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ABSTRACT  

The valuation of commodities contingent claims depends on the process assumed for the 

underlying asset. While the drift is important for futures pricing, the volatility is the 

price driver for options. In this paper we compare the empirical pricing performance of a 

model with constant volatility (CV) with one with a stochastic volatility specification 

(SV). These models are applied to oil, copper and gold getting consistent results for all 

three commodities. First, the CV model is clearly a better alternative to price futures 

contracts; not only it is simpler, but also it has smaller errors. However, if it is used to 

price options contracts the error could be considerable higher. Second, the longer the 

option maturity, the less relevant are the differences in pricing errors. Third, the higher 

complexity of the SV model is reflected in the, about 10 times, larger execution times. 

Fourth, the results of the SV model, applied for the first time to gold and copper, 

strongly suggest the presence of unspanned stochastic volatility components in all three 

commodities. Choosing the best model to implement in a real situation depends on the 

objectives pursued and on the tradeoffs between effort and precision. The results 

presented are then not only new, but also relevant from a practitioner point of view. 
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RESUMEN  

La valoración derivados de commodity depende del proceso asumido por el activo 

subyacente. Mientras que la media de los retornos es importante para los precios futuros, 

la volatilidad lo es para el precio de las opciones. En este trabajo se compara 

empíricamente el ajuste de precios de un modelo con volatilidad constante (CV) contra 

uno con una especificación estocástica de la volatilidad (SV). Estos modelos se aplican 

al petróleo, el cobre y el oro, consiguiendo resultados consistentes para los tres 

commodities. En primer lugar, el modelo CV es claramente una alternativa mejor para 

valorizar contratos futuros, no sólo es más simple, sino que también tiene errores más 

pequeños. Sin embargo, si se utiliza para valorizar contratos de opciones el error es 

considerablemente mayor. En segundo lugar, cuanto mayor sea la madurez de la opción, 

menos relevantes son las diferencias en los errores en los precios. En tercer lugar, la 

mayor complejidad del modelo SV se refleja en tiempos de ejecución, 

aproximadamente, 10 veces más grandes. En cuarto lugar, los resultados del modelo de 

SV, por primera vez aplicado al oro y cobre, sugieren con fuerza la presencia de 

componentes de volatilidad no abarcados por el mercado del spot (USV) en todos los 

tres commodities. Elegir el mejor modelo para poner en práctica en una situación real 

depende de los objetivos que se persiguen y del balance entre esfuerzo y precisión. Los 

resultados presentados son entonces no sólo nuevos, sino que también relevantes desde 

el punto de vista práctico-profesional. 

 

 

 

 

 

 

Palabras Claves: Derivados de Commodity, Volatilidad Estocástica, USV, Ajuste de 

Precios, Contrato de opción, Contrato Futuro, Petróleo, Cobre, Oro. 
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1. ARTICLE INTRODUCTORY CHAPTER 

1.1 Introduction  

The increasing number of commodity derivatives contracts being traded has come 

with an incredible growth of the notional value of the contracts itself, and also with 

an expansion of the research on the market of commodity derivatives. The 

commodity literature has been fulfilled with models attempting to, adequately, 

describe the dynamics of commodity spot prices, options, futures and other 

commodity-linked derivatives. From a practitioner angle, this proliferation of 

models to price commodity contingent claims presents the challenge of choosing a 

proper one that satisfies the needs of each particular context. Knowing the tradeoff 

between different frameworks, quantifying the pricing performance of each, 

becomes an extremely useful tool to select the specification that suits the proper 

needs appropriately. 

Amongst the frameworks, in the commodity literature, that aim to describe the 

commodities dynamics and value commodity–linked contingent claims, the main 

differences arise when it comes to model the volatility of the underlying asset. 

Earlier studies, primarily focused on the valuation of futures contracts, assume 

non-stochastic volatility, however, as the interest shift to price more complex 

derivatives such as options, this assumption became insufficient, and models 

evolved to account for sophisticated features such as stochastic volatility and price 

jump diffusions processes.  

Empirical evidence regarding the stochastic behavior of the volatility can be found 

in the literature. For example, Litzenberger and Rabinowitz (1995) study the 

relationships between volatility, production and the level backwardation in oil 

prices allowing, though exogenously, time varying volatility, showing a non-

decreasing correlation between the latter and backwardation and a non-increasing 

one with production. Duffie and Gray (1995) make the empirical exercise of 
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computing realized and implied volatility for several commodities and find that the 

constant volatility hypothesis is rejected at the 95% confidence level. 

1.2 Main goals  

The main goal of this work is to develop a complete analysis of the empirical 

differences between existing models in the commodity literature, highlighting the 

tradeoff between them to help discerning when is worth to use one model despite 

the others.  

Within the diverse range of frameworks in the literature, the focus is put in the 

differences between models that account for stochastic volatility and the ones that 

treat it as a constant feature. The objective is to compare this kind of models 

analyzing the empirical pricing performance on futures and options contracts, but 

also considering the implementation issues of each. The challenge consists to 

contrast the models in an extensive empirical framework, which means to build a 

common panel of data that allows comparing the models under the same conditions 

for several situations. Following the seminal work of Schwartz (1997), the 

objective is to calibrate the models over three different commodities, oil, copper 

and gold, for an extensive panel of data that goes from January 2006 to May 2013. 

This implicates, most likely, to extend the models involved in the comparison by 

expanding the dates and commodities used in their original empirical frameworks.  

As has been stated, the objective of this work not only aims to compare, 

empirically, the futures and options pricing performance of both kind of models; it 

is also focused to analyze the tradeoff between their goodness of fit and the 

complexity of their implementations. While most of constant volatility models 

count with futures and options closed-form pricing formulas, stochastic volatility 

frameworks do not and several numeric approximations have to be done to value 

some derivatives. The constant volatility assumption allows to derive closed-form 

Black-Scholes-type formulas (Hilliard and Reis, 1998; Miltersen and Schwartz, 

1998). On the other hand, following the seminal work of Heston (1993), stochastic 
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volatility models are able to develop quasi-analytical options pricing formulas 

based on the Fourier inversion theorem, however they often require solve 

numerically a system of ordinary differential equations and numerically evaluate 

complex integrals. 

Knowing the strengths and weaknesses of both kind of models and quantifying 

their pricing errors, allows having a clear picture of when to use each of them. 

Although it is expected to have a better options pricing performance with the 

stochastic volatility models, the answer is not clear regarding futures pricing. Even 

more, it is not clear to what extent they will “perform better” from a practitioner 

point of view where implementation issues play a role in the decision process.  

1.3 Literature review 

Most of the work presented in this article is based on existing valuation models to 

price commodity contingent claims. Within the vast range of models existing in 

the commodity literature, the attention is focused on those with stochastic 

volatility and those with multi stochastic factors, but constant volatility.  

Following the seminal work of Black and Scholes (1973), on the valuation of 

equity contingent claims, most of the modern valuation models for commodity-

linked securities are based on the assumption that under an equilibrium state there 

should be an absence of arbitrage opportunities. This implies the existence of a 

unique measure where all assets have the same expected rate of return, the risk-

free rate. This is what has been known as risk-neutral valuation, which states that 

in a world with only no risk-averse agents, the price of any asset can be taken as 

the expected discounted future cash flows under a risk-neutral probability 

measure. Under certain regularity conditions such as the future cash flows being 

uncorrelated with the risk-free rate, the value of an asset can be calculated as the 

expected future payoffs, under the risk-neutral measure, discounted at the risk-free 

rate (Cortazar and Schwartz, 1994).  
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Equilibrium commodity models often specify a typically affine process, under the 

risk-neutral world, to model spot price dynamics as they usually have desirable 

properties such as being Markovian, which means that expected future cash flows 

can be predicted based only on the present state of the process (Gibson and 

Schwartz 1990; Schwartz, 1997; Hilliard and Reis, 1998). However, there are 

some models that specify the commodity price process by modeling the entire 

forward convenience yield, cost of carry or interest rate curve instead of their spot 

counterparts. This has the advantage of exactly fit the initial forward curve, but at 

expenses of commonly loose the Markov property. The no-arbitrage conditions 

that these models must satisfy are developed in the outstanding work of Heath, et 

al. (1992) (HJM), reason why models following this kind of specification are 

usually stated as being developed under the HJM framework (Cortazar and 

Schwartz, 1994; Miltersen and Schwartz, 1998; Miltersen, 2003). 

1.3.1 Constant volatility models of commodity prices 

Among the many models found in the literature that attempt to describe the spot 

price dynamic to value commodity-linked derivatives, there are many that, 

regardless the number of sources of uncertainty considered, assume the volatility 

of the commodity price to be constant.  

Early models such as Brennan and Schwartz (1985) construct a simple process for 

a commodity price by assuming only one source of uncertainty, the spot price 

itself, along with constant drift and volatility. In their model, the spot price follows 

a geometric Brownian motion, where the growth rate of the commodity price 

depends only on time and with no mean reversion. Schwartz (1997) also proposes 

a 1-factor model in similar fashion, but includes mean reversion into the process of 

the spot price logarithm.  

Gibson and Schwartz (1990) develop a 2-factor model where the spot price 

follows the same process as the one stated by Brennan and Schwartz (1985), but 

suggesting that is correlated with the process of the convenience yield, which is 
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modeled as mean reverting process. Schwartz and Smith (2000) model the spot 

price logarithm as the composition of two factors: the short-term deviations in log 

prices and the equilibrium level for them. This short-term/long-term model 

assumes a mean-reversion process, towards zero, for the short-term log price 

deviation, while persistent framework, without mean reversion, to the equilibrium 

level process. 

Models found in the commodity literature that are more sophisticated, often 

assume 3-factor specifications that extend the aforementioned models, including 

stochastic interest rates (Schwartz, 1997; Hilliard and Reis, 1998; Casassus and 

Collin-Dufresne, 2005). Cortazar and Naranjo (2006) go beyond and develop a 

canonical N-factor model based on the seminal work of Dai and Singleton (2000) 

on interest rates that assume multiple latent sources of uncertainty to model the 

process of commodity prices. It has the advantages to partially include mean-

reversion and to span many of the existing models in the literature as special cases 

of it. 

Most of these models were figured to adequately price futures contracts, 

nonetheless, there are some that attempt to price other derivatives such as options 

by extending Black-Scholes formula to a multi-factor commodity context (Hilliard 

and Reis, 1998; Miltersen and Schwartz, 2003). 

1.3.2 Stochastic volatility models of commodity prices 

Since futures contracts are not that sensitive to volatility the constant volatility 

assumption for commodity prices, despite the evidence (Duffie and Gray, 1995), 

does not have a greater impact in the pricing performance of futures contracts. 

However, for valuing more volatility-sensitive derivatives this assumption is at 

least questionable.  

Since the seminal work of Heston (1993) that develops a tractable framework to 

price options under the stochastic volatility assumption based on the Fourier 

inversion theorem, commodity literature has been complemented with models that 
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take into account the time varying feature of the volatility for commodity prices. 

Richter and Sørensen (2002) develop a tractable 3-factor model to value options 

on agricultural commodities that includes seasonality and stochastic volatility 

under a strictly affine framework. On the other hand, Nielsen and Schwartz (2004) 

extends the Gibson and Schwartz (1990) model by letting the volatility to be 

proportional to the convenience yield and applying it to spot and forward copper 

data.
1
  

Based on the HJM framework, Trolle and Schwartz (2009) develop a model that 

includes stochastic spot price and forward cost of carry, but also specifying two 

volatility factors to account for stochastic volatility. Furthermore, it has the 

advantage to deal with unspanned stochastic volatility, meaning that it has the 

flexibility to model a market where options are not redundant securities and the 

spot markets are unable to fully span the volatility structure (Collin-Dufresne and 

Goldstein, 2002). 

1.3.3 Empirical pricing performance. 

Empirical performances of alternative pricing models have been treated before in 

the literature mainly for interest rates derivatives. For example, Bakshi et al. 

(1997) analyze the term structure options pricing differences between the Black-

Scholes model and several other specifications that includes, and combines, 

stochastic interest rates, stochastic volatility and random jumps diffusion.  

In the commodity literature, most papers are focused in demonstrating the 

statistical significance of their models instead of make empirical comparisons 

against other benchmarks. Schwartz (1997) is one of the few works where an 

empirical pricing performance of the different models is conducted for oil, copper 

and gold markets. However, the scope of his work only includes the pricing 

performance of futures contracts and considers only models under the constant 

                                                 
1
 Due the lack of readily available options, data Nielsen and Schwartz could not be able 

to test their model using option prices. 
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volatility assumption. On other hand, Hughen (2010) compare, in terms of options 

and futures pricing fit, a stochastic volatility model respect to an affine constant 

volatility one, but only considers a 3-factor model for the constant volatility 

model. In addition, he does not use options prices in the calibrating process and 

only analyze the empirical evidence for crude oil. Since his contribution is focused 

in the development of a tractable maximal affine stochastic volatility model and 

not in the empirical demonstration of the pricing performance of the models, only 

states the overall performance without analyzing the cross-sectional differences 

that may arise. 

1.4 Methodology 

In order to carry out the analysis proposed two models representing the stochastic 

and non-stochastic volatility frameworks are chosen. For the selection of the 

constant volatility kind of specifications, the N-factor Gaussian model developed 

by Cortazar and Naranjo (2006) is elected. Between the models that have the 

ability to replicate the time varying volatility behavior (Nielsen and Schwartz, 

2004; Richter and Sørensen 2002; Trolle and Schwartz, 2009), the approach 

followed by Trolle and Schwartz (2009) is chosen.  

The selection of the above-mentioned model for the constant volatility framework 

paradigm lies on the fact that encompasses most of the, this nature, models present 

in the literature. Based on the 𝐴0(𝑁) canonical representation of Dai and Singleton 

(2000) for term structure, the N-factor Gaussian model of Cortazar and Naranjo 

(2006) generalizes and extends many of the constant volatility models found in the 

literature. For example two and 3-factor models developed in the works of Gibson 

and Schwartz (1990), Schwartz (1997), Hilliard and Reis (1998), Schwartz and 

Smith (2000) and Cortazar and Schwartz (2003), can be represented as special 

cases of the aforementioned N-factor Gaussian model. On the other hand, the main 

reason for the stochastic volatility model selection lies in the additional flexibility 

of Trolle and Schwartz (2009) specification to allow volatility components not to 
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be fully spanned by the spot (futures) market. This phenomenon is what has been 

called “unspanned stochastic volatility” factors (Collin-Dufresne and Goldstein, 

2002). Also, as a complementary objective of this work, the implementation of this 

framework allows to check whether this characteristic, which would imply that 

options are not redundant securities, may be present not only for oil but also for 

copper and gold markets. 

The selected models are calibrated using standard statistical approaches in order to 

subsequently calculate the futures and options contracts pricing errors and 

compare them on an overall and cross-sectional level. Finally, the empirical results 

are contrasted with the implementation considerations of each one of the models 

involved.  

Gold, high-grade copper and crude oil are the commodities selected to apply the 

models. This selection follows from Schwartz (1997) and has the advantage of 

providing a broad framework to compare the different models. Since both models, 

Trolle and Schwartz (1997) and Cortazar and Naranjo (2006), have already been 

applied to the oil market, but in a different date sample, this selection also points 

to extend the work of both papers and to check whether their conclusions are 

extendible to other commodities such as gold and copper. For this purposes daily 

data on settlement prices, open interest and volume, for futures and options, are 

considered. For oil, futures and options settlement data of the New York 

Mercantile Exchange (NYMEX) from January 2006 to May 2013 is used, while 

using the NYMEX division Commodity Exchange (COMEX) data from the same 

period for gold and copper. 

Since settlement, and not transaction, prices are used, liquidity considerations have 

to be made in order to build faithful data sets. Following a similar approach as the 

one used in the work of Trolle and Schwartz (2009) futures contracts are chosen 

according liquidity patterns particular to each commodity. Options over these 

futures are selected to be as close as possible to the mean of one of several 

moneyness intervals ranging from 0.74 to 1.22, where moneyness is defined as the 
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ratio between the strike price and the underlying future contract value. Given that 

the 2008 world financial crisis is part of the data considered, three subsamples of 

two years each starting from 2006 are built in order to isolate the effect of the 

crisis and to understand the implication it could have in the estimation of the 

parameters and the pricing performance of the models. It is important to note that 

the period from 2012 to 2013 is used to test the out of sample properties of the 

models. 

The calibration procedure is conducted applying the Kalman filter algorithm in 

conjunction with the maximum likelihood method. In order to compare models 

with the same number of parameters the 5-factor specification of the Cortazar and 

Naranjo (2006) model is considered. However, to have a clearer insight of the 

value of adding more factors to the Cortazar and Naranjo (2006) scheme, the more 

parsimonious two and 3-factor specifications are also considered. The application 

of the Kalman filter requires the translation of the models dynamics to their state-

space representation. This is accomplished by establishing the relationship 

between the respective states variables of the system and the observed price vector 

of futures and options given by the pricing formulas of each model, and by 

discretizing the dynamics of the state variables. Due the nonlinearity of the Trolle 

and Schwartz (2009) model an extended version of the Kalman filter is applied 

linearizing options pricing formulas using a first order Taylor approximation. 

Since the stochastic volatility assumption imply that innovation errors in the 

Kalman filter algorithm are no longer normally distributed, the quasi-maximum 

likelihood method is used to estimate the parameters involved in the Trolle and 

Schwartz (2009) specification, which means that a Gaussian distribution is used to 

approximate the true one underlying the innovation errors.  

Several numerical considerations are taken into account to implement both kinds 

of models. The ordinary differential equation systems with no closed-form 

solutions are solved using a standard fourth order Runge-Kutta algorithm. The 

complex integral involved in the options pricing formula of the Trolle and 
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Schwartz (2009) model is numerically evaluated using the Gauss-Legendre 

quadrature formula with 40 integration points and truncating the integration limits 

in 400. Increasing the number of points and the truncation limits does not change 

the likelihood value. In order to maximize the probability of reaching a global 

optimum the likelihood functions are optimized applying an interior-point 

algorithm that uses the Broyden-Fletcher-Goldfarb-Shanno algorithm to 

approximate the Hessian, and using several plausible initial parameters. 

The parameters obtained as a result of the calibration process described above are 

statistically tested to validate, econometrically, the application of each model to 

each commodity. Time series of daily root mean square errors are calculated for 

each sample. Futures pricing errors are calculated as the difference between the 

actual and the fitted price, while options pricing errors are measured as the 

difference between the actual and fitted lognormal implied volatility, which is the 

Black-Scholes implied volatility for the actual and fitted options prices. As an 

overview of the pricing performance, a general analysis of the error is conducted 

considering the average of all contracts in sample. Nonetheless, to have an idea of 

the cross section performance of each model, daily time series of root mean square 

errors are calculated for each contract maturity and then averaged to get the whole 

sample performance of each model. 

