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An analytic solution of the Hartree-Fock problem for a 2DEG at filling 1/3 and half an electron per unit cell
is presented. The Coulomb interaction dynamically breaks the first Landau level in three narrow subbands, one
of which is fully occupied and the others empty, as in the composite fermion model. Strong correlations are
expected owing to large charge density overlap between neighboring plaquettes. Numerical evaluations show
an enhancement of the cohesive correlation energy, bringing the energy per particle to the proximity of that
obtained in competing variational models. Correlations are long range, requiring over 98 particles in numerical
computations to approach convergence.
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[. INTRODUCTION one. While the CDW unit cell traps 3/2 flux quanta of the
original field, it is only pierced by one flux quanta of the
It is well accepted today that the fractional quantum Hallreduced fieldB* =B,,3—B;,,, where B3 and B;,, are the
effect in the lowest Landau level results from the formationfields at 1/3 and 1/2 filling factor, respectively. The narrow-
of a strongly correlated spin polarized electron liquid thatness of the occupied band and this latter fact suggest that the
crystallizes below filling 1/773 It is intriguing, however, magnetic Wannier states are approximate solutions of the
that mean field charge density wave solutig@®W) existat  problem and behave as nearly free quasiparticles filling the
all fillings, which yield in a natural way the odd-denominator LLL of the effective fieldB*, much as the composite fermion
rule that characterizes the efféctln spite of such remark- model predicts:'°
able property, detailed investigation of this class of mean For better comparison with earlier results we study the
field states was stopped largely due to their higher energgorrelation energy using the YL method, that is, we evaluate
compared to the state proposed by Laughliiso, the cor-  the second order perturbation correction to the Hartree-Fock
relation energy for another class of mean field solutions, th¢HF) solution. Two computational procedures are used, one
Wigner Solid (WS), was computed by Yoshioka and Lee employing a Monte Carlo approach for evaluation of the
(YL) yielding a correction to the energy of less than 2%. space integrals over a large sample, and the other by com-
The two sets of solutions differ in that while in a WS state puting in momentum space using a discrete set defined by
there is one whole electron per plaquette, in a CDW stat@eriodic boundary conditions applied to a comparatively
each plaquette contains a fraction of an even denominator aimall sample. As in the half-filling case, both methods yield
an electron charge, such @&. While in the former case the for filling 1/3 an energy correction about ten times larger
charge density is formed by nearly Gaussian peaks arourithan that for the WS stafeadding support to the conjecture
lattice points with little overlap of electrons from neighbor- that at all fillings the high electron overlap of the CDW
ing cells, in the latter the charge density forms continuousnhances significantly the cohesive energy correctidns.
ridges between cells, opening the way for an appreciabld@his reopens the case for the CDW state as a serious candi-
increase of the cohesive correlation ener@his idea was date for precursor to the true ground state in a perturbative
first explored in the simplest case of 1/2 filliBghe results approach in the thermodynamic limit.
confirmed the effect yielding a second order correlation cor- One further outcome is that having included up to 98
rection an order of magnitude larger than for the best Warticles in our numerical calculation convergence is yet not
state. The same line of thinking was also recently consideretkached, suggesting that an even larger number of particles is
by Mikhailov.? needed to fully capture correlation effects through numerical
In this work we report results for the correlation energy of computation, way above current permissible sizes used in
the CDW at 1/3 filling and one half electron per unit cell. first principles numerical diagonalization, which treat at most
The work rests on an analytic solution of the mean field27 particlest! Since, as we show, the CDW charge distribu-
problem constructed using symmetry considerations. Weéion exhibits large intercell overlap through rather steep hex-
show that the electron-electron interaction breaks the singlagonal ridges, it is likely that the slowness in reaching the
particle degeneracy of the lowest Landau leftdlL ), split-  thermodynamic limit is due to the presence of long range
ting it into three remarkably flat bands. All bands contain thecooperative ring exchange effects which, to be effective, re-
same number of states so that only one is filled while theguire a matching large sampllt is of interest to underline
other two are empty, separated by a large gap from the filleth addition that the states discussed in this work can be also
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considered as possible realizations of the so-called “Hall Q=0Q;8,+Qs5,, (6)
Crystal” states, introduced in Ref. 13 to argue the possible
compatibility of the occurrence of the QHE and the presence Q,Q,=0,+1,%2, ...

of a crystal structure.

In Sec. Il the single particle Hartree-Fock Hamiltonian is
diagonalized analytically. In Sec. Ill the second order correc-
tion to the mean field solution is evaluated. Finally, in Sec.
IV we present our conclusions. Details of the calculation are
given in the Appendices. In particular, in Appexd a for-
mula is derived expressing the single particle Hartree-Fock $2= 520 X A,
Hamiltonian in terms of the magnetic translations associated ©
with a lattice of arbitrary periodicity that, to our knowledge,
is absent in the literature.

$5=—_Nn X ao,
3r2

The triangular lattice was here chosen owing to the fact
that it has the lowest energy in two dimensions. Our treat-
A. One particle Hamiltonian and magnetic translations ment can be extended to lattices with other symmetrfs.

II. BLOCH REDUCTION OF THE HF PROBLEM AT v:%

Let us consider a 2DEG in a strong perpendicular mag-
netic field. We are interested in an analytic treatment of the B. Block diagonalization of the HF Hamiltonian
Hartree-Fock problem at filling 1/3. The Hartree-Fock

Hamiltonian of this problem can be written in the compact We next show that it is possible to find a basis in which

the matrix representation @fl) has a diagonal form com-

form posed of simple three-dimensional blocks. In addition, the
262 functions have such a structure that they automatically fur-
Hup= 2> U(Q)GXP<— O_)TranQa (1) nish the translation symmetry of the total density over the
Q lattice (3). For this purpose we consider the basis functions
where the coefficients(Q) are given by @p(x) defined in Appendix A, constructed over the lattice
with primitive vectors
2 reQ*\ (1= 39,0 roQ?
v(Q) = 2ar2p(Qlexp| = || — =22 exp| - bi=a;, b,=2a,. 7
4 N\ rql 4 | _
\/;I (rng)) &2 , The magnetic translations then have the form
2 ° 4 SOrO’ ( ) TranQ :T‘(2/3)Q2b1+Q1b2' (8)

andeg, is the background dielectric constant. The magneticSince the flux piercing the unit cell of the latti¢®) is not an
translation operator§ are defined in Appendix A, while integral number of flux quanta, the set of translation opera-
form (1) is derived in Appendix B. The particle density in tors obtained by varying the intege@s andQ, in (8) do not

real spacep(x) is assumed to be periodic under displace-commute and it is not possible to find common eigenfunc-
ments covering the triangular lattice defined by the vectorstions to all of them. The basis we shall construct decomposes
in a set of three dimensional subspaces, closing each of them

