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ABSTRACT Solving discrete linear inverse problems is one of the cornerstones of modern science and
engineering. In abstract terms, these problems seek to recover an unknown vector from an incomplete set
of linear measurements. When the object is a sparse convex combination of a known collection of atoms,
the gauge associated to the convex hull of this collection, i.e., the atomic gauge, can be minimized subject
to data consistency constraints to attempt to recover the original vector. In some practical applications, such
as magnetic resonance imaging, the vector is complex-valued and it is the magnitude vector, i.e., the vector
containing the magnitude of the components, that is a sparse convex combination of known real-valued
atoms. To apply the atomic gauge to this setting, we propose extending the collection of real-valued atoms
by considering their modulations by a collection of suitable phases. Furthermore, under minor assumptions,
we provide computationally tractable expressions to evaluate both the gauge associated to the modulated set
of atoms and its proximal map. Our results show the complexity of using the gauge associated to a collection
of modulated atoms is comparable to that of using a collection of real-valued atoms.

INDEX TERMS Magnetic resonance imaging, optimization, signal processing, signal reconstruction.

I. INTRODUCTION
Solving discrete linear inverse problems is one of the corner-
stones of modern science and engineering. These problems
seek to recover or reconstruct an unknown object of interest
from an incomplete set of measurements. Mathematically,
the object of interest is represented by a vector x0 belong-
ing to a high-dimensional space whereas the measurements
are represented by a vector y0 in a low-dimensional space.
Recovering x0 is equivalent to solving the underdetermined
system

L(x) = y0 := L(x0)

where L is a linear map representing the measurement pro-
cess. Observe there is an infinite number of possible solutions
to this system, and it is impossible to recover x0 unless it
belongs to a class of objects with a particular structure.

The associate editor coordinating the review of this manuscript and

approving it for publication was Filbert Juwono .

In the past decade, it has been shown that the structure of x0
can be leveraged to obtain a computationally tractable proce-
dure to recover x0 exactly. These methods can be understood
within the framework introduced in [1]. The main idea is to
assume x0 is a sparse convex combination of a collectionA of
atoms representing the elementary objects or building blocks
of the class of objects to which x0 belongs. The recovery
procedure consists in finding the minimizer to the convex
optimization problem

minimize
x

ρCA (x)

subject to L(x) = y0 (1)

where ρCA is the gauge of the closure of the convex
hull CA of the collection of atoms A. Compressed Sens-
ing [2]–[4], Matrix Completion [5], [6] and several other
methods [7]–[11] can be analyzed within this framework.

In some practical applications, the underlying object is
complex-valued. An interesting feature of these problems is
that the magnitude |x0| of x0 is known to have a particular
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structure whereas the phase may arise due to noise, imperfec-
tions in the measurement system, or may encode information
about the physical process being measured. Some examples
are:

1) Magnetic resonance imaging (MRI): In MRI the
acquired signal is complex-valued, and the image typ-
ically associated with this technique is the magnitude
of a complex-valued image. Therefore, the structures
learned from natural images typically apply to the
magnitude image. Although the phase can arise due
to imperfections in the acquisition model, e.g., field
inhomogeneities [12, Ch. 7], different acquisition pro-
tocols allow to encode different physical quantities on
the phase. For example, it can be used to measure flow
velocity [13], [14], magnetic susceptibility [15], [16]
and the presence of different chemical species through
chemical shift [17]. Remark each one of these physical
quantities behaves very differently in terms of their spa-
tial structure, whereas the magnitude image preserves
a structure akin to a natural image.

2) Spectrograms: The spectrogram is the magni-
tude squared of the short-time Fourier transform
[18, Sec. 4.2] and it arises in applications such as
audio processing [19]. In particular, in audio finger-
printing, specific regions of the time-frequency plane
are identified, and the value and/or local features of
the spectrogram near these points are used to create a
fingerprint that can later be matched to a known catalog
for audio identification [20], [21]. In this case, it is the
the magnitude of the short-time Fourier transform that
is well-understood and is known to have a known struc-
ture, whereas the phase can be neglected depending on
the application.

In these applications, the collection of atoms A that char-
acterizes the structure of |x0| consists of real vectors; these
atoms may even have been estimated empirically [22].
This has some drawbacks. On one hand, attempting to
solve (1) directly forces the solution to (1) to be real; in
fact, ρCA (x) = +∞ if the imaginary part of any component
of x is non-zero. On the other, attempting to regularize the
magnitude of x0 leads to a non-convex optimization problem;
even though convex relaxations may exist, they depend on the
particular structure of the problem being studied.

For these applications, we propose to extend the atomic
gauge to complex vectors by considering the collection of
atoms

A2 = {Mθa : θ ∈ 2, a ∈ A} (2)

where (Mθx)k = eiθk xk modulates each vector component
by a phase and 2 is the collection of all possible phases
considered. In this case, the collection of atoms may no
longer be finite, and computational issues may arise when
attempting to solve (1). This work provides computationally
tractable expressions to evaluate the gauge of the closure
of the convex hull of A2 and its proximal map under a

suitable assumption on 2. As a consequence of our results,
the complexity of using the collection A2 is comparable to
that of usingA. In addition, we observe that the atomic gauge
exhibits a phenomenon we call phase shrinkage.

Although motivated by recovery problems, our results also
contribute to closely related problems:

1) Denoising: The problem (1) is closely related to signal
denoising. For example, for the additive Gaussian noise
model y = x+σ zwith zi i.i.d. NC(0, 1) we can estimate
x0 by maximizing the regularized log-likelihood

maximize
x

−
1

2σ 2 ‖y− x‖
2
2 − λρCA (x)

for some λ > 0. The above is equivalent to evaluating
the proximal operator of ρCA . Our results provide an
implementation of the proximal map of the atomic
gauge associated to A2. This can be extended to other
likelihood functions by solving the above with proxi-
mal algorithms [23], [24].

2) Invariant classes: In some applications, such as shape
analysis [25], [26], the existence of invariances is key
to determining when multiple samples about an object
contain redundant information, i.e., translations and
rotations of a shape do not change the information it
contains. Typically, these invariances are modeled as
the action of a group G acting on Rn [27, Ch. 7]. If,
in addition, there is a collection of atoms A associated
to the objects of interest, we are led to consider the
atomic set

AG := {g.a : g ∈ G, a ∈ A}

where g.a denotes the action of g on a [27, Ch. 7].
Although this is similar to (2), the key difference is
that we are not imposing that the collection {Mθ }θ∈2

has a group structure; in this sense, we are making less
assumptions about the structure of the problem. It is
an interesting question whether our methods provide
insights into this problem.

3) Super-resolution: Super-resolution techniques aim to
overcome the physical limitations of an imaging system
to resolve structures beyond its resolution limit [28],
[29]. The atomic norm has been proposed as an effec-
tive approach to super-resolve line spectra [8], [30].
In this case, the atoms are of the form

aτ =
[
1 e2π iτ . . . e2π i(n−1)τ

]t
where t denotes the transpose and τ ∈ [0, 1). We can
interpret these atoms as the modulation of a single atom
of positive entries, namely

e =
[
1 . . . 1

]t
,

by phases belonging to the set

2 :=
{[
0 2πτ . . . 2π (n− 1)τ

]t
: τ ∈ [0, 1)

}
.

Although (2) allows us to represent this problem as the
modulation of a real atom by a collection of phases,
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the assumptions that we make on 2 to deduce our
results do not cover this case. However, we provide
extensions of our methods that could apply to this prob-
lem and lead to novel approaches for super-resolution.
Note that similar models apply in localization prob-
lems [31] and our results could also apply for some
these problems.

Finally, we would like to point out similarities and differ-
ences with recent work [9]–[11]. In [10], [11] the authors con-
sider a signal model that is similar to ours (see (1.1) in [10]).
The authors assume the atoms are modulated by amplitudes,
either real or complex, that lie on a low-dimensional subspace
and use the lifting technique to propose an atomic gauge in the
lifted space. In contrast, the kind of modulation we consider
does not have this linear structure, and the dimension of the
manifold on which they lie could be equal to that of the ambi-
ent space. Furthermore, the lifting technique could increase
the dimensionality of the problem to the product between
the number of atoms and the ambient dimension. Instead
of leveraging the lifting technique, we work directly in the
ambient dimension. This allows us to consider, for instance,
an infinite number of atoms. In [9] the authors consider a
similar model where the atoms lie on a low-dimensional
subspace and they are modulated by a complex exponential,
i.e., θk = 2πkτ for some τ (see (2.1) in [9]). They leverage
the lifting technique to find an atomic gauge in the lifted
space. Although closer to the model we consider, we do not
assume a linear relation between the phases that modulate
the entries of the atoms and we do not leverage the lifting
technique. This leads to different kinds of expressions for the
atomic gauge than those found in [9], [10].