As stated, this work is not only focused in the statistical significance of the models 

and the empirical pricing performance in terms of the measured errors, it is also 

aimed to analyze the tradeoff between the goodness of fit and the implementations 

issues of each framework compared. For all three commodities, in addition to the 

qualitative study of the implementation complexity regarding the pricing formulas 

and dynamics of each model, a quantitative analysis is made by calculating the 

execution times taken by the calibration of the parameters of each specification. 

For comparative purposes, execution times are calculated as the time consumed by 

each model on each data set per iteration of the calibration process. Considering a 

gradient base algorithm to find the optimal solution that uses forward finite 
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differences to approximate the derivatives, a N-parameters model includes N+1 

valuations of the objective function in each iteration; N valuations to calculate the 

partial derivatives and one extra for valuing the new point. Although it is not an 

exact measure of the real time needed by a specific model to get to the optimal 

solution, since nothing has been said about the velocity of convergence, it is a 

suitable proxy that gives, though roughly, a notion of the differences in the 

implementation procedure of each model. 

1.5 Main results 

Roughly speaking this paper has three major contributions to the commodity 

literature: an extensive comparative analysis between existing models in the 

commodity literature, extension, in several dimensions, of the models used and the 

practitioner perspective used in the analysis of the existing tradeoffs between the 

models presented. 

The first contribution has to do with the development of an extensive comparative 

analysis between models that account for stochastic volatility and their constant 

benchmarks. Beside the aforementioned work conducted by Hughen (2010), 

commodity literature lacks of comparison of this kind that includes futures and 

options contracts in their analysis. The second is related with the extension of the 

work done by the authors of the models selected by considering more than one 

commodity to conduct the analysis; both models, originally applied only to crude 

oil, are also applied to gold and copper. In most cases, with the notable exception 

of Schwartz (1997), existing papers on valuation of commodity contingent claims 

restrict themselves to statistically testing their models based on the applications of 

a particular commodity, most commonly, crude oil on a particular set of dates. 

Also on this line of contribution lies the extension of Cortazar and Naranjo (2006) 

to include options in the calibration process. The third contribution has to do with 

the perspective from which the results are presented including the empirical 

analysis of implementation considerations that helps to highlight the tradeoff made 
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by choosing one model despite the other. As most works tend to focus only on the 

technical issues of the econometric sense of their models, the practical issues 

regarding the implementation of its specifications is usually omitted.  

The calibration of Trolle and Schwartz (2009) for the data sample considered, 

supposed a double challenge; the task was not only to analyze the consistency of 

the model for the oil market based on the previous results for it, but also to apply 

the framework for two completely different commodities; gold and copper. As 

expected, based on the results obtained by Trolle and Schwartz (2009) for oil 

market, the estimates of their model, applied to the sample data used in this work, 

were significant in all cases, except for the risk premiums, an issue commonly 

found in the commodity literature (Cortazar, et al., 2013). The results were also 

consistent with their findings in the sense that the estimates also suggest the 

presence of unspanned stochastic volatility in oil market for the sample period 

considered. 

Being the first time this model was calibrated for other commodity markets rather 

than crude oil, all the attention was focused whether the model will be statistically 

significant and if these markets, copper and gold, will also show the characteristic 

of having volatility components not fully spanned by the spot (futures) market of 

the respective commodity. It is important to state, though, that calibration itself is 

not a proof of the presence of unspanned volatility factors, but strongly suggest it. 

Having said that, copper estimates obtained, strongly suggest that options, just as 

for the oil market, are not redundant securities. Most parameters, but risk 

premiums, were statistically significant, and the estimates showed quite low 

correlations between the innovations of the volatility components and the 

innovations of the spot price and cost of carry, indicating that the volatility is not 

fully spanned by the spot (futures) market.  

Empirical evidence found in the commodity literature suggests that gold prices do 

not exhibit mean reversion under the risk neutral measure (Schwartz, 1997; 

Casassus and Collin-Dufresne, 2005). Considering this evidence the calibration of 
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Trolle and Schwartz (2009) was not expected to be statistically significant, 

nonetheless, at a standard level, most of the parameters turn out to be estimated 

with relative low standard errors, with the already mentioned exception of the risk 

premiums. Although this findings contrast with the empirical evidence stated in 

the literature, it has to be noted that in this work options prices are considered in 

the calibration process and maybe inducing the mean reversion in gold prices.  

As was the case with oil and copper market, gold results also suggest the presence 

of unspanned stochastic volatility factor, though in a weaker way. Relatively high 

correlations, opposed to the estimates of oil and copper, between the innovations 

of the volatility components and the innovations of the spot price and cost of carry 

were obtained. However, these correlations, still far from being perfect, indicate 

that the volatility components are only partially spanned by the gold spot market.  

Even if the mere estimation of the model parameters is not proof per se, the results 

found for gold and copper extend the work of Trolle and Schwartz (2009) by 

suggesting that the presence of unspanned stochastic volatility factors is not a 

characteristic of the crude oil market only, but also for other commodities quite 

different as the markets of gold and copper. 

The pricing performance results show that for all three commodities the Cortazar 

and Naranjo (2006) model outperforms Trolle and Schwartz (2009) on attempting 

to price futures contracts. This is not surprisingly since the Trolle and Schwartz 

(2009) model only has three factors driving futures prices and the Cortazar and 

Naranjo (2006) model, with same number of parameters, has five. Futures 

contracts pricing errors of the 5-factor Cortazar and Naranjo (2006) specifications 

tend to be the half of the ones committed by Trolle and Schwartz (2009). More 

interesting is the fact that also less factors specifications of the Cortazar and 

Naranjo (2006) model also performs better suggesting that simpler models are 

enough if futures contracts pricing is the main concern. 

The constant volatility assumption behind Cortazar and Naranjo (2006) 

specifications fails to describe options prices adequately. Depending on the data 
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set analyzed, most of the time tends to overestimate (or underestimate) the implied 

volatilities. Options pricing errors tends to be 5 to 6 times larger than the ones 

obtained with the Trolle and Schwartz (2009) model. Let it be noted that 

increasing the number of factors considered do not decrease significantly the 

options contracts pricing errors of the constant volatility specifications. 

The cross section analysis of the options contracts pricing performance show that 

the differences between both kinds of models get shorter as the maturity of the 

contract rises. This is more clearly observed in the oil and gold cases where longer 

contracts were readily available. 

To get an idea of the difference in the complexity of implementation of both 

models, execution times were measured. The results give a clear advantage to the 

Cortazar and Naranjo (2006) model in this front. The required numeric 

calculations to evaluate the system of partial differential equations without closed 

form solutions of the Trolle and Schwartz (2009) model along with the numeric 

integrations needed to value options contracts results in execution times that are 10 

times larger than the ones of the Cortazar and Naranjo (2006) specifications. From 

a practitioner point of view, this gives a clear picture of the tradeoff involved in 

the decision of selecting a particular framework. 

1.6 Conclusions and further research 

Pricing of commodities contingent claims drastically depends on the process 

assumed for the underlying asset. Particularly for options pricing, whether or not 

to account for stochastic volatility becomes a major concern. In this article, these 

two ways of dealing with volatility are contrasted and compared not only from a 

statistical point of view, but also from a practitioner angle where the trade-off 

between implementation issues and empirical performance start playing a role in 

the decision making process. Representative specifications of each kind of models, 

Trolle and Schwartz (2009) and Cortazar and Naranjo (2006) for stochastic 

volatility models and not respectively, are chosen and extended to be estimated, 
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and ultimately compared, using an extensive data set on options and futures prices 

for oil, copper and gold. 

For copper and oil markets both models are statistically reliable and stable through 

all samples, while being a little bit over-specified for gold. As for the first 

implementation of Trolle and Schwartz (2009), copper and gold results also 

exhibit unspanned stochastic volatility factors suggesting that this phenomenon is 

also an important feature on commodity markets less related to crude oil. It would 

be interesting to investigate if these results are consistent with other model-free 

regression-based tests that could empirically analyze how much of the changes in 

the returns of a volatility sensitive portfolio are explained by changes in the futures 

returns. 

The constant volatility assumption does not affect futures pricing performance, 

what matters most is the number of factors driving futures prices instead; the more 

these are, the better the fit. Nevertheless, with the same numbers of parameters 

involved, the 5-factor specification of Cortazar and Naranjo (2006) outperforms 

Trolle and Schwartz (2009), which only considers three factors for futures prices, 

on every sample tested. Non-stochastic volatility models fail to describe, 

adequately, options prices dynamic. Trolle and Schwartz (2009) beat all N-factor 

Cortazar and Naranjo (2006) at every empirical framework for the three 

commodities. However, for long-term contracts differences tend to shrink getting 

to levels where the gap between both models is less than 1 percentage point.  

Even though a stochastic volatility framework surpasses the options pricing 

performance of homoscedastic specifications, is not done at a low cost. The lack of 

closed form solutions to options pricing formulas require to take several numeric 

considerations to calibrate this kind of models. Estimated execution times 

indicates that in order to outcome the limitations of constant volatility models in 

the pricing of options contracts, ten time more effort has to be invested to 

implement a stochastic volatility specification. The outstanding options pricing 

performance of Trolle and Schwartz (2009) is contrasted with the ease-of-use 
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closed form, Black-Scholes alike, options pricing formulas that gives to Cortazar 

and Naranjo (2006) the ability to be a faster method with remarkable futures 

pricing performance and acceptable long-term options pricing. 

Even when a general and necessary comparison between quite different kinds of 

models have been made in the commodity context as a first step, it would be 

interesting to go beyond and to see, for example, how relevant actually is the 

unspanned stochastic volatility compared with standard stochastic volatility 

specifications. On the other hand, it would be also interesting to see if other 

constant volatility models such as the ones that include stochastic interested rates 

or price jump will shrink even more the differences in options pricing performance 

against stochastic volatility models. 

The evidence presented in this article does not support accounting for stochastic 

volatility in futures pricing; it is an expensive way to get same, or even worse, 

results in pricing performance. However, the role that stochastic volatility plays in 

the pricing of options contracts significantly improves the goodness of fit. While 

the five to seven times better performance in short-term options contracts seems to 

worth the implementation effort, for longer contracts the question seems to remain 

open. 
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2. EMPIRICAL PRICING PERFORMANCE OF COMMODITY 

DERIVATIVES MODELS: WHEN IS WORTH TO USE A 

STOCHASTIC VOLATILITY SPECIFICATION?  

Commodity derivative markets have grown at an incredible rate in the past decades. 

According with the Bank for International Settlements (BIS), the estimate for the 

notional value of outstanding contracts is about USD 2.46 trillion for over-the-counter 

(OTC) commodity derivatives in June 2013, more than 3.6 times bigger than the USD 

0.67 trillion in June 2001. The nature and distribution of the commodity contingent 

claims has also changed and options contracts now account for nearly 36% of total 

notional value. 

As a consequence of this market expansion, research on commodity-linked derivatives 

has increased both in quantity and in sophistication. Starting from simple 1-factor mean 

reverting, constant-volatility models for pricing futures contracts based on Vasicek 

(1977), the literature has evolved to include the pricing of more complex derivatives 

such as options. While for pricing futures modeling the drift of the risk-neutral process is 

the most important concern, for pricing options, specifying the volatility dynamics 

becomes crucial. 

Despite the empirical evidence of heteroscedasticity in commodity markets, that goes 

back to the nineties (e.g. Litzenberger and Rabinowitz, 1995; Duffie and Gray, 1995) it 

is still common to find in the literature models with several risk factors but a constant 

volatility specification (Schwartz, 1997; Hilliard and Reis, 1998; Schwartz and Smith, 

2000; Cortazar and Schwartz, 2003; Cortazar and Naranjo, 2006). In general these 

models have several desirable properties including closed form solutions for most 

derivatives and good futures pricing. However, little attention has been put on their 

performance for options pricing. 

While assuming a constant volatility may have little implication for futures pricing in 

terms of goodness-of-fit of multi-factor models, it is extremely relevant for options 

pricing. Since the seminal work of Heston (1993), several models that include stochastic 
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volatility have been proposed (Nielsen and Schwartz, 2004; Richter and Sørensen, 2002; 

Trolle and Schwartz, 2009). The strength of these models is their ability to replicate the 

time varying volatility behavior of many commodities, thus promising much better 

pricing of volatility sensitive derivatives, like options.  

One of the main drawbacks of stochastic volatility models is their implementation 

complexity because there are no closed-form solutions for derivative prices and 

intensive numerical methods must be used. Given this difficulty, to obtain results in a 

reasonable amount of time, most stochastic volatility models are implemented restricting 

the number of risk factors, which could take a toll in the model performance for pricing 

some derivatives. 

We are interested in comparing the performance of these two kinds of models on several 

grounds. Up to now most papers on valuation of commodity contingent claims have 

focused mainly in testing the statistical significance of its models based on the 

application of a particular commodity, most commonly, crude oil. Although stochastic 

volatility models have shown to be statistically significative and consistent with the 

empirical evidence (Duffie and Gray, 1995), it is not clear to what extent and how they 

“perform better” than their constant volatility counterparts from the view of a 

practitioner, where implementation issues have to be considered. This is why it is critical 

to understand the magnitude and distribution of pricing errors and the effort required in 

implementing both kinds of models for different commodities and contracts in order to 

be able to have a clear picture about the tradeoffs between them.  

In this paper we compare the futures and options pricing performance of constant and 

stochastic volatility models for several commodities. In order to do this we use the N-

factor Gaussian model developed by Cortazar and Naranjo (2006) to represent a constant 

volatility framework and the Trolle and Schwartz (2009) for the stochastic volatility 

approach. We choose Cortazar and Naranjo (2006) because its canonical representation 

for N-factor Gaussian models nests several of the existing Gaussian models in literature 

as special cases (Brennan and Schwartz, 1985; Gibson and Schwartz, 1990; Schwartz, 

1997; Schwartz and Smith, 2000; Cortazar and Schwartz, 2003). On the other hand the 
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Trolle and Schwartz (2009) specification is selected because, having already been 

applied to oil, has the added flexibility to allow for volatility components not to be fully 

spanned by the spot (futures) market in what has been called “unspanned stochastic 

volatility” factors (Collin-Dufresne and Goldstein, 2002). Using this specification will 

allow us to check also if this characteristic, which would imply that options are not 

redundant securities, may be present not only for oil, but also eventually for other 

commodities. 

Following Schwartz (1997) we make the analysis for three different commodities: oil, 

copper and gold. We not only focus on the statistical significance, and the futures versus 

options pricing errors, but also consider implementation issues to analyze the strengths 

of each model specification. Execution times are calculated as a proxy measure of the 

implementation complexity of each model. This quantitative analysis may help, from the 

perspective of a practitioner, to balance the tradeoffs between a better fit with a more 

time consuming and harder implementation.  

Empirical performance of alternative commodity models that do not restrict themselves 

to statistical tests are limited. In a seminal work Schwartz (1997) analyzes futures 

pricing performance of three models accounting for mean reversion: crude oil, high-

grade copper and gold. Also, Hughen (2010) compares, in terms of options and futures 

pricing fit, a stochastic volatility model with an affine constant volatility. However the 

paper only analyzes the 3-factor model specification, does not use options prices in the 

calibration process, restricts the analysis only to oil and does not analyze cross-sectional 

performance differences. In an analysis for interest rate derivatives Bakshi et al. (1997) 

analyze the term structure options pricing differences between the Black-Scholes model 

and several other specifications that includes, and combines, stochastic interest rates, 

stochastic volatility and random jumps diffusion.  

In this paper we follow Schwartz (1997) and chose to analyze crude oil, copper and 

gold. For oil we use futures and options settlement data of the New York Mercantile 

Exchange (NYMEX) from January 2006 to May 2013, while using the NYMEX 

division Commodity Exchange (COMEX) data from the same period for gold and 
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copper. In order to maximize the data available on each day of the sample, the Kalman 

filter, in its traditional and extended version, is used together with maximum likelihood 

as the estimation procedure.  

To our knowledge this paper is the first to compare stochastic volatility models against 

their constant benchmarks for oil, copper and gold using options and futures to calibrate 

the respective parameters. It also extends Trolle and Schwartz (2009), by expanding 

dates and commodities, and Cortazar and Naranjo (2006), by including options, and not 

only futures, in the analysis. 

This paper is structured as follows. Section 2.1 describes the benchmark models. Section 

2.2 describes the crude oil, copper and gold data. Section 2.3 analyzes and discusses the 

empirical results. Section 2.4 concludes.  

2.1 Models 

In this section the two benchmark models used to compare the empirical 

performance of the constant versus the stochastic volatility models, are described. 

2.1.1 Stochastic Volatility Model: Trolle and Schwartz (2009) (TS). 

We now briefly describe the Trolle and Schwartz (2009), TS model which, besides 

its ability to account for stochastic volatility, offers a tractable framework to price 

commodity derivatives in the presence of unspanned stochastic volatility. It has the 

flexibility to model a market where options are not redundant securities, meaning 

that the spot markets are unable to fully span the volatility structure (Collin-

Dufresne and Goldstein, 2002).  

The TS model is chosen, among other reasons, because it is based on the Heath et 

al. (1992) (HJM) model, which has the advantage, over the typical affine models, 

of making it easier to include the parameter restrictions on volatility to be 

unspanned
2
. Being the first stochastic volatility HJM-type model used for pricing 

                                                 
2
See Cortazar and Schwartz (1994), Miltersen and Schwartz (1998) and Miltersen 

(2003) for others HJM-type models for pricing commodity derivatives 
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commodity derivatives has, in its most general form, five factors driving the 

prices: three factors for futures prices and two for the volatility process.  

Following Cortazar and Schwartz (1994), a process for the spot price and the 

forward cost- of-carry is specified. Let 𝑆(𝑡) denote the spot price of the 

commodity at time 𝑡and 𝛿(𝑡) the spot cost-of-carry. Let 𝑦(𝑡, 𝑇) denote the 𝑡-time 

instantaneous cost-of-carry curve at time 𝑇 (𝛿(𝑡) = 𝑦(𝑡, 𝑡)). To account for 

stochastic volatility let 𝜈1(𝑡) and 𝜈2(𝑡)be two volatility factors affecting 𝑆(𝑡) and 

𝑦(𝑡, 𝑇). 

