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An analytic solution of the Hartree-Fock problem for a 2DEG at filling 1/3 and half an electron per unit cell
is presented. The Coulomb interaction dynamically breaks the first Landau level in three narrow subbands, one
of which is fully occupied and the others empty, as in the composite fermion model. Strong correlations are
expected owing to large charge density overlap between neighboring plaquettes. Numerical evaluations show
an enhancement of the cohesive correlation energy, bringing the energy per particle to the proximity of that
obtained in competing variational models. Correlations are long range, requiring over 98 particles in numerical
computations to approach convergence.
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I. INTRODUCTION

It is well accepted today that the fractional quantum Hall
effect in the lowest Landau level results from the formation
of a strongly correlated spin polarized electron liquid that
crystallizes below filling 1/7.1–3 It is intriguing, however,
that mean field charge density wave solutions(CDW) exist at
all fillings, which yield in a natural way the odd-denominator
rule that characterizes the effect.4,5 In spite of such remark-
able property, detailed investigation of this class of mean
field states was stopped largely due to their higher energy
compared to the state proposed by Laughlin.2 Also, the cor-
relation energy for another class of mean field solutions, the
Wigner Solid (WS), was computed by Yoshioka and Lee
(YL ) yielding a correction to the energy of less than 2%.6

The two sets of solutions differ in that while in a WS state
there is one whole electron per plaquette, in a CDW state
each plaquette contains a fraction of an even denominator of
an electron charge, such ase/2. While in the former case the
charge density is formed by nearly Gaussian peaks around
lattice points with little overlap of electrons from neighbor-
ing cells, in the latter the charge density forms continuous
ridges between cells, opening the way for an appreciable
increase of the cohesive correlation energy.7 This idea was
first explored in the simplest case of 1/2 filling.8 The results
confirmed the effect yielding a second order correlation cor-
rection an order of magnitude larger than for the best WS
state. The same line of thinking was also recently considered
by Mikhailov.9

In this work we report results for the correlation energy of
the CDW at 1/3 filling and one half electron per unit cell.
The work rests on an analytic solution of the mean field
problem constructed using symmetry considerations. We
show that the electron-electron interaction breaks the single
particle degeneracy of the lowest Landau level(LLL ), split-
ting it into three remarkably flat bands. All bands contain the
same number of states so that only one is filled while the
other two are empty, separated by a large gap from the filled

one. While the CDW unit cell traps 3/2 flux quanta of the
original field, it is only pierced by one flux quanta of the
reduced fieldB* = B1/3−B1/2, where B1/3 and B1/2 are the
fields at 1/3 and 1/2 filling factor, respectively. The narrow-
ness of the occupied band and this latter fact suggest that the
magnetic Wannier states are approximate solutions of the
problem and behave as nearly free quasiparticles filling the
LLL of the effective fieldB*, much as the composite fermion
model predicts.3,10

For better comparison with earlier results we study the
correlation energy using the YL method, that is, we evaluate
the second order perturbation correction to the Hartree-Fock
(HF) solution. Two computational procedures are used, one
employing a Monte Carlo approach for evaluation of the
space integrals over a large sample, and the other by com-
puting in momentum space using a discrete set defined by
periodic boundary conditions applied to a comparatively
small sample. As in the half-filling case, both methods yield
for filling 1/3 an energy correction about ten times larger
than that for the WS state,6 adding support to the conjecture
that at all fillings the high electron overlap of the CDW
enhances significantly the cohesive energy corrections.7,9

This reopens the case for the CDW state as a serious candi-
date for precursor to the true ground state in a perturbative
approach in the thermodynamic limit.

One further outcome is that having included up to 98
particles in our numerical calculation convergence is yet not
reached, suggesting that an even larger number of particles is
needed to fully capture correlation effects through numerical
computation, way above current permissible sizes used in
first principles numerical diagonalization, which treat at most
27 particles.11 Since, as we show, the CDW charge distribu-
tion exhibits large intercell overlap through rather steep hex-
agonal ridges, it is likely that the slowness in reaching the
thermodynamic limit is due to the presence of long range
cooperative ring exchange effects which, to be effective, re-
quire a matching large sample.12 It is of interest to underline
in addition that the states discussed in this work can be also
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considered as possible realizations of the so-called “Hall
Crystal” states, introduced in Ref. 13 to argue the possible
compatibility of the occurrence of the QHE and the presence
of a crystal structure.

In Sec. II the single particle Hartree-Fock Hamiltonian is
diagonalized analytically. In Sec. III the second order correc-
tion to the mean field solution is evaluated. Finally, in Sec.
IV we present our conclusions. Details of the calculation are
given in the Appendices. In particular, in Appendix B a for-
mula is derived expressing the single particle Hartree-Fock
Hamiltonian in terms of the magnetic translations associated
with a lattice of arbitrary periodicity that, to our knowledge,
is absent in the literature.

II. BLOCH REDUCTION OF THE HF PROBLEM AT n= 1
3

A. One particle Hamiltonian and magnetic translations

Let us consider a 2DEG in a strong perpendicular mag-
netic field. We are interested in an analytic treatment of the
Hartree-Fock problem at filling 1/3. The Hartree-Fock
Hamiltonian of this problem can be written in the compact
form

HHF = o
Q

vsQdexpS−
ro

2Q2

4
DTro

2n3Q, s1d

where the coefficientsvsQd are given by

vsQd = 2pro
2rsQdexpS ro

2Q2

4
DS1 − dQ,0

rouQu
expS−

ro
2Q2

4
D

−Îp

2
IoS ro

2Q2

4
DD e2

«oro
, s2d

and «o is the background dielectric constant. The magnetic
translation operatorsT are defined in Appendix A, while
form (1) is derived in Appendix B. The particle density in
real spacersxd is assumed to be periodic under displace-
ments covering the triangular lattice defined by the vectors

R = r1a1 + r2a2, r1,r2 = 0, ± 1, ± 2, . . . ; s3d

a1 =Î6p

Î3
s1,0dro,

a2 =Î6p

Î3
S1

2
,
Î3

2
Dro.

The Fourier components of the density are defined as

rsQd =
1

Acell
E dxrsxdexpsiQ . xd, s4d

whereAcell is the unit cell area

Acell = n . a1 3 a2 = 3pro
2. s5d

Here n is a unit vector normal to the electron gas plane.
Through this cell traverse a flux32 in units of the magnetic
flux quantumfo=hc/e. Associated with the above real space
lattice is the reciprocal lattice

Q = Q1s1 + Q2s2, s6d

Q1,Q2 = 0, ± 1, ± 2, . . . ,

s1 = −
2

3ro
2n 3 a2,

s2 =
2

3ro
2n 3 a1,

si . aj = 2pdi j .

The triangular lattice was here chosen owing to the fact
that it has the lowest energy in two dimensions. Our treat-
ment can be extended to lattices with other symmetries.5,6,14

B. Block diagonalization of the HF Hamiltonian

We next show that it is possible to find a basis in which
the matrix representation of(1) has a diagonal form com-
posed of simple three-dimensional blocks. In addition, the
functions have such a structure that they automatically fur-
nish the translation symmetry of the total density over the
lattice (3). For this purpose we consider the basis functions
wpsxd defined in Appendix A, constructed over the lattice
with primitive vectors

b1 = a1, b2 = 2
3a2. s7d

The magnetic translations then have the form

Tro
2n3Q = T−s2/3dQ2b1+Q1b2

. s8d

Since the flux piercing the unit cell of the lattice(3) is not an
integral number of flux quanta, the set of translation opera-
tors obtained by varying the integersQ1 andQ2 in (8) do not
commute and it is not possible to find common eigenfunc-
tions to all of them. The basis we shall construct decomposes
in a set of three dimensional subspaces, closing each of them
under the action of translations for all values ofQ.