The manuscript is structured as follows. In Section II we
briefly review the notation to be used. In Section III we
review some basic properties of the atomic gauge and its
implementation, andwe provide a first characterization of (2).
In Section IV we study the notion of phase shrinkage and
some technical results that will be needed to prove our main
results. Finally, in Sections V and VI we show how the
atomic gauge associated to (2) can be implemented efficiently
in practice. In Section VII we discuss some extensions of
our results, and in Section VIII we present some numeri-
cal experiments to assess the effectiveness of the proposed
approach. We conclude in Section IX by pointing out some
future lines of research. The proofs of each of our results can
be found in the appendix.

II. PRELIMINARIES
If a, b ∈ R we denote a ∧ b and a ∨ b the minimum
and maximum respectively between a and b. If z ∈ C we
denote its complex conjugate as z∗, its real part as Re z and
its imaginary part as Im z. If S ⊂ R is an interval, |S| will
denote its length. We will consider Rn as a subset of Cn.
Furthermore, we assume Cn is a vector space defined over
the reals. Therefore, the inner product on Cn is

〈z, w〉 = Re
∑

k
z∗kwk .

The `2-norm of Euclidean norm will be denoted as
‖z‖2 = 〈z, z〉1/2.

III. ATOMIC GAUGE RECOVERY
A. THE ATOMIC GAUGE
To a collection A of real atoms we can associate the closure
of its convex hull CA. Its gauge or Minkowski functional is
given by [32, Sec. 15]

ρCA (x) = inf{t > 0 : x ∈ tCA}.

The gauge is a convex, positive-homogeneous function.
When CA contains a non-empty neighborhood of the origin
and is balanced, the gauge defines a norm inRn [32, Sec. 15].
In this case, the notation ‖·‖A is sometimes used to emphasize
the gauge is indeed a norm. Herewewill not assume this is the
case, and we will use ρCA to emphasize this point. However,
we will make the following technical assumption.
Assumption 1: We assume A contains the origin.
Proximal algorithms are typically used to solve large-scale

problems of the form (1). A popular approach is to use
ADMM [33] which requires evaluating the proximal operator
of ρCA [24, Ch. 6]

proxµρCA (x) := argminy µρCA (y)+
1
2
‖y− x‖22

for µ > 0. Consequently, solving (1) requires implementing
the evaluation of the atomic gauge, and the evaluation of its
proximal map.

B. IMPLEMENTATION
Evaluating the atomic gauge and its proximal map can be
reduced in several cases to solving a linear program (LP)
and a quadratic program (QP) respectively (see [34, Ch. 4]).
We provide this result here for completeness. Recall that for
a given set A ⊂ Rn its support function σA is the convex
function [24, Sec. 2.4]

σA(x) := supy∈A 〈y, x〉.

Lemma 1: Let A ⊂ Rn be such that it contains the origin,
and let CA be the closure of its convex hull. Then ρCA = σC◦A
where

C◦A = {z : 〈z, a〉 ≤ 1, ∀ a ∈ A}

is the polar of CA and for anyµ > 0 and x ∈ Rn its proximity
map is given by

proxµρCA (x) = x− µ projC◦A

(
x
µ

)
where projC◦A is the orthogonal projection onto C◦A.
When A is finite, the atomic gauge and its proximal map

can be computed using off-the-shelf software to solve an
LP and a QP respectively. However, when A is not finite,
representing C◦A could be challenging and approximation
techniques for the convex hull must be leveraged [1], [35].
We will not address this issue any further; instead, we assume
there is an oracle that evaluates the support function of C◦A
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and the orthogonal projection onto C◦A efficiently. Our objec-
tive is to compare the methods we will propose to that of this
oracle.

C. THE EFFECT OF THE COMPLEX PHASE
Let 2 ⊂ Rn be the collection of phases, and consider the
collection of unitary maps {Mθ }θ∈2 defined as (Mθx)k =
eiθk xk . The collection A2 defined in (2) is never discrete
unless 2 is, and an efficient representation of its polar is
desirable to implement the associated atomic norm. The polar
of its convex hull becomes

C◦A2
= {z : 〈z, Mθa〉 ≤ 1, ∀ a ∈ A, θ ∈ 2}.

Observe for every a ∈ A we have the equivalence

∀ θ ∈ 2 : 〈z, Mθa〉 ≤ 1⇔ supθ∈2 〈a, M
∗
θ z〉 ≤ 1

and it follows that z ∈ C◦A2
if and only if

∀ a ∈ A : supθ∈2 〈a, M∗θ z〉 ≤ 1.

When 2 is a Cartesian product this equivalence induces a
non-linear function acting on each component of z.
Lemma 2: Let 2 = S1 × . . . × Sn. Then z ∈ C◦A2

if and
only if

∀ a ∈ A :
∑n

k=1
|ak |ϕSk (sign(ak )zk ) ≤ 1. (3)

where ϕSk : C→ R is the convex function defined as

ϕSk (z) := supθ∈Sk Re{e
−iθ z}. (4)

Lemma 2 suggests introducing auxiliary variables to repre-
sent C◦A2

by linear inequalities and two non-linear equalities.
In fact, define the non-linear map 82 : Cn

→ Rn as

82(z) :=

ϕS1 (z1)...

ϕSn (zn)


and introduce the auxiliary variables φ+ = 82(+z) and
φ− = 82(−z). Then z ∈ C◦A2

if and only if∑
k: ak≥0

|ak |φ
+

k +
∑

k: ak≤0
|ak |φ

−

k ≤ 1 (5)

for any a ∈ A. Consequently, when evaluating the atomic
norm and its proximal operator we are led to optimiza-
tion problems where the feasible set is represented by lin-
ear inequalities in the auxiliary variables φ+,φ− and two
non-linear equalities between φ+,φ− and z. Therefore,
the complexity in evaluating both will depend mainly on
the geometry of the map 82 and whether these non-linear
equalities admit a convex relaxation. In the following sections
we will develop this idea further and we will state conditions
on 2 under which these optimization problems are tractable.

IV. PHASE SHRINKAGE
A. PRODUCT OF CENTERED INTERVALS
Our results rely on the following assumption on the set 2.
Assumption 2: We assume that

2 = S1 × . . .× Sn (6)

where S1, . . . , Sn ⊂ R are symmetric closed intervals with
|Sk | ≤ π .
We discuss in Section VII how to extend our results when

this assumption is relaxed. Assumption 2 implies each Sk is
a subset of [−π, π] of the form [−δθ, δθ] and thus we will
denote from now on as T the interval (−π, π] endowed with
the sum and multiplication modulo 2π . This allows us to
define the complex argument arg : C → T for a non-zero
z as the unique element arg(z) ∈ T such that

z = |z|ei arg(z)

and we will assume the convention that arg(0) = 0.

B. PHASE SHRINKAGE
By definition, ϕS is a convex function. Using the convention
that arg(0) = 0 we obtain the representation

ϕS (z) = |z|maxθ∈S cos(arg(z)− θ ).

If λ ≥ 0 then arg(λz) = arg(z) and we deduce ϕS is positive-
homogeneous. We will now show ϕS can be represented in
terms of an operation analogous to soft-thresholding that
instead of acting on the magnitude acts on the phase.

To a symmetric interval S ⊂ T we can associate the
distance function

dS (α) := (|α| − |S|/2)+
and the projection onto S as

projS (α) :=

{
α α ∈ S
(|S|/2) sign(α) α /∈ S.

Since cosine is even and monotone decreasing with respect to
dS we can represent ϕS as

ϕS (z) = |z| cos dS (arg(z))

= |z| cos(arg(z)− projS (arg(z))).

