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ABSTRACT

The problem of minimizing the deformation of an element ancture through a bet-
ter distribution of reinforcement material, is a very r@etproblem in many branches of
structural and mechanical engineering. However, it is bisudahe optimal solutions for
these problems to induce stress concentration in the Igatithe supporting zone of the
structure, which can cause cracking to appear in said zoredaé¥eloped a compliance
minimization algorithm capable of constraining the averagress in an arbitrary zone
of the structure. This work describes how this algorithmradsles the constraint on the
stress and the formulations necessary for its implememtafhe algorithm achieves a
15% reduction in peak stress while incurring in a compliainceease of less than 4%,
when stress is constrained in the loading zone. Whereashig\ges up to a 45% reduc-
tion in peak stress while incurring in a compliance increafdess than 4%, when stress
is constrained in the supporting zone. The possibility @fuding a pointwise stress

constraint is to be explored.

Keywords: Structural Optimization, Homogenization, Stress Conediuin, Re-

laxation.
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RESUMEN

El problema de minimizar la deformacion de un elemento oastauctura a travées
de una mejor distribucion del material de refuerzo es mlgvamte en muchas ramas de
la ingenieria estructural y mecanica. Sin embargo, ealugie las soluciones 6ptimas
para este problema presenten concentracion de tensioteeg@na cargada o en la zona
apoyada de la estructura. Se propone un método de miniiirizée cumplimiento capaz
de restringir la tension promedio en una zona arbitraridadestructura. Este trabajo
describe como este algoritmo maneja la restriccion sabterision y la formulacion
necesaria para su implementacion. Actualmente, el rogiompuesto logra reducciones
del maximo de la tension de hasta 45% incurriendo en undigeede cumplimiento
inferior al 4%. La posibilidad de incluir restricciones puales a la tensibn queda por

explorar.

PalabrasClaves. Optimizacion Estructural, Homogeneizacion, Concenbra de

tensiones, Relajacion.



1. INTRODUCTION

Reducing the deformation of a reinforced structure throadfetter distribution of
the reinforcing material is a very important problem in seVéelds of engineering and
mechanics, and has been thoroughly studied by severalrauidee, for instance, Al-
laire (2002), Bendsge and Sigmund (2003)). The usual appriedo minimize the work
done by the external forces, the so-called “compliance”weiger, in many cases these
solutions induce stress concentration in the loading opsumg zones. This situation
is highly undesirable, because these stress “peaks” cae caacks to appear when the
load increases. Therefore it is interesting to develop odslthat minimize compliance,
but limit stress concentration. In this paper we considehguroblem under the perspec-
tive of the small amplitude homogenization method intreatli;m Allaire and Gutierrez
(2007). This technique allows us to compute a second orgen@tstic expansion in the
contrast parameter, of the effective elasticity tensodpoed by a volume distribution
of reinforcement and a given microstructure. Then we canptdenan approximation of
both compliance and stress for these variables and thest #edsoptimal microstructure,
which turns out to be always a rank-one laminate, and theama only on the volume
distribution.

The numerical results we present here are restricted tohibw santilever problem for

several reason: first because it is a well known problem foimmim compliance, second
and most importantly, because we present results for diffesontrast values and try to
reduce the peak values of stress, for which we are only figrsaccessful. The main

conclusion of the numerical examples is that the methoddeed able to find config-

urations that control stress concentration, paying a spradé in terms of increases in
compliance.

The same or closely related problems have been considersdvayal authors under
different perspectives. Duysinx and Bendsge, see DuysidxBandsge (1998), studied

this problem under the "Solid Isotropic Material with Penation” (SIMP) perspective.



Bruggi, see Bruggi (2008), considered the problem of mimmweight under stress con-
straint, also using SIMP. This work also has a very nice giation, giving a broad
perspective on the state of art. Lipton, see Lipton (2002)ijpton and Stuebner (2006),
studied the problem of maximizing the stiffness of shaftdarrtorsion and constraints
on stresses. This allows him to consider the interplay betvweacro and micro stresses,
by using either correctors or stress modulation functions.