A first step in finding the basis is to define a set of eigen-
functions of a translation in the vectora2, which is a period
of the density. For a given value of the momentump such
orbitals may be written as

xp
ssxd =

1
Î2

Swpsxd +
s

exps− ia2 . pd
Ta2

wpsxdD,s = ± 1.

s9d

Using the formulas in Appendix A it can be readily proven
that these functions satisfy the eigenvalue relation

Ta2
xp

ssxd = s exps− ia2 . pdxp
ssxd. s10d

The two values ofs appearing in these equations will play
an important role in what follows. They will allow us to
impose the periodicity of the density under the shifts ina1
and a2, in spite of the impossibility of obtaining a basis of
eigenvectors of all the magnetic translations in the lattice. It
should be stressed that the range of values ofp defining
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independent functions in the new basis have been reduced in
half, the two values ofs compensating for this reduction.
The restriction comes from the singular property of the basis
hwpj, that a magnetic translation is fully equivalent to a shift-
ing of the momenta argument as implied by the relation

TRwpsxd = FpsRdwp+s2e/"cdAsRdsxd, s11d

where FpsRd is a pure phase factor. See Appendix A and
Ref. 16 for the justification of this relation. It directly implies
that the shift done ina2 in constructing the new basis pre-
cisely changes the momentump of the particle in −s1/2.
Therefore, what has been basically done is to form linear
combinations of the original functions associated with differ-
ent values of the momentum. In the new basis the magnetic
translation ina1 has the simple effect

Ta1
xp

ssxd = exps− ia1 . pdxp
−ssxd, s12d

that is, it merely changes the sign ofs and multiplies it by a
phase factor.

As the next step let us employ the fact that, although the
functions are not eigenvectors of translations ina1, they are
eigenfunctions of the double sized translations in 2a1. This is
because its effect, when considered as two consecutive shifts
in a1, have the simple result of making two consecutive
changes of sign ofs that reproduce the original function.
Therefore, if forp and s fixed we construct the triplet of
states formed by the functionxp

ssxd and the other two ob-
tained by a pair of successive translations in the vector
−2a1/3, the operation of performing a translation in an arbi-
trary multiple of these vectors leaves the triplets invariant.

A specific linear combination within each triplet which is
also an eigenfunction of the translation in −2a1/3 can be
obtained by constructing the new basis

xp
sr,sdsxd = o

s=−1,0,1
cr

sspdT−s2/3dsb1
xp

ssxd, r = − 1,0,1. s13d

After solving the linear equations for the constantscr
s ob-

tained by imposing the condition that these functions be so-
lutions of the eigenvalue problem

T−s2/3db1
xp

sr,sdsxd = lxp
sr,sdsxd

one finds

lsrdspd = expS2

3
ip . a1 +

2pr

3
D , s14d

cs
rspd =

1
Î3

expS−
2

3
ip . a1s−

2pirs

3
D ,

r,s= − 1,0,1.

Substituting in(13) yields

xp
sr,sdsxd =

1
Î3

o
s=−1,0,1

expS−
2

3
ip . a1s

−
2pirs

3
DT−s2/3dsb1

xp
ssxd, s15d

r = − 1,0,1,

s = ± 1,

p ; p + n
s1

2
+ m

s2

2
, n,m= 0, ± 1, ± 2, . . . . s16d

The last relation expresses that, modulo a phase factor, the
states of the new basis are equivalent upon a shift of their
momentap in any linear combination with integer coeffi-
cients of half the unit cell vectors of the reciprocal lattice
corresponding to the periodicity of the density. The period-
icity of the states under the shifts ins1/2 was discussed
above, and the one related withs2/2 similarly follows from
relation(A8) in Appendix A, expressing the equivalence of a
magnetic translation with a shift in momentum. The func-
tions just defined have an alternative and more compact form
given by

xp
sr,sdsxd =

1
Î6Np

s3,2do
m

expSiPsp,r,sd . m +
5pi

6
m1m2DTmfsxd,

s17d

Nk
s3,2d = ÎNf0

Îo
,

s− 1d,1,2 expSik . , −
,2

4r0
2D , s18d

, = ,1s3c1d + ,2s2c2d, s19d

where the effective momenta and the new elementary lattice
of vectorsm over which the sum is performed are given by

Psp,r,sd = p − rs1 +
s − 1

2

3

2
s2, s20d

m = m1c1 + m2c2,

c1 =
a1

3
,

c2 =
a2

3
.

The double sum(17) can be evaluated to obtain an explicit
formula in terms of the elliptic theta functions as follows:
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xp
sr,sdsxd =

expS−
x2

4r0
2D

Î6Î2pr0
2Np

s3,2d 3 o
b=0,. . .,5

o
a=0,1

expS27pit1a2 + pit1b2 + a2b + 2piaS3a2

pi
−

3a1

2pi
−

15a

2
+ S9t1

2
−

5

4
DbDD

3 Q3S6a2

pi
−

3a1

pi
− s15 − 54t1da + 2S9t1

2
−

5

4
Dbu108t1D 3 Q3S a1

2pi
+

5a

2
+ S t1

2
+

5

12
DbDut1d, s21d

where

a1 = iPsp,r,sd . c1 +
1

2ro
2sc1 − in 3 c1d . x,

a2 = iPsp,r,sd . c2 +
1

2ro
2sc2 − in 3 c2d . x,

t1 =
i

6Î3
.

Let us inspect now the action of a magnetic translation by
2
3a2 on the new functions. If such a transformation leaves the
triplets invariant, then the matrix reduction of the Hartree-
Fock Hamiltonian will follow. One has

Ts2/3da2
xp

sr,sdsxd =
1
Î3

o
s=−1,0,1

expS−
2

3
ip . a1s−

2pirs

3
D

3Ts2/3da2
T−s2/3dsb1

xp
ssxd. s22d

But after using(A4) in Appendix A for changing the order of
the two operators within the sum, it follows that

Ts2/3da2
xp

sr,sdsxd = lpS2

3
a2Dxp

sfr−1g,sdsxd, s23d

where the square bracket defines the number among the set
h−1,0,1j that is equivalent, modulo 3, to the integer in the
argument.

For fixedp ands the matrix elements of the Hamiltonian
(1) in the new basis can readily be found to have the form

hp,s
sr8,rd = o

Q
vsQdexpS−

Q2ro
2

4
D

3expSip . n 3 Qro
2 +

2pi

3
Q2

3sr + Q1dDdr8,fr−Q1g. s24d

The problem has thus been reduced to the self-consistent
diagonalization of a three dimensional matrix for each value
of momentap and parameters. The basis can be checked to
have the following set of transformations properties:

T2c1
xp

sr,sdsxd = expS− 2ip ·c1 −
2pri

3
Dxp

sr,sdsxd, s25d

T2c2
xp

sr,sdsxd = exps− 2ip ·c2dxp
sfr−1g,sdsxd,

T3c1
xp

sr,sdsxd = exps− 3ip ·c1dxp
sr,−sdsxd,

T3c2
xp

sr,sdsxd = s exps− 3ip ·c2dxp
sr,sdsxd,

Ixp
sr,sdsxd = x−p

s−r,sdsxd,

where the parity transformationI is defined as usual by
Ixp

sr,sdsxd=xp
sr,sds−xd. As shown in Appendix A, from these

symmetry properties it follows that the density associated
with any Slater determinant constructed by selecting one or-
bital within each triplet has exact periodicity under shifts in
all vectorsR.

