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1. Introduction and summary

The existence of a duality between gravitational theories in odd dimensions and conformal

field theories living on the boundary was first indicated by the remarkable observation of

Brown and Henneaux [1] that the asymptotic group of symmetries of 2+1 gravity with a

negative cosmological constant Λ = −2/l2 is the two-dimensional conformal group with a

non-vanishing central charge

c =
3l

2G
.

Once it was understood that three-dimensional gravity can be written as a Chern-

Simons(CS) theory [2, 3] and that generically three dimensional CS theories are related

to two dimensional conformal field theories [4], a more explicit relation underlying the

Brown-Henneaux argument became available [5] (see [6] for a previous attempt).

With the arrival of Maldacena’s conjecture [7], these results became special cases of a

much larger connection between gravitational and field theories.

The three dimensional CS gravity theory has some very special features not having

propagating degrees of freedom. Its generalization to higher (odd) dimensions [8] is a

fully interacting theory which makes its study much more difficult. The corresponding

supergravity theories were formulated in [8, 9] and the hamiltonian structure of the theory

was studied in [10].

In the present work we study a few basic issues related to a holographic interpretation

of higher dimensional CS theories. We construct the holographic stress tensor and calculate
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the conformal anomalies, as first done in [11] for standard gravity, of the (even dimensional)

conformal field theory dual to the CS theory. The calculations have rather unusual features

due to two characteristic properties of CS theories:

(a) Even though the CS action when rewritten in metric form contains higher powers of

the curvatures, the equations of motion are polynomial in the curvatures, containing

at most second derivatives of the metric.

(b) The AdS solution is n-th degenerate in d = 2n + 1 dimensions and therefore the

expansion around the solution starts with a n+ 1-th order term.

Due to property (b) the standard Fefferman-Graham expansion [12] breaks down and

the usual methods of evaluating the conformal anomalies cannot be used. We calculate the

anomalies in three different ways:

(i) We use the coefficients of the CS action in integer dimension in dimensional reg-

ularization when property b) is not obeyed and then we take the limit to integer

dimension. The values of the anomalies are obtained from the general formulae for

actions with higher powers of the curvatures [13, 14, 15].

(ii) We use a dimensionally continued CS action where the dimension dependent coeffi-

cients are tuned in order that a), b) are obeyed and we calculate the anomalies from

the equations of motion.

(iii) In integer dimensions, we derive the stress tensor from the equations of motion, and

find a general formula valid for all n. We also calculate the stress tensor in the

hamiltonian formalism.

For (i) and (ii) we only present results for n = 2, but for (iii) we give explicit results for

any n.

All the different ways of calculating the anomalies agree and give the results:

(a) All type B anomalies vanish (we remind that their number increases with the dimen-

sion)

(b) The type A anomalies (one in each even dimension) are nonzero and consistent with

the universal formula of [16] for the specific CS action.

Feature (a) restricts a direct holographic interpretation of the CS action. Through

the diffeo Ward identities the type B anomalies are related to lower order correlators

of energy momentum tensors and one of them to the two point function. Its vanishing

cannot happen in a unitary conformal theory. On the other hand (b) shows that the CS

gravitational actions provide the correct analogue of the CS gauge actions which generate

the chiral anomalies for generating the type A trace anomalies.

The outline of the paper is as follows. In the next section we review the features

of CS gravity which are relevant for the further developments. In section 3 we present

the holographic analysis in the spirit of refs. [16, 17, 15]. For this we need to define a
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dimensionally continued CS gravity action. We do this explicitly for the case appropriate

to a four-dimensional boundary theory. In integer dimensions the powerful method of

differential forms, in which the CS theory is most naturally formulated, leads to a very

efficient method, based on the equations of motion, to derive the holographic stress tensor

for Chern-Simons gravity in any odd dimension. This is done in section 4. In section 5

we present a hamiltonian derivation of the stress tensor which is applicable for any gravity

theory. As a first demonstration of this method we reproduce the known result for ordinary

gravity (cf. also [18, 19]). Next we apply it to CS gravity which turns our to be much

simpler. As a final application of our formula for the stress tensor we use it to compute

the mass of CS black holes.

2. Review of Chern-Simons gravity

The action of euclidean CS gravity in 2n+ 1 dimensions is [8]

I2n+1 =

∫

M2n+1

ω2n+1 . (2.1)

ω2n+1 is a CS (2n+ 1)-form for the group SO(1, 2n+ 1), i.e.

dω2n+1 = FA1A2 ∧ · · · ∧ FA2n+1A2n+2εA1...A2n+2 (2.2)

where FAB is the curvature two-form. This action is invariant under gauge transformations,

up to a boundary term.

