
Modulation of spermatozoon acrosome reaction

Pilar Vigil1,2, Renán F. Orellana1, Manuel E. Cortés1,3

1Unidad de Reproducción y Desarrollo, Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontifi cia Universidad Católica de Chile. Santiago, Chile.
2Fundación Médica San Cristóbal. Santiago, Chile.
3Programa de Postgrado, Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontifi cia Universidad Católica de Chile. Santiago, 
Chile.

ABSTRACT

Spermatozoon acrosome reaction is an exocytotic event of the utmost importance for the development of mammalian fertilisation. 
Current evidence shows that the triggering of the acrosome reaction (AR) could be regulated by the action of diverse compounds, namely, 
metabolites, neurotransmitters and hormones. The aim of the present review is to describe the modulating effects of several compounds 
that have been classifi ed as inductors or inhibitors of acrosome reaction. Among AR inductors, it is necessary to mention progesterone, 
angiotensin II, atrial natriuretic peptide, cathecolamines, insulin, leptin, relaxin and other hormones. Regarding the inhibitors, oestradiol 
and epidermal growth factor are among the substances that retard AR. It is worth mentioning that gamma-aminobutyric acid, a 
neurotransmitter known to be an inhibitor in the central nervous system, has been shown to induce AR. The multiple hormones located 
in the fl uids of the female reproductive tract are also likely to act as subtle regulators of AR, constituting a fundamental aspect for the 
development of successful fertilisation. Finally, it is necessary to emphasise that the study of regulation exerted by hormones and other 
compounds on AR is essential for further understanding of mammalian reproductive biology, especially spermatozoon physiology.
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INTRODUCTION

The complex process of mammalian reproduction is based on 
a series of highly regulated and synchronised physiological 
events (Colombo, 2006; Familiari et al., 2006). The development 
of successful fertilisation depends on several aspects, among 
which it is worth mentioning physical (i.e., mechanical), 
biochemical, endocrine, behavioural and environmental 
factors. In mammals in which semen is deposited mainly in the 
vagina, e.g. humans, the existing spermatozoa have to ascend 
through the female reproductive tract (Vigil et al., 1994; Vigil 
et al., 1995). The latter can be considered a microenvironment 
that supplies the conditions needed to guarantee survival, 
capacitation and migration of spermatozoa required for 
subsequent fusion with the oocyte (Vigil et al., 1995). 
Fertilisation also depends on the morphological characteristics 
of the spermatozoon and the oocyte (Vigil, 1987; Familiari et 
al., 2006) and it is known that alterations in either gamete can 
have an impact on its attainment (Vigil et al., 1985; Vigil, 1987; 
Bustos-Obregón et al., 1995).

The spermatozoon is a haploid cell (n) consisting of a 
head, neck, mid-piece and flagellum (Fawcett, 1975). The 
nucleus and the genetic material are located in the head, along 
with the acrosome (discussed in detail below). The fl agellum 
is responsible for the motility of the spermatozoon due to 
the presence of structures such as the axoneme and a set of 
mitochondria that supply the energy required by the fl agellar 
beating (Fawcett, 1975). Spermatozoa are produced in the 
testicles in a well-regulated process of differentiation known 
as spermatogenesis (von Kölliker, 1841), which involves all 
the phenomena through which a group of diploid cells (2n) 
become haploid spermatozoa.

As regards the acrosome –from Greek ακρος (acros) 
meaning “highest”, and σωμα (soma) meaning “body”– this is 
an organelle, which by localisation and shape may resemble a 
hood, found in the apical region of the spermatozoon covering 
the anterior extremity of the nucleus. The acrosome has been 
described as a secretory vesicle, specifi cally as a modifi ed 
lysosome (Moreno and Alvarado, 2006), and comprises 
varied enzymatic content including acrosin, acrogranin, 
hyaluronidase and other enzymes present in classic organelles, 
such as peroxisome, lysosome, and even in cytoplasm (McRorie 
and Williams, 1974; Moreno and Alvarado, 2006; Zhao et 
al., 2007). Each spermatozoon is endowed with an acrosome 
varying across species in shape and size, and its formation is 
a complex, highly regulated phenomenon as compared to the 
biogenesis of other organelles and secretory vesicles. In fact, 
many of its proteic components are synthesized in stages prior 
to the development of the male gamete (Moreno and Alvarado, 
2006).

