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define carbon/nitrogen-responsive molecular machines in
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Abstract

Background: Carbon (C) and nitrogen (N) metabolites can regulate gene expression in
Arabidopsis thaliana. Here, we use multinetwork analysis of microarray data to identify molecular
networks regulated by C and N in the Arabidopsis root system.

Results: We used the Arabidopsis whole genome Affymetrix gene chip to explore global gene
expression responses in plants exposed transiently to a matrix of C and N treatments. We used
ANOVA analysis to define quantitative models of regulation for all detected genes. Our results
suggest that about half of the Arabidopsis transcriptome is regulated by C, N or CN interactions.
We found ample evidence for interactions between C and N that include genes involved in
metabolic pathways, protein degradation and auxin signaling. To provide a global, yet detailed, view
of how the cell molecular network is adjusted in response to the CN treatments, we constructed
a qualitative multinetwork model of the Arabidopsis metabolic and regulatory molecular network,
including 6,176 genes, 1,459 metabolites and 230,900 interactions among them. We integrated the
quantitative models of CN gene regulation with the wiring diagram in the multinetwork, and
identified specific interacting genes in biological modules that respond to C, N or CN treatments.

Conclusion: Our results indicate that CN regulation occurs at multiple levels, including potential
post-transcriptional control by microRNAs. The network analysis of our systematic dataset of CN
treatments indicates that CN sensing is a mechanism that coordinates the global and coordinated
regulation of specific sets of molecular machines in the plant cell.
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Background

Integrating carbon (C) and nitrogen (IN) metabolism is essen-
tial for the growth and development of living organisms. In
addition to their essential roles as macronutrients, both C and
N metabolites can act as signals that influence many cellular
processes through regulation of gene expression in plants [1-
6] and other organisms (for example, [7,8]). In plants, C and
N metabolites can regulate developmental processes such as
flowering time [9] and root architecture [10], as well as sev-
eral metabolic pathways, including N assimilation and amino
acid synthesis (for example, [11,12]). Previous microarray
studies from our group and others have identified many genes
whose expression changes in response to transient treat-
ments with nitrate [2,13,14], sucrose [5,15] or nitrate plus
sucrose [16,17] in Arabidopsis seedlings. Addition of nitrate
to N-starved plants causes a rapid increase in the expression
of genes involved in nitrate uptake and reduction, production
of energy and organic acid skeletons, iron transport and sul-
fate uptake/reduction [2,13]. These changes in gene expres-
sion preceded the increase in levels of metabolites such as
amino acids, indicating that changes in mRNA levels are bio-
logically relevant for metabolite levels, if a time delay is intro-
duced [13]. Using a nitrate reductase (NR-null) mutant,
Wang et al. [14] showed that genes that respond directly to
nitrate as a signal were involved in metabolic pathways such
as glycolysis and gluconeogenesis [14]. Separately, sugars,
including glucose and sucrose, have been shown to modulate
the expression of genes involved in various aspects of metab-
olism, signal transduction, metabolite transport and stress
responses [5,15].

These studies confirm the existence of a complex CN-respon-
sive gene network in plants, and suggest that the balance
between C and N rather than the presence of one metabolite
affects global gene expression. However, despite the exten-
sive collection of biological processes regulated by N or C, to
date, none of these studies have addressed the possible mech-
anisms underlying CN sensing, nor the interdependence of
the CN responses in a network context. In this study, we use a
systematic experimental space of CN treatments to determine
how C and N metabolites interact to regulate gene expression.
In addition, we provide a global view of how gene networks
are modulated in response to CN sensing. For the latter, we
created the first qualitative network model of known meta-
bolic and regulatory interactions in plants to analyze the
microarray data from a gene network perspective. The combi-
nation of quantitative models describing the gene expression
changes in response to the C and N inputs and qualitative
models of the plant cell gene responses allowed us to globally
identify a set of gene subnetworks affected by CN metabolites.

