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Magnetic-Field-Induced Directional Localization in a 2D Rectangular Lattice
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We study the effect of a perpendicular uniform magnetic field on the dissipative conductivity of
a rectangular lattice with anisotropic hopping, tx fi ty . We show that the magnetic field may enhance
dramatically the directional anisotropy in the conductivity. The effect is a measurable physical
realization of Aubry’s duality in Harper systems.

PACS numbers: 73.20.At, 05.60.–k, 73.20.Dx
Localization in aperiodic systems has been at the cen-
ter of attention for decades in condensed matter physics.
Most work concerned disordered systems. Twenty years
ago, however, Aubry et al. [1] predicted that a 1D tight-
binding Hamiltonian with a quasiperiodic potential ex-
hibits a metal-insulator transition as the amplitude of the
potential becomes larger than a critical value. The proof
rests on a duality property that allows mapping low into
large coupling constants, while corresponding extended
wave functions are transformed into states that are local-
ized. The tight-binding model used by Aubry leads to the
almost Mathieu equation [2,3], a special case of a more
general class of quasiperiodic systems for which the dual-
ity applies. It also happens that the almost Mathieu equa-
tion arises in the study of the dynamics of electrons in 2D
in the presence of a rectangular lattice and a perpendicu-
lar uniform magnetic field (see [4] for the case of a square
lattice). In this case Aubry’s duality may be interpreted as
a rotation by p�2 of the lattice, an operation that can be
performed easily in a real sample and thus lends itself to
experimental test. The aim of this Letter is to show that
due to Aubry’s duality, turning on a magnetic field may
produce a dramatic enhancement of the anisotropy already
present in the conductivity of a rectangular potential. We
denote by tx , ty the hopping amplitudes along the x and
the y axes (with tx , ty), and by sxx , syy the correspond-
ing longitudinal conductivities. At zero magnetic field the
Drude formula away from the parabolic edges of a tight-
binding band yields �sxx�syy�o � const�tx�ty�2 for small
tx�ty . With magnetic field, however, we obtain within the
relaxation time approximation
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for irrational flux per plaquette. Here n�m� is the density
of states per unit cell at the Fermi energy m, t is the
dominant scattering time, and g is a constant of O�1�.
In deriving this result we assume that the temperature is
low enough so that kT , h̄�t and that the Fermi level is
not too close from the edge of a gap larger than or equal
to O�kBT , h̄�t�. It may fail as well in a regime where
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Mott’s variable range hopping dominates. The enhanced
asymmetry exhibited by Eq. (1) for a large relaxation
time is physically understandable in terms of Aubry’s
duality: the electronic eigenstates are extended along the
easy direction y leading to a metalliclike behavior for
syy , whereas they are localized in the direction x, leading
to an insulatinglike behavior for sxx . We shall argue
that the predicted enhancement should be observable in a
superlattice of quantum dots.

Consider a tight-binding Hamiltonian in the x-y plane.
For convenience we choose the gauge �Ax � B�0, x, 0� in
which the coordinate y becomes cyclic, permitting plane
wave solutions along this latter axis. The wave function
along x must then obey the almost Mathieu difference
equation [5]

2ty cos�2pam 2 kyb�c�ma� 1

tx�c����m 1 1�a��� 1 c����m 2 1�a���� � Ec�ma� . (2)

Here the field variable a � eBab�hc gives the number
of flux quanta traversing the unit cell, E is the energy,
a and b are the lattice constants in the x and the y
direction, respectively, ky is the wave number of the
free running plane wave along the y axis, and m is an
integer labeling the lattice sites. The conventional Harper
model [4] is obtained by making the lattice square, with
a � b and tx � ty . We are interested in the asymmetric
case, usually arising from the unit cell being rectangular,
although a square array of elliptical quantum dots, for
example, would also provide the required asymmetry.

Inspection of Eq. (2) shows that in the limit tx�ty ¿ 1,
the solutions are plane waves, slightly modulated by the
quasiperiodic potential. In the other extreme tx�ty ø 1
however, the solutions are localized features a distance qa
apart if a � p�q is rational, or a single localized feature
if this parameter is irrational [6]. For tx�ty finite one can
show that under Fourier transformation Eq. (2) formally
turns into itself, with the roles of tx and ty exchanged.
An extended state obtained for tx�ty ¿ 1 is thus replaced
by a localized state in Fourier transformed space. This
property is known as Aubry’s duality [1]. Another way
of obtaining an exchange of roles of tx and ty is to
© 1999 The American Physical Society
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change the gauge. To see this assume that tx�ty ø 1 so
that the states given by Eq. (2) are localized along the
x axis. If in the original problem one uses the gauge
�Ay � B�2y, 0, 0� instead of �Ax � B�0, x, 0�, the resulting
equation is formally identical to Eq. (2), only that now
the wave function describes the dynamics along y, and
tx , ty exchange places. Because of this latter fact and our
assumption about the relative size of these parameters the
new version of Eq. (1) gives now extended states that run
along the y direction. Thus, while one gauge yields states
that are localized along the hard hopping direction, the
other gauge yields extended states along the easy hopping
direction. This means that Aubry’s duality is manifested
in a single sample, its two principal axes playing the role
of the dual states. As we show below, the anisotropy in
the conductivity may reveal this effect in a dramatic way.