The objective of the present review is to describe the 
regulation exerted on spermatozoon acrosome reaction (AR), 
with special interest in the hormone modulation this process is 
subject to.

WHAT IS AR?

AR consists of the exocytosis of acrosomal content. This 
generally involves the fusion and fenestration of the 
spermatozoon plasma membrane with the outer acrosomal 
membrane. As a consequence of this process, small lipid 
cumuli are generated from both membranes, stabilising one 
another until they become independent units. The membranes 
that contain the enzymes of the acrosome lose continuity 
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and stability leading to release of acrosome content to the 
external medium (Barros et al., 1967; Nagae et al., 1986; Llanos, 
1989; Moreno and Alvarado, 2006). These series of events of 
membrane fusion have been studied mainly in the principal 
segment of the acrosome. However, AR has also been described 
at the equatorial segment level, in stages following exocytosis 
in the apical region (Nagae et al., 1986; Vigil, 1987; Vigil, 1989).

When AR has concluded, the spermatozoon has suffered 
various physiological changes that will later determine 
fertilisation, namely: a) acrosome enzyme release, which 
favours the passing of the spermatozoon through the zona 
pellucida; b) exposition of the inner acrosome membrane as 
a new cell surface domain (Nolan and Hammerstedt, 1997; 
Jungnickel et al., 2001); and c) in the case of the principal 
acrosome segment, acquisition of the fusogenic ability of the 
plasma membrane in the spermatozoon equatorial segment. 
These three events are important and necessary for fertilisation 
to occur. It has been described that the post-equatorial segment 
can also acquire this fusogenic capacity (Vigil, 1989; Jungnickel 
et al., 2001). Although the AR takes place fi rst in the principal 
segment of the acrosome and later in the equatorial segment, 
our research establishes that the AR can occur asynchronically 
in the spermatozoon head, i.e., the fusion of the plasma 
membrane and the outer acrosome membrane can take place 
at different times and at different sites (Vigil, 1987; Vigil, 1989). 
In fact, it is possible to observe spermatozoa with a partial 
AR at the principal segment and at the equatorial segment of 
the acrosome. It has also been observed that, given a partial 

AR of the equatorial segment, both the remaining plasma 
membrane of the unreacted part of the equatorial segment 
and the plasma membrane of the post-equatorial segment can 
acquire fusogenic capacity (Vigil, 1987; Vigil, 1989). This is 
supported by ultrastructural morphological evidence obtained 
after observing a spermatozoon in the oocyte cytoplasm with 
one side of the equatorial segment intact and the other side of 
the equatorial segment reacted (Figure 1). The ultrastructural 
evidence obtained by using an immature zona-free hamster 
oocyte shows that fusion between the oocyte plasma 
membrane and the spermatozoon plasma membrane across 
the equatorial and post-equatorial can occur (Vigil, 1987; Vigil, 
1989).