In order to find the solution of the mean field problem by
an iterative technique it is sufficient to make an ansatz for the
density in the first step, and then diagonalize numerically the
matrices for a sufficiently high partition of the reduced Bril-
louin cell momentap defined by(16). By selecting the nor-
malized lowest energy state within each three-dimensional
quantum mechanical problem, the Fourier components of the
density corresponding to the new step should be constructed.
Following its definition, it can be done by means of the fol-
lowing expression:

rsQd =
1

Acell
o

p,s=±1
E dxUo

r

gr
0spdxp

sr,sdsxdU2
expsiQ ·xd

=

expS−
Q2ro

2

4
D

A
o
p

o
s=±1

expSip ·n 3 Qro
2

+
2pi

3
Q2Q1D o

r,r8=−1,01

gr8
0 spd*gr

0spd

3expS−
2pir

3
Q2Ddr8,fr+Q1g. s26d

This formula can be obtained by evaluating the Gaussian
integrals appearing after substituting the expansions defining
the functionsxp

sr,sd. The coefficientsgr
0, gr

1, andgr
2, define the

components of the eigenvectors of the single particle HF
Hamiltonian in the basis of statesx. They fix the wave func-
tions of the filled band and the empty bands as

Fp
sb,sdsxd = o

r=−1,0,1
gr

bspdxp
sr,sdsxd, s27d

b=0,1,2.Hereb=0 labels the filled band in each triplet, and
b=1,2 label the two empty bands.

A. CABO AND F. CLARO PHYSICAL REVIEW B70, 235320(2004)

235320-4



The fact that the first Landau level is split in just three
bands is a manifestation of the fact that the Hartree-Fock
equations map into a generalized form of Harpers equation.5

As is well known, the Landau level is split intop bands,
where p is the numerator in the rational fraction that ex-
presses the number of flux quanta traversing the unit cell.10

Since in our case this integer equals 3, then the spectrum
contains exactly three bands.

C. Functions that vanish at the origin

In order to proceed within an analytical context let us
consider the observation from former numerical studies, that
the particle density for the state considered essentially van-
ishes at all lattice points.5 Then, let us assume that the den-
sity rigorously vanishes at this set of points. If this is the
case, the wave function of any of the filled states should then
also vanish at those points. This requirement follows from
the fact that the Hartree-Fock particle density is a sum over
the individual densities of all occupied orbitals,

o
p,s=±1

Uo
r

gr
0spdxp

sr,sdsxdU2
= rsxd. s28d

We can then use this property to fix the coefficients of the
wave functions within each triplet.

After imposing the vanishing conditions at the origin, the
coefficients defining the functions(27) are fully determined
and take the form

g0
0spd =

1

Np
* ,

g−1
0 spd = −

1

N p
*

xp
s0,+ds0dxp

s+1,−1ds0d − xp
s0,−1ds0dxp

s−1,−1ds0d
xp

s−1,+1ds0dxp
s+,−1ds0d − xp

s+1,+1ds0dxp
s−1,−1ds0d

,

s29d

g+1
0 spd = −

1

N p
*

xp
s0,−1ds0dxp

s−1,+1ds0d − xp
s0,+1ds0dxp

s+1,+1ds0d
xp

s−1,+1ds0dxp
s+1,−1ds0d − xp

s+1,+1ds0dxp
s−1,−1ds0d

,

1 = ug0
0spdu2 + ug−1

0 spdu2 + ug1
0spdu2.

Note that the coefficientsg are all independent ofs. This
completes the definition of our functions. The proof that the

above discussed vanishing condition gives the exact solution
and not simply a very approximate one, will be considered
elsewhere.

The particle density may now be computed replacing
these functions in Eq.(28). The real space particle density
thus obtained is shown in Fig. 1.

A main property to be noticed in this figure is the forma-
tion of sharp hexagonal channels surrounding the low den-
sity regions at the center of which the vanishing density oc-
curs. These structures mark the difference with the Wigner
solid whose unit cell encloses three flux quanta. The charge
density in this latter instance is made up essentially of well
localized Gaussians centered at each lattice point. In our case
there is strong overlap, suggesting that cooperative ring ex-
change involving many unit cells is a large contribution to
the correlation energy.

Furthermore, the insertion of the calculated density in the
eigenvalue equation associated with the matrix representa-
tion of the Hamiltonian in each triplet, Eqs.(2) and (24),
allows for the evaluation of the one particle spectrum of the
system. As it was expected, three energy bands appear, each
associated with a value of the indexb and covering the full
range ofp within each triplet. We also note that states asso-
ciated withs= ±1 turn out to be degenerate. The bands dis-
persion relations are illustrated in Fig. 2.

Note the narrowness of the bands as compared with the
gaps separating them. This fact leads to the idea that in this
mean field approximation the Coulomb interaction, although
breaking the degeneracy of the first Landau level, reorga-
nizes the states in three equally populated separate sets that
again are approximately degenerate, as if they were Landau
levels of a renormalized problem. Since at 1/3 filling one
band is full and the other two are empty, one expects the
electrons to behave dynamically similarly to filling one, ex-
cept for a different effective mass, as the composite fermion
model suggests.8,10 The magnetic Wannier states are ex-
pected to be approximate solutions, playing the role of the
angular momentum states in the noninteracting problem at
filling one.

FIG. 1. Particle density associated with the CDW state at filling
1/3.

FIG. 2. Single particle band structure for the CDW state at fill-
ing 1/3.
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These properties seem to corroborate the possibility of
tracing a link between weakly interacting composite fermi-
ons and the Bloch or Wannier orbitals in the mean field so-
lutions considered earlier by one of us.4,5 To complete this
section we note that the mean field energy per particle ob-
tained from the above formalism for the solution we have
constructed confirms the value reported in an earlier numeri-
cal computation,5

e = − 0.362
e2

«oro
. s30d

III. CORRELATION ENERGY IN SECOND ORDER

In order to obtain the energy correction to second order of
perturbation theory we proceed similarly as in Ref. 8, start-
ing with the expression6

Es2d = o
i

kCHFusH − HHFduCil
1

EHF − Ei
kCiusH − HHFduCHFl

= o
i

ukCHFuHuCilu2

EHF − Ei
. s31d

Here CHF, EHF are the mean field Slater determinant and
total Hartree-Fock energy associated with the ground state,
respectively, andH is the projection of the exact many par-
ticle Hamiltonian onto the first Landau level. The many par-
ticle excited statesCi are Slater determinants constructed
with the basis(27), mixing states in the filled band with
states in the empty bands. It follows thatkCHFuCil=0, a
property that allowed to write the last equality in(31). In the
second quantized representation the HamiltonianH will have
nonvanishing matrix elements linking the HF state and ex-
cited states of the formuFil=ah ah8aj