The spectrum of Eq. (2) for irrational values of the
field parameter is a Cantor set with a hierarchy of gaps
that become extremely small [2,3,6]. Figure 1 shows the
spectrum for different values of tx�ty . Note that as this
ratio decreases from 0.8 to 0.2 the spectral gaps become
more and more invisible due to their diminishing size.
Each gap is uniquely labeled by an integer s [7] taking
values between 2�q 2 1��2 and �q 2 1��2 if a � p�q,
and all values if a is irrational. It has been shown that
the gap width behaves like [3]

Ds � �tx�ty�jsjty , (3)

for small tx�ty . For a rational a � p�q, the spectrum
has exactly q subbands that do not overlap so that up
to q 2 1 gaps may appear. These are actually all open
except for the one at E � 0 for q even [3,8]. For
irrational a the spectrum can be well approximated by the
rational approximants pn�qn [9] obtained from truncating
the continuous fraction expansion of a at its nth step [10].
The gap labels are then stable through this approximation
[7,9]. In real samples the presence of scattering limits the
experimental access to such a fine structure [11]. There
is thermal broadening of size kBT , and also an energy
width h̄�t associated with other sources of scattering,
with t a characteristic relaxation time. All measurable
quantities will be rather insensitive to gaps smaller than
d � max�kBT , h̄�t�. Moreover, only energies within an
interval of size d from the Fermi energy m will matter for
the electronic transport. Therefore, if a is irrational, it
is sufficient to replace it by its best rational approximant
p�q such that the gaps closest to m have width not smaller
than d. The error introduced in transport properties by
FIG. 1. Spectra of the Harper problem on a rectangular lattice for tx�ty � 0.8, 0.6, 0.4, and 0.2 obtained for rational values of
a � p�q with q # 37.
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this substitution is of the order of the hopping probability
between sites at distance qa apart, which for tx small is
bounded to be also very small. In our calculation of the
conductivity we shall adopt this simplifying criterion.

More precisely, for each integer n let D�n� be the
minimal width of the closest gaps to m corresponding
to the rational approximant pn�qn, and let sn be the
corresponding gap label. Then one chooses the largest
value N of n such that

D�N11� , d � max

µ
kBT ,

h̄
t

∂
# D�N�, (4)

thus fixing the values of q � qN and s � sN . In par-
ticular, as the temperature T decreases, one expects t to
increase, so that the value of N increases as well and with
it, those of qN and sN .

A convenient form of Eq. (2) for the rational case is
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where m is an integer, f��m� is periodic of period q,
and kx is a phase. For each point �k � �kx , ky� in phase
space, with 0 # kxa, kyb # 2p, there are q eigenvalues
which, as �k covers its range, make up the q subbands
labeled by the integers � � 1, 2, . . . , q. All eigenvalues
are contained in the energy interval jE�j , 2�tx 1 ty� �
W�2, with W the width of the original zero-field band.
We assume the Fermi energy m to lie somewhere within
this range.

In the infinite volume limit and in the relaxation time
approximation, the longitudinal conductivity for our q
subbands system is given by Kubo’s formula [12]

sii �
2e2t

qh̄2

qX
��1

Z d2k
4p2

Ç
≠E�

≠ki

Ç2
d�E� 2 m� 1

4e2

qh̄2

3 Re
qX

�fi�0�1
E�0 ,m,E�

Z d2k
4p2

j�f�0 j≠f��≠ki	j2�E� 2 E�0�
1�t 2 ı�E� 2 E�0��h̄

,

(6)

where E� and E�0 depend upon the phase space coordi-
nates �kx , ky� and the integrals are taken over all of phase
space. Following condition (4), in Eq. (6) we have re-
placed the Fermi distribution by a step function. The first
term in this equation is the intraband term, while the sec-
ond includes all interband contributions. In the absence
of a magnetic field there is just one band in our model and
only the first term is relevant. In what follows we shall
assume tx , ty .