Results

A systematic test of CN interactions

Based on our current understanding of CN regulation, four
general mechanisms for the control of gene expression in
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response to C and N can be proposed: N responses independ-
ent of C; C responses independent of N; C and N interactions;
or a unified CN response (Figure 1a). To support or reject
these modes of control by C and N metabolites, we designed
an experimental space that systematically covers a matrix of
Cand N conditions (Figure 1b). Plants were grown hydropon-
ically in light/dark cycles (8/16 h) for 6 weeks, with 1 mM
nitrate as the N source and without exogenous C. They were
then transiently treated for 8 h with: 30, 60 or 90 mM of
sucrose; 5, 10 or 15 mM nitrate; and nine treatments in which
the C/N ratio was kept constant at 2/1, 6/1 or 18/1 with differ-
ent doses of CN (Figure 1b). Each C/N ratio treatment was
represented by 3 different CN treatments, using 30, 60 or 90
mM of sucrose and the corresponding concentrations of
nitrate.

We choose to focus on roots of mature plants for several rea-
sons. First, roots have been shown to have a more robust
response to nitrogen compared to shoots in Arabidopsis [2].
Second, previous global studies of CN treatments focused on
gene responses in Arabidopsis seedlings, which consist
mostly of shoot tissue [5,16]. In contrast, the coordination of
C and N sensing and metabolism in the heterotrophic root
system (which is a C sink and an N source) is an important
response, but the mechanism of control is largely unknown.
Finally, the largest proportion of uncharacterized Arabidop-
sis genes is preferentially expressed in roots (RA Gutiérrez,
unpublished results), offering the potential to discover new
CN-responsive genes.

Gene expression was evaluated using the Arabidopsis ATH1
whole genome array from Affymetrix. All experiments were
performed in duplicate, with the exception of the 0 mM
sucrose/0 mM nitrate experiment, which was performed four
times. RNA samples obtained from the roots in each of the 16
treatments were used to hybridize ATH1 chips. Each hybridi-
zation was analyzed using Microarray Suite Software version
5.0 (MAS v5.0) software and custom made S-PLUS [18] func-
tions. We used quantitative PCR (Q-PCR) to verify the
responses of six selected genes representative of different
responses to CN. The 6 genes were tested under 4 different
conditions: omM C,0o mM N; 30 mM C,omM N; omM C, 5
mM N; 30 mM C, 5 mM N. All genes exhibited comparable
responses in Q-PCR experiments and microarray data, with a
median correlation coefficient when comparing Q-PCR and
microarray data of 0.97.

Hierarchical clustering distinguishes C-, CN- and N-
responsive genes in Arabidopsis roots

To evaluate the global impact of the different C and N treat-
ments on gene expression in Arabidopsis roots, we used
unsupervised hierarchical clustering. Figure 2a shows a den-
drogram representation of the relationships among the
experiments based on these global genome responses. C, N,
and CN treatments clustered together and separately from
each other, indicating that global genome-wide responses to

Genome Biology 2007, 8:R7



http://genomebiology.com/2007/8/1/R7 Genome Biology 2007,  Volume 8, Issue |, Article R7 Gutiérrez et al.

(a) (b) CN=18 6 2
= o
= =
Independent Independent Interacting Unified [ [S
o 60 o 60
N C N C N/C 3 g
) )
1 o o
mescien ]| & 3
! 1 !
0 0
M v 0 5 10 15 0 10 20 30 40 50
Regulation  Regulation Regulation Regulation
NO, (mM) NO, (mM)
Figure |

Experimental design to investigate C and N interactions. (a) Hypothetical models to explain regulation by C and N metabolites. The four possible models
of gene expression response to N and C treatments are illustrated. Model | (N independent of C) represents genes that are regulated by N in a manner
that is independent of the amount of C present. Model 2 (C independent of N) is equivalent to model | but for C. Model 3 represents different types of
interactions between C and N. Model 4 represents regulation by the ratio of C/N. In this case, neither C nor N can affect gene expression. Regulation

according to all models could be positive or negative, but only positive examples are depicted. (b) Systematic experimental space to investigate C and N
interactions. To investigate gene responses to C and N, we used experiments where plants were exposed to C, N or C+N. The graphs summarize the

experiments carried out. Each point in the graphs corresponds to one experiment. The x-axis indicates the concentration of nitrate used (nitrogen source)

in the experiment. The y-axis indicates the concentration of sucrose used (carbon source) in the experiment. For example, points on the x-axis
correspond to experiments in which plants were treated with nitrate in the absence of sucrose.

C, N and CN treatments in roots are distinct. The CN treat-
ment experiments were highly correlated with each other,
and clustered together regardless of the CN dose or C/N ratio
(Figure 2a).