A different, but related problem is to minimize stress anthptetely forget about com-
pliance. This was studied using partial relaxation by hoemization by Allaire, Jouve
and Maillot, see Allaire et al. (2008). They considered wstructures produced by se-
guential laminates of arbitrary finite order and then, usioigectors, compute a so-called
stress amplification factor that they use as a measure obthkstress. Finally, KoCvara
and Stingl see Kocvara and Stingl (2008), considered tinemim weight problem under

stress constraints, but in the free material optimizattamework.



2. MODEL AND ALGORITHM

2.1. Small Amplitude Aproximation

LetQ C R? be the region under consideration, which represents thetate whose
stiffness is to be maximized2 is bounded with boundar§<) being piecewise smooth.
We denote byr a generic point irf2. In general we omit the argument of all functions,
unless we want to emphasize some dependence on the pokgion: 2 — {0,1} be a
characteristic function that takes valué the pointz is occupied by the softer material
and0 otherwise.

Then, if we relate through a negative real numbehe stiffness of the two materials
considered an@" is the elasticity tensor of the stiffer material, we can atite elasticity
tensor as

C(z) = C° (1 +nx(x))

As we can seey can take any value if—1,0), however, since the assumption of small
amplitude is being made, this value should be small,|e< 1, this restriction, how-
ever, renders the method less interesting, as both mataralthen not too different. In
the section devoted to numerical results we gse —0.5, meaning that the reinforce-
ment will be twice as stiff as the matrix, hinting that one s@mewhat push a little the
restriction ony.

Considering the boundar§() divided in two disjoint portions]'p, the portion with
Dirichlet boundary condition and, the portion with Neumann boundary condition,

we can write the following linear elasticity problem

—div(Ce(u)) = f InQ
u = 0 onlp (2.1)
Ce(u)n = g only,

where, as usuak(u) = 1 (Vu+ (Vu)") denotes the strain tensor. Furthermofe,
denotes the body forces to which the structure is subjeotaddg denotes the boundary

forces, both are assumed to be known. Then, trying to be geiteral, we wish to

3



minimize an objective function of the form

100 = [twyda+ [ jafw) ds. (2.2)

Q Ty

possibly subject to a restriction on the volume of the materfor example

/de =0, (2.3)

Q
where © is the total volume occupied by the softer material and wiéchrescribed
beforehand.
Then, we want to solve

in J
Inin (X)),

wereld,, corresponds to the set of all admissible designs, namely

Upt = {X € (0 {0,1}) s.t./Qde - @} |

However, as it has been amply reported in the specializextiire, this problem is gen-
erally ill-possed, namely minimizing sequences tend teeHaer and finer oscillations.
See for example Allaire (2002) and the references therein.

Using the assumption of small amplitude stated before, wi®pa a second order as-
ymptotic expansion oi with respect to) and about) = 0, as is usual in small amplitude
methods, to have that

u=u’ +nu' +n*u® + O0(n?).



Replacing this in problem (2.1) and denoting:’) = C° e(u’), yields three problems for
u®, ut, andu?, respectively.

—divo(u®) = f in
W = 0 onl'p (2.4)
ow)n = g onl'y

—divo(u') = div(xo(u®) inQ

u = 0 onl'p (2.5)

oluyn = —xo(u)n only

—divo(u?) = div(xo(u')) InQ
u = 0 onl'p (2.6)
o(u*)n = —xo(ul)n only

It can be seen that” does not depends anand therefore, it needs to be calculated only
once.
Next, we perform a Taylor expansion of the objective functihich yields
100=" [at)dzry [t i
Q Q
1
o [ (Gt + Sty ?) ot [ nGat)ds
Q I'n

v [t s i [ (G0 + G0 ds+ 0GP

I'n 'n



Using again the concept of small amplitude and neglectiagethor term we define

Jab) = [ i) detn [ @)t ds
Q Q
v [ (0 + i) ) dot [t ds
Q I'y
b [ttt s [ (0 + G ds
Ty Iy