The aforementioned physiological and morphological 
changes are fundamental during oocyte–spermatozoon 
interaction in the stages following the passage through 
the zona pellucida. The principal segment of the reacted 
spermatozoon has been found to possess domains able to 
interact with proteic components in the oocyte membrane 
that determine an initial anchoring between the two cells. 
These interactions later degrade, giving way to the fusion 
at the equatorial segment (Takano et al., 1993; Primakoff 
and Myles, 2002). The role of cyritestin, a protein found in 
the spermatozoon inner acrosome membrane (Linder et 
al., 1995) in the initial interaction between the oocyte and 
the principal spermatozoon segment is worth noting. It has 
also been described that the blocking of cyritestin receptors 
on the oocyte membrane interferes with spermatozoon 
binding (Yuan et al., 1997). As to the equatorial segment of 
the reacted spermatozoon, the existence of a group of lipids 
called seminolipids has been suggested (Gadella et al., 1995), 
which seem to be able to interact with SLIP, a protein of the 
oocyte membrane (Gadella et al., 1995). This could trigger a 
plasma membrane rearrangement favouring the fusion of both 
gametes. AR generates a remodelling of the spermatozoon 
cellular structure, enabling the fusion of its plasma membrane 
–over the equatorial or post-equatorial segment– with the 
oocyte plasma membrane (Vigil, 1987; Vigil, 1989; Familiari et 
al., 2006).

REQUIREMENTS FOR THE OCURRENCE OF AR

The timely occurrence and development of AR involves some 
prerequisites that depend mainly on changes at molecular 
level. Among these is capacitation, which is described below:

Capacitation

The physiological aspects of the reproductive process depend 
on a sequence of episodes that generate both the physical and 
chemical conditions that enable oocyte fertilisation (Barros et 
al., 1996; Colombo, 2006; Familiari et al., 2006). One of these 
events is spermatozoon capacitation, which encompasses a 
number of modifi cations that take place as sperm travel along 
the female reproductive tract and that involve a number of 
structural and biochemical changes in the spermatozoon 
(Barros, 1974; Go and Wolf, 1985; Hyne et al., 1985; Llanos, 
1989; Fraser, 1995). These changes include an increase in 
plasma membrane fl uidity, a decrease in the level of plasma 
cholesterol content (Go and Wolf, 1985; Cross, 1998), an 
increase in intracellular concentrations of calcium and cAMP 
(Yanagimachi and Usui, 1974; Yanagimachi, 1982; Visconti 

Figure 1: Transmission electron micrograph showing a hamster 
spermatozoon inside an immature hamster oocyte cytoplasm. 
The spermatozoon shows one side in which the acrosome 
equatorial segment is intact (arrow) and the other side in which 
the acrosome equatorial segment has reacted (arrow head). The 
oocyte plasma membrane is identifi ed as opm (23000X).
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et al., 1990; Visconti et al., 1995; Visconti and Kopf, 1998), 
phosphorylation of tyrosine residues in proteins (Visconti 
et al., 1995; Leclerc et al., 1996), and a shift in the patterns of 
spermatozoon movement and motility (Yanagimachi, 1970). 
These are critical for AR since, as has been described, only 
capacitated spermatozoa can experience acrosome exocytosis 
(Bedford, 1983; Llanos, 1989; Yanagimachi, 1995; DeLamirande 
et al., 1997). The spermatozoon membrane possesses a variety 
of lipids whose localisation pattern allows for the occurrence 
of multiple cellular processes, such as protein location and 
changes in membrane fl uidity. During capacitation, certain 
proteins in the uterine fl uid, such as high density lipoprotein 
and albumin (Langlais and Roberts, 1985) enable extraction 
of cholesterol from the plasma membrane, leading to the 
distribution and re-localisation of these molecules in the 
spermatozoon (Fleming and Yanagimachi, 1981; Bearer and 
Friend, 1990). Capacitation affects the sensitivity of the male 
gamete to the diversity of ligands present in the female 
reproductive tract, especially in the uterus, oviduct and the 
oocyte, which trigger certain physiological changes in the 
spermatozoon, hence increasing the probability of oocyte 
fertilisation (see below). The relationship between gametes 
during fertilisation is also evidenced by the role exerted by 
ZP1, ZP2 and ZP3 (proteins present in the zona pellucida), 
which are capable of inducing AR through their interaction 
with a receptor located in the spermatozoon plasma membrane 
(Harkema et al., 1998; O’Toole et al., 2000).