The processes for 𝑆(𝑡), 𝑦(𝑡, 𝑇), 𝜈1(𝑡) and 𝜈2(𝑡), under the risk-neutral measure, 

are: 

𝑑𝑆(𝑡)

𝑆(𝑡)
= 𝛿(𝑡)𝑑𝑡 + 𝜎𝑆1√𝜈1(𝑡)𝑑𝑊1

𝑄(𝑡) + 𝜎𝑆2√𝜈2(𝑡)𝑑𝑊2
𝑄(𝑡) (2.1) 

𝑑𝑦(𝑡, 𝑇) = 𝜇𝑦(𝑡, 𝑇)𝑑𝑡 + 𝜎𝑦1(𝑡, 𝑇)√𝜈1(𝑡)𝑑𝑊3
𝑄(𝑡) 

+𝜎𝑦2(𝑡, 𝑇)√𝜈2(𝑡)𝑑𝑊4
𝑄(𝑡) (2.2) 

𝑑𝜈1(𝑡) = (𝜂1 − 𝜅1𝜈1(𝑡) − 𝜅12𝜈2(𝑡))𝑑𝑡 + 𝜎𝜈1√𝜈1(𝑡)𝑑𝑊5
𝑄(𝑡) (2.3) 

𝑑𝜈2(𝑡) = (𝜂2 − 𝜅21𝜈1(𝑡) − 𝜅2𝜈2(𝑡))𝑑𝑡 + 𝜎𝜈2√𝜈2(𝑡)𝑑𝑊6
𝑄(𝑡) (2.4) 

(𝑑𝑊(𝑡))(𝑑𝑊(𝑡))
𝑇
=

(

 
 
 

1 0 𝜌13 0 𝜌15 0
0 1 0 𝜌24 0 𝜌26
𝜌13 0 1 0 𝜌35 0
0 𝜌24 0 1 0 𝜌46
𝜌15 0 𝜌35 0 1 0
0 𝜌26 0 𝜌46 0 1 )

 
 
 

 

where 𝑑𝑊𝑖
𝑄(𝑡) corresponds to Wiener processes under the risk-neutral measure.  

The futures price of a contract expiring at time 𝑇,  𝐹(𝑡, 𝑇), is: 

𝐹(𝑡, 𝑇) = 𝑆(𝑡) exp {∫ 𝑦(𝑡, 𝑢)𝑑𝑢
𝑇

𝑡
} (2.5) 

Under no-arbitrage conditions the drift of the instantaneous futures return should 

be zero, thus: 
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𝑑𝐹(𝑡,𝑇)

𝐹(𝑡,𝑇)
=

√𝜈1(𝑡) (𝜎𝑆1𝑑𝑊1
𝑄(𝑡) + ∫ 𝜎𝑦1(𝑡, 𝑢)𝑑𝑢

𝑇

𝑡
𝑑𝑊3

𝑄(𝑡)) + √𝜈2(𝑡) (𝜎𝑆2𝑑𝑊2
𝑄(𝑡) +

∫ 𝜎𝑦2(𝑡, 𝑢)𝑑𝑢
𝑇

𝑡
𝑑𝑊4

𝑄(𝑡)) (2.6) 

The ability of the TS model to account for unspanned stochastic volatility can be 

seen in Equation (2.6) where volatility of futures prices is shown to depend on 

𝜈1(𝑡) and 𝜈2(𝑡) but not on 𝑑𝑊5
𝑄(𝑡) and 𝑑𝑊6

𝑄(𝑡). Therefore if 𝑑𝑊5
𝑄(𝑡) and 

𝑑𝑊6
𝑄(𝑡) have a low correlation with the risk processes of the spot and forward 

cost-of-carry curve (𝑑𝑊𝑖
𝑄(𝑡), 𝑖 = 1,… ,4 ) then it can be seen that options (which 

are highly sensitive to volatilities) cannot be hedged using only futures, and we are 

in the presence on what is called “unspanned volatility”. 

In order to estimate the model it is necessary to specify the drift and instantaneous 

volatility of the forward cost of carry curve. A drift condition, analogous to the one 

developed by Heath et al. (1992) in forward rate term structure models, can be 

obtained and the volatility is chosen in a way that the forward cost of carry curve 

can be expressed as a linear function of a finite number of state variables.
3
 Then it 

follows  

𝜇𝑦(𝑡, 𝑇) =

−(𝜈1(𝑡)𝜎𝑦1(𝑡, 𝑇) (𝜌13𝜎𝑆1 + ∫ 𝜎𝑦1(𝑡, 𝑢)𝑑𝑢
𝑇

𝑡
) + 𝜈2(𝑡)𝜎𝑦2(𝑡, 𝑇) (𝜌24𝜎𝑆2 +

∫ 𝜎𝑦2(𝑡, 𝑢)𝑑𝑢
𝑇

𝑡
)) (2.7) 

where 

𝜎𝑦𝑖(𝑡, 𝑇) = 𝛼𝑖𝑒
−𝑦𝑖(𝑇−𝑡) (2.8) 

Under such conditions 𝐹(𝑡, 𝑇) is given by 

                                                 
3
Bhar and Chiarella (1997) investigate the conditions under HJM-type models are 

Markovian respect to a finite number of states variables. 
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𝐹(𝑡, 𝑇) = 𝑆(𝑡)
𝐹(0,𝑇)

𝐹(0,𝑡)
exp {∑ (𝑥𝑖(𝑡)

𝛼𝑖

𝛾𝑖
(1 − 𝑒−𝛾𝑖(𝑇−𝑡)) + 𝜙𝑖(𝑡)

𝛼𝑖

2𝛾𝑖
(1 −2

𝑖=1

𝑒−2𝛾𝑖(𝑇−𝑡)))} (2.9) 

where 𝑥𝑖(𝑡) and 𝜙𝑖(𝑡),𝑖 = 1,2 , are the resulting state variables from the 

transformation of the HJM-type model to an affine Markovian specification. They 

follow a particular process detailed in the Appendix A.1. 

Defining the new state variable 𝑠(𝑡) = log 𝑆(𝑡), the log futures prices follows an 

affine function of the state variables: 

log(𝐹(𝑡, 𝑇)) = log 𝐹(0, 𝑇) − log 𝐹(0, 𝑇) + 𝑠(𝑡) + ∑ (𝑥𝑖(𝑡)
𝛼𝑖

𝛾𝑖
(1 −2

𝑖=1

𝑒−𝛾𝑖(𝑇−𝑡)) + 𝜙𝑖(𝑡)
𝛼𝑖

2𝛾𝑖
(1 − 𝑒−2𝛾𝑖(𝑇−𝑡))) (2.10) 

where the dynamics of 𝑠(𝑡) is given by 

𝑑𝑠(𝑡) =

(𝑦(0, 𝑡) + ∑ 𝛼𝑖(𝑥𝑖(𝑡) + 𝜙𝑖(𝑡))
2
𝑖=1 −

1

2
(𝜎𝑆1

2 𝜈1(𝑡) + 𝜎𝑆2
2 𝜈2(𝑡))) 𝑑𝑡 +

𝜎𝑆1√𝜈1(𝑡)𝑑𝑊1
𝑄(𝑡) + 𝜎𝑆2√𝜈2(𝑡)𝑑𝑊2

𝑄(𝑡) (2.11) 

Based on Heston (1993) European options on futures are priced applying the 

Fourier inversion theorem. A similar approach have been used by Collin-Dufresne 

and Goldstein (2003) and Richter and Sørensen (2002), among others. Letting 𝐾 

be the strike price and 𝑇0 the option expiration time on a future contract expiring at 

𝑇1 the price of put is given by  

𝒫(𝑡, 𝑇0, 𝑇1, 𝐾) = 𝑃(𝑡, 𝑇0) (𝐾𝐺0,1(log(𝐾)) − 𝐺1,1(log(𝐾))) (2.12) 

where 𝑃(𝑡, 𝑇0) is the price of a zero-coupon bond with 𝑇0 − 𝑡 maturity and 𝐺𝑎,𝑏(𝑦) 

is defined as  
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𝐺𝑎,𝑏(𝑦) =
𝛹(𝑎,𝑡,𝑇0,𝑇1)

2
−
1

𝜋
∫

𝐼𝑚(𝛹(𝑎+𝔦𝑢𝑏,𝑡,𝑇0,𝑇1)𝑒
−𝔦𝑢𝑦)

𝑢
𝑑𝑢

∞

0
 (2.13) 

Here 𝛹(𝑢, 𝑡, 𝑇0, 𝑇1) = 𝐸𝑡
𝑄[𝑒𝑢 log(𝐹(𝑇0,𝑇1))]represents the transform of 𝐹(𝑇0, 𝑇1) and 

has an affine representation given by the solution of a non-trivial system of 

ordinary differential equations with no closed form solution (See Appendix A.2).  

For calibration purposes the dynamics of the commodity has to be stated under the 

actual probability measure. In order to do this a market price of risk is specified. 

Based on an affine formulation widely used in the literature, the market price of 

risk is defined as: 

𝛬𝑖(𝑡) = 𝜆𝑖√𝜈1(𝑡), 𝑖 = 1,3,5  

𝛬𝑖(𝑡) = 𝜆𝑖√𝜈2(𝑡), 𝑖 = 2,4,6 (2.14) 

Then, the processes under the actual probability measure can be obtained by 

substituting 𝑑𝑊𝑄(𝑡) by 

𝑑𝑊𝑖
𝑄(𝑡) = 𝑑𝑊𝑖

𝑃(𝑡) − 𝛬𝑖(𝑡)𝑑𝑡 (2.15) 

Roughly speaking in order to implement the TS model for options pricing it is 

necessary first, to numerically solve for each contract an ordinary differential 

equations system to get the above mentioned transform, then, also for each 

contract, to apply numerical integration algorithms twice to finally get the option 

price. This theoretically complex framework and also numerically sophisticated 

formulation, has practical consequences that leads to the question of when is it 

worth to make the effort, as we will see in further sections.
4
 

                                                 
4
The model presented here is time-inhomogeneous and fits the initial futures curve by 

construction. In order to estimate the model, the initial forward cost of carry curve is 

assumed to be flat and equal to a constant 𝜙. Also, the model is over identified, therefore 

𝜂𝑖 , 𝑖 = 1,2, are normalized to one, to achieve identification.  
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2.1.2 Constant Volatility Model: Cortazar and Naranjo (2006) (CN). 

We now describe the main features of the Cortazar and Naranjo (2006) N-factor 

Gaussian model for a commodity spot price that will later be used to analyze the 

empirical performance of a constant volatility approach. This model generalizes 2- 

and 3-factor models found in the literature (Gibson and Schwartz, 1990; Schwartz, 

1997; Schwartz and Smith, 2000; Cortazar and Schwartz, 2003). It provides a 

framework based on the 𝐴0(𝑁) canonical representation of Dai and Singleton 

(2000) for term structure, extending existing commodity pricing models to an 

arbitrary number of factors. One of the main advantages of this model, compared 

to stochastic volatility ones, is its relatively simple implementation and the 

existence of closed-form analytic formulas for futures and options prices. 

Let 𝑆(𝑡)be the spot price of the commodity at time t, and 𝜇 the long-term growth 

rate. Then the process for the spot price of the commodity is: 

log 𝑆(𝑡) = 1𝑇𝑋(𝑡) + 𝜇𝑡 (2.16) 

where 𝑋(𝑡) is a 𝑁 × 1 vector of unobservable state variables with a process, under 

the actual probability measure, given by: 

𝑑𝑋(𝑡) = −𝐴𝑋(𝑡)𝑑𝑡 + 𝛴𝑑𝑊(𝑡) (2.17) 

where 

𝐴 = [

0 0
0 𝑎2

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ 𝑎𝑁

], 𝛴 = [

𝜎1 0
0 𝜎2

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ 𝜎𝑁

]  

are 𝑁 × 𝑁 matrices with positive entries and 𝑑𝑊(𝑡) is a 𝑁 × 1 vector of correlated 

Wiener processes such that  

(𝑑𝑤(𝑡))(𝑑𝑊(𝑡))
𝑇
= 𝛺𝑑𝑡 = [

1 𝜌12
𝜌12 1

⋯ 𝜌1𝑁
⋯ 𝜌2𝑁

⋮ ⋮
𝜌1𝑁 𝜌2𝑁

⋱ ⋮
⋯ 1

] 𝑑𝑡  
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where 𝜌𝑖𝑗 ∈ [−1, 1]are the instantaneous correlation between state variables 𝑖 and 

𝑗.5 

Without specifying a stochastic process for 𝛴 the model implies that the state 

variables follow a multivariate Normal distribution where each variable, except for 

the first one, reverts to zero at a speed rate 𝑎𝑖.  

Futures pricing formulas are easily obtained under the risk-neutral measure by 

assuming constant risk premiums 𝜆𝑖: 

𝑑𝑋(𝑡) = −(𝜆 + 𝐴𝑋(𝑡))𝑑𝑡 + 𝛴𝑑𝑊𝑄(𝑡) (2.18) 

Using no-arbitrage arguments, the futures price becomes: 

𝐹(𝑋(𝑡), 𝑡, 𝑇) = exp (𝑋1(𝑡) + ∑ 𝑒−𝑎𝑖(𝑇−𝑡)𝑋𝑖(𝑡)
𝑁
𝑖=2 + 𝜇𝑡 + (𝜇 − 𝜆𝑖 +

1

2
𝜎1
2) (𝑇 − 𝑡) − ∑

1−𝑒
−𝑎𝑖(𝑇−𝑡)

𝑎𝑖
𝜆𝑖

𝑁
𝑖=2 +

1

2
∑ 𝜎𝑖𝜎𝑗𝜌𝑖𝑗

1−𝑒
−(𝑎𝑖+𝑎𝑗)(𝑇−𝑡)

𝑎𝑖+𝑎𝑗
𝑖,𝑗≠1 ) (2.19) 

Following Hilliard and Reis (1998) and Miltersen and Schwartz (1998) a Black-

Scholes-type formula can be derived for European future options under the CN 

specification. Let 𝜎𝐹 be the instantaneous volatility of the returns on futures, then 

the price of a European put option at time t expiring at 𝑇0 and with strike price K 

over a future contract maturing at 𝑇1 is given by 

𝒫(𝑡, 𝑇0, 𝑇1, 𝐾) = 𝑃(𝑡, 𝑇0)(𝐾𝑁(−𝑑2) − 𝐹(𝑡, 𝑇1)𝑁(−𝑑1)) (2.20) 

where 

𝑑1 =
log(

𝐹(𝑡,𝑇1)

𝐾
)+
1

2
𝜈2

𝜈
, 𝑑2 = 𝑑1 − 𝜈 (2.21) 

𝑁(⋅) is the cumulative standard normal distribution function and 𝑃(𝑡, 𝑇0)is the 

price of a zero-coupon bond at time t, expiring at 𝑇0 and 𝜈 is the volatility term. 

Then 

                                                 
5
It is important to note that 𝑎1 has been fixed at zero in order to have a non-stationary 

process for the underlying spot price as it is commonly assumed in the literature. 
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𝜈2 = ∫ 𝜎𝐹(𝑢, 𝑇1)
2𝑑𝑢

𝑇0

𝑡
= ∫ ∑ ∑ 𝜎𝑖𝜎𝑗𝜌𝑖𝑗𝑒

−(𝑎𝑖+𝑎𝑗)(𝑇1−𝑢)𝑁
𝑗=1

𝑁
𝑖=1 𝑑𝑢

𝑇0

𝑡
 (2.22) 

where 𝜈2 is the average, over the life of the options, of the instantaneous variance 

of the futures returns innovations.  

In contrast with the TS model, the CN framework provides closed form solutions 

for futures and options pricing formulas making it easier to apply standard 

estimation procedures for empirical implementations. 
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2.2 Data 

This section describes the data that will be used later to analyze the empirical 

performance of the two previously described commodity models for oil, copper 

and gold. The data consists of daily observations between January 2006 and May 

2013 of settlement prices, open interest and volume for futures and options. For oil 

we consider the West Texas Intermediate crude oil data (WTI) from the New York 

Mercantile Exchange (NYMEX), For copper and gold we use high grade copper 

(HG) and gold (GC) traded at Commodity Exchange (COMEX). 

Tables II-1, II-2 and II-3 describe the data used for oil, copper and gold 

respectively. Following Trolle and Schwartz (2009) liquidity considerations for 

each commodity are taken into account in building the data sets. Daily 

observations on contracts prices are selected according to the level of open interest 

and specific liquidity patterns for each commodity. This procedure leaves twelve 

generic futures contracts for oil: the first 6-month contracts (F1-F6), the following 

two contracts with expiration either in March, June, September and December 

(MD1-MD2), and the next four contracts with expiration in December (D1-D4). 

For copper and gold the selection process leaves eight and eleven generic futures 

contracts, respectively: the first 6-month contracts (F1-F6) and the following two 

first contracts with expiration either in March, May, September and December 

(MD1-MD2) for copper, and the first 6-month contracts (F1-F6) and the first five 

contracts with expiration either in June and December (JD1-JD5) after a year, for 

gold.  

Given that the commodity markets trade only American options and that for 

simplicity they are priced using European options formulas, only at-the-money and 

out-of-the-money options are considered to reduce the size of the early exercise 

premium. The options are classified in eleven moneyness intervals, ranging from 

0.78 to 1.22 years, and the closest contract to the mean of each interval is selected. 

Figure II-1 shows the spot price evolution of the nearest contract for the three 

commodities for the whole period. It is important to note the impact of the 
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financial crisis of 2008 on the spot prices of the three commodities. Figure II-2 

shows that this impact is not only on the price levels, but also on the Black-

Scholes implied volatility of the closest-to-maturity contract.  

In the following section results of the two models for the three commodities are 

presented. For better analyzing the empirical performance of the model the period 

from January 2012 to May 2013 is defined as the out-of-data set. Also in order to 

isolate the effect of the financial crisis data, sub-samples are constructed: Panel A, 

will represent the full in-sample period, from January 2006 to December 2011, 

Panel B from January 2006 to December 2007, Panel C from January 2008 to 

December 2009 and Panel D from January 2010 to December 2011.Panel E will 

represent the out-of-data set. 

Table II-1: Oil Data 

From January 2006 to May 2013. Daily Observations 

  
FUTURES 

 
OPTIONS 

Future 

Contract 

  Avg. 

Price 

Avg. 

Maturit

y 

Avg. 

Open 

Interest 

  Nº 

Puts 

Nº 

Calls 

Avg. 

Put 

price 

Avg. 