Now we would like to calculate a gradient for this functiordarse it in a minimization
algorithm. However, this presents some difficulties, sit@=functiony only takes the
values0O or 1 and therefore one cannot make arbitrary small perturbsiodit. In order
to overcome this, one possibility is to relax the problemthi@ sense of allowing fine
mixtures to appear. These mixtures will be eliminated aféeds, because of their very
high cost.
In order to accomplish this, and following the line of the wam Allaire and Gutierrez
(2007), we will use the concept of H-measures introduced dyar in Tartar (1990).
The general idea in the process of relaxation is to considgeqgaence of characteristic
function y,, and pass to the limit in the objective functioi,(y.,). Due to the weak-
compactness of>(£2;{0,1}), we can extract a subsequence that converges to a limit
densityf in L> weak+. We will denote byu°, u!, u? the solutions to the problems
associated to such subsequencegpf Using this notation and passing to the limit as

stated before, we find thaf converges weakly ii/* () to !, which is the solution to
—divo(u') = div(fo(u®)) inQ
ut =0 onI'p

o(ut)n = 0o(u’)n only



Similarly, we get that? converges weakly i/!(£2) to 2, which now corresponds to
the solution to
—divo(u?) = div(fo(u')) — div(f(1 — 0)C'Ma(u")) inQ
uw? =0 onl'p (2.7)
o(u?)n = —0o(u')n+60(1 —0)C'Mo(u’)n only
In this problem the second terms of both, the right hand sidieeodifferential equation
and of the Neumann boundary condition, come from passinigetdimit of y,,e(ul) by

means of H-measures. From (2.5) we know #at.) depends linearly ox,, through a

pseudo differential operator of order 0, with symbol

0 E+HERE (pt N HEE
2(¢]? p(2p+A)E

This computation is a result from the Hashin-Shtrikmanateshal principle (see Allaire

q(z,§) = (2.8)

(2002))and, as usual, andy denote the Lamé parameters ainds the tensor product,
then, denoting by (1 — 6)v(dz, d¢) the H-measure of the weak#(1 — 0)v(dz, d€) the
H-measure of the weak-convergent subsequence\gf, we get that

lim [ x,Cle(uy.) : e(@)dr = /HCOe(ul) e(¢p)dx

n—-+o0o
Q Q

‘/ / 0(1 = 0) feo(€)a” : COe(@)r(du, dE).

Q Sy

In this expressionfco (&) is a fourth-order tensor that, for any pair of symmetric ricets
A andB, is defined by

AL-BE  (p+A)(AL-O(BE-)
I p(2p+ A)

Finally, the term)M corresponds to a fourth-order tensdi(z) defined, for any pair of

feo()A: B = (2.9)

symmetric matrices! and B, as

MA:B= / feo(€)A : Bu(x, de). (2.10)

SN—1



The expressioft’ Mo (u®) corresponds to the effect of the microgeometry that appears
when the problem is relaxed. Due to the fact that we can firsirmze onv, inde-
pendently ofg, at everyx € (2 we choos&™ as the minimizer of expression (2.9) for

A =o(u’)andB = C%(p"), with p° the solution of the following first adjoint problem
~div(Ce(p’)) = i) inQ
P’ =0 onTp

Cle(p®)n = jh(u®) only

The unitary vecto¢* is plugged into (2.10), yielding/*. Now we can write the objective

function as
Ji(0) = /jl(u )dx + /jg(u )ds —n/@COe(uo) ce(p?) dx
Q I'n Q
1
+5n2/j{’(u0)u1 ut dx+—7]2/jg(u0)u1 ut ds
Q I'n

Q Q

Finally, the gradient we want to compute can be obtained kipgethe derivative of/;,

with respect td@, this gradient, evaluated in an arbitrary directioa L> corresponds to

aé]ga (s) = —n/sa(uo) e(p®) dr — 772/30(u1) ce(p?) dx

0 0
+n? [ s(1 —20)M*o(u®) : COe(p°) dx (2.11)

2

—n? [ so(u’) : e(p') dz

SR



Here,p! is the solution to the following second adjoint problem
—div(Cl%(ph)) = j7(u®)u' + div(0C%(p°)) inQ
pl =0 onlp

