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ABSTRACT 

Seismic site amplification and seismic hazard maps are crucial inputs for decision making 

and risk evaluation in places where seismicity imposes a significant risk to human life and 

infrastructure. In Chile, one of the most seismically active countries on Earth, the state-

of-the-art techniques used for constructing seismic hazard maps rely primarily on 

qualitative or indirect, geologic data, with a limited consideration of the dynamic 

parameters dictating the site’s seismic response. In this work, we propose a novel 

methodology for integrating qualitative and quantitative data to map the seismic 

susceptibility and dynamic amplification, using machine learning (ML). Our method uses 

measurements of surface shear wave velocities (Vs30) and predominant frequencies (f0) on 

randomly distributed sites, combined with gravity anomaly maps to update the geographic 

extension of seismic amplification units. Additionally, we trained the predictive models 

to interpolate and extrapolate Vs30 and f0 in the unsampled sites. We selected the Maipo 

River Basin as our testing region for this model because of its strategic importance and 

the large population and critical infrastructure exposed to seismic hazards. Applying this 

method to the case study resulted in (i) a refined seismic susceptibility map, and (ii) maps 

of Vs30 and f0 estimated with great precision in the study area. The best predictions, 

obtained by ML techniques and validated through cross-validation, are possibly due to the 

inclusion of spatial covariates for algorithm training, enhancing the ability of the model 

to capture the spatial correlations of geological, geophysical and geotechnical data. The 

estimation of predominant frequencies is considerably improved by including gravity as 

a covariant. The accuracy of the f0 predictions apparently depends more on the choice of 

covariates than on the algorithm used, while the Vs30 predictions are more sensitive to the 

chosen algorithm. These results illustrate the great potential of machine learning 

predictive algorithms in digital soil mapping, which surpass traditional geostatistical 

techniques. Additionally, and using the best predictions, seismic hazard maps were 

generated for the case study through an open-source software, designed to generate strong 

motion indicators for different seismicity models and ground motion prediction equations 

under different scenarios. The major contribution of this work is to introduce a novel 
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estimation methodology based on artificial intelligence models to extend local 

measurements of site’s dynamic properties in an area of interest. This information can be 

used to quantitatively estimate the seismic hazard at regional scale. 

 

Keywords: seismic site amplification, seismic susceptibility, machine learning, seismic 

hazard. 
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RESUMEN 

La amplificación sísmica de sitios y los mapas de amenaza sísmica son insumos cruciales 

para la toma de decisiones y evaluación del riesgo en lugares donde la sismicidad impone 

un riesgo significativo para la vida humana y la infraestructura. En Chile, uno de los países 

con mayor actividad sísmica de la Tierra, las técnicas de vanguardia utilizadas para 

construir mapas de amenaza sísmica se basan principalmente en datos geológicos 

cualitativos o indirectos, con una consideración limitada de los parámetros dinámicos que 

dictan la respuesta sísmica del sitio. En este trabajo, proponemos una metodología 

novedosa para la integración de datos de naturaleza cualitativa y cuantitativa para mapear 

la susceptibilidad sísmica y la amplificación dinámica mediante aprendizaje automático 

(AA). Nuestro método utiliza mediciones de velocidades de onda de corte superficial 

(Vs30) y frecuencias predominantes (f0) en sitios aleatoriamente distribuidos, combinados 

con mapas de anomalía gravimétrica para para actualizar la extensión geográfica de las 

unidades de amplificación sísmica. Seleccionamos la Cuenca del Río Maipo como nuestra 

región de prueba para este modelo debido a su importancia estratégica y a la numerosa 

población e infraestructura critica expuestas a amenazas sísmicas. La aplicación de este 

método al caso de estudio resultó en (i) un mapa de susceptibilidad sísmica refinado, y (ii) 

mapas de Vs30 y f0 estimados con gran precisión en el área de estudio. Las mejores 

predicciones, obtenidas mediante técnicas de AA y validadas mediante validación 

cruzada, se deben posiblemente a la inclusión de covariantes espaciales en el 

entrenamiento de los algoritmos, mejorando la capacidad del modelo para capturar las 

correlaciones espaciales entre datos geológicos, geofísicos y geotécnicos. La estimación 

de las frecuencias predominantes es considerablemente mejorada al incluir la gravedad 

como covariante. La precisión de las predicciones de f0 aparentemente depende más de la 

elección de las covariantes que del algoritmo utilizado, mientras que las predicciones de 

Vs30 son más sensibles al algoritmo escogido. Estos resultados ilustran el gran potencial 

de los algoritmos predictivos de aprendizaje automático en el mapeo digital de suelos, que 

superan a las técnicas geoestadísticas tradicionales. Adicionalmente, y usando las mejores 

predicciones, se generaron mapas de amenaza sísmica para el caso de estudio, a través de 



xiv 

 

un software de acceso libre diseñado para generar indicadores de movimiento fuerte para 

diferentes modelos de sismicidad y ecuaciones de predicción de movimiento de suelo bajo 

distintos escenarios. La principal contribución de este trabajo es introducir una 

metodología novedosa de estimación basada en modelos de inteligencia artificial para 

extender mediciones locales de las propiedades dinámicas de los sitios en un área de 

interés. Esta información se puede utilizar para estimar cuantitativamente la amenaza 

sísmica a una escala regional. 

 

Palabras Clave: amplificación sísmica de sitios, susceptibilidad sísmica, aprendizaje 

automático, amenaza sísmica.
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1 INTRODUCTION 

 

Chile is a country highly exposed to natural disasters. Earthquakes, tsunamis, volcanic 

eruptions, forest fires, landslides and many other natural hazards have impacted the 

territory since ancient times and remains as a permanent threat. The 2017 Organization 

for Economic Co-operation and Development report shows that Chile has an average of 4 

natural disasters per year, ranking it as the fourteenth country in this group with the most 

natural disasters per year, and as the second country with the most economic losses due to 

these disasters. Between 1980 and 2011, in Chile there have been annual losses close to 

1.2% of gross domestic product due to natural disasters (United Nations, 2015). This is 

equivalent to 3 times the percentage of gross domestic product that the country spends on 

investment in science. These large costs considerably limit the development of the 

country, i.e. strategies are required to mitigate the economic and social impacts resulting 

from natural disasters. 

 

On the other hand, even though Chile has made progress in the study and individual 

characterization of the physical processes that constitute natural hazards, there is not an 

integrated vision of these processes, which is technically known as multi-hazard. 

Numerous recent events have highlighted the interrelation of the different hazards, 

showing how its chain effect can increase their impact. For example, in September 2018, 

a Mw 6.6 earthquake occurred under the Hidaka mountain area on Hokkaido Island, Japan. 

The earthquake generated a massive landslide, killing 41 people, hundreds injured, and 

numerous houses destroyed. The earthquake occurred just days after Jebi Typhoon, so 

there are well-founded suspicions that the devastating result of the earthquake was 

amplified by the softening of the soils because of the rains associated with the typhoon. 

Also in September 2018, a Mw 7.7 earthquake and tsunami occurred in Palu, Indonesia. 

The events left as a result, only in the Palu area, 1,750 deaths, 800 missing and more than 

70,000 residential buildings destroyed. The great level of devastation was enhanced by 

the cascading effect of the earthquake, tsunami and liquefaction that affected the subsoil 
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of the city of Palu. Another example corresponds to the model assess the impact of 

different volcanic hazards on the building structures, developed by Zuccaro et al. (2008). 

They showed that the sequence of events derived from a volcanic eruption (earthquakes, 

ash flows and pyroclastic flows) can cause the progressive deterioration of the building’s 

resistance characteristics, even causing their partial failure. Similarly, research in other 

countries have studied the relationships and mutual influences between different types of 

natural hazards (e.g. Tarvainen et al., 2006; Marzocchi et al., 2009). Then, it becomes 

clear that the multi-hazard dimension could be a key component in efforts to mitigate the 

impact of natural disasters in Chile. 

 

Chile's high exposure to natural hazards together with the inadequate perception of multi-

hazard risk constitute a great opportunity for applied scientific research to foster transfer 

to the public system and to develop technological improvements. The Fondef project 

ID19|10021 “Proposal for a guide, mapping and multi-hazard platform for critical 

decision-making and adaptation to climate change in metropolitan regions and large 

conurbations of Chile" aims to take this opportunity and solve the needs mentioned above. 

The project's proof of concept is developed in the pilot case of the Maipo River Basin 

(MRB), which includes the Santiago Metropolitan Region (SMR) and part of the 

Valparaíso Region. Specifically, the project seeks to (i) identify the individual and 

concatenated hazards present in the MRB, (ii) generate a multi-hazard map, (iii) generate 

a platform and guidelines for the development and use of the multi-hazard map, and (iv) 

disseminate the map and the platform.  

 

The natural hazards that will be addressed by the project are seismic, volcanic, tsunamis, 

landslides, rockslides, forest fires and floods. As part of these threats, the seismic hazard 

is a particularly relevant component. Indeed, the tectonic context of the Chilean territory 

places it as one of the most seismic country in the world (Scholz, 2002), where an oceanic 

plate (Nazca plate) subducts to a continental plate (South American plate). Under this 

tectonic environment, Chile is affected mainly by 3 types of earthquakes: contact between 



15 

 

 

plate or interplate, intermediate depth intraplate and shallow crustal. Its impacts can 

generate great economic and human losses, and large earthquakes are usually triggers of 

other potentially devastating natural events such as tsunamis, rockfall, liquefaction, etc. 

This thesis addresses the seismic hazard in the MRB, as a component of the Fondef project 

ID19|10021. 

 

The ways in which the seismic hazard is assessed in Chile are diverse and operate at 

different scales. At the regional scale, the seismic hazard is usually assessed through 

seismic response maps, generated mainly with qualitative information, such as available 

geological information and perceptions of previously recorded earthquakes (e.g. 

Fernández, 2003; Von Igel et al., 2004). At a more local level, the seismic hazard is 

assessed through the seismic classification of sites, according to the Chilean seismic 

design code for residential buildings, NCh433. This classification is generated using 

mainly quantitative information, such as surface shear wave velocities in the first 30 m 

(Vs30), rock quality designation (𝑅𝑄𝐷), undrained shear strength (𝑆𝑢), etc. In this study, 

the main idea will be to integrate information of different nature and scale, to achieve a 

more complete, detailed and accurate seismic hazard assessment than those achieved 

previously. For this, we will give special prominence to computational artificial 

intelligence techniques applied to digital soil mapping (DSM). Information from the areas 

of geology (seismic response maps), geophysics (gravimetry and results from surface 

wave geophysical methods), seismic geotechnical engineering (seismic classification), 

computation (artificial intelligence models) and topography (digital elevation models) will 

be combined to achieve an innovative and original result. 

 

This study provides one qualitative and many quantitative evaluations of the seismic 

hazard in the MRB, consisting in the following results. First, a refined and updated seismic 

response map of the MRB was generated for the qualitative assessment of the seismic 

hazard. This map was generated from available geological information, previous seismic 

response maps, an extensive compilation and execution of dynamic soil characterizations, 
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gravimetric studies, and topographic information of the area. Second, seismic hazard maps 

were generated for different scenarios, in terms of the peak ground acceleration (PGA). 

These maps are the result of a methodology that combines computational artificial 

intelligence tools with the refined seismic response map mentioned above, to predict 

dynamic properties of sites with great accuracy. These predictions subsequently allow 

evaluating the expected seismic intensity in a future scenario through a state-of-the-art 

seismic hazard analysis platform. Finally, and to allow the combination of the seismic 

hazard with other natural hazards considered in the Fondef project ID19|10021, a map of 

probabilities of exceedance of a given intensity is provided. This exceedance probability 

map is obtained from the same inputs as the seismic hazard map using the same platform 

but applying a different criterion. 

 

Chapter 2 shows the background compilation and details of the field work. Chapter 3 

shows the results of this study at the MRB scale. Chapter 4 corresponds to a copy of the 

article “On the use of machine learning techniques for the estimation of seismic 

susceptibility and the quantitative assessment of the seismic hazard. Application to the 

Santiago Basin, Chile”, submitted to Engineering Geology journal. That chapter details 

the methodologies and main results of this study but applied only to the Santiago basin to 

simplify the presentation and discussion. Finally, Chapter 5 provides the main conclusions 

of this study and recommendations for future work. Annexes with detailed research results 

are also included. 

 

1.1 Hypothesis 

 

The use of machine learning predictive models in combination with geological, 

geophysical, geotechnical and topographic information can significantly improve the 

accuracy of quantitative assessments of the seismic hazard in the Maipo River Basin. 
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1.2 Objectives 

 

This study has two main objectives: i) Estimate the seismic response of the sites of the 

Maipo River Basin using qualitative and quantitative information available in different 

areas and; ii) To assess the seismic threat in the Maipo River Basin for a scenario 

compatible with Chilean regulations using predictive machine learning models. Specific 

objectives are the following: 

 

- Compile seismic response maps in the study area, collect available information of 

dynamic characterization of sites and carry out complementary geophysical 

surveys. 

 

- Seismically classify the sites where dynamic characterizations is available. 

 

- Redefine the seismic response units in the study area. 

 

- Predict dynamic properties of sites in the study area using machine learning 

techniques based on digital soil mapping tools. 

 

- Calculate and generate maps of the seismic hazard in the study area from the best 

predictions of the dynamic properties of the sites. 
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2 BACKGROUND AND FIELD WORK 

 

2.1 Study Area 

  

The study area of this work corresponds to the Maipo River Basin. It is located in central 

Chile, between the 256,000 m to 426,600 m E and the 6,205,500 m to 6,355,900 m N 

(UTM coordinates) and involves a large part of the SMR and part of the Valparaíso 

Region, specifically the district of San Antonio (see Figure 2-1). The selection of this 

study area is due firstly to the fact that the MRB hydrodynamically integrates the Main 

Cordillera with the coastline, secondly, the SMR concentrates 50% of the Chilean 

population and 42% of Chile's gross domestic product, and third, the port of San Antonio 

is a key sector for international trade. 

 

In general terms, the study area can be described around three well differentiated 

morphostructural units, which are from west to east: Cordillera de la Costa, Depresión 

Central and Cordillera Principal. The Cordillera de la Costa consists mainly of the 

Paleozoic coastal batholith and the central Mesozoic batholith, in addition to Paleozoic 

metamorphic basement outcrops (Wall et al., 1996). The Depresión Central corresponds 

to a sedimentary valley in which the city of Santiago is located, on the basin of the same 

name. The Santiago basin is mainly composed of Pleistocene to Holocene alluvial and 

fluvial sediments (Sellés & Gana, 2001). It is an irregular depression with variable depths 

ranging from a few meters to over 500 m (Yáñez et al., 2015) and some isolated hills. The 

surface geology of the Santiago basin’s soils can be divided into 4 main units (e.g. 

Fernández, 2003): (i) deposits of alluvial fans composed by gravels in a sandy matrix 

located in the central and southern zone of the Santiago basin; (ii) deposits of alluvial fans 

composed by gravels with sandy-clay matrices located mainly in the eastern part of the 

basin; (iii) deposits of volcanic ash with lithics and pumice, known as Pudahuel 

Ignimbrite, located in the west and northwest of the Santiago basin, and (iv) deposits of 
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alluvial fans consisting mainly of silts and clays, located in the northwest area of the basin. 

The Cordillera Principal is composed of Cenozoic volcanic and volcanic-sedimentary 

rocks and Neogenic intrusives in its western side, while on its eastern side it is composed 

of sedimentary and volcanic Mesozoic continental and marine rocks (e.g. Fock, 2005). 

 

On the other hand, the district of San Antonio is mainly composed by marine terraces that 

give rise to the Formación Navidad to the northeast of the district, by sandy wind deposits 

(dunes) in its central area, and by rocky massifs to the north and south (Wall et al., 1996). 

 

 

Figure 2-1: Study area of this work (cyan perimeter), corresponding to the Maipo 

River Basin. The main cities of area are also shown. 
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2.2 Data Sources 

 

This chapter describes the sources of the data and information used as input to generate 

the seismic response map for this study. The digital elevation model used to predict 

properties of the sites of the study area is presented. The geological and seismic zoning 

maps in the study area prior to this work are shown. Additionally, the techniques used to 

obtain different parameters through geophysical methods are briefly described. 