To exhibit the gravitational character of the CS action one splits the SO(1, 2n + 1)

indices A = (0, a) and decomposes the gauge potential according to1

A =
1

2
AABJAB =

1

2
ω̂abJab + êaPa (2.3)

where

A0a = êa , J0a = Pa , (2.4)

F =
1

2
FABJAB =

1

2
(R̂ab + êaêb)Jab + T̂ aPa (2.5)

and

R̂ab = dω̂ab + ω̂acω̂
cb ,

T̂ a = dêa + ω̂abê
b . (2.6)

Using this decomposition the action becomes, up to a boundary term,

I2n+1 =

∫

M2n+1

εα1...α2n+1

n
∑

p=0

1

2(n−p)+1

(

n

p

)

R̂α1α2 ∧ · · · ∧ R̂α2p−1α2p ∧ êα2p+1 ∧ . . . ∧ êα2n+1

=

∫

M2n+1

d2n+1x
√

ĝ

n
∑

p=0

(

n

p

)

[2(n− p)]! Ê2p . (2.7)

1Hatted quantities are defined in the (2n+1)-dimensional bulk. Unhatted symbols will be used to below

and refer to quantities defined on the 2n-dimensional boundary.
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In (2.7) the expressions Ê2n are the Euler densities

E2n ≡ 1
2nRi1j1k1l1 · · ·Rinjnknlnε

i1j1i2j2···injnεk1l1k2l2...knln = Rn + · · · (2.8)

The integral of
∫

M

√
g E2n over a (2n)-dimensional manifold without boundary is a topo-

logical invariant of M . While the expression in the first line is only meaningful in 2n

dimensions, the expression in the second line can be defined in any dimension. For in-

stance, for n = 2 one finds explicitly

E4 =
1

4
RijklRmnpqε

ijmnεklpq = R2 − 4RijRij +RijklR
ijkl . (2.9)

For many purposes the form of the action as written in the first line of (2.7) is more

convenient, in particular for formal manipulations. However it is the second form which

allows continuation to non-integer dimensions.

If one allows in (2.7) for arbitrary relative coefficients for the Ê2p one arrives at Lovelock

gravity. It is, however, only for the special coefficients, namely those of CS-gravity, that

the manifest SO(2n + 1) symmetry is enhanced to SO(1, 2n + 1). This makes CS gravity

in many respects very ‘non-generic’, as we will see in the following.

From (2.7) one derives the following equation of motion for the vielbein êaµ:

εµ1...µ2n+1F
µ1µ2 ∧ · · · ∧ Fµ2n−1µ2n = 0 (2.10)

where

F µν = R̂µν + dxµ ∧ dxν . (2.11)

The equation of motion for the spin connection ω is solved imposing the torsion constraint

T̂ = 0. This is the general solution for n = 1. In more than three dimensions there are

other solutions. We will, however, always impose T̂ = 0 and thus the only degrees of

freedom are those of the metric.

As it is clear from (2.11) the vanishing of F µν is equivalent to the 2n+ 1 dimensional

metric being AdS. Then (2.10) shows that after the torsion constraint is taken into account

AdS is an n fold degenerate solution of the equations of motion. As a consequence an

expansion around the AdS solution will start with n+ 1 order terms.

3. Dimensionally continued Chern-Simons gravity

In this section we will restrict ourselves to an action with at most four-derivatives. This

is appropriate for the dimensional continuation of five-dimensional CS gravity. The most

general such action is

S =

∫

dd+1x
√
G
(

R̂− 2Λ + αR̂2 + βR̂µνR̂
µν + γR̂µνρσR̂

µνρσ
)

. (3.1)

One needs2 Λ = −1
2d(d − 1) + 1

2(d − 3)
(

αd2(d+ 1) + βd2 + 2γd
)

< 0 for AdSd+1 to be a

solution of the equations of motion. This is required for the AdS/CFT correspondence.

2We use the following sign convention for the Riemann tensor: [∇µ,∇ν ]Vρ = Rµνρ
σVσ.
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The Weyl anomaly for the dual conformal field theory in d = 4 was computed in [13, 14, 15]

with the result

〈T i
i 〉 =

1

8

{

(1− 40α − 8β + 4γ)C2 − (1− 40α − 8β − 4γ)E4

}

. (3.2)

For d = 4, β = −4α = −4γ = −1 and Λ = −3 (3.1) becomes the action of CS gravity in

five dimensions. For these values of the parameters the anomaly (3.2) is purely type A.