Cle(p®)n = ji(u®)ut — C (p°)n onl'y

Finally, we must choose the objective functigiisand j, that we wish to study. Since
the problem we are concerned with consists in maximizingsthifness of the member
in consideration, the functioy is taken as the compliance of the external force, which
correspond to the work performed by the external force orsthecture, this is written
simply as

Jo(u) =g-u (2.12)
While solving this problem we will neglect the effects of gteucture self-weight and all
body forces, hencé (u) = 0.
Now we have a well defined method to minimize the compliancthefelement being
considered, but we want to take into account the effect ostress on the structure, and

to accomplish this we consider a functional of the stressrgtwy
K(x) = / k(o (u)) dz (2.13)

It is important to remark here thatis a smooth function and should in principle be
the solution to (2.1) that, as before, is approximated bystmae Taylor expansion used
above. We now need to perform the same computations ovefutiision as those we
performed previously over the objective function for thenghiance. As the procedure

is relatively similar, we shall note only the results andti@st significant steps.



We can write the expressidi,, as

Koa(X) :/k( (u")) da:+77/k:'( (u®) : (o(uh) + xo(u?)) dz

Q

+ / (o D+ xo() : (o(uh) +xo(®)dr  (2.14)
Q

o [ Ko ?) 4 yo(ul)) da.

As before,u’, u! andwu? are the solutions of the state equations (2.4), (2.5) arg) (2.
respectively. Then, performing a similar procedure as apae can get the following

approximation for this function
Ki0.0) = [ Kol ds+y / Ko(u)) s (ofu’) + o)) da

(K" (o o(u) dr — /Ha(ul) ce(q”) dx

vy Wi Q

s J o(u?) da + / O (o(u")) : o(u') da
Q
Q/Hk” Y+ /91— SN/l \u(dz, de)

In this expressiony; is the unique solution to (2.7) ard € H'(2)? is the solution to

—div(C%(q°)) = —div (C%K(o(u"))) inQ
@ =0 onl'p
Co%(¢°)n = (C°%K (o(u)))n only

The termh(¢) is given by the following expression

1

) = So(u)e- COele)e - pt )

1(2p+ A)
+K (o (u®)Co4(x, &) + K" (0(u)) o (u®) : Cq(z, §)
+ % K (0(u®))C0q(z, €) : Coq(z, €)

(o(u)x - €)(C(q")¢ - €)

10



Here,q(z, £) is still defined by (2.8), and it only depends on the microgetsyiTo min-
imize K?,(0) we take advantage of the fact that it is lineawinso it is enough to take
v as av* in a directions* which minimizesh(¢) in SV, for the numerical results, we
will use the sameé™* here as the one used for compliance. After the eliminatian tfe
objective functionk’},(0) is differentiable with respect té. This derivative evaluated in

a directions is given by

agja(s) = n/sk/(a(uo)) co(u?) dr — n/sa(uo) s e(q”) dx
0 Q
—n Q/sa(u ):e(q’)dz+n Q/sk:'(a(u ) :o(u')dx
b / (K (o(u))o (u)) : o (ul) da (2.15)
+ / S (0 ()0 () : o(u®) de
+772/30(u0) : e(ql)dx+772/s(1 — 20)h(&¥) dx

Here,q! is the solution inf/1 ()" to

)

—div(Cle(q")) = div(0C(—e(q") + K'(o(u")) + K" (o (u”))o(u")))
+div(C," (o (u®))o (u')) in Q

¢ =0 onl'p (2.16)

Coelghn =00 (e(’) — K(o(u)) — (o (u)o(u))n

—C°%"(o(u°))o(u')n only )

Now we can compute a gradient for the approximated compmig@cl1l) and a gradi-
ent for the approximated stress (2.15), both in an arbitdamgctions. As usual with
constrained optimization, one must choose this directamefally and because of this

difficulty, we decided to use a lagrangian formulation ad@&xed in the next section.

11



2.2. Algorithm

As stated in the last section, we have the necessary expnegsicompute a gradient
for the compliance and a gradient for some functiorof the stress (u). We propose a
function that considers the integral over a subdomaaf the element of the norm of the

stress to a powe&p, namely the integrand would be
k(o(u)) = xullo(u)|*. (2.17)

Thereforew is the region where we want to control the average stresssacitbisen by

the designer. The parameter> 1 has also to be chosen beforehand by the designer
and its purpose is to assign a greater cost to peaks in tiss shistribution. The function
Xw(7) is the characteristic function af, hence it takes valugif the pointz is in w and

0 otherwise.