MODULATORS OF AR

A variety of ligands have been reported to modulate AR 
exerting their effects by means of receptors at the level of the 
spermatozoon plasma membrane (Ohzu and Yanagimachi, 
1982; Meizel, 1985; Hoshi et al., 1988; Morales et al., 1992; 
Llanos et al., 1993; Llanos et al., 1995; DelRío et al., 2007; 
Vigil et al., 2008). Some of these compounds are distributed 
in specifi c sectors of the female reproductive tract, probably 
exerting an in situ AR control (DelRío et al., 2007).

Among the ligands capable of affecting AR, we fi nd the 
following hormones:

Progesterone

Progesterone is a steroid hormone that possesses a canonical 
signalling pathway consisting of the union with its nuclear 
receptors. This binding activates the transcription of several 
genes; hence, it is called the genomic signalling pathway. In the 
case of the human spermatozoon, this hormone participates 
in a range of processes such as: induction of AR (Roldan et 
al., 1994; Murase and Roldan, 1996; DeLamirande et al., 1997; 
Nolan and Hammerstedt, 1997) [in our studies, percentage 
of AR: 58.2 ± 0.84 in progesterone treatment vs. 29.0 ± 0.71 
in control, p < 0.05; (Vigil et al., 2008)], hyperactiv ation and 
increasing the percentage of spermatozoon penetration into 
hamster oocytes (Sueldo et al., 1993). Such effects are mediated 
by a non-genomic signalling pathway that operates through 
receptors present in the spermatozoon membrane (Shah et 
al., 2003). The action of progesterone is possible due to the 
increase in phosphorylation of cytoplasmic proteins, together 
with a transient rise in intracellular calcium concentration 
(Tesarik and Mendoza, 1993; Tesarik et al., 1993; Rathi et 
al., 2002). Cumulus oophorus secretes progesterone, thus 

there are important levels of this hormone present in the 
periovulatory follicular fl uid (Morales et al., 1992). It has 
been shown that the decline of plasma membrane cholesterol 
during capacitation would determine the degree of response 
the human spermatozoon to progesterone (Cross and Razy-
Faulkner, 1997).

Oestradiol

Oestrogens are steroid hormones whose participation is 
fundamental in the female reproductive events, but they 
have also been reported to exert an important role in the 
male reproductive system (Hess et al., 1997). Although they 
classically act through the union with nuclear/cytoplasmic 
receptors, recent investigations show they could act in a 
faster/non-genomic via a variety of cell types, including the 
spermatozoon (Baldi et al., 1998; Luconi et al., 2004; Baldi 
et al., 2009). Oestradiol binds two subtypes of membrane 
receptors, α and β, both described in the human spermatozoon 
plasma membrane as presenting a different location (Solakidi 
et al., 2005). This generates an infl ux of calcium as mediator 
of the non-genomic effects (Luconi et al., 2004; Aquila et al., 
2004). Oestradiol has been described as an AR inhibitor, with 
a lower observed percentage of human reacted spermatozoa 
as compared to those obtained in incubations with control 
(without oestradiol) spermatozoa preparations [percentage of 
AR: 29.4 ± 0.55 oestradiol treatment vs. 32.6 ± 0.55 in control, 
p < 0.05 (Vigil et al., 2008)]. In the physiological context 
of fertilisation, the spermatozoa have to migrate through 
the cervical mucus (Vigil et al., 1995). This biological fl uid, 
found in some mammals, such as rabbits, ruminants and 
primates, possesses rheological properties subject to endocrine 
regulation, and these characteristics change in physiological 
and pathophysiological conditions (Vigil et al., 1991; Morales et 
al., 1993; Vigil et al., 1995; Ceric et al., 2005; Vigil et al., 2009a). 
After passing through the cervical mucus and endometrial 
cavity, the spermatozoa in the Fallopian tube come in contact 
with the follicular fl uid. The high concentrations of oestradiol 
present in the cervical mucus during the female fertile period 
could exert an inhibitory role on AR, preventing the premature 
occurrence of the latter during the passage of spermatozoa 
along the uterine cervix. Progesterone, which has been found 
in follicular fl uid during the periovulatory period (Morales 
et al., 1992), could play a stimulating effect on AR when 
spermatozoa are in the proximity of the oocyte. This suggests 
that the variable concentrations of steroid hormones during 
the female reproductive cycle could have a crucial role in 
spermatozoon physiology (Vigil et al., 2009c).