R=ra,+158, 1,1;=0,£1,£2,...; (3)  under the action of translations for all values@f
A first step in finding the basis is to define a set of eigen-
_ |67 10 functions of a translation in the vectag, which is a period
&= \"3( 0ro, of the density. For a given value of the momentpnsuch
orbitals may be written as
-
6m(1 \r’3> 1 ( o )
=757 o b (X)) ==l ep(X) + —————=Tap(X) |,0= £ 1.
2 \’,3(2 2 )0 Xp( ) 2 (Pp( ) exp(—iay. p) az‘Pp( ) .o
The Fourier components of the density are defined as 9)
1 Using the formulas in Appendix A it can be readily proven
p(Q) = Ac_ f dxp(x)expiQ . x), (4)  that these functions satisfy the eigenvalue relation
ell
whereA.g is the unit cell area TaXp(¥) = 0 exp(=iaz . p)xp(x). (10
A =N .2y X a,= 37_”(2). (5) The two values ofr appearing in these equations will play

an important role in what follows. They will allow us to
Here n is a unit vector normal to the electron gas plane.impose the periodicity of the density under the shiftsajn
Through this cell traverse a qu% in units of the magnetic anday,, in spite of the impossibility of obtaining a basis of
flux quantume,=hc/e. Associated with the above real space eigenvectors of all the magnetic translations in the lattice. It
lattice is the reciprocal lattice should be stressed that the range of value9 alefining
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independent functions in the new basis have been reduced in r=-1,0,1,
half, the two values otr compensating for this reduction.
The restriction comes from the singular property of the basis
{ep}, that a magnetic translation is fully equivalent to a shift-

=+1,
ing of the momenta argument as implied by the relation 7
Trep(X) = Fp(R) @p+(2eimoia®)(X) (11)
S
where F,(R) is a pure phase factor. See Appendix A and p=p+ ngl + m%, nm=0,+1,+2,.... (16

Ref. 16 for the justification of this relation. It directly implies
that the shift done ira, in constructing the new basis pre-
cisely changes the momentumof the particle in %,/2.  The |ast relation expresses that, modulo a phase factor, the
Therefore, what has been basically done is to form lineaktates of the new basis are equivalent upon a shift of their
combinations of the original functions associated with diﬁer'momentap in any linear combination with integer coeffi-
ent values of the momentum. In the new basis the magnetigients of half the unit cell vectors of the reciprocal lattice
translation ina; has the simple effect corresponding to the periodicity of the density. The period-
Ty — ; -0 icity of the states under the shifts i5/2 was discussed
TaXp () = expl=iay . )y (), (12 abgve, and the one related wighy/2 sirﬁilarly follows from
that is, it merely changes the sign @fand multiplies it by a  relation(A8) in Appendix A, expressing the equivalence of a
phase factor. magnetic translation with a shift in momentum. The func-
As the next step let us employ the fact that, although thdions just defined have an alternative and more compact form
functions are not eigenvectors of translationsjnthey are ~ given by
eigenfunctions of the double sized translationsan. Ihis is
because its effect, when considered as two consecutive shifts .
: : - : 1 . S5
in a;, have the simple result of making two consecutive g'g)(x):/_—z exp(lP(p”*”).m+—m1m2>Tm¢(x),
changes of sign ofr that reproduce the original function. \"6fo"2) m 6
Therefore, if forp and o fixed we construct the triplet of 17)
states formed by the functio;ag(x) and the other two ob-
tained by a pair of successive translations in the vector
—2a,/3, the operation of performing a translation in an arbi- 7
trary multiple of these vectors leaves the triplets invariant. (3.2 _ I : -
A specific linear combination within each triplet which is N = \/N_"’O \/g (- D™ exp<|k ¢ 4r§)’ (18)
also an eigenfunction of the translation ina;23 can be
obtained by constructing the new basis

X70= 2 )T e xs), r=-1,0,1.(13) €=6Bcy) + 6(20)), (19
s=-1,0,1

After solving the linear equations for the constanfsob-  where the effective momenta and the new elementary lattice
tained by imposing the condition that these functions be soef vectorsm over which the sum is performed are given by
lutions of the eigenvalue problem

T-<2/3>b1x$"’)(><) =7 (x) o-13

PPro=p—rs + =s,, (20)
one finds 2 2
2 27
A"(p) :exp<—ip Ly + l) (14)
3 3 m = m;C; + MyCyp,
c(p) = = exp(— g aS— 27-rirs)
N 3PS ) a
Cl -,
3
r,s=-1,0,1.
Substituting in(13) yields
o)
1 2 Co=—.
Xv7(x) == X expl-Zip.ass °73
V3s=-1,0,1 3
2mirs - The double sun{17) can be evaluated to obtain an explicit
3 )T_(zls)Sbl)(p(X)’ (15 formula in terms of the elliptic theta functions as follows:

235320-3



A. CABO AND F. CLARO

PHYSICAL REVIEW B70, 235320(2004

xz)
expl - —
r")() p< 4rg > D> expl 277 + i B2+ @B + 2 <3a2 32 15a+(971 5)3))
=0 o2 ol 222 -2 o7 _ 2
B\2mING? 5 sasoa TRE T mnp TR EmMA T "o T 2 2 a4
6a, 3a 9r. a 5 5
X @ 03<—2 - =% -(15-54r)a+ 2(— - —),8|1O8r1> X @3(_1 + 22 (ﬁ _>,3>|71). (21)
T 2 1 2 2 12

where

. 1 .
a, =iPP"? ¢ + ?(cl— in X ¢p).Xx,

[¢]

1 .
—(c—in X ¢y . X,
[0}

a.2 = iP(p,r,O') . C2 +

"=—=.
' 6\5

Tae xp (%) = expl=3ip - cp)xy ~7(%),

Tac Xp ' (X) = o exp(= 3ip - €)Xy 7'(¥),

g 700 = X5 (),

where the parity transformatioh is defined as usual by
U ")(x) X(r ?(-x). As shown in Appendix A, from these

symmetry properties it follows that the density associated

with any Slater determinant constructed by selecting one or-

Let us inspect now the action of a magnetic translation bybital within each triplet has exact periodicity under shifts in
%az on the new functions. If such a transformation leaves thell vectorsR.

triplets invariant, then the matrix reduction of the Hartree-
Fock Hamiltonian will follow. One has

But after using A4) in Appendix A for changing the order of
the two operators within the sum, it follows that

2mirs
3

2.
—ip.ays—

T(2/3a2)(p (X)__ > ex "3

V3101

XT (2138, T-(213)50,Xp (X) - (22

2
T2rma Xy " (X) =\ ( 3612))4,[r H9(x), (23

where the square bracket defines the number among the set

{-1,0,% that is equivalent, modulo 3, to the integer in the
argument.