We consider a Lagrangian formulation to manage the stresstreont, therefore we call

L£0,1) = Jo,(0) + 1 (K5, (0) = Thnaz) - (2.18)

Here ! corresponds to the Lagrange multiplier associated to tiesstonstraint and its
value is to be adjusted during the optimization cydlg,,. represents the upper bound
on the average ok (o) in the regionw and it is also to be chosen by the designer.
The gradients for the compliance and the stress constnardamnbined using the same
Lagrangian formulation and then, the gradient used in ttisnagation cycle is of the
form

oL _aJy,

* * aK:a
20 = ) Tl

In this expressions* corresponds to the direction of steepest descer@é‘oﬂn order to

(s%). (2.19)

be able to compute the value of the gradient, we need to knewelie off beforehand,
for this we must choose a starting distribution, a homogesewitial distribution (i.e.
0 = 0,) was chosen.

Now we can write the general optimization procedure that ses u

12



1. Let®,n, E andv be known quantities that represent the properties of tifersti
material, let alsgy be a function that represents the external forces that act on
I'y.

2. Letd, be an arbitrary initial distribution for the material afycand initial value
for the Lagrange multiplier.

3. Using6, computeu’, p° and¢®, these values do not change with resped,to

therefore this step is done only once.

. Usingf, computeu!, p! andq®.

. ComputeL (6, k).

. ComputeZs (s*).

. For a value of the stepsize> 0 we update the value éfby 6 = 6, + t‘g—g(s*),

~N oo o b~

restrictingd such that! € [0, 1] and it satisfies the volume constrain.
8. We compute a new value fot and use it to evaluaté(d, I).
9. If the averaged stressanis greater thafd,,,..., the value of the Lagrange multi-
plier [ is increased, otherwiséjs decreased.
10. i) If £(6,1) < L(by, k), the values op* andq' are recomputed, the assign-
mentsf, = 6 andl, = [ are made and we return to step (6).
i) If £(0,1) > L(6o, bh), the magnitude of is reduced and we return to step
(7).
11. The method stops if becomes smaller than an arbitrary valyg, or if the

number of iterations reaches a predefined value.

This algorithm was implemented in the finite element packageFEM++ (see Hecht
et al. (2007)).

13



3. NUMERICAL RESULTS

The algorithm just described was implemented to solve a&fgiroblem in struc-
tural optimization, namely the short cantilever, which haen studied by various au-
thors (see, for instance, Bendsge and Sigmund (2003)).n#tists of a tall short beam
subjected to a vertical load applied in the middle of the triggrtical side and fixed on
the opposite side. Both horizontal sides are left free. Phablem is usually solved for
a domain of height twice its width, however, we change thebdamain, using instead
Q = (0,1) x (—0.2,2.2), with dimensions in meters, and fixing the left vertical side
only in the interval(0, 2), because the results obtained using small amplitude homoge
nization for compliance minimization, see Allaire and @utez (2007), showed a slight
tendency to try to escape the usual domain. See the physitialgsin figure 3.1, where
we also show the subsets where the stress will be constraiihedsubsets, andw, are

described by

wi = {(z,y) eR?s.t.z €0,1]
and(z — 1.15)? + (y — 1)? < 0.225%}

wy = {(x,y) e R*s.t.z €0,1]
and(z + 0.04)? + y* < 0.13?

or (x4 0.04)? + (y — 2)* < 0.13%}.

»

Figure 3.1: Diagram of the physical setting and zones where the stressnistrained
marked in blackw, (left) andws (right).

14
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Figure 3.2: Diagram of the load function applied ify

The elastic parameters for the reinforcement in the folhgnexamples arell =
1 fmié andv = 0.33. The area covered by reinforcemen0is28 m?, then, since the total
area i2.4 m?, the matrix area i® = 1.872 m?, that corresponds tt8% of the total area.

The contrast parametersis= —0.5.