Call 

price 

F1 
 

82,310 0,083 287016 
 

8350 8748 1,106 1,142 

F2 
 

82,973 0,166 132036 
 

9907 10006 1,844 1,928 

F3 
 

83,481 0,249 84095 
 

9944 9925 2,577 2,738 

F4 
 

83,884 0,333 66127 
 

9778 9520 3,204 3,463 

F5 
 

84,205 0,416 53623 
 

9502 8979 3,792 4,061 

F6 
 

84,461 0,500 46728 
 

8869 8402 4,288 4,617 

MD1 
 

84,827 0,665 73521 
 

9415 8936 5,194 5,470 

MD2 
 

85,157 0,915 59311 
 

7824 7177 6,232 6,536 

D1 
 

85,248 1,546 105709 
 

10002 9609 7,668 8,060 

D2 
 

84,929 2,547 55105 
 

9809 8695 8,983 9,934 

D3 
 

84,659 3,548 33066 
 

8830 7850 10,012 11,200 

D4 
 

84,710 4,549 20473 
 

6136 5270 10,905 12,868 
The Future Contract column: Fi denotes the first i-month contracts; MDi denotes the i-following contract 

with expiration either in March, June, September or December; Di denotes the i-following contract with 

expiration in December. Prices are expressed in US$ and maturities in years 
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Table II-2: Copper Data 

From January 2006 to May 2013. Daily Observations 

  FUTURES  OPTIONS 

Future 

Contract 

 Avg. 

Price 

Avg. 

Maturity 

Avg. 

Open 

Interest 

 Nº 

Puts 

Nº 

Calls 

Avg. 

Put 

price 

Avg. 

Call 

price 

F1  3,276 0,082 8546  1246 1363 0,027 0,028 

F2  3,276 0,165 29621  5772 6035 0,046 0,050 

F3  3,277 0,249 29956  5729 5499 0,067 0,081 

F4  3,278 0,332 17979  4205 4069 0,090 0,113 

F5  3,277 0,416 9389  3092 2898 0,107 0,139 

F6  3,275 0,499 5718  2096 2017 0,129 0,163 

MD1  3,267 0,646 6520  2426 2100 0,170 0,219 

MD2  3,253 0,848 2623  769 444 0,202 0,232 

The Future Contract column: Fi denotes the first i-month contracts; MDi denotes the i-following contract 

with expiration either in March, May, September or December. Prices are expressed in US$ and maturities 

in years. 

Table II-3: Gold Data 

From January 2006 to May 2013. Daily Observations 

  
FUTURES 

 
OPTIONS 

Future 

Contract 

  Avg. 

Price 

Avg. 

Maturity 

Avg. 

Open 

Interest 

  Nº 

Puts 

Nº 

Calls 

Avg. 

Put 

price 

Avg. 

Call 

price 

F1 
 

1111,278 0,080 148564 
 

4608 5152 5,117 5,671 

F2 
 

1114,707 0,241 138392 
 

9631 10129 11,519 14,681 

F3 
 

1117,883 0,408 46464 
 

9572 9997 20,900 27,159 

F4 
 

1120,963 0,575 21960 
 

8874 9360 30,096 39,582 

F5 
 

1124,037 0,742 16560 
 

7721 8519 40,216 51,692 

F6 
 

1127,172 0,908 12790 
 

6090 6780 50,507 63,131 

JD1 
 

1141,244 1,578 10112 
 

3655 4708 83,081 104,012 

JD2 
 

1153,732 2,078 8160 
 

1235 1924 129,536 149,678 

JD3 
 

1168,120 2,579 6441 
 

444 760 134,755 176,939 

JD4 
 

1183,991 3,079 4164 
 

295 66 128,333 187,092 

JD5 
 

1201,505 3,579 4427 
 

254 137 154,651 253,023 
The Future Contract column: Fi denotes the first i-month contracts; JDi denotes the first i contracts with 

expiration either in June or December after a year from date. Prices are expressed in US$ and maturity in 

years. 
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Spot price proxied by the closest-to-maturity future contract from January 2006 to May 2013. 

Figure I-1: Spot price of Oil, Copper and Gold 
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Black-Scholes implied volatilities for the closest-to-maturity option contract between January2006 and 

May 2013 

Figure II-2: Lognormal Implied Volatility. 
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2.3 Results 

In this section we present the results of applying the two models to each of the 

panels of data for every commodity. We start by analyzing the parameter values 

for each model and data set. Next we compare pricing performances of each model 

to finally present a measure of implementation complexity to provide all 

information needed to choose among the models. 

2.3.1 Parameter values. 

Tables II-4 to II-9 present the results of applying Kalman filter and maximum 

likelihood to each model and data set. To make both models comparable, a 5-

factor specification for the CN model is used so it has also to estimate 27 

parameters, as in the TS specification. Nevertheless, 4 and 3-factor CN models are 

also considered in order to study the trade-offs with simpler models. Appendix B 

presents a detailed explanation of the estimation procedure. 

Table II-4 presents the estimates of the TS parameters for oil. The model is 

statistically significant for most parameters with the exception of the risk 

premiums, 𝜆𝑖, that are estimated with relatively large standard errors. This is a 

common issue for most of models in the literature (Cortazar, et al., 2013) but does 

not affect the pricing of futures and options. In addition, the parameter results are 

consistent with those in Trolle and Schwartz (2009). Volatility factors, 𝜈1(𝑡) and 

𝜈2(𝑡), exhibit low correlation with the spot price (𝜌15, 𝜌26) and forward cost-of-

carry curve (𝜌35, 𝜌46), which strongly suggest the presence of unspanned 

stochastic volatility. The estimates of the mean reverting coefficients, 𝜅1, 𝜅12, 𝜅21 

and 𝜅2, of the volatility components indicate, as well, that most of the transitory 

shocks to the volatility are absorbed by 𝜈1(𝑡), which strongly reverts to 𝜈2(𝑡). As 

expected, observation standard errors, 𝜎𝑓𝑢𝑡 and 𝜎𝑜𝑝 are highly significant and 

relatively low, being larger for the panels that include the 2008 financial crisis. 
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Table II-5 summarizes the parameters of the Cortazar and Naranjo (2006) 5-factor 

model for oil. Results for the 3 and 4-factor models are presented in Appendix C. 

It can be seen that most parameters are stable through the different panels. All 

mean reversion parameters, 𝑎𝑖, as well as the volatility ones, 𝜎𝑖, are significant and 

show strong mean reversion in oil prices, which gets stronger for the panels that 

includes the 2008 crisis (Panels A and C). Most correlation estimates, 𝜌𝑖𝑗, are also 

statistically different from zero. As the case for the TS model, risk premiums, 𝜆𝑖, 

are not significant for most panels and the same happens for the long-term growth 

rate parameter, 𝜇, which is consistent with Schwartz (1997). The standard 

deviation observation errors, 𝜎𝑓𝑢𝑡 and 𝜎𝑜𝑝, are small, but highly significant. 

Results for fewer factor specifications shows that a 4-factor specification seems to 

be statistically better specified than the 5-factor (Appendix C). 

Tables II-6 and II-7 show the TS and CN 5-factor specification for copper. Table 

II-6 shows that all parameters are stable through time and most of them are also 

statistically significant.
6
 As in the case for oil, correlations between the volatility 

components and other variables are quite low for all panels, which is consistent 

with the existence of unspanned stochastic volatility for copper. It is important to 

note that this is the first time, as far as we know, that results for the TS model for 

copper have been reported in the literature. Also both volatility components 

present relatively high mean reversion coefficients, 𝜅1 and 𝜅2, compared to oil 

estimates, being 𝜈1(𝑡) the volatility parameter that most strongly reverts and 

therefore the variable that account the majority of the transitory shocks to 

volatility. Standard deviation of the measurement errors, 𝜎𝑓𝑢𝑡 and 𝜎𝑜𝑝, are very 

low, but highly significant and tend to peak in the periods of higher volatility, such 

as Panels B and C. 

Table II-7 shows the results for the CN 5-factor specification for copper, which are 

consistent with those for oil. Most parameters are significant and stable through 

                                                 
6
 Risk premiums are the only parameters that are not significant in most cases. As has 

been said this is a common issue in the existing models in the commodity literature. 
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time. The main difference is the stronger mean reversion in copper. This is 

consistent with the results reported by Schwartz (1997) and by Cortazar and 

Naranjo (2006). Similarly to the results for the TS specification, higher volatility 

periods have larger measurement errors standard deviations, 𝜎𝑓𝑢𝑡 and 𝜎𝑜𝑝. 

Tables II-8 and II-9 summarize the results for the TS and 5-factor CN 

specifications for gold. Even though Schwartz (1997) found that mean-reverting 

prices did not seem to hold for gold, our estimates of the TS model, being lower 

than oil and copper estimates, are still significant at standard levels. It must be 

noted, however, that we do not use only futures, like Schwartz (1997), but also 

options in the calibration process. Also, correlations between the spot price and the 

forward cost-of-carry curve, although small, are significant, contrasting the 

evidence found by Casassus and Collin-Dufresne (2005). It must be noted that 

both Schwartz (1997) and Casassus and Collin-Dufresne (2005) use only futures. 

Maybe adding options into the calibration captures mean reversion in gold prices. 

Being this the first time that results are report from the application of the TS model 

to gold prices, it is interesting to note that low correlations between the volatility 

components and the spot price and forward cost-of-carry curve are consistent with 

the presence of unspanned stochastic volatility in this market but in a weaker way 

than for oil and copper. Just as with oil, the first volatility component 𝜈1(𝑡) 

accounts for most of the transitory shocks to volatility and is the most volatile. 

Observation error standard deviations, 𝜎𝑓𝑢𝑡 and 𝜎𝑜𝑝, are quite small but highly 

significant in all samples. 

Table II-9 presents the estimates for the 5-factor CN model applied to gold market. 

With the aforementioned exception of risk premiums, 𝜆𝑖, and long-term growth 

rate, 𝜇, most of parameters are significant. However, parameter estimates seem not 

to be stable across panels, suggesting that 5-factor specification may be over-

specified. Indeed, the high correlation between the most reverting state variables, 

𝜌45, and the negligible ones between them and some of the rest of variables, 𝜌24, 

𝜌15, reinforces the idea of reducing the number of factors considered. As shown in 
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the Appendix C, a 3 or less-factor specification seems more suitable to the gold 

case. Whichever specification is considered the mean reverting parameters, 𝑎𝑖, are 

quite small compared to those for oil and copper, indicating a weaker mean 

reversion in gold. Measurement errors standard deviations for future and options, 

𝜎𝑓𝑢𝑡 and 𝜎𝑜𝑝, are all significant. 
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Table II-4: TS model parameters: Oil 

 
Panel A Panel B Panel C Panel D 

 
(2006-2011) (2006-2007) (2008-2009) (2010-2011) 

𝜙 0.0191* 0.0086* 0.0192* 0.0074* 

𝑆𝑆1 0.2789* 0.3196* 0.2784* 0.5683* 

𝑆𝑆2 0.1225* 0.1116* 0.1220* 0.4266* 

𝑆𝜈1 8.4207* 6.0299* 7.5059* 2.4962* 

𝑆𝜈2 1.1229* 1.5478* 1.1617* 2.4935* 

𝜌13 -0.8586* -0.6931* -0.8549* -0.9484* 

𝜌15 -0.2109* 0.0319* -0.1828* 0.2395* 

𝜌35 0.1095* -0.1617* 0.1109* -0.2818* 

𝜌24 -0.3015* 0.3204* -0.3206* -0.6897* 

𝜌26 -0.3087* -0.5451* -0.3130* -0.7809* 

𝜌46 -0.0282 -0.2350* -0.0624 0.3434* 

𝜆1 0.7697 -13914 0.2598 0.3320 

𝜆2 1.5534* 0.0179 1.6376* 0.4064 

𝜆3 -1.1086* 0.0807* -0.7319 -0.5272 

𝜆4 -0.0402 0.7860* 0.2533 -0.0310* 

𝜆5 -0.1559 0.1543 -0.1333 -16369 

𝜆6 0.5306* -0.1622 0.4807* 0.4601* 

𝛼1 0.2639* 0.2635* 0.2663* 0.5520* 

𝛼2 0.0368* 0.0190* 0.0369* 0.1415* 

𝛾1 1.1167* 1.1910* 1.1147* 0.8872* 

𝛾2 0.2929* 0.2312* 0.2917* 0.3258* 

𝜅1 6.8588* 8.3363* 7.0539* 3.4196* 

𝜅12 -5.1711* -2.0699* -49693 -1.1486* 

𝜅21 -0.1710* -0.2145 -0.1777 -0.0000 

𝜅2 0.8214* 0.9365* 0.7914* 1.9052* 

𝜎𝑓𝑢𝑡 0.0042* 0.0028* 0.0049* 0.0034* 

𝜎𝑜𝑝 0.0182* 0.0097* 0.0181* 0.0134* 

Maximum-likelihood estimates for all data sets. The (*) symbol indicates the significance at a 95% level 

of confidence. Panel A represents the full-sample period, Panels B, C and D the corresponding 

subsamples. 
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Table II-5: CN 5-factor model parameters: Oil 

 
Panel A Panel B Panel C Panel D 

 
(2006-2011) (2006-2007) (2008-2009) (2010-2011) 

𝑎2 0.0356* 0.2170* 0.0360* 0.0583* 

𝑎3 0.9115* 1.3468* 0.8505* 0.8661* 

𝑎4 1.1543* 1.9469* 1.1883* 1.5068* 

𝑎5 8.6570* 5.1132* 9.6454* 6.1454* 

𝜎1 0.3986* 0.2365* 0.3624* 0.2907* 

𝜎2 0.4288* 0.2941* 0.3514* 0.2840* 

𝜎3 0.6531* 0.4346* 0.6348* 0.5375* 

𝜎4 0.5755* 0.3327* 0.5993* 0.3345* 

𝜎5 0.1840* 0.1891* 0.3130* 0.1532* 

𝜌12 -0.8227* -0.6579* -0.6981* -0.6315* 

𝜌13 0.0474* 0.2109* -0.0722* -0.2594* 

𝜌14 -0.0263* -0.1057 0.0187 0.1360* 

𝜌15 -0.0797* -0.2832* -0.1685* 0.0764 

𝜌23 0.0080 -0.1784* -0.0866* 0.2545* 

𝜌24 0.0013 0.1285 0.2117* -0.1799* 

𝜌25 0.0664* 0.2627* 0.0128 -0.1814* 

𝜌34 -0.9409* -0.8800* -0.8516* -0.8419* 

𝜌35 0.0832* 0.0608 0.2565* -0.3352* 

𝜌45 -0.0707* -0.3746* -0.1403* 0.1196 

𝜆1 -0.0250 0.0203* 0.0067 -0.0233 

𝜆2 -0.6813* -0.1680 0.2351 -0.5575* 

𝜆3 -0.2949 0.3016 -0.6122 0.0107* 

𝜆4 -0.2677 -0.2322 -0.3490 -0.5176* 

𝜆5 -0.3195* 0.0558 -0.0368* 0.0554 

𝜇 -0.0152 0.0024 0.0118 -0.0131 

𝜎𝑓𝑢𝑡 0.0012* 0.0010* 0.0014* 0.0011* 

𝜎𝑜𝑝 0.1052* 0.0285* 0.1325* 0.0517* 

Maximum-likelihood estimates for all data sets. The (*) symbol indicates the significance at a 95% level 

of confidence. Panel A represents the full-sample period, Panels B, C and D the corresponding 

subsamples. 
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Table II-6: TS model parameters: Copper 

 
Panel A Panel B Panel C Panel D 

 
(2006-2011) (2006-2007) (2008-2009) (2010-2011) 

𝜙 0.0362* 0.0535 0.0375* 0.0043* 

𝑆𝑆1 0.4957* 0.5513* 0.5224* 0.3476* 

𝑆𝑆2 0.1115* 0.2206* 0.1617* 0.0833* 

𝑆𝜈1 2.2427* 2.8379* 2.8898* 2.1645* 

𝑆𝜈2 2.0139* 2.5886* 2.6449* 2.1109* 

𝜌13 -0.1767* -0.2410* -0.2192* -0.1966* 

𝜌15 -0.0734* -0.1446* -0.0410* -0.0340* 

𝜌35 0.0088 0.0704 0.1323 0.0404 

𝜌24 -0.6121* -0.6425* -0.6583* -0.8595* 

𝜌26 -0.3523* -0.2739* -0.1702* -0.4096* 

𝜌46 0.0148 -0.0362 0.0655 -0.0305 

𝜆1 1.8692* -0.0486 12752 3.6456* 

𝜆2 0.3325 16639 0.3117 13040 

𝜆3 3.1032* 14770 17472 0.3361 

𝜆4 -3.3923* -3.8514* -3.1161* -12501 

𝜆5 -0.3190 0.3410 -0.5111 2.5467* 

𝜆6 -0.8076* -0.6370 -0.1540 -1.5705* 

𝛼1 0.2187* 0.2946* 0.2824* 0.1071* 

𝛼2 0.1120* 0.1857* 0.1754* 0.0673* 

𝛾1 1.7400* 1.7241* 1.8192* 0.8613* 

𝛾2 0.1428* 0.2042* 0.3261* 0.1722* 

𝜅1 10.8751* 11.2664* 11.4430* 12.1396* 

𝜅12 -7.3825* -7.1476* -68282 -9.7343* 

𝜅21 -0.6891* -1.0067* -0.7793 -0.7795* 

𝜅2 1.6236* 2.3051* 2.6418* 1.0675* 

𝜎𝑓𝑢𝑡 0.0014* 0.0035* 0.0013* 0.0006* 

𝜎𝑜𝑝 0.0229* 0.0292* 0.0215* 0.0155* 

Maximum-likelihood estimates for all data sets. The (*) symbol indicates the significance at a 95% level 

of confidence. Panel A represents the full-sample period, Panels B, C and D the corresponding 

subsamples. 
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Table II-7: CN 5-factor model parameters: Copper 

 
Panel A Panel B Panel C Panel D 

 
(2006-2011) (2006-2007) (2008-2009) (2010-2011) 