+aj8
+ uFHFl only, where

aj
+ creates an electron of quantum numbersj, etc. The index

i is a shorthand notation for the set of two pairs of filled
sh ,h8PFd and emptysj ,j8PT−Fd electron states, whereT
andF are the set of all states in the Landau level and just the
filled ones, respectively. The indicesh=s0,p ,sd and j
=sb,p ,sd for b=1,2 denote the quantum numbers of filled
and empty states, respectively. The total energy of an excited
state isEi =EsHFd+esjd+esj8d−eshd−esh8d. Then, the second
order correction can be rewritten in the form8

Es2d = o
sh,h8d

o
sj,j8d

ukFHFuHah ah8aj
+aj8

+ uFHFlu2

eshd + esh8d − esjd − esj8d
, s32d

where the total projected Hamiltonian is

H =
e2

2«o
E E dxdx8C * sxdC * sx8d

1

ux − x8u
Csx8dCsxd

=
e2

2«o
o
a,a8

o
b,b8

Msua,a8ub8,bdaa
+aa8

+ ab8ab. s33d

The matrix elements of the Coulomb interaction are given by

Msua,a8ub8,bd

=E E dxdx8Fa
* sxdFa8

* sx8d
1

ux − x8u
Fb8sx8dFbsxd,

s34d

where we have used the shorthand notationFa=Fp
sb,sd. By

using the anticommutation relationsfaa ,aa8
+ g=da,a8, formula

(31) can be expressed as

Es2d =
e4

«o
2 o

sh,h8d
o

sj,j8d

3

UE E dxdx8Fh,h8
* sx,x8d

1

ux − x8u
Fj,j8sx,x8dU2

eshd + esh8d − esjd − esj8d
,

s35d

where the two particle statesFh,h8 are defined by

Fh,h8sx,x8d =
FhsxdFh8sx8d − Fh8sxdFhsx8d

Î2
. s36d

The pairssh ,h8d and sj ,j8d are considered as unordered.

A. Correlation energy: First evaluation

As pointed out above the single particle bands are remark-
ably flat. We can use this property to simplify the calculation
of the energy correction. First, we approximate the filled
band energies appearing in the denominator of(35) by their
mean value,

eshd = e0. s37d

In addition, and slightly more crudely, we substitute the en-
ergies in the excited bands by a common energy equal to half
the sum of the mean energies of the two bands,

esjd =
e1 + e2

2
. s38d

This last approximation is taken in view of the small relative
gap separating these two bands.

With this simplifying substitution(35) can be expressed in
the simpler form

Es2d =
e4

2s2e0−e1−e2d«o
2 E E dx8dx

3E E dydy8

3
1

ux − x8u
1

uy − y8u
sp fsx8,y8dp fsx,yd

− p fsx8,ydp fsx,y8ddpesy,xdpesy8,x8d, s39d
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where p f is the projection operator on the subspace of
states of the filled band, andpe the projector associated with
the subspace of states formed by the union of the empty
bands. The projectors have the following expression in terms
of the corresponding densities

p fsx,x8d = o
p,s

Fp
s0,sdsxdsFp

s0,sdsx 8 dd*

= Psx,x8d2pro
2o

Q

r fsQd

3expSiQ ·Sx + x8

2
+

1

2
in 3 sx − x8dDD ,

s40d

pesx,x8d = o
p,b,s

Fp
sb,sdsxdsFp

sb,sdsx8dd*

= Psx,x8d2pro
2o

Q

resQd

3expSiQ ·Sx + x8

2
+

1

2
in 3 sx − x8dDD ,

resQd =
1

2pro
2dQ,0 − r fsQd,

wheredQ,0 is the ordinary Kronecker delta andPsx ,x8d is the
projection operator onto the first Landau level, defined in
Appendix A. These expressions can be obtained from for-
mula (B10) in Appendix B. After evaluating a few spatial
integrals, the correlation energy per particlees2d=Es2d /N
becomes

es2d =
e4

2s2e0−e1−e2d«o
2

4pÎprospro
2d2

n
o
Q1

o
Q2

o
Q3

r fsQ1dr fsQ2dresQ3dres− Q1 − Q2 − Q3dexpS sQ1 + Q2d2ro
2

4
D E dz

1
Îz2

3expS−
z2

4ro
2DexpS− sQ1 + Q3d ·

n 3 z

2
− isQ2 + Q3d ·

z

2
DI0S1

8
S z

ro
− n 3 sQ1 + Q3dro − isQ2 + Q3droD2D

3 Sexp
1

8
S z

ro
− n 3 sQ1 + Q3dro − isQ2 + Q3droD2

− expS−
1

8
S z

ro
− n 3 sQ1 + Q3dro − isQ2 + Q3droD2DD , s41d

where I0 is a modified Bessel function. In evaluating the sums we found sufficient for convergence to keep the 36 Fourier
components associated with the shortest values ofQ. Of these, terms in the longestQ are slightly altered to assure that the sum
rule5

o
Q

ur fsQdu2 expSQ2ro
2

2
D =

n

s2pro
2d2 s42d

is satisfied. This condition is used to cancel various fictitious divergences in the formula defining the correlation energy.6 We
then obtain

es2d =
se2/«or0d2

4nÎps2e0−e1−e2d
o
Q1

o
Q2

o
Q3

D fsQ1dD fsQ2dDesQ3dDesQ1 + Q2 + Q3d

3 expS− i
ro

2
sQ2 + Q3d ·n 3 sQ1 + Q3dro +

sQ2 + Q3d2ro
2

2
D

3E du expS−
su − isQ2 + Q3drod2

4
− ir osQ2 + Q3d ·

su − isQ2 + Q3drod
2

D
3 I0S1

8
su − isQ2 + Q3drod2DsinhS1

8
su − isQ2 + Q3drod2D 3 S 1

Îsu + n 3 sQ1 + Q3drod2
−

dQ2+Q3,0

Îu2 D , s43d
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where the order parameters of the filled and empty bands
have been defined as usual,

D fsQd = 2pro
2r fsQdexpS sQd2ro

2

4
D ,

DesQd = 2pro
2resQdexpS sQd2ro

2

4
D ,

respectively. The integrals in Eq.(43) were evaluated using
the Monte Carlo integration method with a variable number
Nmc of sample points. The region of integration was taken as
a square of size 50ro, centered at the origin. Results were
obtained for sixteen values ofNmc evenly spaced in the in-
terval {10000, 160000}. From these data we obtained(all

energy values below given in units ofe2/«oro)

ecorr = − 0.03647 0.0048, s44d

where the first figure is the average over the 16 values, and
the one following, the mean square deviation. As a check, the
case Nmc=320000 was also computed, yieldingecorr
=−0.0371, which falls within 2% of the average(44).

It is possible to perform an independent evaluation of the
correlation energy that avoids approximations(37) and (38)
and uses as parameter the numberN of particles in the
sample. This is done next.