Since we are interested in the stress and its peaks, the amgthnt load function
is not suitable as it induces concentrations of stress ordiges of the zone where it
is applied. Hence we propose instead to use a slightly diffieload function, which is
shown in figure 3.2. This load function is such that near tlgeeef the loading zone its
extremes are cubic functions over intervals of lengtl25 m and whose value and first
derivatives vanish at the edges of the loading zone, anddtaly constant everywhere

else.

The problem was solved by means of triangular discretinatigith approximately
30,000 triangles. When comparing results, exactly the sapsh is used in all cases. In
order to get classical results we use a penalization mefhoelinterest of having classi-
cal shapes is twofold: first, classical solutions are muaapker to construct; secondly,
we want to evaluate directly the stress in the proposed amafigns, without recourse
to an approximation of the effective elasticity tensor lgaised at each point, in order to
have a more accurate comparison of the quality of the corfiguns we propose. There-

fore in the following results, we compute the optimal rencfEment distributions using

15



the algorithm proposed in the previous section, then we lfzenéhis distribution to get
a classical configuration, over which we recompute both trepgtiance and the stress

field, from which we obtain the numbers shown in the tables.

The solution for compliance minimization in this physicatteng and high stiffness
contrast between the matrix and the reinforcement, thealleeclarge amplitude case, is
well known and can be obtained using Full Homogenizatiod.jFIt consists of two 90
bars, and it is presented in figure 3.3 a). In figure 3.3 b) weeakthe stress distribution
in this configuration calculated for= —0.5, which highly concentrates stress around the
loading zone and the edges of the supporting zone, whicki¢ssihe election of regions
wy andw, shown in figure 3.1. To further clarify this point, in 3.3 ¢) weom in to the
loading zone, to show that the stress actually concentiatesmaller set, since it has two
large peaks. Even though this large amplitude problem istige=ngineers would like to
solve, there is no mathematical framework to solve it yetst@mning stress. Hence, as
an incremental step, we study the case when the contragfis First, using the Small
Amplitude Homogenization (S.A.H.) method proposed in ##aand Gutierrez (2007),
we can obtain the configuration that minimizes compliand&ckvcan be seen in figure
3.4 a). As before, we also show the stress distribution andzio to the problematic
region in figures 3.4 b) and 3.4 c), respectively. We can saiglle stress peaks are even

higher than in the configuration computed for large ampétud

We will use these known solutions, specially the second asmegferences, or bench-

marks, to assess the performance of the method proposed imdrk.

3.1. Stressconstrained in theloading zone

First we usep = 2 in the stress constraint, and constrdiij, (/) to be below
Tmee = 0.04411, which is the most stringent value for which the method cogws.

Then penalizing we get the classical solution shown in 3.5h&)stress distribution and
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Figure 3.3: a) Optimal solution for compliance minimization using ARdbmogenization
for large contrast, b) Stress distribution using= —0.5, ¢) Zoom around the loading
zone.

b) )

a) 0.00
r—
Il |
| | 8.8338
Lo

Figure 3.4: a) Optimal solution for compliance minimization using Shhamnplitude
Homogenization, b) Stress distribution, ¢) Zoom arounddlading zone.

zoom in to the zone af; are shown in figures 3.5 b) and 3.5 c¢). Then we would like
to compare this with the reference configurations mentionegte previous paragraph.
Since we have three classical solutions, we can evaliate exactly. We need to keep
in mind that during the optimizatioR () is approximated bys (#), which is restricted

to be belowr},,... Hence if we maké’,,... progressively smaller and if we are still able to
find a solution that satisfies this constraint, we are foroegkt at convergence a higher
value for the compliance, because we are then solving a reeteated problem. This is
clearly seen in table 3.1. More important is that the inaaascompliance is less than
4% compared to the solution just for minimal compliance,levttie reduction ori (x)

is aboutl13%.

Taking the optimal solution using Full Homogenization fommal compliance

shown in figure 3.3a) and computing the square of the normeddtitess on the boundary
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6.8161

Figure 3.5: a) Optimal solution for compliance minimization using Shamplitude
Homogenization and restricting stress around the loadimg zb) Stress distribution. c)
Zoom around the loading zone.

