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Abstract

The dual nature of light and matter represents an important challenge for science. Since the
origins of quantum mechanics, several theoretical and experimental works have studied the wave
and corpuscular properties of photons, atoms, electrons, etc. The main model that has been
considered in the development of them has been the Young’s double-slit scheme, by means of
which the wave nature of light was demonstrated. However, it also can be used to obtain the
particle-like properties of the systems. In case of considering identical slits, this model allows
to obtain total fringe visibility on a screen located at a certain distance from the double-slit, and
thus, null knowledge about the path followed by the object that crosses the scheme. Therefore,
the system shows a wave behavior.

In order to obtain information about the path taken by the objects (photons, atoms, electrons,
etc), several authors have studied the coupling of external systems to double-slit schemes, which
allows to know the path followed by the particle. As a consequence, the implementation of
any type of path-detector results in the loss of fringe visibility, according to the principle of
complementarity postulated by Bohr.

In this research, we have considered the use of double-slit schemes and atom-field interac-
tions to control the balance between fringe visibility and which-path information. We consider
field cavities which act as path-detectors and they are represented by different quantum states.
Instead of photons, our schemes are crossed by atoms, whose internal levels are correlated to the
paths of the schemes. Therefore, based on the peparation of both, field and atom, we can study
the balance between distinguishability, visibility and the concurrence present in the system.

Our results show that the wave-particle duality can be controlled by atomic and field param-
eters, depending on the behavior that the experimenter wishes to observe, wave-like or particle-
like. Additionally, we present a model in which a classical field can control the quantum atom-
field interaction. Therefore, the amplitude of the classical field can also be considered as a
controlling parameter of the wave-particle duality.

Finally, based on our results, we propose a theoretical model to be implemented in quan-
tum eraser and delayed choice experiments, which nowadays arouses great interest among re-
searchers. Our results suggest that the wave-particle duality can be controlled even at times
after the atom is registered on a screen, which allows us to choose the behavior of the system,
wave-like or particle-like, at any moment.

x



Chapter 1

Introduction

Particle-wave duality represents one of the most important concepts within physics, and it has
played an essential role in the study of the behavior of light and matter in experimental and
theoretical contexts. Nowadays, different works associated to the duality are mainly focused
on the development of models based on quantum mechanics, in order to offer alternatives to
discussions that have been held for years. This is because the dual behaviour of light and matter
has been an interesting way to explain how the quantum world works around us, but at the same
time it has been a continuous source of controversy based on different proposals and the results
that have been obtained over the years, even at times giving rise to paradoxes hard to address.

To understand the evolution of the ideas related to the wave-particle duality, we must go
back to the first studies and observations that sought to understand the composition and nature
of light. As early as the 3rd century B.C. Euclid (325 B.C.-265 B.C) developed his studies on
the behavior of light, and how it propagated in different media, which led to one of his main
findings about the way in which light interacted with certain objects changing its direction of
propagation [8]. His observations led him to raise the law of reflection of light, establishing that
the angle with which a beam of light falls on a certain reflective surface, is the same with which
it is reflected [9]. Behind his results, we can note that Euclid’s vision of the nature of light was
to consider it simply as rays propagating in a straight line, which in the presence of a reflective
object could change its direction. That is, in no case was light considered as a wave or a particle.

Despite the development of various studies seeking understanding of the behavior of light,
it was not until several centuries later that wave-particle duality became a problem to be dis-
cussed among the scientific community. In the 17th century, the way in which light propagated
remained a topic of interest, which led to the carrying out of several works by different scien-
tists, including Willebrord Snell van Royen (1580-1626) and René Descartes (1596-1650), who
sought to understand the refraction of light, phenomenon that occurs when the beam passes from
one medium to another. As a result, light changes its direction, depending on the densities of
both media [40]. The results obtained led to an expression in terms of the angles of incidence θi
and refraction θr, and the refraction index of the media of propagation, ni and nr, respectively,
which today is called Snell’s Law:

ni sin θi = nr sin θr, (1.1)

1



2 CHAPTER 1. INTRODUCTION

where the refraction indexes are defined as n = c
v

with c being the speed of light in the vacuum
and v the speed of light in a given medium. Therefore, the way the light spreads from one
medium to another will depend on the density of them [11].

Up to this point the concepts of particle or wave had not been considered as essential to
study the behavior of light or to describe it. However, other phenomena such as the diffraction
of light, studied by Francesco Marı́a Grimaldi (1618-1663), gave hints of its wave behavior,
which was not well received by the rest of the researchers of the time, who attributed these
results to possible experimental errors [41, 44]. Despite this, the fact that light had a wave-like
nature was not entirely discarded by other scientists like Christian Huygens (1629-1695), who
proposed that light propagated as waves traveling in a medium denominate ether. This led to a
better interpretation of phenomena such as diffraction, reflection and refraction of light through
the method of analysis that today we now know as the Huygens-Fresnel Principle [29, 30], due
to the mathematical complement made by Jean Fresnel (1788-1827) years later [60].

Despite Huygens’ contributions, the wave behavior of light had not been thoroughly studied
to establish it as definitive in the description of the nature of light. Between the 17th and 18th
centuries, Isaac Newton (1643-1727) postulated his ideas regarding the corpuscular nature of
light, which was based on the assumption that light could be understood as a set of particles that
propagated from a certain source to the human eye through the ether. Thus, the colors that could
be observed corresponded to different types of particles or combinations of these [48]. Although
the novelty of the proposal, it was discussed by another scientist of the time, like Robert Hooke
(1635-1703), who supported the idea that the nature of light had a wave behaviour [10], to
which Newton argued that, in fact, light was constituted by particles that generated waves in
the propagation medium, making the analogy with the waves created by stones in the water.
Newton argued that light could not be only wave-like, referring to the fact that the waves had a
spherical propagation, whereas the rays of light propagated in a straight line, which suggested
a corpuscular behavior [1, 47]. The above was largely accepted for several years despite the
contrary beliefs that certain scientists had with regard to Newton’s arguments, such as Hyugens,
who held that light was actually the movement of the ether particles, that is, the results of
oscillations of the propagation medium.

More than a hundred years later, it was Thomas Young (1773-1829), who contributed the
debate on the nature of light by revalidating the, then, discarded wave theory, which was put
aside for a long time because of the figure that Newton represented and the great support that
his theory maintained. Young developed several experiments that showed that light interfered,
the results of which were attributable to wave behaviour [36, 66, 69]. However, his ideas were
not fully accepted due to the lack of a solid mathematical development for his proposals and the
still-extant respect for the corpuscular theory proposed by Newton. The work done by Young
was later considered by Agustin Fresnel (1788-1827), who also relied on Huygens’ ideas about
the wave behavior of light to explain different optical phenomena [20]. Fresnel’s contribution
helped significantly to make ideas about the dual nature of light widely accepted. This also was
supported by the work of other researchers, such as the Christian Doppler (1803-1853), who
used these ideas to explain the shifts of stellar frequency spectra [14], or James Clerk Maxwell
(1831-1879), who considered that the phenomena associated with electromagnetism propagated
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as waves, coming to the conclusion that light was an electromagnetic phenomenon [3, 42]. This
idea would later be demonstrated by Heinrich Hertz (1857-1894) [28].

Finally, it seemed that the wave theory of light managed to prevail and be widely accepted
by the scientific community thanks to the work done by scientists such as Huygens, Young,
Maxwell, Fresnel and Hertz, which put the corpuscular theory imposed by Newton in an awk-
ward position in front of the new advances made under the premise that light was actually a wave
and not a set of traveling particles, although this idea had not been refuted in any way. There-
fore, the coexistence of both theories could not yet be ruled out. However, we would have to
wait until the beginning of the 20th century to understand, with the birth of quantum mechanics,
the behavior of light.

In 1890 Max Planck (1858-1947) was working on the study of black body radiation, based on
Wien’s law [52] and making use of his prior knowledge of Boltzmann’s theory about the second
law of thermodynamics [37]. As a result, Planck proposed a new constant (Planck’s constant
~), postulating that radiation energy was divided into small portions of energy which he called
quantum of energy, which was in complete agreement with the experimental results of the time
[38, 39]. Planck’s work is considered as the beginning of quantum mechanics and gave an
account of the corpuscular behavior of light. His ideas were subsequently considered by Albert
Einstein (1879-1955), who used them as a basis for his research on the photoelectric effect [59,
64, 65], in which it demonstrated the importance of light frequency in that process [15]. With
this, Einstein further endorsed Planck’s results, assuming that the processes of emission and
absorption of radiation were produced in small packets of energy, just as light was propagated
through space. Although Einstein’s work was still poorly accepted by some researchers, in
1922 Arthur Compton (1892-1962) conducted an experiment based on X-ray scattering, whose
results could be explained taking into consideration the idea of a corpuscular nature of light [19],
with which he could understand how light and matter related by exchanging moments as small
particles would, which was evident in their experimental results.

With the above, the idea of a corpuscular nature of light was again gaining strength among
scientists. However, it was still difficult to explain some observed phenomena using only corpus-
cular theory, such as interference, since these kinds of phenomena found a solid explanation in
the idea that radiation should have a wave behaviour. In this context, quantum mechanics would
play a leading role in the final understanding of the nature of light. In 1924, Louis de Broglie
(1892-1987) raised the idea that, as well as light, the rest of matter also presents a corpuscu-
lar behavior on certain occasions and undulatory in others [13]. That is, the idea of a duality
could also be extended to other entities such as atoms and electrons. Although this idea was not
entirely convincing in principle, it was subsequently tested on an experimental basis [12, 18].
With this, the concept of a wave-particle duality began to become increasingly present among
scientists seeking to explain the behavior of light and matter at the quantum level. However, this
implied the unfriendly idea that the world around us was actually particle and wave at the same
time.

Some time later, Niels Bohr (1885-1962) attempted to unify the idea of the corpuscular and
undulatory nature by establishing the Principle of Complementarity, which stated that both, light
and matter had a sometimes wave-like and sometimes particle-like behavior, and that both be-
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haviors cannot be observed simultaneously [7]. This idea also seemed to be supported by Werner
Heisenberg (1901-1976) through the uncertainty principle, which referred to the impossibility of
simultaneously measuring characteristics such as the position and momentum of quantum me-
chanical objects [55]. Since then the dual behavior of light and matter has been studied through
different works that seek to better understand how the nature around us behaves.

The Bohr’s Principle of Complementarity [7] states that two complementary properties of a
given quantum system cannot be obtained simultaneously. This implies that in a measurement
process of two complementary observables of a quantum-mechanical object, the total knowledge
of the first one makes that all possible outcomes of the second one are equally probable. The
wave-particle duality of nature represents the best example of mutually exclusive properties of
quantum systems, and several experimental and theoretical works have been developed in order
to study this behaviour [4, 16, 68]. For instance, in a double-slit Young-type scheme, the
particle-like properties are attributed to the knowledge of the path followed by the particle, i.e to
the distinguishability (D). On other hand, the wave-like properties are associated to the fringe
visibility (V ) on the screen.

The obtaining of path-information can be achieved using an external device which acts like
a which-path detector [57, 58]. For instance, if an atom passes through the slits, a quantum field
can be located immediately after them and store path-information [61, 62]. This is because the
atom-field interaction affects the initial phase of the quantum field depending on the atom’s po-
sition with respect to the nodes and antinodes of the wave. Thus, if path-information is recorded
on the field, it can be extracted by performing a proper measurement in order to know the path
followed by the atom and obtain the particle-like properties of the system. However, the stored
path-information can also be erased [56, 58, 62] in order to restore the wave-like behaviour of
the system and thus observing the typical interference pattern on the screen.

In the wave-particle duality the wave-like and the particle-like properties are determined
via path-information or fringe visibility and has been quantified mathematically through the
inequality

V 2 +D2 ≤ 1, (1.2)

which has been demonstrated by Englert [17] and also derived in other ways [25, 32]. Several
works have shown that depending on the initial setup of a double-slit experiment, the wave-
particle duality can be controlled in order to analyse the complementarity between distinguisha-
bility and visibility [31, 35]. Furthermore, it is possible to establish correlations between an
intrinsic degree of freedom of the particle passing through the double-slit and the possible paths
of the scheme. This implies that the inequality which controls the complementarity between
particle and wave, must be modified as to include this correlation as a third parameter. Recently,
concurrence has been considered in a double-slit experiment with single-photons, in order to
quantify the established correlations between the paths of the double-slit and the polarization of
the photons [33, 34, 53, 67]. The results have demonstrated that the inequality (1.2) in presence
of the concurrence turns into the equality:

V 2 +D2 + C2 = 1, (1.3)

where C represents the degree of quantum entanglement between the polarization of photons
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and the possible paths of the scheme. Therefore, as a result of the new equality, the defini-
tions of distinguishability and visibility may simultaneously vanish depending on the degree of
correlation present in the scheme.

In this research, instead of photons, we have atoms passing through a double slit schemes
and immediately after, crossing cavity fields, in order to study how the wave-particle duality can
be controlled depending on the choice of the atomic and field parameters. In addition, we show
that discussions based on duality still continue to this day, when we consider concepts such as
quantum eraser and delayed-choice experiments.



Chapter 2

Theoretical framework

2.1 Experimental and theoretical tests of complementarity

Particle-wave duality has been from the beginning of quantum mechanics one of the most in-
teresting topics among the scientific community, being to this day a source of controversy for
which answers have been sought through different experiments. In this sense, it is considered
that the systems can exhibit either wave or particle properties, provided that they can be at-
tributed a certain characteristic that defines their behavior, which will in many cases depend on
the configuration established in each experiment or theoretical proposal. In most cases, they are
considered Young-type models in order to analyze the duality. In these models, the wave-like
behavior of light or matter is defined based on the visualization of interference patterns on a
screen. On the other hand, the corpuscular behavior of the systems is typically defined based
on the knowledge of the path followed by the object under study that crosses the double-slit
scheme.

Even though in the 1920s, with the emergence of quantum mechanics, the discussion among
those who embraced the idea of an undulatory or corpuscular nature that explain the behavior of
light seemed to reach a consensus, the interpretation of a dual nature of the microscopic world
seemed not yet to convince scientists at all. In this sense, a common example to describe and
analyze complementarity was the impossibility of obtaining simultaneously some properties of
the quantum systems under study, such as position and momentum. Knowledge of the position
of the object involves immediately determining its corpuscular behavior, while a measurement
of momentum leads to attributing wave properties to it. Therefore, both behaviors cannot be
obtained simultaneously because two complementary properties, in this case position and mo-
mentum, cannot be observed at the same time. This is because the knowledge of one of them has
as a consequence the fact that all possible results of the other property to be measured become
equally probable.

From the point of view of the optics, the dual behaviour of light has been studied to this day
through the famous Young’s double-slit experiment, which was one principal works that con-
tributed to determine the wave behaviour of light. In this experiment the wave properties of light
become evident due to the presence of fringe visibility upon a screen located at a certain distance

6
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from the double-slit through which the beam crosses. With this observation in the the Young’s
experiment, there was no doubt that the nature of light responded to a wave phenomenon, similar
to the typical example of the propagation of waves in the water, where waves coming from dif-
ferent sources can interact causing constructive or destructive interference. In the 20th century
Louis de Broglie proposed that the rest of the particles, as electrons or atoms, also could exhibit
a dual behaviour since it was possible to attribute them a certain momentum. With his results,
and inspired also in the previous ideas proposed by Planck and Einsten, de Broglie postuled the
idea that not only light can be treated in a quantum way, but also all particles. Therefore, the
wave-particle duality could be considered to describe the behaviour of the whole matter, and it
was not an exclusive property of light.

In this section, instead of photons, we consider the study of the wave and corpuscular prop-
erties of a beam of atoms, which cross a double-slit scheme. This allows us to analize different
possibilities in order to determine the behaviour of the atoms, depending on the use or not of
which-path detectors. In this sense, we will consider cases in which the fringe visibility van-
ishes when an external device is correlated with de system, and thus the corpuscular properties
are obtained.

2.1.1 Which-path detectors and loss of fringe visibility
As we have seen in the previous section, in Young-type double-slit setup we always obtain an
interference pattern due to the wave nature of light or atoms, as appropriate. In sections later,
we will see that the interference can be modified if, for example, we vary the width of the slits
or establish some correlation in the system, in which properties of the atoms or photons are
involved. However, it is also possible to modify the interference pattern by adding an external
device which is correlated with the entire system, in such a way that it acts as which-path detec-
tor. In fact, we can even achieve the total loss of the fringe visibility at the expense of obtaining
the path followed by the atom or photon.

In this section, we will explain a model proposed by Scully et al., [57, 58] in which the slits
are crossed by atoms and an external device is used to determine the path followed by them.
As a consequence, the interference is completely lost. On the left side of the figure 2.1 we can
observe a typical double-slit setup, in which the atoms are collimated before going through the
slits. In that case, since there is no external devices in the setup, we would hope to obtain a
typical interference pattern. However, in order to modify the observed pattern, we can consider
a laser beam and cavities micromasers , which are shown on the right side of the figure 2.1.

Let us analyze the setup in which the laser and micromasers are not included in the system
yet. In this case, the state which describes the atom after it crosses the double-slit corresponds
to

ψ(~r) =
1√
2

[
ψ1(~r) + ψ2(~r)

]
|i〉, (2.1)

where |i〉 represents the initial atomic state. The probability density for a position ~r = ~R of the
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Figure 2.1: a) Double-slit setup crossed by atoms, in which total interference is obtained due to
the interaction of ψ1 with ψ2, as in a typical Young’s experiment. b) External devices used to
obtain which-path information and to vanish the interference.

center-of-mass is given by the square modulus of ψ(~R), such that

P (~R) =
1

2

[
|ψ1|2 + |ψ2|2 + ψ∗1ψ2 + ψ∗2ψ1

]
〈i|i〉. (2.2)

Therefore, from the red terms, it is clear that an interference pattern is obtained on the screen. As
a consequence, we have a wave-like behaviour for the atom, since we cannot determine which
slit it passed through. However, if we want to know the path followed by the atom we can
include the laser and micromasers considering the scheme shown in the figure 2.2

Figure 2.2: Double-slit setup crossed by atoms, in which interference can be vanished due to the
presence of external devices which allows to obtain total which-path information.