B. Correlation energy: Second method

Using the formulas derived in Appendix C it is possible to
recast Eq.(35) to give it the form

es2d =

3S e2

eor0
D2

sNf0
d3 o

spb,sbd
o

spb8,sb8d
o

sb,pa,sad
o

sb8,pa8,sa8d

1

es0,pb,sbd + es0,pb8,sb8d − esb,pa,sad − esb8,pa8,sa8d
3 U o

ra,ra8,rb,rb8

dsKdsPb8,rb8
+ Pb,rb

− Pa,ra
− Pa8,ra8

,0d 3 F * spa,ra,sadgra

*bspadF * spa8,ra8,sa8dgra8

*b8spa8dFspb8,rb8,sb8dgrb8

0 spb8d

3 Fspb,rb,sbdgrb

0 spbdFPa,ra

* sn 3 sPb,rb
− Pa,ra

dr0
2d 3 FPa8,ra8

* sn 3 sPb8,rb8
− Pa8,ra8

dr0
2d 3 Vsa,a8,b,b8dU2

, s45d

where the functionV is defined by

Vsa,a8,b,b8d

= o
Q*

2p

r0uPb8,rb8
− Pa8,ra8

+ Q * u

3exps− r0
2sPb8,rb8

− Pa8,ra8
+ Q * d2d

3 expf− ir 0
2n

3 Q * · sPa,ra
+ Pb,rb

− Pb8,rb8
− Pa8,ra8

dg.

The form of the pure phase factorsF* and FP
* , the momenta

Pa,r and the special reciprocal lattice vectorsQ* are all
specified in Appendix C. As before, the functionsgr

bspd are
the coefficients determining the single particle HF excita-
tions. We remark that once the coefficients for the filled band
are known the other set of coefficients for the empty bands
can be evaluated analytically as the two eigenvectors of the
s333d matrix representation of the single particle HF
Hamiltonian, orthogonal to the vectorgr

0spd.
In order to evaluate numerically expression(45) we re-

strict the Hilbert space of the single particle HF problem by
defining a cell of sides 2N1a1, 2N2a2 with N1, N2 integers,
and impose periodic boundary conditions over its borders.
Using the symmetry properties(25) we have

TN16c1
xp

sr,sdsxd = exps− i6p . c1N1dxp
sr,sdsxd,

TN26c2
xp

sr,sdsxd = exps− i6p . c2N2dxp
sr,sdsxd.

These constraints can be translated into the relations

FIG. 3. The negative of the correlation energy correction as a
function of sample size.N is the number of particles in the sample.
The plotted values were obtained from Eq.(45). The dashed line
indicates the result of Eq.(44).
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− 6p . c1 = 2p
n1

N1
,

− 6p . c2 = 2p
n2

N2
.

They restrict the values of the quasimomentump to a dis-
crete set, as expressed in compact form by the condition

p = −
n1

N1

t1

2
−

n2

N2

t2

3
, s46d

0 ø n1 , N1, 0 ø n2 , N2,

wheret1 and t2 are defined in Appendix A. The cell chosen
traps 6N1N2 flux quanta and contains 2N1N2 particles. In
order to keep the computing time within practical limits, the
values ofm1 andm2 in the expression defining the summa-
tion argument

Q * = m1
3

2
t1 + m2

2

3
t2 s47d

were restricted to the regions −4øm1ø4 and −4øm2ø4,
ranges found sufficient to assure numerical convergence. The
energy correction was calculated for samples withN1=N2
=Ns, yielding an aspect ratio close to one. The upper bound
for Ns, set by computing limitations, wasNs=7. The number
of particles associated with this value isN=2Ns

2=98. Re-
sults are shown in Fig. 3 as filled circles. The straight line is
a linear fit in the variableN−1/2 whose intercept in the limit of
largeN yields the value

«corr = − 0.03477 0.0027, s48d

consistent with that given in(44) and obtained with the pre-
vious method, shown as an horizontal dashed line in the
figure. Notice that the linear fit in terms of the variableN−1/2

is suggested by the fact that making the sample finite pro-
duces a boundary energy which in two dimensions varies as
the square root of the number of particles.

As Fig. 3 suggests, convergence to the thermodynamic
limit requires the inclusion of a large number of particles,
even beyond our largest value of 98. This outcome points to
the relevance of long distance correlations in reaching the
correct value of the energy through numerical computations,
possibly dominated by cooperative ring exchange effects.12

Adding the value(48) to the Hartree-Fock result(30) one
obtains the energy per particlee=−0.397. Published values
taking one electron per cell and including correlations are
eYL =−0.3901 using perturbation theory,6 and eLG=−0.3948
using a variational approach.17 We notice that our result is
slightly lower than either value, suggesting that the CDW
state is a serious candidate for the correct Hartree-Fock pre-
cursor to the true ground state of the system.

IV. SUMMARY

An analytic solution of the Hartree-Fock problem for a
2DEG at filling 1/3 and half electron per unit cell is found

by employing symmetry considerations and a special com-
plete set of common eigenfunctions of the magnetic transla-
tions. A triplet of bands arises that turn out surprisingly flat
as functions of the two- dimensional quasimomentum. The
Coulomb interaction breaks the first Landau level in three
narrow subbands resembling effective Landau levels of com-
posite fermions, one of which is fully occupied and the other
two, empty. The energy per particle reproduces an earlier
numerical result for this quantity.5 We find that the charge
density forms hexagonal rings throughout the lattice, sug-
gesting strong long range correlations owing to cooperative
ring exchange. An evaluation of the correlation energy using
second order perturbation theory yields a correction an order
of magnitude larger than that for the localized single-particle
features of the usual Wigner Crystal state.6 Our results also
indicate that the thermodynamic limit may not be reached
even when 98 particles are included, thus suggesting the rel-
evance of long range correlation effects in the generation of
the enhanced cohesive correlations. Further, numerical re-
sults we have obtained at fillings 1/5, 1/7, and 1/9 show
that the CDW charge distribution also has hexagonal ridges
that become sharper as the filling decreases. One can then
speculate that these states have a large correlation energy,
making them good candidates for the ground state at such
low electron densities. Further results for these latter fillings
will be reported elsewhere.
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APPENDIX A

1. Eigenfunctions of magnetic translations

Consider a 2DEG constrained to move in a plane of area
A under a perpendicular magnetic fieldB. A useful basis set
of single particle Bloch-type states in the lowest Landau
level can be defined in terms of linear combinations of the
normalized zero angular momentum eigenfunction

fsxd =
1

Î2pro

expS−
x2

4ro
2D sA1d

in the compact form,7,15,16,18

wksxd =
1

Nk
o

,
s− 1d,1,2 expsik . ,dT,fsxd, sA2d

Nk = ÎNf0
Îo

,
s− 1d,1,2 expSik . , −

,2

4r0
2D .

Due to its role in the above definition the functionf is called
the “seed” function. The sum runs over all integers,1, ,2
defining a planar latticeL, through,=,1b1+,2b2, where the
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unit cell intercepts one flux quantum, so thatn .b13b2
=2pro

2. The magnetic translation operatorsTR acting on any
function f are defined by

TR fsxd = expS2ie

"c
AsRd . xD fsx − Rd, sA3d

where the vector potential is assumed in the axial gauge
Asxd=Bs−x2,x1,0d /2 and the electron chargee is taken with
its negative sign. This basis was employed before to obtain
exact mean field solutions of the related problem at filling
1/2.8 For arbitrary vectorsR1 andR2 the translation opera-
tors satisfy the commutation relation

TR1
TR2

= expS ie

"c
AsR1d . R2DTR2

TR1
. sA4d

As it may be easily verified, the functionswk satisfy the
eigenvalue equation

T,wksxd = lks,dwksxd, sA5d

lks,d = s− 1d,1,2 exps− ik . ,d. sA6d

Arranged in an arbitrary Slater determinant these functions
are exact solutions of the Hartree-Fock problem.18,19 This
strong property happens because the HF single particle
Hamiltonian commutes with all translations leavingL
invariant.18 The functions(A2) are common eigenfunctions
of the commuting magnetic translations. Moreover, the set of
eigenvalues(A6) uniquely determines them. Therefore, the
HF Hamiltonian associated with the Slater determinant can-
not change those eigenvalues and thewk should be eigen-
functions.

