parameters present in each one can help to
control the visibility of fringes and the path information. In addition, we correlate the internal
states of the two-level atoms with the paths of the scheme, which allows us to have a certain level
of concurrence in the system, in order to study its relation with visibility and distinguishability.
This configuration also offers us the possibility of having two path detectors, the quantum field
and the internal state of the atom.

28
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3.1 Model

A two-level atom crosses a cavity with a quantum field with wave number £ = 27 /\. A double-
slit is placed immediately before the field with top slit located in front of an antinode and the
bottom slit in front of a node with a separation distance of 0.25)\ between slits (figure 3.1)
[45, 62]. This allows to establish only two possible paths for the atom, which results in maximum
or null interaction with the quantum field. Therefore, if the interaction produces some effect on
the field, it could be used to reveal which-path information. Furthermore, we consider a highly
localized atomic spatial distribution due to the position of the slits, and a negligible change in the
transverse distance traveled by the atom during the interaction. Thus Az < A, which implies
that the atomic distribution spreads once the atom leaves the cavity [62]. Initially the atom is in
the ground state and it can be reflected or transmitted by the atomic beam splitter (ABS) [22, 24]
with reflection and transmission coefficients ¢y and ¢y, satisfying |c;|? + |¢;|* = 1. If the atom
is transmitted, it flies in the ground state along the bottom path and crosses the slit at the node
of the standing wave (x = 0.25)). On other hand, if the atom is reflected, it goes through the
top slit passing by an atomic mirror (AM) [5, 43] and a Ramsey field (RF) [54]. This allows to
prepare a superposition of the states |b) and |a), which remains during the time of interaction
of the atom with the quantum field. This requires the use of long lived atoms in order to avoid
the spontaneous emission in the cavity [26]. The probability coefficients of exciting the state |a)
and remaining in the state |b) are sin? ¢ and cos? ¢, respectively. In this case, the atom crosses
the top slit and the antinode of the field (x = 0). Therefore, the top path is correlated with the
internal atomic state |®4+) = cos ¢|b) + sin ¢|a), while the bottom path is correlated with the
state |®) = |b).

Quantum field

AM RF |(‘DT)
G P)
- S S P)
Two-level atom ABS |CDl)

Figure 3.1: Double-slit scheme. A two-level atom passes through the atomic beam splitter
(ABS) in the ground state. In the upper path |P;), the atomic mirror (AM) and Ramsey field
(RF) generate the internal atomic state |®4), while in the bottom path | P|) the initial atomic state
remains the same. Finally, the atom crosses a node or antinode of the quantum field.



CHAPTER 3. CONTROLLING THE WAVE-PARTICLE DUALITY WITH QUANTUM
30 FIELDS

3.1.1 Initial state

Once the atom passes through the ABS, its state can be described as

19(0))atom = 1| Py) @ |®1) + ¢ |P) @ | D)) = 4| ) ® [cos P|b) + sin pla)] + ¢||P) @ [b),
3.1)

where the states | ;) and | P|) represent the top and bottom path of the scheme, respectively.

Immediately to the right of the double slit, the cavity with the quantum field is located. We
consider different states of the field in order to analyse different ways of controlling the wave-
particle duality. Before the interaction the state of the field is represented by a squeezed coherent
state, a cat state and a thermal state, respectively.

3.1.1.1 Squeezed coherent state

The first state of the field corresponds to a squeezed coherent state defined as

[9(0)) fieta = |, §) = D()S(£)|0) = 5(€)D(B)[0) =Y _ caln), (3.2)
n=0
where A
B = acosh(r) + a*e” sinh(r) (3.3)
The squeeze and displacement operators are given respectively by [50]
S(€) = et s, (34)
with & = re” and A A
D(a) = e’ o (3.5)

with o = o/e’¥. The coefficients c,, are defined as [23]

e tanh(r))

n! cosh(r)

Cn :6—%|,8‘2+%ﬁ267“9 tanh(r) (

H, (Be" sinh(2r)] /%) . (3.6)
Therefore, the state of the total initial system is given as

9(0)) system = [¥(0))atom @ [¥(0)) ficta = (CHPH ® [cos §|b) +sinPla)] + ¢ |P)) @ |b>) ® |, §).
(3.7)

3.1.1.2 Cat state

As a second case, we consider that the quantum field is represented by a cat state, which corre-
sponds to a superposition of two coherent states | + «). The even or odd cat states are defined
respectively by
lcaweven = |a> i | — a>2 (38)
2(1 + e 2aP)
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nd ) = | - )
o) — | —«
cat)ods = 2(1 + e 2P’ 3-9)
where (j: )n
ta a
+a)=e 2 ) 3.10
|+ a)=e Ezo N 1) (3.10)

In this case, the state of the total initial system corresponds to

1(0)) system = |¥(0))atom @ [¥(0)) ficia = (CHPT) ® [cos B|b) +sinPla)] + ¢ |P)) @ |b>) ® |cat)e,o-
(3.11)

3.1.1.3 Thermal state

Finally, we consider a thermal state in order to analyse how it can be used to control the wave-
particle duality. The density operator for a one-mode thermal state is given by [50]
_ (n)ih
Pthermal = ; Wlﬂ) <n‘, (3.12)

(1) tn

where (n);, corresponds to the average photon number. Therefore, the initial state of the
system is given as
p(o)system = Patom & Pthermal, (313)

where puiom = [1(0))atom (¥ (0)].