Angiotensin II

This hormone possesses a wide range of physiological 
functions, among which arterial blood pressure control 
and plasma volume regulation are worth mentioning since 
they currently constitute an important therapeutic target in 
cardiovascular pathologies. These effects are produced by the 
union of Angiotensin II to surface receptors, among which 
two types have been described, AT1 and AT2 (Griendling 
et al., 1996). Some studies have shown that, in bovines and 
humans, this hormone can act as an AR inductor by binding 
to its AT1 receptor (Gur et al., 1998; Köhn et al., 1998). This 
AR modulation is dependent on extracellular calcium 
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concentration and can be inhibited by the administration 
of losartan, a selective AT1 receptor inhibitor (Vinson et al., 
1995; Gur et al., 1998). The AT1 receptor is found mainly on 
the tail of the spermatozoon. However, in capacitated bovine 
spermatozoa it is most commonly present on the head (Gur 
et al., 1998). A study in equines Sabeur et al. (2000) found that 
the addition of a dose of angiotensin II ranging from 1 to 100 
nmol/L to capacitated spermatozoa during 20 min resulted 
in a signifi cant increase in live reacted acrosome spermatozoa 
(percentage of AR: 24.9 to 22.6 in treated cells vs. 9.8 in 
control, p < 0.05). Such effect could be mediated by the above 
mentioned AT1 receptor (Sabeur et al., 2000). Angiotensin II 
levels have been reported in follicular fl uid (Heimler et al., 
1995), a fi nding that leads to the hypothesis that this hormone 
can have a physiological role in in vivo induction of AR, but 
the underlying mechanisms of the process have not as yet been 
clearly explained.

Atrial natriuretic peptide

Atrial natriuretic peptide (ANP), also known as atrial 
natriuretic hormone, is a powerful vasodilator peptide 
produced by heart muscle cells (Potter et al., 2009). ANP 
has been found in mammalian reproductive tissue, e.g. 
oviducts (Zhang et al., 2006), as well as in ovarian follicular 
fluid (Anderson et al., 1994). Evidence suggests that the 
spermatozoon possesses ANP receptors (Rotem et al., 1998; 
Zhang et al., 2006). To date, it has been possible to determine 
that ANP induces AR in human (Anderson et al., 1994; 
Anderson et al., 1995; Rotem et al., 1998), bovine (Zamir et al., 
1995), giant panda (Zhang et al., 2005) and pig spermatozoa 
(Zhang et al., 2006). The latter evidence suggests that ANP 
may be involved in the regulation of the acrosome exocytosis 
and the fertilising ability of mammalian spermatozoa, and it 
has been suggested that the cGMP-dependent protein kinase 
pathway possibly participates in this process (Zhang et al., 
2006).

Catecholamines

Adrenalin and noradrenalin are catecholamine hormones 
widely known for their effect on the autonomic nervous 
system. In spite of this, high concentration levels of these 
hormones have been determined in the oviductal fl uid of 
mammals (Way et al., 2001). Noradrenalin is described as an 
AR inducing hormone in bovine spermatozoa, showing an 
optimal concentration for maximal response and generating 
higher rates of capacitation, as compared to control incubations 
(Way and Killian, 2002). Similar effects have also been reported 
for the addition of adrenalin. Nevertheless, noradrenalin 
evidences a more relevant increase, both in the percentage of 
reacted bull spermatozoa and the observed capacitation rates 
(Way and Killian, 2002). Finally, the catecholamine hormone 
dopamine has no effect whatsoever on the characteristics of the 
bull spermatozoa under study (Way and Killian, 2002).