However, it is à priori not obvious that this result is reliable since it was obtained under

the condition that the generic FG-expansion is valid.

We have mentioned in the introduction the two special features of this action, namely

that the equations of motion contain no higher than second derivatives of the metric and

that when expanded around AdS5 the expansion starts at cubic order. The first feature is

maintained as long as β = −4α = −4γ. This means that at each order in curvatures they

appear in the Euler combination. The second feature requires

Λ = −1

4
d(d − 1) , α = γ = −1

4
β =

1

2(d− 2)(d − 3)
(3.3)

as a tedious calculation reveals. The action (3.1) with the choice (3.3), which is the dimen-

sionally continued five-dimensional CS action, will be the starting point of our analysis.

We make the FG expansion for the bulk metric Gµν , i.e. we make the Ansatz [12]

ds2 =
1

4

(

dr

r

)2

+
1

r
gij(x, r)dx

idxj (3.4)

with

gij(x, r) =

∞
∑

n=0

(n)
gij(x)r

n . (3.5)

The coefficients g(n)
ij are to a large extent fixed by the symmetries, i.e. invariance of (3.4)

under so-called PBH transformations [16]. To fix them completely one inserts the Ansatz

into the equations of motion and solves for the g(n)
ij recursively. They can be expressed

in terms of curvature tensors constructed from g(0)
ij with a total of 2n derivatives of the

metric. For generic gravitational actions, e.g. (3.1), the g(n)
ij are all local as long as one

stays away from integer dimensions. For instance, the PBH transformations completely fix

the local part of g(1)
ij to

(1)
g loc
ij = − 1

(d− 2)

(

(0)

Rij −
1

2(d− 1)

(0)

R
(0)
gij

)

. (3.6)

The only freedom left is an additive term which is a tensor built from g(0)
ij which is

invariant under Weyl transformations of g(0)
ij and transforms homogeneously of order −2

under a constant rescaling of the coordinates. Clearly this cannot be a finite polynomial in

the curvature tensors. Terms containing tensors constructed from Cijkl, the Weyl tensor,

multiplied with powers of
√
C2 have the right transformation properties. We will see that

such a term is required in CS gravity.
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Before writing down the equations of motion we want to compute the Weyl anomaly

for CS-gravity for d = 4. From [16] we know that it is given (in d = 2n) by the O(r−1)

coefficient of the expansion of the gravitational action. For CS gravity and n = 2 one finds

〈T i
i 〉CS =

1

4
E4 , (3.7)

which agrees with what we found before. While the previous derivation used the explicit

form for g(1)
ij this derivation does not need the explicit form of any of the coefficients g(n).

This is a consequence of the choice (3.3).

We now return to the equations of motion. For (3.1) with the choice (3.3) one finds

that at lowest orders in r the equations of motion are identically satisfied. The first non-

trivial equations are at O(r0) for the (rr) components and at O(r) for the (ij) and (ir)

components. At these orders the g(2)dependence drops out identically as a consequence of

the choice (3.3).

The equations can now be written as the definition of the non-local conserved energy-

momentum tensor Tij , its trace and conservation. One finds

Tij =
1

24(d − 4)

(

CiklmCj
klm − 1

4
C2gij

)

+ finite as d→ 4 ,

∇iTij = 0 ,

gijTij = −1

4
(R2 − 4RijR

ij +RijklR
ijkl) (3.8)

where Tij is the following expression in terms of g(1)
ij :

Tij =
1

6

{

(d− 3)
(

2
(1)
g 2
ij − 2 tr(

(1)
g)

(1)
gij + (tr

(1)
g)2gij − tr(

(1)
g 2)gij

)

+

+ 2

(

Ri
k

(1)
gjk +Rj

k
(1)
gik

)

+ 2Rikjl

(1)
g kl +R tr(

(1)
g)gij −

− 2Rkl

(1)
g kl gij −R

(1)
gij − 2 tr(

(1)
g)Rij

}

. (3.9)

In these expressions all curvature tensors are computed with g(0) which is also used to

raise indices, gij stands for g(0)
ij and C is they Weyl tensor which is totally traceless in

d-dimensions.3 The first term on the r.h.s. of eq. (3.8) becomes 0/0 in d = 4 due to a

special identity.

Eq. (3.8)1 together with (3.9) determine g(1). We have not obtained a closed expression

for g(1) itself but clearly it cannot be local in d = 4 (see also the discussion in [15]). The

unique local expression for g(1)
ij which solves the PBH equation has to be augmented by a

non-local piece which is invariant under Weyl transformations. We write

(1)
gij =

(1)
g loc
ij +∆ij . (3.10)

3On the r.h.s. of the first of eq. (3.8) the finite piece, which is traceless in d = 4, is absent if one instead

interprets C as the Weyl-tensor which is traceless in d = 4 but with the range of its indices extended to d.