Define the map ηS as

ηS (α) := α − projS (α) = sign(α)(|α| − |S|/2)+, (7)

where (·)+ denotes the non-negative part, i.e., x+ =

max{0, x}. Remark this is essentially the soft-thresholding
operator [36] applied to α. This allows us to write

ϕS (z) = |z| cos ηS (arg(z)). (8)

This operation induces a non-linear operator on C that we
call phase soft-thresholding.
Definition 1: Let S ⊂ T be a symmetric interval.We define

the phase soft-thresholding operator HS : C 7→ C as

HS (z) = |z|eiηS (arg(z))

where ηS is defined in (7).
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The map ϕS can be represented as the real part of HS as,
in fact,

ϕS (z) = ReHS (z).

We will not develop any properties for this operator, as (8)
contains all the information we need to develop our results.

C. LEVEL SETS
The geometry of the equality constraint φ = 82(z) can be
understood by studying the equality constraint φ = ϕS (z).
The following theorem provides a closed-form parameteriza-
tion for the level sets of ϕS . See Fig. 1 for an illustration of
these results.
Theorem 1: Let S ⊂ T be a symmetric and closed interval.

For any φ let v : R× T 7→ C be defined as

v(φ, α) = eiα sec ηS (α)φ.

1) If |S| > π then ϕS ≥ 0 and for any φ ≥ 0 we have

{z : ϕS (z) = φ} = {v(φ, α) : α ∈ T} . (9)

2) If |S| = π then ϕS ≥ 0 and for any φ ≥ 0 we have

{z : ϕS (z) = φ} =
{
φeiα : α ∈ S

}
∪ {r ± iφ : r ≤ 0} .

3) If |S| < π we have for any φ > 0

{z : ϕS (z) = φ} = {v(φ, α) : |ηS (α)| < π/2} , (10)

for any φ < 0

{z : ϕS (z) = φ} = {v(φ, α) : |ηS (α)| > π/2} , (11)

and

{z : ϕS (z) = 0} = {±ire±i|S|/2 : r ≥ 0}. (12)

V. ATOMS IN THE POSITIVE ORTHANT
We first consider the case where the atoms belong to the pos-
itive orthant, i.e., the set of vectors with non-negative entries.
This assumption will allow us to find simpler expressions
than those we can obtain in the general case, while also being
relevant in applications.
Since there are no sign changes to take into account,

Lemma 2 suggests considering the set

F+ := {(z,φ) : φ = 82(z), 〈a, φ〉 ≤ 1, ∀a ∈ A},

whence z ∈ C◦A2
if and only if there is φ such that

(z,φ) ∈ F+. In the next sections we show that evaluating
the support function of C◦A2

and its proximal operator can
be reduced to solving a concave maximization and a con-
vex minimization problem respectively; in particular, when
the set of atoms is discrete, they reduce to an LP and QP.
Therefore, the computational efficiency in the case of atoms
with non-negative entries is essentially the same as that of
evaluating ρCA and its proximal operator.

A. EVALUATION
The value of the atomic gauge is equal to the optimal value
to the problem

maximize
z,φ

〈z, x〉

subject to (z,φ) ∈ F+. (13)

where the constraints over φ are convex. We now show
performing a partial maximization over z leads to a concave
maximization problem over φ. Before proving this result,
we introduce the following auxiliary function.
Definition 2: Let S ⊂ T be a symmetric and closed inter-

val and let x ∈ C. Define ωx,S = sec(|S|/2) cos arg(x) and
the concave function h+S,x : R 7→ R as

h+S,x(φ) := |x|((ωS,xφ) ∨ φ)− IR+ (φ)

if |S| > π and

h+S,x(φ) := |x|((ωS,xφ) ∧ φ)+ IS (arg(x)) (14)

if |S| ≤ π where IS denotes the indicator function of the
interval S, i.e.,

IS (x) =

{
+∞ x /∈ S,
0 x ∈ S.

A few remarks are in order. First, using the convention
arg(0) = 0 we deduce h+S,0 = −IR+ when |S| > π and
h+S,0 ≡ 0 when |S| ≤ π . Second, when |S| = π we must
interpret (14) as

h+S,x(φ) = |x|φ + IS (arg(x))− IR+ (φ).

Finally, if |S| ≤ π and arg(x) /∈ S then h+S,x ≡ +∞ and the
function becomes improper.
This auxiliary function allows us to state the main result of

this section.
Theorem 2: For each x ∈ Cn we have

sup{〈z, x〉 : 82(z) = φ} :=
∑n

k=1
h+Sk ,xk (φk ).

Consequently, the optimal value of the concave maximization
problem

maximize
φ

∑n

k=1
h+Sk ,xk (φk )

subject to ∀ a ∈ A : 〈a, φ〉 ≤ 1 (15)

is equal to that of (13).
From (14) we deduce that (15) is unbounded if

arg(xk ) /∈ Sk . This condition can be checked efficiently in
practice prior to solving (15). In addition, the indicator
function IR+ appearing in (14) can be removed if we add
to (15) the constraint φk ≥ 0 whenever |Sk | ≥ π . Finally,
note (15) can be reformulated as an LP, showing that an off-
the-shelf solver can be used for its numerical implementation.
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FIGURE 1. Level sets for different values of |S| and φ. The blue curve represents the level set, whereas the dashed lines represent the
angle at which transitions occur, i.e., the points at which the curvature has a discontinuity. Since ϕS is a convex function, the sub-level
set corresponds to the convex region whose boundary is the level set.

B. PROXIMAL OPERATOR
Evaluating the proximal operator reduces to evaluating the
orthogonal projection onto C◦Aθ

. In other words, we need to
characterize the optimal solution to

minimize
z,φ

‖z− x‖22

subject to (z,φ) ∈ F+. (16)

As in the case of evaluating the atomic norm, we will show
that performing partial minimization over z leads to a convex
minimization problem on φ. Once again, to do so we need to
introduce an auxiliary function.
Definition 3: Let S ⊂ T be a symmetric and closed inter-

val and let x ∈ C. Define

τS := | tan(|S|/2)|

and the convex function q+S,x : R 7→ R as

q+S,x(φ) := (φ−ReHS (x))2+(| ImHS (x)| − τSφ)2+ + IR+ (φ)

if |S| > π and

q+S,x(φ) := (φ − ReHS (x))2 + (−| ImHS (x)| − τSφ)2+

if |S| ≤ π .
Remark q+S,x is strongly convex and differentiable with

Lipschitz derivative. This leads us to the first main result of
this section.

Theorem 3: For each x ∈ Cn we have

inf{‖z− x‖22 : 82(z) = φ} :=
∑n

k=1
q+Sk ,xk (φk ).

Consequently, the optimal value of the concave minimization
problem

minimize
φ

∑n

k=1
q+Sk ,xk (φk )

subject to ∀ a ∈ A : 〈a, φ〉 ≤ 1 (17)

is equal to that of (16).
Although (17) is a convex optimization problem that has

the same optimal value as (16), to evaluate the proximal map
we need to characterize the minimizer of (16). To do so,
we need to introduce another auxiliary function.
Definition 4: Let S ⊂ T be a symmetric and closed inter-

val, let x ∈ C and let φ ∈ R. Define the angle

γS,x(φ) =
|S|
2
+ tan−1

(
| ImHS (x)|

φ

)
and

αS,x(φ)

=


arg(x) arg(x) ∈ S, φ ≥ 0,
(π ∧ γS,x(φ)) sign(arg(x)) arg(x) /∈ S, φ ≥ 0,
(π + 0 ∧ γS,x(φ)) sign(arg(x)) φ < 0.

The following result shows we can find the optimal
solution to (16) from the optimal solution to (17). Therefore,
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to evaluate the proximal map, it suffices to solve (17) and
leverage Theorem 4 to compute projC◦Aθ

(x).
Theorem 4: Let φ? ∈ Rn be the unique minimizer of (17).

Then z? ∈ Cn defined as

z?k = v(φ?k , αSk ,xk (φ
?
k ))

is the unique minimizer of (16).
Finally, remark that (17) can be recast as a QP and off-

the-shelf software packages can be used to implement it
numerically. Otherwise, the differentiability of the objective
can be exploited and projected gradient descent can be used.