 

2.2.1 Digital elevation model 

 

The first data used for this study corresponds to a digital elevation model (DEM). Digital 

elevation models are visual and mathematical representations of height values relative to 

mean sea level. These models allow to characterize the relief and the elements that are on 

the surface. Multiple DEMs of 12.5 m resolution available in public satellite data (ALOS 

palsar, for more information visit https://asf.alaska.edu) were used and were merged using 

ArcGIS Desktop software to obtain a DEM over the entire study area, as shown in Figure 

2-2. From this DEM, and using ArcGIS tools, it is possible to obtain the elevation at any 

point in the study area, as well as a slope map, as shown in Figure 2-3. To obtain the slope 

map, the ArcGIS “Slope” tool was used, this tool adjusts a representative plane of the 

surrounding topography to a point of interest and calculates its slope using the maximum 

average technique (Burrough & McDonnel, 1998). The topographic elevation and slope 

of the MRB sites are key parameters that will be used in Chapter 4 of this study. 

 

 

https://asf.alaska.edu/


21 

 

 

 

Figure 2-2: Digital elevation model of the study area. 

 

 

Figure 2-3: Slope map of the study area, obtained from the DEM of Figure 2-2. 
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2.2.2 Seismic response of the Santiago Metropolitan Region 

 

Von Igel et al. (2004), through the Servicio Nacional de Geología y Minería 

(Sernageomin), generated the seismic response map of the SMR shown in Figure 2-4. This 

map corresponds to an extrapolation of the seismic response map of the Santiago basin, 

generated by Fernández (2003), using the same methodology. This map provides a 

qualitative estimate of the seismic response of the different geological units of the SMR, 

for a similar scenario to that of the Algarrobo Ms 7.8 earthquake of March 3, 1985. For 

each seismic unit, an intensity interval was estimated, associated with the damage 

observed for this earthquake.  

 

 

Figure 2-4: Seismic response map of the SMR. Modified from von Igel et al. (2004). 
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Due to the nature of the information used to generate this map, it has several limitations: 

 

- There are very few instrumental quantitative data (records of accelerograms) from 

the 1985 Algarrobo earthquake available to develop the seismic zoning of the 

RMS. 

- The intensities used are subjective and depend on who made the observations. In 

addition, they depend on the characteristics of the buildings and not only on the 

properties of the sites. 

 

- As the thickness of the sedimentary fill in E units is unknown, there is much 

uncertainty about the seismic response in these units. 

 

- Topographic effects that may affect the seismic response of the sites are not 

considered. Neither seismic amplification effects nor associated secondary effects 

(mass removals) were considered. 

 

- The boundaries between seismic units are mostly inferred. 

 

- In areas with limited observations, the seismic response was extrapolated mainly 

based on geological information. 

 

Despite these limitations, this map was used as a first-order input in this study, because 

its information is of great value for the combined analysis with quantitative information. 

In addition, its extension covers almost the entire study area (see Figure 2-4). 
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2.2.3 Seismic zonation of the Santiago Basin 

 

Leyton et al. (2011) made one of the first efforts to generate an updated seismic zoning 

that includes geological, geotechnical and geophysical information in the Santiago Basin. 

The work of Leyton et al. combined the following information: updated surface geology 

of the Santiago basin (Figure 2-5), intensity records and damage cadasters from the 1985 

Algarrobo earthquake and 2010 Maule earthquake, surface shear wave velocities in the 

first 30 m (Vs30) and fundamental period of different sites from the Santiago basin. These 

last two parameters are indicators of the local effects of the site that can cause dynamic 

amplifications under the action of seismic waves (Tokimatsu, 1997; Pastén, 2007). As a 

result, the seismic zoning shown in Figure 2-6 was proposed. This seismic zoning 

identifies two main areas, each with a homogeneous seismic demand. 

 

The main limitations of this work are: 

 

- The data for Vs30 and fundamental periods are not all in the same places, which 

restricts an overall characterization of the sites. 

 

- There is not enough information to improve the seismic classification in places 

where gravel soils (rigid soils) presented high seismic intensities in prior 

earthquakes. 
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Figure 2-5: Near-surface geology of the Santiago basin. Modified from Leyton 

et al. (2011). 

 

 

Figure 2-6: Seismic zonation of the Santiago basin. Modified from Leyton et 

al. (2011). 
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2.2.4 Seismic response of San Antonio, Valparaíso Region 

 

The Sernageomin in collaboration with the Fondef D10|1027 project published in 2019 a 

seismic response map of the urban area of San Antonio - Lololleo, Valparaíso Region, 

presented in Figure 2-7. This map was generated including information and variables from 

different sources: geology, geomorphology, slopes, Vs30 and fundamental period 

measurements. For the elaboration of this map, a subduction seismogenic source was 

considered, taking into consideration the Algarrobo earthquake of March 3, 1985 (Mw 8) 

and the Maule earthquake of February 27, 2010 (Mw 8.8). Like other maps, this map 

classifies the seismic response of sites into 5 categories, where a site A has the best seismic 

response and a site E the worst. 

 

This map contains unpublished and recent information on the zone of the study area and 

much of this data was generated in a previous collaboration between Sernageomin and the 

research group in which this research belongs. 

 

 

Figure 2-7: Seismic response of the urban area of San Antonio and Llolleo. 

Modified from Sernageomin (2019). 
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2.2.5 Dynamic characterization of sites 

 

The seismic motion on the surface of a soil deposit under the action of an earthquake does 

not depends only on the magnitude of the event and the proximity to the source. Numerous 

studies have shown that the local geotechnical conditions of a site can produce dynamic 

amplifications of seismic waves, which is known as site effects. Different technical 

standards such as ASCE7-10 in the United States, Eurocode 8 for the countries of the 

European Union, and Decreto Supremo No. 61 in Chile establish a seismic classification 

of sites to anticipate their seismic response under the action of an earthquake. All these 

standards use Vs30 as the main seismic classification parameter. This parameter was 

included in the Chilean regulations in 2011, after the devastating consequences of the 

Mw8.8 Maule earthquake of February 27, 2010. This parameter is obtained by 

 

𝑉𝑠30 =
∑ℎ𝑖

∑(
ℎ𝑖

𝑉𝑠−𝑖
)
 (1) 

 

where 𝑉𝑠−𝑖 is the shear wave velocity of stratum 𝑖, in 𝑚/𝑠; ℎ𝑖 is the thickness of stratum 

𝑖, in meters and 𝑛 is the number of strata in the upper 30 meters of the site. However, in 

this study a modified seismic classification was used, in which Vs30 is replaced by Vs<900, 

defined as the average of shear wave velocities in soils up to the depth where Vs is less 

than 900 m/s, before reaching a depth 30 m.  

 

Currently in Chile, in addition to Vs30, the measurement of other static parameters is 

required to classify a soil, such as rock quality designation (𝑅𝑄𝐷), undrained shear 

strength (𝑆𝑢), unconfined compressive strength (𝑞𝑢) and the blow counts in the standard 

penetration test (𝑁𝑆𝑃𝑇). A major disadvantage of the current Chilean seismic classification 

system is that the static classification parameters require expensive and time-consuming 

surveys, in addition to not considering other important parameters, such as depth to the 
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basement or the predominant period of a site (𝑇0 = 1/𝑓0). This last dynamic parameter is 

key in the seismic characterization of a site, since is the period associated with the 

impedance contrast that predominates when the site vibrates (Podestá, 2017). f0 is 

commonly measured through the Nakamura method (1989). 

 

Current Chilean regulations for seismic classification are in a period of transition towards 

a new seismic classification system, based solely on the dynamic parameters Vs30 and T0. 

The great advantage of this new classification system is that the tests required for its 

measurement can be much cheaper and faster than traditional tests if geophysical methods 

are used. In addition, dynamic parameters are more directly related to the seismic response 

of a site than static parameters. 

 

The Vs30 data and the predominant frequency of the sites (f0) used in this study come from 

different sources. It is important to mention that in all the dynamically characterized sites 

in this study, measurements of both Vs30 and f0 were carried out to obtain a more complete 

seismic characterization of the sites. Data was compiled from measurements carried out 

in a previous research project (Fondef D10|1027), geophysical explorations carried out by 

Dictuc S.A. (which is a subsidiary of the Pontificia Universidad Católica de Chile, 

hereinafter PUC), courtesy of the RyV Ingenieros company, a master’s thesis research 

from the Universidad de Chile (Acevedo, 2021), surveys carried out in the framework of 

a prior study oriented to updating the Santiago Metropolitan Regulatory Plan, the website 

of the Centro Sismológico Nacional and surveys carried out specifically for the present 

Fondef project. Even though these data were well characterized and georeferenced, the 

first problem with this database presented is that not all surveys had carried out f0 

measurements as they were conducted as independent measurements. Only since 2015 the 

research group systematically begin to measure Vs30 and f0 together. However, all these 

surveys were intended to measure Vs30, this parameter was available in all measurements 

in the initial database. Figure 2-8 shows the distribution of the database available at the 

beginning of this study and the location of “incomplete” surveys (those without f0 
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measurements). To solve this issue, the first field work was to complete these 

measurements. Between November 2019 and January 2020, f0 measurement campaigns 

were carried out for sites where this parameter was not available. In February 2020 this 

initial campaign was completed and measurements of Vs30 and f0 were already available 

in all the explored sites. In all the explored sites, at least one Vs30 measurement and 3 to 5 

f0 measurements were performed to estimate the uncertainty of the measurements and to 

avoid problems associated with erroneous records. 

 

Details of the methods used to obtain these parameters and an example result are presented 

in Annex 1. 

 

 

Figure 2-8: Location of sites without initial HVSR measurement. 
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As can be seen in Figure 2-8, most of the geophysical measurements are in urban areas. 

Due to the large extension of the study area, there are many sparsely populated areas of 

geophysical information, hence a new geophysical survey campaign was planned with the 

aim of covering areas of interest that were not well sampled. 

 

The main objective of this new measurement campaign was to populate the study area 

with new data to achieve a more complete and detailed seismic zoning. The criteria for 

selecting sites to perform the geophysical measurements were based mainly on covering 

urban areas where there was little or no data, such as the districts of San José de Maipo to 

the east of the study area, Curacaví to the west of the study area and Buin, to the south. 

Measurements were also made in non-urban sectors far from the areas where the data are 

concentrated, to obtain measurements in different types of soil (based on surface geology), 

always trying to balance the amount of data for each type of site. Additionally, 

measurements in poorly sampled sites and close to the contacts between geological units 

were prioritized. This criterion aimed to define these limits in more detail from a site effect 

perspective, since current limits are mostly inferred (von Igel et al., 2004). In the final 

stage of the study, the measurements were aimed to map mainly rock units since available 

data in this units are very scarce due to their high slopes and difficulty to access. This last 

survey was carried out between February 2020 to October 2021. 

 

The geophysical information obtained in the field for Vs30 and f0 is summarized in “site 

cards”. These “site cards” summarizes the empirical and adjusted dispersion curves, the 

profile shear wave velocity from the inversion process, the detailed shear wave profile and 

the associated Vs30 values, and the corresponding HVSR curves. Annex 2 shows the “site 

cards” of the geophysical surveys carried out during this project. 

 

Finally, complete database used in this project consisted of 365 sites with Vs30 and f0 data 

in the study area, as shown in Figure 2-9. 
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Figure 2-9: Distribution of the 365 sites dynamically characterized in this study. 

 

2.2.6 Gravimetry 

 

The last source of data that was very useful for this study corresponds to the gravity 

records compiled by Yáñez et al. (2015). In that study, 1,115 gravity stations were used 

to study gravimetric fluctuations in the Santiago basin. Yáñez and coworkers integrated 

this information with boreholes, geological surveys and petrophysical measurements to 

generate a well-constrained model of the depth to the basin’s basement. 

 

Specifically, the data from the article by Yáñez et al. (2015) used in this study were the 

measurements processed in terms of the residual Bouguer anomaly, whose results were 

interpolated as shown in Figure 2-10. As can be seen, the gravimetric database only covers 

part of the Santiago basin, i.e. a reduced portion of the study area. Nevertheless, it was 
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very useful to develop the prediction model in SRM as described in Chapter 4 of this 

document. 

 

 

Figure 2-10: Residual Bouguer anomaly interpolated in the SMR. Modified from 

Yáñez et al. (2015). 
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3 RESULTS 

 

This chapter presents the results of this study at the scale of the MRB. Firstly, the 

distribution of the measured data is shown, secondly, the resulting seismic susceptibility 

map is presented. Then, the predictions obtained by the developed machine learning 

models are discussed. Finally, hazard maps and exceedance probability maps are 

presented for the study area. 

 

3.1 Data distribution 

 

Figure 3-1 shows the distribution of Vs30 measured in the study area, including a closer 

look to the district of San Antonio to improve the visualization of the sites. Similarly, 

Figure 3-2 shows the distribution of f0 and A0 measured in the study area.  

 

 

Figure 3-1: Distribution of Vs30 in the study area. 
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Figure 3-2: Distribution of f0 and A0 in the study area. 

 

 

3.2 Seismic susceptibility index distribution 

 

 

A seismic susceptibility index was assigned to each site in the study area, as indicated in 

Table 3-1. It should be noted that if criterion 1 of Table 3-1 is met at a site, but criterion 2 

is not met, the site must be downgraded by one category. Although this rule was designed 

to penalize deep, long-period sites, it was also applied if a HVSR curve of type 4 was 

obtained (see the types of HVSR curves in Annex 1). Figure 3-3 shows the distribution of 

the seismic susceptibility in the study area. All the data collected and measured used in 

this study is provided in Table 7-1 in Annex 2. For those sites with more than one 

measurement of Vs30 and/or f0, we selected the combination giving the most conservative 

seismic classification. 
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Table 3-1: Definition of the seismic susceptibility index. 

Index category First criterion:  

Vs30 (m/s) 

Second criterion:  

T0 (s) 

A ≥ 900 < 0.15 or flat HVSR 

B ≥ 500 < 0.30 or flat HVSR 

C ≥ 350 < 0.40 or flat HVSR 

D ≥ 180 < 1.00 or flat HVSR 

E < 180   

 

 

 

Figure 3-3: Seismic susceptibility index assigned to the sites in the study area. 
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3.3 Seismic susceptibility map 

 

The joint analysis of the site classification of the available seismic response maps and the 

gravimetry, allowed the generation of an updated seismic microzoning of the MRB 

(Figure 3-4). The refined microzoning shows that the units with the best seismic response 

(A) correspond mainly to rock units present in a large part of the MRB, these units are 

located firstly in the Cordillera Principal, in the Cordillera de la Costa and in some isolated 

hills within the Santiago basin. Sites with the best seismic response (B and C) are located 

almost entirely in the Depresión Central, where alluvial, fluvial and volcanic sediments 

are abundant. Type C sites are also observed in the northeast of the Santo Domingo 

district. The units with the worst seismic susceptibility index are located specifically in 

three sectors of the study area: (i) in the northwest of the Santiago basin, where soft soils 

are abundant, (ii) in the valleys of the Cordillera de la Costa, where alluvial fans of sandy-

clay matrices dominate, and (iii) in the coastal zone of the district of San Antonio, 

composed of fine fluvial and eolian deposits.  

 

Some minor changes are observed in the seismic units with respect to prior maps, mainly 

in the Santiago basin and in the district of San Antonio, where most geophysical data is 

concentrated. Nevertheless, despite the seismic unit updates, the refined seismic 

microzoning shows consistency and is similar to previous maps. 
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Figure 3-4: Refined microzoning of the Maipo River Basin. 

 

 

3.4 Maps of predicted dynamic properties of sites 

 

 

The predictive algorithms presented in Chapter 4 of this study were applied to the 

complete MRB database to estimate Vs30. The settings of the algorithms, the treatment of 

the data and the validation of the estimates was identical to that presented in Chapter 4 of 

this document. To avoid duplication, in this chapter we will only show the results applied 

to the entire study area. Table 3-2 shows the prediction performances of the best models 

of each algorithm tested to predict Vs30.  

 

For the sites where the gravimetric covariant is available, the results show that Linear 

Regression (LR) was the most robust algorithm to predict Vs30, with an RMSE of 69.3 m/s 
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and an RRMSE of 17.5%. The second-best predictor was Random Forest (RF), with an 

RMSE of 76.8 m/s and an RRMSE of 18%, while the third-best predictor was Decision 

Trees (DT) with an RMSE of 104.7 m/s and an RRMSE of 24.9%.  