Epidermal growth factor

Epidermal growth factor (EGF), also known as epidermal 
growth hormone, is a 53 amino acid polypeptide known to be 
an inductor of cellular growth, proliferation and differentiation 
in various tissues. EGF has been reported to exert a role in 

cellular proliferation in the human testicles, favouring mice 
spermatozoa production (Tsutsumi et al., 1986). EGF receptors 
have been found in the spermatozoa of different mammals, 
including humans (Naz and Ahmed, 1992). These receptors 
correspond to the classic 170 kDa protein in somatic cells (Lax 
et al., 1994). EGF has been described as an AR inhibitor in 
humans, causing a dose-dependent decrease in the percentage 
of reacted spermatozoa (percentage of AR: 51.62 ± 4.23 EGF 
treatment vs. 67.02 ± 4.36 in control; p < 0.05). This could also 
lead to a reduction in the rate of penetrated oocytes and a 
decline in the spermatozoon kinetic variables such as velocity 
and fl agellar beat frequency (Naz and Kaplan, 1993).

Insulin

Insulin, a peptide hormone produced in the pancreas by 
β cells of the islets of Langerhans, has well-known functions 
in glycaemic homeostasis, also participating in processes of 
differentiation, growth, development and cell metabolism 
(Brüning et al., 2000; Saltiel and Kahn, 2001). Several studies 
have also linked this hormone, as well as its associated 
signalling pathways, to the regulation of multiple functions 
implied in reproduction (Ali et al., 1993; Brüning et al., 2000; 
Lampiao et al., 2009).

The role exerted by insulin in human spermatozoon 
biology has been evidenced in research on men suffering 
from diabetes mellitus type 2, whose spermatozoa possess 
severe structural and morphological defects (Bacetti et al., 
2002), reduced motility and lower ability to penetrate hamster 
oocytes (Shrivastav et al., 1989). A recent study on the in vitro 
effects of this hormone on diverse human spermatozoon 
variables has determined that treating spermatozoa with 
insulin signifi cantly increases spontaneous AR, as compared 
to control (35.33 ± 1.73 % versus 14.56 ± 0.64 %, respectively, p 
< 0.05), and that this administration also leads to an increase 
in spermatozoon total and progressive motility (Lampiao 
and du Plessis, 2008). It was also found that inhibiting 
phosphatidylinositol 3-kinase –an intracellular insulin effector– 
by means of wortmannin caused a decrease in the observed 
percentage of AR in insulin treated spermatozoa (Lampiao and 
du Plessis, 2008). The aforementioned evidence, and the fact 
that insulin is present in ejaculated spermatozoa (Aquila et 
al., 2005a), make it possible to attribute eventual functions on 
spermatozoon physiology to this hormone.

Leptin

Leptin is a peptide hormone with a molecular mass of 
approximately 16 kDa produced by the gene LEP, which 
was initially reported as the ob gene in mice. It is constituted 
by 166 amino acids, contains a disulphide bridge needed 
for its biological activity and is produced by adipocytes. 
This hormone exerts a crucial function in glucose and lipid 
homeostasis, especially in body mass control through the 
regulation of food intake and thermogenesis (Farooqi and 
O’Rahilly, 2009). Current evidence suggests that leptin is 
involved in the regulation of several processes related to 
mammalian reproduction (Moschos et al., 2002; Lampiao et al., 
2009). The determination by Aquila et al. (2005b) that human 
ejaculated spermatozoa contain this hormone has led to the 
questioning of the possible role of leptin on the spermatozoon 
(Andò and Aquila, 2005). In a study by Lampiao and du Plessis 
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(2008) designed to determine the in vitro effects of leptin on 
some variables of the human spermatozoon, this hormone in 
particular has been shown to affect acrosome exocytosis. In 
fact, treating spermatozoa with leptin signifi cantly increases 
spontaneous AR as compared to control (36.56 ± 1.93 % vs. 
14.56 ± 0.64 %, respectively, p < 0.05), and this administration 
also leads to an increase in spermatozoa motility (Lampiao 
and du Plessis, 2008). However, the molecular mechanisms 
underlying the aforementioned results for this hormone have 
not as yet been elucidated and remain to be determined.