VI. ATOMS IN GENERIC POSITIONS
The argument outlined in Section V fails as soon as at least
one atom does not belong to the positive orthant. We intro-
duce the auxiliary variables

φ+ = 82(+z) and φ− = 82(−z)

and we associate to each atom a the pair (a+, a−) defined by
a+k = max{0, ak} and a

−

k = max{0,−ak}. Condition (5) can
be written equivalently as

∀ a ∈ A : 〈(a+, a−), (φ+,φ−)〉 ≤ 1.

This leads us to consider the set

F := {(z,φ+,φ−) : φ+ = 82(z), φ− = 82(−z),
〈(a+, a−), (φ+,φ−)〉 ≤ 1, ∀a ∈ A}.

The main objective of this section is to determine to which
extent the results of Section V can be extended to this case.

A. EVALUATION
From Lemma 1 and the discussion at the beginning of this
section we are led to consider

maximize
z,φ+,φ−

〈z, x〉

subject to (z,φ+,φ−) ∈ F . (18)

Performing a partial minimization directly over z does not
lead to a simple closed-form expression as that in Theorem 2.
In this case, we provide a tight convex relaxation to (18).
To do so, we need to introduce the convex cone generated
by the epigraph of ϕS .
Definition 5: Let S ⊂ T be a symmetric and closed inter-

val. Define the convex cone KS ⊂ C× R as

KS := {(z, t) : ϕS (z) ≤ t}. (19)
We have the following result.
Theorem 5: The optimal value of the concave maximiza-

tion problem

maximize
z,φ+,φ−

〈z, x〉

subject to k ∈ {1, . . . , n} : (+zk , φ
+

k ) ∈ KSk
k ∈ {1, . . . , n} : (−zk , φ

−

k ) ∈ KSk
∀ a ∈ A : 〈(a+, a−), (φ+,φ−)〉 ≤ 1 (20)

is equal to that of (18).

Although it is a concave optimization problem, the repre-
sentation in (20) is not readily amenable to numerical imple-
mentation. Observe (20) can be represented equivalently as

maximize
z,φ+,φ−

−

∑n

k=1
(gSk ,xk (zk , φ

+

k )+ gSk ,−xk (wk , φ
−

k ))

subject to z+ w = 0,

∀ a ∈ A : 〈(a+, a−), (φ+,φ−)〉 ≤ 1. (21)

where gSk ,xk : C× R 7→ R is the convex function

gSk ,xk (z, φ) = −
1
2
Re{x∗k z} + IKSk (z, φ).

In this form, the problem can be solved using proximal meth-
ods. Note that evaluating the orthogonal projection onto the
feasible set in (21) is no harder than evaluating the orthogonal
projection onto C◦A, and that the proximal map of the objec-
tive can be evaluated efficiently as soon as the orthogonal
projection onto KS is known. In fact [24, Sec. 6.3],

proxµgS,x (z, t) = projKS

(
z+

1
2
x, t
)

Therefore, we now provide a closed-form expression for the
orthogonal projector onto KS .
Theorem 6: Let S ⊂ T be a symmetric and closed interval

and let KS be defined as in (19). Let (z0, t0) ∈ C× R. Then

projKS (z0, t0) = (v(φ0, αS,z(φ0)), t0 ∨ φ0),

for

φ0 :=

{
0 ∨ ξ0(aS (z0),+|bS (z0)|, t0, τS , 1) |S| > π,

ξ0(aS (z0),−|bS (z0)|, t0, τS , 1) |S| ≤ π.

where ξ0 is defined in (36) and

aS (z0) = ReHS (z0),

bS (z0) = cot(|S|/2) ImHS (z0). (22)

B. PROXIMAL OPERATOR
To evaluate the projection onto C◦A2

we need to characterize
the minimizer to

minimize
z,φ+,φ−

‖z− x‖22

subject to (z,φ+,φ−) ∈ F . (23)

However, we can readily deduce a tight convex relaxation.
If we let CF be the feasible set to (20) we see that Theorem 5
implies σC◦A2

= σCF . Therefore, the proximal map can be
evaluated by computing the orthogonal projection onto CF .
Theorem 7: The optimal value of the convex minimization

problem

minimize
z,φ+,φ−

‖z− x‖22

subject to k ∈ {1, . . . , n} : (+zk , φ
+

k ) ∈ KSk
k ∈ {1, . . . , n} : (−zk , φ

−

k ) ∈ KSk
∀ a ∈ A : 〈(a+, a−), (φ+,φ−)〉 ≤ 1 (24)

is equal to that of (18).
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FIGURE 2. The 1D signal model consists of linear combinations of a collection of P0 elements (a), P1 elements (b) and the elements of the
canonical basis (not shown). The true signal x?0 (d) is a linear combination of 7 atoms (2 P0 elements and 5 P1 elements) with non-negative
coefficients shown in (c). To obtain the complex signal x0 := Mθ0

x?0 (f) the signal x?0 is modulated by a random phase θ0 (e) bounded in
magnitude by 0.15π .

FIGURE 3. The image model consists of linear combinations of a collection of piecewise constant atoms (a) and piecewise linear atoms
(b). The true image x?0 (d) is a linear combination of 20 atoms with non-negative coefficients shown in (c). The real and imaginary part
of the complex image x0 := Mθ0

x?0 are shown in (e) and (f) respectively; the phase is bounded in magnitude by 0.15π .

To formulate (24) equivalently to implement it numeri-
cally, we introduce the following auxiliary function.

Definition 6: Let S ⊂ T be a symmetric and closed
interval and let x ∈ C. Define the convex function
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FIGURE 4. Recovered signals without modulation for different sampling fractions. We see that with 15% of the coefficients we recover the signal up
to negligible error.

FIGURE 5. Comparison of recovered signals with modulation for δθ = 0.15π and different sampling fractions. Top row: Recovered complex signals.
Bottom row: Magnitude of the recovered complex signals. The proposed method is unable to achieve exact recovery with 15% of the coefficients
(a, d). However, with 50% of the coefficients, the proposed method achieves exact recovery (b, e). For comparison, the gauge induced by complex
linear combinations of atoms does not achieve exact recovery with 50% of the coefficients (c, f).

QS,x : C× R 7→ R as

QS,x(z, φ) = |z− φ|2 + IKS (z, φ).
We deduce that (24) is equivalent to

minimize
z,w,φ+,φ−

∑n

k=1
(QS,xk (zk , φk )+ QSk ,−x(wk , φ

−

k ))

subject to z+ w = 0,

∀ a ∈ A : 〈(a+, a−), (φ+,φ−)〉 ≤ 1. (25)

This problem can be solved efficiently with proximal algo-
rithms as soon as the proximal map of QS,x can be computed
efficiently. The following result provides a closed-form
expression for this proximal operator.
Theorem 8: Let S ⊂ T be a symmetric and closed interval

and let x ∈ C. For µ > 0 we have

proxµQS,x (z, t) = (v(φ0, αS,x(φ0)), t0 ∨ (φ0
√
1+ 2µ))

for

φ0 :=


0 ∨ ξ0

(
aS (y),+|bS (y)|, λ0, τS ,

1
√
1+2µ

)
|S|>π,

ξ0

(
aS (y),−|bS (y)|, λ0, τS ,

1
√
1+ 2µ

)
|S| ≤ π.

where ξ0 is defined in (36), aS , bS are defined in (22),
λ0 = t0

√
1+ 2µ and y = x + z/(1+ 2µ).