 

For the sites where the gravimetric covariant is not available, the results show that LR was 

the most robust algorithm to predict Vs30, with an RMSE of 190.9 m/s and an RRMSE of 

23.7%. The second-best predictor was RF, with an RMSE of 167.7 m/s and an RRMSE 

of 25.6%, while the third-best predictor was EN with an RMSE of 238.8 m/s and an 

RRMSE of 37.3%.  

 

The estimation of f0 in the study area is shown in Chapter 4 of this document since 

acceptable results were only obtained in the Santiago basin. Figures 3-5, 3-6 and 3-7 show 

the predictions of Vs30 obtained with the best predictive algorithms. The observed Vs30 are 

also shown in the maps for a visual comparison of the results. 

 

Table 3-2: Cross-validation of the best models for each algorithm for the Vs30 predictions. 

 Gravimetric covariant included Gravimetric covariant not 

included 

Algorithm RMSE (m/s) RRMSE (%) RMSE (m/s) RRMSE (%) 

SK 176.0 35.6 339.4 38.8 

LR 69.3 17.5 190.9 23.7 

EN 120.8 27.1 238.8 37.3 

RF 76.8 18.0 167.7 25.6 

ANN 199.3 39.3 379.3 67.3 

DT 104.7 24.9 242.0 46.0 
Note: The bolds show the best performances obtained among the algorithms. 

SK: Simple Kriging; LR: Linear Regression; EN: Elastic Net; RF: Random Forests; ANN: Artificial Neural 
Network; DT: Decision Trees 
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Figure 3-5: Vs30 prediction map using the Linear Regression model in the study area. 

Circles show the observed Vs30 values in the same color scale. 
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Figure 3-6: Vs30 prediction map using the best Random Forests model in the study 

area. Circles show the observed Vs30 values in the same color scale. 
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Figure 3-7: Vs30 prediction map using the Decision Trees model in the SMR and 

Elastic Net out of it. Circles show the observed Vs30 values in the same color scale. 

 

 

3.5 Seismic hazard maps 

 

Once a dynamic characterization of sites for the entire study was generated, it is possible 

to proceed with the Seismic Hazard assessment to obtain different strong motion indicator. 

We selected the peak ground acceleration (PGA) as main indicator to simplify 

combination with other natural hazard that are part of the project founding this 

research. Figures 3-8, 3-9 and 3-10 show the estimate of PGA in the study area for the 

best predictions of Vs30 and using the settings described in Chapter 4. 
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Figure 3-8: Expected PGA map for events with Tm = 475 years, based on the estimates 

of Vs30 resulting from the LR model. 

 

 

Figure 3-9: Expected PGA map for events with Tm = 475 years, based on the estimates 

of Vs30 resulting from the RF model. 
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Figure 3-10: Expected PGA map for events with Tm = 475 years, based on the 

estimates of Vs30 resulting from the DT model. 

 

 

3.6 Additional applications 

 

 

Vs30 distribution estimated in this work can also be used for complementary analysis. For 

example, a probabilistic seismic hazard analysis (PSHA) which can be combined with a 

vulnerability analysis. With this purpose, we calculate the probability that an intensity 

measure 𝐼𝑀 exceeds the value 𝑖𝑚 during an observation time window 𝑇. Then, if the 

temporal distribution of earthquakes follows a Poisson statistical process, this probability 

can be calculated as 

 

𝑃(𝐼𝑀 > 𝑖𝑚) = 1 − exp(−𝜆𝐼𝑀𝑇) (2) 

where 𝜆𝐼𝑀 is the annual exceedance rate for the intensity measure 𝐼𝑀. This annual 

exceedance rate can be calculated as 
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𝜆𝐼𝑀 = ∑ 𝜆0
𝑖 ∬ 𝑃(𝐼𝑀 < 𝑖𝑚|𝑚, 𝑟)𝑓𝑀(𝑚)𝑓𝑅(𝑚, 𝑟) 𝑑𝑚 𝑑𝑟

𝑁𝑠

𝑖=1

 (3) 

 

where 𝑁𝑠 is the number of seismic sources considered, 𝜆0
𝑖  is the activity of the i-th seismic 

source, 𝑃(𝐼𝑀 < 𝑖𝑚|𝑚, 𝑟) is the probability that the intensity measure 𝐼𝑀 exceeds the 

value 𝑖𝑚 conditioned to the occurrence of an event of magnitude 𝑚 at a distance 𝑟 from a 

site with known dynamic characteristics (Vs30 in this case), and 𝑓𝑀(𝑚) and 𝑓𝑅(𝑚, 𝑟) are 

the probability density functions of the magnitude of the event and the location of the 

source, respectively. Then, if 𝜆𝐼𝑀 is known and 𝑇 is defined, it is possible to compute 

𝑃(𝐼𝑀 > 𝑖𝑚) using the equation 7. The calculation of this type of indicator was already 

implemented in the platform used for this research (Candia et al., 2019). Our contribution 

was to perform this computation supported on a more robust estimation of the dynamic 

properties of the sites across the study area. Figure 3-11 shows, as an example of this 

application, the probability distribution that the intensity measure of 𝑆𝑎(𝑇0 = 1.62𝑠) =

0.43𝑔 is exceeded in the Maipo basin, for a time window of  𝑇 = 1000 years. 

𝑆𝑎(𝑇0 = 1.62𝑠) = 0.43 𝑔 was chosen as example because it corresponds to an extensive 

damage threshold proposed by Ugalde et al. (2020) for 17-story residential buildings with 

fundamental period 𝑇0 = 1.62 𝑠 in Chile. 

 

This map of exceedance probabilities can be used as input for a subsequent vulnerability 

analysis. For example, in the project of which this research is part, it was combined with 

information on susceptibility to landslides triggered by earthquakes to quantify this risk. 
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Figure 3-11: Probability of exceeding a measurement intensity of 𝑆𝑎(𝑇0 = 1.62𝑠) =

0.43𝑔 in an observation time window of 𝑇 = 1000 years in the MRB. 
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4 MACHINE LEARNING TECHNIQUES FOR ESTIMATING 

SEISMIC HAZARD SUSCEPTIBILITY AND AMPLIFICATION IN 

THE SANTIAGO DE CHILE BASIN. 

 

4.1 Introduction 

 

Chile is one of the most seismically active countries in the world. The active continental 

margin where the oceanic plate (Nazca plate) subducts under the continental plate (South 

American plate), extends between 18° and 47° S. This active margin has generated some 

of the largest subduction earthquakes on record (e.g. 9.5 Mw Valdivia 1960, Cifuentes, 

1989). Observational data show that, along the country, the impact of seismic waves 

increases in the areas closest to the trench and decreases with increasing distance to this 

seismogenic source (i.e. Leyton et al., 2010). In addition, the configuration of the national 

territory and the distribution of the main Chilean cities over the subduction margin locate 

the urban areas in zones permanently susceptible to major earthquakes. Then, this type of 

threat is one of the main natural hazards in the country and its urban areas. 

  

Estimations of the recurrence times of large historical earthquakes of Mw > 8 indicate that 

these events occur approximately every 80 years in front of the Santiago Metropolitan 

Region (SMR) (Figure 4-1). The last major earthquake that affected much of this area was 

the 8.0 Mw Algarrobo earthquake of 1985. 

   

The SMR concentrates 50% of the Chilean population and 42% of Chile's gross domestic 

product, so efforts focused on predicting and minimizing the damage caused by major 

seismic events are extremely necessary in this region. 
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Figure 4-1: Historical recurrence of large earthquakes in central Chile. The length of 

the bars indicates the approximate extent of the rupture that generated each event, 

while their widths are proportional to the registered magnitudes. The map to the right 

indicates the location of the Santiago Metropolitan Region (SMR). (Modified from 

Bravo et al., 2019). 

 

Several works have shown that the local geotechnical conditions of a site can induce 

important seismic amplifications (i.e. Aki, 1988), known as site effects. Site effects can 

be evaluated through the dynamic characterization of the subsoil, measuring dynamic 

parameters of the site’s response to the pass of seismic waves. A key parameter to achieve 

a correct geotechnical characterization is the shear wave velocity profile, which allows a 

primary evaluation of the dynamic response of a site (Tokimatsu, 1997). Another very 

important dynamic property of soils to estimate site effects is the predominant frequency 

of sites, f0, defined as the frequency associated with the impedance contrast that 

predominates in a site (Maringue et al., 2021). As in many other countries, in Chile the 

seismic code classifies a site based on the value of the harmonic average of the 

propagation velocity of shear waves in the first 30 m depth, Vs30.  However, other 

parameters from in situ tests, such as drilling, standard penetration and laboratory tests, 

are also required for this classification. Regardless, geophysical techniques based on 

surface waves allow determining the Vs30 and f0 parameters of a site in a noninvasive, fast 
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and low-cost manner (Becerra et al., 2015). Several investigations in different cities have 

shown that dynamic characterization based on geophysical surveys using surface wave 

methods are reliable techniques to evaluate site effects (Chavez-Garcia & Cuenca, 1998; 

Scott et al., 2006; Tuladhar et al. 2004). 

 

Seismic site amplification and seismic hazard maps are crucial inputs for decision making 

and risk evaluation in places where seismicity imposes a significant risk to human life and 

infrastructure. Therefore, it is useful to have accurate and reliable maps that account for 

the seismic response of the sites. However, despite the knowledge of the advantages 

offered by geophysical methods for the dynamic characterization of sites, in Chile, the use 

of dynamic properties in the generation of seismic response maps is an incipient practice. 

In the case of SMR, most of the available seismic response maps do not consider the 

dynamic characteristics of the subsoil and have been developed based on observations of 

seismic damage distribution. Only a few studies have incorporated site dynamic 

properties and made the first efforts to generate this type of maps (e.g., Leyton et al., 

2011). 

 

Digital soil mapping (DSM) uses statistical models to generate digital representations of 

the spatial distribution of soil properties using point soil observations and spatially 

exhaustive environmental covariates (proxies or independent variables) (McBratney et al., 

2003; Scull et al., 2003). In recent decades, DSM has proven to be quite successful in 

producing soil property maps, capturing their main patterns of soil spatial variation (e.g. 

Moore et al., 1993; McBratney et al., 2000). However, the application of the DSM in 

seismic geotechnical engineering in Chile is hampered by limited dynamic site 

characterizations and data availability. 

 

Spatial interpolation of natural variables is important in many scientific fields, and 

throughout history numerous interpolation techniques have been developed to achieve 

these purposes. In the 1980s, the krigging geostatistical interpolation technique was 
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introduced, gaining popularity as it had the advantage - unlike previous techniques - of 

considering the spatial correlation of the data and being able to quantify the interpolation 

error (Matheron, 1963). Besides, the statistical approach of data mining has recently been 

providing useful tools for DSM. This approach identifies patterns in datasets through 

statistical methods, transforming this information into a perceptible structure for further 

use (Khaledian & Miller, 2020). 

 

Machine learning (ML) is a data analysis method and a field of artificial intelligence that 

uses data mining to learn and build a model that is capable of discovering and quantifying 

common patterns revealed by the data (Clifton, 2010). In recent years, ML techniques 

have been increasingly used for spatial interpolation in fields such as soil science and 

geology (e.g. Li & Heap, 2014). ML is highly dependent on the relationship between the 

target variable and its associated covariates and can produce remarkably accurate results 

if this correlation is strong (Sekulic et al., 2020). A great advantage of ML prediction 

models over traditional techniques is their ability to capture the non-linear interaction 

between the data without having to assume a functional form of the relation between the 

input and output data (Kohestani et al., 2015). 

 

However, there have been few attempts to use these techniques in the area of seismic 

geotechnical engineering. Pokherl (2013) used kriging to estimate liquefaction potential 

in alluvial soil from Saitama, Japan. Kohestani et al. (2015) used ML tools to predict 

liquefaction potential in soils based on cone penetration tests. Thomson and coworkers 

used variants of kriging to estimate Vs30 in Kobe and California, in 2010 and 2014, 

respectively. Though there have been several attempts to predict Vs30 by geostatistical 

methods, until now - at least in Chile - no tested techniques of ML have been used 

for spatially predicting the dynamic site properties (Vs30 and f0). Thus, we believe that ML 

techniques can reasonably predict Vs30 and f0 values and improve the accuracy of 

quantitative seismic hazard assessments in the Santiago de Chile basin. 
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This paper aims to improve the quality and accuracy of seismic response and hazard maps 

in the Santiago Metropolitan Region (SMR). We present two results: (i) an updated 

seismic microzoning of the SMR based on recent measurements of dynamic properties of 

sites through the basin, and (ii) a methodology that uses regression machine learning 

computational tools, which integrates the geology, geophysical data and seismic 

geotechnical engineering concepts, to predict Vs30 and f0 accurately in unsampled areas. 

We compared six predictive algorithms to estimate Vs30 and f0: simple krigging, linear 

regression, elastic net, random forests, artificial neural networks and decision trees. The 

best predictions obtained were used to generate seismic hazard maps in the study area, 

through a state-of-the-art software that uses ground motion prediction equations (GMPE), 

seismicity models and seismic scenarios to assess the seismic hazard due to subduction 

and cortical earthquakes. The major contribution of this work is to introduce a novel 

estimation methodology based on artificial intelligence models to extend local 

measurements of site’s dynamic properties in an area of interest. This information can be 

used to quantitatively estimate the seismic hazard at regional scale. 

 

 

4.2 Methodology 

 

4.2.1 Study area and available seismic response maps 

 

The study area of this research is the Santiago de Chile basin, located in the center of the 

SMR (see Figure 4-2). This area contains a sedimentary infill of the Santiago basin. The 

alluvial sedimentary infill has accumulated between the Main Cordillera and the Coastal 

Cordillera, reaching maximum depths in the range of 350 - 500 m (Araneda et al., 2000; 

Yáñez et al., 2015). There are two seismic hazard maps for this area which are seismic 

response maps developed after the events of 1985 and 2010. These maps define seismic 

units in the basin representing a seismic microzonation: 
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- Seismic response of the Santiago Metropolitan Region (von Igel et al., 2004): in 

this work the seismic response of the geological units of the SMR is qualitatively 

determined based on seismic intensities collected after the March 3rd earthquake 

of 1985 (Ms 7.8) and available geological information. This map does not 

incorporate quantitative information on the dynamic characteristics of sites and 

was developed mainly based on damage observations. 

  

- Seismic zoning of the SMR, Chile (Leyton et al., 2011): in this work, a seismic 

zoning of the Santiago basin is carried out based on the surficial geology, available 

measurements of the predominant period (Bonnefoy-Claudet et al., 2009) and the 

distribution of the damage observed for the Maule earthquake. 

 

4.2.2 Vs30 and f0 measurements 

 

To obtain the dynamic properties of the sites in the basin, 312 measurements of Vs30 and 

f0 were recorded using surface wave geophysical methods. In cases in which more than 

one measurement of Vs30 and f0 was available, the uncertainty in the values of these 

parameters was evaluated to report the level of accuracy of field experiments. 

 

Vs30 measurements were obtained through an inversion process of the empirical 

dispersion curve of each site. These curves were obtained using a methodology that 

combines active sources (hammer) with passive sources (ambient noise), with a 

multichannel analysis approach (Humire et al., 2015). To obtain Vs30, the Geode® 

equipment manufactured by the Geometrics® company was used, while to obtain f0, a 

triaxial Tromino® seismometer was used. One-dimensional arrays were used for both 

active and passive measurements, while two-dimensional arrays were intended for passive 

measurements. As a general rule, the objective of the surveys was to describe the 

dispersion curve between a wavelength of 10 m and 90 m using a combination of active 
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and passive methods. The methods used in this investigation were the f-k method 

(frequency-wave number method) (Lacoss et al., 1969; Kvaerna & Ringdahl, 1986) for 

active 1D and passive 2D arrays, the SPAC method (spatial autocorrelation method) (Aki, 

1957) for passive 2D arrays, and the ESPAC (Hayashi et al., 2008) method (extended 

spatial autocorrelation method) for passive 1D arrays. In sites with more than one estimate 

of Vs30, measurements showed coefficients of variation (CV) between 0% and 35.8%. 