To analyze the responses of specific gene sets, we carried out
a similar cluster analysis on the C-, N-, and CN-responsive
genes. Gene clusters with a correlation greater than 0.5 were
selected for further examination. Figure 2b shows scatter
plots with the average expression of all genes in three repre-
sentative clusters. Cluster 1 contains 31 genes that had com-
parable responses in the C and CN treatments, and did not
respond to N treatments, suggestive of C-only regulation.
Cluster 9 corresponds to 112 genes that were induced only in
the CN treatments, suggesting regulation by a CN signal. The
133 genes in cluster 80 were repressed by C, induced by N,
and more strongly induced when both C and N were present,
suggesting interactions between the responses elicited by C
and N metabolites. We found no genome-wide evidence to
support the hypothesis that the C/N ratio regulates expres-
sion of gene sets under our treatment conditions using either
clustering or other statistical methods (data not shown).
However, it was clear that N does have a significant interac-
tion with C in regulating genome-wide expression, as many
genes were found to respond to N in a C-dependent manner
(or vice versa), as exemplified by the genes in cluster 9 and
cluster 80 (Figure 2b). In fact, the average expression pattern
of many clusters identified showed statistically significant CN
interactions as determined by the analysis of variance (AOV p
< 0.01), suggesting that model 3 (C and N interactions; Figure
1a) is a prominent mode of regulation in response to C and N
treatments in plants.

A catalogue of molecular responses and interactions
between C and N

The clustering analysis above suggested different modes of
regulation in response to CN. It also suggested that genome-
wide responses to sucrose and nitrate treatments in Arabi-
dopsis roots presented three main features: extensive CN
interactions; an all-or-nothing response due to the presence
of one or both C and N metabolites; and possible CN dose
effects. To investigate these hypotheses for the mechanism of
CN sensing further, and to classify individual genes based on
their response to the treatments, we used AOV to identify the
main effects of sucrose and/or nitrate as well as the interac-
tion between these two signals in regulating gene expression.
We used regression analysis (LM) to investigate dose depend-
ence. It is important to note that AOV or LM approaches take
advantage of all data points simultaneously. As a conse-
quence, our conclusions are more statistically sound than
most published microarray results with the Affymetrix plat-
form, which compare two conditions with two to three repli-
cates each.

We found that LM equations did not adequately capture the
variability in the data. Determination coefficients (share of
explained variability) from the LM fits including individual
terms, interaction and second order effects were generally
low. In addition, AOV on the residuals of the LM analysis
found many genes with significant responses to C, N or CN
(data not shown). Instead, we found that AOV analysis was
sufficient to explain most of the variability in the data and,
consistent with this, LM analysis on the AOV residuals failed
to detect any significant coefficient indicative of dose effect.
These results suggest that, in the treatments tested, genes fol-

Genome Biology 2007, 8:R7

R7.3

-
o,
o
]
o
o
[=§
]
o
w
[]
Y
5
fal
=




R7.4 Genome Biology 2007,

Volume 8, Issue |, Article R7 Gutiérrez et al.

http://genomebiology.com/2007/8/1/R7

0_ = o Cluster 1(n=31; Corr=0.50)
s 2
g 560,
~ 69085,808" 9~°‘?°°c°:¢'°‘c9c°6
3
g © e
©_| -
S = -~
g
i}
= a
[ ~ o
O 57 —~ N Cluster 9(n=112; Corr=0.50)
- [e)
(4] ’7 = -
TS = 0Q969%5,9, 0 o0 s
e N o o200 °0 Y eqn
S g— o > 6
Q z =
@) 3 S i\
O o ()
» Zz ) =
>~ ° o < z =
© o o Z2 o - o =z o
- z to) O wwy 9= — Cluster 80(n=133; Corr=0.53)
~ >~ o =2 Z2 ~ 1 =z - Z2 0O 8 —
2838353 @Zz e S oo NN Z3 2
[SINe] 08 8 w OSs<ZSTowd®ooww ool o 0O c - 5409060
(=3 z ® ® <% < z Z Z = 0500000500009
e- ©0 5,2 88gszz22222=2<< o ~ 2000 o N e®
- Z =3 6 g < < N = ) N o } o
-~ Z® O 9 Q S 0909 @ @8 S
o = O © 0 © © O N O O =2 !
» o o O o O O O = - 9% 00
(SR g '
i}
2 o
I E—
C only C+N N only o cin N
Treatments
Figure 2