For fixedp and o the matrix elements of the Hamiltonian
(1) in the new basis can readily be found to have the form

2.2
> v(Q)eer( Q r°)

h(r ) =
4

. 5 2mi
xXex |p.n><Qro+?Q2

p,o

X(I’+Q1)> r [r-Qq1" (24)

The problem has thus been reduced to the self-consiste

diagonalization of a three dimensional matrix for each valu
of momentgp and parametes. The basis can be checked to
have the following set of transformations properties:

2
Tzcl)( ro)(x) = exp(— 2ip-ci— il

ri r,o
3 )xMx), (25)

Tac, Xy 7(X) = expl= 2ip - ) xp (%),

In order to find the solution of the mean field problem by
an iterative technique it is sufficient to make an ansatz for the
density in the first step, and then diagonalize numerically the
matrices for a sufficiently high partition of the reduced Bril-
louin cell momentg defined by(16). By selecting the nor-
malized lowest energy state within each three-dimensional
guantum mechanical problem, the Fourier components of the
density corresponding to the new step should be constructed.
Following its definition, it can be done by means of the fol-
lowing expression:

>

ell p,o=t1
2.2
r

o p(_ Q )
4

A

p(Q) = dx Eg?uo)x” 7(x)|* expliQ - x)

> > expip-nxQr?

p o=%1

) > P dp)

r,r’'=-1,01

27TII’
xex Qz [r+Qy-

This formula can be obtained by evaluating the Gaussian
integrals appearlng after substltutlng the expansmns defining
me functlonsx ") The coefﬂmentg,, g,, andg,, define the
omponents of the eigenvectors of the single particle HF
amiltonian in the basis of statgs They fix the wave func-
tions of the filled band and the empty bands as

2

+ ?Qle

(26)

oP70= X Py (x), 27
r=-1,0,1
b=0,1,2.Hereb=0 labels the filled band in each triplet, and
b=1,2label the two empty bands.
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FIG. 1. Particle density associated with the CDW state at filling
1/3.

The fact that the first Landau level is split in just three
bands is a manifestation of the fact that the Hartree-Fock
equations map into a generalized form of Harpers equétion.
As is well known, the Landau level is split intp bands,
where p is the numerator in the rational fraction that ex-
presses the number of flux quanta traversing the unit'€ell. above discussed vanishing condition gives the exact solution
Since in our case this integer equals 3, then the spectrumnd not simply a very approximate one, will be considered

FIG. 2. Single particle band structure for the CDW state at fill-
ing 1/3.

contains exactly three bands. elsewhere.
_ ) o The particle density may now be computed replacing
C. Functions that vanish at the origin these functions in Eq28). The real space particle density

In order to proceed within an analytical context let usthus obtained is shown in Fig. 1. _
consider the observation from former numerical studies, that A main property to be noticed in this figure is the forma-
the particle density for the state considered essentially varfion of sharp hexagonal channels surrounding the low den-

ishes at all lattice pointsThen, let us assume that the den- Sity regions at the center of which the vanishing density oc-
sity rigorously vanishes at this set of points. If this is thecurs. These structures mark the difference with the Wigner

case, the wave function of any of the filled states should thegC!id Whose unit cell encloses three flux quanta. The charge
ensity in this latter instance is made up essentially of well

also vanish at those points. This requirement follows fro'T}ocalized Gaussians centered at each lattice point. In our case
:Ez ifﬁgitvﬁzzlgltk:ji:;;{iterge(;;: gﬁgg?&“?é% %?Bﬁg?;'s a sum OVelhere is strong overlap, suggesting that cooperative ring ex-
P ' change involving many unit cells is a large contribution to
01" (x) % = p(x). 28 the correlation energy.
pvzﬂ Er: 9 (P)xp () P 28) Furthermore, the insertion of the calculated density in the
) _ o eigenvalue equation associated with the matrix representa-
We can then use this property to fix the coefficients of thejon of the Hamiltonian in each triplet, Eq&2) and (24),
wave fUF}CtIOHS within eagh t_rlplet. - o allows for the evaluation of the one particle spectrum of the
After imposing the vanishing conditions at the origin, the system. As it was expected, three energy bands appear, each
coefficients defining the function®7) are fully determined associated with a value of the indbxand covering the full

and take the form range ofp within each triplet. We also note that states asso-
1 ciated witho=+1 turn out to be degenerate. The bands dis-
gg(p) =, persion relations are illustrated in Fig. 2.
/\f; Note the narrowness of the bands as compared with the
gaps separating them. This fact leads to the idea that in this
©(p) = 1 X200 - X220 0) mean field approximation the Coulomb interaction, although
1 J\/p XE) l’+l)(0))(f3+’ Y(0) ‘Xgl’ﬂ)(o))(f; 1-2(q) breaking the degeneracy of the first Landau level, reorga

nizes the states in three equally populated separate sets that
(29 again are approximately degenerate, as if they were Landau
levels of a renormalized problem. Since at 1/3 filling one

o (p) = - S e (%) S (%) P C S (D S (*) band is full and the other two are empty, one expects the
. N XS0 2(0) -} (0)x; 7 P(0)’  electrons to behave dynamically similarly to filling one, ex-

cept for a different effective mass, as the composite fermion
10 i i
1 =10%(p)2 + |a° 2 4 160(p)I2. model suggest’’ The magnetic Wanme_r states are ex-
19(P)I” +19-4(P)|* + lox(p)] pected to be approximate solutions, playing the role of the
Note that the coefficientg are all independent ofr. This  angular momentum states in the noninteracting problem at
completes the definition of our functions. The proof that thefilling one.
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These properties seem to corroborate the possibility of M( a,a'|8',8)
tracing a link between weakly interacting composite fermi-
ons and the Bloch or Wannier orbitals in the mean field so- J f dxdx'®” (x)CD (X)) ——
lutions considered earlier by one of #3To complete this |x — |
section we note that the mean field energy per particle ob- (34)
tained from the above formalism for the solution we have
constructed confirms the value reported in an earlier numeriyhere we have used the shorthand nOtaﬂQ{FCD(bU By

cal computatior, using the anticommutation reIanfaa,a =600, formula

TP (X )P p(X),

&2 (31) can be expressed as
€=-— 0'362_r' (30 .
&
”° =53 >
£ (nn') ()

Ill. CORRELATION ENERGY IN SECOND ORDER

2
ffdxdxdb xx)| D (X,X")

In order to obtain the energy correction to second order of x'|
perturbation theory we proceed similarly as in Ref. 8, start- + _ _ ,
ing with the expressidh () + () = () = (&)