– 6 –
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Using this definition, the (ij) component of the equation motion at O(r) can be written in

the form

C
(d)
ikjl∆

kl +
1

2
(d− 3)

{

2∆2
ij − 2(tr∆)∆ij + (tr∆)2

(0)
gij − tr(∆2)

(0)
gij

}

=

=
1

8(d − 4)

{

C
(d)2
ij − 1

4
C(d)2

(0)
gij

}

. (3.11)

What we found here is reminiscent of the situation for the generic gravitational action:

there the equations of motion determine g(2)
ij which is local but has a pole at d = 4.

However, g(2)
ij consists of two cohomologically non-trivial pieces: one term which is the

same (up to an overall coefficient) as the r.h.s. of (3.11) and an other which has a genuine

pole (i.e. finite residue) at d = 4. They are related to type A and type B anomalies. Here

the cohomologically non-trivial information resides in the expression on the r.h.s. of (3.11).

The significance of the particular combination of non-local terms ∆ij is not clear to us

other that it produces a local expression.

We remark that in a holographic interpretation the Conformal Field Theory living on

the boundary will be necessarily non-unitary. This is a consequence of the vanishing of the

type B anomaly. As it is well known this anomaly can be related to the correlator of two

energy momentum tensors which cannot vanish in a unitary theory.

4. Chern-Simons stress tensor. Integer dimensions analysis

In this and the following section we will rederive the results of section 3 using the equations

of motion and action in integer dimensions. We use in this section the following form of

the Chern-Simons equations of motion (c.f. (2.10))

εµνλρσ(R̂
µν + dxµ ∧ dxν) ∧ (R̂λρ + dxλ ∧ dxρ) = 0 (4.1)

where

R̂µν =
1

2
R̂µν

λρdx
λ ∧ dxρ (4.2)

is the 2-form Riemann tensor. We shall see that this notation provides a powerful way to

identify the stress-tensor in Chern-Simons gravity.

This section is organized as follows. We first review some standard results and continue

by making the connection with the FG expansion (3.4) and (3.5). We then treat the

five-dimensional case and recover the results of the previous section. We then apply the

formalism to three and seven dimensional CS gravity, and finally provide a general formula

for the Chern-Simons holographic stress tensor valid in an arbitrary dimension D = 2n+1.

4.1 The FG expansion and Gauss-Codazzi equations

Consider the space-time metric in normal coordinates

ds2 = N2(r)dr2 + hij(r, x
i)dxidxj (4.3)

– 7 –
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and introduce the standard notation

Kij = −
1

2N
h′ij (4.4)

where the prime denotes derivatives w.r.t. r. The space-time curvature can be decomposed

in the Gauss-Codazzi form

R̂ir
kl =

1

N
(Ki

k/l −K i
l/k) ,

R̂ir
jr =

1

N
Ki′

j −K i
lK

l
j ,

R̂ij
kl = Rij

kl −K i
kK

j
l +Ki

lK
j
k (4.5)

where / represents the 2n-dimensional covariant derivative in the metric hij . Introducing

the curvature 2-form Rij and extrinsic curvature 1-form K i = Ki
jdx

j, these expressions

can be rewritten more compactly as

R̂ir = − 1

N
DKi +

(

1

N
Ki′ −K i

jK
j

)

∧ dr ,

R̂ij = Rij −K i ∧Kj +N(K i/j −Kj/i) ∧ dr . (4.6)

We now make contact with (3.4) by making a definite choice of the radial coordinate, i.e.,

N =
1

2r
(4.7)

and introduce the metric gij as

hij(r, x
i) =

1

r
gij(r, x

i) . (4.8)

Then, it follows,

Kij =
1

r
gij − g′ij ⇒ Ki = dxi − rki (4.9)

where we have defined kij = g′ij and kij = gikg′kj.

Since the Christoffel symbols are invariant under constant rescaling of the metric, and

multiplying by r is a constant rescaling, the covariant derivatives are not altered by the

field redefinition hij → gij .

Recall now the definition of the SO(1, 5) curvature which enters in the CS equations

of motion (4.1)4

F µν = R̂µν + dxµ ∧ dxν . (4.10)

By direct computation we find

F ir = r2[2Dki − (2ki′ + kijk
j) ∧ dr] ,

F ij = r
[

Rij + dxi ∧ kj + ki ∧ dxj − rki ∧ kj
]

+ (“ ”) ∧ dr . (4.11)

(The components along dxi ∧ dr in the second line will not be needed.)