Finally, let us show that the effect of an arbitrary transla-
tion on the basis functions is equivalent to a shift in the
momentum label, modulo a phase factor.16 Operating twice
with the translation operator involving an arbitrary vectora
and a vector in the lattice, and using Eqs.(A4) and (A5)
one readily gets,

TaT,wpsxd = lps,dTawpsxd = expS2
ie

"c
Asad . ,DT,Tawpsxd.

sA7d

Again using(A5) we have

T,Tawpsxd = lp+2se/"cdAsads,dTawpsxd.

Then, taking into account that the set of eigenvalues defines
uniquely the wave-functions modulo a phase, it follows that

Tawpsxd = Fpsadwp+2se/"cdAsadsxd, sA8d

from which also follows,

Fpsad =
wps0d

wp+2se/"cdAsadsad
. sA9d

That is, a magnetic translation is equivalent to a shift in the
quasimomentum.

2. A wp-transform

Any function f in the first Landau level, and its inverse,
can be represented as

fsxd = o
pPB̃

cspdwpsxd

=E
pPB̃

dp

s2pd2c̃spdw̄psxd,c̃spd

=E dxw̄p
* sxdfsxd,

wherew̄psxd=ÎSwpsxd, c̃spd=ÎScspd, with S=2pr0
2Nf0

, with

Nf0
the number of flux quanta in the system area,B̃ is the

Brillouin zone defined by the unit cell vectors

t1 = −
1

r0
2n 3 b2,

t2 =
1

r0
2n 3 b1.

The orthogonality and completeness relations in the first
Landau level of the modified functions take the forms

E
A

dxw̄p
* sxdw̄p8sxd = s2pd2dsp − p8d,

Psx,x8d = o
pPB̃

wpsxdwp
* sx8d =E

pPB̃

dp

s2pd2w̄psxdw̄p
* sx8d.

sA10d

3. The orbitals xp
„r,s… as special cases of the basis functions

wp„x…

Let us now verify that the functionsxp
sr,sd constructed to

diagonalize in blocks the HF Hamiltonian in Sec. II are sim-
ply constant phase factors multiplied by a particular kind of
basis functionswp. These differ from the orbitals considered
in Sec. II and defined by the unit cell vectors(7) in that their
basis vectors are given by

b1 = 2
3a1,b2 = a2. sA11d

To start out it will be useful to consider thewp-transform of
a translated “seed” functionfsxd. For this purpose we notice
that it is possible to fix the second argument of the projector
operator to be equal to the translation vectora. It follows that
the projector operator in the first Landau level can be rewrit-
ten as
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Psx,ad =
1

2pr0
2 expS−

sx − ad2

4r0
2 DexpS ie

"c
Asad . xD

=
1

Î2pr0
2
Tafsxd =E

pPB̃

dp

s2pd2w̄psxdw̄p
* sad,

sA12d

where the last equality is merely the definition of the projec-
tor operator in coordinate space. Therefore, these relations
determine the followingwp-transform of the translated
“seed” function

Tafsxd =E
pPB̃

dp

s2pd2sÎ2pr0
2w̄p

* saddw̄psxd. sA13d

Next we will consider the definition

xp
sr,sdsxd =

1
Î6Np

s3,2do
m

expSiPsp,r,sd . m +
5pi

6
m1m2DTmfsxd,

sA14d

and represent the vectorsm in terms of alternative vectors,
and the indicesa andb defined through the expressions

m = , + d,

, = ,12c1 + ,23c2,

d = uc1 + vc2.

The symbolsa, b, ,1, and,2 are specified by the relations

u = km1l = H 0 if m1 = 0 Modulos2d
1 if m1 = 1 Modulos2d,

J
v = fm1g = 5− 1 if m2 = − 1 Modulos3d

0 if m2 = 0 Modulos3d
1 if m2 = 1 Modulos3d,

6
,1 =

m1 − km1l
2

,

,2 =
m2 − fm2g

3
.

The use of these alternative definitions allows to write(A14)
in the form

xp
sr,sdsxd =

1
Î6Np

s3,2do
,

s− 1d,1,2 expsiPsp,r,sd · ,dT,

3 H o
u=0,1

o
v=−1,0,1

expS5pi

6
uv + iPsp,r,sd

3suc1 + vc2dDTuc1+vc2
fsxdJ . sA15d

Now, it can be noticed that the above expression differs from
the definition (A2) only in that the “seed” function is

changed by a superposition of itself translated to the points
uc1+vc2. However, it was shown in Ref. 16 that the basis
functions are completely independent of an arbitrary change
in the “seed” for any other function in the first Landau level.

An alternative proof of this curious property is possible.
To see it let us represent the “seed” functions in(A15) by
their wp-transform(A13), yielding

xp
sr,sdsxd =

1
Î6Np

s3,2d o
a=0,1

o
b=−1,0,1

expS5pi

6
uv + iPsp,r,sd

3suc1 + vc2dD E dq

s2pd2
Î2pr0

2w̄q
*

3suc1 + vc2dw̄qsxdo
,

expsisPsp,r,sd − qd · ,d,

after employing the character of eigenfunctions of the opera-
tors T, that the functionsw̄q have. But now the following
identity can be employed:

o
,PA

expsisq − q8d · ,d =
s2pd2

2pr0
2 dsq,q8d,

where thed function is nonvanishing for equal arguments
modulo a vector of the reciprocal latticeQ= 3

2Q1t1+ 2
3Q2t2.

This relation allows to show the desired connection between
the basis functionsxp

sr,sd and w̄psxd,

xp
sr,sdsxd = Fsp,r,sdw̄Psp,r,sdsxd,

where the phase factor is given by

Fsp,r,sd =
1

Î6Î2pr0
2Np

s3,2d o
u=0,1

o
v=−1,0,1

expS5pi

6
uv

+ iPsp,r,sd · suc1 + vc2dDw̄Psp,r,sd
* suc1 + vc2d.

4. Periodicity of the Slater determinants of triplet
orbitals

Here we show that the single particle density associated
with a Slater determinant formed with a set of functions,
each one corresponding to an arbitrary linear combinations
of the triplet of orbitals characterized by the indicessp ,sd, is
periodic over the latticeR. To consider this question, let us
use the basic property that the density of a many electron
Slater determinant constructed with orthogonal orbitals is the
sum of the individual densities of each orbital. Writing the
selected linear combinations as

Cp
ssdsxd = o

r

Cp
sr,sdxp

sr,sdsxd, sA16d

where the coefficientsCp
sr,sd are arbitrary, and considering the

symmetry properties(25), it follows that
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rsxd = o
p

o
s=±1

uCp
ssdsxdu2

= o
p

o
s=±1

uCp
s−sdsxdu2 = o

p
o

s=±1
o

r
o
r8

Cp
sr8,sd*Cp

sr,sd

3sexpsip ·a1dTa1
xp

sr8,sdsxdd*expsip ·a1dTa1
xp

sr,sdsxd

= o
p

o
s=±1

o
r

o
r8

Cp
sr8,sd*Cp

sr,sdSexpS ie

"c
Asa1d ·xDxp

sr8,sd

3sx − a1dD*

expS ie

"c
Asa1d ·xDxp

sr,sdsx − a1d

= o
p

o
s=±1

uCp
ssdsx − a1du2 = rsx − a1d.