FH. | S.AH.| S.A.H. Rest| % Var.
Compl. | 0.1497 | 0.1468 0.1529 4.2
K(x) 0.0453 | 0.0495 0.0429 —-13.3

max|c|* | 8.3249 | 8.8338 6.8161 —22.8
TaBLE 3.1. Effect on the compliance and stress when restrictiegatrerage
stress inv;.

of the right side, gives the function shown in figure 3.6 a)ifgdhe same for the Small
Amplitude Homogenization solution shown in figure 3.4a)dsehe result shown in fig-
ure 3.6 b). We can see in both cases, that there is a largs stvasentration near the
edges of the loading zone of the boundary. Finally, doingstimae for the configuration
shown in figure 3.5, we get the function shown in figure 3.6 d¢)e peak of the square
of the norm of the stress is in the latter abaat5% smaller compared to the first case
and21.4% smaller compared to the second case, and, as it was mentioee, the

increment in compliance is jugt2%.

However, the highest stress peaks do not appear in the padundary itself, in-
stead they appear in close proximity of it. In the third rowadfle 3.1 we can appreciate
the peak value for the cases shown in figures 3.3, 3.4 and &%ed/that the reduction
is of the same order than that for the boundary, giving a réaluof 16.3% for the first
case an@2.8% for the second case.
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Figure 3.6: a) Stress distribution on the boundary for the Full Homogainon solution.

b) Stress distribution on the boundary for the Small Ampl&tdomogenization solution.
c) Stress distribution on the boundary for the proposedisoiu
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Figure 3.7: Convergence histories for the case subjected to a stresgaonnw; .

To showcase the speed of convergence of the method, we yispligure 3.7 the

convergence history for the example shown in figure 3.5. Asavesee there, the algo-

rithm approaches the optimal value very quickly, in facteafhe50" iteration the gain

from further iterations is very small. Around th&5™ iteration we appreciate a sudden

increase in the value of the objective function, which cgpands to the beginning of the

penalization procedure aimed to obtain classical desiding convergence history for

the compliance in the example of figure 3.4 is very similaovging that the introduction

of a constraint over the stress does not harm the speed oéigemce of the algorithm.
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3.2. Peak stressreduction by increasing p

Given the peaks in the norm of the stress squared, that appigure 3.6 and in the
close ups of figures 3.3c), 3.4c) and 3.5c¢), we try to reduesdipeaks by increasing the
value ofp. Since this makes non-comparable the valués,pf being used for each value
of p, we decided to take for each case the smallest vallig gf that gave convergence of
the method. In table 3.2 we can see the value of the peaks motine of stress squared,
obtained for three different values pf with the penalized configurations displayed in
figure 3.8. We see that increasing the value tdads to smaller peak values of the norm
of the stress squared and higher values of compliance. Qamgae casep = 1 and
p = 2 we see an increase 08f2% in compliance, as the price to pay for a peak stress
reduction of17.3%.

p=1|p=15| p=2

Compl. [0.1496 | 0.1522 | 0.1529
maz||o]]? | 8.2400 | 8.1503 | 6.8161
TABLE 3.2. Effect of the parameteron the stress peak.

In figure 3.8 we see that the distribution of material in theem which we want to
control the stress varies significantly as we change theevafly. Most notably, we can
see that, as the value pincreases, the method moves the stiffer material away flam t
zones in which stress has peaks (namely the edges of thalleadion of the boundary)

and also moves the stiffer material outside.of

In figures 3.9 and 3.5 we can see the stress distributionbédeft and right config-
urations shown in figure 3.8, respectively. We see from tladesthat the values for the
stress are lower for configuration on the right in figure 3r8j,af one looks carefully
at the close up figures, it can be noted that the darker ardeeinasepr = 2 is both a
little longer and a little wider, showing a better stresdribsition. If, by comparison,
we look at the stress distribution for the unconstraine@ ¢agigures 3.4 b) and c), we

notice that the stress is more concentrated in the loadegl @aod that the value of the
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Figure 3.8: Optimal configuration fop = 1, p = 1.5 andp = 2.

peaks are indeed higher, hinting to the success of the pedpogthod in controlling

stress concentration.

| 8.2400

Figure 3.9: a) Stress distribution fgy = 1. b) Zoom around the loaded zone.