Furthermore, in 50% of the cases the CV was less than 2.6%. 

 

To obtain f0 , the horizontal-to-vertical spectral ratio (HVSR) or Nakamura’s technique 

was used (Nakamura, 1989; Molnar et al., 2018). This technique estimates the ratio of the 

Fourier amplitude spectrum between horizontal components and vertical component 

produced by environmental vibrations. Then, the predominant period (T0=1/f0) is defined 

by the peak of the HVSR curve (Pastén, 2007), and the amplitude of this peak is defined 

as A0. Flat HVSR curves are associated with rigid sites where no significant stiffness 

contrast is observed between sediment and rock (e.g. gravels). In this investigation, the 

analysis was carried out following a variation of the Nakamura method (Leyton et al., 

2012) which considers fixed windows of 60 seconds, applying the Stockwell Transform 

(S-transform) in each of these windows. For f0, CV between 0% and 46.4% were obtained, 

and in 50% of the cases this value was lower than 5.6%. For A0, a CV between 0% and 

50.8% were obtained, and in 50% of the cases this value was less than 12%. 

 

Figure 4-2a shows the spatial distribution of the Vs30 values, while Figure 4-3a shows 

simultaneously the distribution of f0 and A0. These sites concentrate near the urban areas 

of the study area. Figures 4-2b and 4-3b show the histograms of the data distribution of 

Vs30 and f0, respectively. 
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Figure 4-2:  a) Distribution of Vs30 in the study area, and b) Distribution histogram of 

Vs30. 

 

  

Figure 4-3: a) Distribution of f0 in the study area, and b) Distribution histogram of f0. 

Among the 312 sites considered, 101 sites reported flat HVSR curves 
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4.2.3 Seismic susceptibility index 

 

Chile is currently in the process of improving its seismic classification system for 

residential buildings. The new classification simultaneously uses the value of Vs30 and the 

estimate of the predominant period T0, which were used as a susceptibility index in this 

work. Five indices were defined: A, B, C, D and E, according to the criteria shown in 

Table 4-1 (modified from Verdugo et al., 2019). 

 

Table 4-1: Definition of the seismic susceptibility index. 

Index category First criterion:  

Vs30 (m/s) 

Second criterion:  

T0 (s) 

A ≥ 900 < 0.15 or flat HVSR 

B ≥ 500 < 0.30 or flat HVSR 

C ≥ 350 < 0.40 or flat HVSR 

D ≥ 180 < 1.00 or flat HVSR 

E < 180   

 

 

4.2.4 Seismic units update 

 

To update the seismic units of the study area, the current seismic response maps were 

compared against the distribution of seismic susceptibility indices from Table 4-1, to solve 

the limits of the units. Five seismic units were defined in this investigation, following the 

seismic susceptibility indices (A, B, C, D and E), where a seismic unit classified as A is 

the one with the best seismic response (i.e. rock) and a unit classified as E is the one with 

the worst response in terms of seismic amplification expected due to site effects (i.e. very 

soft site). 
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Additionally, gravity models of the Santiago de Chile basin published by Yáñez et 

al. (2015) were incorporated to fill the information gaps in areas where there was not 

enough data from Vs30 and f0 measurements to update limits between seismic units 

determined by geologic techniques. The area in which this study is available is shown in 

Figure 4-2a. As can be seen, the gravity model covers most of the Santiago de Chile Basin. 

 

The direct gravimetric residual is also expected to have a good correlation with f0, mainly 

in soft soils, because it provides an idea of depth to a significant change in density or 

gravimetric contrast (Maringue et al., 2021). Then, units with a considerable gravimetric 

anomaly, low frequencies (< 1 𝐻𝑧), fine granulometries and/or presence of surficial 

volcanic ash were classified as low seismic response units (D or E). The updated seismic 

units are shown in Figure 4-6. 

 

4.2.5 Prediction of Vs30 and f0 

 

This chapter describes the procedures and considerations used to generate a predictive 

model of Vs30 and f0 in the study area. First, the database and the covariates used to train 

the predictive models for each explored algorithm are presented; secondly, the algorithms 

used are briefly described. Additionally, the methods for validating and evaluating the 

predictive performance of the models are detailed. 

 

4.2.5.1 Data and choice of covariates 

 

As mentioned earlier, proper choice of training covariates from ML predictive models is 

key to obtaining reasonable and accurate estimates in DSM. In this work, we chose the 

covariates shown in Table 4-2. The decision to use punctual covariates such as slope, 

topographic elevation, and geological typology is based on previous work that showed an 

improvement in the performance of predictive models in predicting Vs30 (Wills & Clahan, 
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2006; Wald & Allen, 2007), so these three covariates were included in all the models for 

training. The topographic slope and the topographic elevation were obtained from a digital 

elevation model (DEM) of 12.5 m resolution available in public satellite data 

(https://asf.alaska.edu), while the surficial geology covariate was obtained directly from 

the seismic susceptibility map (updated seismic units shown in Figure 4-6). 

 

Despite the success of ML predictive models in DSM, most of these approaches do not 

consider the possible spatial correlation between the observed data and focus mostly on 

punctual covariates, thus they do not fully exploit the available spatial information. 

Numerous recent investigations have shown that the inclusion of spatial covariates (in 

addition to punctual ones), such as distance and inverse of distance to neighboring 

observations, considerably improves the predictive capacity of ML models in DSM 

(Beguin et al. 2017; Deng 2020; Sekulic et al., 2020). Therefore, to take full advantage of 

the spatial information of the available observation, we used a combination of punctual 

and spatial covariates to train the models, as indicated in Table 4-2. Figure 4-4 generally 

describes the spatial covariates chosen in this work. 

 

Note that since gravimetry does not cover the entire study area (see Figure 4-2a), we 

worked in two independent areas: a zone with gravimetric information and another zone 

without it. The predictive models for both areas only differed in the inclusion of the 

gravimetric covariate in their training. 

 

Although several measurements were available at some sites which made it possible to 

generate some uncertainty indicators, only a smaller set of sites (35%) had this information 

available. To simplify the training of the models, the pair Vs30 and f0, leading to the most 

conservative classification according to the criteria in Table 4-1, was selected for training. 

 

 

 

https://asf.alaska.edu/
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Table 4-2: Description of the covariates used to train the models and predict the values 

of Vs30 and f0 in Santiago basin. 

Covariate Definition Unit 

Slope Maximum elevation change rate of each pixel. ° 

Elevation Elevation above sea level according to the DEM used. m 

Seismic unit Seismic unit of the Seismic Susceptibility Map that contains the evaluation point. - 

Gravity * Residual Bouguer anomaly measured at site. mGal 

External seismic unit Seismic unit of the Seismic Susceptibility Map that does not contain the 

evaluation point but is the closest to it. 

- 

Edge distance Inverse of the minimum distance between the evaluation point and the seismic 

unit that contains it. 

1 / km 

Distance to closest 

observations * * 

Inverse of the minimum distance between the evaluation point and the 

observation closest to it. 

1 / km 

Vs30 closest 

observations * * 

Value of Vs30 in the closest observation to the evaluation point. m / s 

HVSR peak in the closest 

observations * * 

Closest observation to the evaluation point that has a peak in the HVSR curve 

(1) or does not present a peak (0). 

Binary 

Nearest predominant 

frequency * * 

Predominant frequency (f0) measured at the closest observation to the evaluation 

point. 

Hz 

HVSR amplitude * * Amplitude of the HVSR curve (A0) at the closest observation to the evaluation 

point. 

- 

* Covariate was used only in the Santiago basin area where the gravimetric study was carried out. 

* * Covariates were calculated for the 6 closest observations to each evaluation point. 
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Figure 4-4: Example of the spatial covariates associated with a point P in the study 

area. In this case, point P is in seismic unit A, 𝑥𝑔 is the shortest distance from P to the 

boundaries of this seismic unit. Seismic unit C is the closest unit to point P. On the 

other hand, 𝑥2 and 𝑥3 are the two shortest distances to P of 𝑆1and 𝑆2, where Vs30 and 

f0 are known and are considered spatial covariates associated with the point P. 

 

4.2.5.2 Predictive methods 

 

As mentioned above, there are numerous methods for predicting soil properties from a 

sample data set. In this paper, geostatistical and ML predictive methods are 

compared. The geostatistical method tested was Simple Kriging (SK), while the ML 

methods were Linear Regression (LR), Elastic-Net (EN), Random Forests (RF), Artificial 

Neural Networks (ANN) and Decision Trees (DT). It is also important to note that the 

hyperparameters (tuning parameters) are the variables that are used to setting the 

algorithms. These variables can be adjusted by trial and error until a minimum amount of 

error is obtained when the predictions are validated. The way in which the predictive 

algorithms used in this article work will be briefly described below. 
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- SK: This is a generalized least-squares regression algorithm that assigns weights 

for the surrounding measured values to derive a prediction for each location. These 

weights, in addition to being based on the distance between the measured points 

and the prediction site, are based on the general spatial arrangement of the 

measured points (Augusto Filho et al., 2017). This method considers that the 

spatial fluctuation of the mean of the observations is unknown, but constant 

(Thomson et al., 2010). 

 

- LR: This algorithm fits a linear model with coefficients to minimize the sum of 

the squares in the difference between the observed and predicted values by the 

linear approximation (Hutcheson & Sofroniou, 1999). 

 

 

- EN: Is a linear regression algorithm that combines two linear models: (i) the Ridge 

method, that addresses some of the problems of Linear Regression by imposing a 

penalty on the size of the coefficients; and (ii) the Lasso method, that estimates 

sparse coefficients. EN learns from its shortcomings to improve the regularization 

of statistical models and is useful when there are multiple features correlated with 

one another (Friedman et al., 2010). 

 

- RF: It is a set learning algorithm that randomly selects a group of observations 

from the larger set, to build a decision tree that is associated with this group. The 

process is repeated to build multiple decision trees based on different observation 

sets. Typically, two-thirds of the observations are used for algorithm training, and 

the rest are used to test model error. RF randomly permutes the arrangement of the 

covariates in the selection of the observation groups, considering all the 

possibilities of arrangement of covariates. Finally, the predictions are based on the 

average of the results produced from thousands of decision trees. It is currently the 

most widely used ML algorithm in DSM, and it often shows excellent potential 

when it comes to spatial data (Boulesteix, 2012; Deng, 2020). 
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- ANN: These are algorithms that mimic biological neural networks. They build a 

set of nodes called artificial neurons, forming a network. Through multiple layers 

of the network, information is transmitted from one neuron to another. The 

connection between neurons consists of weights that define the network 

architecture, organize the layers, and adjust the parameters to learn from the data. 

Training the network consists of comparing the input to the output and calculating 

a residual, then the algorithm goes back through the layers to fit the equation of 

the network and recalculate the residual. This process is repeated until a minimum 

residual is reached. It is a common and longstanding algorithm used in DSM 

(Behrens, 2005; Were et al., 2015). 

 

- DT: These models divide the data space and fit a simple prediction model within 

each partition. A decision tree is the graphical result of each partition. DT are 

intended for dependent variables that take continuous or ordered discrete values 

(Breiman et al., 1984). 

 

To predict Vs30 and f0, a total of 47 models were tested. The models and their 

hyperparameter settings are shown in Table 4-3. In this Table, each tested model 

corresponds to a combination of the hyperparameter values shown in the setting column. 
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Table 4-3: Tested models and hyperparameter settings. The total of tested models 

corresponds to the possible combinations of the values of the presented 

hyperparameters. 

Algorithm Number of tested 

models 

Hyperparameter Settings 

SK 

 

1 Power of the inverted distances 1 

LR 1 - - 

EN 2 Total penalty value (𝛼) 1, 2 

Penalty ratio (𝜌) 0.5 

RF 25 Number of trees 20, 40, 50, 80, 100 

Proportion of variables considered (%) 10, 20, 40, 60, 80 

ANN 17 Number of neurons per layer 10, 20, 30, 50, 75, 100 

Maximum number of layers 5 

Maximum number of neurons 100 

Trigger function tanh* 

Training method lbfgs* 

DT 1 - - 

* ‘tanh’ refers to the hyperbolic tangent function; ‘lbfgs’ refers to an implementation of the BFGS quasi-Newton 

method for nonlinear optimization. For more information about the hyperparameters of the ML models used in this 

paper visit https://scikit-learn.org/stable/. 

 

4.2.5.3 Predictive performance evaluation 

 

All models were run in the Python environment. The first treatment to the original 

database was the application of the Data Augmentation technique. This technique consists 

in artificially increasing the initial number of observations, as well as their covariates, to 

obtain an increased training dataset, while preserving the associations present in the 

original data (Padarian et al., 2019). The use of Data Augmentation has been shown to 

reduce the variance and overfitting of ML models, improve their robustness, and avoid 

biased results (Shorten & Khoshgoftaar, 2019; Padarian et al., 2019; Roudier et al., 2020; 

Zhong et al., 2020). This technique has recently been adapted to ML for cases where the 

amount of training data is very limited; it is especially beneficial for ANN models, since, 

https://scikit-learn.org/stable/
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unlike RF, ANN are sensitive to small sample sizes (Khaledian & Miller, 2020). 

Additionally, this technique is expected to allow training of predictor models under 

difficult prediction scenarios, such as sites with few or no measurements in their proximity 

(which is the enabling assumption of spatial interpolation). 

 

After testing with data augmentations of 10, 20, 30, 40 and 50 times the size of the 

database, the largest increase was applied because with it marginally better results were 

consistently obtained for both Vs30 and f0. All models were trained with 90% of the 

augmented database (training sets) by cross-validation and validated with the remaining 

10% (testing sets). To ensure that the comparisons between the models were valid, the 

same set of covariates was kept for the training of all predictive models (see Table 4-2). 

For all models, the root mean squared error (RMSE) and the root relative mean squared 

error (RRMSE) were calculated. Additionally, the predictive models of f0 allowed 

evaluating the probability of a peak in the HVSR curve. For those obtained probabilities 

less than 60%, a flat HVSR curve was assumed. The error rate in the prediction of this 

probability (ErrRate) was also quantified. These errors were calculated as 

 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦′𝑖 − 𝑦𝑖)2  

 

(4) 

 

𝑅𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (

𝑦′𝑖 − 𝑦𝑖

𝑦𝑖
)

2

 (5) 

 

  

𝐸𝑟𝑟𝑅𝑎𝑡𝑒 =
∑|𝑏′𝑖 − 𝑏𝑖|

𝑛
 (6) 
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where 𝑖 = 1. . 𝑛 is the i-th iteration and 𝑛 is the total number of tests, 𝑦𝑖 ′ is the i-th 

predicted value and 𝑦𝑖 is the i-th observed value.  𝑏𝑖
′ is a binary value equal to 1 if the i-th 

prediction has a peak in the HVSR curve and equal to 0 otherwise, while 𝑏𝑖 is also a binary 

value equal to 1 if the i-th observation has a peak in the HVSR curve and equal to 0 

otherwise. Figure 4-5 shows the main steps in the training of the predictive models of Vs30 

and f0. 

 

 

Figure 4-5: Flowchart showing the main steps of the modeling process of Vs30 and f0 

used in this study. *ErrRate is only calculated in the modeling of f0. 
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4.2.5.4 Probabilistic hazard assessment 

 

A PGA map consistent with a return period of 475 years was developed in the PSHA 

software Seismic-Hazard (Candia et al., 2019). This software allows us to compute 

hazard-consistent ground motion parameters (e.g., PGA, PSA) at a single site or 

distributed over a large region, using state-of-art seismicity models and rigorous account 

of scientific uncertainties. In the current study we adopted the Poulos et al. (2019) source 

model for subduction earthquakes, which uses the Slab 1.0 model (Hayes et al., 2012) to 

account for the contact surface between the Nazca and South American plates. 