𝑎2 0.4501* 0.3829* 0.3228* 0.3069* 

𝑎3 1.2737* 1.3026* 0.9676* 0.9825* 

𝑎4 2.7140* 2.8489* 6.2585* 2.2704* 

𝑎5 13.0672* 14.9944* 16.1435* 3.8863* 

𝜎1 0.4662* 0.4955* 0.4569* 0.3395* 

𝜎2 0.7159* 0.7319* 0.4978* 0.4485* 

𝜎3 0.6523* 0.5887* 0.2621* 0.3855* 

𝜎4 0.3034* 0.3071* 0.1278* 0.2613* 

𝜎5 0.1326* 0.1821* 0.1938* 0.1276* 

𝜌12 -0.6893* -0.6732* -0.5161* -0.5848* 

𝜌13 0.6035* 0.4524* 0.4872* 0.5760* 

𝜌14 -0.3904* -0.1825* -0.0686 -0.2666* 

𝜌15 -0.1490* -0.2347* -0.1107* -0.0411 

𝜌23 -0.8805* -0.7550* -0.8327* -0.8986* 

𝜌24 0.5918* 0.3038* 0.2640* 0.5116* 

𝜌25 -0.0051 0.0311 -0.0241 -0.1587 

𝜌34 -0.8861* -0.8139* -0.6190* -0.7933* 

𝜌35 0.2256* 0.1606* 0.2210* 0.4347* 

𝜌45 -0.4743* -0.3179* -0.6852* -0.8735* 

𝜆1 0.1269* 0.0027 0.0380* 0.0889* 

𝜆2 0.0368 0.1459 0.0870 0.0447 

𝜆3 -0.0998 -0.2781 0.0733 0.0861 

𝜆4 -0.0824 -0.1865 -0.0068* -0.2374* 

𝜆5 0.1416 0.2599 0.2419 0.1509 

𝜇 0.0074 -0.0106 -0.0039 0.0108 

𝜎𝑓𝑢𝑡 0.0008* 0.0012* 0.0006* 0.0003* 

𝜎𝑜𝑝 0.1032* 0.0905* 0.1118* 0.0605* 

Maximum-likelihood estimates for all data sets. The (*) symbol indicates the significance at a 95% level 

of confidence. Panel A represents the full-sample period, Panels B, C and D the corresponding 

subsamples. 
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Table II-8: TS model parameters: Gold 

 
Panel A Panel B Panel C Panel D 

 
(2006-2011) (2006-2007) (2008-2009) (2010-2011) 

𝜙 0.0897* 0.0823* 0.0679* 0.1007* 

𝑆𝑆1 0.1895* 0.1845* 0.1977* 0.2951* 

𝑆𝑆2 0.0592* 0.0793* 0.0620* 0.1084* 

𝑆𝜈1 4.8334* 6.2097* 5.9416* 6.0650* 

𝑆𝜈2 1.2108* 1.2177* 1.2247* 0.8362* 

𝜌13 -0.2647* -0.3408* -0.2786* -0.1847* 

𝜌15 0.1584* 0.1725* 0.2161* -0.0497* 

𝜌35 0.5253* 0.5104* 0.2183* 0.5892* 

𝜌24 -0.1284* -0.1856* -0.0809 0.3346* 

𝜌26 -0.3221* -0.0766* 0.1878* 0.1749* 

𝜌46 -0.2698* -0.2640* 0.1941* 0.0659 

𝜆1 2.8480* 3.3353* 4.0267* 40342 

𝜆2 1.3974* -2.0845* 2.7694* 2.6203* 

𝜆3 -3.9397* 0.0320 -18984 -17666 

𝜆4 -2.1685* -0.3278 0.5443 -4.1242* 

𝜆5 -1.1147* -2.4592* -4.6311* -0.9058 

𝜆6 -4.0419* -0.7736* 0.0703 -2.0516* 

𝛼1 0.0898* 0.1529* 0.1582* 0.2336* 

𝛼2 0.0180* 0.0548* 0.0256* 0.0278* 

𝛾1 0.3555* 0.6989* 0.5717* 1.0168* 

𝛾2 0.0955* 0.1775* 0.0760* 0.1065* 

𝜅1 2.8250* 5.3231* 4.8868* 5.6819* 

𝜅12 -1.8907* -1.5291* -38587 -1.5064* 

𝜅21 -0.0400 -1.6668* -0.2334 -0.0401 

𝜅2 0.5933* 1.4470* 1.1351* 0.6574* 

𝜎𝑓𝑢𝑡 0.0006* 0.0005* 0.0006* 0.0011* 

𝜎𝑜𝑝 0.0099* 0.0078* 0.0094* 0.0076* 

Maximum-likelihood estimates for all data sets. The (*) symbol indicates the significance at a 95% level 

of confidence. Panel A represents the full-sample period, Panels B, C and D the corresponding 

subsamples. 
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Table II-9: CN 5-factor model parameters: Gold 

 
Panel A Panel B Panel C Panel D 

 
(2006-2011) (2006-2007) (2008-2009) (2010-2011) 

𝑎2 0.1044* 0.0609* 0.3065* 0.0548* 

𝑎3 0.4262* 0.4359* 0.7272* 0.5040* 

𝑎4 1.0328* 2.9586* 1.7031* 1.0662* 

𝑎5 1.3809* 5.4130* 2.5441* 1.5808* 

𝜎1 0.2853* 0.2458* 0.3345* 0.3342* 

𝜎2 0.2550* 0.2320* 0.2852* 0.2818* 

𝜎3 0.1756* 0.0674* 0.2380* 0.3167* 

𝜎4 0.2025* 0.0255* 0.1807* 0.3271* 

𝜎5 0.1414* 0.0282* 0.0995* 0.2186 

𝜌12 -0.4059* -0.5837* -0.4427* -0.3928* 

𝜌13 -0.1381* 0.1661 0.2002* -0.4763* 

𝜌14 0.1233* -0.1675 0.2141* -0.0822 

𝜌15 -0.0440 0.2782* -0.3642* 0.3300* 

𝜌23 -0.5265* -0.5853* -0.8341* -0.0922 

𝜌24 -0.0625 0.4106* 0.3012* -0.1657 

𝜌25 0.1486* -0.3374* -0.0929 0.0096 

𝜌34 -0.4863* -0.5079* -0.7412* -0.4179 

𝜌35 0.2006* 0.0123 0.5267* 0.0081 

𝜌45 -0.9418* -0.8182* -0.9452* -0.8757* 

𝜆1 -0.0145 -0.4450* -0.4817* -0.0037 

𝜆2 0.0953 0.0869 -0.0451 0.0279* 

𝜆3 0.0975 0.0508 0.1947* 0.1833 

𝜆4 -0.0321 -0.0301 -0.1528 0.0706 

𝜆5 -0.0018 0.0208 0.0788 0.1603 

𝜇 -0.0242 -0.4424* -0.5000* 0.0583 

𝜎𝑓𝑢𝑡 0.0003* 0.0003* 0.0002* 0.0003* 

𝜎𝑜𝑝 0.0627* 0.0438* 0.0676* 0.0363* 

Maximum-likelihood estimates for all data sets. The (*) symbol indicates the significance at a 95% level 

of confidence. Panel A represents the full-sample period, Panels B, C and D the corresponding 

subsamples. 
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2.3.2 Pricing Performance Comparison. 

We now compare the pricing performance of the two models. For each commodity 

and model specification we construct time series of daily futures and options root 

mean square pricing errors (RMSE). Errors are defined as the percentage 

difference between actual and fitted prices for futures, and as the difference 

between the fitted and the actual lognormal implied volatilities, for options. First, 

results are presented computing the average RMSE for futures and options, for 

each data Panel. Then a figure with the time series for the errors is shown. Finally, 

a cross section error analysis is presented showing which contracts are worse 

priced. 

These analyses are shown for each of the three commodities: oil, copper and gold. 

a) Oil 

Table II-10 summarizes the RMSE for Oil futures and options on all specifications 

for each data set. For futures contracts 5 and 4-factor CN models perform better 

than the TS model, while for the 3-factor specification there are no significant 

differences. This is not surprising given that futures prices in the TS model are 

driven only by 3 factors, instead of the 4 and 5 factors in the CN specifications. The 

futures pricing errors in Panel A for the TS model are 3.5 and 1.8 times higher than 

for 5 and 4 factors CN models. These differences are quite stable through the 

different panels, being a little smaller for the out-of-sample Panel E. Thus for 

futures pricing, how volatility is modeled appears not to be relevant. For options 

contracts, on the other hand, the volatility specification seems to have a great 

impact. Table II-10 shows that, on average, the TS model substantially outperforms 

every CN model in all data sets, in and out-of-sample. Also it shows that adding an 

extra factor to the CN specification does not significantly improve the options 

pricing performance. Regardless of the number of factors used by CN models, the 

RMSE for Panel A in CN models is more than 5 times larger than in the TS model. 

This difference is even larger for the financial crisis period (Panel C), as expected. 
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Table II-10: Overall RMSE: Oil 

 

Panel A Panel B Panel C Panel D Panel E 

 

(2006-2011) (2006-2007) (2008-2009) (2010-2011) (2012-5'2013) 

 

  Futures 
 

TS 0.35 0.24 0.43 0.29 0.27 

5F 0.10 0.08 0.12 0.09 0.12 

4F 0.19 0.12 0.25 0.13 0.24 

3F 0.34 0.24 0.41 0.31 0.33 

 

  Options 
 

TS 1.62 0.91 1.64 1.28 1.35 

5F 8.50 2.45 10.70 4.68 7.88 

4F 8.49 2.46 10.72 4.68 7.85 

3F 8.56 2.48 10.67 4.71 7.99 

RMSE for all data sets. Panel E is the out of sample period between January 2012 and May 2013. Here 5F, 

4F and 3F represent the CN models of 5, 4 and 3 factors respectively. Errors are expressed in percentages. 

Figure II-3 presents the time series of the RMSEs for options contracts for the full 

sample period, both in and out-of-sample. It can be seen that during the whole 

period the TS model outperforms the CN models. This performance advantage is 

greater when volatility increases in the peak of the financial crisis. This highlights 

the advantages of accounting for stochastic volatility, showing that TS model 

absorbs the shocks through the volatility state variables themselves and not only 

through the parameters, as is the case of the CN models.  

Finally, Table II-11 presents a cross section error analysis for options with different 

maturities. For all data panels, the RMSE error differences between the CN and TS 

models are much greater for shorter than for longer maturity contracts, ranging 

from more than 6 times higher for the CN model for the shortest-maturity contract 

to less than twice for the longest-maturity contract (around 4 years). Moreover, for 

periods without a financial crisis, like Panel B and D, the RMSE for long maturity 

contracts in both models is similar. 
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Table II-11: Cross-section RMSE: Oil Options 

  
Panel A Panel B Panel C Panel D Panel E 

  

(2006-2011) (2006-2007) (2008-2009) (2010-2011) 

(2012-

5'2013) 

 
𝜏 TS CN TS CN TS CN TS CN TS CN 

F1 0.07 2.38 14.49 1.22 3.95 2.10 17.96 2.38 6.39 1.73 11.64 

F2 0.15 1.98 12.21 1.02 3.01 1.59 14.89 1.25 6.03 1.35 10.84 

F3 0.24 1.74 10.63 0.89 2.62 1.45 12.87 1.05 5.63 1.30 10.10 

F4 0.32 1.47 9.64 0.73 2.50 1.39 11.55 0.94 5.14 1.28 9.28 

F5 0.40 1.30 9.14 0.58 2.27 1.38 10.88 0.93 4.94 1.34 9.09 

F6 0.49 1.24 8.14 0.63 2.18 1.37 9.85 0.89 4.70 1.35 7.82 

MD

1 
0.64 1.19 7.77 0.70 2.25 1.36 8.94 1.01 4.43 1.35 7.73 

MD

2 
0.89 1.34 6.82 0.89 2.56 1.38 7.71 0.92 3.33 1.46 5.71 

D1 1.45 1.67 5.50 1.24 2.17 1.91 4.82 1.21 3.34 1.21 5.42 

D2 2.47 1.86 4.23 1.67 2.29 2.11 4.49 1.50 2.35 1.30 5.40 

D3 3.46 2.24 3.89 2.52 2.59 2.32 3.76 1.78 2.27 1.53 4.80 

D4 4.39 1.84 3.18 1.79 2.29 1.88 4.77 2.21 2.36 1.66 4.67 

RMSE of the TS and 5-factor CN models cross maturity. Panel E is the out of sample period between 

January 2012 and May 2013. Fi denotes the first i-month contracts, MDi denotes the i-following contract 

with expiration either in March, June, September or December, Di denotes the i-following contract with 

expiration in December. Maturity of each contract, 𝜏, is expressed in years, errors in percentages. 

b) Copper 

Table II-12 summarizes the RMSE for Copper futures and options on all 

specifications for each data set. It can be seen that just like in the oil case, CN 

models tends to outperform TS model as the number of factors increases in futures 

pricing, however all model specifications have small errors ranging from 0.05% to 

0.09% depending on the model and factor specification. 
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In sample goes from January 2006 to December 2011 and out of sample from January 2012 to May 2013 

Figure II-3: RMSE time series: Oil Options (Panel A) 
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Table II-12: Overall RMSE: Copper 

 

Panel A Panel B Panel C Panel D Panel E 

 

(2006-2011) (2006-2007) (2008-2009) (2010-2011) (2012-5'2013) 

 

  Futures 
 

TS 0.09 0.15 0.08 0.05 0.04 

5F 0.05 0.08 0.04 0.02 0.02 

4F 0.06 0.09 0.05 0.03 0.02 

3F 0.09 0.13 0.08 0.05 0.03 

 

  Options 
 

TS 1.70 2.51 1.25 1.32 1.73 

5F 8.76 7.00 10.67 5.16 19.39 

4F 8.76 6.94 10.67 5.27 19.40 

3F 8.76 6.96 10.68 5.16 19.37 

RMSE for all data sets. Panel E is the out of sample period between January 2012 and May 2013. Here 5F, 

4F and 3F represent the CN models of 5, 4 and 3 factors respectively. Errors are expressed in percentages. 

For options contracts, just as was the case for oil, the volatility specification is 

important, and regardless of the number of factors in the CN models, again the 

RMSE for Panel A in CN models is more than 5 times larger than in the TS model. 

This is even larger for the financial crisis period (Panel C), like the oil case. 

Figure II-4 is similar to Figure II-3, but now presents the time series of the RMSEs 

for copper options contracts for the whole period. It shows that always the TS 

model outperforms the CN models for options, and also that the worst performance 

of the CN model is during the financial crisis.  

Finally, Table II-13 presents a cross section error analysis for copper options with 

different maturities. Again, the RMSE differences between the CN and TS models 

are much greater for shorter than for longer maturity contracts and for periods of 

higher financial distress, like those in Panel C. Finally it is important to note that 

the longest copper option contract is less than a year, so copper options errors, on 

average, are higher than those corresponding to oil contracts, due to the different 

average maturity. 
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Table II-13: Cross-section RMSE: Copper Options 

  
Panel A Panel B Panel C Panel D Panel E 

  

(2006-2011) (2006-2007) (2008-2009) (2010-2011) 

(2012-

5'2013) 

 

Tau TS CN TS CN TS CN TS CN TS CN 

F1 0,08 3,30 13,84 3,26 12,96 2,41 14,77 2,82 6,82 1,46 16,72 

F2 0,17 2.06 11,78 2.94 10,40 1.23 12,41 1.67 6,20 1.48 17,18 

F3 0,25 2.27 10,39 2.99 9,66 1.29 10,64 1.56 5,56 1.54 18,18 

F4 0,33 2.14 10,06 2.61 9,38 1.77 11,51 1.49 6,06 1.52 17,97 

F5 0,42 2.78 10,06 2.31 8,14 1,28 13,05 1.17 5,43 1.46 17,61 

F6 0,50 1.76 7,97 2.21 7,74 1.02 7,99 1.55 5,99 1.88 17,55 

MD1 0,65 2.09 8,28 2.48 8,23 1.49 7,95 1.57 6,14 3.10 15,79 

MD2 0,85 1.96 5,15 2.49 6,14 1.08 8,15 1.84 3,77 4.31 15,31 

RMSE of the TS and 5-factor CN models cross maturity. Panel E is the out of sample period between 

January 2012 and May 2013. Fi denotes the first i-month contracts; MDi denotes the i-following contract 

with expiration either in March, May, September or December. Maturity of each contract, 𝜏, is expressed 

in years, errors in percentages 

c) Gold 

Tables II-14 and II-15, and Figure II-5, repeats for gold the exercise previously 

done for oil and copper. Results for gold are very similar to those from the other 

commodities: the CN model performs better than the TS model for futures, and 

much worse options; during the financial crisis the CN model behaves particularly 

bad for options; and finally, that the shorter the option contract maturity, the worse 

the performance of the CN model relative to the TS model.  
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In sample goes from January 2006 to December 2011 and out of sample from January 2012 to May 2013 

Figure II-4: RMSE time series: Copper Options (Panel A) 
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Table II-14: Overall RMSE: Gold 

 

Panel A Panel B Panel C Panel D Panel D 

 

(2006-2011) (2006-2007) (2008-2009) (2010-2011) (2012-5'2013) 

 

  Futures 
 

TS 0.05 0.04 0.04 0.07 0.03 

5F 0.02 0.02 0.02 0.02 0.02 

4F 0.03 0.03 0.02 0.03 0.02 

3F 0.05 0.04 0.04 0.05 0.04 

 

  Options 
 

TS 0.92 0.74 0.86 0.75 1.21 

5F 5.17 3.68 5.90 3.23 5.28 

4F 5.16 3.70 5.90 3.52 5.26 

3F 5.08 3.72 5.86 3.27 5.15 

RMSE for all data sets. Panel E is the out of sample period between January 2012 and May 2013. Here 5F, 

4F and 3F represent the CN models of 5, 4 and 3 factors respectively. Errors are expressed in percentages. 
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Table II-15: Cross-section RMSE: Gold Options 

  
Panel A Panel B Panel C Panel D Panel E 

  

(2006-2011) (2006-2007) (2008-2009) (2010-2011) 

(2012-

5'2013) 

 
𝜏 TS CN TS CN TS CN TS CN TS CN 

F1 0.08 1.74 6.67 1.18 4.48 1.18 8.36 1.77 4.69 2.52 7.36 

F2 0.20 1.22 6.66 0.87 4.51 0.92 7.63 1.11 4.23 1.74 7.41 

F3 0.36 0.88 6.55 0.72 4.21 0.81 7.05 0.65 3.81 1.25 6.68 

F4 0.53 0.77 6.35 0.65 4.41 0.71 6.44 0.51 3.59 0.95 5.89 

F5 0.69 0.67 6.12 0.61 4.32 0.65 6.06 0.46 3.45 0.79 5.39 

F6 0.85 0.64 6.22 0.68 4.54 0.68 5.95 0.46 3.41 0.72 5.11 

JD1 1.49 0.89 5.17 0.86 4.47 1.29 5.33 0.51 2.83 0.72 3.45 

JD2 2.00 0.89 4.60 1.22 4.45 1.93 6.88 0.69 2.87 0.77 2.85 

JD3 2.48 0.79 2.96 - - 1.84 4.43 0.91 2.44 0.77 1.72 

JD4 3.03 0.75 3.24 - - 0.77 1.59 1.12 1.98 - - 

JD5 3.53 1.47 7.54 - - 1.77 5.37 1.41 1.55 - - 

RMSE of the TS and 5-factor CN models cross maturity. Panel E is the out of sample period between 

January 2012 and May 2013. Fi denotes the first i-month contracts; JDi denotes the first i contracts with 

expiration in June or December. Maturity of each contract, 𝜏, is expressed in years, errors in percentages. 
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In sample goes from January 2006 to December 2011 and out of sample from January 2012 to May 2013 

Figure II-5: RMSE time series: Gold Options (Panel A) 
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2.3.3 Implementation complexity 

In addition to the pricing performance just reported, a quantitative analysis of the 

tradeoff between goodness-of-fit and complexity of implementation is proxied by 

calculating the execution times of each model for all three commodities. For 

comparative purposes execution times are computed as the time required by a 

model per each iteration of the calibration process.  