Unsupervised hierarchical clustering analysis suggests various modes of regulation by CN. (a) Hierarchical clustering distinguishes three main responses: C
alone, N alone and C+N. (b) Hierarchical clustering of the gene expression patterns reveals different modes of regulation. Three representative gene
expression patterns in response to the CN treatments are shown. The mean expression * 95% confidence interval of the mean for all genes in the cluster

is plotted.

lowed an 'all-or-nothing' mode of regulation in response to
the C and N treatments. Importantly, AOV allowed us to
assign quantitative models that characterize the response of
each Arabidopsis gene to C and N (Table 1). For a graphical
representation of the patterns see Figure S1in Additional data
file 2. A complete list of the results can be found in Additional
data file 1.

AOV analysis identified 5,341 out of 14,462 detected mRNAs
as responding to C and/or N at a 5% false discovery rate.
Using this analysis, we found genome-wide support for mod-
els 1, 2 and 3 (Figure 1a, Table 1). The largest proportion of
genes followed model 2 (C independent of N). By contrast, a
comparatively small number of genes responded according to
model 1 (N independent of C). The second largest group of
genes responded according to variations of model 3 (CN
interaction). We found no evidence for model 4 (united or N/
C ratio regulation). Consistent with previous findings in Ara-
bidopsis seedlings, which consist of mostly shoot tissue
[6,16], our analysis suggests that CN or a metabolite product
of CN assimilation (for example, an amino acid) may act as a
signal to control gene expression in mature Arabidopsis
roots.

Interactions between C and N extend beyond
metabolism

To understand the biological significance of the responses to
CN treatments, we analyzed the frequency of functional anno-
tations in lists of genes using the BioMaps tool (see Materials
and methods). Interestingly, genes regulated by different CN
sensing mechanisms (models 1, 2 and 3) showed overlapping
functional annotations (Figure 3). That is, the same biological
process, for example, protein synthesis, contained genes reg-
ulated according to multiple models of CN response. This
observation suggests that C and N interact not only at the
level of gene expression but also functionally in Arabidopsis.
Primary and secondary metabolism and energy were predom-
inant biological functions regulated by CN as follows. Genes
involved in carbohydrate, nucleotide and amino acid metabo-
lism were induced by C independent of N (model 2). In con-
trast, N independent of C (model 1) was shown to repress
genes involved in secondary metabolism. C and N interacted
(model 3) to control the expression of over 200 genes
involved in various aspects of primary metabolism, including
glycolysis/gluconeogenesis and the pentose-phosphate path-
way, among others. In addition to metabolism, other aspects
of cellular function, such as protein synthesis, protein degra-
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Different modes of regulation in response to CN

Mode of regulation Number of genes Model
No response 9,121 NA

-N independent 445 |

+N independent 319 |

-C independent 1,461 2

+C independent 1,104 2

+C 331 3

-C 157 3
+CN 152 3
-C-CN-N 103 3
-CN 8l 3

+N 76 3
-C-N 71 3

-N 49 3
--C-CN 40 3

+C +N 33 3
++C +CN 28 3
++CN +N 20 3
-CN +N 17 3

+C -CN 16 3
++C +CN +N I5 3

-C +CN 9 3
-C-CN +N 5 3
--CN -N 2 3
+C-CN-N 2 3
+CN -N | 3

-C +CN +N | 3

Int 337 3

+C (+C-N) -N 60 3 (additive)
-C (-C-N) -N 136 3 (additive)
+C (+C+N) +N 172 3 (additive)
-C (-C+N) +N 98 3 (additive)

Combinations of letters and plus or minus signs denote the effect of the inputs on regulation of gene expression (for example, +C indicates induction
in treatments with carbon). The number of plus or minus signs indicates relative strength of induction (or repression). For model 3, response is
observed only for those conditions indicated. For example, +C in model 3 indicates induction in treatments with carbon only and no response for
C+N or N treatments. The last four rows of the table contain patterns of additive interactions between C and N. For these patterns of regulation,
expression of genes in the C+N treatments was equivalent to adding the expression level in the C-only and the N-only treatments. For a graphical
representation of the patterns see Figure S| (in Additional data file 2). Int, interaction term was found significant by ANOVA analysis but small
differences in gene expression between treatments precluded classification by post hoc analysis. This group was not analyzed further.

dation, protein targeting and regulation of protein activity,
were also over-represented among genes modulated in
response to the CN treatments. For example, 193 genes
related to protein synthesis and 274 genes involved in protein
fate (for example, protein folding, sorting and degradation)
were induced by C independent of N (model 2). In addition,
77 other genes related to protein synthesis were induced by a
synergistic or additive interaction between C and N (model
3).