A careful analysis of Eq. (6) shows that the conductiv-
ity depends strongly on the position of the Fermi energy
with respect to subband edges. We distinguish two cases.
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(1) m far from the subband edges.—Assume first that
the Fermi energy is at a distance larger than O�D2�ty�
from the nearest gap. The intraband term can be com-
puted solving the eigenvalue equation

Pq�E� � 2�2�q11�tq
x cosqakx 1 tq

y cosqbky� , (7)

for the appropriate subband �. In this expression Pq is
the Chambers polynomial associated with Eq. (5) [3,13].
Because of condition (4), the interband contribution in
Eq. (6) can be expanded in 1�t since h̄�t , jE� 2 E�0 j.
Keeping just the first terms in this expansion, one gets to
lowest order in l � tx�ty
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Here, as mentioned earlier, n�m� is the density of states
at the Fermi energy and g is a numerical factor of order
1, while r � a�b and j � Pq�m��2t

q
y . The first term

in these expressions is the Drude conductivity coming
from the intraband transitions in Eq. (6). That the ratio
�sxx�syy�Drude is of O�l2q� is apparent from the energy
derivative in Eq. (6) and the fact that the Chambers
polynomial depends on the phases through the constant
term in the right hand side of Eq. (7), only. Also, that
the lowest order contribution to the interband transitions
is O�l2� follows from the fact that in a perturbative
expansion in terms of l, the zeroth order term in f� does
not depend on the phases.

Assuming qN . 1 and having in mind that at suffi-
ciently low temperatures and within the rational approxi-
mation ansatz jsN j # �qN 2 1��2 and h̄�tty � D�N��ty �
ljsN j $ l�qN 21��2, one finds the ratio between the Drude
and interband contributions to the conductivity along the
x direction to be negligible. Ignoring the first term in (8)
we then have

sxx
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This important result states that as long as m is not too
close to a subband edge of the proper rational approxi-
mant, the conductivity ratio vanishes quadratically in the
inverse relaxation time for small l. Applying Eq. (6) to
the original tight-binding band to obtain the correspond-
ing conductivity ratio in the absence of a magnetic field
near the band center one then arrives at the form given by
Eq. (1).

(2) m near a subband edge.—When the Fermi energy
m is very near a subband edge the situation changes
significantly. The density of states has a logarithmic
singularity in that neighborhood, and n�m� ~ �ty�tx�qn�2
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in a region of order D2�ty from the edges. As a result,
Eqs. (8) and (9) are no longer correct. The expressions
for the Drude contribution are valid in the region 0 ,

jjj , 1 2 lqN only. In the range 1 2 lqN , jjj # 1 1

lqN or if the Fermi energy lies in a gap, sxx may become
as large as syy . A detailed discussion of this regime will
be published elsewhere [14]. These situations may not
be relevant for experiments however, because they occur
only in a very small region of the spectrum. Indeed, when
tx , ty , the probability of having m within O�D2 , ty�
from the subband edge behaves like �tx�ty�2. In addition,
for qN large the total length of the subbands is given by
4jty 2 txj [1,15,16]. Thus, choosing the Fermi energy m

at random in the energy interval �2W�2, W�2� gives m in
one subband with relative probability

jty 2 txj

tx 1 ty
� 1 2 2

tx

ty
. (11)

Thus, the probability of having m in a gap or close to
a gap edge is proportional to tx�ty which is small [14].
Moreover, it is likely that very small fluctuations in the
magnetic field will tend to wash away the effects of m

lying in the anomalous regions close to a subband edge or
in a gap.

In summary, we have shown that in the presence of
a perpendicular magnetic field the field free conductivity
asymmetry of a rectangular lattice may be dramatically en-
hanced in a pure sample. This is a physical realization
of Aubry’s duality that may be understood in the follow-
ing way. The magnetic field affects the hopping of the
tight-binding electrons through the effective potential of
period q times the appropriate lattice constant. The site
energies are then no longer the same within and the elec-
tron has to tunnel a distance equal to this period, through
a potential mismatch that scales with l21 or l, depend-
ing on whether transport is along the x or y direction.
For an irrational field the tunneling can be made possible
only through scattering events, which are less likely as the
relaxation time diverges. Evidence for this behavior has
also been found in the spreading of a wave packet in the
presence of a weak modulation potential in two dimen-
sions. In the regime in which the single band approxima-
tion holds, such spreading is entirely directional, occurring
along the direction of largest hopping amplitude only [17].
Our results also show that the suppression of the conduc-
tivity along one of the principal axes by an external field
is controlled by the ratio of the gap size to the zero-field
bandwidth �h̄�t� �1�W� � �tx�ty�jsN j. With present day
rectangular arrays of antidots this quantity is of order one
tenth. Thus the effect should already be visible. It is
likely that, as the miniaturization of mesoscopic technol-
ogy progresses, this quantity can be made even smaller so
that the magnetic-field-induced localization may be more
easily observed.
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