When the set laser-micromasers is included in the system, the cavities 1 and 2 are located
after the laser beam in the upper and lower paths, respectively. The task of the beam laser is
to excite the atoms to the long-lived Rydberg state |a〉. Once the atom is excited, it crosses the
cavities making a transition |a〉 → |b〉 by spontaneous emission of a photon. Therefore, the state
of the total sytem is now given by

ψ(~r) =
1√
2

[
ψ1(~r)|1102〉+ ψ2(~r)|0112〉

]
|b〉, (2.3)
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where the state |1102〉 (|0112〉) denotes the presence of a photon in cavity 1(2) and no photon in
cavity 2(1). It is important to note that the initial system (Young-type setup) and the which-path
detector have become entangled. In this case, the new probability density for a position of the
center of mass given by ~r = ~R corresponds to

P (~R) =
1

2

[
|ψ1|2 + |ψ2|2 + ψ∗1ψ2〈1102|0112〉+ ψ∗2ψ1〈0112|1102〉

]
〈b|b〉

=
1

2

[
|ψ1|2 + |ψ2|2

]
,

(2.4)

because 〈1102|0112〉 = 〈0112|1102〉 = 0. As a consequence, the terms (in red) which produce
interference are cancelled and no fringe visibility is observed on the screen. Therefore, we
can conclude that the cavities act as a which-path detector, since the atom leaves a photon in
one of them depending on the slit that it crossed, i.e. the path-information is available in the
micromasers and it can be extracted by performing a proper measurement of the number of
photons. However, we must keep in mind that the change produced by the extra photon left in
the cavity, should be detectable. In this sense, we can consider that the easier way to achieve
that is to prepare a cavity with no photon initially. This allow us to detect the emitted photon
and determine the path followed by the atom.

2.1.2 Quantum eraser and delayed choice

Through the years, serveral works have studied the dual behaviour of light and matter consid-
ering different models both, theoretical and experimental. Although in the most of cases the
results have helped to better understand the properties of photon, atoms, electrons, etc, and the
way these behave under certain conditions, some results have increased discrepancies among
scientists. In this section, we consider theoretical setups in which we study the concepts quan-
tum eraser and delayed choice, and the controversial ideas on which they are based.

Let us go back to the last scheme studied in the previous section. In that case, we saw
how the interference can be completely removed by introducing a path detector device in the
system, which allows us to distinguish unambigously the path followed by the atom based on the
measurement of the number of photons in the micromaser cavities. Therefore, at this point we
wonder whether if it possible to retrieve the interference by erasing the which-path information
contained in the detectors (cavities). This is precisely the purpose behind of the concept of the
quantum eraser, which we will study considering the setup shown in the figure 2.3.

In this case, the atoms also cross a laser beam and immediately after enter in the micro-
masers, where they can leave a photon which can reveal the path followed by the atom. However,
now we consider that the which-path detector (cavities) are separated by a shutters-detector wall
combination. Therefore, after the atom leaves a photon in one of the cavities, we can choose
to “erase” the path-information, since as long as shutters are closed, the radiation remains con-
tained either in the upper or the lower cavity. However, if the shutters are opened, the radiation
will interact with the photodetector wall. Thus, the photon that was initially left in the upper or
lower cavity is absorbed. As a consequence, the memory of the passage of the atom is erased.
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Figure 2.3: Double-slit setup to study the possibilities of implementing a quantum eraser.

The interesting point here is that one can open the shutters even long after the atom crosses
the entire system. That is, once the atom is away from the micromaser cavities, no physical
influence on the wave function of the atomic center of mass can be thought of. Therefore,
one could define the behavior of the system during the time of flight of the atom by erasing or
keeping the path information in the cavities. In this sense, the patterns are formed considering
the events in which a photocount is produced in the detector wall or not, which can be controlled
by the experimenter through the shutters. This is precicely the paradox in this and other quantum
eraser models.

In order to study the previously presented model, we analyze the mathematical description
of the problem considering that the detector wall is a two-level atom initially in its ground state
|d〉 and it can be found in the excited state |e〉 when the shutters are opened. Thus, the state of
the system immediately after the atom crosses the micromasers can be described as

ψ(~r) =
1√
2

[
ψ1(~r)|1102〉+ ψ2(~r)|0112〉

]
|b〉|d〉, (2.5)

where |b〉 is the internal atomic state. Moreover, we can introduce symmetric and antisymmetric
states of the atom and the radiation fields contained in the cavities, which are defined respectively
as ψ± and |±〉:

ψ±(~r) =
1√
2

[
ψ1(~r)± ψ2(~r)

]
(2.6)

|±〉 =
1√
2

[
|1102〉 ± |0112〉

]
(2.7)

Now we can rewrite (2.5) as

ψ(~r) =
1√
2

[
ψ+(~r)|+〉+ ψ−(~r)|−〉

]
|b〉|d〉. (2.8)

Therefore, we now consider the interaction between the radiation field in the cavities and the
detector wall, which corresponds to an atom with a lower state |d〉 and an excited state |e〉. Here
we have to consider that the Hamiltonian between the radiation and the detector wall depends
on the symetric cominations of the field variables, and thus only |+〉 will couple to the fields.
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As a consequence, if the shutters are opened, the state of the system after the radiation-detector
interaction can be written as

ψ(~r) =
1√
2

[
ψ+(~r)|0102〉|e〉+ ψ−(~r)|−〉|d〉

]
|b〉, (2.9)

and the probability density corresponds to

P (~R) =
1

2

[
ψ∗+(~R)ψ+(~R) + ψ∗−(~R)ψ−(~R)

]
=

1

2

[
ψ∗1(~R)ψ1(~R) + ψ∗2(~R)ψ2(~R)

]
, (2.10)

From (2.10) we now can obtain the probability density Pe(~R) [Pd(~R)] for finding the detector
excited[deexcited] and the atom in a position ~R on the screen, which are given as

Pe(~R) = |ψ+(~R)|2 =
1

2

[
|ψ1(~R)|2 + |ψ2(~R)|2

]
+Re

[
ψ∗1(~R)ψ2(~R)

]
, (2.11)

Pd(~R) = |ψ−(~R)|2 =
1

2

[
|ψ1(~R)|2 + |ψ2(~R)|2

]
−Re

[
ψ∗1(~R)ψ2(~R)

]
. (2.12)

The terms in red show fringes and antifringes for Pe(~R) and Pd(~R), respectively. These patterns
are obtained considering that once the atom has travelled from the source to the screen, crossing
the micromaser, we can measure the state of the detector wall detector. If we observe a pho-
tocount, the path-information is erased and we observe fringes on the screen. After that, other
atom crosses the setup and we perform a measurement upon the detector wall again. If this time
we observe no photocount, we obtain antifringes since no path-information has been revealed.
This sequence must be repeated many times to form the whole patterns. On the other hand, if
the eraser photon signal is disregarded, we obtain no fringe visibility, due to the superposition
of fringes and antifringes, which can be represented by the equation (2.13). This is, no measure-
ment on the detector wall implies that the path-information is still available in the radiation and
it can be extracted with a proper measurement of the number of photons in the cavities.

P (~R) =
1

2

(
Pe(~R) + Pd(~R)

)
(2.13)

In order to clarify the concepts of quantum eraser and delay choice, now we will qualitatively
discuss a particular model in which, instead of slits, two atom are located in specific positions
[4]. We will consider the scattering of light from the atoms, whose position are defined as 1 and
2. First, we analyze the case in which resonant light impinges from the left on two-level atoms,
thus an atom can be excited from the level b to a and then emit a γ photon. Since both atoms
are finally in the state b, it is not possible to determine from which atom the photon γ came.
Therefore, the resulting pattern obtained upon the screen shows fringe visibility after repeating
the process many times. As a consequence, there is no path-information (see figure [2.4]).

Analogously to the model of micromasers, we can modify the system in order to obtain path-
information at the expense of losing wave properties. In this case, we consider three-level atoms
and a field I1. One of the atoms can be excited from the state c to the state a, and then emit
a photon γ. As a consequence, that atom ends up in the state b while the other atom remains



12 CHAPTER 2. THEORETICAL FRAMEWORK

Figure 2.4: Two-level atoms are located in the position 1 and 2. An incident pulse I1 excites
one of the atoms to the level a to later emit a γ photon. Since the final state of both atoms is the
same, no path information can be extracted from them, and total interference is obtained.

in c . Therefore, in this case it is possible to determine which atom the photon came from by
performing a measurement of the internal state of both atoms. Consequently, no fringe visibility
is observed upon the screen (see figure 2.5).

Figure 2.5: Three-level atoms are located in the position 1 and 2. An incident pulse I1 excites
one of the two atoms from the level c to the level a, then it emits a γ photon and ends up in the
state b. In this case the internal atomic state can reavel which-path information.

Finally, we show the case in which the atoms located in 1 and 2 have four levels and a pair of
photons can be emitted by one of them due to the radiations I1 and I2, which excite the atom as
shown in the figure 2.6. When the atom decays from a to b, the γ photon proceeds to the screen
in the right where is registered by a detector D at a location x0. On other hand, when the atom
decays from b′ to c, a φ photon is emitted. As a consequence, the final state of both atoms is the
same, and no path-information can be obtained via an atomic measurement which implies that
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total interference is obtained. However, if we perform a position measurement of the φ photon,
we could obtain path-information of the γ photon.

Figure 2.6: Four-level atoms are located in the position 1 and 2. Two incident pulse, I1 and I2,
excite one of the atoms from the level c to the level a and from b to b′, which allows the emission
of the photons γ and φ, respectively. As a consequence, the final atomic state is the same and
there is no path-information.

In order to study the effects of the measurement of the φ photon, we consider the scheme
shown in the figure 2.7. We consider only those cases where the φ photons scattered from
the atom located at 1[2] proceeds to the 50/50 beam splitter B1[B2]. Therefore, the φ photon
can be detected by the detectors D3 or D4, which gives information about which atom it came
from, since when D3[D4] clicks, neccesarily the φ photon came from the atom in 1[2]. As a
consequence, we conclude that the corresponding γ photon was also scattered from the same
atom. On other hand, if after crossing the 50/50 beam splitter B, the φ photon is detected in D1

or D2, there is equal probability that it may have come from the atom in the position 1 or 2. In
this case, the path-information of φ is erased, and thus there is no path-information for γ photon
either.

Therefore, we can consider that the protocol for this model works by following the next steps

• We separately identify the events where photons φ are detected at ports D1, D2, D3 and
D4.

• For each of these events we locate the positions of the detected photons γ on screen D.

• For detection at D3 and D4, the pattern formed by the photons γ does not show interfer-
ence fringes on screen D.

• For detection at D1 and D2, the pattern formed by the photons γ shows interference
fringes.
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Figure 2.7: Theoretical delayed choice quantum eraser scheme.

The paradoxical character of this situation is that we can consider that the φ photon detectors
are located far away from the atoms, in comparisson with the distance between atoms and the
γ photon detector. Therefore, the measurement of the φ photons (measured later) would have
an influence on the behavior of the γ photons (measured before), which suggests that a future
event could have consequences on a previously occurring event. For this reason, this and other
delayed choice quantum eraser models have been a source of controversy to this day. In Chapter
5 we will return to this topic in order to implement a theoretical model based on the atom-field
interaction.

2.1.3 Balance among visibility, distinguishability and concurrence
In the previous sections, we have seen that the wave-like and particle-like properties can be
obtained depending on the setup of the model under study. The wave-like and particle-like
behaviour have been defined based on the fringe visibility (V ) and which-path information or
distinguishability (D), respectively. Typically, double-slit Young-type schemes are considered
in the realization of different theoretical and experimental models which study the duality [31,
35]. In that case, which-path information and visibility can be controlled by the probabilities c↑
and c↓ that a particle crosses the upper or bottom slit. When c↑ = c↓ we obtain total interference
and null distinguishability. However, different devices can be used in order to detect the pass of
the particle through one of the slits and which-path information can be obtained at the expense of
losing interference [57, 58]. Considering this, the relation between V and D can be represented
by the inequality [17]

V 2 +D2 ≤ 1. (2.14)

This relation has also been studied considering a degree of entanglement between some intrin-
sical property of the particle and the paths of the schemes. This correlation has been quantified
through the concurrence (C), included as an additional parameter in the balance between dintin-
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guishability and visibility [31, 34, 35, 53, 67], resulting in the equality

V 2 +D2 + C2 = 1. (2.15)

For instance, in case we send atoms through the double-slit, we can correlate the upper and
bottom paths with two different internal states of the atom. In a similar way, if the scheme
is crossed by photons, we can considere the same kind of correlation, but this time using the
polarization of the photons as intrinsical property.

To study how the equality (2.15) is obtained and how the concurrence can control this bal-
ance, we consider a doble-slit scheme crossed by photons, whose polarizations are correlated
with the possible paths of the scheme [53]. Each hole of the double-slit is defined as a and b
(see figure 2.8), with which we can identify the field corresponding to the pass of the photons
through the holes as:

Figure 2.8: Young’s two-slit scheme used to study the balance among wave, particle and con-
currence

Êa = Ê(+)
a + Ê(−)

a ' âae
iϕa + â†ae

−iϕa

Êb = Ê
(+)
b + Ê

(−)
b ' âbe

iϕb + â†be
−iϕb

(2.16)

where â and â† correspond to the annihilation and creation operators, respectively, while ϕa,b
represent the phases asociated to each field. After crossing the double-slit, the quantum state of
the photon can be described as

|Ψ〉 = ca|1a〉 ⊗ |φa〉+ cb|1b〉 ⊗ |φb〉 = ca|1a, φa〉+ cb|1b, φb〉, (2.17)

with ca and cb normalized coefficients such that |ca|2 + |cb|2 = 1. On other hand, |1a〉 and
|1b〉 represent a photon in the modes a and b, respectively, while |φa〉 and |φb〉 correspond to
normalized states of an intrinsical property of the photon, in this case the polarization, with
|〈φa|φb〉| ≡ |γ| ≤ 1.

Once defined the state of the photon after it crosses the double-slit, we analize the wave-
particle duality consider the definitions of path distinguibishability (D) and fringe visibility (V )
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as [25, 31, 32]

D =

∣∣∣∣pa − pbpa + pb

∣∣∣∣ (2.18)

and

V =
pmaxc − pminc

pmaxc + pminc

. (2.19)

where
pa ∝ 〈Ê(−)

a Ê
(+)
a 〉: Detected probability of photon passing through the slit a.

pb ∝ 〈Ê(−)
b Ê

(+)
b 〉: detected probability of photon passing through the slit b.

pc ∝ 〈Ê(−)Ê(+)〉: Detected probability of photon registered at the screen c.

Therefore, using (2.16) and (2.17) we obtain (see Appendix)

〈Ê(−)
a Ê(+)

a 〉 = |ca|2 (2.20)

〈Ê(−)
b Ê

(+)
b 〉 = |cb|2 (2.21)

〈Ê(−)Ê(+)〉 = |ca|2 + c∗acbγe
i(ϕa−ϕa) + c∗bcaγ

∗e−i(ϕa−ϕa) + |cb|2 (2.22)

Then, D y V can be written as

D =

∣∣∣∣|ca|2 − |cb|2∣∣∣∣ (2.23)

V = 2|cacbγ|. (2.24)

On other hand, the concurrence (C) can be defined as [67]

C = 2|cacb|
√

1− |γ|2, (2.25)

with which it is fulfilled that

V 2 +D2 + C2 = 4|cacbγ|2 + |ca|4 − 2|ca|2|cb|2 + |cb|4 + 4|cacb|2(1− |γ|2)

= |ca|4 + 2|ca|2|cb|2 + |cb|4

= (|ca|2 + |cb|2)2

= 1.

(2.26)

Therefore, the concurrence can be considered as third parameter which can contribute to the
balance between the wave-like and particle-like behaviour. In fact, we can choose certain values
of the parameters that define C in order to obtain C = 1 and thus V = D = 0. This leads us
to the question: can be the wave-particle duality turned off? We will discuss this question in the
chapter 3 based in our atom-field interaction model.
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2.2 Atom-field interaction
In a typical configuration of a double-slit Young’s experiment, the interference patterns are ob-
served due to the incidence of a electromagnetic radiation on both slits. As a consequence, these
act as point sources of waves, which interfere constructively or destructively depending on the
difference in their phases. This allows obtaining a certain interference pattern at a certain dis-
tance from the slits, which proves the wave-like behavior of light. Therefore, we can describe
this phenomenon as the result of the interaction between the light emitted by some particular
source and the slits, that is, as the interaction between electromagnetic radiation and matter.

In this section, we consider a model analogous to the one used in Young’s experiment, in
which instead of a beam of photons crossing a double-slit, we will consider a beam of atoms
crossing a cavity with an electromagnetic field. This will allow us to study the interaction
between traveling atoms and field cavities, which, due to the wave-like behavior of matter, will
lead us to implement this interaction in a double-slit model that allows us to use quantum fields
as which-path detectors.

2.2.1 Quantum description
To analyze the proposed model with atom-field interaction, we consider the coupling between an
atom, considered as a two-level system, and a quantum field in a cavity with only one radiation
mode, which corresponds to a model presented by Walls et al. [62]. The Hamiltonians are
given respectively by the expressions (2.27) and (2.28), while the Hamiltonian that models the
interaction between both is given by (2.29).

Ĥatom =
~ωoσ̂z

2
+

p̂2

2m
(2.27)

Ĥfield = ~ωa(â†â+
1

2
). (2.28)

Ĥint = ~ cos(kx+ ξ)(g∗σ̂−â
† + gσ̂+â). (2.29)

Where

â, â† : annihilation and creation operators

σz =

[
1 0
0 −1

]
, σ+ =

[
0 1
0 0

]
, σ− =

[
0 0
1 0

]
: internal atomic operators

ωa : mode frequency in cavity (field)
ω0 : atomic transition frequency
k : Wavenumber of the standing wave in the cavity (field)
∆ = ω0 − ωa : Detuning
|g| : coupling constant

(2.30)

Therefore, the total system is described by the sum of the three Hamiltonians shown above, such
that

Ĥsystem = Ĥfield + Ĥatom + Ĥint. (2.31)
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In the regime of a high detuning we can obtain the effective Hamiltonian considering

Ĥ = Ĥ0 + ĤI , (2.32)

where
Ĥ0 = ~ωaâ†â+

~ωoσ̂z
2

(2.33)

and ĤI = Ĥint defined in (2.29). Therefore, the Schrodinger equation that describes the evolu-
tion of the system corresponds to

i~
d

dt
|ψS(t)〉 = (Ĥ0 + ĤI)|ψS(t)〉. (2.34)

If we considere the interaction picture using the free Hamiltonian and the operator Û0 = e−
iĤ0t
~ ,

we have
|ψI(t)〉 = e

iĤ0t
~ |ψS(t)〉 = Û−1

0 |ψS(t)〉, (2.35)

and thus (see Appendix)

i~
d

dt
|ψI(t)〉 = i~

d

dt
[Û−1

0 |ψS(t)〉]

= [−i~Û−1
0

d

dt
Û0 + Û−1

0 ĤÛ0]|ψI(t)〉

= ŴI(t)|ψI(t)〉,

(2.36)

where ŴI(t) corresponds to the perturvative term in the interaction picture, which can be rewrit-
ten as

ŴI(t) = −i~Û−1
0

d

dt
Û0 + Û−1

0 ĤÛ0

= −i~e
iĤ0t
~
d

dt
e−

iĤ0t
~ + e

iĤ0t
~ Ĥe−

iĤ0t
~

= ~ cos(kx+ ξ)
[
g∗e

iĤ0t
~ σ̂−â

†e−
iĤ0t
~ + ge

iĤ0t
~ σ̂+âe

− iĤ0t
~
]

= ~ cos(kx+ ξ)
[
g∗σ̂−â

†e−i∆t + gσ̂+âe
i∆t
]
,

(2.37)

where we have use eÂB̂e−Â = B̂+[Â, B̂]+ 1
2!