Using a qualitative network model to identify
biomodules controlled by C, N and CN interactions
To gain a global, yet detailed, understanding of how the dif-
ferent modes of CN regulation identified above impact molec-
ular processes in the plant cell, we developed a multinetwork
tool to integrate information for gene interactions based on a
variety of data, including: Arabidopsis metabolic pathways;
known protein-protein, protein-DNA, and miRNA-RNA
interactions; and predicted protein-protein and protein-DNA
interactions (described in legend to Figure S2 in Additional
data file 2). As a first step towards a molecular wiring diagram
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Regulatio onal te P-value
PROTEIN SYNTHESIS (193) 2.1E-31
ribosome biogenesis (193) 2.2E-44
L_ribosomal proteins (104) 6.4E-43
translation (97) 7.6E-24
SUBCELLULAR LOCALISATION (683) 2.1E-15
cytoplasm (305) 2.9E-24
mitochondrion (165) 3.8E-21
endoplasmic reticulum (94) 2.1E-13
ENERGY (141) 1.1E-08
glycolysis and gluconeogenesis (41) 41E-11
Elricarboxylic-acid pathway (16) 5.4E-03
electron transport and membrane-associated energy conservation (66) 8.1E-05
L_accessory proteins of electron transport and membrane-associated energy conservation (23) 4.4E-03
METABOLISM
[—nucleotide metabolism (65) 2.2E-03
L purine nucleotide anabolism (13) 7.0E-03
{— —amino acid biosynthesis (56) 5.1E-03
. L—C-compound and carbohydrate metabolism (157) 7.1E-04
— +C Independem of N (1 104) LC»cgmpound and carb):)hydrate utilization (135) 1.2E-07
< CELL FATE (219) 2.6E-07
3 L_ cell differentiation (174) 8.5E-09
C PROTEIN FATE (274) 2.0E-04
8_ {— —cytoplasmic and nuclear degradation (28) 1.0E-03
(o) L_proteasomal degradation (22) 1.9E-05
© {—assembly of protein complexes (63) 6.9E-05
£ {—protein folding and stabilization (58) 1.6E-05
L_protein targeting, sorting and translocation (95) 4.2E-03
PROTEIN ACTIVITY REGULATION (81) 7.3E-05
mechanism of regulation (57) 2.4E-06
Lbinding / dissociation (50) 2.7E-06
target of regulation (66) 3.5E-03
L_other target of regulation (25) 2.9E-07
PROTEIN WITH BINDING FUNCTION OR COFACTOR REQUIREMENT (410) 5.6E-03
L _RNA binding (59) 9.9E-10
DEVELOPMENT
L_animal development (164) 9.7E-05
PROTEIN FATE (345) 1.2E-03
f L_protein modification (1 1.5E-
-Cindependent of N (1461) CRLL 'Ie'YPEofongLo\S/(xT?g)N oo
L__pigment cell (6 4.9E-03
METABOLISM (155) 9.9E-04
: L_secondary metabolism (52) 8.8E-03
-Nindependent of C  (445) TRANSPORT FACILITATION
L__ __sodium driven symporter (6) 5.8E-03
METABOLISM (134) 1.7E-07
C-compound and carbohydrate metabolism (66) 6.1E-06
L(ﬁcompound and carbohydrate utilization (47) 1.1E-03
C-compound, carbohydrate anabolism (22) 2.7E-03
+C <331 ) L_polysaccharide biosynthesis (13) 4.7E-03
) — — biosynthesis of nonprotein amino acids (7) 1.3E-03
= CELL RESCUE, DEFENSE AND VIRULENCE
B L —other detoxification (8) 5.8E-03
8 PROTEIN SYNTHESIS (44) 2.2E-14
(o)} ribosome biogenesis (37) 1.7E-29
S t L_ribosomal proteins (35) 1.4E-28
c translation (39) 5.1E-19
S SUBCELLULAR LOCALISATION (99) 9.1E-03
i) +CN (152) tcytoplasm (60) 7.3E-11
w mitochondrion (27) 3.5E-04
e') PROTEIN FATE
(o) L_assembly of protein complexes (15) 5.3E-03
g PROTEIN WITH BINDING FUNCTION OR COFACTOR REQUIREMENT
0 RNA binding (18) 1.8E-07
~ 'C N 71 PROTEIN WITH BINDING FUNCTION OR COFACTOR REQUIREMENT
S (71) L_RNA binding (8) 6.8E-03
e ENERGY
% L_pentose-phosphate pathway (3) 4.0E-03
5 ++CN +N (20) L_pentose-phosphate pathway oxidative branch (2) 2.3E-03
= PROTEIN WITH BINDING FUNCTION OR COFACTOR REQUIREMENT
£ L_complex cofactor binding (4) 3.7E-03
REGULATION OF INTERACTION WITH CELLULAR ENVIRONMENT
-CN (81) L_membrane excitability (8) 9.6E-03
Lsxnagtic transmission (8) 7.1E-03
PROTEIN SYNTHESIS (33) 1.7E-05
ribosome biogenesis (16) 1.4E-05
i L_ribosomal proteins (15) 2.1E-05
= translation (24) 1.6E-05
= SUBCELLULAR LOCALISATION
3 +C (+C+N) +N (172) tcytoplasm (54) 1.9E-05
I mitochondrion (29) 5.8E-04
~ ENERGY (30) 1.3E-03
g L_glycolysis and gluconeogenesis (10) 1.5E-03
=1 L _regulation of respiration (4) 9.2E-03
S L_aerobic respiration (7) 9.7E-03
E METABOLISM (29) 7.7E-03
— C-compound and carbohydrate metabolism (17) 3.9E-03
£ +C (+C-N) -N (60) L_C-compound and carbyohydrate utilization (17) 4.7E-05
ENERGY (14) 6.6E-03
Figure 3