Considering a gradient base algorithm to find the optimal solution that uses 

forward finite differences to approximate the derivatives, an N-parameter model 

includes N+1 valuations of the objective function in each iteration: N valuations 

for calculating the partial derivatives plus one for valuing the new point. Results 

reported in the previous section show very clearly that the TS model outperforms 

the CN models in options pricing in many settings, but in this section we are 

interested on measuring the cost of a better performance in terms of the model 

implementation complexity. 

Table II-16 shows the execution times measured for the TS and CN specification 

over all data sets.
7
 It can be seen that the TS model are between 8 and 15 times 

slower than the CN specifications. This is due to the lack of closed form solutions, 

which required the implementation of numerical methods required for evaluating 

options pricing formulas. For illustration purposes on the effect that this could 

have, if we consider that on average each starting point takes about 15 iterations to 

get to an optimum and we use a grid of 100 different starting points to maximize 

the probability of reaching a global optimum, the process would take in a standard 

system around 8.3, 4.3 or 6.2 days to run TS model on the data sample for oil, 

copper or gold, respectively. Note than on the same computer the CN model would 

take only 0.71, 0.59 or 0.69 days, respectively, depending on the commodity. 

Thus, in order to improve the 5 time larger errors of the CN model on short-term 

options using the TS model, 10 times more effort is required.  

                                                 
7
All measurements are done based on an Intel Core i5, 2.4 GHz processor, 8 GB RAM, 

OS X system. 
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Table II-16: Execution times per iteration 

 
Panel A Panel B Panel C Panel D 

 
(2006-2011) (2006-2007) (2008-2009) (2010-2011) 

Oil         

TS 477.16 228.71 220.11 200.20 

5F 59.44 18.66 21.07 20.62 

4F 41.03 13.50 14.46 14.44 

3F 29.02 9.50 9.51 9.76 

 
  

   
Copper         

TS 247.39 179.64 160.86 107.88 

5F 45.54 15.38 18.38 17.02 

4F 34.57 11.55 11.74 13.22 

3F 27.86 7.25 6.49 8.88 

 
  

   
Gold         

TS 358.53 164.34 203.52 271.32 

5F 55.84 19.17 18.48 21.35 

4F 40.70 11.04 12.58 14.56 

3F 22.66 6.87 8.40 8.53 

Execution times are calculated base on N+1 valuations of the objective function. Times are expressed in 

seconds per iteration. Here 5F, 4F and 3F represent the CN models of 5, 4 and 3 factors respectively 
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2.4 Conclusions 

Prices of commodities contingent claims depend on the process assumed for the 

underlying asset. For futures, a good specification of the drift is very important, 

but for options, the volatility specification is crucial. Roughly speaking, 

commodity models in the literature can be classified in two types: those with a 

constant volatility and those with a stochastic volatility specification. In this paper, 

these two ways of dealing with volatility are contrasted in a way relevant to 

practitioners eliciting the trade-offs between the empirical performance and the 

implementation effort required for each model and commodity contract.  

To make this comparative analysis, the Cortazar and Naranjo (2006) CN model to 

represent a constant volatility specification and the Trolle and Schwartz (2009) TS 

model as the stochastic volatility one, are chosen. Both models, specified with the 

same number of parameters (to make them comparable), are then applied to 

futures and options data for oil, copper and gold during different time periods. 

Pricing errors are calculated and execution times measured. 

Results for all commodities are, in general, consistent. First, for futures pricing it 

is clearly better to use the CN model, because not only it is simpler but also errors 

are smaller. Also the higher the number of risk factors in the model, the better. 

Second, options pricing errors are considerably higher using the CN model 

increasing at the most by a factor of 6. Third, the longer the option maturity, the 

less relevant is the difference in pricing errors. For long maturity contracts the 

error difference is small. Fourth, the TS is much more complex to implement and 

its execution times are about 10 times higher. Fifth, our results of implementing 

the TS model for copper and gold are consistent with unspanned stochastic 

volatility for both commodities.   

Results presented in this paper are new and relevant for practitioners. Up to now it 

is, to our knowledge, the first work to empirically test the pricing performance, 

using futures and options contracts, of stochastic volatility models against constant 

volatility benchmarks for oil, copper and gold. Also it is the first to apply the TS 
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model to copper and gold markets. Choosing the best model to implement in a real 

situation depends on the objectives pursued and in the tradeoffs between effort and 

precision. 
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APPENDIX A : TROLLE AND SCHWARTZ MODEL DETAILS 

A.1 Affine transformation of the HJM process 

Given the specification of 𝜎𝑦𝑖(𝑡, 𝑇), 𝑖 = 1,2, and 𝜇𝑦(𝑡, 𝑇) described in section 2.1.1 the 

𝑡-time instantaneous forward cost of carry at time 𝑇, 𝑦(𝑡, 𝑇), is given by 

𝑦(𝑡, 𝑇) = 𝑦(0, 𝑇) + ∑ (𝛼𝑖𝑒
−𝛾𝑖(𝑇−𝑡)𝑥𝑖(𝑡) + 𝛼𝑖𝑒

−2𝛾𝑖(𝑇−𝑡)𝜙𝑖(𝑡))
2
𝑖=1  (A.1) 

where 𝑥𝑖(𝑡) and 𝜙𝑖(𝑡), 𝑖 = 1,2, evolve according to following system of differential 

equations: 

𝑑𝑥1(𝑡) = (−𝛾1𝑥1(𝑡) − (
𝛼1

𝛾1
+ 𝜌13𝜎𝑆1) 𝜈1(𝑡)) 𝑑𝑡 + √𝜈1(𝑡)𝑑𝑊3

𝑄(𝑡) (A.2) 

𝑑𝑥2(𝑡) = (−𝛾2𝑥2(𝑡) − (
𝛼2

𝛾2
+ 𝜌24𝜎𝑆2) 𝜈2(𝑡)) 𝑑𝑡 + √𝜈2(𝑡)𝑑𝑊4

𝑄(𝑡) (A.3) 

𝑑𝜙𝑖(𝑡) = (−2𝛾𝑖𝜙𝑖(𝑡) +
𝛼𝑖

𝛾𝑖
𝜈𝑖(𝑡)) 𝑑𝑡, 𝑖 = 1,2 (A.4) 

Subject to 𝑥𝑖(0) = 𝜙𝑖(0) = 0, 𝑖 = 1,2. 

A.2 Transform equations. 

To price options on futures, a transform of 𝐹(𝑡, 𝑇) is introduced in Section 2.1.1 

𝛹(𝑢, 𝑡, 𝑇0, 𝑇1) = 𝐸𝑡
𝑄[𝑒𝑢 log(𝐹(𝑇0,𝑇1))] (A.5) 

This transform has an affine solution given by 

𝛹(𝑢, 𝑡, 𝑇0, 𝑇1) = 𝑒
𝑀(𝑇0−𝑡)+𝑁1(𝑇0−𝑡)𝜈1(𝑡)+𝑁2(𝑇0−𝑡)𝜈2(𝑡)+𝑢 log(𝐹(𝑡,𝑇1)) (A.6) 

where,𝑀(𝜏), 𝑁1(𝜏) and 𝑁2(𝜏) solve the following system of ordinary differential 

equations 

𝑑𝑀(𝜏)

𝑑𝜏
= 𝑁1(𝜏)𝜂1 + 𝑁2(𝜏)𝜂2 (A.7) 
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𝑑𝑁1(𝜏)

𝑑𝜏
= −𝑁2(𝜏)𝜅21 + 𝑁1(𝜏) (−𝜅1 + 𝑢𝜎𝜈1 (𝜌15𝜎𝑆1 + 𝜌35

𝛼1

𝛾1
(1 −

𝑒−𝛾1(𝑇1−𝑡)))) +
1

2
𝑁1(𝜏)

2𝜎𝜈1
2 +

1

2
(𝑢2 − 𝑢)(𝜎𝑆1

2 + (
𝛼1

𝛾1
(1 − 𝑒−𝛾1(𝑇1−𝑡)))

2

+

2𝜌13𝜎𝑆1
𝛼1

𝛾1
(1 − 𝑒−𝛾1(𝑇1−𝑡))) (A.8) 

𝑑𝑁2(𝜏)

𝑑𝜏
= −𝑁1(𝜏)𝜅12 + 𝑁2(𝜏)(−𝜅2 + 𝑢𝜎𝜈2 (𝜌26𝜎𝑆2 + 𝜌46

𝛼2

𝛾2
(1 −

𝑒−𝛾2(𝑇1−𝑡)))) +
1

2
𝑁2(𝜏)

2𝜎𝜈2
2 +

1

2
(𝑢2 − 𝑢)(𝜎𝑆2

2 + (
𝛼2

𝛾2
(1 − 𝑒−𝛾2(𝑇1−𝑡)))

2

+

2𝜌24𝜎𝑆2
𝛼2

𝛾2
(1 − 𝑒−𝛾2(𝑇1−𝑡))) (A.9) 

subject to the boundary conditions 𝑀(0) = 𝑁1(0) = 𝑁2(0) = 0. 
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APPENDIX B : ESTIMATION PROCEDURE 

For estimation and calibration purposes of the parameters involved in the 

aforementioned models, the Kalman filter (KF) is applied in conjunction with the 

method of maximum likelihood (ML). This requires translating the CN and TS dynamics 

to their state-space representation. This is accomplished establishing the relationship 

between the respective state variables of the system and the observed price vector of 

futures and options (Measurement Equation), and discretizing the dynamics of the same 

(Transition Equation).  

In particular, for TS specification, given the nonlinearity of the USV model, the 

approach used is the extended version of the Kalman filter (EKF), which linearizes the 

Measurement Equation, and applies the method of quasi-maximum likelihood (QML) 

for parameters calibration, which uses a Gaussian distribution to approximate the true 

distribution of the innovation errors.  

The Kalman filter is a widely used estimation methodology in the commodity literature 

(Schwartz, 1997; Pindyck, 2004; Schwartz and Smith, 2000; Cortazar and Naranjo, 

2006; Richter and Sørensen, 2002; Trolle and Schwartz, 2009) that calculates, 

recursively, optimal estimates of unobservable variables using all past information. 

Then, parameter estimates can be obtained by maximizing the likelihood function of its 

innovation errors. 

In order to apply the Kalman filter, models have to be expressed in their state-space 

representation. The first step is to relate the vector of observables variables, options and 

futures prices, 𝑧𝑡, to the vector of state variables, 𝑋𝑡. Let 𝑋𝑡
𝑇𝑆 and 𝑋𝑡

𝐶𝑁 be the vector of 

states variables of the TS and CN specification respectively, and let ℎ𝑀 be the functional 

form that summarizes the pricing formulas of model 𝑀then 

𝑧𝑡 = ℎ
𝑀(𝑋𝑡

𝑀) + 𝑢𝑡, 𝑢𝑡~iid 𝑁(0, 𝛺) (B.1) 

where 𝑧𝑡 is a vector of 𝑚𝑡 × 1 observations that may vary through time,𝑋𝑡
𝑀 denotes the 

vector of state variables of model 𝑀, and 
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𝑋𝑡
𝑇𝑆 = (𝑠(𝑡), 𝑥1(𝑡), 𝑥2(𝑡), 𝜙1(𝑡), 𝜙2(𝑡), 𝜈1(𝑡), 𝜈2(𝑡)) (B.2) 

𝑋𝑡
𝐶𝑁 = (𝑥1(𝑡),⋯ , 𝑥𝑁(𝑡)) (B.3) 

The measurement equation (B.1) requires the existence of a linear relation between 

observed variables and the state variables and since nonlinear options prices are 

considered in the observations vector, 𝑧𝑡, the ℎ-function must be linearized.
8
 Let 

𝑋̂𝑡|𝑠
𝑀 = 𝐸𝑠[𝑋𝑡

𝑀] the expectations of 𝑋𝑡 including the information until 𝑧𝑠. Then we have 

𝑧𝑡 = 𝑐𝑡
𝑀 + 𝐻𝑀𝑋𝑡

𝑀 + 𝑢𝑡, 𝑢𝑡~iid 𝑁(0, 𝛺𝑡
𝑀) (B.4) 

where 𝑐𝑡
𝑀 = (ℎ𝑀(𝑋̂𝑡|𝑡−1

𝑀 ) − 𝐻𝑀𝑋̂𝑡|𝑡−1
𝑀 ) and  

𝐻𝑀 =
𝜕ℎ𝑀(𝑋𝑡

𝑀)

𝜕𝑋𝑡
𝑀 |

𝑋𝑡
𝑀=𝑋̂𝑡|𝑡−1

𝑀
 (B.5) 

The transition equation describes the stochastic process followed by the states variables 

and it can be obtained from the risk-neutral dynamic along with the market price of risk 

specifications described in section 2.1.1 and 2.1.2 for each model:  

𝑋𝑡+1
𝑀 = 𝛷0

𝑀 + 𝛷𝑋
𝑀𝑋𝑡

𝑀 + 𝜔𝑡+1
𝑀 , 𝜔𝑡+1

𝑀 ~iid (B.6) 

𝐸[𝜔𝑡+1
𝑀 ] = 0 (B.7) 

𝑉𝑎𝑟[𝜔𝑡+1
𝑇𝑆 ] = 𝑄0

𝑇𝑆 + 𝑄𝜈1𝜈1(𝑡) + 𝑄𝜈2𝜈2(𝑡) (B.8) 

𝑉𝑎𝑟[𝜔𝑡+1
𝐶𝑁 ] = 𝑄0

𝐶𝑁 (B.9) 

where 𝛷0
𝑀, 𝛷𝑋

𝑀, 𝑄0
𝑀, 𝑄𝜈1, 𝑄𝜈2 can be computed in closed form following Fisher and 

Gilles (1996). 

The Kalman Filter recursively calculate the optimal estimates of 𝑋̂𝑡
𝑀 and the variance-

covariance matrix 𝑃𝑡
𝑀 = 𝐸 [(𝑋𝑡

𝑀 − 𝑋̂𝑡
𝑀)(𝑋𝑡

𝑀 − 𝑋̂𝑡
𝑀)

′
] by minimizing the prediction 

error, 𝜖𝑡
𝑀 = (𝑧𝑡 − 𝑧̂𝑡|𝑡−1

𝑀 ), in each step. Given 𝑋̂𝑡−1
𝑀  and 𝑃𝑡−1

𝑀 , the first step is to compute 

                                                 
8
Note that only TS model is linearized since options are priced based on the actual, 

rather that the fitted, futures prices. As consequence CN option prices do not depend 

directly on the state variables and TS specification only on 𝜈1(𝑡) and 𝜈2(𝑡). 
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the predictions at time 𝑡 for the states variables, 𝑋̂𝑡|𝑡−1
𝑀 , and for the variance-covariance 

matrix, 𝑃𝑡|𝑡−1, given all the information up to time 𝑡 − 1: 

𝑋̂𝑡|𝑡−1
𝑀 = 𝛷0

𝑀 + 𝛷𝑋
𝑀𝑋̂𝑡−1

𝑀  (B.10) 

𝑃𝑡|𝑡−1
𝑀 = 𝛷𝑋𝑀𝑃𝑡−1

𝑀 𝛷𝑋
𝑀′ + 𝑉𝑎𝑟[𝜔𝑡

𝑀] (B.11) 

Then predictions on the observed variables are done and prediction or innovation errors 

𝜖𝑡
𝑀, along with their associated variance-covariance matrix 𝐹𝑡

𝑀, are calculated: 

𝑧̂𝑡|𝑡−1 = ℎ
𝑀(𝑋̂𝑡|𝑡−1

𝑀 ) (B.12) 

𝜖𝑡
𝑀 = (𝑧𝑡 − ℎ

𝑀(𝑋̂𝑡|𝑡−1
𝑀 )) (B.13) 

𝐹𝑡
𝑀 = 𝐻𝑡

𝑀𝑃𝑡|𝑡−1𝐻𝑡
𝑀′ + 𝛺𝑡

𝑀 (B.14) 

This is what is known as the prediction step in the Kalman filter. Once the prediction 

step is conducted, it follows the update step where optimal solutions for the state 

variables vector and the variance-covariance matrix are calculated: 

𝑋̂𝑡
𝑀 = 𝑋̂𝑡|𝑡−1

𝑀 + 𝑃𝑡|𝑡−1
𝑀 𝐻𝑡

𝑀′𝐹𝑡
𝑀−1𝜖𝑡

𝑀 (B.15) 

𝑃𝑡
𝑀 = 𝑃𝑡|𝑡−1

𝑀 + 𝑃𝑡|𝑡−1
𝑀 𝐻𝑡

𝑀′𝐹𝑡
𝑀−1𝐻𝑡

𝑀𝑃𝑡|𝑡−1
𝑀  (B.16) 

The estimation of the model parameters, 𝛩𝑀, is obtained by maximizing the log-

likelihood function of innovations:
9
 

log 𝐿(𝛩𝑀) =
1

2
∑ log|𝐹𝑡

𝑀|𝑇
𝑡 −

1

2
∑ 𝜖𝑡

𝑀′𝑇
𝑡 𝐹𝑡

𝑀−1𝜖𝑡
𝑀 (B.17) 

where 𝑇 is number of observation dates and 𝛩𝑀 is the vector of unknown parameters, of 

model 𝑀, to be estimated. 