4Strictly speaking, F µν is the SO(5) projection of the SO(1, 5) curvature (cf. (2.5)).
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So far we have not made any approximations. We can now use (3.5) from where we

derive5

kij =
(1)
gij + 2r

(2)
gij + · · · ,

gij =
(0)
g ij − r

(1)
g ij + r2(−

(2)
g ij + (

(1)
g 2)ij) + · · · ,

kij =
(1)
g i

j + r

(

2
(2)
g i

j − (
(1)
g 2)ij

)

+ · · · . (4.12)

On the right hand side of these expressions, indices are lowered and raised with g(0).

4.2 The Chern-Simons holographic stress tensor

Consider the Chern-Simons equations of motion (2.10). Our aim is to rederive the holo-

graphic stress tensor found in section 3 using these equations. We shall first give an

argument based only on the structure of these equations. In the next paragraph we prove,

using a hamiltonian approach, that our formula is in fact the variation of the renormalized

action with respect to the boundary metric.

We start for illustrative purposes with the five-dimensional case, but we shall see that

for Chern-Simons theories of gravity the holographic stress tensor calculation is the same

in all (odd) dimensions. We shall in fact provide a formula for this tensor valid on any

(integer) dimension d.

Five dimensional CS gravity. The equations of motion were given in (4.1). Let us

study them in the lowest non-trivial order, i.e., the equations involving g(0) and g(1). These

are

εijklF
ij ∧ F kl = 0 ⇒ r2εijkl

(

(0)

R ij + 2dxi∧
(1)
g j
)

∧
(

(0)

R kl + 2dxk∧
(1)
g l
)

= 0 ,

4 εijklF
ij ∧ F kr = 0 ⇒ 4 r3εijkl

(

(0)

R ij + 2 dxi∧
(1)
g j
)

∧
(0)

D
(1)
g k = 0 (4.13)

where, in the second column, we have rewritten the equations using (4.11) and have kept

only the lowest order terms.

Thanks to the Bianchi identity D(0)∧ R(0)ij = 0 the covariant derivative in the second

equation can be pulled out to obtain

(0)

D
(

4εijkl

(

(0)

R ij + dxi∧
(1)
g j
)

∧
(1)
g k
)

= 0 . (4.14)

We write this equation in the form

4εijkl

(

(0)

R ij + dxi∧
(1)
g j
)

∧
(1)
g k = T̃l (4.15)

5In EH gravity for D odd the FG expansion (3.5) needs to be modified. Starting at O(ρn) log(ρ) terms
appear. Without the logarithmic terms the equations of motion for the g(n) are inconsistent. Working in

non-integer dimensions, as we did in section 3, does not require the log terms for any gravitational theory.

For CS gravity in integer dimensions, at least to the order we are considering here, they do not seem to be

necessary either.
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where T̃l is an “integration constant” 3-form that must be conserved D∧ T̃l = 0. Eq. (4.15)

is an algebraic equation for g(1) i which, in principle, can be solved, and the solution involves

the conserved tensor Tij. The index structure of T̃ is T̃ i
npq being antisymmetric in npq.

We dualize and define a rank two tensor

T ij =
1

3!
εinpqT̃ j

npq , (4.16)

which is symmetric thanks to g(1)
ij =g(1)

ji and R(0)
ijkl =R(0)

klij. Clearly, the conservation

equation D ∧ T̃ i = 0 in terms of T ij reads T ij
;j = 0.

The conserved tensor is not completely arbitrary. In fact, the remaining equation of

motion (4.13) fixes its trace gijT
ij to be equal to the four-dimensional Euler density. To

see this we first note that the trace gijT
ij can also be expressed in terms of the 3-form T̃l

in a convenient way. Since ∗(dxi ∧ dxj ∧ dxk ∧ dxl) = εijkl it follows

gijT
ij =∗

(

dxi ∧ T̃i

)

. (4.17)

Hence, from the definition of T̃i (c.f. (4.15)) and (4.13) we find

dxl ∧ T̃l = −4εijkl
((0)

R
ij + dxi∧

(1)
g j
)

∧
(1)
g k ∧ dxl = εijkl

(0)

R
ij∧

(0)

R
kl (4.18)

or, what is equivalent thanks to (4.17), gijT
ij = E4.

Of course, what we found here is just the set of equations (3.8)2,3 and (3.9) evaluated

at d = 4. In fact, this structure is present for all Chern-Simons theories: the ambiguity in

the FG-expansion always occurs in g(1) and it equals the energy-momentum tensor Tij .