C, N and CN regulation of metabolism and other cellular processes. The number in parenthesis next to each MIPS functional term indicates the number of
genes annotated to that term. Categories in gray are not significantly over-represented, but are provided to facilitate data interpretation. The 'Regulation’
column shows patterns of regulation as described in Table |.
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Arabidopsis subnetwork controlled by C, N or CN. The different genes and
functional associations between them were uniquely labeled and combined
into a single network graph. Protein-coding genes, miRNAs, or
metabolites are represented as nodes, and color and shapes have been
assigned to differentiate them according to function. Edges connecting the
nodes represent the different types of biological associations (for example,
enzymatic reaction, transport, protein-protein interaction, protein-DNA
interaction) and are colored and labeled accordingly. The current version
of this Arabidopsis multinetwork includes 6,176 Arabidopsis genes, 1,459
metabolites (7,635 total nodes) and 230,900 total interactions (edges). We
used the open-source Cytoscape software [32] to visualize and query the
molecular network for attributes of interest. We used these integrated
data as a scaffold on which to analyze the various modes of regulation
described above. Because all connections in the network are labeled, the
evidence connecting any two nodes or subregions in the network can be
readily evaluated. Bold lines represent clusters identified using Antipole
(see text for more details). See Figure S3 (in Additional data file 2) for a
larger version of this figure.

of the plant cell, we integrated this information into a multi-
network to generate a qualitative model of the Arabidopsis
molecular network in which genes are connected by multiple
sources of evidence (Figure S2 in Additional data file 2). This
Arabidopsis multinetwork, which currently has 7,635 nodes
and 230,900 edges can be accessed from our accompanying
website [19] or through our new VirtualPlant system [20].