3.3. Stress Constrained on the supporting zone

We have shown that the method works quite well in constrgitie stress in the
loading zone, while incurring in a small increase in commtia Now we show the re-
sults when constraining the stress in the edges of the stipgaone, namely i,, and
using agairp = 2. The triangular finite elements mesh used in the previousisasod-
ified to make it finer arounds, specially near the edges of the supporting zone, instead

of W1.
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As before, we start by comparing in terms of compliance aretst the benchmark

configurations to the solution proposed by our method, wisigitesented in figure 3.10,

where a close up of the upper edge of the supporting zonedshtsvn, where one can

notice that the algorithm leaves a very small hole at the edgbe supporting zone,

which is due to the large peak of stress that occurs there.n¥de difference between

the proposed configuration and that of figure 3.4 is that plathe stiffer material is

taken away from the edges of the supporting zone, this, asas expected, incurs in an

increase in compliance, but also results in a reduction ak pethe norm squared of the

stress inv,.

In table 3.3 we can see the performance of this solution cozata our benchmark

cases, both in compliance and in stress, measurdd(lyy and the peak of o||? in ws.

We consider the peak stress onlyun, because the overall peak is attained near the

loading zone. As expected, compliance is larger for the @egd solution than the com-

pliance for the optimal configuration for minimal compli@ydowever, the difference

is about 1.3%, while the difference in bofti(y) and peak stress, is about 45%. It is

important to notice that the stress peak did not move aftemagation, meaning that the

proposed solution actually reduces the peak stress andhdbesnply moves it outside

of wWy.

FH. | S.AH. [S.AH. Rest] % Var.

Compl. | 0.14451 | 0.14335 | 0.14519 1.3

K(x) |0.00269]0.00351| 0.00187 | —46.7

max,, [[o]%| 8.2286 | 10.5619 | 5.7522 | —45.5

TaBLE 3.3. Effect on the compliance and stresspwhen restricting the stress

in this set.
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10.1205 5.7522

Figure 3.10: a) Optimal solution for small amplitude compliance miniation consid-
ering a constraint on stressan with p = 2. b) Stress distribution using = —0.5. c)
Zoom around the zone enclosed by the dashed rectangle.
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4. CONCLUSIONS

We have shown a method capable of finding the optimal reiefoent distribution
for minimizing the compliance of an element while maintaga function of the stress in
a given zone below a certain threshold. Furthermore, théadetnables the designer, to
an extent, to control the peaks on stress in the specified Zdmeincrease in compliance
is maintained within acceptable limits. Even though thehudtwas implemented in
2-D, there is no additional mathematical difficulty in th®3zase. There would be, nat-

urally, a significant increase in computational cost aggedito using fine meshes in 3-D.

While the method is quite well defined, the numerical consitiens and strategies
to implement it are not. A dual method for computing stressgght certainly improve
their estimation. Also the handling of the Lagrange mukipl associated to the stress
constraint, leads to some difficulties when implementing thethod, as the updating

scheme of this parameter must be studied on a case-by-csise ba
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5. PERSPECTIVES

The termM discussed in the presentation of the method, is chosen ampthmeal
for compliance minimization, which is certainly not the iopal for stress minimization,
therefore, future work could be done in order to include thkewation for the optimal
direction of lamination as a compromise between the optiimatompliance and the
optimal for the function of the stress. However, as thisipgrates only on part of the
corresponding second order terms, it is not clear that thisldviead to significant gains
in performance.
The possibility of including a way to consider pointwise straints on the stress is to be
explored, as it has been seen that if the zonghere the average stress is restricted is

very small, the algorithm does not perform so well.

Even though the examples above show that it is possible tvaidhe norm of the
stress, the inclusion of a physically more meaningful stmeasure could also be consid-
ered in a similar mathematical and computational framewBdk instance, Von Mises or
Tresca yield criteria could be used, which would probabdylleo more interesting results

from an engineering standpoint.
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