[Â, [Â, B̂]]+... and (2.33) to obtain (see Appendix)

e
iĤ0t
~ σ̂−â

†e−
iĤ0t
~ = σ̂−â

†e−i∆t, (2.38)

and analogously

e
iĤ0t
~ σ̂+âe

− iĤ0t
~ = σ̂+âe

i∆t. (2.39)

Now we can study the evolution of the system considering the perturbative term ŴI(t) and the
evolution equation i~ d

dt
|ψI(t)〉 = ŴI(t)|ψI(t)〉 to show that (see Appendix)

e−
i
~
∫ t
0 ŴI(t′)dt′ = 1− it

~

[
~|g|2 cos2(kx+ ξ)

∆
[σ̂+â, σ̂−â

†]

]
+ ... (2.40)



2.2. ATOM-FIELD INTERACTION 19

and thus

ŴI =
~|g|2 cos2(kx+ ξ)

∆
[σ̂+â, σ̂−â

†]

=
~|g|2 cos2(kx+ ξ)

∆

(
σ̂+σ̂−ââ

† − σ̂−σ̂+â
†â
)

=
~|g|2 cos2(kx+ ξ)

∆

(
σ̂+σ̂−(1 + â†â)− σ̂−σ̂+â

†â
)

=
~|g|2 cos2(kx+ ξ)

∆

(
σ̂+σ̂− + σ̂+σ̂−â

†â− σ̂−σ̂+â
†â
)

=
~|g|2 cos2(kx+ ξ)

∆

(
σ̂+σ̂− + σ̂zâ

†â
)

=
~|g|2 cos2(kx+ ξ)

∆
σ̂+σ̂− +

~|g|2 cos2(kx+ ξ)

∆
σ̂zâ

†â.

≡ Ŵ eff
I

(2.41)

Once an expression for Ŵ eff
I is found, we obtain the total effective Hamiltonian that describes

the atom-field interaction, which corresponds to:

Ĥeff = ~ω0σ̂z + ~ωaâ†â+
~|g|2 cos2(kx+ ξ)

∆
σ̂+σ̂− +

~|g|2 cos2(kx+ ξ)

∆
σ̂zâ

†â (2.42)

The third term, which is present even in the absence of photons, is a kind of atomic Kerr
effect induced in the cavity field [21]. Therefore, we consider the final Ĥeff simply as:

Ĥeff = ~ω0σ̂z + ~ωaâ†â+
~|g|2 cos2(kx+ ξ)

∆
σ̂zâ

†â

= ~ω0σ̂z + ~ωaâ†â+
~|g|2 cos2(kx+ ξ)

∆
σ̂zâ

†â+ ~ωaσ̂z − ~ωaσ̂z

= ~ωaσ̂z + ~ωaâ†â+
~|g|2 cos2(kx+ ξ)

∆
σ̂zâ

†â+ ~∆σ̂z,

(2.43)

From the previous expresion, we can observe that the potential experienced by the atom as it
passes through the standing wave (field) is

V =
~|g|2 cos2(kx+ ξ)

∆
σ̂zâ

†â+ ~∆σ̂z. (2.44)

Therefore, in the next section we consider (2.44) to study the interaction between atoms and
field cavities, in order to implement a model in which this interaction can be used to control the
wave-particle duality.

2.2.2 Atomic location based on atom-field interaction
Once the effective Hamiltonian that governs the atom-field interaction is found, we can study
the possibilities that it can offers us if we want to consider a double-slit scheme crossed by
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atoms. In this section, we discuss a Young-type double-slit model in which, after crossing the
slits, the atom passes through a standing wave, whose quantum state is modified depending on
the relative postition of the atom with respect to nodes and antinodes of the wave. Therefore,
after atom leaves the setup, a field measurement could reveal the position that the atom passed
through. For this purpose, we previously consider only the effects of the atom-field interaction
on the quantum state of the fied. After that, in the next chapter, we will explain how the standing
wave must be located in order to meet the goal of locating the atom once it crossed the double-
slit.

Before the atom-field interaction, the quantum field is described as coherent state of ampli-
tude α given by

|ψ(0)〉field = |α〉 = e
−|α|2

2

∑
n=0

αn√
n!
|n〉 ≡ D̂(α)|0〉, (2.45)

with D̂ being the displacement operator

D̂(α) = eαâ
†−α∗â. (2.46)

On other hand, we assume that the atom enters in the cavity in the groundstate |g〉 with a
probability function of the transverse position to its trajectory given by κ(x). Therefore, we can
describe its state before the interaction as

|ψ(0)〉atom =

∫
dx|x, g〉〈x, g|ψ(0)〉atom =

∫
dxκ(x)|x, g〉. (2.47)

Therefore, the total initial state of the system corresponds to

|ψ(0)〉 = |α〉 ⊗ |ψ(0)〉atom =

∫
dxκ(x)|α〉 ⊗ |x, g〉, (2.48)

whose evolution, using (2.44), is given by (see appendix 2.3.2)

|ψ(t)〉 =

∫
dxκ(x)e−

iV t
~ |α〉 ⊗ |x, g〉

=

∫
dxκ(x)eit∆eiη(x)â†â|α〉 ⊗ |x, g〉 with η(x) =

t|g|2 cos2(kx+ ξ)

∆

= eit∆
∫
dxκ(x)|αeiη(x)〉 ⊗ |x, g〉.

(2.49)

Therefore, since the position of the atom x is contained in η(x), it is recorded in the final state of
the field, due to the entanglement between them. As a consequence, since the final state of the
field depends on the postition of the atom during the interaction, we can perform a quadrature
measurement on the field to determine the position of the atom when it crossed the wave.

To perform the quadrature measurment of the field, we consider the projection of the eigen-
state |χθ〉 of the quadrature operator Xθ = ae−iθ+a†eiθ

2
on (2.49), such that

|ψ(t)〉atom = N

∫
dxκ(x)〈χθ|αei

|g|2t
∆

cos2(kx+ξ)〉|x, g〉. (2.50)
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Here Xθ=0 ≡ X (Xθ=π/2 ≡ Y ) represents an amplitude (phase) quadrature measurement of the
field and χθ the resulting value. To obtain an expression for the atom state after the quadrature
measurement, we consider that |χθ〉, corresponds to a maximally squeezed state defined as (see
appendix 2.3.2):

|χθ〉 =
1

4
√

2π
exp
[
− 1

2
(a†eiθ − χθ)2 +

1

4
χ2
θ

]
|0〉

=
1

4
√

2π
e−

1
4
χ2
θ

[∑
n=0

einθχnθ√
n!
|n〉 − 1

2

∑
n=0

√
(n+ 2)!

ei(n+2)θχnθ
n!

|n+ 2〉

+
1

2!

1

4

∑
n=0

√
(n+ 4)!

ei(n+4)θχnθ
n!

|n+ 4〉 − 1

3!

1

8

∑
n=0

√
(n+ 6)!

ei(n+6)θχnθ
n!

|n+ 6〉+ ...

]
,

(2.51)

moreover, we recall that the state of the quantum field after the interaction can be written as

|αei
|g|2t

∆
cos2(kx+ξ)〉 = |αeiη〉 = e−

|αeiη |2
2

∑
n=0

(αeiη)n√
n!
|n〉. (2.52)

Therefore (see Appendix)

〈χθ|αeiη〉 =
1

4
√

2π
e−[(α1−

χθ
2

)2+iα2(α1−χθ)]

.

(2.53)

with α1 + iα2 ≡ αei[(|g|
2t/∆) cos2(kx+ξ)−θ)] = αei(η−θ), which allows us to obtain the final state of

the atom given by

|ψ(t)〉atom = N

∫
dxκ(x)

1
4
√

2π
e−[(α1−

χθ
2

)2+iα2(α1−χθ)]|x, g〉. (2.54)

Otherwise, considering (2.50), we can obtain the position probability distribution P (x|χθ)
of the atom given that the value χθ has been measured for the field when the quadrature mea-
surement is performed

P (χθ|x) =

∣∣∣∣〈χθ∣∣∣∣αei |g|2t∆
cos2(kx+ξ)

〉∣∣∣∣2 =

∣∣∣∣ 1
4
√

2π
e−[(α1−

χθ
2

)2+iα2(α1−χθ)]

∣∣∣∣2
=

1√
2π
e−2[α1(x)−χθ

2
]2 =

1√
2π
e−

[2α1(x)−χθ ]2

2 ,

(2.55)

with α1(x) = α cos
[ |g|2t

∆
cos2(kx + ξ) − θ

]
, which implies that for a specific position x, the

probability of measuring χθ has a Gaussian dependence, which can be observed in the figure
(2.9), where we have considered the amplitude of the field α =

√
8. For a certain results of the

quadrature measurement, we can obtain a specific position probability distribution. For instance,
if the result of the measurement is χ0 = α or χ0 = −α, the probability distribution is the one
shown in the figure (2.10) by the red and blue lines, respectively. For X = 0, the probabiility
distribution is shown in figure (2.11).
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Figure 2.9: Conditional probability P (χ|x).

Therefore, if a field mesurement is performed, we can express the atom state as the density
matrix

ρatom(t) = |ψ(t)〉atom〈ψ(t)| (2.56)

with
|ψ(t)〉atom = N

∫
dxκ(x)

1
4
√

2π
e−[(α1−

χθ
2

)2+iα2(α1−χθ)]|x, g〉, (2.57)

where N is obtained from the normalization condition 〈ψ(t)|ψ(t)〉 = 1:

On other hand, if any measurement is performed on the system, we obtain ρatom(t) through
the partial trace over field

ρatom(t) = Trfield{|ψ(t)〉〈ψ(t)|}, (2.58)

where

|ψ(t)〉 =

∫
dxκ(x)

∣∣∣∣αei |g|2t∆
cos2(kx+ξ)

〉
|x, g〉. (2.59)

If the atom leaves the cavity and it propagates freely, its final state at a time t′ after crossing
the cavity will correspond to

ρ̂atom(t′) = Û(t′)ρ̂atom(0)Û †(t′) (2.60)

with

Û(t′) = exp
(
− it′

~
p̂2

2m

)
, (2.61)

and
ρ̂atom(0) = |ψ(t)〉atom〈ψ(t)|. (2.62)
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Figure 2.10: Probability distribution of the atom after an X quadrature measurement of the field
with values χ0 = α (red) and χ0 = −α (blue).

Figure 2.11: Probability distribution of the atom after theX quadrature measurement of the field
with value χ0 = 0.

In order to observe the way in which the atom propagates after it leaves the cavity, we show
a case in wich we assume that the specific value χ0 = 0 is obtained when an X0 quadrature
measurement is performed over the field. Thus, from (2.57) we obtain

|ψ(t′)〉atom = e−
it′
~
p̂2

2m |ψ(t)〉atom

= e−
it′
~
p̂2

2m

[
N

∫
dxκ(x)

1
4
√

2π
e−[α2

1(x)+iα2(x)α1(x)]|x, g〉
]

= e−
it′
~
p̂2

2m

∫
dx|x, g〉〈x, g|ψ(t)〉atom.

(2.63)

Projecting 〈x′, g| on the state |ψ(t′)〉 we can obtain an expression of the wavefuncion ψ(x′, t′)
of the atom in terms of the time t′ and the position x′, which describes the system after the atom
leaves the cavity (see appendix 2.3.2).

〈x′, g|ψ(t′)〉 =

∫
dx〈x′, g|e−

it′
~
p̂2

2m |x, g〉〈x, g|ψ(t)〉 ≡ ψ(x′, t′). (2.64)

Therefore, the probability of finding the atom in a position x′ in a time t′ after the atom-
field interaction is given by |ψ(x′, t′)|2, which is plotted in the figure 2.12. In the image we
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can observe how the peaks of probability propagate causing interference in certain value of t′.
For instance, if we take t′ = 0.015, the interference pattern is shown in the figure 2.13. On the
other hand, for t′ = 3, the pattern in the figure 2.14 shows that peaks of probability are spatially
separated due to the temporal evolution of the system, and thus there is no interference.

Figure 2.12: Probability distribution in function of x′ y t′.

Figure 2.13: Postion probability distribution for t′ = 0.015.

So far we have considered that the initial atomic distribution extends in a width equal to λ/2
and ξ = 0. Thus, it is only possible to obtain the two central peaks of the figure 2.11 and their
time evolution shown in 2.13. In order to exemplify another case, we consider that the initial
atomic distribution previous to the entry of the atom in the cavity spans 3λ/4 and ξ = 1/8. This
implies to obtain a new normalization constant, which is shown in the appendix (2.3.2), and a
new probability distribution after performing the quadrature measurement figure 2.15.

In this case, the central peak scrolls left during a time t′ after the atom-field interaction, while
the rest of peaks scroll right, as the figure 2.16 shows.
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Figure 2.14: Postion probability distribution for t′ = 3.

Figure 2.15: Atomic probability distribution when the value χ0 = 0 is obteined after to perform
an X0 quadrature measurement. The initial atomic distribution is taken κ(x) = 3λ/4.

Figure 2.16: Atomic probability distribution in function of x′ y t′ after field measurement when
κ(x) = 3λ/4.
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Finally, to visualize the interference effects we take some values t′ which show different
pattern as the atom moves away from the cavity field.

Figure 2.17: Atomic probability distribution in function of x′ for t′ = 0.015.

Figure 2.18: Atomic probability distribution in function of x′ for t′ = 0.05.

Figure 2.19: Atomic probability distribution in function of x′ for t′ = 3.
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Up to this point, we can notice that the atom-field interaction allows us to measure the state
of the quantum field by performing a quadrature measurement, and from the obtained results one
may study the behavior of the atom after it crosses the cavity field. Therefore, this offers us the
possibility of implementing a model based on the atom-field interaction, by which to study the
wave-particle duality in a double-slit scheme. In the next chapters, we present the models that
we have proposed in order to analyze how the duality can be controlled by different atomic and
field parameters, depending of the behaviour that we want to obtain, wave-like or particle-like,
once the atom crosses the scheme. Also, we give all the details about the preparation of the
atomic and field states, as well as the measurement processes.



Chapter 3

Controlling the wave-particle duality with
quantum fields

As we have seen previously, quantum fields can be used to determine atomic postions depending
on the amplitude of the field and the quadrature measurements performed. This is because the
interaction atom-field interaction depends on the position in which the standing wave is crossed
by the atom. Therefore, by locating the slits of Young-type scheme in front of specific positions
of the quantum field, we could detect unambiguously the path followed by the atom. As a
consequence, the wave-like properties of the system are lost.

In this section, we consider a two-level atom crossing a double-slit scheme, which is located
immediately before a cavity with a standing wave represented by a quantum field. This allows
us to establish only two possible paths on which the atom passes through the cavity. The slits
are located in front of a node and an antinode of the wave, in such a way that the interaction is
maximum when the atom crosses the antinode and null when it crosses a node, causing a max-
imum or null shift of the phase of the field, respectively. Therefore, an adequate measurement
of the quadratures of the quantum field offers us the possibility of detecting the position of the
atom during the interaction and thus, its trajectory.

For a coherent state, it is known that the path information can be controlled by the amplitude
of the quantum field, causing partial interference as its value decreases [62]. In this section we
consider in addition to the coherent states, different quantum states such as squeezed states, cat
states and thermal states, in order to analyze how the parameters present in each one can help to
control the visibility of fringes and the path information. In addition, we correlate the internal
states of the two-level atoms with the paths of the scheme, which allows us to have a certain level
of concurrence in the system, in order to study its relation with visibility and distinguishability.
This configuration also offers us the possibility of having two path detectors, the quantum field
and the internal state of the atom.

28
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3.1 Model

A two-level atom crosses a cavity with a quantum field with wave number k = 2π/λ. A double-
slit is placed immediately before the field with top slit located in front of an antinode and the
bottom slit in front of a node with a separation distance of 0.25λ between slits (figure 3.1)
[45, 62]. This allows to establish only two possible paths for the atom, which results in maximum
or null interaction with the quantum field. Therefore, if the interaction produces some effect on
the field, it could be used to reveal which-path information. Furthermore, we consider a highly
localized atomic spatial distribution due to the position of the slits, and a negligible change in the
transverse distance traveled by the atom during the interaction. Thus ∆x � λ, which implies
that the atomic distribution spreads once the atom leaves the cavity [62]. Initially the atom is in
the ground state and it can be reflected or transmitted by the atomic beam splitter (ABS) [22, 24]
with reflection and transmission coefficients c↑ and c↓, satisfying |c↑|2 + |c↓|2 = 1. If the atom
is transmitted, it flies in the ground state along the bottom path and crosses the slit at the node
of the standing wave (x = 0.25λ). On other hand, if the atom is reflected, it goes through the
top slit passing by an atomic mirror (AM) [5, 43] and a Ramsey field (RF) [54]. This allows to
prepare a superposition of the states |b〉 and |a〉, which remains during the time of interaction
of the atom with the quantum field. This requires the use of long lived atoms in order to avoid
the spontaneous emission in the cavity [26]. The probability coefficients of exciting the state |a〉
and remaining in the state |b〉 are sin2 φ and cos2 φ, respectively. In this case, the atom crosses
the top slit and the antinode of the field (x = 0). Therefore, the top path is correlated with the
internal atomic state |Φ↑〉 = cosφ|b〉 + sinφ|a〉, while the bottom path is correlated with the
state |Φ↓〉 = |b〉.