A general formula. The analysis of the Chern-Simons equations in other integer di-

mensions reveals that the same structure appears in all cases. In 2n + 1 dimensions one

finds

T̃i =

∫ 1

0
dt 2nεi1i2...i2n−1i

[

(0)

Ri1i2 + 2tdxi1∧
(1)
g i2

]n−1

∧
(1)
g i2n−1 , (4.19)

as can be checked for lower n cases, and we have, in particular, checked n ≤ 3. In (4.19),

t is an auxiliary parameter and the symbol [ ]n−1 means n − 1 factors of the tensor R(0)

ij + 2t dxi∧ g(1) j contracting 2n − 2 indices in the Levi-Cevita symbol. We now check in

general that (4.19) is conserved and its trace equal to E2n, as a consequence of the 2n+ 1

Chern-Simons equations of motion.

Taking the covariant derivative of T̃i the integral over t drops out and we find

DT̃i = 2n εi1i2...i2n−1i

[

(0)

R
i1i2 + 2dxi1∧

(1)
g i2

]n−2

∧D
(1)
g i2n−1 (4.20)

which is zero thanks to the 2n + 1 Chern-Simons equations. In the same way, us-

ing the identity (a + b)n = an + n
∫

dt(a + tb)n−1b and the equation of motion

εi1...i2n [R
(0)i1i2 + 2dxi1∧ g(1) i2 ]n = 0, we can compute the trace dxi ∧ T̃i and find the 2n-

dimensional Euler density,

dxi ∧ T̃i = εi1...i2n
(0)

Ri1i2 ∧ · · · ∧
(0)

Ri2n−1i2n , (4.21)

as expected.
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5. Hamiltonian method

We have found in the previous sections a general formula for the stress-tensor for Chern-

Simons gravity, via dimensional regularization methods, and by a direct use of the equations

of motion in integer dimensions. In this section we would like to rederive this formula as

the functional variation of the effective action with respect to the boundary metric,

Tij =
2

√
g(0)

δI[g(0)]

δgij(0)
. (5.1)

In the AdS/CFT correspondence, the functional I is the regularized and renormalized bulk

gravitational action written as a function of g(0).

We shall be interested directly in the stress tensor and not in the effective action. The

hamiltonian formalism of gravity provides a shorter method to compute Tij which will be

particularly convenient in Chern-Simons gravity.

The computation of holographic anomalies via hamiltonian methods has also been

considered in [18] and [19]. We shall briefly discuss the general idea and then apply it to

Chern-Simons gravity.

5.1 The method

If the metric is put in the ADM form

ds2 = N2dr2 + hij(dx
i +N idr)(dxj +N jdr) (5.2)

the variation of the ADM action, evaluated on any solution of the equations of motion is

δI =

∫

r=0
d2nxπijδhij . (5.3)

In Einstein gravity,

πij =
√
h(K ij −Khij) , Kij = −

1

2N
h′ij . (5.4)

In Chern-Simons gravity (5.3) will still be true, although the relation between the momenta

and extrinsic curvature will change. The formula (5.3) gives the variation of the action

directly in terms of a boundary integral evaluated at r = 0. However, there are two prob-

lems with this expression. First, it diverges and needs to be regularized and renormalized.

Second, in FG what is fixed is g(0)
ij , not hij .

The first issue can easily be solved by adding covariant counterterms. We first regu-

larize by evaluating at some fixed finite r. The subtraction will be quite straightforward.

The second problem is more delicate, but has a nice solution. We would like the variation

of the action to have the form
∫

T ij
(reg)δg(0)ij . However, replacing in (5.3)

hij =
1

r

(

(0)
gij + r

(1)
gij + r2

(2)
gij + · · ·

)

(5.5)
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we get

δI =

∫

r
d2nx

(

1

r
πijδ

(0)
gij + πijδ

(1)
gij + · · ·

)

. (5.6)

Now, the point is that the extra terms,
∫

πij δg(1)
ij . . ., can be transformed into contributions

of the form
∫

Aij δ g(0)
ij by making appropriated “integral by parts”, and discarding total

variations.

Our prescription is then to expand (5.6) and make the necessary “integral by parts”

until it has the form
∫

T ij
(reg) δ g

(0)
ij , plus total variations. Then, we discard all total

variations, identify T ij
(reg), renormalize by subtracting the divergent terms, and find T ij

(ren).

The terms which are total variations, δf(g(0), g(1), g(2), . . .), must be discarded because

they cannot be written, by means of integrals by parts, as Aij δg(0). Hence, the Dirichlet

problem dictates that we add to the action a boundary term −f to cancel this variation.