Additionally, the seismicity model includes four crustal faults reported in the GEM global 

Active Faults catalog (Styron, 2020) located within a 200 km radius of the study area and 

the Diablo Fault (also known as Baños Morales Fault) located towards the east boundary 

of the basin. A logic tree of 3 ground motion models was defined, giving greater weight 

to the Montalva et al. (2017) model, as it collects local knowledge and incorporates into 

its development the mega earthquakes (Mw> 8.0) that occurred in Chile in the period 

2010-2017, and use Vs30 in its calculations to estimate PGA. On the other hand, the 

seismicity from crust sources was modeled with the PCEnga attenuation law (Macedo & 

Candia, 2020). Three PGA maps are presented to illustrate the influence of different Vs30 

realizations in the PGA distribution. Finally, to discuss PGA changes due to uncertainty 

of the predictive models, a sensitivity analysis is performed on 30 observed and estimated 

Vs30 values not used for training. 

 

4.3 Results 

 

4.3.1 Geophysical survey 

 

This chapter presents the results of the dynamic characterization and seismic classification 

of the sites of the Santiago basin. The combination of the parameters Vs30 and f0 in the 
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sampled sites allows us to assign an index of seismic susceptibility to each site, as 

indicated in Table 4-1. The seismically classified sites are shown in Figure 4-6. Sites rated 

A are generally rock outcrops, with very high Vs30 (> 900 m/s) and flat HVSR curves 

(without a clear peak). The A0 value can be considered as an indicator of the predominant 

impedance contrast of the site (Pilz et al., 2010; Leyton et al., 2013). It should be noted 

that there were only a few in rock sites (A), because of the challenges involved in 

accessing remote areas with flat rock outcrops, required to deploy large arrays of sensors 

(~100 m long) carrying geophysical equipment. Sites rated B show high values of Vs30 

(exceeding 500 m/s) in the south, center, and northeast of Santiago, where the soils 

correspond mainly to alluvial fans and fluvial gravels. These sites also have mostly flat 

HVSR curves. C sites correspond typically to alluvial fans composed by gravels with a 

higher content of fines and sandy sites. These sites are located mainly nearby the Main 

Cordillera and the Mapocho river, to the east and southwest of the study area, respectively. 

In these sectors, the HVSR curves are also mostly flat, showing that in general there are 

no predominant frequencies or clearly defined impedance contrasts. The sites more prone 

to seismic amplification are located in the northwestern side of the study area, where Vs30 

tends to be less than 350 m/s, f0 show low values (< 1 Hz), and large values of A0 are 

observed. These sites, classified as D and E, are composed by fine-grain, sedimentary 

deposits. 

 

4.3.2 Seismic units zoning map 

 

The joint analysis of the site classification with the collected maps of seismic response 

and gravity model, resulted in an updated seismic microzoning of the Santiago basin 

(Figure 4-6). The refined microzoning shows that the units with the best seismic response 

(A) correspond mainly to rock units that surround the sedimentary valley of Santiago and 

to some isolated hills within the valley. The sites with the best seismic response (B and 

C) are in the south and east of the study area, while the sites with the worst seismic 

response (D and E) are located in the center and northwest of the study area. These results 
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are clearly consistent with previous seismic response maps available in the Santiago basin 

(i.e. von Igel et al., 2004; Leyton et al., 2011). 

 

 

Figure 4-6: Seismic susceptibility indexes and microzoning of Santiago de Chile 

basin. 

 

4.3.3 Predictive models comparison and resulting maps 

 

This chapter shows the prediction performances of the 6 predictive algorithms 

of Vs30 and f0, shown in Tables 4-4 and 4-5. These results were obtained from the test sets 

defined for cross-validation, as explained in Chapter 4.2.5.3. 
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In the prediction of Vs30, LR is the best performing algorithm in those sites where the 

gravimetric covariant is available, with an RMSE of 68.4 m/s and an RRMSE of 17.6%, 

followed by RF and DT. Similarly, when the gravimetric covariant is not available, the 

best performing algorithm was LR, with an RMSE of 70.5 m/s and an RRMSE of 17.8%, 

followed by RF and DT. 

 

In the prediction of f0, RF is the best performing algorithm in those sites where the 

gravimetric covariant is available, with an RRMSE of 45.6%, an RMSE of 0.13 Hz and 

an ErrRate of 21.3%, followed by EN and LR (ANN it is discarded as having too large an 

ErrRate). On the other hand, when the gravimetric covariant was unknown, the best 

performing algorithm was LR, with an RRMSE of 164.8%, an RMSE of 2.43 Hz and an 

ErrRate of 22.3%, followed by RF and SK. It can be noted that if the gravimetry is 

available, the estimation error is considerably reduced. 

 

Table 4-4: Cross-validation of the best models for each algorithm for the Vs30 

predictions. 

 Gravimetric covariant included Gravimetric covariant not included 

Algorithm RMSE (m/s) RRMSE (%) RMSE (m/s) RRMSE (%) 

SK 185.6 37.5  233.4 41.1 

LR 68.4 17.6 70.5 17.8 

EN 124.6 27.5 141.9 30.0 

RF 79.6 19.4 86.3 20.4 

ANN 208.7 39.7 234.5 46.5 

DT 98.4 22.9 116.7 26.7 

Note: The bolds show the best performances obtained among the algorithms. 
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Table 4-5: Cross-validation of the best models for each algorithm for the f0 predictions. 

 Gravimetric covariant included Gravimetric covariant not included 

Algorithm RMSE (Hz) RRMSE (%) ErrRate (%) RMSE (Hz) RRMSE (%) ErrRate (%) 

SK 0.155 54.8 28.7 2.917 217.9 29.1 

LR 0.132 50.8 20.8 2.432 164.8 22.3 

EN 0.111 47.2 32.1 2.938 224.1 32.2 

RF 0.130 45.6 21.3 2.502 183.1 20.9 

ANN 0.135 48.7 41.3 3.716 214.3 45.5 

DT 0.162 58.0 27.0 3.976 423.0 31.3 

Note: The bolds show the best performances obtained among the algorithms. 

 

Figures 4-7 and 4-8 show the distribution of Vs30 and f0 in the study area predicted by the 

best resulting models, respectively. In the case of f0 prediction, only the area where gravity 

modeling is available is shown because the error outside of this zone is too high. The 

distribution of the values of both parameters is consistent with the observations shown in 

Chapter 4.2.2. Once the dynamic characterization of sites for the entire study area are 

available, it is possible to proceed with the Seismic Hazard assessment to obtain the PGA 

map. Figure 4-9 shows the estimate of PGA in the study area for the settings described in 

Chapter 4.2.5.4. 

 

4.3.4 PGA sensitivity 

 

To measure the uncertainty associated with the prediction of Vs30 with the three best 

predictive algorithms, we randomly chose 30 sites where this parameter was measured 

(Figure 4-10). None of them were used in the training of the models. In general, the 

predictions of Vs30 show a good fit for Vs30 less than 500 m/s. Above these values, the 

three models tend to underestimate Vs30. This underestimation of Vs30 for rigid sites is 

reflected in an overestimation of PGA for a design scenario when PGA is calculated with 

the predictive algorithms. This overestimation grows when the sites become more rigid, 

reaching PGA values of about 15% higher than those calculated from the measured Vs30. 
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The main reason is that the number of sites used to train the model under 500 m/s is much 

larger (96% of the database) than the data available over this value of Vs30. 

 

Table 4-6 shows the prediction error indicators for the set of 30 randomly chosen test sites. 

The results corroborate, using independent data, that the best predictive model to estimate 

Vs30 was LR, followed by RF and DT. 

 

Table 4-6: Vs30 prediction error indicators using independent data. 

Algorithm 𝑅𝑀𝑆𝐸 (
𝑚

𝑠
) 𝑅𝑅𝑀𝑆𝐸 (%) 

LR 79.5 14.5 

RF 82.9 15.4 

DT 124.9 22.4 

 

 

4.4 Discussion 

 

4.4.1 Seismic microzoning 

 

The results shown in Figure 4-6 were obtained from an integrated approach that uses 

geology, geophysics, and earthquake geotechnical engineering information, combining 

geophysical characterization of sites with seismic response maps. The result was a refined 

seismic microzoning that considers site effects on the seismic response of the soils in the 

study area (Figure 4-6). Seismically classified sites and the distribution of high 

gravimetric anomalies in soft soils helped to redefine the boundaries of seismic units, 

previously drawn only based on inferred geological information. In sites well covered by 

dynamic characterizations, we attached greater importance to quantitative information, 

while in poorly sampled sites, we attached greater importance to geological information. 

 



70 

 

 

Some changes are observed in the seismic units with respect to prior maps, mainly in the 

central zone of the study area (see von Igel et al., 2004 and Leyton et al., 2011 references). 

Nevertheless, despite the seismic unit updates, the refined seismic microzoning shows 

consistency with previous maps. The great difference of the zoning presented in this 

research is the combination of qualitative (i.e. geology) with a large amount of quantitative 

information obtained using geophysical techniques. 

 

4.4.2 Predictions of Vs30 and f0 

 

Regarding the prediction of Vs30, for the sites where the gravimetric covariant is available, 

the three best models had similar performances. Between the first and third best model, 

the difference of RMSE and RRMSE is only about 30 m/s and 5 %, respectively. The rest 

of the models show larger errors. Nevertheless, the best performance was obtained with 

LR, followed by RF and DT. For those sites where gravity data were not available, the 

models have more dispersion. Between the first and third best model, the difference of 

RMSE and RRMSE is about 46 m/s and 8.9 %, respectively. Apparently, the Vs30 

predictions are sensitive to the chosen algorithm, however ML algorithms continue to 

outperform traditional SK. 

 

These results show that the use of ML algorithms to predict Vs30 provide reliable 

approximations with reasonable uncertainty, improving the capabilities of the SK 

geostatistical algorithm. 
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Figure 4-7: Vs30 prediction maps using a) LR model, b) best RF and c) DT model. 

Circles show the observed Vs30 in the same color scale. 
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Figure 4-8: f0 prediction maps using a) best RF model, b) best EN model and c) LR 

model. Circles show the observed f0 in the same color scale and their sizes are 

proportional to A0. 
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Figure 4-9: Expected PGA map for events with Tm = 475 years, based on the estimates 

of Vs30 resulting from the a) LR model, b) best RF model, and c) DT model. 
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Figure 4-10: Uncertainty associated with the predictive models of Vs30. Results based 

on measured Vs30 are shown in blue. 

 

  

Regarding the prediction of f0, for those sites within the boundaries of the gravity model, 

the algorithms provide quite stable results. Between the best and worst model, the 

difference of RMSE and RRMSE is only about 0.05 Hz and 12%, respectively. Similarly 

to the Vs30 estimations, ML algorithms outperform SK.  The best performance was 

obtained with RF, followed by EN and LR. Nevertheless, the RRMSE values are high 

(about 46% in the best case). This would be explained by the previous step of prediction 

of the peak of the HVSR curve. This previous step inherently increases the errors in the 

final prediction of f0, since there are sites where the real HVSR curve is flat, but the 

algorithm is not able to identify this situation and, erroneously, provides a numeric 

estimate of f0. The predictions of f0 were highly influenced by this initial step since it was 

made using regression algorithms and not classification algorithms, which discriminate 

between finite categories or classes. The use of classification algorithms is outside the 

scope of this article, but it could be a good opportunity to improve predictions in future 

work. Unlike the case of Vs30, for those sites where gravity information is not available, 

the predictions of f0 fail, displaying RRMSE values higher than 100% in all models. Thus, 

these results are not reliable and are considered unacceptable. 

 

The good performance of the ML algorithm is explained by several reasons: a good 

density of samples in the study area, which allowed properly characterizing most of the 
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types of sites; a correct choice of the covariates used for training, because original 

covariates were developed focused on including information on the spatial distribution of 

the data, capturing correlations between geological, geophysical and geotechnical 

information. The use of the Data Augmentation technique allowed expanding the original 

database, avoiding overfitting the models and training them to achieve reasonable 

predictions in complex scenarios. Another possible reason is that some ML models (e.g. 

RF and DT) are not limited to using only linear combinations of the observations, and can 

model the nonlinearity between the target variable and the covariates (Appelhans et al., 

2015), i.e. inverse distances used in training probably play a non-linear role. 

Unexpectedly, it was observed that the LR model performed slightly better than the rest, 

probably because a large number of covariates were used for the training (44 and 45), 

which would facilitate the prediction as a linear combination of the covariates. 

It is also interesting to note that the improvement in predictions when including the 

gravimetric covariant is substantially greater when predicting f0 than when predicting Vs30, 

even though the predictions with and without gravity were not made in the same sites. In 

the best models for predicting Vs30, RMSE and RRMSE decreased from 70.5 m/s to 68.4 

m/s and from 17.8% to 17.6%, respectively. While, when predicting f0, RMSE and 

RRMSE decreased from 2.5 Hz to 0.13 Hz and from 183.1% to 45.6%, respectively. This 

would be explained because gravimetric residual has a much closer correlation with f0 

than with Vs30 since it provides an indicator of sediment thickness which often coincides 

with the depth at which the predominant impedance contrast is located (Maringue et al., 

2021). These results suggest that for the same area of interest, including a gravimetric 

covariate considerably improves the predictions of f0, and that the predictive capacity of 

f0 depends more on the considered covariates than on the algorithms used. 

 

Figure 4-7 shows the fit of the predictions to the Vs30 observations. Quite similar 

predictions are observed among the best 3 predictive models. All 3 models were able to 

correctly distinguish the rock units and predict Vs30 within the basin. In the northwest area, 

LR shows to be the least conservative predictor, followed by RF, while DT shows the 
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lowest values of Vs30. In the central and southern sector of the basin, LR is also less 

conservative than RF and DT. These differences are reflected in the PGA maps (Figure 4-

9), where the highest expected PGA values are located within the Santiago sedimentary 

basin and are associated with the most conservative prediction of Vs30 values (DT model), 

and the lowest expected PGA values are associated with the model that predicted the 

highest Vs30 values (LR model). The rock units present the lowest expected PGA values, 

which is consistent with the Vs30 values observed in these units. In general, the rock units 

to the east of the study area show higher expected PGA values than those located to the 

east, because they are closer to the main seismogenic source (subduction zone). 

 

The predicted f0 maps are quite similar. They differ mainly in their ability to predict where 

the HVSR curve is flat and in the values of f0 when the HVSR curve has a clear peak. RF 

is the most accurate, since it identifies the rock units and the most rigid soils in the study 

area reasonably well, assigning a flat HVSR curve. It is also the one that best fits the f0 

values observed in rigid and soft soils. EN adequately identifies rock units but was only 

able to predict a narrow range of f0, resulting in an almost bimodal map. LR also identifies 

rock units correctly and fits the observations well but is more conservative in the 

southwestern zone of the study area, delivering low predominant frequencies (deep sites) 

where soils are known to be rigid. Among the models, RF is the one that best fits the sites 

with non-flat HVSR curves, correctly identifying the sites classified as D and E, delivering 

the lowest observed values of f0 and therefore more prone to seismic amplifications. In 

general, all models were only able to predict a narrow range of f0 (0.2 to 0.40 Hz). This is 

probably due to the previous step that defines the shape of the HVSR curve and to the 

observed range of f0 values, which is mostly at frequencies less than 2 Hz (see Figure 4-

3b). 

 

The sensitivity analysis performed in Chapter 4.3.4 shows that the estimates of Vs30 are 

better for values of Vs30 less than 500 m/s, and they get worse when this limit is exceeded. 

This is because the database contains less information on stiffer sites compared to softer 
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sites, making it difficult for algorithms to predict the Vs30 value of the most rigid sites. 

Despite this, the error in the PGA calculation associated with the estimation error of Vs30 

is small for rigid sites, reaching maximum values of only 15%. 

 

Finally, the results of our work show that: (i) it is possible to generate a refined seismic 

microzoning in the Santiago basin incorporating quantitative and qualitative information 

that allows evaluating site effects on soils. And (ii) it is possible to obtain a reasonably 

good prediction of the dynamic properties of the sites of the Santiago basin using ML 

predictive algorithms, surpassing the capabilities of traditional geostatistical predictive 

models. 

 

4.4.3 Extensions and improvements 

 

 

The main limitation in the generation of the refined seismic microzoning is related to a 

very heterogeneous distribution of data from geophysical techniques. This caused that 

there were very wide areas in which only geological information was known, losing the 

opportunity to combine qualitative with quantitative information. This situation was 

mainly observed away from urban areas. Therefore, for future stages of this research, 

performing dynamic characterizations in the poorly sampled area is recommended, where 

the uncertainty of dynamic site properties is greater. 