(35
1
E@= 2 (PHFI(H - Hup VD) o — EFF_ <‘1’ |(H = Hyp) |[¥F) where the two particle stateb,,,, are defined by
PHAH|P)|? O (X)D,(x)=D_,(xX)P(x')
= w (30) P, (x,x") = ————— T~ (36)
. ET-F V2

Here WHF, ENF are the mean field Slater determinant andThe pairs(7, ') and(¢,¢') are considered as unordered.
total Hartree-Fock energy associated with the ground state,
respectively, andd is the projection of the exact many par-
ticle Hamiltonian onto the first Landau level. The many par-
ticle excited stateslV; are Slater determinants constructed  As pointed out above the single particle bands are remark-
with the basis(27), mixing states in the filled band with ably flat. We can use this property to simplify the calculation
states in the empty bands. It follows th@¥"F|W)=0, a  of the energy correction. First, we approximate the filled
property that allowed to write the last equality(®i). In the  band energies appearing in the denominato(35f§ by their
second quantized representation the Hamiltoranmill have  mean value,
nonvanishing matrix elements Iinking the HF state and ex-
cited states of the formd)=a, a ,aga |®HF) only, where () = €. (37
a; creates an electron of quantum numbgretc. The index N . _
i is a shorthand notation for the set of two pairs of filled In addition, and slightly more crudely, we substitute the en-
(n,m eF) and empty(¢,& e T-F) electron states, whefe  €rgies in the excited bands by a common energy equal to half
andF are the set of all states in the Landau level and just théhe sum of the mean energies of the two bands,
filled ones, respectively. The indiceg=(0,p,0) and &
=(b,p,o) for b=1,2 denote the quantum numbers of filled €1+ 62

: : €(é) = (39
and empty states, respectively. The total energy of an excited
state isE;=EMP + (&) + (&) — e(5) - e('). Then, the second

A. Correlation energy: First evaluation

order correction can be rewritten in the féfrm This last approximation is taken in view of the small relative
gap separating these two bands.
|(<1)HF|Ha,7 a, a; §'|CDHF>|2 With this simplifying substitutior{35) can be expressed in
E@=> > " — (32)  the simpler form
S ) rely) - e - (g
where the total projected Hamiltonian is E@= ———— J f dx’dx
2(260 €1 62)8
H—ifjdxdx"l'* (O * (X) —— (VT (x)

" 2e, X = x| ffdydy

-iE 2 M(a.o'|B.pasal,aga (33) X (XY ) (X,Y)

= y y ay Aprag. 7TX,y7TXy

280&’,0/ BB |X X ||y y | ! f

The matrix elements of the Coulomb interaction are given by —mX ) mxy ) mely X)mely’ x'), - (39)
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where m; is the projection operator on the subspace of
states of the filled band, ang, the projector associated with
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T, X') = 2 DPT)( PP (X))
p,.bo

the subspace of states formed by the union of the empty
bands. The projectors have the following expression in terms
of the corresponding densities

= P(x,x")27r22, pe(Q)
Q

. x+x" 1
><exp<|Q-( > +§|n><(x—x’)>>,

m(xx') = 2 DL (X)( DX (x 1)
p,o
pe(Q) = 5Q0 pi(Q),
=P(x,x")2mr 2, p(Q)
Q wheredg o is the ordinary Kronecker delta afix,x’) is the
, projection operator onto the first Landau level, defined in
Xexp(iQ . <X+X + lin X (X—x’))), Appendix A.. These e>_<pressions can be_ obtained from_ for-
2 2 mula (B10) in Appendix B. After evaluating a few spatial
integrals, the correlation energy per partic® =E®?/N
(40)  becomes
|
2 et 4’7TV ar (Trr (Ql Qz 2 1
= 2 20 2 pr(Qu)pH(Q2)pe(Qa)pe(— Q1 ~ Q2 — Qa)ex dZ,_rZ
2(2€p-€,_€,)82 v Q, O Qs \z

xexp(— —)eXp< Q1+ Qs)

z 1/ z 2

—i(Q2+ Q) 5)'0(5(7 —n X (Qy+Qy)ro— |(Q2+Q3)ro> )
1/ z _ 2 1/ z

X (exF)é(r__n X (Q1+Q3)ro_|(Q2+Q3)ro> _exl<_§(r__n X (Q1+Q)re—i(Q2+Qyry ) )) (41)

wherelg is a modified Bessel function. In evaluating the sums we found sufficient for convergence to keep the 36 Fourier

components associated with the shortest valu€3. @f these, terms in the longe®tare slightly altered to assure that the sum
rule®

22
2|pf(Q>|2exp(Q ) - (42)
Q

2 (27 ro)2

is satisfied. This condition is used to cancel various fictitious divergences in the formula defining the correlatiofi \&feergy.
then obtain

eleoro)?
=10 $ 95 (0)A(0)AQ9AQs + Qp+ Q)
Am(2€p-€1-€2) Q; Q, Qg

2,2
) ex“(' 122090+ Qa) -1 % (@ Quirg + (22 ro>
— 2 s

x f duexp(—(u Qe fQIN" _jp g, + Q0 '(Qz;Qs)ro))

1 _ 6Q2+Q3 ) (43)

VU+n X (Q+Qory?  \u?

1 1
X Io<§(“ —i(Q2+ Q3)r0)2>sinl-(§(u Qe Qg)ro)z) . (
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where the order parameters of the filled and empty bandenergy values below given in units ef/g,r,)
have been defined as usual,

€corr=— 0.0364% 0.0048, (44)
2.2
A(Q) = Zwrzpf(Q)exp<(Q)—r°), where the first figure is the average over the 16 values, and
° 4 the one following, the mean square deviation. As a check, the

case N, =320000 was also computed, vyielding.y,
(Q)2r2 =-0.0371, which falls within 2% of the averagé4).
A(Q) = 27Tr(2)pe(Q)exp<T°), It is possible to perform an independent evaluation of the
correlation energy that avoids approximatia3) and (38)

respectively. The integrals in E¢43) were evaluated using @nd uses as parameter the numberof particles in the
the Monte Carlo integration method with a variable numberS@mple. This is done next.