Figure 3.1: Double-slit scheme. A two-level atom passes through the atomic beam splitter
(ABS) in the ground state. In the upper path |P↑〉, the atomic mirror (AM) and Ramsey field
(RF) generate the internal atomic state |Φ↑〉, while in the bottom path |P↓〉 the initial atomic state
remains the same. Finally, the atom crosses a node or antinode of the quantum field.
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CHAPTER 3. CONTROLLING THE WAVE-PARTICLE DUALITY WITH QUANTUM

FIELDS

3.1.1 Initial state
Once the atom passes through the ABS, its state can be described as

|ψ(0)〉atom = c↑|P↑〉 ⊗ |Φ↑〉+ c↓|P↓〉 ⊗ |Φ↓〉 = c↑|P↑〉 ⊗ [cosφ|b〉+ sinφ|a〉] + c↓|P↓〉 ⊗ |b〉,
(3.1)

where the states |P↑〉 and |P↓〉 represent the top and bottom path of the scheme, respectively.

Immediately to the right of the double slit, the cavity with the quantum field is located. We
consider different states of the field in order to analyse different ways of controlling the wave-
particle duality. Before the interaction the state of the field is represented by a squeezed coherent
state, a cat state and a thermal state, respectively.

3.1.1.1 Squeezed coherent state

The first state of the field corresponds to a squeezed coherent state defined as

|ψ(0)〉field = |α, ξ〉 = D̂(α)Ŝ(ξ)|0〉 = Ŝ(ξ)D̂(β)|0〉 =
∑
n=0

cn|n〉, (3.2)

where
β = α cosh(r) + α∗eiϑ sinh(r) (3.3)

The squeeze and displacement operators are given respectively by [50]

Ŝ(ξ) = e
1
2
ξ∗â2− 1

2
ξ(â†)2

, (3.4)

with ξ = reiϑ and
D̂(α) = eαâ

†−α∗â (3.5)

with α = α′eiϕ. The coefficients cn are defined as [23]

cn =e−
1
2
|β|2+ 1

2
β2e−iϑ tanh(r)

(
1
2
eiϑ tanh(r)

)n/2√
n! cosh(r)

Hn

(
β[eiϑ sinh(2r)]−1/2

)
. (3.6)

Therefore, the state of the total initial system is given as

|ψ(0)〉system = |ψ(0)〉atom ⊗ |ψ(0)〉field =

(
c↑|P↑〉 ⊗ [cosφ|b〉+ sinφ|a〉] + c↓|P↓〉 ⊗ |b〉

)
⊗ |α, ξ〉.

(3.7)

3.1.1.2 Cat state

As a second case, we consider that the quantum field is represented by a cat state, which corre-
sponds to a superposition of two coherent states | ± α〉. The even or odd cat states are defined
respectively by

|cat〉even =
|α〉+ | − α〉√
2(1 + e−2|α|2)

(3.8)



3.1. MODEL 31

and

|cat〉odd =
|α〉 − | − α〉√
2(1 + e−2|α|2)

, (3.9)

where

| ± α〉 = e
|±α|

2

∑
n=0

(±α)n√
n!
|n〉. (3.10)

In this case, the state of the total initial system corresponds to

|ψ(0)〉system = |ψ(0)〉atom ⊗ |ψ(0)〉field =

(
c↑|P↑〉 ⊗ [cosφ|b〉+ sinφ|a〉] + c↓|P↓〉 ⊗ |b〉

)
⊗ |cat〉e,o.

(3.11)

3.1.1.3 Thermal state

Finally, we consider a thermal state in order to analyse how it can be used to control the wave-
particle duality. The density operator for a one-mode thermal state is given by [50]

ρthermal =
∑
n

〈n〉nth
(1 + 〈n〉th)n+1

|n〉〈n|, (3.12)

where 〈n〉th corresponds to the average photon number. Therefore, the initial state of the
system is given as

ρ(0)system = ρatom ⊗ ρthermal, (3.13)

where ρatom = |ψ(0)〉atom〈ψ(0)|.

3.1.2 Time evolution
After the interaction the total initial system will evolve to the state

|ψ(t)〉system = Û |ψ(0)〉system = e−
iV̂ t
~ |ψ(0)〉system, (3.14)

where V̂ is the Hamiltonian in the interaction framework considering a rotating wave approx-
imation and a large detuning ∆ in order to avoid photon emission (figure 3.1). x corresponds
to the transverse position of the atom during the interaction. This is expressed in units of the
wavelength of the quantum field and it is measured with respect to the antinode in front of the
upper slit (x = 0) [63].

V̂ =
~|g|2 cos2(kx)

∆
σ̂zâ

†â+ ~∆σ̂z. (3.15)

If the quantum field is represented by a squeezed coherent state |α, ξ〉, the state of the system
after a time of interaction t can be written as [see eq (7.24) in Appendix chapter 3]

|ψ(t)〉 = e−
iV̂ t
~
(
|ψ(0)〉atom ⊗ |ψ(0)〉field

)
= eit∆c↑|P↑〉 ⊗ cosφ|b〉 ⊗ |eiη(x)α, ξ〉
+ e−it∆c↑|P↑〉 ⊗ sinφ|a〉 ⊗ |e−iη(x)α, ξ〉
+ eit∆c↓|P↓〉 ⊗ |b〉 ⊗ |α, ξ〉,

(3.16)
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with η(x) = t|g|2 cos2(kx)
∆

and where we have defined
∑

n e
±iη(x)ncn|n〉 ≡ |e±iη(x)α, ξ〉. We take

t|g|2
∆

= π. Therefore, if the atom takes the upper path, the final phase is the same for both
internal atomic states, |a〉 (clockwise phase-shift) or |b〉 (counter-clockwise phase-shift), due to
e±iη(x)n = e±iπ cos2(kx)n. However, if the value of t|g|2

∆
is different from mπ with m = 1, 2, 3, ...,

the final phase produced by the atom in the state |a〉 is different from the final phase produced
by the atom in the state |b〉. On the contrary, if the atom takes the bottom path, the initial phase
remains unaffected.

On other hand, when the quantum field corresponds to a cat state, the total system will evolve
as [see eq (7.25) in Appendix chapter 3]

|ψ(t)〉 = e−
iV̂ t
~
(
|ψ(0)〉atom ⊗ |ψ(0)〉field

)
= eit∆c↑|P↑〉 ⊗ cosφ|b〉 ⊗

(
|eiη(x)α〉 ± | − eiη(x)α〉√

2(1 + e−2|α|2)

)

+ e−it∆c↑|P↑〉 ⊗ sinφ|a〉 ⊗

(
|e−iη(x)α〉 ± | − e−iη(x)α〉√

2(1 + e−2|α|2)

)

+ eit∆c↓|P↓〉 ⊗ |b〉 ⊗

(
|α〉 ± | − α〉√
2(1 + e−2|α|2)

)
.

(3.17)

Finally, if we consider a thermal state, the evolution of the systems will be given as

ρ(t) = e−
iV̂ t
~ (ρatom ⊗ ρthermal) e

iV̂ t
~ = e−iη(x)σ̂z â†âe−it∆σ̂z (ρatom ⊗ ρthermal) eiη(x)σ̂†z ââ†eit∆σ̂

†
z .

(3.18)

3.1.3 Which-path information and fringe visibility
The phase-shift of the quantum field is a consequence of the atom’s position during the interac-
tion time. Therefore, a proper quadrature measurement can reveal which-path information. If
the quadrature

Xθ =
ae−iθ + a†eiθ

2
(3.19)

is measured with an eigenvalue χθ, the corresponding eigenstate |χθ〉 is an infinitely squeezed
state given by [51, 62]

|χθ〉 =
1

4
√

2π
exp
[
− 1

2
(a†eiθ − χθ)2 +

1

4
χ2
θ

]
|0〉 =

∑
n

bn|n〉, (3.20)

where
bn =

N√
n!

(
1

2
eiθ)n/2Hn(z), (3.21)

with N being a normalization constant and Hn(z) the Hermite polynomials with z = (αe−iθ +
α∗eiθ)/2.
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In absence of the quantum field, we define the distinguishability, visibility and concurrence
as D0, V0 and C0, respectively. The relation among these quantities in a typical double-slit
scheme, in which some intrinsic property of the particle is correlated with the paths, can be
written as the equality (2.15) [53] with

D0 = ||c↑|2 − |c↓|2|
V0 = 2|c↑c↓γ|
C0 = 2|c↑c↓|

√
1− |γ|2,

(3.22)

[25, 31, 32, 68] where the coefficients c↑ and c↓ define the probabilities for the atom of taking
the top or bottom path and γ ≡ 〈Φ↑|Φ↓〉 = cosφ, where the normalized states |Φ↑,↓〉 corre-
spond to intrinsic degrees of freedom of the particle. In our scheme, we establish correlations
between the internal atomic states and the paths in order to analyze cases with different degrees
of concurrence. In this case, in addition to phase-shift of the quantum field, the which-path
information can also be controlled through the coefficients c↑ and c↓, which define the atomic
state according to the equation (3.1). Therefore, we consider c↑ = c↓ in order to study the points
shown in the plane CV of the sphere VDC (figure 3.2). This choice allows to control the fringe
visibility through the parameter φ in the atomic state, and the parameters which define each
quantum field.

Figure 3.2: Unit sphere D2
0 + V 2

0 + C2
0 = 1. The cases studied in this article are C0 = 1 (green

dot), C0 = V0 (orange dot) and V0 = 1 (red dot).

3.2 Results
In this section we present different cases in which different parameters of both, atom and field,
control the wave-particle duality. First, we consider the simpler case in which the quantum field
corresponds to a coherent state and we show how the which-path information is controlled by
the amplitude α′ and the phase ϕ. Subsequently, we consider the squeeze parameters r and ϑ, in
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order to analyse their effects on the observed pattern. As a third case, we consider the cat states
and we vary the interaction time to control the which-path information and visibility. Finally, we
study the effects of the average photon number on the wave-particle duality in the case in which
the quantum field corresponds to a thermal state. In each case, after atom-field interaction, we
trace over the field in order to obtain information about the wavelike or particlelike behaviour of
the atom [eq. (3.23)]. We suppose that the possible states of the quantum field after interaction
are determined by the possible outcomes of each quadrature measurement [eq. (3.20)], which
correspond to one of the most probable values.
We consider that the initial atomic distribution once the atom merges from the double-slit corre-
sponds to two Gaussian profiles with standard deviation σ = 0.05λ/2π. Each Gaussian profiles
is centered in the position x = 0 and x = 0.25λ, respectively. Therefore, these define the states
of the paths |P↑,↓〉 of the scheme. Once the atom leaves the cavity, it freely evolves during a time
t′ (in units of 2m/~k2) and we obtain the atomic probability distribution for a specific flight time
t′ = 3, as a function of the position x′ expressed in units of λ (figure 3.3). Therefore, the atomic
state evolves as

ρatom(t′) = ÛT rfield [ρ(t)] Û † = e−
iĤt′
~ ρatom(t)e

iĤt′
~ , (3.23)

where Ĥ = P̂ 2

2m
is the free particle Hamiltonian and ρ(t) = |ψ(t)〉〈ψ(t)|, with |ψ(t)〉 given by

(5.7) and (3.17) for a squeezed coherent state and a cat state, respectively. For a thermal state
ρ(t) is given by (3.18). We study the cases in the plane CV of the sphere VCD (figure 3.2), thus
in addition to c↑ = c↓ = 1√

2
, we take 0 ≤ γ ≤ 1 (π

2
≥ φ ≥ 0). The values of V0 and C0 represent

the choice of the parameters c↑, c↓ and γ according to the definitions shown in (3.22). Therefore,
these do not define by themselves the patterns observed in each case in presence of the quantum
field.

3.2.1 Coherent state
In a typical double-slit scheme (without field) the atomic probability distributions show total,
partial and null interference for the cases V0 = 1, V0 = C0 and C0 = 1, respectively (figure
3.3). However, in presence of a quantum field the which-path information can be recorded in
the phase of it, which modifies the patterns observed on the screen. In this section, we consider
three combinations of the parameters α′, ϕ and we take r = ϑ = 0 in order to show how a
coherent state can alter the balance between path-information and visibility.

3.2.1.1 Wave-particle duality controlled by the coherent amplitude α′

If we consider t|g|2/∆ = π, for α′ = 3 the phases before and after of the atom-field interaction
are different and these are separated in the phase space represented by the plane XY , where X
and Y correspond to the amplitude and phase quadrature, respectively (figure 3.4). Therefore,
no interference appears on the screen when an X quadrature measurement is performed and one
of the most probable result is obtained, independently of the degree of concurrence established
between the internal atomic states and the paths of the double-slit scheme [see a) - c) in figure
3.7]. In this case, the fringe visibility can not be controlled by the atomic parameters, since
that the path information is completely stored in the quantum phase of the field. However, as
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Figure 3.3: Spread of the atomic distribution once the atom crosses a typical double-slit scheme.
In this case, we consider the evolution of the distribution in absence of the quantum field. There-
fore, the images (a) − (b), (c) − (d) and (e) − (f) correspond to the cases C0 = 1(φ = π/2),
V0 = C0(φ = π/4) and V0 = 1(φ = 0), respectively. On the left are shown the atomic probabil-
ity distributions as a function of both, time t′ and distance x′, on the right are shown the patterns
obtained for a flight time t′ = 3.

the amplitude α′ decreases both, initial and final phases get closer (figure 3.5) and interference
is partially recovered due to the X quadrature measurement becomes ambiguous [see d) - f)
in figure 3.7]. Therefore, in this case the interference can be varied through the choice of φ,
which defines the concurrence and the initial atomic state. For φ = π/2 the concurrence is
maximum and there is no visibility, since the paths of the double-slit scheme are correlated with
different atomic states and thus a measurement on the atom once it crosses the cavity can reveal
path-information.
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Figure 3.4: Phase-shift (counter-clock wise) produced by the interaction of an atom in the state
|b〉 (φ = 0) and a coherent state with α′ = 3 and ϕ = 0. An X quadrature measurement [vertical
shadows in (c)] can reveal which-path information and no interferences appears. A Y quadrature
measurement [horizontal shadow with red edges in (c)] can not distinguish one phase from the
other one and total interference is obtained.
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Figure 3.5: For a coherent state with α′ = 1 and ϕ = 0 there is overlap between both, initial and
final phases [vertical shadow with red edges in (c)]. Therefore, an X quadrature measurement
becomes ambiguous and partial interference appears. A Y quadrature measurement still shows
total interference.

3.2.1.2 Wave-particle duality controlled by the coherent phase ϕ

In this case, we consider the phase of the coherent state as a variable parameter and we fix the
amplitude of the field. We take α′ = 3 and ϕ = 15π

32
(figure 3.6) in order to show that considering

t|g|2/∆ = π, an X quadrature measurement becomes ambiguous and thus partial interference
can be obtained [see g) - i) in figure 3.7], while a Y quadrature measurement can reveal the
path followed by the atom, since the most probable results of the measurement can reveal the
phase of the field. In this sense, the initial phase of the coherent state can also be considered a
controller of fringe visibility and which-path information.

3.2.2 Squeezed coherent state
This time we consider two new combinations of the parameters α′, ϕ, r and ϑ to represent a
squeezed coherent state, showing that the path-information and fringe visibility can also depend
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Figure 3.6: An atom in the state |b〉 produces a counter-clockwise phase-shift in a coherent state
with α′ = 3 and ϕ = 15π

32
. The initial and final phases show overlap for an X quadrature mea-

surement [vertical shadows with red edges in (c)] and thus partial interference can be observed.
On the contrary, a Y quadrature measurement [horizontal shadows in (c)] can reveal which-path
information (no overlap).

Figure 3.7: Atomic probability distribution obtained for an X quadrature measurement after
atom-field interaction, considering a quantum field represented by a coherent state. The field
and atomic parameters are varied in the vertical and horizontal directions, respectively.

on the squeeze amplitude and phase.

3.2.2.1 Wave-particle duality controlled by the squeeze amplitude r

In this stage, we consider the coherent parameters α′ = 3, ϕ = 0 and the squeeze parameter
ξ = 2eiπ (r = 2, ϑ = π). This set of parameters allows to obtain fringe visibility due to the
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overlap between the initial and the final phases of the quantum field (figure 3.8). The bigger
the value of r, the more overlap and interference. On the other hand, the fringes observed on
the screen can be controlled, in addition to the squeeze parameters, by the atomic parameter φ
which can be varied from 0 to π/2 in order to erase gradually the interference pattern [see a) -
c) in figure 3.10]. In the case φ = π/2, the change in the phase of the quantum field is produced
by the atom in the internal state |a〉, and thus there is a clockwise phase-shift.
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Figure 3.8: Phase-shift for a squeezed coherent state with α′ = 3, ϕ = 0, r = 2 and ϑ = π,
considering interaction with an atom in the state |b〉. For these parameters there is a considerable
overlap between the initial and final phases. As a consequence, an X quadrature measurement
[vertical shadow in (c)] becomes ambiguous. On the other hand, total interference is obtained if
a Y quadrature measurement [horizontal shadow in (c)] is performed.

3.2.2.2 Wave-particle duality controlled by the squeeze phase ϑ

Finally, we rotate the phase of the squeeze parameter (figure 3.9). We take ϑ = 3π/2 in order
to analyse the changes in the interference patterns. We observe that, without varying the atomic
parameters, the interference decreases when this phase increases from π to higher values if we
perform an X quadrature measurement [see d) - f) in figure 3.10]. On the other hand, for a Y
quadrature measurement, the interference remains the same as compared to the case in which
ϑ = π, since in both cases the possible results of the measurement do not allow to differentiate
the initial phase from the final one.

3.2.3 Cat states
Now that we have studied the possibilities that the squeezed coherent states offer to control the
wave-particle duality, we will analyse the even cat states. In this case, we consider α′ = 3 and
ϕ = 0, and we take the interaction time between the atom and the field as controlling parameter
of wave-particle duality .

3.2.3.1 Interaction time: |g|2t/∆ = π

If the phase-shift after the interaction is taken as η(x) = (|g|2t/∆) cos(kx) with |g|2t/∆ = π,
the final phase is practically the same as the initial one due to the symmetry of the distribu-
tions in the XY plane (figure 3.11). Therefore, an X or Y quadrature measurement will show
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Figure 3.9: The changes in the phases of the field show that for an X quadrature measurement
the overlap between the phases decreases when the squeeze phase increases [see (c)]. Therefore,
there is more which-path information and less interference, as compared to the previous case.

Figure 3.10: Atomic probability distribution obtained for an X quadrature measurement. In this
case the quantum field corresponds to a squeezed coherent state. The field parameters are varied
vertically while φ, which defines the atomic state, is varied horizontally.

total interference, since it is not possible to obtain path-information from the results of the mea-
surement. Therefore, in this case the presence of the field is irrelevant, since the interference
patterns observed are the same as the ones obtained in absence of it [see a) - c) in figure 3.14].
In other words, the interference can be controlled only by the parameter φ which defines γ, in
an analogue way to a typical double-slit scheme with c↑ = c↓.