 

The satisfactory results obtained suggest that this methodology could be replicated in other 

regions of Chile or the world, combining the dynamic properties of sites with information 

from surface geology, other geophysical techniques and digital elevation models to 

improve the accuracy of qualitative seismic response maps. 

 

Regarding the predictions of Vs30 and f0, the main limitations were: (i) the few 

measurements available in rock, which made it difficult to train the models in this type of 
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sites, (ii) the limited spatial extend of gravimetric data, and (iii) the difficulty of predicting 

the existence or not of a peak in the HVSR curve, increasing the errors in the prediction 

of f0. The best estimate of f0 is available as a tool to classify the unsampled sites of the 

study area, and the methodology to obtain these estimates remains available to be used in 

future GMPE that include f0 in their seismic hazard estimates. 

 

Therefore, for future research it is recommended to have more measurements in rock, at 

least in an amount comparable to observations in other types of soil. It will also be very 

useful to design a gravimetric experiment that covers the entire area of interest, since it 

has been shown that it correlates very well with f0. It would also be useful to study the 

performance of ML classification algorithms to decide whether the HVSR curves are flat 

or not, since better results will probably be obtained than using only regression algorithms. 

The importance of choosing and testing the training covariates was confirmed, since best 

predictions are obtained when there is a strong correlation between the covariates and the 

objective variable. 

 

It is important to mention that there should be other combinations of covariates that further 

improve the estimates of Vs30 or f0. This implies the possibility of removing or adding new 

covariates to the training database of the predictive models. Exploring new combinations 

of covariates may be necessary for geological contexts other than the sedimentary basins 

of Santiago, for example, to generate a predictive model on a much larger spatial scale. 

 

Finally, the distribution of f0 presented in this article was not directly used to assess the 

seismic hazard in the study area, because there is not a sufficiently validated GMPE 

applicable to Chile that includes this parameter in its calculations. However, GMPE that 

include f0 have already been developed (e.g. Kwak et al., 2020), using a two-stage 

nonlinear site amplification model derived empirically from records of strong earthquakes 

in Japan. Those models show that the residual, associated with GMPE that only include 

Vs30 as a site parameter, decreases considerably when including the observed values of f0 
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at the sites, mainly for spectral periods > 0.1 s. In this way, the use of f0 could strengthen 

seismic hazard estimates.  

 

4.5 Conclusions 

 

This work presents two results: (i) a refined seismic microzoning that provides a 

qualitative estimate of the seismic hazard in the Santiago basin, and (ii) a methodology 

that uses ML computational tools to estimate dynamic properties of the soils in the 

unsampled sectors of the Santiago basin, allowing the assessment of site effects and 

quantitatively estimate the seismic hazard in terms of PGA. A rationale is presented to 

generate these estimates for both Vs30 and the predominant period f0. 

 

The integration of qualitative information with quantitative data based on geophysical 

exploration made it possible to generate an update of the existing seismic microzoning 

map for the study area. This integration of information also allowed the generation of 

more complete predictive models of dynamic properties of sites integrating both types of 

sources of information. 

 

Regarding the predictive algorithms of Vs30 and f0, the following can be concluded: 

 

- Five ML algorithms (LR, EN, RF and DT) were compared with a traditional 

geostatistical algorithm (SK). For predicting Vs30, the most robust algorithm was 

LR, followed by RF and DT. For predicting f0, the best algorithm was RF, followed 

by EN and LR. 

 

- The results of all models were verified by cross-validation, obtaining a RMSE in 

the best prediction of Vs30 and f0 of 68.4. m/s and 0.13 Hz, respectively, and a 

RRMSE in the best prediction of Vs30 and f0 of 17.6% and 45.6%, respectively. 
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The spatial distribution of estimated Vs30 and f0 is consistent with the available 

observations. 

 

- The improvement in the estimates of Vs30 and f0 by ML algorithms are explained 

by the inclusion of spatial covariates for algorithm training, helping  the techniques 

capture the spatial correlations of geological, geophysical and geotechnical data. 

Similar results are well documented in related literature. 

 

- By including the gravimetric residual covariate in the training of the predictive 

models, a significant improvement was observed in the prediction of f0, which 

suggests that both parameters have a strong correlation in sedimentary contexts. 

 

- The predictive capacity of f0 apparently depends more on the choice of covariates 

than on the algorithm used, while the Vs30 predictions are more sensitive to the 

chosen algorithm. 

 

ML algorithms have shown to be promising tools in the prediction of dynamic properties 

of sites. Future work should be focused on increasing the database, exploring which 

combination of covariates gives better predictions in more general geological contexts, 

testing ML classification tools to reduce uncertainty when estimating f0, and including f0 

in the estimation of the seismic hazard through GMPE that include this parameter. 
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5 CONCLUSIONS AND FUTURE WORK 

 

 

This work aimed to develop a methodology that combines qualitative information from 

geology, with quantitative data from geophysics and a digital elevation model through 

computational techniques of machine learning to develop a predictive model of dynamic 

properties of sites. The final goal is to achieve a qualitative estimation of the seismic 

susceptibility and a quantitative assessment of the seismic hazard in the Maipo River 

Basin (MRB). 

 

A refined seismic susceptibility map was generated based on previous geological and 

seismic response maps, combining this information with the dynamic characterization of 

365 sites in the study area in terms of their surface shear wave velocities (Vs30) and their 

predominant frequencies (f0). Gravimetric information available in the study area was also 

incorporated. The integrated analysis of this information allowed to identify zones in 

which different levels of dynamic amplification are expected due to seismic action. 

 

In a second stage, different predictive algorithms were trained to estimate Vs30 and f0 in 

the area with gravimetry available. The algorithms were trained using local and spatial 

covariates related to the observed data, supported in the susceptibility map generated in 

this study. Five predictive machine learning algorithms were tested: artificial neural 

networks (ANN), random forests (RF), linear regression (LR), decision trees (DT), and 

elastic net (EN). Additionally, a simple kriging (SK) algorithm was tested as the only 

geostatistical method. 

 

Independent models were developed for two domains: within the Santiago metropolitan 

region (SMR) and in the complete MRB. 

 

Regarding the predictive algorithms of Vs30 and f0 within the SMR, the following can be 

concluded: 
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- For predicting Vs30, the most robust algorithm was LR, followed by RF and DT. 

 

- For predicting f0, the best algorithm was RF, followed by EN and LR. 

 

- The results of all models were verified by cross-validation, obtaining a RMSE in 

the best prediction of Vs30 and f0 of 68.4. m/s and 0.13 Hz, respectively, and a 

RRMSE in the best prediction of Vs30 and f0 of 17.6% and 45.6%, respectively. 

The spatial distribution of estimated Vs30 and f0 is consistent with the available 

observations. 

 

- The improvement in the estimates of Vs30 and f0 by ML algorithms would be 

explained by the inclusion of spatial covariates for training, helping the techniques 

to capture the spatial correlations of geological, geophysical and geotechnical data. 

Similar results are well documented in related literature. 

 

- By including the gravimetric residual covariate in the training, a significant 

improvement was observed in the prediction of f0, which suggests that both 

parameters have a strong correlation in sedimentary contexts. 

 

- The precision of the f0 predictions apparently depends more on the choice of 

covariates than on the algorithm used, while the Vs30 predictions are more sensitive 

to the chosen algorithm. 

 

Regarding the predictive algorithms of Vs30 and f0 within the Maipo River Basin, the 

following can be concluded: 

 

- For predicting Vs30, the most robust algorithm was LR, followed by RF and DT. 
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- Acceptable results for f0 were only obtained at sites where gravimetry is available 

(SRM). 

 

- The results of all models were verified by cross-validation, obtaining a RMSE in 

the best prediction of Vs30 of 69.3 m/s, and a RRMSE of 17.5%. The spatial 

distribution of estimated Vs30 is consistent with the available observations. 

 

The hypothesis of this work was corroborated since notable improvements were obtained 

in the qualitative estimation of seismic susceptibility and in the quantitative evaluation of 

the seismic hazard through the integration of information from different sources and the 

use of machine learning tools. Furthermore, very good estimates of Vs30 were achieved in 

the study area. Nevertheless, it was not possible to achieve a reasonable estimate of f0 in 

the entire study area due to the limited spatial extent of the gravimetric data, which proved 

to be key to estimating f0 accurately. Furthermore, the prediction of f0 was more complex 

than Vs30 due to the different ways of interpreting the shapes of the available HVSR 

curves. 

 

Recommendations for future works include: 

 

- Perform dynamic characterizations in the poorly sampled area, where the 

uncertainty of dynamical site properties is greater. 

 

- Include gravimetric measurements that cover a greater extension of the study area: 

it was found that this covariant improves the predictive capacity of ML algorithms, 

especially when predicting f0. 

 

- Study new combinations of training covariates: although good results were 

obtained with the covariates proposed in this work, there might be new 
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combinations of attributes (local and/or spatial) that further improve the 

performance of predictive algorithms. 

 

- Include f0 in seismic hazard estimating algorithms: as has been proven in other 

parts of the world, including f0 in ground motion prediction equations (GMPE) 

could reduce the uncertainty in estimating the seismic hazard. 

 

- Explore predictive algorithms not necessarily scalar for site characterization, but 

also vector ones, i.e. the dispersion and/or the HVSR curves instead of Vs30 and f0. 

 

- Study the performance of predictive classification algorithms: although 

classification algorithms are beyond the scope of this study, they could possibly 

achieve better results to predict the existence or not of flat HVSR curves, 

improving the final estimate of f0. 

 

- Extend the application of these results to perform vulnerability analyzes. 

 

Finally, the results obtained in this study suggest that the proposed methodology could be 

replicated in other sedimentary basins of Chile or worldwide. 
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Annex 1: Field work 

 

This Annex describes the methods and analyzes performed in the geophysical seismic 

surveys carried out in this study. General criteria used methodologies and example results 

are described. 

 

Annex 1.1: Surface wave geophysical methods 

 

There are various methods to measure Vs30, which can be classified into direct and indirect 

methods. Direct methods have the advantage of being reliable and accurate, but require 

one or more borehole at the site of interest, which can often be impractical, expensive, and 

time-consuming. On the other hand, indirect methods are much more efficient in time and 

cost since they use the recording of surface waves to characterize the soil. These methods 

take advantage of the dispersive nature of surface waves (Tokimatsu, 1997), i.e. the 

velocity of propagation or phase velocity (𝑣) depends on both its frequency (𝑓) and 

wavelength (𝜆) and are related as 

 

𝑣(𝑓) = 𝜆(𝑓)𝑓 (7) 

Therefore, long wavelengths allow exploration of greater depths of the subsoil and are 

associated with low frequencies, while short wavelengths allow exploration of shallower 

soil layers and are associated with high frequencies. The graphical representation of the 

dispersive properties of a soil is the dispersion curve as it shows the relationship between 

the phase velocity and frequency of surface waves. 

 

There are different approaches to obtain and analyze the scattering of surface waves at a 

site. The procedure for this characterization can be summarized as follows (Tokimatsu, 

1997; Foti, 2000): 
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- Observation and recording of surface waves 

 

- Determination of the characteristic dispersion curve of the site 

 

- Shear wave velocity profile estimation, based on an inversion process of the 

dispersion curve 

 

In this study and based on the experience of previous similar works (Humire, 2013; 

Podestá, 2017; Soto, 2019; Mendoza, 2021), Vs30 measurements were performed using a 

multichannel analysis approach. For this, a set of 24 vertical geophones (4.5 Hz natural 

frequency) was used to record seismic waves from different sources, using linear and 2D 

arrays. Active seismic sources (hammer blows) of known location and passive seismic 

sources (ambient noise) of unknown incidence were used. Linear arrays were used for the 

methods based on active and passive sources, while 2D arrays were intended only for 

ambient noise recording. The different methods of obtaining seismic waves allow 

exploring different portions of the characteristic dispersion curve of a site, as shown in 

Figure 7-1. Therefore, it is necessary to combine the results of the different methods to 

obtain a reliable dispersion curve that allows explore at least 30 m deep and get Vs30. 

The approaches used to obtain the dispersion curves in this investigation were the F-K 

method (frequency-wave number method) (Lacoss et al., 1969; Kvaerna & Ringdahl, 

1986) for active 1D and passive 2D arrays, the SPAC method (spatial autocorrelation 

method) (Aki, 1957) for passive 2D arrays, and the ESPAC method (Chávez-García et al., 

2005) (extended spatial autocorrelation method) for passive 1D arrays. These methods are 

briefly described below. A detailed description of these seismic methods is available in 

Humire (2015). 

- Spectral analysis F-K: This method assumes that the receiver array is crossed by a 

p wavefront of known frequency, speed, and direction of propagation. The signals 

are delayed according to the geometry of the array and under a hypothesis of 

direction of incidence of waves, thus, the arrival times to the receivers have a 
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common reference and the signals can be combined. Using appropriate integral 

transform, the information is analyzed in the domain of frequencies and wave 

number, allowing the construction of an amplitude spectrum based on records of 

the studied array. Finally, from the spectrum obtained, the dispersion curve is 

constructed for each combination of frequency and phase velocity. This method 

can be applied to both active and passive tests (Tokimatsu, 1997). 

 

- SPAC: The spatial autocorrelation method was proposed by Aki (1957) and 

assumes that the field of waves related to ambient vibrations is a stochastic 

process, stationary in time and space, and it is mainly composed of surface waves. 

Using micro-tremors measurements, it is possible to calculate the spatial 

autocorrelation function between each pair of sensors of the array. From these 

functions an autocorrelation coefficient is obtained for different frequency values 

to define the autocorrelation curve. These autocorrelation curves are used to 

construct the dispersion curve associated with the SPAC method. This method 

requires two-dimensional arrangements, and its main advantage is that it uses the 

same information recorded in a passive F-K test, hence it does not require any 

extra effort in field. 

 

- ESPAC: It is a method derived from the SPAC method applied to linear arrays. It 

assumes that the wave field is stationary in time and that there is no predominant 

direction of propagation. This method can be very useful if there no space available 

to deploy two-dimensional arrays. 

 

Figure 7-1 shows an example of the combination of dispersion curves from the different 

analysis methods used in this study, for a sample site in Colina district. The dispersion 

curves from the different methods are combined to solve a global inversion process using 

the tools available in Geopsy® package. This process uses the neighborhood algorithm, 

proposed by Wathelet (2008), which adjusts velocity profiles of 1D shear waves 
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associated with theoretical dispersion curves matching to those observed. The algorithm 

searches the one that minimizes the misfit or mismatch between the theoretical and 

empirical dispersion curves given an initial parametrization. Figure 7-2 shows the 

theoretical dispersion curves adjusted for the Colina site in Figure 7-1. Figure 7-3a shows 

the profile of shear wave velocities associated with the theoretical dispersion curve 

associated to the lowest misfit, while the Figure 7-3b shows the shear wave profile and 

the resulting Vs30 value. 

 

 

Figure 7-1: Empirical dispersion curves obtained by different methods: Active f-k (7.7 

– 19.3 Hz), Passive f-k (7.8 – 13.1 Hz), ESPAC (5.1 – 12.5 Hz) and SPAC (5.7 – 7.8 

Hz). 
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Figure 7-2: Fitted dispersion curve in software Geopsy®. 

 

 

Figure 7-3: (a) Shear wave velocity profile resulting from the inversion process. (b) 

Detailed shear wave profile and Vs30 value. 
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Annex 1.2: HVSR method 

 

The usual horizontal to vertical spectral ratio (HVSR) or Nakamura method (1989) 

consists of estimating the ratio between the Fourier amplitude spectrum of the horizontal 

and vertical components of the ambient vibrations (H/V spectral ratio). It allows 

estimating the predominant frequency of a site f0, which can be identified as the peak 

value of the H/V spectrum (Pastén, 2007).  

 

The method assumes that the micro-tremors are essentially Rayleigh surface waves and 

that the amplifications due to site effects are due to the presence of a soil deposit over a 

more rigid half-space (Lermo & Chávez-García, 1993). Then, assuming that the vertical 

component of the movement does not undergo amplification due to the soil deposits, the 

effect of the Rayleigh waves on the vertical component (𝐴𝑅) is calculated as: 

𝐴𝑅 =
𝑉𝑆

𝑉𝐵
 (8) 

 

where 𝑉𝑆 and 𝑉𝐵  are the amplitude of the spectra of the vertical components on the surface 

and in the rocky basement, respectively. 