Nmc Of sample points. The region of integration was taken as
a square of size 50,, centered at the origin. Results were
obtained for sixteen values o, evenly spaced in the in- Using the formulas derived in Appendix C it is possible to
terval {10000, 16000p. From these data we obtainédll  recast Eq(35) to give it the form

&\
6<2>:3<L0)2 > > >

3
(Ngo)” (0p) (D) (0:Pr) (b7 porvcrr) €

B. Correlation energy: Second method

1
(prﬁyl"/g) + 6(0435’,0'5’) — E(b,pwo‘u) — E(b’ypa’,("a’)

K
E 5( )(PB’,rB,+P/3,rB
Tl o/ T gl g

- Pa,rd_ Pa’,rano) X F* (pwrma-a)g::(pa)]:* (pa’7ra’va-a’)g:f/,(pa’)f(pﬁ"rﬁl’aﬁ')gf‘)ﬁ/(pﬁ')

! ! 2
X FPal 5,000 (Pe) Fo, (N X (Pgr =Par )Y X Fo (N X (Ppip = Pory 1Y) X V(aa', 8,81 |, (45)
I
where the functiorV is defined by TN16C1X:)V'U)(X) =exp—i6p. ClNl)Xg'a)(X),
V(a,a’,B,8") TNzeczxg"’)(X) = exp—i6p . coNp) Xy 7 (%).
_ 2m These constraints can be translated into the relations
Q* rO|Pﬁ’,rBr_Pa’,ra,+Q* | 0.04
xexp(= (P, =Py, +Q*)?)

X exp—irgn
xXQ* - (Pa,ra+ Pﬁ,rﬂ_ Pﬁ’,rﬁr - Pa’,ra,)]-

0.03

0.02

N

N
-,
N

Ry

The form of the pure phase factaf and Fp, the momenta
P.r and the special reciprocal lattice vecto® are all
specified in Appendix C. As before, the functiod%(p) are

the coefficients determining the single particle HF excita-
tions. We remark that once the coefficients for the filled band
are known the other set of coefficients for the empty bands
can be evaluated analytically as the two eigenvectors of the
(83X 3) matrix representation of the single particle HF
Hamiltonian, orthogonal to the vectgf(p).

In order to evaluate numerically expressigtb) we re-
strict the Hilbert space of the single particle HF problem by FIG. 3. The negative of the correlation energy correction as a
defining a cell of sides I&;a,, 2N,a, with N;, N, integers,  function of sample sizeN is the number of particles in the sample.
and impose periodic boundary conditions over its bordersThe plotted values were obtained from H45). The dashed line
Using the symmetry propertig25) we have indicates the result of Eq44).

0.01

-Correlation energy (e?/er,)

0.1 0.2 0.3 0.4 0.5
N 122
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n, by employing symmetry considerations and a special com-
—-6p.c = 27TN_- plete set of common eigenfunctions of the magnetic transla-
! tions. A triplet of bands arises that turn out surprisingly flat
as functions of the two- dimensional quasimomentum. The
-6p. CZZZW&. Coulomb interaction breaks the first Landau level in three
N narrow subbands resembling effective Landau levels of com-
posite fermions, one of which is fully occupied and the other
two, empty. The energy per particle reproduces an earlier
numerical result for this quantif/We find that the charge
nt; nyty density forms hexagonal rings throughout the lattice, sug-
=" N_lE B N_2§ (46) gesting strong long range correlations owing to cooperative
ring exchange. An evaluation of the correlation energy using
second order perturbation theory yields a correction an order
of magnitude larger than that for the localized single-patrticle
wheret; andt, are defined in Appendix A. The cell chosen features of the usual Wigner Crystal st&t®ur results also
traps 6\;N, flux quanta and containsN2N, particles. In  indicate that the thermodynamic limit may not be reached
order to keep the computing time within practical limits, the even when 98 particles are included, thus suggesting the rel-
values ofm; andm, in the expression defining the summa- evance of long range correlation effects in the generation of

They restrict the values of the quasimomentpnto a dis-
crete set, as expressed in compact form by the condition

0=ny;<Ng 0=ny, <Ny,

tion argument the enhanced cohesive correlations. Further, numerical re-
sults we have obtained at fillings 1/5, 1/7, and 1/9 show

Q* = m1§t1+ ngtz (47) that the CDW charge distribution also has hexagonal ridges

2 3 that become sharper as the filling decreases. One can then

speculate that these states have a large correlation energy,

i [ “m < - < : .
were restricted to 'ghe regions 1 4.and smp=4, making them good candidates for the ground state at such
ranges found sufficient to assure numerical convergence. Tr]e

: : ow electron densities. Further results for these latter fillings
energy correction was calculated for samples wt+N, .
- L : ill be reported elsewhere.
=N, yielding an aspect ratio close to one. The upper bound’
for N, set by computing limitations, was,=7. The number
of particles associated with this value N&=2N2=98. Re- ACKNOWLEDGMENTS

sults are shown in Fig. 3 as filled circles. The straight line is : ;
a linear fit in the variabl&"2 whose intercept in the limit of 10;—?832\3/2:]( dW;ng%%g%?r:ﬁ: Iggﬁ%%’;g?g&?;ggg; '\flgrs '
largeN yields the value international cooperation, the ICTP Associateship Program
ecorr = — 0.0347+ 0.0027, (48)  and the Third World Academy of Sciences. Helpful discus-
sions with A. Gonzalez, G. Baskaran, N. H March, K. Esfar-

vious method, shown as an horizontal dashed line in the

figure. Notice that the linear fit in terms of the variable'/?

is suggested by the fact that making the sample finite pro-
duces a boundary energy which in two dimensions varies as 1. Eigenfunctions of magnetic translations
the square root of the number of particles.

As Fig. 3 suggests, convergence to the thermodynami . o ;
limit requires the inclusion of a large number of particles,i‘ under a perpendicular magnetic fiddd A useful basis set

even beyond our largest value of 98. This outcome points tff single particle Bloch-type states in the lowest Landau

. . . - vel can fined in terms of linear combinations of th
the relevance of long distance correlations in reaching th neoremgl?zegiedr% aﬁdulart%orieontume; (v:a?lfuactail(t)r? s of the
correct value of the energy through numerical computations, 9 9

APPENDIX A

Consider a 2DEG constrained to move in a plane of area

possibly dominated by cooperative ring exchange effécts. 1 X2
Adding the valug48) to the Hartree-Fock resu(80) one d(x) = N " (A1)
[0} [0}

obtains the energy per particke=—0.397. Published values
taking one electron per cell and including correlations arein the compact fornf;1>16.18

ey =—0.3901 using perturbation thedihand ¢ c=-0.3948 .

using a variational approa¢h.We notice that our result is — =N (_ 1)\t i

slightly lower than either value, suggesting that the CDW adx) = Nk%:( D zexplik . O)Teh(x),  (A2)
state is a serious candidate for the correct Hartree-Fock pre-
cursor to the true ground state of the system.