As a warm-up we will first treat the standard Einstein action. We should and will

recover the energy momentum tensor found in [20].6 From (5.4) and (4.9) we get

δI =

∫ √
g

[

− 1

rd/2−1
(kij − kgij) +

1− d

rd/2
gij
]

δgij = −
∫ √

g

rd/2−1
(kij − kgij)δgij (5.7)

where the second term has been discarded because
√
ggijδgij = 2δ

√
g is a total variation.

Consider first d + 1 = 3. Since rd/2−1 = 1 in this case, the variation of the action δI

is finite. And since kij =g(1)
ij + · · ·, its non-zero part is,

δI = −
∫

√

(0)
g
(

(1)
g ij − Tr(

(1)
g)

(0)
g ij
)

δ
(0)
gij (5.8)

giving the correct expression for T ij (see eq. (3.10) in [20]).

Consider now d + 1 = 5. In this case there is a divergent piece that we cancel by a

subtraction. We focus on the finite piece obtained by expanding
√
g(kij−kgij)δgij to O(r).

It is useful to note that
√
gkgijδgij = 2kδ

√
g. The finite piece in the variation of the action

is then

δIfinite =

∫
[

(1)√
g

(0)

k
ij δ

(0)
gij+

(0)√
g

(1)

k
ij δ

(0)
gij+

(0)√
g

(0)

k
ij δ

(1)
gij − 2

((0)

k δ
(1)√
g +

(1)

k δ
(0)√
g
)

]

. (5.9)

This explicitly involves variations of g(1)
ij . These variations can be transformed into varia-

tions of g(0)
ij by performing “integrals by parts”. We give the details of one term. Recalling

that k(0)
ij =g(1)

ij the third term is

(0)√
g

(1)
g ijδ

(1)
gij =

√

(0)
g

(0)
g ik

(0)
g jl

(1)
gkl δ

(1)
gij

=
1

2

√

(0)
g

(0)
g ik

(0)
g jl δ

(

(1)
gkl

(1)
gij

)

= −1

2
δ
(

√

(0)
g

(0)
g ik

(0)
g jl
)

(1)
gkl

(1)
gij + total variation

6We do not include the log terms. Including then would simply mean a finite renormalization and it

does not affect the trace of Tij .
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= −1

2
δ
(

√

(0)
g
)

Tr
(

(1)
g 2
)

−
√

(0)
g δ

(0)
g ij
(

(1)
g 2
)

ij

=

√

(0)
g

[

1

4
Tr
(

(1)
g 2
)

(0)
gij −

(

(1)
g 2
)

ij

]

δ
(0)
g ij . (5.10)

Proceeding in this way, all variations of g(1)
ij can be transformed into variations of g(0)

ij .

Up to total variations we finally get

δI =

∫

√

(0)
g

[

(2)
gij −

1

8

(0)
gij

((

Tr
(1)
g
)2
−Tr

(

(1)
g 2
))

− 1

2

(

(1)
g 2
)

ij
+

1

4

(1)
gij Tr

(1)
g

]

δ
(0)
g ij . (5.11)

in full agreement with [20]. (Here we have used one equation of motion Tr(g(2)) = 1
4 Tr g

(1)2

only to make contact with [20]. The above prescription certainly does not require to use

the solution to the equations of motion.)

5.2 Chern-Simons gravity in hamiltonian form and its stress-tensor

We now apply the above method to Chern-Simons gravity. The hamiltonian form of “Love-

lock” theories of gravity was worked out in [21]. As we mentioned before, Chern-Simons

gravity is a particular family of theories on which all coefficients are correlated. This has

the effect of enlarging the local symmetry group from SO(5) to SO(1, 5) (in five euclidean

dimensions).

To apply our method of stress-tensor renormalization, we write the variation of the

action as

δI =

∫

πijδhij

where the relation between the momenta πij and the extrinsic curvature for the general

Lovelock action is [21],

πij = −
1

4

√
g
∑

p≥0

αp

p−1
∑

s=0

Cs(p)δ
[i1...i2s...i2p−1i]
[j1...j2s...j2p−1j]

R̂j1j2
i1i2

. . . R̂
j2s−1j2s

i2s−1i2s
K

j2s+1

i2s+1
. . . K

j2p−1

i2p−1
(5.12)

where

Cs(p) =
(−4)p−s

s![2(p− s)− 1]!!
(5.13)

and the hatted tensors refer to d+ 1 dimensional ones (c.f. (4.5)).