3.2.3.2 Interaction time: |g|2t/∆ = 3π/4

If we consider a lower interaction time, such as |g|2t/∆ = 3π/4, the phase-shifts produced by
the atomic states are different. In the state |b〉, the atom produces in the field a counterclockwise
phase-shift equal to 3π/4, which can not be detected completely by performing an X or Y
quadrature measurement due to the overlap between the initial and final phases (figure 3.12).
However, some possible results of the quadrature measurements can reveal path-information and
thus partial interference is obtained. On the other hand, the state |a〉 produces the same phase-
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Figure 3.11: A phase-shift π just interchanges clockwise or counterclockwise the position of the
distributions of the initial phase of the cat state, if the internal atomic state corresponds to |a〉 or
|b〉 [see (b)], respectively. Therefore, it is not possible to obtain path-information if an X or Y
quadrature measurement is performed [see (c)].

shift in the field but clockwise. In this case, both quadrature measurements can not distinguish
completely the initial phase from the final one. However, no interference is obtained since total
path information is stored in the internal state of the atom. Therefore, fringe visibility can be
controlled by varying the degree of concurrence in the scheme through the parameter φ [see d)
- f) in figure 3.14].
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Figure 3.12: A phase-shift equal to 3π/4 allows to differentiate the initial phase from the final
one for certain results of the quadrature measurements. Therefore, partial path-information can
be obtained with an X or Y quadrature measurement [see (c)].

3.2.3.3 Interaction time: |g|2t/∆ = π/2

We consider a third case where |g|2t/∆ = π/2 , in which the initial and final phases of the cat
state can be almost completely differentiated (figure 3.13). For this interaction time the final
phases produced by the states |b〉 and |a〉 are the same but with shifts in opposite directions.
In this case, the fringe visibility is almost null for the amplitude α′ = 3, but it can still be
slightly controlled by the atomic parameter φ [see g) - i) in figure 3.14]. As a consequence,
for most results path-information can be extracted when an X or Y quadrature measurement is
performed.
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Figure 3.13: A phase-shift equal to π/2 allows a better phase differentiation. In this case, path-
information can be obtained for most results of an X or Y quadrature measurement. Red lines
in (c) represent the possible results for which these measurements become ambiguous.

Figure 3.14: Atomic probability distribution obtained for an X quadrature measurement consid-
ering different interaction times between an atom and a cat state with α′ = 3 and ϕ = 0. The
atomic paramenter φ is varied horizontally and the interaction time vertically.

3.2.4 Thermal state

Finally, we present a brief analysis of the possible controlling parameters of the wave-particle
duality in the thermal states. In this case, the only option is to vary the average photon number
[see eq. (3.12)]. This variation just causes a change in the width of the distribution in the plane
XY , whose center matches with the coordinates origin (figure 3.15). Therefore, the phase of the
field stays in the same position against possible phase-shifts which could appear in the evolution
operator that describes the atom-field interaction. As a consequence, we can not obtain path-
information by performing a quadrature measurement after interaction, since the initial phase
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remains unaffected.
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Figure 3.15: For different values of 〈n〉th the phase of the thermal state remains in the center of
the XY plane. Therefore, the possible phase-shifts in the evolution operator can not be detected
after the interaction.

Nevertheless, the average photon number can be used as a controlling parameter of the wave-
particle duality if we consider, for instance, a displaced squeezed thermal state given by [49]

ρ = D(α)S(ξ)ρthermalS
†(ξ)D†(α). (3.24)

In this case, and considering the results shown in the sections 3.A and 3.B, the average photon
number 〈n〉th can be modified in order to widen the distributions in the XY plane. This, in
addition to the displace and squeeze parameters, could cause a larger or smaller overlap between
the initial and final phases for a specific quadrature measurement, especially in cases in which
both phases have close positions.



Chapter 4

Wave-particle duality controlled by a
classical radiation

In this chapter, we study the effects of a classical parameter in the control of the wave-particle
duality. A double cavity with a quantum mechanical and a classical field is located immediately
behind of a double-slit in order to analyse the wave-particle duality. Both fields have com-
mon nodes and antinodes through which a three-level atom passes after crossing the double-slit.
The atom-field interaction is maximum when the atom crosses a common antinode and path-
information can be recorded on the phase of the quantum field. On other hand, if the atom
crosses a common node, the interaction is null and no path-information is stored. A quadrature
measurement on the quantum field can reveal the path followed by the atom, depending on its
initial amplitude α and the classical amplitude ε. We show that the classical radiation acts like
a focusing element of the interference and diffraction patterns and how it alters the visibility
and distinguishabilily. Furthermore, in this double-slit scheme also the two possible paths are
correlated with the internal atomic states, which allows us to study the relationship between
concurrence and wave-particle duality considering different cases.

4.1 Model
We consider a three-level atom crossing a double cavity with quantum and classical fields (fig-
ure 4.3). The fields have wave numbers k = 2π/λQF = 3k′ and k′ = 2π/λCF respectively.
A double-slit is located immediately before the fields, with the top slit in front of a common
antinode and the bottom slit in front of a common node. The separation distance between slits
is 0.75λQF = 0.25λCF.

Previous to the double slit, the spatial atomic state is realized by an atomic beam splitter
(ABS) [22, 24] and an atomic mirror (AM) [5, 43], and the internal atomic state in the top path
is realized by a Ramsey field (RF) [54] (figure 4.1). The reflection and transmission coefficients
of the ABS are c↑ and c↓, satisfying |c↑|2 + |c↓|2 = 1. If the atom is transmitted, it flies along the
bottom path and crosses the slit at the node of the standing waves in the position x = 0.75λQF.
On other hand, if the atom is reflected, it goes through the top slit using a AM and then a RF.
The task of the RF is to prepare a superposition of the ground state |c〉 and the intermediate state

43
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|b〉. Here the probability coefficients of exciting the state |b〉 and remaining in the state |c〉 are
sin2 φ and cos2 φ, respectively. In this case, the atom crosses the top slit and passes through the
common antinode of the fields in the position x = 0. Therefore, the top path is correlated with
the internal atomic state |Φ↑〉 = cosφ|c〉+ sinφ|b〉, while the bottom path is correlated with the
state |Φ↓〉 = |c〉 .

Figure 4.1: Scheme of the possible paths followed by the atom. ABS: Atomic Beam Splitter,
AM: Atomic Mirror, RF: Ramsey Field. The atom is either reflected or transmitted by the ABS
by taking the upper or lower path, respectively. Finally, the atom crosses the double-slit and
both, quantum (red) and classical (blue) fields.

4.1.1 Initial state
Initially the atom is in the ground state |c〉. After passing through the ABS and considering the
effect of the AM and the RF, the atomic state can be described as

|ψ(0)〉atom = c↑|P↑〉 ⊗ |Φ↑〉+ c↓|P↓〉 ⊗ |Φ↓〉
= c↑|P↑〉 ⊗ [cosφ|c〉+ sinφ|b〉] + c↓|P↓〉 ⊗ |c〉,

(4.1)

where the states |P↑〉 and |P↓〉 represent the top and bottom path of the scheme, respectively.

Immediately to the right of the double slit, a double cavity with both, classical and quantum
fields is located. The quantum field before the interaction is a coherent state with amplitude
α =
√

8 (figure 4.2),

|ψ(0)〉field = |α〉 = e
−|α|2

2

∑
m=0

αm√
m!
|m〉 =

∑
m=0

cm|m〉, (4.2)

and the total initial system is given as

|ψ(0)〉system = |ψ(0)〉atom ⊗ |ψ(0)〉field

=

(
c↑|P↑〉 ⊗ [cosφ|c〉+ sinφ|b〉] + c↓|P↓〉 ⊗ |c〉

)
⊗ |α〉.

(4.3)
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Figure 4.2: Initial phase of the quantum field |α〉 for an amplitude α =
√

8, where X and Y
correspond to the amplitude and phase quadrature of the field, respectively.

4.1.2 Time evolution of the system

After the interaction the total initial system will evolve to

|ψ(t)〉system = Û |ψ(0)〉system = e−
iV̂ t
~ |ψ(0)〉system, (4.4)

where V̂ is the Hamiltonian in the interaction framework considering a rotating wave approxi-
mation,

V̂ = ~g1

(
âei∆t|a〉〈c|+ â†e−i∆t|c〉〈a|

)
+ ~g2

(
εei∆t|a〉〈b|+ ε∗e−i∆t|b〉〈a|

)
.

(4.5)

Here the quantum field â couples the |a〉 − |c〉 transition, while the classical field ε couples
the |a〉 − |b〉 transition with coupling constant g1 = g cos(kx) and g2 = g′ cos(k′x) respectively,
where k′ = k/3. For both fields, the detuning ∆ is the same and it is required to be large in order
to avoid photon emission and therefore, an effect on the cavity field (figure 4.3). The elements
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(a) Three-level atom. (b) Double cavity.

Figure 4.3: A three-level atom crosses the double cavity with a quantum (red) and a classical
(blue) field.

of the evolution operator for this system are given by [51]

• Uaa = ei∆t/2
(
R− i∆

2
S

)
• Uab = −ig2εe

i∆t/2S

• Uac = −ig1e
i∆t/2Sâ • Uba = −ig2ε

∗e−i∆t/2S

• Ubb = 1 +
g2

2|ε|2
[
e−i∆t/2

(
R + i∆

2
S
)
− 1
]

Λ

• Ubc = g1g2ε
∗
[
e−i∆t/2

(
R + i∆

2
S
)
− 1
]
â

Λ
• Uca = −ig1â

†e−i∆t/2S

• Ucb = g1g2εâ
†
[
e−i∆t/2

(
R + i∆

2
S
)
− 1
]

Λ

• Ucc = 1 +
g2

1 â
†â
[
e−i∆t/2

(
R + i∆

2
S
)
− 1
]

Λ

(4.6)

where

Λ ≡ g2
2|ε|2 + g2

1 ââ
†, Λ ≡ g2

2|ε|2 + g2
1 â
†â, S ≡

sin
√
µt

√
µ

,

S ≡ sin
√
µt√
µ

, R ≡ cos
√
µt, R ≡ cos

√
µt,

µ ≡ g2
2|ε|2 + g2

1 ââ
† + ∆2/4, µ ≡ g2

2|ε|2 + g2
1 â
†â+ ∆2/4.

(4.7)
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For arbitrary paths, the state of the system after a time of interaction t can be written as

|ψ(t)〉 = c↑ cosφ|P↑〉 ⊗ Û |c〉 ⊗ |α〉+ c↑ sinφ|P↑〉 ⊗ Û |b〉 ⊗ |α〉
+ c↓|P↓〉 ⊗ Û |c〉 ⊗ |α〉
= c↑ cosφ|P↑〉 ⊗

[
Ubc|b〉+ Ucc|c〉

]
⊗ |α〉

+ c↑ sinφ|P↑〉 ⊗
[
Ubb|b〉+ Ucb|c〉

]
⊗ |α〉

+ c↓|P↓〉 ⊗
[
Ubc|b〉+ Ucc|c〉

]
⊗ |α〉

= c↑ cosφ|P↑〉 ⊗
[∑

βcm|m− 1〉|b〉+
∑

αcm|m〉|c〉
]

+ c↑ sinφ|P↑〉 ⊗
[∑

αbm|m〉|b〉+
∑

βbm|m+ 1〉|c〉
]

+ c↓|P↓〉 ⊗
[∑

βcm|m− 1〉|b〉+
∑

αcm|m〉|c〉
]
,

(4.8)

where the coefficients αb,cm and βb,cm depend on the internal state of atom (see appendix in section
4.3).

4.1.3 Quadrature measurement
In this model the which-path information depends on the phase-shift of the quantum field as
a consequence of the atom’s position during the interaction time t. As mentioned before, the
maximum atom-field interaction is accomplished when the atom takes the top path and crosses
the common antinode of both fields. In that case, we must consider the two possible internal
states of the atom, |b〉 and |c〉, and the effect of these on the quantum field [62]. On other hand,
if the atom passes through the bottom slit and then crosses the common node, no interaction
occurs, and the initial phase of the field remains the same (see 4.23 in Appendix 4.3). Therefore,
considering the phase-shift caused either by the ground or intermediate atomic state in the top
path, a quadrature measurement could reveal the path followed by the atom.

If the atom crosses the common antinode (c↑ = 1) in the state |b〉 (φ = π/2) or |c〉 (φ = 0),
the final state of the total system after interaction corresponds to a superposition of the internal
states |b〉 and |c〉 given respectively by

|ψ(t)〉bsystem = |P↑〉 ⊗
[∑

m

αbm|m〉|b〉+
∑
m

βbm|m+ 1〉|c〉
]
, (4.9)

and

|ψ(t)〉csystem = |P↑〉 ⊗
[∑

m

αcm|m〉|c〉+
∑
m

βcm|m− 1〉|b〉
]
. (4.10)

Therefore, considering the effect of both, quantum and classical fields on the internal atomic
state, the evolution of the total system can be understood as a Raman diffraction process in
which the internal atomic state is changed, or a Bragg diffraction process where the internal
state of the atom remains unaffected [2, 27]. These processes can be controlled by the amplitude
of the classical field, since that for small values of ε the coefficients βb,cm decrease and it is more



48
CHAPTER 4. WAVE-PARTICLE DUALITY CONTROLLED BY A CLASSICAL

RADIATION

probable that the atom remains in its initial state, while as ε increases, the transition from |b〉 to
|c〉 or vice versa becomes more probable. For simplicity, we first consider only the quantum field
in order to analyse the effects of the atomic state on it. For the specific values of the parameters
ε = 0, α =

√
8, g = g′ and |g|2t/∆ = π, equations (4.9) and (4.10) can be written as

|ψ(t)〉bsystem = |P↑〉 ⊗
[∑

m

e−
|α|2

2
αm√
m!
|m〉|b〉

]
= |P↑〉 ⊗ |α〉 ⊗ |b〉,

(4.11)

and

|ψ(t)〉csystem = |P↑〉 ⊗
[∑

m

eiπ cos2(kx)me−
|α|2

2
αm√
m!
|m〉|c〉

]
= |P↑〉 ⊗ |eiη(x)α〉 ⊗ |c〉,

(4.12)

respectively, with η(x) = π cos2(kx).

Therefore, when the atom crosses the antinode of the quantum field in the intermediate state
|b〉 [figure 4.4a], there is no phase-shift [figure 4.4b] and no quadrature measurement can reveal
which-path information. This is because the same phase can be obtained if the atom takes the
bottom path (initial phase unaffected). In contrast, when the atom crosses the antinode in the

(a) Setup corresponding to the case φ = π/2, in which the inter-
nal atomic state in the upper path is |b〉.

(b) Phase evolution after atom-field interaction for φ =
π/2. The initial phase remains unaffected. The blue
plane shows the most probable result (χθ=0 = +α) if
a X quadrature measurement is performed.

Figure 4.4: If the internal atomic state in the top path is |b〉, there is no phase-shift in the quantum
field for α =

√
8 and ε = 0. Therefore, no path-information is record on the field. However, the

own internal atomic states in the top and bottom path can give information about which slit the
atom passed through.

ground state |c〉 [figure 4.5a], the phase increases from 0 to π [figure 4.5b]. In that case, the
internal atomic state does not reveal path-information by itself. However, the path-information
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(a) Setup corresponding to the case φ = 0. In this case the
internal atomic state in the upper path is |c〉 and the interaction
with the field is maximum.

(b) Phase evolution after atom-field interaction for φ = 0.
The initial phase changes from 0 to π.

Figure 4.5: If the internal atomic state in the top path is |c〉, it produces a phase-shift of π in the
quantum field, which reveals path-information. We consider α =

√
8 and ε = 0. In this case the

most probable result for an X quadrature measurement is χθ=0 = −α.

is stored in the phase of the quantum field and can be extracted through a X quadrature mea-
surement.

In general, if the quadrature

Xθ =
ae−iθ + a†eiθ

2
(4.13)

is measured with an eigenvalue χθ, the corresponding eigenstate |χθ〉 is an infinitely squeezed
state given by [51, 62]

|χθ〉 =
1

4
√

2π
exp
[
− 1

2
(a†eiθ − χθ)2 +

1

4
χ2
θ

]
|0〉 =

∑
n

bn|n〉, (4.14)

where

bn =
N√
n!

(
1

2
eiθ)n/2Hn(z), (4.15)

with N being a normalization constant. The function Hn(z) corresponds to the Hermite poly-
nomials with z = (αe−iθ + α∗eiθ)/2.

Since we consider |g|2t/∆ = π, a Xθ=0 = X quadrature measurement with values χθ=0 =
±α determines the phase of the field and then we can know whether the atom passed through
either the node or antinode (considering φ = 0). On other hand, if a Xθ=π/2 = Y quadrature
measurement is performed, and the most probable result is obtained (χθ=π/2 = 0), no path-
information is obtained and interference appears on the screen, since that from the most probable
result no path information is inferred (figure 4.6).
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(a) If the phase remains unaffected, the most probable
result for a Y quadrature measurement is χθ=π/2 = 0.

(b) If the phase changes from 0 to π, the result of a Y
quadrature measurement remains the same.

Figure 4.6: A Y quadrature measurement does not reveal path information, because the most
probable result is obtained regardless of quantum field state.

4.1.4 Particle-wave duality and concurrence
In a typical double-slit scheme we can configure several cases in order to study the quantum
duality between distinguishabilily (particle-like) and visibility (wave-like) [17]. Now, if a cor-
relation is established between some intrinsical property of a particle and the possible paths, the
wave-particle duality can be modified depending on the degree of entanglement in the system.
Recently, it has been experimentally proven the relation among distinguishabilily (D0), visibility
(V0) and concurrence (C0) [53] which can be written as

D2
0 + V 2

0 + C2
0 = 1, (4.16)

with

D0 = ||c↑|2 − |c↓|2|
V0 = 2|c↑c↓γ|
C0 = 2|c↑c↓|

√
1− |γ|2,

(4.17)

[25, 31, 32, 68] where c↑ and c↓ are coefficients that define the probabilities for the atom of taking
the top or bottom path, while γ ≡ 〈Φ↑|Φ↓〉, where the normalized states |Φ↑,↓〉 correspond to
intrinsic degrees of freedom of the particle, in our case the internal atomic state.

Cases of special interest are shown on the surface of the sphere in the figure 4.7. The point
C0 = 1, with coefficients c↑ = c↓ = 1/

√
2 and γ = 0, represents a special scenario in which,

based on the definitions of D0 and V0, visibility and distinguishability are equal to zero. So,
what would we expect to observe on the screen after the double slit?