2
N = \W%\/§ (- 1tz eXp<ik - i).

4rd

IV. SUMMARY . . L -
Due to its role in the above definition the functigris called

An analytic solution of the Hartree-Fock problem for a the “seed” function. The sum runs over all integéss ¢,
2DEG at filling 1/3 and half electron per unit cell is found defining a planar lattick, through{¢=¢b,+¢,b,, where the
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unit cell intercepts one flux quantum, so thatb;Xb,
:Zwrﬁ. The magnetic translation operatdrg acting on any
function f are defined by

Tr f(x) = exy< %SA(R) ) x)f(x -R), (A3)

where the vector potential is assumed in the axial gauge

A(X)=B(=x,%;,0)/2 and the electron charges taken with

its negative sign. This basis was employed before to obtain
exact mean field solutions of the related problem at filling

1/28 For arbitrary vectork; andR, the translation opera-
tors satisfy the commutation relation

ie
TR]_TRZ =eX %A(Rl) . RZ TRZTRl' (A4)

As it may be easily verified, the functiong, satisfy the
eigenvalue equation

PHYSICAL REVIEW B70, 235320(2004

Fo(a)= #p(0)

. (A9)
Ppr2(ehc)A(a) (@)

That is, a magnetic translation is equivalent to a shift in the
quasimomentum.

2. A gp-transform
Any function f in the first Landau level, and its inverse,
can be represented as

f(x)= 2 c(p)gp(x)

peB

dp . —
= fpeé WC(p)wp(X).C(p)
= f dxe,(X)f(x),

wheregy(x)= \@pp(x), T(p)=VSdp), with S= 273N 4y With
Ny, the number of flux quanta in the system arBds the

Teok(0) = MO (%), (AS) " Brillouin zone defined by the unit cell vectors
) 1
(€)= (- D2 exp— ik . €). (AB) ty=- pn X by,
0
Arranged in an arbitrary Slater determinant these functions 1
are exact solutions of the Hartree-Fock probféi? This t,=n X by.
strong property happens because the HF single particle I'o

Hamiltonian commutes with all translations leavirlg

The orthogonality and completeness relations in the first

invariant!® The functions(A2) are common eigenfunctions
of the commuting magnetic translations. Moreover, the set o
eigenvaluegA6) uniquely determines them. Therefore, the
HF Hamiltonian associated with the Slater determinant can-
not change those eigenvalues and theshould be eigen-
functions.

Finally, let us show that the effect of an arbitrary transla-
tion on the basis functions is equivalent to a shift in the
momentum label, modulo a phase facdbOperating twice
with the translation operator involving an arbitrary vector
and a vector in the latticé and using Eqs(A4) and (A5)
one readily gets,

%andau level of the modified functions take the forms

f X, (X)ep (X) = (2m)28(p —p’),
A

dp — .
e Ex).

PO,x') = 2 ¢p(X)ep(x) = &P

peB
(A10)

(r,0)

3. The orbitals Xp

as special cases of the basis functions
ep(x)

Let us now verify that the functiong”"’) constructed to
diagonalize in blocks the HF Hamiltonian in Sec. Il are sim-
ply constant phase factors multiplied by a particular kind of
basis functionsp,. These differ from the orbitals considered
in Sec. Il and defined by the unit cell vect@® in that their
basis vectors are given by

TaTeep(X) = Np(O) Tagp(X) = exp<2f'L—eCA(a) A )TeTaq:p(X).

(A7)
Again using(A5) we have

T(Ta®p(X) = Npsaernea@(€) Ta@p(X). ,
blzéal,bzzaz. (All)
Then, taking into account that the set of eigenvalues define§

, : | o start out it will be useful to consider thg,-transform of
uniquely the wave-functions modulo a phase, it follows thata translated “seed” functiom(x). For this purpose we notice

that it is possible to fix the second argument of the projector
operator to be equal to the translation veetolt follows that

the projector operator in the first Landau level can be rewrit-
ten as

Ta(Pp(X) = }—p(a) SDp+2(elhc)A(a)(X)- (A8)
from which also follows,

235320-10
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(x - a)? ie changed by a superposition of itself translated to the points
) P( A(a) ) uc,+vc,. However, it was shown in Ref. 16 that the basis
functions are completely independent of an arbitrary change
a p in the “seed” for any other function in the first Landau level.
= v%T af(x) = = (2 )2‘Pp(x)‘Pp(a) An alternative proof of this curious property is possible.
0 pe To see it let us represent the “seed” functiongAi5) by
(A12)  their g,-transform(A13), yielding

where the last equality is merely the definition of the projec- )

tor operator in coordinate space. Therefore, these relations (r,@(x) _ DD ex;{ﬁw +ipPro)
determine the following ¢p-transform of the translated P (3 2 01 pe1.01

“seed” function

1
P(x,a) = S exp -
27y 4rg

q S

dp X (ucy +ve ))f—\,'ZTrr @

Ta(ﬁ(x):f 2 )2(\27Tr0¢p(a))99p(x) (A13) ! ? (277)2 0¥a
peB

X (ucy +vCy) @q(X) X expli(PPr? —q) - €),
Next we will consider the definition ¢

1 S5 i i i
(,0) () = ip(Pro) m 4 2 after employing the character of eigenfunctions of the opera-
X () \J’ENS"Z)% exp<|P -m m1m2> m# () tors T, that the functionsp, have. But now the following
identity can be employed:

(A14)
and represent the vectams in terms of alternative vectors s i(q—a’) o) = (277)25 ,
and the indicesr and B8 defined through the expressions a expiq-q’) - 6) = 272 @.a"),

m=+{+ 6,
where theé function is nonvanishing for equal arguments

modulo a vector of the reciprocal latti€@=3Qt;+2Qt,.
This relation allows to show the desired connection between
the basis func’uon;‘\/(r ) and @p(x),

= 61201"‘623(:2,

6=UCy +vC,.
The symbolsa, B, ¢4, and{, are specified by the relations X0 O(x) = F(p,r,0) @ppro(X),

0 if my =0 Moduld2)
u=(m) = {

where the phase factor is given by
1if m;=1 Modula2),

1 S5ri
-1 if my=-1 Modulg3) Flp,r,0) = N TENEE] > D exp—uw
. _ \6\27Tr0N u=0,1v=-1,0,1 6
v=[m]=y O if my=0 Moduld?3)
1if m;=1 Moduld3), +iPP") . (ucy + UCZ))@(P,r,U)(UCl +0Cy).
m; —(m
=
4. Periodicity of the Slater determinants of triplet
orbitals
¢, = M-l . . . .
2= 3 : Here we show that the single particle density associated

_ o with a Slater determinant formed with a set of functions,
The use of these alternative definitions allows to w&&4)  each one corresponding to an arbitrary linear combinations

in the form of the triplet of orbitals characterized by the indi¢pso), is
periodic over the latticd&k. To consider this question, let us
Xy 7(x) = —= (3 2)2( 1)tz expliPPr? . )T, use the basic property that the density of a many electron
'GN Slater determinant constructed with orthogonal orbitals is the
5rri sum of the individual densities of each orbital. Writing the
X4 > > exp(—UU +ipPro selected linear combinations as
u=0,1v=-1,0,1 6
(o) (r,o)_ (r,0)
X (U, + vc2>)Tucl+vcz¢<x>}. (A15) 0= 2 G 0, (AL0)