The coefficients αp depend on the theory under consideration. For Chern-Simons

gravity they have to be chosen as

αp =
n![2(n− p)]!

2p−1(n− p)!
. (5.14)

In five dimensions the sum in (5.12) contains three terms with coefficients

α0 = 2× 4! , α1 = 4 , α2 = 1 . (5.15)
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Inserting them in (5.12) we get7

πij =
√
h

[

4δ
[ni]
[qj]K

q
n + δ

[nmpi]
[qksj]

(

−2

3
Kq
nK

k
mK

s
p +Rqk

nmK
s
p

)]

. (5.16)

Next we write this expression in terms of the FG metric gij defined as hij = 1
rgij . Using

eq. (4.9) we find

πij =

√
g

r2

[

4δ
[ni]
[qj](δ

q
n − rkqn) + δ

[nmpi]
[qksj]

(

−2

3
(δqn − rkqn)(δ

k
m − rkkm)(δ

s
p − rksp) +

+ rRqk
nm(δsp − rksp)

)]

. (5.17)

This expression is much more manageable that it appears. We need to look at π ijδhij =

πinh
niδhij = πing

niδgij . Without making any approximations yet, we look at the different

powers of r in this expression and conclude:

• The coefficient of 1/r2 (the piece containing only Kronecker deltas) gives δ(
√
g) and

hence we discard it.

• The coefficient of 1/r has two contributions. A piece linear in k multiplied by zero! In

fact, there is a cancellation between the linear and the cubic terms which, of course,

happens only for the Chern-Simons action whose coefficients are correlated. There

is also a piece linear in the curvature. However, it is direct to see that this piece

is proportional to the Einstein tensor of the metric gij , hence it can be written as

δ(
√
gR), and we discard it as well.

• Finally, the coefficient of r0 = 1 is

δI = −2
∫ √

gδ
[nmpi]
[qksj]

(

δqnk
k
mk

s
p +

1

2
Rqk

nmk
s
p

)

gjnδgin . (5.18)

Since this term occurs at order zero, its non-zero contribution is obtained simply by re-

placing g → g(0) and k → g(1). The coefficient is by definition the stress-tensor and it gives

exactly the component version of (4.15).

5.3 The black hole mass

As a final application of our formula for the stress tensor let us check that it provides the

correct value of the mass for the Chern-Simons black holes. Black holes for Chern-Simons

gravity exists and have been found in [22]. The metric in five dimensions is

ds2 = −(r2 − c)dt2 +
dr2

r2 − c
+ r2dΩ3 (5.19)

where c is an integration constant related to the mass M in a nonlinear way,

c = −1 +
√
1 + κM , (5.20)

7In [21] the signature −,+,+, . . . was assumed. A quick way to transfer the time coordinate into hij is

to set N → iN (hence K → −iK) and
√
h→ i

√
h.
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and κ is a constant that depends on the normalization for Newton’s constant. This ex-

pression for M was obtained in [22] using the standard ADM procedure. The minus sign

in front of the square root provides a solution as well but it is not a black hole. See [23]

for other implications of the “wrong sign”.

We now put this metric in the FG form. This is achieved by the simple radial redefi-

nition,

r → ρ : r =
1 + ρc

2
√
ρ

(5.21)

which brings the metric into the FG form

ds2 =
dρ2

4ρ2
+

1

ρ

[

1

4
(−dt2 + dΩ3) +

cρ

2
(dt2 + dΩ3) +

c2ρ2

4
(−dt2 + dΩ3)

]

. (5.22)

Note that only three terms in the FG expansion are non zero. The boundary metric g(0)

(< × S3) has a vanishing Weyl tensor, and hence this is consistent with [24]. The mass,

defined as the integral of T0 at the sphere at infinity is given by

M =

∫

S3

T̃0 =

∫

S3

4εαβγ

((0)

R
αβ + dxα∧

(1)
g β
)

∧
(1)
g γ (5.23)

where we have denoted the coordinates on the sphere by xα. (Here it is convenient to work

directly with the 3-form T̃i). The curvature on S3 is Rαβ = 4dxα ∧ dxβ and, from (5.22)

we find g(1)
αβ = 2c g(0)

αβ , which implies g(1) α = 2cdxα. Replacing in the formula for M we

find (Ω3 is the volume of the three-sphere),

M = 4Ω3(4 + 2c)(2c) = 16Ω3(2c+ c2) (5.24)

which is equivalent to the non-linear relation (5.20).

Using the general formula (4.19) we could also find the mass for a generic theory in

any number of dimensions. We do not reproduce the result here which has been found

using the standard ADM formalism in [22] (see [25] for a recent discussion).
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