One can show in a similar way thatrsxd=rsx−a2d.

APPENDIX B

Here we shall derive the general formula expressing the
single particle Hartree-Fock Hamiltonian as a sum of mag-
netic translation operations. The arguments of these opera-
tors are spatial vectors determined by the reciprocal lattice
associated with the Fourier components of the density. It is
worth remarking here that the lattice considered in this Ap-
pendix is not restricted in any way. Therefore, the represen-
tation of the single particle HF Hamiltonian is valid for a
general though periodic mean field problem.

Consider the action of the kernels of the direct and ex-
change interactions defining the HF Hamiltonian over any of
the elementswp of the complete basis functions as follows:

w̃sddsxd = HHF
sddwpsy8d

=
e2

«o
E dydy8Psx,y8d

rsyd − n0/e
2

uy − y8u
wpsy8d, sB1d

w̃sedsxd = HHF
sedwpsy8d

= −
e2

«o
E dydy8Psx,y8d

rsy,y8d
uy − y8u

wpsy8d, sB2d

wheren0 is the jellium background charge density making
the overall system neutral. The representation we shall derive
is valid for both direct and exchange kernels and will be
discussed below for each case separately.

1. Direct Coulomb interaction

The potential term representing the direct Coulomb inter-
action can be written in its Fourier transform representation
as follows:

vsddsxd =
e2

«o
E dx8

rsx8d − n0/e
2

ux − x8u

=
e2

«o
o

QÞ0
rsQd E dx8

expsiQ ·xd
ux − x8u

= o
Q

2pe2

«o

rsQds1 − dQ,0d
uQu

expsiQ ·xd

= o
Q

vsddsQdexpsiQ ·xd. sB3d

Then, using the representation of the kernel for the projec-
tion operator in the first Landau level

Psx,x8d =
1

2pr0
2 expS−

sx − x8d2

4r0
2 DexpS ie

"c
Asx8d ·xD

we obtain,

w̃p
sddsxd =E dy8Psx,y8do

Q
vsddsQdexpsiQ ·y8dwpsy8d.

sB4d

Recalling definition(A2) we get for each translation term

L,
sddsxd =E dy8Psx,y8do

Q
vsddsQdexpsiQ ·y8dT,fsy8d

=
1

Î2pr0
o
Q

vsddsQdexpS−
1

4
r0

2Q2DexpSi
Q · ,

2
D

3expS−
1

4r0
2sx − s, − r 0

2Q 3 ndd2

−
i

2r0
2x · s, + r 0

2n 3 QdD
= o

Q
vsddsQdexpS−

1

4
r0

2Q2D
3expSi

Q · l

2
DT,+r 0

2n3Qfsxd. sB5d

This last relation can be further simplified by employing re-
lation (A7) and the similar property

TR1
TR2

= expS ie

"c
AsR1d ·R2DTR1+R2

,

leading to the formula

E dy8Psx,y8do
Q

vsddsQdexpsiQ ·y8dT,fsxd

= o
Q

vsddsQdexpS−
1

4
r0

2Q2DTr 0
2n3QT,fsxd.

After adding corresponding the integrals over all translations
, one obtains
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HHF
sddwpsxd = o

Q
vsddsQdexpS−

1

4
r0

2Q2DTr 0
2n3Qwpsxd.

Since the equality is valid for any element of the complete
basiswpsxd it then follows,

HHF
sdd = o

Q
vsddsQdexpS−

1

4
r0

2Q2DTr 0
2n3Q. sB6d

2. Exchange interaction

The derivation of the analogous representation for the ex-
change interaction kernel is more involved and needs for

some special properties of the one particle density matrix.
Then, let us initially consider these properties.

a. One particle density matrix transformations

The definition of the one-particle density matrix in terms
of the Slater determinantFsx1,x2,x3,x4, . . . ,xNd can be
transformed by performing a simultaneous magnetic transla-
tion operation in a vectorR of the periodic lattice over all the
particle coordinates. Since this is assumed to be a symmetry
transformation of the system, this map should leave the
many particle state invariant. Thus by assumption

rsx1,x2d =E ¯E dx3dx3 ¯ dxNuFsx1,x2,x3,x4, ¯ ,xNdu2

=E ¯E dx3dx3 ¯ dxNUp
i=3

N

TRsxidFsx1,x2,x3,x4, ¯ ,xNdU2

= o
s

Cssx1dCs
*sx2d

= o
s

TRsx1dCssx1dsTRsx2dCssx2dd*

= o
s

expS ie

"c
AsRd · sx1 − x2dDexpsCssx1 − RddsCssx2 − Rdd*rsx1,x2d

= expS ie

"c
AsRd · sx1 − x2dDrsx1 − R,x2 − Rd, sB7d

an expression that furnishes the transformation law of the
one particle density matrix under spatial shifts in the vectors
of the periodic lattice.

b. The density determines the density matrix

Below we will show that the Fourier components of the
density completely determine the whole one-particle density
matrix. For this purpose, let us use the new variablez=x
−x8 in the one-particle density matrix, so thatrsx ,x8d
= r̃sx ,zd, where the tilde overr underlines the different func-
tional expression of the new definition. It now transforms
under spatial shifts as

r̃sx − R,zd = expS−
ie

"c
AsRd ·zDr̃sx,zd. sB8d

Therefore, the function

g̃sx,zd = expS−
ie

"c
Asxd ·zDr̃sx,zd,

is fully periodic in the variablex under the lattice shifts. That
is g̃sx−R ,zd= g̃sx ,zd. Then, Fourier expandingg̃ leads to the
following expression forr̃

r̃sx,zd = o
Q

expSiSQ −
e

"c
AsRdD ·xDr̃sQ,zd,

where

r̃sQ,zd =
1

Acell
E dx8 exps− iQ ·x8d

3expSi
e

"c
Aszd ·x8Dr̃sx8,zd. sB9d

Further, let us consider the density written as the sum

o
s

CssxdCs
*sx8d

= o
p

o
r,s,r8,s8

f r,sspdxp
sr,sdsxdf r8,s8

* spdxp
sr8,s8dsx8d* ,

and the fact that eachxp
sr8,sd in the lower Landau level can be

expanded as a linear combination of the complete basis func-
tions hT,fsxdj defined over a lattice with one flux quantum
per unit cell.20 Then, a generic term in the integral in(B9)
has the form
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r,,,8
˜ sQ,zd =

1

Acell
E dx exps− iQ ·xd

3expSi
e

"c
Aszd ·xDT,fsxdsuT,8fsx8dux8=x−zd* .

Since the functionf is a Gaussian, its magnetic translations
(A3) have also this character, and thus the integrals in(B9)
can be calculated explicitly. We obtain,

r,,,8
˜ sQ,zd = r,,,8

˜ sQ,0dexpS−
z2

4r0
2 −

1

4r0
2Q · sn 3 z + izdD .

But since the phase factor here is independent of the indices
, ,,8, the summation of all the contributions in(B9) leads to
the relation

r̃sQ,zd = rsQdexpS−
z2

4r0
2 −

1

4r0
2Q · sn 3 z + izdD ,

sB10d

r̃sQ,0d = rsQd,

which expresses the interesting result that the full one-
particle density matrix is completely determined by the par-
ticle density.