Now, it can be noticed that the above expression differs fronwhere the coefficient€"” are arbitrary, and considering the

the definition (A2) only in that the “seed” function is symmetry propertleszg) it follows that
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p0=3 2 [0 b0 = & J ax PX) =N/
p o=l €o |X_XI|
- (=0) (4 )2 = (r' o) r.o) e iQ-
=3 3 W wi=3 3 $ 3¢ -€S o [ a2
p o=t p o=tl r €0Q+#0 | - |
X (eXPlip - a) Ta X1 ()" €Xplip - a) Ta xX5(x) _y 27 P(Q)(ﬁg : %9 oxrfiQ %)
Q %o
Ik ie ’ .
-3 3 3 5o ey ex| Eata x)ay =3 L 9QexiQ X 9
p o=l r Q
* ie Then, using the representation of the kernel for the projec-
X (X = a1)> ex;{aA(al) -x)Xg"’)(x -a;) tion operator in the first Landau level
Blx ) = 1 ~ (x—x')? i_eA )
=§ 2 17y (x-agf=plx-ay). X = 2 O e RGN X

we obtain,
One can show in a similar way thatx)=p(x—ay).

Ebp(d)(x) - f der(X,y/)z v(d)(Q)eXF(iQ .y’)qop(y’).
Q

APPENDIX B (B4)

_ Here we shall derive the general formula expressing th@ecalling definition(A2) we get for each translation term
single particle Hartree-Fock Hamiltonian as a sum of mag-

netic translation operations. The arguments of these opera- @ @ )

tors are spatial vectors determined by the reciprocal lattice Lt (X) :f dy’P(x,y") 2 v P(Q)expliQ -y ) Ty (y’)

associated with the Fourier components of the density. It is Q

worth remarking here that the lattice considered in this Ap- 1 Q¢
p(— ngQz)exp(i )

1
pendix is not restricted in any way. Therefore, the represen- == > v ¥(Q)ex X
tation of the single particle HF Hamiltonian is valid for a V2mo Q
general though periodic mean field problem. 1 5 5
Consider the action of the kernels of the direct and ex- xexp - P(X‘ (£-r5Q X n))
change interactions defining the HF Hamiltonian over any of 0

the elementsp, of the complete basis functions as follows: i
$DD p —?X-(€+ranQ)>
l'o

=0 (x) = 4D (v7
©9(x) HEPp(Y') — % v(d)(Q)eX%— %rSQz)

e (y) - ny/€
== f dydy' Pxy) 2X I, (BD)
&6 ly -yl Q-
Xex lT T€+rgn><Q¢(X)- (B5)
9(x) = Hiskoy(y") This last relation can be further simplified by employing re-
, lation (A7) and the similar property
& (v.y")
=——fdydy’P(x.y’)p eply),  (B2)
€o |y_y |

ie
TRlTRZ = eX[{ ﬁ_CA(Rl) " R2>TR1+R21

wheren, is the jellium background charge density making leading to the formula
the overall system neutral. The representation we shall derive

is valid for both direct and exchange kernels and will be
discussed below for each case separately. f dy’P(x,y") 2 v Y(Q)expiQ - y") Tyh(x)
Q
. . . 1
1. Direct Coulomb interaction => v“”(Q)ex;{— ZrSQ2>TranQT€¢(X)-
Q

The potential term representing the direct Coulomb inter-
action can be written in its Fourier transform representatiorAfter adding corresponding the integrals over all translations
as follows: ¢ one obtains
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1 some special properties of the one particle density matrix.
(d) - d —_ 2202 L . .
Hijrep(X) = % v )(Q)eXP< 4foQ )Trgnngop(x). Then, let us initially consider these properties.

Since the equality is valid for any element of the complete

. . a. One particle density matrix transformations
basisg,(x) it then follows, P y

@ @ 1,, The definition of thg one-particle density matrix in terms
Hit =2 v @(Qexpl - 2707 Teznxo- (B6)  of the Slater determinant®(x;,X»,X3,Xs, ... Xy) can be
Q transformed by performing a simultaneous magnetic transla-
tion operation in a vectdr of the periodic lattice over all the
2. Exchange interaction particle coordinates. Since this is assumed to be a symmetry
The derivation of the analogous representation for the extransformation of the system, this map should leave the
change interaction kernel is more involved and needs fomany particle state invariant. Thus by assumption

P(X11X2):J "‘fdxadx3‘"dXN|¢(X1,X2,X3,X4, "‘,XN)|2

N 2
:f "'de3dX3"‘dXN
3

H TRX) P (X1,X2,X3,X4, *** , XN)
= > Wyx)) W (xo)

= E TR(Xl)‘I’s(Xﬂ(TR(Xz)‘I’s(Xz))*
i_e

= ex ﬁCA(R) (Xq = X2)>9XF(\I’5(X1 ~R) (¥4(x;=R)) p(X1,X2)

:ex%ﬁA(R) : (Xl—XZ))p(Xl— RX,-R), (B7)

an expression that furnishes the transformation law of the ~ ) e -
one particle density matrix under spatial shifts in the vectors p(x,2) =2 expi| Q- h_cA(R) X [p(Q,2),
of the periodic lattice. Q

b. The density determines the density matrix where
Below we will show that the Fourier components of the ~ 1 , . ,
density completely determine the whole one-particle density p(Q.2)= Acel f dx” exp(=iQ - x’)
matrix. For this purpose, let us use the new variabte
—-Xx’ in the one-particle density matrix, so thatx,x’) ><exp<i£A(z) -x’)}i(x’,z). (B9)
=p(x,z), where the tilde ovep underlines the different func- fic

tional expression of the new definition.