In the next section we analyze different cases considering our scheme, in which the which-
path information can be stored in the phase-shift of the quantum field, but also it can be con-
trolled through the coefficients c↑ and c↓, and we show the different patterns that are obtained
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in each case shown on the sphere. Finally, we show how the classic field can change the ini-
tial visibility and which-path information as ε increases from 0 to higher values and how the
corresponding patterns are modified.

Figure 4.7: Unit sphere D2
0 + V 2

0 + C2
0 = 1. The extreme cases V0 = 1, D0 = 1, C0 = 1 and

intermediate ones are shown on the surface by red dots.

4.2 Numerical results
In the previous sections we explained how the atom can modify the quantum field and how the
path-information can be extracted by performing a quadrature measurement. The localization
of the atom results in loss of interference and the total knowledge of the path-information. In
this section we assume that once the atom leaves the cavity, it freely evolves during a time t′ (in
units of 2m/~k′2) to state

ρatom(t′) = Ûρatom(t)Û †

= e−
iĤt′
~ Trfield (|ψ(t)〉〈ψ(t)|) e

iĤt′
~ ,

(4.18)

where Ĥ = P̂ 2

2m
is the free particle Hamiltonian and |ψ(t)〉 is given by (4.8). Thus, we can obtain

the atomic distribution for a specific flight time t′ and observe how the initial distinguishability
and visibility are tuned according to the amplitude of the quantum and classical fields. We con-
sider that the initial atomic distribution once the atom emerges from the double-slit corresponds
to two Gaussian profiles with standard deviation σ = 0.05λCF/2π and centred in the positions
x = 0 and x = 0.25λCF, respectively. For each studied case, the corresponding pattern on
the screen is obtained considering three different stages. First, we consider a typical double-slit
scheme where we can manipulate only the parameters c↑, c↓ and γ to define V0, D0 and C0 as the
initial visibility, dintinguishability and concurrence in absence of both fields. Subsequently, we
add the quantum field and obtain the corresponding atomic distributions of each case. Finally,
we consider the double slit with both, classical and quantum fields.
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4.2.1 Stage 1: Atom passing through the double slit (no fields)

This is the simpler stage. Distinguishability, visibility and concurrence depend only on the
choice of the coefficients of reflection c↑, transmission c↓ and γ. For instance, in the case V0 = 1
the internal atomic state is |c〉 in both paths, thus φ = 0 and γ = cosφ = 1, which ensures
C0 = 0. Furthermore, the coefficients c↑ and c↓ are taken to be same, then D0 = 0. Therefore,
this corresponds to a case of total interference that is shown in green in the figure 4.8a. The
values c↑ = 1, c↓ = 0 and 0 ≤ γ ≤ 1 correspond to other case, D0 = 1, which does not show
fringes of visibility [figure 4.8c]. Perhaps the most interesting case is C0 = 1 [figure 4.8e], in
which there is no distinguishability nor visibility. In this case, the observed pattern on the screen
is similar to the typical diffraction pattern of the case D0 = 1. The rest of distributions represent
intermediate cases which can be obtained considering the appropriate coefficients.
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Figure 4.8: Stage 1: Atomic probability distribution obtained for each case shown on the sphere
V 2

0 + D2
0 + C2

0 = 1 for t′ = 3. The distance x′ is expressed in units of λ = λCF. a) V0 = 1, b)
V0 = D0, c) D0 = 1, d) D0 = C0, e) C0 = 1, f) C0 = V0, g) V0 = D0 = C0.
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4.2.2 Stage 2: Atom passing through the double slit with the quantum
field

Here we consider the quantum field with an amplitude α =
√

8, located immediately after the
double-slit (see figure 4.1). As stated earlier in the Section II.C, the quantum field can store
path-information in case the atom crosses the antinode in the internal state |c〉. Otherwise (state
|b〉 in the upper path, or state |c〉 lower path), the phase of the quantum field remains unaffected.
Thus, we have three sources of path-information: i) the choice of the coefficients c↑ and c↓, ii)
the possible phase-shift of the quantum field, and iii) the internal atomic state of the atom after
double-slit.
• i) As in the stage 1, if c↑ = 1 and c↓ = 0, we immediately get path information.
• ii) If we choose c↑ = c↓ and φ = 0 (γ = 1), the internal atomic state in both paths is |c〉 and
the path-information is recorded in the phase of the field, and can be extracted by measuring the
X quadrature.
• iii) Finally, for c↑ = c↓ and φ = π/2 (γ = 0), the top and bottom paths are correlated to
the atomic states |b〉 and |c〉, respectively. In that case the field does not store path-information.
However, path-information related to the atomic states is stored and can be obtained by measur-
ing the internal atomic state once the atom leaves the cavity.

Therefore, in presence of the quantum field we will not observe fringes of interference in any
of the cases on the sphere [see blue lines in the figure 4.9a - 4.9g], because each case corresponds
either, to one of the situations i), ii), iii), or to some intermediate state. In fact, i), ii) and iii)
correspond to the cases in which the coefficients c↑,↓ and γ satisfy D0 = 1, V0 = 1 and C0 = 1,
respectively. Nevertheless, fringe visibility can be restored if the path-information is erased.
In order to achieve that, the first option is reducing the amplitude of the quantum field, so that
the X quadrature measurement becomes ambiguous and does not reveal path-information. In
this way the interference is partially restored [red lines in figure 4.9a, 4.9b, 4.9f, 4.9g]. In other
cases, like D0 = 1 [figure 4.9c], D0 = C0 [figure 4.9d] and C0 = 1 [figure 4.9e], interference
cannot be restored.

A second option is performing a Y quadrature measurement of the field. In this case the path-
information is completely erased and interference is restored, since we assume the outcome of
our measurement as the most probable result that corresponds to χθ=π/2 = 0. The green lines in
the figure 4.8a - 4.8g are the distributions we would expect to see on the screen if a Y quadrature
measurement is performed on the quantum field. This is the same result that we would obtain if
the quantum field were not present.

4.2.3 Stage 3: Atom passing through the double slit with the quantum
and classical fields

Finally, we consider the double-slit scheme with both quantum and classic fields. When the
classical light is present, it affects the final phase of the quantum field after the interaction,
because the terms whose phases depend on ε appear in the evolution operator. As a consequence,
interference and path-information are altered. As in the previous stage, the phase-shift produced
by ε also depends on the internal atomic state |c〉 or |b〉 present in the top path.
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Figure 4.9: Stage 2: Atomic probability distribution obtained for each case shown on the sphere
V 2

0 + D2
0 + C2

0 = 1 in presence of the quantum field for t′ = 3 with α =
√

8 (blue) and α = 1
(red). x′ is expressed in units of λ = λCF. The choice of the parameters c↑,↓ and γ satisfies: a)
V0 = 1, b) V0 = D0, c) D0 = 1, d) D0 = C0, e) C0 = 1, f) C0=V0, g) V0 = D0 = C0.

• The top path and internal state |b〉: When ε = 0, we have already seen that the phase of
the quantum field does not change and thus we cannot obtain which-path information. However,
for different values of ε, the phase of the quantum field moves away from its initial value and
then we are able to get distinguishability (figure 4.10). Therefore, the higher the value of ε the
more path-information we get, at the expense of visibility.

• The top path and internal state |c〉: In this case, starting from ε = 0, as we increase the
classical field, the X quadrature measurement becomes ambiguous, decreasing the which-path
information and therefore increasing the visibility(figure 4.11).

To show the effect of the classical field on the atomic distributions, we analyse the same cases
shown before, considering ε = 3 and α =

√
8. In the figure 4.12 we can see how the visibility

fringes are restored (red lines). Thus, there is less available path-information with respect to
the stage 2 (blue lines). If we look again the case V0 = 1 [figure 4.12a], we see now partial
interference because now there is a probability of measuring a phase η = 0 and get visibility, or
η = π and gain path-information. Cases like V0 = D0 [figure 4.12b], C0 = V0 [figure 4.12f] and



4.2. NUMERICAL RESULTS 55

(a) ε = 1 (b) ε = 3

(c) ε = 5 (d) ε = 9

Figure 4.10: Internal atomic state |b〉 in the top path: As the value of ε rises, the phase of
the quantum field begins to differentiate from the initial phase. Thus, now a X quadrature
measurement can reveal path-information.

D0 = C0 = V0 [figure 4.12g] also show how the interference can be restored. On other hand,
in the cases D0 = 1 [figure 4.12c], D0 = C0 [figure 4.12d] and C0 = 1 [figure 4.12e] there is
no interference, but these show that the atomic distributions evolve faster. This means that the
initial Gaussian profiles of the atomic distribution in the position x = 0 and x = 0.25λCF in
t′ = 0, interact with each other earlier as compared to the case ε = 0.
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(a) ε = 1 (b) ε = 3

(c) ε = 5 (d) ε = 9

Figure 4.11: Internal atomic state |c〉 in the top path: In this case, as ε increases, the phase of the
quantum field approaches to its initial value. So now, the X quadrature measurement becomes
ambiguous and the path-information decreases.

4.3 Effects of the evolution operator on the initial state of the
quantum field |α〉 [ eq. (4.8)].

The elements Ubb (4.19) and Ucb (4.20) represent the evolution of the system when the internal
atomic state is |b〉. On other hand, the elements Ucc (4.21) and Ubc (4.22) describe the evolution
when the internal state is |c〉. If the atom crosses the lower slit (c↓ = 1) and then the common
node in x = 0.25λCF = 0.75λQF, no interaction occurs and the quantum field remains the same
[see (4.23)].
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Figure 4.12: Stage 3: When ε = 3, the effects of the atomic states |b〉 and |c〉 on the phase of the
quantum field are similar [see figure4.10b and figure 4.11b]. Therefore, an X quadrature mea-
surement cannot reveal completely path-information and the atomic distributions show partial
interference in some cases and a faster evolution in other ones (red lines). Blue lines correspond
to the results obtained for ε = 0 in the stage 2. The cases a) V0 = 1, b) V0 = D0, c) D0 = 1, d)
D0 = C0, e) C0 = 1, f) C0 = V0, g) V0 = D0 = C0 represent the choice of the parameters used
in the stage 1. The flight time is taken t′ = 3 with x′ in units of λ = λCF.
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Chapter 5

Partial quantum eraser and delayed
choices

Finally, we consider a double-slit scheme located immediately before a cavity with a quan-
tum field in order to discuss some ideas about the delayed choice quantum eraser experiments.
A two-level atom crosses the slits and the standing wave leaving path information stored on
the quantum phase of the field, which can be extracted or erased by performing an adequate
quadrature measurement once the atom leaves the system. Furthermore, we correlate the in-
ternal atomic states with the paths of the scheme, which allows us to obtain path information
by measuring the internal state of the atom after the atom-field interaction. We consider both,
the field and the atom, as path detectors and perform different measurements on them after the
atom’s position is registered. This allows us to obtain a partial quantum eraser, after which we
can decide to recover or destroy the interference completely. Therefore, we propose the use of
this kind of schemes in delayed choice experiments.

5.1 Description of the model
Our interaction model is similar to the one in Chapter 3 and is represented by the figure 5.1. We
again consider that once the atom crosses the slits, it can pass through an antinode (in x = 0,
with maximum atom-field interaction) or a node (in x = 0.25λ, with null interaction) of a
standing wave, which in this case, we represent as a quantum field defined by a coherent state
|α〉 with α = |α|eiϕ and wave number k = 2π/λ, λ being the wavelength. Initially, the atom is
in the groundstate |b〉 and once it takes the upper (|P↑〉) or bottom (|P↓〉) path, its internal state
corresponds to |Φ↑〉 = cosφ|b〉 + sinφ|a〉 and |Φ↓〉 = |b〉, respectively [45, 46]. The spatial
and internal atomic state is prepared by an atomic beam splitter (ABS), an atomic mirror (AM)
and a Ramsey field (RF) [5, 22, 24, 43, 54]. Therefore, the correlation between the paths and
the internal atomic states is controlled by φ, which defines the transition from |b〉 and |a〉 in the
upper path. After passing through the ABS, the atomic state can be described as

|ψ(0)〉atom = c↑|P↑〉 ⊗ |Φ↑〉+ c↓|P↓〉 ⊗ |Φ↓〉
= c↑|P↑〉 ⊗ [cosφ|b〉+ sinφ|a〉] + c↓|P↓〉 ⊗ |b〉.

(5.1)
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Figure 5.1: Scheme of the possible paths followed by the atom. ABS: Atomic Beam Splitter,
AM: Atomic Mirror, RF: Ramsey Field. The atom is either reflected or transmitted by the ABS
by taking the upper or lower path, respectively. Finally, the atom crosses the double-slit and the
quantum field.

During the atom-field interaction the system will evolve according to the already known
Hamiltonian V̂ in the interaction framework [62, 63],

V̂ =
~|g|2 cos2(kx)

∆
σ̂zâ

†â+ ~∆σ̂z, (5.2)

with g being the coupling constant and ∆ the detuning, which is required to be large in order to
avoid spontaneous emission in the cavity. Therefore, the state of the system after an interaction
time t can be written as [46]

|ψ(t)〉 = eit∆c↑|P↑〉 ⊗ cosφ|b〉 ⊗ |eiη(x)α〉
+ e−it∆c↑|P↑〉 ⊗ sinφ|a〉 ⊗ |e−iη(x)α〉+ eit∆c↓|P↓〉 ⊗ |b〉 ⊗ |α〉.

(5.3)

Due to the interaction, the quantum phase of the field after the interaction can reveal information
about the path taken by the atom, depending of the value of η(x), which is defined as η(x) =
t|g|2
∆

cos2(kx). In this sense, the which-path information stored in the quantum field depends on
the choice of the parameters |g|2t/∆. Thus, if we choose |g|2t/∆ = π the states |b〉 and |a〉
have the same effect on the field, causing the same phase shift but in opposite directions. In this
case, with an amplitude quadrature measurement it is possible to obtain path information since
the phase of the coherent state changes only when the atom takes the upper path (figure 5.2).

When the atom crosses the node of the standing wave, the state of the field |α〉 remains the
same. On other hand, for maximum atom-field interaction, the possible states of the quantum
field are |eiπα〉 and |e−iπα〉. Therefore, we can define |eiπα〉 = |e−iπα〉 ≡ |α′〉. This allows
us to identify two field states with quantum phases far enough apart. Thus, we can perform an
amplitude quadrature measurement to distinguish unambiguously the initial phase from the final
one and obtain path information. In contrast, if a phase quadrature measurement is performed,
the probable results do not distinguish between both phases. We consider that a quadrature
arbitrarily oriented defined by

Xθ =
ae−iθ + a†eiθ

2
(5.4)
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Figure 5.2: Phase shifts for maximum atom-field interaction considering |g|2t/∆ = π. If the
atom crosses the upper slit is in the state |b〉 (|a〉) there is a counter-clock (clock) wise phase
shift in the coherent state. If an amplitude quadrature measurement (black dotted lines) is per-
formed, the results can give information about the path followed by the atom, but cannot always
reveal the internal its internal state. On other hand, a phase quadrature measurement becomes
ambiguous and it does not reveal path information or the atomic state.

is measured with an eigenvalue χθ with a corresponding eigenstate |χθ〉 given as an infinitely
squeezed state [51, 62]. On the other hand, when a correlation is established between some
intrinsical property of a particle and the possible paths of the scheme, we can study the balance
among visibility, distinguishability and concurrence using the relation (2.15), with

D = ||c↑|2 − |c↓|2|, V = 2|c↑c↓γ|, C = 2|c↑c↓|
√

1− |γ|2, (5.5)

[53] where c↑ and c↓ are coefficients that define the probabilities for the atom of taking the top
or bottom path, associated to the reflection and transmission coefficients of the atomic beam
splitter, while γ ≡ 〈Φ↑|Φ↓〉, where the normalized states |Φ↑,↓〉 correspond to intrinsic degrees
of freedom of the particle which are correlated to the paths, in our case the internal atomic states.
Therefore, γ is controlled by the atomic parameter φ.

In order to analyse the possibilities of this scheme in the realization of delayed choice ex-
periments, we consider for the field a coherent state with |α| = 3 and ϕ = 0, and for the atomic
state we choose φ = π/4, which ensures that, after the Ramsey field, the atom can cross the
quantum field either in the state |b〉 or |a〉. The coefficients c↑ and c↓ are taken the same and the
interaction time satisfies |g|2t/∆ = π.

5.2 Partial quantum eraser and delayed choices
The localization of the atom via an amplitude quadrature measurement results in loss of inter-
ference and the total knowledge of the path taken by it. Therefore, the pattern obtained would
correspond to a diffraction pattern. However, different effects can be observed if we consider the
measurements that we can perform on the field and atom after the atom’s position is registered.
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In order to study the possible diffraction or interference patterns, we assume that once the atom
leaves the cavity, it freely evolves during a time t′ = 3 (in units of 2m/~k2) to state

ρ(t′) = |ψ(t′)〉〈ψ(t′)| = e−
iĤt′
~ |ψ(t)〉〈ψ(t)|e

iĤt′
~ , (5.6)

where Ĥ = P̂ 2

2m
is the free particle Hamiltonian. Furthermore, we consider that the spatial

atomic distribution once the atom emerges from the double-slit corresponds to two Gaussian
profiles separated by 0.25λ with a standard deviation σ = 0.05λ/2π, which defines the states
|P↑,↓〉. Thus, we can obtain the atomic distribution for a specific flight time t′ as a function of
the position x′ in units of λ (figure 5.3).

If we consider that the atom’s position is determined before the states of the atom and field
are measured, the state of the system corresponds to

|ψx〉 = 〈x|ψ(t′)〉 =
eit∆

2
〈x|P↑〉|b〉 ⊗ |α′〉

+
e−it∆

2
〈x|P↑〉|a〉 ⊗ |α′〉+

eit∆√
2
〈x|P↓〉|b〉 ⊗ |α〉.

(5.7)

Therefore, once the atom is registered on the screen we can choose obtaining total path informa-
tion from the field by measuring the X0 = X quadrature (amplitude), or erase this information
by measuring theXπ/2 = Y quadrature (phase). Furthermore, we have the option to measure the
internal atomic state. In the next sections, we show how the patterns observed on the screen can
be modified depending on the results of the measurements performed on the field or the atom.
The state of the system after a quadrature measurement with result χθ corresponds to

|ψx,χθ〉 ≡ |χθ〉〈χθ|ψx〉 =
eit∆

2
〈x|P↑〉|b〉〈χθ|α′〉|χθ〉

+
e−it∆

2
〈x|P↑〉|a〉〈χθ|α′〉|χθ〉+

eit∆√
2
〈x|P↓〉|b〉〈χθ|α〉|χθ〉.