Prolactin

Prolactin (PRL), a hormone synthesised and released by 
the adenohypophysis lactotroph cells, is responsible for 
the stimulation and production of milk in the mammary 
glands, and for exerting other multiple functions related to 
mammalian reproduction (Smith, 1980). Considering that 
PRL is present throughout the female reproductive tract 
(Mori et al., 1988), that its receptor has been identifi ed in 
mammalian spermatozoa (Hashimoto et al., 1988), and that 
this hormone shortens the optimal preincubation period for 
mice spermatozoa to acquire capacitation (Fukuda et al., 
1989), it is likely that PRL could be exerting some effect on AR. 
Stovall and Shabanowitz (1991) studied the effects of PRL on 
spermatozoon capacitation and its ability to induce AR, and 
found that, apparently, this hormone has no signifi cant effect 
on capacitation and AR of the human spermatozoon (Stovall 
and Shabanowitz, 1991). However, further studies are required 
in order to assess the role of PRL in the acrosome exocytosis.

Relaxin

Relaxin, a peptide hormone with a molecular mass of 
approximately 6000 Da, has been described as having 
important roles in mammalian pregnancy, being involved in 
events such as relaxation and softening of the uterus, as well as 
in pubic symphysis during childbirth. This hormone has been 
found in human seminal plasma (Essig et al., 1982; Lessing 
et al., 1986) and it has been found that it exerts physiological 
effects on spermatozoon motility in certain species of domestic 
animals, such as bulls (Kohsaka et al., 2003). Miah et al. 
(2006) showed that boar spermatozoa incubation with relaxin 
signifi cantly stimulates motility, the percentage of AR and 
glucose use. A more recent work found that the addition of 
this hormone leads to an increase of these variables in bovine 
spermatozoa (Miah et al., 2007). These results suggest the 
physiological signifi cance of using relaxin on spermatozoon 
variables in mammals, especially as regards AR induction.

Gamma-aminobutyric acid

Even though gamma-aminobutyric acid (GABA) is not in itself 
a hormone, it shows interesting effects on AR. It is known that 
GABA is an inhibitory neurotransmitter in the central nervous 
system, and participates in most of the inhibitory synapses 
that enable neuronal activity. In spite of this, this compound 
has also been also described in a variety of cellular events in 
non-neuronal peripheral tissues, which has led some authors 
to suggest it is a trophic factor, or even a hormone (Ong and 
Kerr, 1990; Gladkevich et al., 2006). GABA is also present in 
tissues such as the human uterus, oviducts and ovaries (Erdö 

et al., 1989), as well as in certain fl uids, such as human seminal 
plasma (Leader et al., 1992). Regarding AR, GABA has also 
been described to be a dose-dependent inductor of this process 
(Shi et al., 1997). Its effects appear to be mediated by receptors 
located in the spermatozoon membrane, whose activation 
implies an increase in cytoplasmic calcium concentration and 
subsequent acrosome exocytosis (Aanesen et al., 1995). In 
relation to the latter, two types of GABA receptors have been 
described, types A and B, both present in the spermatozoon 
(Aanesen et al., 1995). Studies performed on ligands specifi c for 
each receptor have made it possible to conclude that the GABA 
(A) receptor is the most effi cient inductor of AR (Calogero et 
al., 1999; Hu et al., 2002).