 

  

                                                 
9
For the CN model the innovations distribution is Gasusian provided by the fact that 

futures are log-normally distributed. The distribution for the TS innovations is not 

Gaussian, since its variance-covariance matrix depend on the volatility factors, 𝜈𝑖(𝑡), but 

is approximated by it. This is what is known as the QML method. 
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APPENDIX C : DETAILED PARAMETERS DESCRIPTION 

a) Oil 

Table C-1 show the results for the TS model applied to the entire sub samples for crude 

oil. Mean reverting parameters for the volatility process are highly significant for all 

data sets except 𝜅21 that it is not statistically distinct from zero in most cases. From 

Equations (2.3) and (2.4) it can be seen that, if 𝜅12 is close to −𝜅1, the latter is somehow 

the mean reversion coefficient of 𝜈1(𝑡) towards 𝜈2(𝑡). Taking this into account, the 

results for oil show that 𝜈1(𝑡) is highly mean reverting towards 𝜈2(𝑡) (𝜅1 = 6.8588 and 

𝜅12 = −5.1711), while the latter, considering that 𝜅21 ≈ 0, is relative persistent towards 

a level of 
1

𝜅2
(𝜅2 = 0.8214). In this way 𝜈1(𝑡) it can be taken as the component of the 

volatility that accounts for the more transitory shocks and 𝜈2(𝑡) as the one that capture 

the more persistent shocks to volatility, which means that meanwhile 𝜈2(𝑡) affects the 

price of all options, 𝜈1(𝑡) affects mainly the short-term ones. As expected the transitory 

component is more volatile than 𝜈2(𝑡); 𝜎𝜈1 is about 5 and 7 times larger than 𝜎𝜈2. 

One of the major features in the TS model is its ability to allow volatility factors to be 

partially spanned by the spot (futures) market. The empirical evidence presented by 

Trolle and Schwartz (2009) strongly suggests the presence of unspanned stochastic 

volatility on the crude oil market, and the results for the oil displayed on Table C-1 are 

consistent with this
10

. Oil volatility is primarily unspanned; 𝜌15 = −0.2109 and 

𝜌35 = 0.1095 are the correlations between the spot price and cost of carry curve with 

the transitory component of volatility while 𝜌26 = −0.3087 and 𝜌46 = −0.0282 are the 

ones with the more persistent component.  

                                                 
10

Trolle and Schwartz (2009) found very low correlations with 𝜌15 = −0.039, 𝜌35 =
−0.103, 𝜌26 = −0.131and 𝜌46 = −0.001 for the 1990-2006 period. 
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Table C-1: TS model parameters: Oil 

 
Panel A Panel B Panel C Panel D 

 
(2006-2011) (2006-2007) (2008-2009) (2010-2011) 

𝜙 0.0191* 0.0086* 0.0192* 0.0074* 

𝑆𝑆1 0.2789* 0.3196* 0.2784* 0.5683* 

𝑆𝑆2 0.1225* 0.1116* 0.1220* 0.4266* 

𝑆𝜈1 8.4207* 6.0299* 7.5059* 2.4962* 

𝑆𝜈2 1.1229* 1.5478* 1.1617* 2.4935* 

𝜌13 -0.8586* -0.6931* -0.8549* -0.9484* 

𝜌15 -0.2109* 0.0319* -0.1828* 0.2395* 

𝜌35 0.1095* -0.1617* 0.1109* -0.2818* 

𝜌24 -0.3015* 0.3204* -0.3206* -0.6897* 

𝜌26 -0.3087* -0.5451* -0.3130* -0.7809* 

𝜌46 -0.0282 -0.2350* -0.0624 0.3434* 

𝜆1 0.7697 -13914 0.2598 0.3320 

𝜆2 1.5534* 0.0179 1.6376* 0.4064 

𝜆3 -1.1086* 0.0807* -0.7319 -0.5272 

𝜆4 -0.0402 0.7860* 0.2533 -0.0310* 

𝜆5 -0.1559 0.1543 -0.1333 -16369 

𝜆6 0.5306* -0.1622 0.4807* 0.4601* 

𝛼1 0.2639* 0.2635* 0.2663* 0.5520* 

𝛼2 0.0368* 0.0190* 0.0369* 0.1415* 

𝛾1 1.1167* 1.1910* 1.1147* 0.8872* 

𝛾2 0.2929* 0.2312* 0.2917* 0.3258* 

𝜅1 6.8588* 8.3363* 7.0539* 3.4196* 

𝜅12 -5.1711* -2.0699* -49693 -1.1486* 

𝜅21 -0.1710* -0.2145 -0.1777 -0.0000 

𝜅2 0.8214* 0.9365* 0.7914* 0.9052* 

𝜎𝑓𝑢𝑡 0.0042* 0.0028* 0.0049* 0.0034* 

𝜎𝑜𝑝 0.0182* 0.0097* 0.0181* 0.0134* 
Maximum-likelihood estimates for all data sets. The (*) symbol indicates the significance at a 95% level 

of confidence. Panel A represents the full-sample period, Panels B, C and D the corresponding 

subsamples. 
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Differences between the estimates of Table C-1 and Trolle and Schwartz (2009) arise; 

the spot price seems to span a little more the components of volatility, nevertheless 

volatility is still mainly unspanned. The most likely reason for this is that in this article, 

different panel of data is being used and longer contracts are considered in the 

calibration of parameters.  

Since 𝜈1(𝑡) is much more volatile than 𝜈2(𝑡), 𝜎𝑆1 > 𝜎𝑆2, 𝛾1 > 𝛾2 and 𝛼1 > 𝛼2, most of 

the instantaneous volatility for the spot price and the front end of the forward cost of 

carry curve is driven by 𝜈1(𝑡). This explains, in part, the high correlation between them 

(𝜌13 = −0.8586). As is common in this type of analysis, standard deviations of the 

measurement errors, 𝜎𝑓𝑢𝑡 and 𝜎𝑜𝑝, are highly significant and consistent through samples.  

Tables C-2, C-3 and C-4 display the results for the CN models for the oil case. For the 3 

and 4-factor specifications, most parameters are significant and stables to standard 

considerations, all but market prices of risk, 𝜆𝑖, and the long-term growth rate, 𝜇, which 

is consistent with the literature (Schwartz, 1997). Although, mean reverting parameters 

are all significant for the 5-factor model, the correlations between the second and the rest 

of the factors are estimated with high standard errors. In addition, the high correlations 

between the third and fourth variables (𝜌34 = −0.9409) along with the negligible 

correlation of some of the rest of the variables with them, suggest that the 5-factor model 

could be over specified and less factors should be considered. The standard deviation 

measurement error parameters, 𝜎𝑓𝑢𝑡 and 𝜎𝑜𝑝, are small, but highly significant, being the 

futures one 400 times lower than the one for options as opposed to the 4 to 1 relation in 

the TS specification. 

b) Copper 

Table C-5 displays the results for TS model on all samples for the copper case. As usual 

most of market prices of risk are not statistically significant in contrast with the highly 

significant, but low standard deviation of measurement errors 𝜎𝑓𝑢𝑡 and 𝜎𝑜𝑝. 
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Table C-2: CN 3-factor model parameters: Oil 

 
Panel A Panel B Panel C Panel D 

 
(2006-2011) (2006-2007) (2008-2009) (2010-2011) 

𝑎2 0.2079* 0.2844* 0.1720* 0.3272* 

𝑎3 1.1755* 1.2262* 1.1208* 1.4271* 

𝜎1 0.2645* 0.1795* 0.2856* 0.2050* 

𝜎2 0.2196* 0.1642* 0.3118* 0.2147* 

𝜎3 0.4263* 0.2952* 0.5051* 0.1348* 

𝜌12 -0.0552* 0.1263* -0.4769* 0.2728* 

𝜌13 -0.4459* -0.2303* 0.0075 -0.0642* 

𝜌23 -0.1896* -0.2653* -0.2603* -0.0182 

𝜆1 0.0035 -0.0056 0.0708 -0.0235* 

𝜆2 0.0254 -0.1003 -0.1096 0.3473 

𝜆3 -0.0080 0.1724* -0.1263* -0.1347 

𝜇 -0.0136 -0.0146 0.0500 -0.0260* 

𝜎𝑓𝑢𝑡 0.0044* 0.0028* 0.0056* 0.0037* 

𝜎𝑜𝑝 0.1054* 0.0282* 0.1286* 0.0525* 

Maximum-likelihood estimates for all data sets. The (*) symbol indicates the significance at a 95% level 

of confidence. Panel A represents the full-sample period, Panels B, C and D the corresponding 

subsamples. 
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Table C-3: CN 4-factor model parameters: Oil 

 
Panel A Panel B Panel C Panel D 

 
(2006-2011) (2006-2007) (2008-2009) (2010-2011) 

𝑎2 0.0950* 0.2689* 0.0354* 0.0668* 

𝑎3 0.7155* 0.9293* 0.7043* 0.5866* 

𝑎4 2.7221* 3.6527* 5.4243* 3.9534* 

𝜎1 0.2751* 0.1894* 0.4169* 0.2377* 

𝜎2 0.2690* 0.1771* 0.4334* 0.2946* 

𝜎3 0.2814* 0.2438* 0.3363* 0.5264* 

𝜎4 0.1838* 0.1259* 0.2497* 0.1572* 

𝜌12 -0.5701* -0.3730* -0.8245* -0.4439* 

𝜌13 0.0897* 0.2905* -0.2412* -0.1376* 

𝜌14 -0.0690* -0.1083* -0.1005 0.1676* 

𝜌23 -0.1059* -0.3050* 0.2790* -0.4323* 

𝜌24 0.1221* 0.1675* 0.0811 0.0662 

𝜌34 -0.3036* -0.3139* 0.3058* -0.7010* 

𝜆1 0.0224* -0.0107 0.0473* -0.0100 

𝜆2 0.0387 -0.1207 0.3765* 0.3804 

𝜆3 -0.0210 0.1507* -0.8974* 0.3475 

𝜆4 -0.0808 -0.1375 -0.1583 -0.3499* 

𝜇 0.0191* -0.0221 0.0500* 0.0044 

𝜎𝑓𝑢𝑡 0.0025* 0.0015* 0.0031* 0.0015* 

𝜎𝑜𝑝 0.1051* 0.0281* 0.1283* 0.0510* 

Maximum-likelihood estimates for all data sets. The (*) symbol indicates the significance at a 95% level 

of confidence. Panel A represents the full-sample period, Panels B, C and D the corresponding 

subsamples. 

 

  



71 

 

  

Table C-4: CN 5-factor model parameters: Oil 

 
Panel A Panel B Panel C Panel D 

 
(2006-2011) (2006-2007) (2008-2009) (2010-2011) 

𝑎2 0.0356* 0.2170* 0.0360* 0.0583* 

𝑎3 0.9115* 1.3468* 0.8505* 0.8661* 

𝑎4 1.1543* 1.9469* 1.1883* 1.5068* 

𝑎5 8.6570* 5.1132* 9.6454* 6.1454* 

𝜎1 0.3986* 0.2365* 0.3624* 0.2907* 

𝜎2 0.4288* 0.2941* 0.3514* 0.2840* 

𝜎3 0.6531* 0.4346* 0.6348* 0.5375* 

𝜎4 0.5755* 0.3327* 0.5993* 0.3345* 

𝜎5 0.1840* 0.1891* 0.3130* 0.1532* 

𝜌12 -0.8227* -0.6579* -0.6981* -0.6315* 

𝜌13 0.0474* 0.2109* -0.0722* -0.2594* 

𝜌14 -0.0263* -0.1057 0.0187 0.1360* 

𝜌15 -0.0797* -0.2832* -0.1685* 0.0764 

𝜌23 0.0080 -0.1784* -0.0866* 0.2545* 

𝜌24 0.0013 0.1285 0.2117* -0.1799* 

𝜌25 0.0664* 0.2627* 0.0128 -0.1814* 

𝜌34 -0.9409* -0.8800* -0.8516* -0.8419* 

𝜌35 0.0832* 0.0608 0.2565* -0.3352* 

𝜌45 -0.0707* -0.3746* -0.1403* 0.1196 

𝜆1 -0.0250 0.0203* 0.0067 -0.0233 

𝜆2 -0.6813* -0.1680 0.2351 -0.5575* 

𝜆3 -0.2949 0.3016 -0.6122 0.0107* 

𝜆4 -0.2677 -0.2322 -0.3490 -0.5176* 

𝜆5 -0.3195* 0.0558 -0.0368* 0.0554 

𝜇 -0.0152 0.0024 0.0118 -0.0131 

𝜎𝑓𝑢𝑡 0.0012* 0.0010* 0.0014* 0.0011* 

𝜎𝑜𝑝 0.1052* 0.0285* 0.1325* 0.0517* 

Maximum-likelihood estimates for all data sets. The (*) symbol indicates the significance at a 95% level 

of confidence. Panel A represents the full-sample period, Panels B, C and D the corresponding 

subsamples. 

 

  



72 

 

  

Table C-5: TS model parameters: Copper 

 
Panel A Panel B Panel C Panel D 

 
(2006-2011) (2006-2007) (2008-2009) (2010-2011) 

𝜙 0.0362* 0.0535 0.0375* 0.0043* 

𝑆𝑆1 0.4957* 0.5513* 0.5224* 0.3476* 

𝑆𝑆2 0.1115* 0.2206* 0.1617* 0.0833* 

𝑆𝜈1 2.2427* 2.8379* 2.8898* 2.1645* 

𝑆𝜈2 2.0139* 2.5886* 2.6449* 2.1109* 

𝜌13 -0.1767* -0.2410* -0.2192* -0.1966* 

𝜌15 -0.0734* -0.1446* -0.0410* -0.0340* 

𝜌35 0.0088 0.0704 0.1323 0.0404 

𝜌24 -0.6121* -0.6425* -0.6583* -0.8595* 

𝜌26 -0.3523* -0.2739* -0.1702* -0.4096* 

𝜌46 0.0148 -0.0362 0.0655 -0.0305 

𝜆1 1.8692* -0.0486 12752 3.6456* 

𝜆2 0.3325 16639 0.3117 13040 

𝜆3 3.1032* 14770 17472 0.3361 

𝜆4 -3.3923* -3.8514* -3.1161* -12501 

𝜆5 -0.3190 0.3410 -0.5111 2.5467* 

𝜆6 -0.8076* -0.6370 -0.1540 -1.5705* 

𝛼1 0.2187* 0.2946* 0.2824* 0.1071* 

𝛼2 0.1120* 0.1857* 0.1754* 0.0673* 

𝛾1 1.7400* 1.7241* 1.8192* 0.8613* 

𝛾2 0.1428* 0.2042* 0.3261* 0.1722* 

𝜅1 10.8751* 11.2664* 11.4430* 12.1396* 

𝜅12 -7.3825* -7.1476* -68282 -9.7343* 

𝜅21 -0.6891* -1.0067* -0.7793 -0.7795* 

𝜅2 1.6236* 2.3051* 2.6418* 1.0675* 

𝜎𝑓𝑢𝑡 0.0014* 0.0035* 0.0013* 0.0006* 

𝜎𝑜𝑝 0.0229* 0.0292* 0.0215* 0.0155* 

Maximum-likelihood estimates for all data sets. The (*) symbol indicates the significance at a 95% level 

of confidence. Panel A represents the full-sample period, Panels B, C and D the corresponding 

subsamples. 
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Even though 𝜅1 = 10.8751 is significantly higher than 𝜅2 = 1.6236, volatility mean 

reverting coefficients differs from the estimates for oil, mainly because the speed of 

adjustment for 𝜈1(𝑡) is higher and there is not a moderately persistent component as 

clear as is for oil. Both volatility factors are quite mean reverting: 𝜈1(𝑡) towards 𝜈2(𝑡) 

and more slowly 𝜈2(𝑡) towards a level of 0.62.
11

 The lack of long-term contracts 

involved in the estimation procedure is probably the reason begin this since transitory 

shocks to volatility affects primarily short-term option prices while more persistent ones 

affects all. Having only short-term options may be overestimating the reverting 

coefficient of the supposed more persistent component, along with causing higher 

estimates for the reversion of transitory shocks. Since both components capture 

transitory shocks to volatility, it is not strange to have similar estimates for the 

variability, 𝜎𝜈𝑖, of them.  

Supported by the fact of a larger estimate for 𝜎𝑆1, relative to 𝜎𝑆2, it is clear that 𝜈1(𝑡) is 

the component that drive most of the instantaneous volatility of the spot price. In 

addition, it is the main driver of instantaneous variance of the front end of the forward 

cost of carry curve provided by 𝛼1 > 𝛼2 and the fact that the maturity-decreasing 

coefficient associated with the more transitory component of the volatility, 𝛾1, is larger 

than 𝛾2.
12

 As maturity increases, the proportion of the instantaneous volatility of the 

forward cost of carry curve accounted by 𝜈1(𝑡) decreases.  

Although parameter calibration is not a prove per se and a non-dependent model test, 

like the one realized in the NBER version of the Trolle and Schwartz (2009) paper, 

should be done, estimates for the correlations between the innovations of the volatility 

and innovations of the spot price and forward cost of carry curve suggest that volatility 

                                                 
11

 Actually 𝜈1(𝑡) reverts to 
1

𝜅1
+ (

−𝜅12

𝜅1
) 𝜈2(𝑡), but considering the high estimates for 𝜅1 

and that 𝜅1 ≈ −𝜅12, it is said that reverts towards 𝜈2(𝑡). Since 𝜅21 = −0.6891 is quite 

small, 𝜈2(𝑡) reverts towards 
1

𝜅2
+ (−

𝜅21

𝜅2
) 𝜈1(𝑡) ≈

1

𝜅2
. 

12
Recalling from Equations (2.2) and (2.8), if 𝛾1 > 𝛾2 then 𝜎𝑦1(𝑡, 𝑇) goes to zero faster 

than 𝜎𝑦2(𝑡, 𝑇). Particularly for the copper case 𝜎𝑦1(𝑡, 𝑇) vanishes ten times faster as 

maturity of contracts increase. 
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may have unspanned components for copper markets as well as for the oil case. This 

correlations are quite low; 𝜌15 = −0.0734, 𝜌35 = 0.0088, 𝜌26 = −0.3523 and 

𝜌46 = 0.0148. Since correlations of the variables with the first volatility component are 

all nearly zero, the model could be simplified by assuming one of the two volatility 

factors to be completely unspanned without affecting the prices too much. 

The results of the CN model for copper, presented on Tables C-6, C-7 and C-8 show, for 

all specifications, highly significant parameters for all samples except for the market 

prices of risk, 𝜆𝑖, and the long-term growth rate 𝜇. The standard deviations of futures 

prices measurement errors, 𝜎𝑓𝑢𝑡, are very low. However, compared to the TS estimates, 

the observation standard error for option contracts, 𝜎𝑜𝑝, is relatively high. In contrast to 

the oil case, all CN specification seems to be well specified and stables trough data sets. 