VII. EXTENSIONS
A. NON-CENTERED INTERVALS
If2 is the Cartesian product of non-centered intervals, we can
decompose it as 2 = 20 + θ̄ where 20 is the Cartesian
product of centered intervals. In this case, we can write

82(z) = 820 (M θ̄ z),
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FIGURE 6. Comparison of recovered images. When there is no modulation, our experiments show we can achieve exact recovery with a sampling
fraction of δ = 0.25 (a, b, c). When we consider a phase bounded by δθ = 0.15π we achieve exact recovery with a sampling fraction of δ = 0.50 (d, e, f).

whereM θ̄ is a diagonal unitary matrix. Therefore, we readily
deduce by standard rules of convex calculus that

σC◦A2
(x) = σC◦A20

(M
−θ̄x),

proxC◦A2
(x) = M θ̄ proxC◦A20

(M
−θ̄x)

B. FINITE UNIONS OF DISJOINT INTERVALS
If Sk is a disjoint union of intervals we have the representation

ϕSk (z) = ϕS̄k,1 (e
−iθ̄k,1z) ∨ . . . ∨ ϕS̄k,mk

(e−iθ̄mk z)

where S̄k,1, . . . , S̄k,mk are symmetric and closed intervals.
The same arguments used to prove Theorems 5 and 7 can be
adapted to this case. Since

ϕS (z) ≤ φ ⇔ ϕS̄k,` (e
−iθ̄k,`z) ≤ φ, ` ∈ {1, . . . ,mk},

the convex relaxations lead to constraints of the form

(±e−iθ̄k,`zk , φ
±

k ) ∈ KS̄k,` .

Since the map (z, φ) 7→ (eiθ z, φ) is unitary, the expressions
found in Theorem 6 and 8 can be readily adapted to handle
these constraints efficiently.

VIII. NUMERICAL EXPERIMENTS
A. EXPERIMENTAL SETUP
1) SIGNAL MODELS
We consider two signal models for our experiments. The first
is a 1D signal model consisting of an atomic collection of
P0 and P1 elements, i.e., piecewise constant and piecewise
linear, defined on the interval [0, 1] discretized over n = 1024
points along with the 1024 elements of the canonical basis.
We considered 17 P0 and P1 elements (see Fig. 2a and 2b)
so that there are 1058 atoms in total. The true signal x?0 is a
linear combination of 7 atoms (see Fig. 2c) or, equivalently,
of ≈0.7% of the atoms in the collection.
The second is a 128×128 pixel image model. We consider

an atomic set of 64 piecewise constant atoms (see Fig. 4a) and
128 piecewise linear atoms (see Fig. 3b). In this case we only
consider a set of 192 atoms on a 16384-dimensional space.
The original image x?0 is the linear combination of 20 atoms
or ≈10% of them (see Fig. 3c).

In both models x?0 is a sparse linear combination of atoms.
To determine the effects of modulating by a phase θ0 we
considered that each of its entries θi were sampled indepen-
dently from a uniform distribution on S := [−δθ,+δθ ]. This
implies 2 = S × . . .× S. Once the phase has been sampled,
we obtain the modulated signal x0 := Mθ0x

?
0.
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2) MEASUREMENT PROCESS
The measurement process considered for both signal mod-
els is the partial discrete Fourier transform (DFT). This
measurement process arises naturally in several signal pro-
cessing applications, such as Magnetic Resonance Imaging
(MRI) [12, Ch. 5]. The undersamplingwas performed accord-
ing to a Bernoulli process [3], [37]; given a sampling fraction
δ ∈ [0, 1], each Fourier coefficient is sampled with probabil-
ity δ/n. The set of sampled coefficients will be denoted as �
and the partial DFT associated to this set as F�. From this,
the measured Fourier coefficients are given by y0 := F�(x0).

3) IMPLEMENTATION
For each of the signal models considered the atoms have
non-negative entries. Therefore, the results of Section V
can be applied. The numerical methods were implemented
in Python. To solve (15) we used GLPK [38] whereas to
solve (17) we used OSQP [39]

As comparison, we also considered recovery using the
gauge associated to complex linear combination of atoms.
Since in our experiments the collection of atoms A is finite,
we can associate to it the n×na matrix A where each column
is an atom. In this case, the gauge is represented as

ρ̃A(x) := inf{‖c‖1 : Ac = x, c ∈ Cna}. (26)

Both ρ̃A and its proximal map can be evaluated by solv-
ing a second-order cone program (SOCP). We solved these
programs using ECOS [40]. In both cases, CVXPY was used
to call the solvers [41] andwarm startingwas extensively used
to speed up the computation.

B. RESULTS
1) 1D SIGNAL MODEL
For this model we considered three experiments. First,
we determined empirically the minimum sampling fraction
we could achieve in order to obtain exact recovery when there
is no modulation, i.e., when x0 = x?0 and the measurements
become y0 := F�(x?0). The results can be seen in Fig. 4.
Empirically, with an average of 10% coefficients we obtain
an almost exact recovery (see Fig. 4b), and with 15% we
obtain exact recovery (see Fig. 4c). This experiment shows
the effectiveness of using the atomic gauge for this signal
model and the undersampling rates that can be achieved in
the noiseless case.

In our second experiment we modulated x?0 by a phase
before computing its partial Fourier measurements. For this
experiment we chose δθ = 0.15π (see Fig. 2d). Even though
the phase is small in magnitude, the imaginary part of the
entries ofMθ0x

?
0 can be large depending on the magnitude of

the coefficients of x?0 (see Fig. 2f). Remark that in this case,
the measurements y0 := F�(x0) = F�(Mθ0x

?
0) cannot cor-

respond to a signal that is a non-negative linear combination
of atoms.

To recover the signal, we use the same interval S that
was used to generate the true phase. Our proposed approach

does not succeed with 15% of the coefficients. Empirically,
we need at least 50% to obtain a good recovery. To compare
these results with a standard approach, we also attempted
recovery using (26) with 50% of sampled coefficients. This
approach fails with this sampling fraction, showing that the
proposed method does improve upon the standard approach.

2) IMAGE MODEL
For this model we also considered two experiments. In our
first experiment, we verified empirically that exact recovery
was achieved using the atomic gauge in absence of modu-
lation for a sampling fraction of δ = 0.25 (see Fig. 6a, 6b
and 6c). In the second experiment, we considered a random
phase bounded by δθ = 0.15π as in the experiments for the
1D signal model (see Fig. 3e and 3f for the real and imaginary
parts). In this case, we show exact reconstruction is achieved
with 50% of the coefficients (see Fig. 6d, 6e and 6f).

Note that in this case, in contrast with the 1D signal
model, the atomic set only consists of 192 atoms in a
high-dimensional space. Consequently, the domain of the
atomic gauge is contained in the linear span of the atoms; in
other words, the atomic gauge forces the image to be a linear
combination of the atoms.

IX. CONCLUSION AND FUTURE WORK
In this work we have proposed computationally tractable
methods to evaluate the atomic gauge induced by a collection
of real atoms modulated by a phase. While developing these
methods, we have shown that the atomic gauge in this case
induces a phase shrinkage on the components of its argument.
The shrinkage effect is typically observed on the magnitude
of the variables; to our knowledge, this is one of the few
natural instances of a shrinkage effect on the phase that leaves
the magnitude of the variables fixed.

Furthermore, we have shown that there are different
regimes that arise and for which the atomic gauge behaves
differently. First, the case of non-negative atoms is sub-
stantially simpler than the case of generic atoms. Second,
the behavior of phases above π/2 and below π/2 is signif-
icantly different. These regimes are a manifestation of an
effective sign pattern that arises either through the real atoms,
or through a phase larger than π/2.

Our numerical results show that the approach is effective
when attempting exact recovery of signals that are a sparse
convex combination of elements inA2. In particular, we con-
sidered a setting where the true signal is a sparse convex
combination of elements in A that has been modulated by
an unknown phase. Our empirical results suggest there is a
trade-off between the magnitude of this phase and the sam-
pling fraction required for exact recovery; as the magnitude
of the phase increases, so does the sampling fraction required
to achieve exact recovery. Even at this increased sampling
fraction the gauge induced by complex linear combinations of
atoms inA fails to achieve exact recovery. This suggests that
the proposed method improves on the standard approaches
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in the literature, and that the aforementioned trade-off is a
consequence of the geometry of the convex hull of A2.

The results presented in this work lead to two open research
topics left for future work. First, there is the need to develop
numerical implementations of the proposed methods for
large-scale problems. Second, it is important to determine
recovery guarantees for the atomic gauge induced by A2

and compare them to those obtained to that induced by A.
We hope researchers in different disciplines will be able to
assess the practical performance of the proposed method in
their own research problems.

PROOFS
A. PROOF OF LEMMA 1
If C is a closed convex set containing the origin, then ρC =
σC◦ where

C◦ = {z : 〈z, a〉 ≤ 1, ∀ a ∈ C}

is the polar of C [32, Thm. 14.5], proving the first state-
ment. For the second, we use the Moreau decomposition [24,
Thm. 6.44] to deduce

proxµρC (x)+ prox(µρC )? (x) = x.