3.1.2 Time evolution

After the interaction the total initial system will evolve to the state
~ iVt

|¢(t)>system = U|1/}(0)>system =€ * |1/}(0)>system7 (314)
where V is the Hamiltonian in the interaction framework considering a rotating wave approx-
imation and a large detuning A in order to avoid photon emission (figure 3.1). x corresponds
to the transverse position of the atom during the interaction. This is expressed in units of the
wavelength of the quantum field and it is measured with respect to the antinode in front of the
upper slit (x = 0) [63].

h|g|? cos®(kx)
A

~

V= 6.ata + hAG,. (3.15)

If the quantum field is represented by a squeezed coherent state |, &), the state of the system
after a time of interaction ¢ can be written as [see eq (7.24) in Appendix chapter 3]

iVt

[W(t)) = e ([¢(0))atom @ [¥(0)) ficia)
= M| Py) @ cos ¢lb) @ [ a, €)
+e e | Pr) @ singla) ® e a, €)
+e'Be|P) @ [b) @ |a, ),

(3.16)
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with n(z) = W and where we have defined Y e*"@n¢, |n) = [eF1(@a, £). We take
tel?

- = m. Therefore, if the atom takes the upper path, the final phase is the same for both
internal atomic states, |a) (clockwise phase-shift) or |b) (counter-clockwise phase-shift), due to
eEin(@n — gEimcos?(kx)n  However, if the value of % is different from mm withm = 1,2, 3, ...,
the final phase produced by the atom in the state |a) is different from the final phase produced
by the atom in the state |b). On the contrary, if the atom takes the bottom path, the initial phase
remains unaffected.

On other hand, when the quantum field corresponds to a cat state, the total system will evolve
as [see eq (7.25) in Appendix chapter 3]

7,Vt

[9(1)) = e % ([1(0))atom ® [¥(0)) picta)

, n(@) o) 4 | — ein(@)
= "2¢;|P) ® cos ¢|b) ® "oy £]—c > )
2(1 + ¢ 2F)
|€*i77(ff)a> :l: | — eiin(ﬁ)a> (3.17)
2(1 + e—2lal?)

HMCJPMW@( ) ] —a) )

2(1 + e—2lel?)

e "¢|Py) @singla) ® (

Finally, if we consider a thermal state, the evolution of the systems will be given as

iVt iVt
R

Ve —in(z)é.ata _—itAG in(x)etaat itAs!
(patom ®pthermal) enr =e n(@)5: Z( n(@)a2 .

Patom 0%y pthe'rmal) € €
(3.18)

p(t) =e" e

3.1.3 Which-path information and fringe visibility

The phase-shift of the quantum field is a consequence of the atom’s position during the interac-
tion time. Therefore, a proper quadrature measurement can reveal which-path information. If

the quadrature
—if | 1,06
Xy = w (3.19)

is measured with an eigenvalue Y, the corresponding eigenstate |xg) is an infinitely squeezed
state given by [51, 62]

1 1,
\X9>:\4/—2—7TCXP[—§(GT€9—X) + x9 J10) = Zb In), (3.20)

where

N |1
z n/2
b = (5" P Ha2) (321)

with IV being a normalization constant and H,,(z) the Hermite polynomials with z = (ae™% +

a'e)/2.
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In absence of the quantum field, we define the distinguishability, visibility and concurrence
as Dy, Vp and Cy, respectively. The relation among these quantities in a typical double-slit
scheme, in which some intrinsic property of the particle is correlated with the paths, can be
written as the equality (2.15) [53] with

Do = |[er* = |ey )]
Vo = 2|cpeyy] (3.22)
Co = 2|ere |/ 1 = [y/?,

[25, 31, 32, 68] where the coefficients c¢; and c| define the probabilities for the atom of taking
the top or bottom path and v = ($4|P;) = cos ¢, where the normalized states |®; ;) corre-
spond to intrinsic degrees of freedom of the particle. In our scheme, we establish correlations
between the internal atomic states and the paths in order to analyze cases with different degrees
of concurrence. In this case, in addition to phase-shift of the quantum field, the which-path
information can also be controlled through the coefficients ¢ and ¢, which define the atomic
state according to the equation (3.1). Therefore, we consider ¢; = ¢ in order to study the points
shown in the plane CV of the sphere VDC (figure 3.2). This choice allows to control the fringe
visibility through the parameter ¢ in the atomic state, and the parameters which define each
quantum field.