(5.8)

5.2.1 Reading the path information from the quantum field
Once the atom’s position is registered, we can perform an X quadrature measurement on the
field to obtain information about the path followed by the atom. Since we have considered a
coherent state with α = 3, the initial phase of the field is enough apart from the possible final
phase produced by the atom-field interaction. Therefore, for an X quadrature measurement
there is no overlap between both phases, which means that all possible results are unambiguous
and can reveal the path followed by the atom in the double-slit scheme. We assume that an
X quadrature measurement is performed with a result χ0 = α, which locates the atom in the
node of the standing wave during the atom-field interaction. The pattern observed in this case
does not show fringe visibility, since the particle-like behaviour has been obtained and the path
followed by the atom is completely revealed [figure 5.3b)]. A similar pattern would be observed
if no quadrature measurement is performed, since although the path information is not read, it is
available in the field [figure 5.3a)].
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5.2.2 Erasing the path information from the quantum field
If instead of the X quadrature, we choose to measure the Y quadrature, then all path informa-
tion initially stored in the cavity is erased. As a consequence, the quantum field can not give
information about the slit through which the atom passed. In a scheme with null concurrence,
this measurement leads to a complete recovery of the fringe visibility. However, in our case the
paths of the scheme are correlated with the internal atomic states, which allows us to erase the
path information from the quantum field and still to maintain a degree of path information in
the atom. Therefore, after the Y quadrature measurement we can observe a pattern with partial
interference since the internal atomic state can still reveal the path taken by the atom. In order
to demonstrate this, we assume a Y quadrature measurement with result χπ/2 = 0, which is
ambiguous and can not distinguish the final phase of the field from the initial one, and thus the
path followed by the atom. The pattern obtained shows partial visibility [figure 5.3d)] due to the
atomic state defined initially with φ = π/4.

5.2.3 Measuring the internal atomic state
In this section, we study the effects that the measurement of the internal atomic state causes
on the pattern observed on the screen. We consider that this measurement is performed after
the atom’s position is registered and after the path information stored in the quantum field is
erased via the Y quadrature measurement described above. In this case, the possible results of
the atomic measurement can reveal total path information or total visibility. For instance, if after
that the Y quadrature is measured, the atom is found in the state |a〉, it means that the Ramsey
field in the upper path modified the initial state of the atom (|b〉) and thus it crossed the antinode
of the standing wave with maximum atom-field interaction. Therefore, the path followed by
the atom (upper path) is completely determined and the pattern observed on the screen does not
show interference [figure 5.3f)]. On the contrary, if the atom is found in the state |b〉, we have
two options: i) The atom crossed the upper slit with maximum atom-field interaction but the
Ramsey field did not modify its internal atomic state. ii) The atom crossed the bottom slit and
the node of the standing wave with null atom-field interaction. Therefore, with this result we
can not determine if the atom crossed the upper or bottom slit. As a consequence, total fringe
visibility is observed on the screen [figure 5.3g)].

With the atomic and field measurements shown above, we can obtain patterns with different
degrees of interference or path information even after the atom’s position is registered. For
instance, we can register the position of the atom and obtain no interference because the path
information is available and stored in the field. Then, we can decide to erase this information
and measure the internal atomic state and, depending on the probabilities, obtain a result that
recovers the fringe visibility. This and other alternative processes can be summarized step by
step considering the following order [see figure (5.3)]: 1) The atom’s position is registered and
no measurement is performed on the atom and field. 2) We decide to perform a measurement
on the field, X or Y quadrature. 2A) If we perform an X quadrature measurement, we read
the path information from the field and the path followed by the atom is determined. After this
choice, the interference can not be restored. 2B) If we perform a Y quadrature measurement, we
erase the path information from the field. In this case, we can still obtain path information from
the atom, thus we observe partial interference, which depends on the atomic parameter φ. 3) We
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decide to measure the internal atomic state, with which we can go from partial to null or total
interference. 3A) If we find the atom in the state |a〉, we immediately know the path followed
by it. 3B) If we find the atom in the state |b〉, there is not path information and total interference
is observed.

Figure 5.3: Patterns observed depending on the measurements performed on the atom and field.
We consider different values of the atomic parameter φ, in order to show more possibilities of
partial fringe visibility.



Chapter 6

Results and conclusions

6.1 Controlling the wave-particle duality with quantum
fields

In Chapter 3 of this thesis, we have shown that in addition to the amplitude, the initial phase ϕ of
a coherent state can also control the relationship between wich-path information and visibility
without modifying the amplitude of the field. Secondly, in our model we have considered a field
represented by a squeezed coherent state in order to study how the squeeze parameters affect the
path-information and visibility. Fixing the values of the coherent amplitude α′ and phase ϕ, we
have seen how fringe visibility can be varied and controlled via the squeeze parameters r and ϑ.
For ϑ = π, as r increases, the X quadrature measurement becomes ambiguous, the which-path
information reduces and partial interference appears on the screen. Nevertheless, keeping the
values of the phase ϕ and the amplitudes α′ and r, we can reduce the fringe visibility by varying
the squeeze phase ϑ. On the other hand, we have shown that when the quantum field corresponds
to a cat state and we take |g|2t/∆ = π, we do not obtain path-information despite the fact that
there is a phase-shift produced by the atom-field interaction. This is due the symmetry of the
phase of the cat states, which does not present a detectable change after a phase-shift equal
to π. Therefore, in this case, the observed interference is the same as what we would obtain
in absence of the field. However, path-information can be extracted from the phase of the cat
state if we consider |g|2t/∆ different from π which allows to differentiate the final phase from
the initial one. Finally, we have analysed the possibilities that the thermal states can offer in
order to control the wave-particle duality. For this kind of states we can only vary the average
photon number and the final and initial phases can not be differentiated. Therefore, a thermal
state by itself can not be used to control the balance between path-information and visibility.
Nonetheless, based on the analysis of the squeezed coherent states, we can consider a displaced
squeezed thermal state and control the duality through the average photon number 〈n〉th, since
we can generate a larger or smaller overlap between the initial and final phases of this kind of
fields varying this parameter, and thus a specific quadrature measurement can become more or
less ambiguous.

The fact of establishing correlations between the internal atomic states and the paths of the
system allows to study the relationship between wave-particle duality and the concurrence in
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different cases. Typically, the fringe visibility can vary depending on the degree of concurrence
in the system, without resorting to the distinguishability. This means moving in the sphere
V DC from the point C0 = 1 to the point V0 = 1 or vice versa. Therefore, we analyse the cases
C0 = 1, C0 = V0 and V0 = 1 where φ, which defines the concurrence, takes the values π/2,
π/4 and 0, respectively. Our results show that fringe visibility can vary without resorting to
the distinguishability nor to the variation of φ, but only considering different values of the field
parameters α′, ϕ, r, ϑ or 〈n〉th in addition to the interaction time. Therefore, in a double-slit
scheme with cavity field the observed interference patterns on the screen, once the atom leaves
the slits-cavity setup, can be controlled through the atomic state by defining the parameter φ in
an adequate way, and also establishing different values for each one of the parameters which
describe the states of the quantum field. As a consequence, these atomic and field parameters
can be considered as controllers of the wave-particle duality.

Regarding to the experimental realization, our scheme presents different points which need
to be considered. For instance, the time of the atom-field interaction is assumed negligible in
comparison with the cavity lifetime, which along with the use of Rydberg atoms and a large
detuning ∆, allows to maintain the coherence. On other hand, the transverse distance traveled
by the atom when it crosses the cavity must meet the condition ∆x� λ. These conditions give
rise to restrictions for the atom-field coupling defined by g, which also involve the values of some
parameters, as the phase-shift η, the wavelength λ and the number of photons 〈n〉 in the cavity
[62]. Furthermore, since the experimental setup is crossed by one atom at a time, the experiment
needs to be repeated many times in conditions as similar as possible, in order to achieve the
formation of the interference patterns on the screen. This implies that the use of a velocity
selector previous to the scheme becomes necessary, since a considerable difference among initial
velocities of the atoms that come from a particular source could hinder the visibility of the
patterns. On other hand, considering the experimental conditions and the different controllable
parameters in the setup, this kind of scheme could be used in some application based on quantum
information processing. For instance, for a certain distance followed by the atom between two
points A and B, the interference patterns observed in the point B could reveal some information
about the choice of the atomic parameters established previously in the point A. In this way, the
information contained in the internal atomic state, defined in A through the choice of φ, could
be read once the atom crosses the cavity in B and the state of the quantum field is measured by
homodyne detection. In this sense, the quantum field can also act as a logic quantum gate, since
its state is altered only when there is interaction with the atom. Therefore, the quantum phase of
the field depends on the path followed by the atom, which determines if it crosses the node or
antinode of the standing wave. For example, for a coherent state |α〉, the atom in the upper path
produces a phase-shift and the final state of the field is |e±iη(x)α〉, while the atom in the bottom
path does not affect the field. In the same way, if the initial state of the field is |e±iη(x)α〉, the atom
modifies it (or not) if it takes the upper (or bottom) path. This can be summarized respectively
as follows: |P↑〉|α〉 7−→ |P↑〉|e±iη(x)α〉, |P↓〉|α〉 7−→ |P↓〉|α〉, |P↑〉|e±iη(x)α〉 7−→ |P↑〉|α〉 and
|P↓〉|e±iη(x)α〉 7−→ |P↓〉|e±iη(x)α〉. Therefore, with an adequate representation of these states as
zeros and ones, it is possible to describe these possibilities as action of a controlled not gate or
CNOT [6]. In this example, we have considered |g|2t/∆ = π.
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6.2 Wave particle duality controlled by a classical radiation

The interaction between the three-level atom and both fields in a double cavity, added to a
double-slit scheme, allows to study the relationship between wave-particle duality and concur-
rence in a more general context. In order to satisfy the equation (4.16), and considering a Young
double-slit scheme, visibility, distinguishability and concurrence can be controlled by a correct
choice of the parameters involved in the definition of each one of these quantities. However, the
fact of adding both fields to the scheme implies that the gain of path-information and fringe vis-
ibility also depends on the amplitude of the classical (ε) and quantum (α) fields. This is because
the atom-field interaction can modify the initial phase of the quantum field depending on the
values of these amplitudes. The phase-shift represents path-information, which can be extracted
if an adequate quadrature measurement is performed. Therefore, it is possible to obtain path-
information even in the case in which the choice of the parameters c↑, c↓ and γ satisfy V0 = 1
(D0 = C0 = 0).

We have shown how the contribution of the classical radiation alters the path-information
stored in the quantum field. When the atom passes by the bottom path, the interaction is null
and the initial phase remains unaffected. For ε = 0, the maximum (minimum) path-information
is obtained when the internal atomic state in the upper path is |c〉 (|b〉), due to the fact that
atom-field interaction produces a π (0) phase-shift. Therefore, in this case, a X quadrature
measurement can(not) distinguish unambiguously the path followed by the atom. However, if
the internal atomic state in the upper path is |c〉, as ε increases, the resulting phase-shift makes
the X quadrature measurement ambiguous, reducing the path-information. On the contrary, if
we have the internal atomic state |b〉 in the upper path, a X quadrature measurement becomes
less ambiguous, giving more path-information and less visibility. Therefore, we can consider
ε as controlling parameter of the wave-particle duality. This is because the classical amplitude
determines the transition probabilities between the internal states |b〉 and |c〉 during the atom-
field interaction. For higher values of ε these transitions become more probable and thus the
phases of the quantum field produced by the internal atomic states are exchanged, as it is shown
in the figure 4.10 for a transition from |b〉 to |c〉 and in the figure 4.11 for a transition from
|c〉 to |b〉. In this sense, considering the possible transitions between the internal states of the
atom, we can consider the classical radiation not only as a controlling parameter of the wave-
particle duality but also as a controller of a single Raman diffraction process generated by both
quantum and classical fields. On other hand, if we consider the presence of both fields with a
small amplitude ε, the transition probabilities are reduced and the atom has a larger probability
of remaining in its initial internal state. In this case the process can be described as a single
Bragg diffraction process. Finally, in absence of the classical contribution, only the quantum
field controls the interaction and there is no a Raman nor Bragg process.

In addition to this, and based on the different patterns observed in each case, we also con-
clude that for ε different from zero, the atomic distributions evolve faster as compared to the
ε = 0 case. This means that a certain pattern observed on the screen in absence of the classical
field, can be equally obtained but in less time if it is turned on. This is because higher values of
ε generate faster oscillations of the terms present in the evolution operators described in the ex-
pressions (4.19), (4.20), (4.21) and (4.22). Therefore, the initial Gaussian profiles of the atomic
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distribution which emerge from the double cavity interact with each other at earlier times. In
this sense, we can say that the classical field acts like a focusing device of the patterns on the
screen.

A curious observation. The CV plane (figure 4.7) shows that starting from C0 = 1, we
can recover partially or completely the interference pattern by just varying the internal atomic
degrees of freedom without resorting to the distinguishability (D0 = 0).

Finally, an interesting case is C0 = 1, in which V0 and D0 vanish. Our scheme shows that
neither visibility nor distinguishability can be restored once the maximum concurrence has been
established. Therefore, this proves the sturdiness of this case against any quadrature measure-
ment in any of the three stages presented in the previous sections.

6.3 Quantum eraser and delayed choices
Finally, we have studied the wave-particle duality through the atom-field interaction in a double-
slit scheme that can be used in quantum eraser or delayed choice experiments. As a conclusion,
in our scheme we have two sources of path information (field and atom) and we can decide the
behaviour of the system even after the particle’s position is registered. This is because, depend-
ing on our choices, we have the possibility to observe three different patterns: total, partial or
null interference. If we decide to measure the X quadrature of the field, we immediately know
the path followed by the atom and the interference can not be restored. On the contrary, if we
measure the Y quadrature, the interference can be partially recovered. Therefore, after erasing
the path information from the field, we can still observe both, particle-like and wave-like be-
haviour, unlike the previous works in which deleting the path information from the field, the
interference is completely recovered. Finally, we can decide to measure the internal atomic state
in order to obtain null o total interference, depending on the result of this measurement. A cu-
rious situation is produced when the atom is found in the state |a〉. This is because when the Y
quadrature measurement is performed, we cannot know the state of the field after the interaction
with the atom, since this measurement collapses its state. However, if we found that the state of
the atom after the Y quadrature measurement is |a〉, we immediately know that the atom crossed
the antinode of the quantum field and its final state |e−iπα〉. Therefore, in this case the internal
atomic state gives us information about the state of the field post-interaction, even after that this
information has been erased by the quadrature measurement Y .
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(+)
b 〉 ∝ pb

= 〈â†be
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bâb|1a, φa〉+ c∗acb〈1a, φa|â
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iϕb
]〉

=
〈
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[Û−1

0 |ψS(t)〉]

= i~
dÛ−1
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Û0 + Û−1
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iĤ0t

~
, σ̂−â
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†â+
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† + it[ωa(â
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iĤ0t

~
, it(ωa − ω0)σ̂−â
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−i∆t′ − g∗2σ̂2
−â
†2e−2i∆t′

g∗2σ̂2
−â
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Where the exponential terms in the penultimate equality have been omitted since when integrat-
ing them they yield values proportional to 1/∆2 with ∆ very large. Therefore
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)
+ ...

= 1− cos(kx+ ξ)

∆

[
g∗σ̂−â
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where it has been considered that if 〈Â〉 ≈ 〈Â†Â〉1/2, with Â = σ̂+â, it is not too big and
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[σ̂+â, σ̂−â
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e−
|αeiη(x)|2

2

∑
n=0

(αeiη(x))n√
n!

|n〉
]
⊗ |x, g〉

= eit∆
∫
dxκ(x)|αeiη(x)〉 ⊗ |x, g〉
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|χθ〉 =
1

4
√

2π
exp
[
− 1

2
(a†eiθ − χθ)2 +

1

4
χ2
θ

]
|0〉

=
1

4
√

2π
exp
[
− a†2e2iθ

2
+ a†eiθχθ −

1

4
χ2
θ

]
|0〉

=
1

4
√

2π
e−

1
4
χ2
θe−

a†2e2iθ
2 ea

†eiθχθ |0〉

=
1

4
√

2π
e−

1
4
χ2
θe−

a†2e2iθ
2

[
1 + a†eiθχθ +

1

2
a†2e2iθχ2

θ + ...

]
|0〉

=
1

4
√

2π
e−

1
4
χ2
θe−

a†2e2iθ
2

[
|0〉+ a†eiθχθ|0〉+

1

2!
a†2e2iθχ2

θ|0〉+
1

3!
a†3e3iθχ3

θ|0〉+ ...

]
=

1
4
√

2π
e−

1
4
χ2
θe−

a†2e2iθ
2

[
|0〉+ eiθχθ|1〉+

1√
2!
e2iθχ2

θ|2〉+
1√
3!
e3iθχ3

θ|3〉+ ...

]
=

1
4
√

2π
e−

1
4
χ2
θe−

a†2e2iθ
2

∑
n=0

einθχnθ√
n!
|n〉

=
1

4
√

2π
e−

1
4
χ2
θ

[
1− a†2e2iθ

2
+

1

2!

a†4e4iθ

4
− 1

3!

a†6e6iθ

8
+ ...

]∑
n=0

einθχnθ√
n!
|n〉

=
1

4
√

2π
e−

1
4
χ2
θ

[∑
n=0

einθχnθ√
n!
|n〉 − a†2e2iθ

2

∑
n=0

einθχnθ√
n!
|n〉+

1

2!

a†4e4iθ

4

∑
n=0

einθχnθ√
n!
|n〉 − 1

3!

a†6e6iθ

8

∑
n=0

einθχnθ√
n!
|n〉+ ...

]
=

1
4
√

2π
e−

1
4
χ2
θ

[∑
n=0

einθχnθ√
n!
|n〉 − 1

2

∑
n=0

√
n+ 2

√
n+ 1

ei(n+2)θχnθ√
n!

|n+ 2〉

+
1

2!

1

4

∑
n=0

√
n+ 4

√
n+ 3

√
n+ 2

√
n+ 1

ei(n+4)θχnθ√
n!

|n+ 4〉

− 1

3!

1

8

∑
n=0

√
n+ 6

√
n+ 5

√
n+ 4

√
n+ 3

√
n+ 2

√
n+ 1

ei(n+6)θχnθ√
n!

|n+ 6〉+ ...

]
=

1
4
√

2π
e−

1
4
χ2
θ

[∑
n=0

einθχnθ√
n!
|n〉 − 1

2

∑
n=0

√
(n+ 2)!

ei(n+2)θχnθ
n!

|n+ 2〉

+
1

2!

1

4

∑
n=0

√
(n+ 4)!

ei(n+4)θχnθ
n!

|n+ 4〉 − 1

3!

1

8

∑
n=0

√
(n+ 6)!

ei(n+6)θχnθ
n!

|n+ 6〉+ ...