We now consider the exchange term(B2). Using the
above results the integrals in

w̃sedsxd = − e2E dy8Psx,y8d E dz

3o
Q

expSiSQ −
e

"c
AszdD ·y8D

3
r̃sQ,zd

uzu
wpsy8 − zd, sB11d

can be calculated explicitly. For this purpose, let us consider
again the integral of a generic termT, f in the sum over,
defining the functionswp. The integral for this term is then
reduced to two simple integrals, which after some algebra
can be explicitly evaluated to obtain

Lsedsxd = o
Q

vsedsQdexpS−
1

4
r0

2Q2DexpSi
Q · ,

2
DT,+r 0

2n3Qfsxd

= o
Q

vsedsQdexpS−
1

4
r0

2Q2DTr 0
2n3QT,fsxd, sB12d

vsedsQd = −
2pe2r0

«o
Îp

2
r̃sQ,0dexpS1

4
r0

2Q2DI0S1

4
r0

2Q2D .

sB13d

Henceforth, after adding all terms for different values of,
follows

HHF
sedwpsxd = So

Q
vsedsQdexpS−

1

4
r0

2Q2DTr 0
2n3QDwpsxd.

Using the independence and completeness of the basis
formed by thewp’s in the first Landau level, we thus obtain

HHF
sed = o

Q
vsedsQdexpS−

1

4
r0

2Q2DTr 0
2n3Q.

Combining this results and the previous one(B6) the follow-
ing representation for the one-particle Hartree-Fock Hamil-
tonian in the first Landau level follows,

HHF = o
Q

svsddsQd + vsedsQddexpS−
1

4
r0

2Q2DTr 0
2n3Q

= o
Q

vsQdexpS−
1

4
r0

2Q2DTr 0
2n3Q, sB14d

with the coefficients defined by

vsQd = 2pr0
2rsQdS s1 − dQ,0d

r0uQu

−Îp

2
expS1

4
r0

2Q2DI0S1

4
r0

2Q2DD e2

«or0
. sB15d

APPENDIX C

In this Appendix we sketch the derivation of the formula
(45) employed in the evaluation of the sample size depen-
dence of the correction to the energy per particle. As before,
we use the shorthand notation

Fa ; Fpa

sba,sad = o
r

gr
baspadxpa

sr,sadsxd = o
r

dpa

sba,r,sadwpa,rsxd,

dpa

sba,r,sad = Fspa,r,sadgr
baspad,

Pa,r ; Pspa,r,sad = pa − rs1 +
sa − 1

2

3

2
s2.

The relations expressing the functionsxpa

sr,sad in terms ofwpa

times a phase factor has also been employed in order to
define the new coefficientsdpa

sba,r,sad. By representing the
Coulomb potential by its Fourier transform, and substituting
all the expansions of the functionswpa

in terms of magnetic
translations of the “seed” in the matrix elements(34), the
resulting Gaussian integrals for each term can be evaluated.
After some algebra it is possible to obtain the expression
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Msa,a8ub8,bd =E E dxdx8Fa
* sxdFa8

* sx8d
1

ux − x8u
Fb8sx8dFbsxd

= o
ra

o
ra8

o
rb8

o
rb

sdpa

sba,ra,saddpa8

sba8,ra8,sa8dd*dpb8

s0,rb8,sb8ddpb

s0,rb,sbd

3E E dxdx8wPa,ra

* sxdwPa8,ra8

* sx8d
1

ux − x8u
wPb8,rb8

sx8dwPb,rb

sxd,

=Nf0o
ra

o
ra8

o
rb8

o
rb

sdpa

sba,ra,saddpa8

sba8,ra8,sa8dd*dpb8

s0,rb8,sb8ddpb

s0,rb,sbd 3 dsPb8,rb8
+ Pb,rb

− Pa,ra
− Pa8,ra8

,0d

3
wpa

* sn 3 sPb8,rb8
− Pa8,ra8

dr0
2dwpa8

* s− n 3 sPb8,rb8
− Pa8,ra8

dr0
2d

NPb8,rb8

s2,3d NPb,rb

s2,3d 3 o
Q*

2p

uPb8,rb8
− Pa8,ra8

+ Q* u

3exps− r0
2sPb8,rb8

− Pa8,ra8
+ Q*d2d 3 expf− ir 0

2n 3 Q* · sPa,ra
+ Pb,rb

− Pb8,rb8
− Pa8,ra8

dg, sC1d

where the summation vectorsQ* and the norm functions are
defined as follows:

Q* = n1
3
2s1 + n2s2, sC2d

NP
s2,3d = ÎNf0

Îo
,

s− 1d,1,2 expSiP · , −
,2

4r0
2D ,

, = ,1s2c1d + ,2s3c2d,

and, as before,dsP8 ,Pd equals one when the arguments are
same modulo vectors of the classQ* defined above, and zero
otherwise. It is possible to show now that the ratio multiply-
ing this latter function is simply a phase factor. For this pur-
pose let us consider the definition of thewPa,ra

,

wPa,ra
sxd =

1

NPa,ra

s2,3d o
,

s− 1d,1,2 expsiPa,ra
· ,dT,fsxd,

sC3d

from which follows directly a connection between the value
of this function at the origin and the norm functions appear-
ing in (C1)

wPa,ra

s0d =Îo
,

s− 1d,1,2 expSiPa,ra
· , −

,2

4r0
2D

=
NPa,ra

s2,3d

Î2pr0
2Nf0

.

Further, let us recall the formula connecting a translated
function of the basiswp and the same function for a shifted
momenta(A8). After considering this relation evaluated at
x=0, the following expression can be obtained:

wPa,ra

sn 3 sPb8,rb8
− Pa8,ra8

dr0
2d

= wPa,ra

sn 3 sPa,ra
− Pb,rb

dr0
2d

= FPa,ra

sn 3 sPb,rb
− Pa,ra

dr0
2d

3wPa,r a
−s2e/"cdAsn3sPa,r a

−Pb,r b
dr0

2ds0d.

But the new momenta argument of the function in the rhs can
be simplified as

−
2e

"c
Asn 3 sPa,ra

− Pb,rb
dr0

2d =
2

r0
2

n

2
3 sn 3 sPa,ra

− Pb,rb
dr0

2d

= Pb,rb
− Pa,ra

,

to produce

wPa,ra

sn 3 sPb8,rb8
− Pa8,ra8

dr0
2d

= FPa,ra

sn 3 sPb,rb
− Pa,ra

dr0
2dwPb,rb

s0d.

Similarly it also follows

wPa8,ra8
s− n 3 sPb8,rb8

− Pa8,ra8
dr0

2d

= FPa8,ra8
sn 3 sPb8,rb8

− Pa8,ra8
dr0

2dwPb8,rb8
s0d,

which finally leads to the desired results
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wPa,ra

* sn 3 sPb8,rb8
− Pa8,ra8

dr0
2dwPa8,ra8

* s− n 3 sPb8,rb8
− Pa8,ra8

dr0
2d

NPb8,rb8

s2,3d NPb,rb

s2,3d

=
FPa,ra

* sn 3 sPb,rb
− Pa,ra

dr0
2dFPa8,r a8

* sn 3 sPb8,rb8
− Pa8,ra8

dr0
2d

2pr0
2Nf0

2 . sC4d

The expression for the matrix element(C1) allows us to directly write formula(45) employed in Sec. III for evaluating the
correlation energy.
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