) . It now transforms Further, let us consider the density written as the sum
under spatial shifts as

- ie - 2 T )X
p(x-R,z)=ex _ﬁ_cA(R) -Z[p(X,2). (B8) s
Therefore, the function :% 2 ,fr'”(p)xgm(x)f:’,rr’(p)Xg"U,)(X’)*’
r,or ,o
-~ ie - '
g(x,2) = ex;{— ﬁ_cA(X) 'Z)P(X,Z), and the fact that eacl’ *” in the lower Landau level can be

expanded as a linear combination of the complete basis func-
is fully periodic in the variablex under the lattice shifts. That tions{T,¢(x)} defined over a lattice with one flux quantum
isg(x—R,2)=9(x,z). Then, Fourier expandingleads to the per unit cell?° Then, a generic term in the integral {B9)
following expression foip has the form
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p;’f/(Q,z) = 1 f dx exp(—iQ - x) H©) (pp(x) = (2 (e)(Q)ex%— —rOQ )T,anQ> (pp(X)

ell

. e ’ *
><exp<|%A(z) 'X)T€¢(X)( Ter (X )xr=x-2) - Using the independence and completeness of the basis
formed by thegy’s in the first Landau level, we thus obtain
Since the functionp is a Gaussian, its magnetic translations

(A3) have also this character, and thus the integralB8®) 1
can be calculated explicitly. We obtain, Hig = % v®(Q)exp| - ZFSQz Tiznxq-
z .
pee(Q,2) = pre(Q, 0)exp< a2 2 4_r(2)Q (nXz+ 'Z))- Combining this results and the previous aB&) the follow-

ing representation for the one-particle Hartree-Fock Hamil-

But since the phase factor here is independent of the indicd@nian in the first Landau level follows,
€,¢’, the summation of all the contributions (B9) leads to
the relation

Huyr= > 0 9(Q) + v<e><Q))exp<— 1réQz)Trznxq
2 Q 4 0

1
p(Q,2)= p(Q)exp< —Q-(nXz+ |z))

1
argarg = o(Qexp| - 51Q% | Tizuxo (B14)
(B10) Q 4 0
7(Q,0) = p(Q) with the coefficients defined by
which expresses the interesting result that the full one- (1-600)
particle density matrix is completely determined by the par- v(Q) = 27TroP(Q)<ﬁl
ticle density. Q
We now consider the exchange teriB2). Using the T 1, 1, e?
above results the integrals in =\ 5 exp 7 roQ° lo| ~1gQ°| | ——. (B15)
2 N4 4 oo
¢(e>(X):—ezfdy’P(x,y’)jdz
APPENDIX C
. e ,
X2 exp<|(Q - %A(Z)> Y ) In this Appendix we sketch the derivation of the formula

(45) employed in the evaluation of the sample size depen-
dence of the correction to the energy per particle. As before,
we use the shorthand notation

p(Q)
||

can be calculated explicitly. For this purpose, let us consider (b ) — » (1,02) () — (bt )
again the integral of a generic term ¢ in the sum over Do =y E g, (b )X Y00=2 dpa #p,r(X);
defining the functionsp,. The integral for this term is then

reduced to two simple integrals, which after some algebra

can be explicitly evaluated to obtain d(b 194 = F(po.r,o)al(p,),

eply’ —2), (B11)

4
E v e)(Q)eX%_ _ron) eX% Q2 >T€+r nXQ¢(X)

-13

Py =PPalva=p —rs + =~
a,r pa 1 2 252

=2 v<e>(Q)exp<— ZréQZ)TranQw(x), (B12)
N The relations expressing the functiox}% in terms Of(pp
times a phase factor has also been employed in order to

©Q)=- 2me’ry \/ETJ(Q,O)GXPGFSQZ)|o<1rgQ2)- define the new coefﬁmentsl(b 1), By representing the
€o 2 4 4 Coulomb potential by its Fourler transform, and substituting

(B13) all the expansions of the functlo% in terms of magnetic
translations of the “seed” in the matrix elemeri8l), the
Henceforth, after adding all terms for different valuesfof resulting Gaussian integrals for each term can be evaluated.
follows After some algebra it is possible to obtain the expression
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M(a,a'|B',B) = ffdxdx oy (x)CI> (X ) =D g (X" )P g(x)

[x - |
D SN e

ra rr rBr I‘B

R . 1
12 !
X J f dxdx (Ppavra(x)(Ppa,’ra’(x |X - X,| (PPB,JB/(X )@pﬁ'rﬁ(x)v

=Ny 2 3 33 (dpetardd ey dT P X 8Py + Pyr, = Par, = Par 1 0)

g T I’Br I‘B
@;Ly(n X (P,B',rﬁ,/ - Pa’,ra,)r(z))‘P;a,(_ nx (P,B’,rB, - Pa’,ra,)r(z)) 2ar
239 N2I x 2 P +Q
PB,vrg’ PBvrg I'Br al,r o
xexp(- rg(P,B’,r’Br - Pa’,ra, + Q*)Z) X exg- ifgn X Q* : (Pa,ra + PB,r’B - PB’,rﬂ, - Pa’,ra,)], (CYy
I
where the summation vecto@ and the norm functions are op (NX Py, - )rd)
) ar B g a’'r 0
defined as follows: @
* = ep, . (n x (Pa,ra_ Pﬂ,r )rg)
Q' =ni3s + s, (C2) g "
:.7']:)01'r (n X (PByrﬁ_ Pa'ra)ro)
€2
NE? = Ny, \/g (- 1)fate ex;{iP - P) , X (PPMw—(2e/hc)A(nX(Pa’ra—PBYrﬁ)rg)(o).
0
€=4£4(2¢)) + €5(3cy), But the new momenta argument of the function in the rhs can

be simplified as
and, as befored(P’,P) equals one when the arguments are
same modulo vectors of the cla®$ defined above, and zero
otherwise. It is possible to show now that the ratio multiply- 2e o 2n 5
ing this latter function is simply a phase factor. For this pur- _A( X (P, = PprJro) = 22 X (N X Py, =Py ro)
. . . 0
pose let us consider the definition of the

= Pl&r[g - Pa,ra'
op,r (X)= N(2 ] E (- D2 expliPyy - OTeh(x),
to produce
(C3
from_which follows direc_tly a connection betwegn the value ep_ (N X (Pgry = Pury )ra)
of this function at the origin and the norm functions appear- *la
ing in (C1) =Fp,, (N X (Pgr = Pa,,a)rg)q)pB’rB(O).
0)= —1€1€2ex;n<iPa -€——)
(’Dpav'a( ) zg’( ) Ta 4rd Similarly it also follows
N23
= \/27TFSN¢0. QDPQ,J&,(_ n X (P,B’,rﬁr - Pa’,ra,)rg)
— _ 2
Further, let us recall the formula connecting a translated ‘}—Paura,(n X (Pﬁ”fgf Pa’vfa')r0)¢Pﬁ',rB,(o)'
function of the basisp, and the same function for a shifted
momenta(A8). After considering this relation evaluated at
x=0, the following expression can be obtained: which finally leads to the desired results
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* 2y * 2
@Pa‘r (n X (PB’,rB, - pa’,ra,)ro)(Ppw,yr ,(_ n x (Pﬁ’,rﬂ, - Pa’,ru,)ro)
23 @I
Parry Par,

* A ndl 2
Fp,, (NX(Pgr = Por o) Fp, (N X (Pg =Py )ro)

- . (C4
ZWF(Z)NiO

The expression for the matrix elemei@l) allows us to directly write formul@45) employed in Sec. Ill for evaluating the
correlation energy.
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