For the 3-factor model, this is consistent with the results reported by Schwartz (1997) 

and Cortazar and Naranjo (2006). The main differences between the subsamples 

estimates have to do with stronger mean reverting parameters for the periods with larger 

volatility shocks. Copper data has two main shocks in volatility, the first one at the 

beginning of the 2006, and the latter for the 2008 crisis (see Figure II-2), which explains 

why Panel B and C show stronger mean reverting parameters than Panel D for the 

copper case.  
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Table C-6: CN 3-factor model parameters: Copper 

 
Panel A Panel B Panel C Panel D 

 
(2006-2011) (2006-2007) (2008-2009) (2010-2011) 

𝑎2 0.6283* 0.5603* 0.2706* 0.5877* 

𝑎3 1.1480* 1.1047* 3.5537* 0.8312* 

𝜎1 0.3536* 0.4594* 0.3892* 0.2666* 

𝜎2 0.6290* 0.9989* 0.3643* 0.5404* 

𝜎3 0.4241* 0.6396* 0.0807* 0.4238* 

𝜌12 -0.3093* -0.5716* -0.3131* -0.0363 

𝜌13 0.2791* 0.4782* 0.3308* 0.0553 

𝜌23 -0.9761* -0.9742* -0.7197* -0.9962* 

𝜆1 0.0340 0.0196 0.1042* 0.0099 

𝜆2 0.6000* 0.7755 -0.0216* 1.0000* 

𝜆3 -0.5547* -0.8427 -0.0511 -0.8595* 

𝜇 -0.0499 -0.0500 0.0077 -0.0500* 

𝜎𝑓𝑢𝑡 0.0013* 0.0019* 0.0011* 0.0006* 

𝜎𝑜𝑝 0.1033* 0.0908* 0.1119* 0.0609* 

Maximum-likelihood estimates for all data sets. The (*) symbol indicates the significance at a 95% level 

of confidence. Panel A represents the full-sample period, Panels B, C and D the corresponding 

subsamples. 
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Table C-7: CN 4-factor model parameters: Copper 

 
Panel A Panel B Panel C Panel D 

 
(2006-2011) (2006-2007) (2008-2009) (2010-2011) 

𝑎2 0.7500* 0.5844* 0.3850* 0.6295* 

𝑎3 1.2673* 1.2119* 3.5038* 1.0292* 

𝑎4 10.2706* 12.3345* 11.8035* 2.4306* 

𝜎1 0.3668* 0.4410* 0.3630* 0.3579* 

𝜎2 0.6132* 0.8784* 0.2427* 0.5938* 

𝜎3 0.4760* 0.5953* 0.0895* 0.5448* 

𝜎4 0.1051* 0.1672* 0.1225* 0.1957* 

𝜌12 -0.3729* -0.5870* 0.0064 -0.4393* 

𝜌13 0.3861* 0.5561* 0.1516* 0.2270* 

𝜌14 -0.3893* -0.5229* -0.0981* 0.2274* 

𝜌23 -0.9726* -0.9669* -0.5351* -0.8661* 

𝜌24 0.4104* 0.2874* 0.0767 0.2143 

𝜌34 -0.5172* -0.3540* -0.5917* -0.6664* 

𝜆1 0.0410 0.0907 0.0208 0.0869* 

𝜆2 0.0561 0.8732 -0.0075* 0.1917 

𝜆3 -0.1981 -0.9169* -0.0793 0.0746 

𝜆4 0.0439 0.2840 0.1476 0.1518 

𝜇 -0.0492 0.0500 -0.0500 -0.0023 

𝜎𝑓𝑢𝑡 0.0010* 0.0013* 0.0007* 0.0004* 

𝜎𝑜𝑝 0.1033* 0.0908* 0.1120* 0.0595* 

Maximum-likelihood estimates for all data sets. The (*) symbol indicates the significance at a 95% level 

of confidence. Panel A represents the full-sample period, Panels B, C and D the corresponding 

subsamples. 
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Table C-8: CN 5-factor model parameters: Copper 

 
Panel A Panel B Panel C Panel D 

 
(2006-2011) (2006-2007) (2008-2009) (2010-2011) 

𝑎2 0.4501* 0.3829* 0.3228* 0.3069* 

𝑎3 1.2737* 1.3026* 0.9676* 0.9825* 

𝑎4 2.7140* 2.8489* 6.2585* 2.2704* 

𝑎5 13.0672* 14.9944* 16.1435* 3.8863* 

𝜎1 0.4662* 0.4955* 0.4569* 0.3395* 

𝜎2 0.7159* 0.7319* 0.4978* 0.4485* 

𝜎3 0.6523* 0.5887* 0.2621* 0.3855* 

𝜎4 0.3034* 0.3071* 0.1278* 0.2613* 

𝜎5 0.1326* 0.1821* 0.1938* 0.1276* 

𝜌12 -0.6893* -0.6732* -0.5161* -0.5848* 

𝜌13 0.6035* 0.4524* 0.4872* 0.5760* 

𝜌14 -0.3904* -0.1825* -0.0686 -0.2666* 

𝜌15 -0.1490* -0.2347* -0.1107* -0.0411 

𝜌23 -0.8805* -0.7550* -0.8327* -0.8986* 

𝜌24 0.5918* 0.3038* 0.2640* 0.5116* 

𝜌25 -0.0051 0.0311 -0.0241 -0.1587 

𝜌34 -0.8861* -0.8139* -0.6190* -0.7933* 

𝜌35 0.2256* 0.1606* 0.2210* 0.4347* 

𝜌45 -0.4743* -0.3179* -0.6852* -0.8735* 

𝜆1 0.1269* 0.0027 0.0380* 0.0889* 

𝜆2 0.0368 0.1459 0.0870 0.0447 

𝜆3 -0.0998 -0.2781 0.0733 0.0861 

𝜆4 -0.0824 -0.1865 -0.0068* -0.2374* 

𝜆5 0.1416 0.2599 0.2419 0.1509 

𝜇 0.0074 -0.0106 -0.0039 0.0108 

𝜎𝑓𝑢𝑡 0.0008* 0.0012* 0.0006* 0.0003* 

𝜎𝑜𝑝 0.1032* 0.0905* 0.1118* 0.0605* 

Maximum-likelihood estimates for all data sets. The (*) symbol indicates the significance at a 95% level 

of confidence. Panel A represents the full-sample period, Panels B, C and D the corresponding 

subsamples. 
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c) Gold 

Table C-9 show, for the entire and all sub samples, the parameter estimates for the TS 

model applied to gold. Even when for all data sets parameters are statistically 

significant, except for the risk premiums, the results show to be quite unstable through 

sample periods indicating that the model could be over-specified. For example, mean 

reverting estimates for the volatility process show that for all samples 𝜈1(𝑡) accounts for 

the transitory shocks to volatility, with relative larger estimations of 𝜅1 against 𝜅2. 

However, the role of 𝜈2(𝑡) component as the one that capture the more persistent shocks 

to volatility does not seems to hold for all panels, being moderately persistent for Panel 

A and D, but reverting for Panel B and C.  

As well as for the oil and copper case, the results suggest the presence of unspanned 

stochastic volatility components for the gold market; however, the magnitudes of the 

correlations implicated are larger than the ones obtained for oil and copper. It is 

important to note that the lack of stability, in the estimation of the correlations, suggests 

that the model is over-specified and should not be taken as a clear proof of the presence 

of unspanned stochastic volatility factors for gold. Nonetheless, within each panel the 

results obtained for gold seems to follow a similar logic of the ones obtained for oil in 

the sense that 𝜈1(𝑡) is the more volatile component and accounts for most of the 

instantaneous volatility of the spot price and front end of the forward cost of carry curve.  

Tables C-10, C-11 and C-12 display the estimates for the CN model applied to gold 

market. As was the case for the oil, higher factors specification seems to over-specify 

the gold dynamics.  
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Table C-9: TS model parameters: Gold 

 
Panel A Panel B Panel C Panel D 

 
(2006-2011) (2006-2007) (2008-2009) (2010-2011) 

𝜙 0.0897* 0.0823* 0.0679* 0.1007* 

𝑆𝑆1 0.1895* 0.1845* 0.1977* 0.2951* 

𝑆𝑆2 0.0592* 0.0793* 0.0620* 0.1084* 

𝑆𝜈1 4.8334* 6.2097* 5.9416* 6.0650* 

𝑆𝜈2 1.2108* 1.2177* 1.2247* 0.8362* 

𝜌13 -0.2647* -0.3408* -0.2786* -0.1847* 

𝜌15 0.1584* 0.1725* 0.2161* -0.0497* 

𝜌35 0.5253* 0.5104* 0.2183* 0.5892* 

𝜌24 -0.1284* -0.1856* -0.0809 0.3346* 

𝜌26 -0.3221* -0.0766* 0.1878* 0.1749* 

𝜌46 -0.2698* -0.2640* 0.1941* 0.0659 

𝜆1 2.8480* 3.3353* 4.0267* 40342 

𝜆2 1.3974* -2.0845* 2.7694* 2.6203* 

𝜆3 -3.9397* 0.0320 -18984 -17666 

𝜆4 -2.1685* -0.3278 0.5443 -4.1242* 

𝜆5 -1.1147* -2.4592* -4.6311* -0.9058 

𝜆6 -4.0419* -0.7736* 0.0703 -2.0516* 

𝛼1 0.0898* 0.1529* 0.1582* 0.2336* 

𝛼2 0.0180* 0.0548* 0.0256* 0.0278* 

𝛾1 0.3555* 0.6989* 0.5717* 1.0168* 

𝛾2 0.0955* 0.1775* 0.0760* 0.1065* 

𝜅1 2.8250* 5.3231* 4.8868* 5.6819* 

𝜅12 -1.8907* -1.5291* -38587 -1.5064* 

𝜅21 -0.0400 -1.6668* -0.2334 -0.0401 

𝜅2 0.5933* 1.4470* 1.1351* 0.6574* 

𝜎𝑓𝑢𝑡 0.0006* 0.0005* 0.0006* 0.0011* 

𝜎𝑜𝑝 0.0099* 0.0078* 0.0094* 0.0076* 

Maximum-likelihood estimates for all data sets. The (*) symbol indicates the significance at a 95% level 

of confidence. Panel A represents the full-sample period, Panels B, C and D the corresponding 

subsamples. 
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Along with relatively low mean reverting coefficients, compared to oil and copper, the 4 

and 5-factor specifications show several correlations not statistically significant in all 

samples. For example, the 5-factor strong reverting state variables are strongly 

correlated 𝜌45, but the correlations of one of them with other variables are not. This 

indicates that one or more factors are over-specified for gold. The same analysis could 

be done for the 4 and even 3-factor specifications, where high correlations between the 

strongest reverting variables contrast with not significant correlations of the rest with 

them. Only the 3-factor CN model is significant for the Panel A and C provided that this 

sets includes the crisis period, which may induce, though weakly, the mean reversion 

behavior of state variables for gold.
13

 In order to study if a specification with less factor 

is more consistent, a 2-factor model is considered; results are shown in Table C-13. The 

estimates are all significant and stable through panels, even in the periods that not 

include the 2008 crisis, indicating that a 2-factor specification is statistically more 

suitable to gold prices. 

Even though Schwartz (1997) found that mean-reverting prices did not seem to hold for 

gold, our estimates of the TS and CN models are still significant at standard levels. It 

must be noted, however, that we do not use only futures, like Schwartz (1997), but also 

options in the calibration process. Maybe adding options into the calibration captures 

mean reversion in gold prices. 

 

  

                                                 
13

This complements the hypothesis that the inclusion of option prices in the calibration 

process also induce mean reversion in gold prices as opposed to the results found in the 

literature (Schwartz, 1997; Casassus and Collin-Dufresne, 2005) 
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Table C-10: CN 3-factor model parameters: Gold 

 
Panel A Panel B Panel C Panel D 

 
(2006-2011) (2006-2007) (2008-2009) (2010-2011) 

𝑎2 0.1348* 0.0845* 0.1603* 0.1317* 

𝑎3 0.2461* 0.2033* 0.6293* 0.2752* 

𝜎1 0.3934* 0.2585* 0.3049* 0.3844* 

𝜎2 0.6004* 0.4675* 0.5947* 0.6063* 

𝜎3 0.4817* 0.5326* 0.4181* 0.4936 

𝜌12 -0.3451* -0.2496 -0.3565* -0.3602 

𝜌13 -0.0703* -0.1534 -0.1436 -0.0542 

𝜌23 -0.8753* -0.8445* -0.7614* -0.8757* 

𝜆1 -0.4145* -0.2440 -0.2382 -0.4280* 

𝜆2 0.9997* 0.0981 0.6049* 0.9997 

𝜆3 -0.8762* -0.1568 -0.1909 -0.8329 

𝜇 -0.3895* -0.2901 -0.1851 -0.3690* 

𝜎𝑓𝑢𝑡 0.0007* 0.0007* 0.0006* 0.0009* 

𝜎𝑜𝑝 0.0620* 0.0454* 0.0744* 0.0606* 

Maximum-likelihood estimates for all data sets. The (*) symbol indicates the significance at a 95% level 

of confidence. Panel A represents the full-sample period, Panels B, C and D the corresponding 

subsamples. 
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Table C-11: CN 4-factor model parameters: Gold 

 
Panel A Panel B Panel C Panel D 

 
(2006-2011) (2006-2007) (2008-2009) (2010-2011) 

𝑎2 0.2505* 0.1599* 0.3061* 0.2405* 

𝑎3 0.5020* 0.5109* 0.6149* 0.4862* 

𝑎4 0.8349* 1.0368* 1.1691* 0.9937* 

𝜎1 0.2760* 0.1849* 0.3223* 0.2954* 

𝜎2 0.3435* 0.2586* 0.4108* 0.3310* 

𝜎3 0.3907* 0.2229* 0.4821* 0.4138* 

𝜎4 0.1594* 0.1004 0.2483* 0.1542* 

𝜌12 -0.2369* -0.1182 -0.2281* -0.2628* 

𝜌13 -0.0586 -0.0745 -0.1213* -0.0399 

𝜌14 0.2055* 0.1878 0.2547* 0.1598* 

𝜌23 -0.8623* -0.8520* -0.6397* -0.8593* 

𝜌24 0.6330* 0.5592* 0.0861 0.5679* 

𝜌34 -0.9325* -0.8967* -0.8074* -0.9008* 

𝜆1 0.3498* 0.0720 0.2874* 0.3255* 

𝜆2 0.1542* 0.1228 0.1310 0.1082 

𝜆3 0.0114 0.0587 -0.0053* -0.0289 

𝜆4 -0.0417 -0.0230 -0.0909 -0.0799 

𝜇 0.3574* 0.1006 0.2645* 0.3337* 

𝜎𝑓𝑢𝑡 0.0004* 0.0004* 0.0003* 0.0004* 

𝜎𝑜𝑝 0.0627* 0.0444* 0.0679* 0.0602* 

Maximum-likelihood estimates for all data sets. The (*) symbol indicates the significance at a 95% level 

of confidence. Panel A represents the full-sample period, Panels B, C and D the corresponding 

subsamples. 
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Table C-12: CN 5-factor model parameters: Gold 

 
Panel A Panel B Panel C Panel D 

 
(2006-2011) (2006-2007) (2008-2009) (2010-2011) 

𝑎2 0.1044* 0.0609* 0.3065* 0.0548* 

𝑎3 0.4262* 0.4359* 0.7272* 0.5040* 

𝑎4 1.0328* 2.9586* 1.7031* 1.0662* 

𝑎5 1.3809* 5.4130* 2.5441* 1.5808* 

𝜎1 0.2853* 0.2458* 0.3345* 0.3342* 

𝜎2 0.2550* 0.2320* 0.2852* 0.2818* 

𝜎3 0.1756* 0.0674* 0.2380* 0.3167* 

𝜎4 0.2025* 0.0255* 0.1807* 0.3271* 

𝜎5 0.1414* 0.0282* 0.0995* 0.2186 

𝜌12 -0.4059* -0.5837* -0.4427* -0.3928* 

𝜌13 -0.1381* 0.1661 0.2002* -0.4763* 

𝜌14 0.1233* -0.1675 0.2141* -0.0822 

𝜌15 -0.0440 0.2782* -0.3642* 0.3300* 

𝜌23 -0.5265* -0.5853* -0.8341* -0.0922 

𝜌24 -0.0625 0.4106* 0.3012* -0.1657 

𝜌25 0.1486* -0.3374* -0.0929 0.0096 

𝜌34 -0.4863* -0.5079* -0.7412* -0.4179 

𝜌35 0.2006* 0.0123 0.5267* 0.0081 

𝜌45 -0.9418* -0.8182* -0.9452* -0.8757* 

𝜆1 -0.0145 -0.4450* -0.4817* -0.0037 

𝜆2 0.0953 0.0869 -0.0451 0.0279* 

𝜆3 0.0975 0.0508 0.1947* 0.1833 

𝜆4 -0.0321 -0.0301 -0.1528 0.0706 

𝜆5 -0.0018 0.0208 0.0788 0.1603 

𝜇 -0.0242 -0.4424* -0.5000* 0.0583 

𝜎𝑓𝑢𝑡 0.0003* 0.0003* 0.0002* 0.0003* 

𝜎𝑜𝑝 0.0627* 0.0438* 0.0676* 0.0363* 

Maximum-likelihood estimates for all data sets. The (*) symbol indicates the significance at a 95% level 

of confidence. Panel A represents the full-sample period, Panels B, C and D the corresponding 

subsamples. 
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Table C-13: CN 2-factor model parameters: Gold 

 
Panel A Panel B Panel C Panel D 

 
(2006-2011) (2006-2007) (2008-2009) (2010-2011) 

𝑎2 0.2542* 0.1546* 0.1617* 0.0821* 

𝜎1 0.4048* 0.2987* 0.3982* 0.7104* 

𝜎2 0.2514* 0.2586* 0.1896* 0.5313* 

𝜌12 -0.8696* -0.7476* -0.7515* -0.9823* 

𝜆1 0.2997* 0.2862* -0.0270 -0.2749* 

𝜆2 0.1476* 0.1650 0.1345 0.1140 

𝜇 0.2777* 0.2963* -0.0338 -0.3147* 

𝜎𝑓𝑢𝑡 0.0024* 0.0008* 0.0019* 0.0027* 

𝜎𝑜𝑝 0.0619* 0.0444* 0.0676* 0.0363* 

Maximum-likelihood estimates for all data sets. The (*) symbol indicates the significance at a 95% level 

of confidence. Panel A represents the full-sample period, Panels B, C and D the corresponding 

subsamples. 

 