Figure 4 shows a 'bird's eye' view of the subnetwork generated
when we queried the global network described above with the
genes from Table 1 that respond to C, N or CN. Visual inspec-
tion of the resulting network graph revealed highly connected
regions, suggestive of protein complexes or highly connected

Genome Biology 2007, Volume 8, Issue |, Article R7 Gutiérrez et al.

metabolic or signaling networks (small circles in Figure 4). To
address this hypothesis of subnetwork connectivity, we used
'Antipole’, a graph clustering algorithm that finds highly con-
nected regions in a network [21]. Some of the clusters identi-
fied by Antipole are shown with bold circles in Figure 4.
Functional analysis of these clusters (using BioMaps and
manual analysis of the gene descriptions) revealed that they
corresponded to molecular machines whose expression is
coordinated by C and N metabolites. This result indicates that
the qualitative network model that we have constructed to
summarize and integrate many different data types is a good
approximation for the molecular interactions as it is validated
by the association of biological components that work
together in the plant cell.

Consistent with the functional interaction described above,
genes with different models of response to CN were found
within the same clusters found by Antipole. For example,
many subunits of the 40S and 60S ribosome subunits were
induced by C independent of N and, in many instances, also
by C in interaction with N. Components of the proteasome
were induced by C independent of N, and also by C in interac-
tion with N. Other cellular processes controlled by C, N or CN
interactions included chromatin assembly (nucleosome),
RNA metabolism, membrane transport, actin cytoskeleton,
signal transduction and primary and secondary metabolism.
Thus, the network model described above allowed us to iden-
tify the metabolic and cellular molecular machines that are
interconnected to each other in the larger network and are
regulated by C, N or CN interactions.

CN-responsive regulatory subnetworks

Further analysis of the CN-regulated network enabled us to
identify regulatory gene subnetworks that include connected
transcription factors and other signaling components. Some
of the regulatory genes in the network found to be responsive
to the CN treatments include those encoding known regula-
tory factors crucial for controlling plant growth and develop-
ment, including: APETALA (At1g68690), CLAVATA1
(At3g49670), as well as several scarecrow-like transcription
factors. The CN-regulated network also included teosinte-
branched, cycloidea, PCNA factor (TCP) transcription factors
repressed by C independent of N (At3g47620, At1g58100), N-
independent of C (At4g18390) and CN interactions
(At1g53230) as well as one induced by C independent of N
(At2g30410). Therefore, and as previously proposed [22],
part of the coordinated response of the network of ribosomal
genes observed in our CN treatments could potentially be
mediated by these associated TCP transcription factors in the
gene network. Overall, we found 299 known or putative tran-
scription factors in the network that are regulated by C, N or
CN. These genes likely represent only a subset of the regula-
tory capacity observed to be responsive to the CN treatments
in this network. For example, we found a highly connected
subdomain of the network involved in signal transduction,
including putative receptors of unknown function, protein
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Table 2

Auxin regulatory subnetwork

Pattern PUB_LOCUS TIGR annotation

-N independent  At2g17500 Auxin efflux carrier family protein

-N independent  At5g01990 Auxin efflux carrier family protein

-N independent  Atlg23080 Auxin efflux carrier protein

-N independent  At2g01420 Auxin transport protein

-N independent  Atlg59750 Auxin-responsive factor (ARFI)

-N independent  Atlgl0940 Serine/threonine protein kinase, similar to serine/threonine-protein kinase ASK|

-N independent  Atlgl9850 Transcription factor MONOPTEROS (MP)/auxin-responsive protein (IAA24)/auxin response factor 5 (ARF5).
-C (-C-N) -N Atlg76520 Auxin efflux carrier family protein

-C (-C-N) -N At5g62000 Transcriptional factor B3 family protein/auxin-responsive factor.

-Cindependent  At2g33310 Auxin-responsive protein/indoleacetic acid-induced protein 13 (IAA13)

-C-CN-N Atlg51950 Auxin-responsive protein/indoleacetic acid-induced protein 18 (IAA18)

-C-N Atlg04550 Auxin-responsive protein/indoleacetic acid-induced protein 12 (IAA12)

-CN +N At3g62980 Transport inhibitor response | (TIRI) (FBLI) E3 ubiquitin ligase SCF complex F-box subunit
+N independent At3g23030 Auxin-responsive protein/indoleacetic acid-induced protein 2 (IAA2)

+C independent  Atlg73590 Auxin efflux carrier protein, putative (PINI) identical to putative auxin efflux carrier protein; AtPIN|
+C independent  At5g57090 Auxin transport protein (EIRI)

+C independent  At4g|4560 Auxin-responsive protein/indoleacetic acid-induced protein | (IAAI)

+C independent  Atlg04250 Auxin-responsive protein/indoleacetic acid-induced protein 17 (IAA17)

+C independent  Atlg04240 Auxin-responsive protein/indoleacetic acid-induced protein 3 (IAA3)

+C independent  At2g22670 Auxin-responsive protein/indoleacetic acid-induced protein 8 (IAA8)

kinases and protein phosphatases. In addition, we found 27
genes regulated in our experiments, and included in the net-
work, that are known targets of miRNAs. This result suggests
that miRNAs may play a role in post-transcriptional regula-
tion of gene expression in gene networks that respond to CN
metabolite signals in plants.