Since (µρC )?(x) = µρ?C (x/µ) [24, Thm. 14.4], ρ?C = σ
?
C◦ =

IC◦ [24, Sec. 4.4.16], and proxIC◦ = projC◦ , we deduce
the second statement. This proves the lemma.

B. PROOF OF LEMMA 2
First, let z be such that (3) fails to hold. Then we can find
a ∈ A and θk ∈ Sk such that∑

k
Re{ake−iθk zk} = 〈Mθa, z〉 > 1,

whence z /∈ C◦A2
. Now, let z ∈ C◦A2

be such that (3) holds.
Since

〈Mθa, z〉 ≤ sup
θ∈2

〈Mθa, z〉

≤

∑
k
|ak ||zk | sup

θk∈Sk
sign(ak ) cos(arg(zk )− θk )

we conclude z ∈ C◦A2
. This proves the lemma.

C. PROOF OF THEOREM 1
Case |S| > π: The key property in this case is that |ηS (α)| ≤
π/2 for any α. In particular, the secant in (4) is non-negative
and consequently ϕS ≥ 0. Fix φ ≥ 0 and let z be such that
ϕS (z) = φ. Then

φz := |z| cos ηS (arg(z))

⇒ z = sec ηS (arg(z))φzei arg(z) (27)

where we used the fact that the secant is non-negative.
We conclude z = v(φz, arg(z)). Conversely, for φ ≥ 0 and
any α it follows that

ϕS (v(φ, α)) = φ sec ηS (α) max
θ∈S

cos(α − θ )

= φ sec ηS (α) cos ηS (α)
= φ. (28)

proving (9).

Case |S| ≤ π and φ > 0: Let z 6= 0 be such that ϕS (z) = φ
for φ > 0. It follows the secant in (4) is positive, and therefore
|ηS (arg(z))| < π/2. In this case (27) holds, and we deduce
z = v(φz, arg(z)). Conversely, let φ > 0 and let α be such
that |ηS (arg(z))| < π/2. It follows the secant in (4) is positive
and (28) holds. This proves (10).
Case |S| ≤ π and φ < 0: Let z 6= 0 be such that ϕS (z) = φ

for φ < 0. In this case the secant in (4) must be negative
whence |ηS (arg(z))| > π/2. Consequently,

φ = |z| cos ηS (arg(z))

⇒ |z| = |φ|| sec ηS (arg(z))| = φ sec ηS (arg(z))

and

z = |z|ei arg(z) = φ sec ηS (arg(z))ei arg(z)

whence z = v(φ, α). Conversely, if φ < 0 and α is such that
|ηS (α)| < π/2 we have

v(φ, α) = eiα sec ηS (α)φ = eiα| sec ηS (α)||φ|

from where it follows that ϕS (v(φ, α)) = φ. This proves (11)
Case |S| ≤ π and φ = 0: If z 6= 0 is such that ϕS (z) = 0

the secant in (4) must be zero whence |ηS (arg(z))| = π/2.
We readily deduce (12). This proves the theorem.

D. PROOF OF THEOREM 2
To prove Theorem 2 we need the following auxiliary lemma.
Lemma 3: Let x ∈ C. The following identity holds:

MS,φ,x := sup{Re{z∗x} : ϕS (z) = φ} = h+S,x(φ). (29)
Proof of Lemma 3: Before proving the lemma, we require

some preliminary results. The quantity MS,φ,x satisfies two
identities that allow us to make assumptions that will simplify
the proof. First, since MS,φ,0 = 0 we can assume without
loss that x 6= 0. Second, since ϕS (z∗) = ϕS (z) we have that
MS,φ,x∗ = MS,φ,x and thus we can assume without loss that
arg(x) ≥ 0.
These two assumptions allows us to define an auxiliary

function over [0, π] that will be used througout the proof.
Note that

Re{v(φ, α)∗x} =
cos(arg(x)− α)

cos ηS (α)
|x|φ := f (α)|x|φ. (30)

When α ≥ 0 we can write ηS (α) = (α − |S|/2)+. From this
we deduce f (α) = cos(arg(x)− α) for α ≤ |S|/2 and

f (α) =
cos((arg(x)− |S|/2)− (α − |S|/2))

cos(α − |S|/2)
= cos(arg(x)− |S|/2)

+ tan(α − |S|/2) sin(arg(x)− |S|/2).

for α > |S|/2. In particular, we can compute the derivative of
f explicitly

f ′(α) =


sin(arg(x)− α)

if 0 ≤ α ≤ |S|/2,
sec(α − |S|/2)2 sin(arg(x)− |S|/2)

if |S|/2 < α ≤ π .

(31)

185284 VOLUME 7, 2019



C. Arrieta, C. A. Sing-Long: Extensions of Real Atomic Gauges for Complex Signal Recovery

With these expressions we can proceed to prove the lemma.
As we will leverage Theorem 1 we will consider two
cases.
Case |S| > π: By Theorem 1 we deduceMS,φ,x = −∞ if

φ < 0 and therefore we assume without loss that φ ≥ 0.
In this case, we have MS,φ,x = sup{Re{v(φ, α)∗x} : α}.
Both (30) and the assumption that arg(x) ≥ 0 imply we
need to maximize f over [0, π]. From (31) we conclude the
maximum is attained at α = arg(x) when 0 ≤ arg(x) ≤
|S|/2 and at π when |S|/2 < arg(x) ≤ π . In other
words,

sup
α∈T

f (α) =
cos(arg(x)− arg(x))

cos ηS (arg(x))
= 1

when 0 ≤ arg(x) ≤ |S|/2 and

sup
α∈T

f (α) =
cos(arg(x)− π )

cos ηS (π )
=

cos arg(x)
cos(|S|/2)

= ωS,x

when |S|/2 < arg(x) ≤ π . This can be summarized as

MS,φ,x = |x|
(
sup
α∈T

f (α)
)
φ = |x|(1 ∨ ωS,x)φ = h+S,x(φ).

Case |S| < π: In this case we need to take into account
the sign of φ. When φ > 0 we deduce from Theorem 1
that MS,φ,x = sup{Re{v(φ, α)∗x} : |ηS (α)| < π/2}. The
same arguments used to obtain (30) lead us to maximize
f over the interval [0, |S|/2 + π/2). From (31) it follows
that the maximum is attained at arg(x) when 0 ≤ arg(x) ≤
|S|/2 whereas f is unbounded if |S|/2 < arg(x). In fact,
the derivative becomes unbounded above as α → |S|/2 +
π/2. Consequently,

MS,φ,x = |x|φ + IS (arg(x))

when φ > 0.
When φ < 0 Theorem 1 implies MS,φ,x =

sup{Re{v(φ, α)∗x} : |ηS (α)| > π/2}. In this case (30)
becomes

Re{v(φ, α)∗x} = f (α)|x|φ = −f (α)|x||φ|,

and we are thus led to minimize f over the interval (|S|/2 +
π/2, π]. To simplify the exposition, consider the change of
variables α = |S|/2 + π/2 + β with β ∈ (0, π/2 − |S|/2].
Remark this implies α /∈ S. We deduce that

f (α) =
cos(arg(x)− π/2− |S|/2− β)

cos ηS (|S|/2+ π/2+ β)

=
cos(π/2+ |S|/2+ β − arg(x))

cos(π/2+ β)

=
sin(|S|/2+ β − arg(x))

sin(β)
= cos(|S|/2− arg(x))+ cotβ sin(|S|/2− arg(x))

where we used the fact that sinβ ≥ 0. The above is
unbounded below if arg(x) /∈ S as the sine is negative and
the cotangent unbounded above as β → 0. When arg(x) ∈ S,

the sine in the last expression is non-negative, and we obtain
a minimum at β = π/2− |S|/2. Consequently,

MS,φ,x = (cos(|S|/2− arg(x))

+ cot(π/2− |S|/2) sin(|S|/2− arg(x)))|x|φ

= (cos(|S|/2− arg(x))

+ tan(|S|/2) sin(|S|/2− arg(x)))|x|φ

=
cos arg(x)
cos(|S|/2)

|x|φ

= ωS,x |x|φ.