 

Furthermore, the method defines an estimate of the site effect 𝐴𝐸, as the ratio between the 

horizontal components at the surface (𝐻𝑆) and at the basement (𝐻𝐵): 

 

𝐴𝐸 =
𝐻𝑆

𝐻𝐵
 (9) 

 

If it is assumed that the vertical and horizontal components are modified in the same way 

by Rayleigh waves, the method proposes a modified site effect function (𝐴𝑀): 
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𝐴𝑀 =
𝐴𝐸

𝐴𝐹
=

𝐻𝑆

𝑉𝑆

𝐻𝐵

𝑉𝐵

 (10) 

 

Because the environmental vibrations in a rocky outcrop are approximately the same in 

any direction (Nakamura, 1989), 𝐻𝐵/𝑉𝐵 ≈ 1 and:  

 

𝐴𝑀 =
𝐻𝑆

𝑉𝑆
 (11) 

 

The ambient noise measurements to obtain f0 in this study were recorded with Tromino® 

triaxial geophones. Data analysis was performed using a Matlab® implementation, where 

the records were divided into 60-second windows and the Stockwell transform was 

calculated for each window (Leyton, Ramírez & Vásquez, 2012). Finally, the 

implementation combines the horizontal components and calculates their ratio with 

respect to the vertical component. According to the obtained results, the spectral ratios 

from this method were classified into 4 types: 

 

- Type 1: Spectral ratios where a peak with an amplitude greater than 2 is clearly 

identified. 

- Type 2: Spectral ratios where more than one peak can be clearly identified with 

amplitudes greater than 2, and therefore, more than one possible predominant 

frequency. 

- Type 3: Flat spectral ratios, without predominant frequencies. 

- Type 4: Spectral ratios without peaks or clear predominant frequencies, but with 

amplitudes greater than 2. 

 

Figure 7-4 shows examples of the 4 types of spectral ratios obtained in this study. It is 

important to mention that the amplitude of the HVSR spectrum (A0) can be a relevant 

indicator of the impedance contrast between two or more soil strata (Pilz et al., 2010; 
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Leyton et al., 2013). This value was not explicitly used in this study, but its use is 

considered in future stages of the research.  

 

 

 

 

 

Figure 7-4: Examples of HVSR curve types in the localities of: a) Colina, b) 

Huechuraba, c) San Miguel and d) Buin. 
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Annex 2: Site dynamic characterization data 

 

Table A-1: Summary of the geophysical parameters compiled and measured in this 

study. 

Site 

ID 

East 

(m) 

North 

(m) 

Vs30 (m/s) f0 

(Hz) 

A0 

(-) 

Sus. 

Index 

T001 294777 6270384 498 P P C 

T002 292687 6270828 383 3.50 4.90 C 

T003 295130 6283553 341 1.81 6.32 D 

T004 306198 6295565 297 0.98 6.06 E 

T005 319159 6271813 531 P P B 

T006 320743 6273464 489 P P C 

T007 322258 6273637 477 P P C 

T008 324550 6279012 480 P P C 

T009 326957 6278809 492 P P C 

T010 323229 6287627 217 1.57 2.92 D 

T011 330079 6283434 530 13.60 2.52 B 

T012 332441 6282757 477 15.00 2.31 C 

T013 332856 6283934 558 P P B 

T014 332844 6287891 510 1.72 3.20 C 

T015 334677 6286315 517 P P B 

T016 337134 6291459 386 2.92 2.79 C 

T017 336400 6294048 341 1.15 2.41 D 

T018 336749 6294335 411 1.10 3.58 D 

T019 339140 6295113 434 P P C 

T020 340103 6295279 405 2.47 2.14 D 

T021 338187 6294280 398 0.37 3.00 D 

T022 337989 6293973 425 P P C 

T023 338610 6294320 423 1.23 3.27 D 

T024 335823 6292743 419 P P C 

T025 336480 6293208 426 14.90 5.14 C 

T026 335381 6290836 481 3.15 2.61 C 

T027 329719 6299876 293 1.15 6.39 D 

T028 334846 6298352 441 0.43 3.53 D 

T029 336712 6299889 330 0.37 3.35 E 
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Table A-1: Summary of the geophysical parameters compiled and measured in this study 

(cont.). 

Site 

ID 

East 

(m) 

North 

(m) 

Vs30 

(m/s) 

f0 

(Hz) 

A0 

(-) 

Sus. 

Index 

T030 335555 6299991 308 0.37 3.98 E 

T031 337127 6298994 369 2.60 3.12 D 

T032 335876 6298754 429 0.38 3.38 D 

T033 334996 6297386 554 0.48 2.65 C 

T034 331035 6296691 410 4.58 6.53 C 

T035 330681 6296909 453 2.25 4.82 D 

T036 330301 6298419 286 3.32 4.78 D 

T037 336318 6297601 377 1.05 4.13 D 

T038 336177 6296337 434 12.00 2.65 C 

T039 339812 6296705 414 1.80 2.50 D 

T040 324164 6314589 478 2.22 2.81 D 

T041 325554 6315509 275 1.72 3.50 D 

T042 324181 6315936 282 2.48 7.75 D 

T043 330659 6320709 237 0.71 4.97 E 

T044 335375 6323377 268 1.35 3.16 D 

T045 324566 6316415 281 1.37 2.70 D 

T046 325588 6315999 256 2.35 2.99 D 

T047 325400 6315868 303 1.65 3.73 D 

T048 325555 6315534 288 1.66 2.56 D 

T049 325848 6315280 246 1.50 3.43 D 

T050 325094 6314106 327 1.45 2.63 D 

T051 325121 6314658 271 1.27 3.34 D 

T052 324516 6314231 353 P P C 

T053 325155 6314021 326 1.53 2.66 D 

T054 324158 6315945 304 2.48 7.75 D 

T055 336726 6316464 256 0.42 4.37 E 

T056 335905 6316466 257 0.45 3.40 E 

T057 335831 6315527 326 0.40 5.00 E 

T058 335351 6315118 275 0.40 5.22 E 

T059 333254 6311732 264 0.55 4.80 E 

T060 333893 6312842 266 0.45 4.13 E 

T061 334321 6313472 264 0.42 3.52 E 

T062 334806 6314132 272 0.45 4.25 E 
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Table A-1: Summary of the geophysical parameters compiled and measured in this study 

(cont.). 

Site 

ID 

East 

(m) 

North 

(m) 

Vs30 

(m/s) 

f0 

(Hz) 

A0 

(-) 

Sus. 

Index 

T063 334077 6311638 243 0.33 3.12 E 

T064 334876 6312359 275 0.43 6.02 E 

T065 335414 6312481 244 0.38 5.39 E 

T066 335946 6313193 241 0.41 3.35 E 

T067 335381 6315852 340 0.42 4.43 E 

T068 335534 6311470 312 1.58 2.90 D 

T069 337150 6311925 264 0.50 2.50 E 

T070 336505 6312403 302 1.02 5.82 D 

T071 324962 6314422 321 1.47 5.29 D 

T072 327383 6313340 254 1.12 7.14 D 

T073 334968 6312716 276 0.38 3.64 E 

T074 345356 6326845 605 1.50 6.09 C 

T075 345327 6326862 491 11.40 3.20 C 

T076 344538 6326224 519 P P B 

T077 344970 6325617 578 15.00 2.70 B 

T078 342792 6313943 277 2.85 5.04 D 

T079 342038 6313758 280 1.68 4.67 D 

T080 342910 6313819 305 2.88 6.97 D 

T081 344214 6313228 320 1.03 5.67 D 

T082 344224 6313230 319 1.03 5.67 D 

T083 348766 6317439 415 1.03 5.04 D 

T084 345965 6316493 310 1.80 3.00 D 

T085 347189 6317713 331 N N D 

T086 348376 6319501 495 2.98 2.85 C 

T087 346861 6318613 385 P P C 

T088 346839 6318622 389 P P C 

T089 346261 6312729 342 1.70 3.25 D 

T090 346331 6312127 432 2.43 4.69 D 

T091 345497 6312983 306 14.60 4.05 D 

T092 345329 6313937 341 1.78 2.80 D 

T093 344013 6327171 673 P P B 

T094 343962 6326563 646 P P B 

T095 344662 6326697 779 P P B 
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Table A-1: Summary of the geophysical parameters compiled and measured in this study 

(cont.). 

Site 

ID 

East 

(m) 

North 

(m) 

Vs30 

(m/s) 

f0 

(Hz) 

A0 

(-) 

Sus. 

Index 

T096 344910 6325909 689 1.33 3.23 C 

T097 343046 6323805 484 P P C 

T098 343515 6323477 610 P P B 

T099 343054 6322882 575 1.18 4.66 C 

T100 342530 6321997 380 0.73 2.47 D 

T101 344994 6324874 352 P P C 

T102 345072 6324315 661 P P B 

T103 345437 6323793 663 1.45 5.00 C 

T104 344818 6323014 378 9.60 3.63 C 

T105 338149 6322891 282 P P D 

T106 338696 6323043 306 2.08 3.80 D 

T107 338955 6323599 308 1.90 3.00 D 

T108 339328 6322940 278 P P D 

T109 342994 6324248 473 13.90 3.88 C 

T110 342740 6325186 610 0.83 5.95 C 

T111 342687 6324611 587 P P B 

T112 343498 6326350 629 P P B 

T113 338622 6322621 334 2.40 3.12 D 

T114 339089 6324756 246 1.60 4.32 D 

T115 338767 6325594 335 2.38 3.19 D 

T116 339475 6324586 325 1.40 2.53 D 

T117 342994 6323371 480 8.28 3.72 C 

T118 345932 6316618 304 1.30 4.80 D 

T119 346887 6316163 300 1.50 2.74 D 

T120 337135 6306245 254 0.43 3.42 E 

T121 339131 6306335 245 0.80 5.56 E 

T122 340014 6306380 275 1.10 5.98 D 

T123 342108 6305450 261 2.01 8.15 D 

T124 342556 6310154 486 7.53 3.92 C 

T125 342504 6310192 565 7.53 3.92 B 

T126 341516 6306953 359 1.15 3.76 D 

T127 335774 6302122 312 0.43 4.13 E 

T128 339234 6301777 356 1.32 3.48 D 
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Table A-1: Summary of the geophysical parameters compiled and measured in this study 

(cont.). 

Site 

ID 

East 

(m) 

North 

(m) 

Vs30 

(m/s) 

f0 

(Hz) 

A0 

(-) 

Sus. 

Index 

T129 341791 6302636 308 0.75 2.22 E 

T130 342880 6301576 462 P P C 

T131 342864 6301872 407 P P C 

T132 342767 6302299 453 P P C 

T133 342522 6302929 328 0.47 7.11 E 

T134 342235 6303372 302 1.05 2.41 D 

T135 342383 6303784 272 1.00 3.06 E 

T136 342456 6304841 315 2.10 3.74 D 

T137 342930 6304284 328 0.88 2.45 E 

T138 341814 6303527 301 1.63 5.99 D 

T139 340031 6303347 445 3.78 4.03 C 

T140 339018 6303088 392 4.05 4.02 C 

T141 339645 6303582 422 3.07 5.19 C 

T142 341830 6302645 363 0.75 2.22 D 

T143 340578 6302184 336 1.77 2.39 D 

T144 339538 6302029 320 1.52 2.49 D 

T145 338567 6302434 345 0.98 3.48 E 

T146 336619 6302584 328 0.58 2.76 E 

T147 336491 6302920 322 1.03 4.24 D 

T148 336915 6303544 344 1.25 2.47 D 

T149 337345 6303383 396 N N D 

T150 337579 6302760 301 P P D 

T151 338228 6302906 304 1.93 3.91 D 

T152 336743 6300311 296 0.25 6.57 E 

T153 337653 6301662 367 0.42 3.77 D 

T154 336757 6301393 297 0.42 4.46 E 

T155 338864 6301432 292 1.17 7.11 D 

T156 337777 6300922 301 0.43 2.69 E 

T157 336668 6300880 310 0.40 5.27 E 

T158 335944 6301350 323 0.38 5.36 E 

T159 337300 6301107 302 0.38 4.02 E 

T160 338354 6301361 363 P P C 

T161 340486 6301025 318 1.13 2.64 D 
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Table A-1: Summary of the geophysical parameters compiled and measured in this study 

(cont.). 

Site 

ID 

East 

(m) 

North 

(m) 

Vs30 

(m/s) 

f0 

(Hz) 

A0 

(-) 

Sus. 

Index 

T162 338244 6300565 344 2.97 3.33 D 

T163 336645 6300446 343 0.42 3.52 E 

T164 337669 6299725 340 3.10 3.16 D 

T165 338147 6299926 347 2.85 2.69 D 

T166 341094 6300981 309 0.46 2.03 E 

T167 338825 6297979 408 0.38 4.07 D 

T168 340514 6297299 494 3.50 2.60 C 

T169 340557 6297081 438 3.37 2.72 C 

T170 341160 6296108 385 11.40 2.15 C 

T171 340645 6295564 409 1.10 3.07 D 

T172 341484 6294907 460 P P C 

T173 342789 6289082 615 P P B 

T174 340960 6284556 393 P P C 

T175 342362 6279510 563 P P B 

T176 339086 6277141 539 P P B 

T177 335279 6266080 426 11.20 3.42 C 

T178 338880 6265969 572 P P B 

T179 337182 6257389 424 0.50 2.47 D 

T181 356352 6266808 397 P P C 

T182 350750 6277687 461 3.81 3.26 C 

T183 350993 6278918 544 P P B 

T184 353345 6280328 548 P P B 

T185 350521 6282550 589 1.22 2.54 C 

T186 348809 6286814 573 P P B 

T187 345080 6287850 502 5.41 2.74 B 

T188 348093 6289416 583 P P B 

T189 346749 6292902 570 P P B 

T190 346748 6293102 567 P P B 

T191 345517 6298593 602 P P B 

T192 344352 6300839 552 P P B 

T193 346296 6301472 465 P P C 

T194 347744 6301723 616 P P B 

T195 349432 6304181 288 1.47 5.45 D 
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Table A-1: Summary of the geophysical parameters compiled and measured in this study 

(cont.). 

Site 

ID 

East 

(m) 

North 

(m) 

Vs30 

(m/s) 

f0 

(Hz) 

A0 

(-) 

Sus. 

Index 

T196 345160 6306521 334 1.43 2.08 D 

T197 345130 6306351 303 1.50 4.50 D 

T198 351884 6305078 515 P P B 

T199 356304 6310000 323 2.03 5.50 D 

T200 358713 6307874 356 P P C 

T201 358705 6307197 471 1.20 2.70 D 

T202 360732 6307041 383 6.45 2.70 C 

T203 358745 6304681 419 P P C 

T204 357039 6302582 408 6.40 3.74 C 

T205 356833 6298622 563 P P B 

T206 354058 6298218 382 9.60 2.32 C 

T207 354522 6297399 395 P P C 

T208 352698 6296957 429 P P C 

T209 350553 6295304 403 P P C 

T210 351322 6294791 361 P P C 

T211 351564 6294718 355 P P C 

T212 349932 6293244 561 P P B 

T213 351992 6291122 233 2.42 3.78 D 

T214 351545 6290047 564 P P B 

T215 352478 6290388 542 P P B 

T216 352580 6289633 542 P P B 

T217 352450 6289274 477 12.73 6.60 C 

T218 353778 6288301 473 4.97 2.38 C 

T219 353947 6288251 489 6.05 2.76 C 

T220 355647 6288074 420 2.40 2.07 D 

T221 356925 6291318 487 P P C 

T222 353466 6291811 372 2.80 2.10 C 

T223 353388 6293256 364 P P C 

T224 353696 6296018 406 P P C 

T225 357187 6294287 503 P P B 

T226 359471 6294912 542 P P B 

T227 359052 6294388 400 P P C 

T228 258815 6276825 280 7.77 6.47 D 
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Table A-1: Summary of the geophysical parameters compiled and measured in this study 

(cont.). 

Site 

ID 

East 

(m) 

North 

(m) 

Vs30 

(m/s) 

f0 

(Hz) 

A0 

(-) 

Sus. 