Vo T ¢ -

Vy=D,

Figure 3.2: Unit sphere D} + Vi2 + C? = 1. The cases studied in this article are Cy = 1 (green
dot), Cy = V, (orange dot) and V = 1 (red dot).

3.2 Results

In this section we present different cases in which different parameters of both, atom and field,
control the wave-particle duality. First, we consider the simpler case in which the quantum field
corresponds to a coherent state and we show how the which-path information is controlled by
the amplitude o/ and the phase ¢. Subsequently, we consider the squeeze parameters r and ¥, in



CHAPTER 3. CONTROLLING THE WAVE-PARTICLE DUALITY WITH QUANTUM
34 FIELDS

order to analyse their effects on the observed pattern. As a third case, we consider the cat states
and we vary the interaction time to control the which-path information and visibility. Finally, we
study the effects of the average photon number on the wave-particle duality in the case in which
the quantum field corresponds to a thermal state. In each case, after atom-field interaction, we
trace over the field in order to obtain information about the wavelike or particlelike behaviour of
the atom [eq. (3.23)]. We suppose that the possible states of the quantum field after interaction
are determined by the possible outcomes of each quadrature measurement [eq. (3.20)], which
correspond to one of the most probable values.

We consider that the initial atomic distribution once the atom merges from the double-slit corre-
sponds to two Gaussian profiles with standard deviation o = 0.05\/27. Each Gaussian profiles
is centered in the position x = 0 and = = 0.25\, respectively. Therefore, these define the states
of the paths | P; |) of the scheme. Once the atom leaves the cavity, it freely evolves during a time
t' (in units of 2m/hk?) and we obtain the atomic probability distribution for a specific flight time
t" = 3, as a function of the position z’ expressed in units of A (figure 3.3). Therefore, the atomic
state evolves as

patorn(t/) = l?TTfield [p(t)] UT = e—ifét/ patom(t)eiﬁét/7 (323)

where H = % is the free particle Hamiltonian and p(t) = [¢(t)) (1 (t)|, with [1(t)) given by
(5.7) and (3.17) for a squeezed coherent state and a cat state, respectively. For a thermal state
p(t) is given by (3.18). We study the cases in the plane CV of the sphere VCD (figure 3.2), thus
in addition to ¢y = ¢ = \%, wetake ) < v <1 (g > ¢ > 0). The values of V, and C|, represent
the choice of the parameters ¢y, ¢; and -y according to the definitions shown in (3.22). Therefore,
these do not define by themselves the patterns observed in each case in presence of the quantum

field.

3.2.1 Coherent state

In a typical double-slit scheme (without field) the atomic probability distributions show total,
partial and null interference for the cases Vy, = 1, V) = Cj and Cy = 1, respectively (figure
3.3). However, in presence of a quantum field the which-path information can be recorded in
the phase of it, which modifies the patterns observed on the screen. In this section, we consider
three combinations of the parameters o/, ¢ and we take » = 9y = 0 in order to show how a
coherent state can alter the balance between path-information and visibility.

3.2.1.1 Wave-particle duality controlled by the coherent amplitude o’

If we consider t|g|*/A = T, for o = 3 the phases before and after of the atom-field interaction
are different and these are separated in the phase space represented by the plane XY, where X
and Y correspond to the amplitude and phase quadrature, respectively (figure 3.4). Therefore,
no interference appears on the screen when an X quadrature measurement is performed and one
of the most probable result is obtained, independently of the degree of concurrence established
between the internal atomic states and the paths of the double-slit scheme [see a) - ¢) in figure
3.7]. In this case, the fringe visibility can not be controlled by the atomic parameters, since
that the path information is completely stored in the quantum phase of the field. However, as
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Figure 3.3: Spread of the atomic distribution once the atom crosses a typical double-slit scheme.
In this case, we consider the evolution of the distribution in absence of the quantum field. There-
fore, the images (a) — (b), (¢) — (d) and (e) — (f) correspond to the cases Cy = 1(¢ = 7/2),
Vo = Co(¢p = m/4) and V = 1(¢ = 0), respectively. On the left are shown the atomic probabil-
ity distributions as a function of both, time ¢’ and distance 2/, on the right are shown the patterns
obtained for a flight time ¢’ = 3.

the amplitude o/ decreases both, initial and final phases get closer (figure 3.5) and interference
is partially recovered due to the X quadrature measurement becomes ambiguous [see d) - )
in figure 3.7]. Therefore, in this case the interference can be varied through the choice of ¢,
which defines the concurrence and the initial atomic state. For ¢ = /2 the concurrence is
maximum and there is no visibility, since the paths of the double-slit scheme are correlated with
different atomic states and thus a measurement on the atom once it crosses the cavity can reveal
path-information.
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Figure 3.4: Phase-shift (c