This means that for φ < 0

MS,φ,x = ωS,x |x|φ + IS (arg(x)).

Now, remark that when arg(x) ∈ S the factorωS,x is at least
one and thus we have φ ≤ ωS,xφ when φ > 0 and ωS,xφ < φ

when φ < 0. Consequently, when |S| ≤ π we deduce

MS,φ,x = |x|((ωS,xφ) ∧ φ)+ IS (arg(x)).

The case φ = 0 follows by continuity.
Case |S| = π : This case follows by continuity of the case
|S| > π . We omit the details for brevity. This proves the
lemma. �

We can now prove Theorem 2.
Proof of Theorem 2: Fix x ∈ Rn. Since

82(z) = φ ⇔ ∀ k ∈ {1, . . . , n} : ϕSk (zk ) = φk

we deduce

sup{〈z, x〉 : 82(z) = φ}

=

∑
k
sup{Re{z∗kxk} : ϕSk (zk ) = φk}.

By Lemma 3, the k-th term on the right-hand side is equal to
hSk ,xk (φk ). This proves the theorem. �

E. PROOF OF THEOREMS 3 and 4
To prove Theorems 3 and 4 we need the following auxiliary
lemma.
Lemma 4: Let x ∈ C. The following identity holds:

mS,φ,x := inf{|z− x|2 : ϕS (z) = φ} = q+S,x(φ).
Proof of Lemma 4: Since ϕS (z∗) = ϕS (z) impliesmS,φ,x∗ =

mS,φ,x we can assume without loss that arg(x) ≥ 0. This
assumption allows us to define an auxiliary function over
the interval [0, π] that will be used throughout the proof.
Consider

f (α) : = |v(φ, α)− x|2

=

∣∣∣ei(α−|S|/2) sec ηS (α)φ − ei(arg(x)−|S|/2)|x|∣∣∣2
=

(
cos(α − |S|/2)

cos ηS (α)
φ − cos(arg(x)− |S|/2)|x|

)2

+

(
sin(α − |S|/2)

cos ηS (α)
φ − sin(arg(x)− |S|/2)|x|

)2

.

(32)
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Over [0, π] we can write explicitly ηS (α) = (α−|S|/2)+ and
the above becomes

f (α) =



(cos(α − |S|/2)φ − cos(arg(x)− |S|/2)|x|)2

+ (sin(α − |S|/2)φ − sin(arg(x)− |S|/2)|x|)2

if α ∈ [0, |S|/2],
(φ − cos(arg(x)− |S|/2)|x|)2

+ (tan(α − |S|/2)φ − sin(arg(x)− |S|/2)|x|)2

if α ∈ (|S|/2, π].
(33)

Its derivative can be computed explicitly as

f ′(α) =



−2 sin(arg(x)− α)|x|φ
if α ∈ [0, |S|/2],

(tan(α − |S|/2)φ − sin(arg(x)− |S|/2)|x|)
× sec(α − |S|/2)2φ

if α ∈ (|S|/2, π].

(34)

We now proceed to prove the lemma. Since we will lever-
age Theorem 1 we will consider two cases.
Case |S| > π : By Theorem 1 we deduce mS,φ,x = +∞

if φ < 0 and thus without loss we assume φ ≥ 0. It follows
that mS,φ,x = inf{|v(φ, α) − x|2 : α}. Both (32) and the
assumption that arg(x) ≥ 0 imply we have to minimize f
over [0, π]. From (34) we deduce that a global minimum
is attained at α = arg(x) when arg(x) ∈ S. In contrast,
when arg(x) /∈ S the objective is decreasing at α = |S|/2.
In particular, the objective decreases until term corresponding
to the imaginary part in (33) is zero or when α = π . In other
words, the minimum is attained at

α = min
{
π,
|S|
2
+ tan−1

(
|x|
φ

sin
(
arg(x)−

|S|
2

))}
= π ∧ γS,x(φ).

Remarkwhenφ � 1 the term corresponding to the imaginary
part will vanish, whereas for φ � 1 the optimum will be
attained at α = π . We can summarize these results as

mS,φ,x =



(φ − |x|)2

if arg(x) ∈ S,
(φ − |x| cos ηS (arg(x)))2

if arg(x) /∈ S, γS,φ,x ≤ π − |S|/2,
(φ − |x| cos ηS (arg(x)))2

+ (− tan(|S|/2)φ − |x| sin ηS (arg(x)))2

if arg(x) /∈ S, γS,φ,x > π − |S|/2.

where we used the fact that tan(π − |S|/2) = − tan(|S|/2).
Since tan(|S|/2) < 0 we can write this succinctly as

mS,φ,x = (φ − |x| cos ηS (arg(x)))2

+ (|x| sin ηS (arg(x))− φ| tan(|S|/2)|)2+
= q+S,x(φ).

Case |S| ≤ π : Consider φ > 0 first. By Theorem 1
we deduce mS,φ,x = inf{|v(φ, α) − x| : |ηS (α)| < π/2}.

The decomposition (32) holds, and we are led to minimize f
over the interval [0, π/2+ |S|/2). When arg(x) ∈ S the min-
imum is attained at α = arg(x). In contrast, when arg(x) /∈ S
the tangent in (33) diverges as α → π/2 + |S|/2 and the
term corresponding to the imaginary part always vanishes.
In particular, the minimum is attained at

α =
|S|
2
+ tan−1

(
|x|
φ

sin
(
arg(x)−

|S|
2

))
= γS,x(φ).

Hence

mS,φ,x = (φ − |x| cos ηS (arg(x)))2

for φ > 0.
Consider φ < 0 now. By Theorem 1 we have mS,φ,x =

inf{|v(φ, α)− x| : |ηS (α)| > π/2}. In this case we need to to
minimize f over the interval (π/2 + |S|/2, π]; in particular,
α /∈ S. To simplify the exposition we use the change of
variables α = |S|/2 + π/2 + β with β ∈ (0, π/2 − |S|/2].
This allows us to write ηS (α) = α−|S|/2 = β+π/2 whence

tan(α − |S|/2) = tan(β + π/2) = − tan(π/2− β).

Therefore, we can rewrite (32) as

f (β) = (φ − cos(arg(x)− |S|/2)|x|)2

+ (tan(π/2− β)|φ| − sin(arg(x)− |S|/2)|x|)2 .

Similar arguments as those used previously prove the mini-
mum is attained at

β =
π

2
+min

{
−
|S|
2
,− tan−1

(
|x|
|φ|

sin
(
arg(x)−

|S|
2

))}
=
π

2
+min

{
−
|S|
2
, tan−1

(
|x|
φ

sin
(
arg(x)−

|S|
2

))}
=
π

2
+min

{
−
|S|
2
,−
|S|
2
+ γS,x(φ)

}
,

where we used the fact that the arctangent is odd and φ =
−|φ|. Consequently,

α = π + 0 ∧ γS,x(φ). (35)

We can summarize these results as follows

mS,φ,x : = (φ − |x| cos ηS (arg(x)))2

+ (− tan(|S|/2)φ − |x| sin ηS (arg(x)))2

× I(φ < 0, γS,x(φ) > 0)

where we have once again used the fact that tan(π−|S|/2) =
− tan(|S|/2). Since in this case tan(|S|/2) > 0 we can write
this succinctly as

mS,φ,x = (φ − |x| cos ηS (arg(x)))2

+ (−|x| sin ηS (arg(x))− φ| tan(|S|/2)|)2+
= q+S,x(φ).

The case φ = 0 is obtained by continuity. This proves the
lemma. �
We can now prove Theorem 3.
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Proof of Theorem 3: Fix x ∈ Rn. Since

82(z) = φ ⇔ ∀ k ∈ {1, . . . , n} : ϕSk (zk ) = φk

we deduce

inf{‖z− φ‖22 : 82(z) = φ}

=

∑
k
inf{|zk − xk |2 : ϕSk (zk ) = φk}.