Index 

T229 257084 6277262 398 7.38 2.47 C 

T230 257144 6277954 268 1.55 8.06 D 

T231 256820 6277462 251 2.35 6.21 D 

T232 256425 6275798 239 2.32 3.29 D 

T233 256438 6273966 415 3.95 5.88 C 

T234 345516 6298538 541 P P B 

T235 356464 6302720 522 25.00 3.40 B 

T236 347845 6305691 326 1.23 2.88 D 

T237 335378 6320418 284 0.43 3.17 E 

T238 327647 6280445 569 P P B 

T239 320132 6334329 387 2.02 4.74 D 

T240 359793 6308141 286 P P D 

T241 325353 6280750 511 1.93 2.12 C 

T242 357919 6294011 535 P P B 

T243 344083 6323499 437 7.80 3.77 C 

T244 341485 6281937 619 1.18 5.09 C 

T245 258465 6282325 545 9.72 4.29 B 

T246 256938 6281670 475 8.38 7.09 C 

T247 256550 6281597 388 6.02 9.15 C 

T248 258053 6281811 441 8.50 2.87 C 

T249 258509 6281289 360 7.70 3.28 C 

T250 258448 6280948 345 4.50 5.92 D 

T251 257778 6280429 383 6.25 3.23 C 

T252 259212 6280352 464 3.45 7.87 C 

T253 258247 6280208 375 5.18 6.36 C 

T254 258792 6279774 360 3.65 9.38 C 

T255 259112 6279286 419 4.00 5.75 C 

T256 258415 6279183 289 1.02 3.38 D 

T257 257499 6279417 380 1.05 5.25 D 

T258 257620 6279023 303 1.88 5.29 D 

T259 257741 6278560 245 0.97 5.69 E 

T260 257347 6278229 248 1.00 8.71 E 

T261 258138 6278037 446 7.38 4.11 C 
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Table A-1: Summary of the geophysical parameters compiled and measured in this study 

(cont.). 

Site 

ID 

East 

(m) 

North 

(m) 

Vs30 

(m/s) 

f0 

(Hz) 

A0 

(-) 

Sus. 

Index 

T262 258848 6278313 442 3.30 5.51 C 

T263 257696 6277327 361 2.15 7.61 D 

T264 258660 6277495 345 4.83 3.58 D 

T268 258885 6275764 286 1.25 3.10 D 

T269 257032 6276968 188 1.25 10.40 D 

T270 257389 6277662 389 3.99 11.15 C 

T271 257803 6277776 306 1.14 10.94 D 

T272 257407 6278595 320 1.07 0.08 D 

T273 259048 6278567 280 1.65 0.17 D 

T274 257649 6280150 278 4.10 0.18 D 

T275 258350 6280680 369 2.43 0.05 D 

T276 256450 6281797 367 10.45 5.22 C 

T277 258152 6281733 269 1.33 3.41 D 

T278 357716 6296014 616 P P B 

T279 357937 6297394 510 P P B 

T280 356906 6300282 448 P P C 

T281 359793 6310764 433 2.55 2.93 C 

T282 355377 6311857 253 1.45 5.78 D 

T283 355396 6310467 313 2.47 4.06 D 

T284 341977 6297517 459 0.37 2.94 D 

T285 341845 6295842 491 0.37 2.63 D 

T286 342768 6295482 510 0.33 2.83 C 

T287 295542 6271181 586 4.10 2.82 B 

T288 295768 6268700 564 1.07 4.94 C 

T289 299509 6272256 511 1.32 4.52 C 

T290 312365 6299547 456 4.50 4.32 C 

T291 311527 6298504 429 1.50 5.29 D 

T292 313903 6297992 1117 P P A 

T293 336135 6300325 298 0.36 7.37 E 

T294 342986 6316261 298 0.82 7.96 E 

T295 342819 6316648 295 0.78 7.73 E 

T296 348933 6283758 604 P P B 

T297 359317 6305002 604 1.18 3.39 C 
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Table A-1: Summary of the geophysical parameters compiled and measured in this study 

(cont.). 

Site 

ID 

East 

(m) 

North 

(m) 

Vs30 

(m/s) 

f0 

(Hz) 

A0 

(-) 

Sus. 

Index 

T298 343606 6307951 254 1.20 8.77 D 

T299 337890 6303795 390 P P C 

T300 343252 6265525 615 P P B 

T301 345757 6300754 566 P P B 

T302 353100 6288456 555 P P B 

T303 357542 6298820 613 P P B 

T304 344797 6279750 576 1.68 2.76 C 

T305 343860 6299616 552 P P B 

T306 334608 6292390 305 0.45 2.94 E 

T307 333500 6301210 360 0.37 7.96 D 

T308 374903 6276811 409 N N D 

T309 352359 6313288 839 P P B 

T310 351168 6313802 836 P P B 

T311 375938 6276024 993 P P A 

T312 377787 6277795 1954 P P A 

T313 356152 6312510 1000 P P A 

T314 355506 6312411 1108 P P A 

T315 355245 6293564 457 P P C 

T316 355636 6286990 380 3.26 8.37 C 

T317 355975 6299752 395 P P C 

T318 344770 6293735 378 2.60 3.84 C 

T319 338337 6307933 250 0.40 3.50 E 

T320 340680 6309387 302 0.88 4.49 E 

T321 340707 6307148 279 0.85 4.33 D 

T322 340280 6307249 269 1.13 4.36 D 

T323 342383 6306823 296 1.04 4.30 D 

T324 344249 6307063 286 0.88 7.45 D 

T325 344105 6307253 296 1.15 5.49 D 

T326 345692 6305495 325 1.28 3.60 D 

T327 346027 6304460 335 P P D 

T328 349432 6304626 265 1.14 7.81 D 

T329 328510 6280412 573 P P B 

T330 335845 6287162 675 P P B 

T331 337096 6278732 670 P P B 

T332 342441 6292896 620 P P B 

T333 345772 6296382 634 P P B 
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Table A-1: Summary of the geophysical parameters compiled and measured in this study 

(cont.). 

Site 

ID 

East 

(m) 

North 

(m) 

Vs30 

(m/s) 

f0 

(Hz) 

A0 

(-) 

Sus. 

Index 

T334 348436 6284743 600 1.00 5.85 C 

T335 349254 6278654 603 P P B 

T336 350700 6289077 670 P P B 

T337 353132 6298069 608 1.00 2.00 C 

T338 352793 6286428 587 1.69 2.26 C 

T339 354245 6303250 578 P P B 

T340 355108 6284922 508 5.50 2.15 B 

T341 344023 6300237 590 7.01 2.94 B 

T342 343738 6298070 530 0.48 2.41 C 

T343 328875 6290048 404 1.42 3.44 D 

T344 330449 6290627 426 0.60 2.25 D 

T345 333248 6291532 394 P P C 

T346 338043 6294977 440 0.37 2.33 D 

T347 328705 6301184 396 0.41 3.95 D 

T348 335661 6297612 397 0.42 2.84 D 

T349 337474 6290717 476 3.50 2.50 C 

T350 257604 6272808 485 2.20 2.00 D 

T351 335327 6323376 281 1.34 3.00 D 

T352 349140 6304412 267 1.50 6.40 D 

T353 332939 6305033 347 0.39 4.50 E 

T354 337548 6291025 370 2.73 4.40 C 

T355 357414 6298548 635 P P B 

T356 294526 6269011 471 1.40 3.80 D 

T357 356222 6303632 574 P P B 

T358 345754 6295042 724 3.60 3.00 B 

T359 321152 6273318 577 1.00 3.30 C 

T360 257458 6278576 281 0.95 2.00 D 

T361 258252 6280261 477 5.60 2.00 C 

T362 353926 6280301 593 4.20 1.00 B 

T363 342801 6306723 271 0.93 1.00 E 

T364 356020 6283518 435 3.56 1.00 C 

T365 359644 6308019 335 1.45 1.00 D 
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Table A-1: Summary of the geophysical parameters compiled and measured in this study 

(cont.). 

Site 

ID 

East 

(m) 

North 

(m) 

Vs30 

(m/s) 

f0 

(Hz) 

A0 

(-) 

Sus. 

Index 

T366 352742 6305521 534 0.83 2.70 C 

T367 348689 6295824 441 P P C 

T368 339623 6303974 1092 1.12 3.75 A 

T369 348596 6312588 1050 P P A 
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Annex 3: Site cards of the explored sites in this research. 

Peñalolén – T278 

 

Dispersión Empírica 

 
 

Dispersión Ajustada 

 
 

 

Hi (m) Hf(m) Vs (m/s) 

0 11.7 443.7 

11.7 30.0 822.3 

 𝑣𝑠30 616 

Perfil Vs 
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HV 



119 

 

 

La Reina – T279 

 

Dispersión Empírica 

 
 

Dispersión Ajustada 

 

  

Hi (m) Hf(m) Vs (m/s) 

0.0 4.2 269 

4.2 16.7 491 

16.7 30.0 663 

 𝑣𝑠30 510 

Perfil Vs 



120 

 

 

 

 

HV 

 



121 

 

 

Las Condes – T280 

 

Dispersión Empírica 

 
 

Dispersión Ajustada 

 

 

Hi (m) Hf(m) Vs (m/s) 

0.0 3.3 156 

3.3 4.0 466 

4.0 30.0 586 

 𝑣𝑠30 448 

Perfil Vs 



122 

 

 

 

 

 

 

HV 



123 

 

 

Lo Barnechea – T281 

 
Dispersión Empírica 

 
 

Dispersión Ajustada 

 
 

 

Hi (m) Hf(m) Vs (m/s) 

0.0 2.8 313 

2.8 6.2 385 

6.2 7.1 389 

7.1 30.0 469 

 𝑣𝑠30 433 

Perfil Vs 



124 

 

 

 

 

 

 

HV 



125 

 

 

Lo Barnechea – T282 

 

Dispersión Empírica 

 
 

Dispersión Ajustada 

 
 

 Hi (m) Hf(m) Vs (m/s) 

0.0 3.7 185 

3.7 6.5 230 

6.5 25.1 240 

25.1 30.0 569 

 𝑣𝑠30 253 

Perfil Vs 



126 

 

 

 

 

 

 

HV 



127 

 

 

Lo Barnechea – T283 

 

Dispersión Empírica 

 
 

Dispersión Ajustada 

 
 

 Hi (m) Hf(m) Vs (m/s) 

0.0 5.6 178 

5.6 7.9 217 

7.9 20.6 367 

20.6 30.0 495 

 𝑣𝑠30 313 

Perfil Vs 



128 
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Estación Central – T284 

 

Dispersión Empírica 

 
 

Dispersión Ajustada 

 
 

 

Hi (m) Hf(m) Vs (m/s) 

0.0 4.7 272 

4.7 8.0 434 

8.0 24.0 479 

24.0 30.0 825 

 𝑣𝑠30 459 

Perfil Vs 



130 

 

 

 

 

 

HV 
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Estación Central – T285 

 

Dispersión Empírica 

 
 

Dispersión Ajustada 

 
 

 

Hi (m) Hf(m) Vs (m/s) 

0.0 4.6 239 

4.6 20.2 526 

20.2 30.0 806 

 𝑣𝑠30 491 

Perfil Vs 



132 

 

 

 

 

 

 

HV 



133 

 

 

Estación Central – T286 

 

Dispersión Empírica 

 

 

Dispersión Ajustada 

 
 

 

Hi (m) Hf(m) Vs (m/s) 

0.0 3.5 278 

3.5 9.8 448 

9.8 30.0 687 

 𝑣𝑠30 510 

Perfil Vs 



134 

 

 

 

 

 

 

HV 



135 

 

 

Melipilla – T287 

 

Dispersión Empírica 

 
 

Dispersión Ajustada 

 
 

 

Hi (m) Hf(m) Vs (m/s) 

0.0 1.1 212 

1.1 17.8 503 

17.8 30.0 965 

 𝑣𝑠30 586 

Perfil Vs 



136 

 

 

 

 

 

 

HV 



137 

 

 

Melipilla – T288 

 

Dispersión Empírica 

 
 

Dispersión Ajustada 

 
 

 

Hi (m) Hf(m) Vs (m/s) 

0.0 5.0 239 

5.0 7.5 679 

7.5 20.4 716 

20.4 30.0 926 

 𝑣𝑠30 564 

Perfil Vs 



138 

 

 

 

 

 

 

HV 



139 

 

 

Melipilla – T289 

 

Dispersión Empírica 

 
 

Dispersión Ajustada 

 
 

 

Hi (m) Hf(m) Vs (m/s) 

0.0 3.6 257 

3.6 17.5 457 

17.5 30.0 882 

 𝑣𝑠30 511 

Perfil Vs 



140 

 

 

 

 

 

 

HV 



141 

 

 

Curacaví – T290 

 

Dispersión Empírica 

 
 

Dispersión Ajustada 

 
 

 

Hi (m) Hf(m) Vs (m/s) 

0.0 19 402 

19 30.0 610 

 𝑣𝑠30 456 

Perfil Vs 



142 

 

 

 

 

 

 

HV 



143 

 

 

Curacaví – T291 

 

Dispersión Empírica 

 
 

Dispersión Ajustada 

 
 

 

Hi (m) Hf(m) Vs (m/s) 

0.0 6.6 342 

6.6 8.9 350 

8.9 24.7 468 

24.7 30.0 522 

 𝑣𝑠30 429 

Perfil Vs 



144 

 

 

 

 

 

 

HV 



145 

 

 

Curacaví – T292 

 

Dispersión Empírica 

 
 

Dispersión Ajustada 

 
 

 

Hi (m) Hf(m) Vs (m/s) 

0.0 1.1 1090 

1.1 30.0 1122 

 𝑣𝑠30 1117 

Perfil Vs 



146 

 

 

 

 

 

HV 



147 

 

 

San José de Maipo – T308 

 

Dispersión Empírica 

 

 
Dispersión Ajustada 

 
 

 

Hi (m) Hf(m) Vs (m/s) 

0.0 4.2 206 

4.2 14.2 385 

14.2 15.3 408 

15.3 30.0 631 

 𝑣𝑠30 409 

Perfil Vs 



148 

 

 

 

 

 
HVSR no concluyente. 

 

HV 



149 

 

 

Lo Barnechea – T309 

 

Dispersión Empírica 

 
 

Dispersión Ajustada 

 
 

 

Hi (m) Hf(m) Vs (m/s) 

0.0 1.4 163 

1.4 9.5 418 

9.5 22.2 691 

22.2 30.0 1407 

 𝑣𝑠30 839 

Perfil Vs 



150 

 

 

 

 

 

 

HV 



151 

 

 

Lo Barnechea – T310 

 

Dispersión Empírica 

 
 

Dispersión Ajustada 

 

 

Hi (m) Hf(m) Vs (m/s) 

0.0 2.8 610 

2.8 16.0 654 

16.0 30.0 1248 

 𝑣𝑠30 836 

Perfil Vs 



152 

 

 

 

 

 

 

HV 



153 

 

 

San José de Maipo – T311 

 

Dispersión Empírica 

 

Dispersión Ajustada 

 
 

 

Hi (m) Hf(m) Vs (m/s) 

0.0 30.0 993 

 𝑣𝑠30 993 

Perfil Vs 



154 

 

 

 

 

 

HV 



155 

 

 

San José de Maipo – T312 

 

Dispersión Empírica 

 

 
Dispersión Ajustada 

 
 

 

Hi (m) Hf(m) Vs (m/s) 

0.0 1.2 1917 

1.2 30.0 1956 

 𝑣𝑠30 1954 

Perfil Vs 



156 

 

 

 

 

 

HV 



157 

 

 

Renca – T368 

 

Dispersión Empírica 

 
 

Dispersión Ajustada 

 

 

 
Hi (m) Hf(m) Vs (m/s) 

0.0 1.0 1086 

1.0 30.0 1093 

 𝑣𝑠30 1092 

Perfil Vs 



158 

 

 

 

 

 

 

HV 



159 

 

 

Colina – T369 

 
Dispersión Empírica 

 
 

Dispersión Ajustada 

 
 

 

Hi (m) Hf(m) Vs (m/s) 

0.0 1.2 243 

1.2 30.0 1218 

 𝑣𝑠30 1050 

Perfil Vs 



160 

 

 

 

 

 

 

HV 

 