Both GABA and progesterone seem to exert similar effects 
on processes associated to spermatozoon physiology, such as 
AR, capacitation and hyperactivation (Calogero et al., 1996; 
Shi et al., 1997; Calogero et al., 1999). It has also been shown 
that the GABA receptor in the spermatozoon can be activated 
by progesterone and some of its metabolites; this interaction 
results in an increased chloride fl ux essential to AR initiation 
(Wistrom and Meizel, 1993). Our research group has recently 
reported that both GABA and progesterone induced human AR 
can be regulated by the effects of oestradiol, formerly described 
as an AR inhibitor [percentage of AR: 58.2 ± 0.84 progesterone 
treatment vs. 30.0 ± 0.84 progesterone + oestradiol treatment; 
33 ± 1.16 GABA vs. 17 ± 1.47 GABA + oestradiol treatment, p 
< 0.05 (Vigil et al., 2008; Vigil et al., 2009b; Vigil et al., 2009c)]. 
Thus, we have suggested a possible hormone interaction, 
through non-genomic pathways, among progesterone, GABA 
and oestradiol in physiological processes such as AR (Vigil et 
al., 2009c). This interaction could also be present in somatic 
cells.

The compounds that exert a role on AR modulation are 
shown in Figure 2.

CONCLUDING REMARKS

Spermatozoon AR is affected by a series of chemical substances 
and metabolites, as well as by the action of a number of 
hormones. The meaning and biological relevance of the 
effects on AR attributed to such hormones are far from being 
elucidated and thoroughly understood, although this topic 
is today subject of active research (Meizel, 2004; Andò and 
Aquila, 2005; Lampiao and du Plessis, 2008; Vigil et al., 2008; 
Vigil et al., 2009c; Baldi et al., 2009; and other groups). This 
review was focused upon the hormones that we recognise as 
the most important modulators of AR. Nevertheless, there may 
be other hormones acting as regulators of the AR that are yet to 
be recognised. Considering the current evidence and what has 
been mentioned, it is probable that the changes in hormonal 
levels that occur in vivo in the reproductive tract of the female 
of each species during the reproductive cycle subtly regulate 
the AR, retarding the onset or favouring its timely occurrence. 
As regards this delicate hormonal modulation that AR could be 
subject to, it is necessary to mention again the case of steroid 
hormones, about which more information is available: in the 
cervix, the oestradiol present in the periovulatory cervical 
mucus could be exerting the role of AR inhibitor since its onset 
in such regions of the female reproductive tract would not 
make fertilisation possible (Ceric et al., 2005; Vigil et al., 2008; 
Vigil et al., 2009b). On the contrary, in the distal third of the 
Fallopian tube, there are high levels of progesterone coming 
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from the follicular fl uid, which could promote AR precisely 
when the spermatozoon and the oocyte are close to encounter, 
favouring successful fertilisation (Morales et al., 1992; Vigil et 
al., 2008; Vigil et al., 2009c). The latter constitutes a feasible and 
coherent explanation in the context of the reproductive process, 
and possibly other hormones and metabolites of physiological 
interest could also be participating in this subtle AR regulation, 
together or simultaneously with steroid hormones.

The variations in the concentrations of cytoplasmic 
calcium, cAMP and the phosphorylation of proteic residues 
are currently some of the non-genomic effectors of steroid 
hormones. Such signalling components have been described 
both in somatic cells and in spermatozoa (Baldi et al., 2009). 
The inactivation of the nucleus, and thus the absence of 
transcription, confers the male gamete an advantage as a 
study model for the non-genomic action of steroid hormones. 
For this reason, the knowledge obtained from experiments 
on spermatozoa could explain the non-genomic response of 
somatic cells as regards these and other types of hormones.

In keeping with current research on steroid hormones and 
AR, further studies should focus on determining the hormones 
that, in fact, exert a signifi cant effect on AR modulation, as 
well as the molecular mechanisms of the signal transduction 
pathways that underlie this regulation. This will make it 
possible to propose a future physiological explanation to 
integrate the effects that the compounds mentioned above have 
on AR. This information would certainly help elucidate other 
even more relevant questions, namely: what is the biological 
relevance of hormone modulation on AR? And what is the 
signifi cance of such modulation for the reproductive events 
posterior to acrosome exocytosis? Our research group is 
currently aiming to fi nd the answers to these questions.
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