By Lemma 4, the k-th term on the right-hand side is equal to
qSk ,xk (φk ). This proves the theorem. �
To prove Theorem 4 we need an additional auxiliary

lemma.
Lemma 5: Let mS,φ,x be defined as in Lemma 4 and sup-

pose that φ ≥ 0 if |S| ≤ π . Then

mS,φ,x = |v(φ, αS,x(φ))− x|2.
Proof of Lemma 5: The proof relies heavily on the proof

of Lemma 4. As in that proof, we will assume that x ∈ C is
such that arg(x) ≥ 0; the results for arg(x) < 0 can be found
by complex conjugation.

To prove the lemma, it suffices to show that αS,x(φ) coin-
cides with the minimizer of f over [0, π] where f is defined
in (32) or, equivalently, in (33). We treat the cases separately,
referencing the relevant steps in the proof of Lemma 4.
Case |S| > π : By hypothesis φ ≥ 0 and therefore the

infimum is attained. The minimizer is α? = arg(x) if arg(x) ∈
S and, from (9), the minimizer is α? = π ∧ γS,x(φ) for
arg(x) /∈ S. This coincides with αS,x(φ).
Case |S| ≤ π : Suppose φ ≥ 0 first. Once again, the min-

imizer is α? = arg(x) if arg(x) ∈ S. When arg(x) /∈ S
we deduce from (10) that the minimizer is α? = γS,x(φ).
However, in this case γS,x(φ) ≤ π always, and thus α? =
γS,x(φ) = π ∧ γS,x(φ). This coincides with αS,x(φ).
When φ < 0 the minimum is attained at α? = π + 0 ∧

γS,x(φ). This also coincides with αS,x(φ). When φ < 0 the
minimum is attained at α? = π + 0 ∧ γS,x(φ), which also
coincides with αS,x(φ), proving the lemma. �
Proof of Theorem 4: First remark that φ = 0 is feasible

for (17). Consequently, if φ? is an optimal solution to (17)
then φ?k ≥ 0 if |Sk | > π . Let z? be as in the statement of the
theorem, and remark that

inf{‖z− φ‖22 : 82(z) = φ
?
}

=

∑
k
inf{|zk − xk |2 : ϕSk (zk ) = φ

?
k }

=

∑
k
|v(φ?k , αSk ,xk (φ

?
k ))− xk |

2

=

∑
k
|z?k − xk |

2
= ‖z? − x‖22,

where we used Lemma 5. Consequently, (z?,φ?) is an optimal
solution to (16). This proves the theorem. �

F. PROOF OF THEOREM 5
Since the feasible set of (18) is a subset of that of (20) we
deduce that the optimal value of (18) is at most that of (20).
We now show they are indeed equal.

Let (z,φ+,φ−) be an optimal solution to (20). Define φ̄
+

and φ̄
−
as

φ̄±k = ϕSk (±zk ) ⇒ φ̄±k ≤ φ
±

k .

Then (z, φ̄
+
, φ̄
−
) is feasible for (20). By construction

(±zk , φ̄
±

k ) ∈ KSk and∑
k: ak≥0

|ak |φ̄
+

k +
∑

k: ak≤0
|ak |φ̄

−

k ≤ 1.

Consequently, it is also an optimal solution to (20). However,
this implies z is feasible for (18). Since the objective is the
same, we conclude the optimal value of (20) is equal to that
of (18). This proves the theorem.

G. PROOF OF THEOREM 6
The proofs of Theorem 6 and Theorem 8 rely on the following
auxiliary lemma.
Lemma 6: Let a, b, c, λ, µ ∈ R with λ, ν > 0 and define

f (ξ ) = (ξ − a)2 + λ(b− ξ )2+ + ν(ξ − c)
2
+.

Then f attains its global minimum over R at

ξ0(a, b, c, λ, ν)

:=


a+ λb
1+ λ

a ≤ b ∧ c,

aI{b < c} +
a+ λb+ νc
1+ λ+ ν

I{c>b} b ∧ c<a<b∨c,
a+ νc
1+ ν

b ∨ c ≤ a.

(36)
Proof of Lemma 6: First remark that f is bounded below

and strongly convex. Therefore, it has a unique global mini-
mizer. Since it is also differentiable, it suffices to consider the
first-order optimality condition

f ′(ξ ) = 2(ξ − a)− 2λ(b− ξ )+ + 2ν(ξ − c)+ = 0.

We need to distinguish two cases. If b ≤ c we have that

f ′(ξ ) =


2(1+ λ)ξ − 2(a+ λb) ξ ≤ b,
2ξ − 2a b < ξ < c,
2(1+ ν)ξ − 2(a+ νc) c < ξ.

The root of the derivative belongs to one of the intervals.
Therefore, the root is

ξ0 =


a+ λb
1+ λ

a ≤ b,

a b < a < c,
a+ νc
1+ ν

c ≥ a.

When b > c the derivative becomes

f ′(ξ ) =


2(1+ λ)ξ − 2(a+ λb) ξ ≤ c,
2(1+ λ+ ν)ξ − 2(a+ λb+ νc) c < ξ < b,
2(1+ ν)ξ − 2(a+ νc) b < ξ.
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and the root is characterized by

ξ0 =


a+ λb
1+ λ

a ≤ c,

a+ λb+ νc
1+ λ+ ν

b < a < c,
a+ νc
1+ ν

b ≥ a.

Comparing both expressions to (36) proves the lemma. �
With this auxiliary lemma, wewill proceed to prove a result

that is slightlymore general than Theorem 6. In fact, let s > 0.
We will characterize the unique minimizer to

minimize
z,t

|z− z0|2 + (t − t0)2

subject to ϕS (z) ≤ st. (37)

Theorem 6 will follow by replacing s = 1 in our results.
By Lemma 4

inf{|z− z0|2 : ϕS (z) = φ} = q+S,z0 (φ)

and consequently we can perform partial minimization with
respect to z in (37) to deduce it is equivalent to

minimize
φ,t

q+S,z0 (φ)+ (t − t0)2

subject to φ ≤ st.

By performing partial minimization over t we obtain the
equivalent unconstrained problem

minimize
φ

qS,z0 (φ)+ (s−1φ − t0)2+. (38)

The first term in the objective depends on whether |S| > π

or |S| ≤ π . We consider two cases separately. To simplify
notation, we define the auxiliary variables c0 := ReHS (z0),
s0 := ImHS (z0).
Case |S| > π: In this case (38) becomes

minimize
φ≥0

(φ − c0)+ (|s0| − τSφ)2+ + s
−1(φ−st0)2+.

We can apply Lemma 6 with a = c0, b = |s0|/τS , c = st0 and
λ = τS , ν = 1/s to deduce the minimizer is the maximum
between ξ0(a, b, c, λ, ν) or 0. When s = 1 we obtain the form
of φ0 in Theorem 6.
Case |S| > π: In this case (38) becomes

minimize
φ

(φ − c0)+ (−|s0| − τSφ)2+ + s
−1(φ−st0)2+.

Since the problem is unconstrained, it suffices to apply
Lemma 6 with a = c0, b = −|s0|/τS , c = st0 and λ = τS ,
ν = 1/s to obtain the form of φ0 when s = 1.
In both cases we can recover the optimal variables (z?, t?)

to (37) as follows. First,

t? = t0 ∨ φ0.

To recover z? we need to apply the same arguments used to
prove Lemma 5, whence

z? = v(φ0, αS,z0 (φ0)).

This proves the theorem.

H. PROOF OF THEOREM 8
To evaluate the proximal operator at (z0, t0) we need to find
the unique minimizer to

minimize
z,t

|z− x|2 +
1
2µ
|z− z0|2 +

1
2µ

(t − t0)2

subject to ϕS (z) ≤ t.

Observe we can write

|z− x|2 +
1
2µ
|z− z0|2 =

1
2λ
|z− y|2 + C

where C is independent of z and t , λ = µ/(1 + 2µ) and
y = x + (λ/µ)z0. Using the change of variables t =

√
µ/λ t ′

we deduce we need to find the unique minimizer to

minimize
z,t ′

|z− y|2 + (t ′ −
√
λ/µt0)2

subject to ϕS (z) ≤
√
µ/λt ′.

The same arguments in the proof of Theorem 6 can be applied
in this case with s =

√
µ/λ. This is precisely the definition

of φ0 in Theorem 8. To recover t? it suffices to compute

t? =
√
µ/λ(φ0 ∨

√
λ/µt0) = t0 ∨ (

√
µ/λφ0).

This proves the theorem.
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