]
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〈χθ|αeiη〉 =

(
1

4
√

2π
e−

1
4
χ2
θ

[∑
n=0

〈n|e
−inθχnθ√
n!
− 1

2

∑
n=0

〈n+ 2|
√

(n+ 2)!
e−i(n+2)θχnθ

n!

+
1

2!

1

4

∑
n=0

〈n+ 4|
√

(n+ 4)!
e−i(n+4)θχnθ

n!
− 1

3!

1

8

∑
n=0

〈n+ 6|
√

(n+ 6)!
e−i(n+6)θχnθ

n!
+ ...

])
(
e−
|αeiη |2

2

∑
m=0

(αeiη)m√
m!
|m〉
)

=
1

4
√

2π
e−

1
4
χ2
θ

[(∑
n=0

〈n|e
−inθχnθ√
n!

)(
e−
|αeiη |2

2

∑
m=0

(αeiη)m√
m!
|m〉
)

− 1

2

(∑
n=0

〈n+ 2|
√

(n+ 2)!
e−i(n+2)θχnθ

n!

)(
e−
|αeiη |2

2

∑
m=0

(αeiη)m√
m!
|m〉
)

+
1

2!

1

4

(∑
n=0

〈n+ 4|
√

(n+ 4)!
e−i(n+4)θχnθ

n!

)(
e−
|αeiη |2

2

∑
m=0

(αeiη)m√
m!
|m〉
)

− 1

3!

1

8

(∑
n=0

〈n+ 6|
√

(n+ 6)!
e−i(n+6)θχnθ

n!

)(
e−
|αeiη |2

2

∑
m=0

(αeiη)m√
m!
|m〉
)

+ ...

]
=

1
4
√

2π
e−

1
4
χ2
θe−

|αeiη |2
2

[( ∑
n,m=0

e−inθχnθ (αeiη)m√
n!
√
m!

〈n|m〉
)
− 1

2

( ∑
n,m=0

√
(n+ 2)!e−i(n+2)θχnθ (αeiη)m

n!
√
m!

〈n+ 2|m〉
)

+
1

2!

1

4

( ∑
n,m=0

√
(n+ 4)!e−i(n+4)θχnθ (αeiη)m

n!
√
m!

〈n+ 4|m〉
)
− 1

3!

1

8

( ∑
n,m=0

√
(n+ 6)!e−i(n+6)θχnθ (αeiη)m

n!
√
m!

〈n+ 6|m〉
)]

+ ...

=
1

4
√

2π
e−

1
4
χ2
θe−

|αeiη |2
2

[(∑
n=0

(χθαe
i(η−θ))n

n!

)
− 1

2

(∑
n=0

√
(n+ 2)!e−i(n+2)θχnθ (αeiη)n+2

n!
√

(n+ 2)!

)
+

1

8

(∑
n

√
(n+ 4)!e−i(n+4)θχnθ (αeiη)n+4

n!
√

(n+ 4)!

)
− 1

48

(∑
n=0

√
(n+ 6)!e−i(n+6)θχnθ (αeiη)n+6

n!
√

(n+ 6)!

)
+ ...

]
=

1
4
√

2π
e−

1
4
χ2
θe−

|αeiη |2
2

[(∑
n=0

(χθαe
i(η−θ))n

n!

)
− 1

2
χ−2
θ

(∑
n=0

e−i(n+2)θ(χθαe
iη)n+2

n!

)
+

1

8
χ−4
θ

(∑
n=0

e−i(n+4)θ(χθαe
iη)n+4

n!

)
− 1

48
χ−6
θ

(∑
n=0

e−i(n+6)θ(χθαe
iη)n+6

n!

)
+ ...

]
=

1
4
√

2π
e−

1
4
χ2
θe−

|αeiη |2
2

[(∑
n=0

(χθαe
i(η−θ))n

n!

)
− 1

2
χ−2
θ

(∑
n=0

(χθαe
i(η−θ))n+2

n!

)
+

1

8
χ−4
θ

(∑
n=0

(χθαe
i(η−θ))n+4

n!

)
− 1

48
χ−6
θ

(∑
n=0

(χθαe
i(η−θ))n+6

n!

)
+ ...

]
=

1
4
√

2π
e−

1
4
χ2
θe−

|αeiη |2
2

[(∑
n=0

(χθαe
i(η−θ))n

n!

)
− 1

2
χ−2
θ (χθαe

i(η−θ))2

(∑
n=0

(χθαe
i(η−θ))n

n!

)
+

1

8
χ−4
θ (χθαe

i(η−θ))4

(∑
n=0

(χθαe
i(η−θ))n

n!

)
− 1

48
χ−6
θ (χθαe

i(η−θ))6

(∑
n=0

(χθαe
i(η−θ))n

n!

)
+ ...

]
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〈χθ|αeiη〉 =
1

4
√

2π
e−

1
4
χ2
θe−

|αeiη |2
2

[(∑
n=0

(χθαe
i(η−θ))n

n!

)
− 1

2
χ−2
θ

(∑
n=0

(χθαe
i(η−θ))n+2

n!

)
+

1

8
χ−4
θ

(∑
n=0

(χθαe
i(η−θ))n+4

n!

)
− 1

48
χ−6
θ

(∑
n=0

(χθαe
i(η−θ))n+6

n!

)
+ ...

]
=

1
4
√

2π
e−

1
4
χ2
θe−

|αeiη |2
2

[(∑
n=0

(χθαe
i(η−θ))n

n!

)
− 1

2
χ−2
θ (χθαe

i(η−θ))2

(∑
n=0

(χθαe
i(η−θ))n

n!

)
+

1

8
χ−4
θ (χθαe

i(η−θ))4

(∑
n=0

(χθαe
i(η−θ))n

n!

)
− 1

48
χ−6
θ (χθαe

i(η−θ))6

(∑
n=0

(χθαe
i(η−θ))n

n!

)
+ ...

]
=

1
4
√

2π
e−

1
4
χ2
θe−

|αeiη |2
2 eχθαe

i(η−θ)
[
1− 1

2
(αei(η−θ))2 +

1

8
(αei(η−θ))4 − 1

48
(αei(η−θ))6 + ...

]
=

1
4
√

2π
e−

1
4
χ2
θe−

|αeiη |2
2 eχθαe

i(η−θ) ∑
n=0

(−1
2
(αei(η−θ))2)n

n!

=
1

4
√

2π
e−

1
4
χ2
θe−

|αeiη |2
2 eχθαe

i(η−θ)
e−

1
2

(αei(η−θ))2

=
1

4
√

2π
e−
|α|2

2 e−
1
4
χ2
θeχθ(α1+iα2)e−

1
2

(α1+iα2)2

(where α1 + iα2 ≡ αei[(|g|
2t/∆) cos2(kx+ξ)−θ)] = αei(η−θ))

=
1

4
√

2π
e−

(α2
1+α2

2)

2
− 1

4
χ2
θ+χθα1+iχθα2− 1

2
(α2

1+2iα1α2−α2
2)

=
1

4
√

2π
e−α

2
1−

1
4
χ2
θ+χθα1+iχθα2−iα1α2

=
1

4
√

2π
e−[(α1−

χθ
2

)2+iα2(α1−χθ)]

.
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〈ψ(t)|ψ(t)〉 =

[
N

∫
dxκ∗(x)

1
4
√

2π
e−[(α1−

χθ
2

)2−iα2(α1−χθ)]〈x, g|
][
N

∫
dxκ(x)

1
4
√

2π
e−[(α1−

χθ
2

)2+iα2(α1−χθ)]|x, g〉
]

=

∫
N2|κ(x)|2√

2π
e−2[α1−

χθ
2

]2dx, with χθ = 0.

=
N2|κ|2√

2π

∫ 0.25

−0.25

e−2[α1]2dx

=
N2|κ|2√

2π

∫ 0.25

−0.25

e−2[α cos[π cos2(kx+ξ)]]2dx, with α =
√

8, y ξ = 0.

=
N2|κ|2√

2π

∫ 0.25

−0.25

e−16 cos2[π cos2(kx)]dx

=
N2|κ|2√

2π
(4.59769x10−2) = 1.

(7.17)

N2 =

√
2π

|κ|2(4.59769x10−2)

N =
4
√

2π

|κ|
√

4.59769x10−2

=
4
√

2π

|κ|
√
C
, with C = 4.59769x10−2.

(7.18)
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〈x′, g|ψ(t′)〉 = ψ(x′, t′) =

∫
dx〈x′, g|e−

it′
~
p̂2

2m |x, g〉〈x, g|ψ(t)〉

=

∫
dx〈x′, g|

∫
dp′|p′〉〈p′|e−

it′
~
p̂2

2m

∫
dp|p〉〈p|x, g〉ψ(x, t)

=

∫
dx

∫
dp′
∫
dp〈x′, g|p′〉〈p′|e−

it′
~
p̂2

2m |p〉〈p|x, g〉ψ(x, t)

=

∫
dx

∫
dp′
∫
dp

1√
2π~

ei
x′p′
~ e−

it′
~
p2

2m δ(p′ − p) 1√
2π~

e−i
xp
~ ψ(x, t)

=
1

2π~

∫
dx

∫
dpe−

it′
~
p2

2m e
ip
~ (x′−x)ψ(x, t)

=
1

2π~

∫
dxe

im
2~t′ (x

′−x)2

∫
dpe−

it′
2m~

(
p−m

t
(x′−x)

)2

ψ(x, t)

=
1

2π~

∫
dxe

im
2~t′ (x

′−x)2

√
2πm~
it′

ψ(x, t)

=

√
m

2πi~t′

∫
dxe

im
2~t′ (x

′−x)2

ψ(x, t)

=

√
m

2πi~t′
N

∫
dxe

im
2~t′ (x

′−x)2

κ(x)
1

4
√

2π
e−[α2

1(x)+iα2(x)α1(x)]

=

√
m

2πi~t′
1

4
√

2π
N

∫
dxe

im
2~t′ (x

′−x)2

κ(x)e−[α2
1(x)+iα2(x)α1(x)]

=

√
m

2πi~t′
1

4
√

2π
N

∫
dxe

im
2~t′ (x

′−x)2

κ(x)e−[α2 cos2(π cos2(kx))+iα2 cos(π cos2(kx)) sin(π cos2(kx))]

=

√
m

2πi~t′
1

4
√

2π
N

∫
dxe

im
2~t′ (x

′−x)2

κ(x)e−[α2 cos2(π cos2(kx))+iα2 1
2

sin(2π cos2(kx))]

=

√
m

2πi~t′
1

4
√

2π
N

∫
dxe

im
2~t′ (x

′−x)2

κ(x)e−α
2 cos2(π cos2(kx))e−iα

2 1
2

sin(2π cos2(kx))

=

√
m

2πi~t′
1

4
√

2π
N

∫
dxe

im
2~t′ (x

′−x)2

κ(x)e−8 cos2(π cos2(kx))e−i4 sin(2π cos2(kx))]

=

√
m

2πi~t′
1

4
√

2π
N

∫
dxκ(x)ei[

m
2~t′ (x

′−x)2−4 sin(2π cos2(kx))]e−8 cos2(π cos2(kx))
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ψ(x′, t′) =

√
m

2πi~t′
1

4
√

2π
N

∫
dxκ(x)ei[

m
2~t′ (x

′−x)2−4 sin(2π cos2(kx))]e−8 cos2(π cos2(kx))

=

√
m

2πi~t′
1

4
√

2π
N

∫ 0.25λ

−0.25λ

dxκ(x)ei[
m

2~t′ (x
′−x)2−4 sin(2π cos2(kx))]e−8 cos2(π cos2(kx)) with N =

4√2π
|κ|
√
C

=

√
m

2πi~t′

√
2k2

2k2

1
4
√

2π

(
4
√

2π

|κ|
√
C

)
κ

∫ 0.25λ

−0.25λ

dxei[
m

2~t′
2k2

2k2 (x′−x)2−4 sin(2π cos2(kx))]e−8 cos2(π cos2(kx))

=
k√

4Cπit′

∫ 0.25λ

−0.25λ

dxei[
1

4t′ (kx
′−kx)2−4 sin(2π cos2(kx))]e−8 cos2(π cos2(kx)), Let this be u = kx, dx = du

k

=
k√

4Cπit′

∫ 0.25λk

−0.25λk

du

k
ei[

1
4t′ (kx

′−u)2−4 sin(2π cos2(u))]e−8 cos2(π cos2(u))

=
1√

4Cπit′

∫ 0.25·2π

−0.25·2π
duei[

1
4t′ (kx

′−u)2−4 sin(2π cos2(u))]e−8 cos2(π cos2(u))

=
1√

4Cπit′

∫ 0.25·2π

−0.25·2π
duei[

1
4t′ (2πx

′−u)2−4 sin(2π cos2(u))]e−8 cos2(π cos2(u))

(7.20)

〈ψ(t)|ψ(t)〉 =

[
N

∫
dxκ∗(x)

1
4
√

2π
e−[(α1−

χθ
2

)2−iα2(α1−χθ)]〈x, g|
][
N

∫
dxκ(x)

1
4
√

2π
e−[(α1−

χθ
2

)2+iα2(α1−χθ)]|x, g〉
]

=

∫
N2|κ(x)|2√

2π
e−2[α1−

χθ
2

]2dx, with χθ = 0.

=
N2|κ|2√

2π

∫ 0.375

−0.375

e−2[α1]2dx

=
N2|κ|2√

2π

∫ 0.375

−0.375

e−2[α cos[π cos2(kx+ξ)]]2dx, with α =
√

8, y ξ = 1/8.

=
N2|κ|2√

2π

∫ 0.375

−0.375

e−16 cos2[π cos2(kx+1/8)]dx

=
N2|κ|2√

2π
(6.89653x10−2) = 1.

(7.21)

N2 =

√
2π

|κ|2(6.89653x10−2)

N =
4
√

2π

|κ|
√

6.89653x10−2

=
4
√

2π

|κ|
√
C
, with C = 6.89653x10−2.
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ψ(x′, t′) =

√
m

2πi~t′
1

4
√

2π
N

∫
dxκ(x)ei[

m
2~t′ (x

′−x)2−4 sin(2π cos2(k[x+1/8]))]e−8 cos2(π cos2(k[x+1/8]))

=

√
m

2πi~t′
1

4
√

2π
N

∫ 0.375λ

−0.375λ

dxκ(x)ei[
m

2~t′ (x
′−x)2−4 sin(2π cos2(k[x+1/8]))]e−8 cos2(π cos2(k[x+1/8])) with N =

4√2π
|κ|
√
C

=

√
m

2πi~t′

√
2k2

2k2

1
4
√

2π

(
4
√

2π

|κ|
√
C

)
κ

∫ 0.375λ

−0.375λ

dxei[
m

2~t′
2k2

2k2 (x′−x)2−4 sin(2π cos2(k[x+1/8]))]e−8 cos2(π cos2(k[x+1/8]))

=
k√

4Cπit′

∫ 0.375λ

−0.375λ

dxei[
1

4t′ (kx
′−kx)2−4 sin(2π cos2(k[x+1/8]))]e−8 cos2(π cos2(k[x+1/8])), Let this be u = k[x+ 1/8], dx = du

k

=
k√

4Cπit′

∫ [0.375+1/8]λk

[−0.375+1/8]λk

du

k
ei[

1
4t′ (kx

′−[u−k/8])2−4 sin(2π cos2(u))]e−8 cos2(π cos2(u))

=
1√

4Cπit′

∫ [0.375+1/8]·2π

[−0.375+1/8]·2π
duei[

1
4t′ (kx

′−[u−k/8])2−4 sin(2π cos2(u))]e−8 cos2(π cos2(u))

=
1√

4Cπit′

∫ [0.375+1/8]·2π

[−0.375+1/8]·2π
duei[

1
4t′ (2πx

′−[u−2π/8])2−4 sin(2π cos2(u))]e−8 cos2(π cos2(u))

(7.23)

7.1.3 Appendix chapter 3

|ψ(t)〉 =Û (|ψ(0)〉atom ⊗ |ψ(0)〉field)

= e−
iV̂ t
~

(
c↑|P↑〉 ⊗

[
cosφ|b〉+ sinφ|a〉

]
+ c↓|P↓〉 ⊗ |b〉

)
⊗ |α, ξ〉

= e−
it|g|2 cos2(kx+ξ)

∆
σ̂z â†âe−it∆σ̂z

(
c↑|P↑〉 ⊗

[
cosφ|b〉+ sinφ|a〉

]
+ c↓|P↓〉 ⊗ |b〉

)
⊗ |α, ξ〉

= c↑|P↑〉 ⊗ cosφeiη(x)neit∆|b〉 ⊗ |α, ξ〉
+ c↑|P↑〉 ⊗ sinφe−iη(x)ne−it∆|a〉 ⊗ |α, ξ〉
+ c↓|P↓〉 ⊗ eiη(x)neit∆|b〉 ⊗ |α, ξ〉
= eit∆c↑|P↑〉 ⊗ cosφ|b〉 ⊗ |eiη(x)α, ξ〉
+ e−it∆c↑|P↑〉 ⊗ sinφ|a〉 ⊗ |e−iη(x)α, ξ〉
+ eit∆c↓|P↓〉 ⊗ |b〉 ⊗ |eiη(x)α, ξ〉

(7.24)
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|ψ(t)〉 =Û (|ψ(0)〉atom ⊗ |ψ(0)〉field)

= e−
iV̂ t
~

(
c↑|P↑〉 ⊗

[
cosφ|b〉+ sinφ|a〉

]
+ c↓|P↓〉 ⊗ |b〉

)
⊗ |cat〉o,e

= e−
it|g|2 cos2(kx+ξ)

∆
σ̂z â†âe−it∆σ̂z

(
c↑|P↑〉 ⊗

[
cosφ|b〉+ sinφ|a〉

]
+ c↓|P↓〉 ⊗ |b〉

)
⊗

(
|α〉 ± | − α〉√
2(1 + e−2|α|2)

)

= eit∆c↑|P↑〉 ⊗ cosφ|b〉 ⊗

(
|eiη(x)α〉 ± | − eiη(x)α〉√

2(1 + e−2|α|2)

)

+ e−it∆c↑|P↑〉 ⊗ sinφ|a〉 ⊗

(
|e−iη(x)α〉 ± | − e−iη(x)α〉√

2(1 + e−2|α|2)

)

+ eit∆c↓|P↓〉 ⊗ |b〉 ⊗

(
|eiη(x)α〉 ± | − eiη(x)α〉√

2(1 + e−2|α|2)

)
.

(7.25)
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[29] Huygens, C. (1690). Traite de la lumiere: Où sont expliquées les causes de ce qui luy
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