The network analysis also highlighted the role of plant hor-
mones in adjusting plant physiology to different CN regimes.
We found several regulatory subnetworks in the CN network,
in which factors involved in hormone responses are con-
nected by multiple edges, including protein-protein or pro-
tein-DNA interactions. One such subnetwork appears to be
involved in responses to auxin, as it contains 13 genes in the
auxin response pathway: 8 encoding indoleacetic acid-
induced proteins (IAAs; At4g14560, At1g04550, At2g33310,
At1g51950, At3g23030, At1g04240, At2g22670, At1g04250);
3 encoding auxin-responsive factors (ARFs; At5g62000,
Atig59750, At1g19850); the auxin receptor TIR1
(At3g62980); and ASK1 (At1g10940). In addition, 5 auxin
efflux carriers (Atig76520, At2g17500, At5g01990,
At1g73590, At1g23080) and 2 auxin transport proteins
(At5g57090, At2go1420) were found regulated in our experi-
ments, mostly repressed by N or CN (Table 2).

To verify the role of these genes in the CN response, we per-
formed time course analysis after C+N addition. Two week
old Arabidopsis plants grown hydroponically were exposed to
treatment (5 mM KNO, + 30 mM sucrose) or control (5 mM

KCl + 30 mM mannitol) conditions for 0.5, 1, 2, 4 and 8 h. We
used Q-PCR to monitor the mRNA levels of TIR1, two auxin-
response factors and two auxin efflux carriers. The Q-PCR
data at the 8 h time point were comparable to those obtained
by microarrays (Figure S4 in Additional data file 2). As shown
in Figure 5, the two auxin-response factors showed similar
response patterns, with a modest decrease by 8 h. Both auxin
efflux carriers were repressed by the C+N treatments, with
the lowest level of expression observed at 8 h. TTR1 mRNA
levels were also significantly repressed by C+N treatment at 8
h. TIR1 mRNA levels appeared to increase by 4 h, but t-test
failed to detect a significant induction at this time point (0.05
significance). These results confirm that the auxin pathway is
modulated by CN metabolites and suggest that the
phytohormone auxin acts as a regulator of plant growth in
response to C and/or N availability.

Discussion

In this study, we systematically address the interactions of C
and N signals in regulating gene networks by testing the effect
that the C background has on global N responses, and vice
versa. We tested a systematic experimental space of CN treat-
ments that allowed us to model a quantitative mechanism by
which C and N metabolites interact to regulate gene expres-
sion in Arabidopsis roots. The combination of quantitative
models describing the gene expression adjustments in
response to C and N inputs, with the analysis of microarray
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Figure 5

Time course of CN response for genes involved in the auxin response. We monitored the mRNA levels over time for five genes selected from Table 2.
We performed three biological replicates, each with a technical replicate. Each graph shows the average expression and standard error of the mean for at
least five data points. All mRNA levels were normalized to clathrin. Y-axis, average log2 (treatment/control); x-axis, time in hours. At2g|7500, auxin efflux
carrier family protein; Atlg59750, auxin-responsive factor (ARFI); Atlg76520, auxin efflux carrier family protein; At5g62000, transcriptional factor B3
family protein/auxin-responsive factor; At3g62980, transport inhibitor response | (TIRI).

data to generate qualitative models of plant gene networks,
allowed us to identify interconnected biomodules of meta-
bolic and cellular processes that are responsive to C and/or N
signals.

We used unsupervised clustering to explore the nature of the
CN responses in Arabidopsis roots. This analysis provided
the guidelines that were used for a more rigorous statistical
analysis. We found that AOV analysis was sufficient to explain
most of the variability in the expression data, and allowed us
to assign quantitative models that characterize the response
of each Arabidopsis gene to C and N. Importantly, many
genes previously identified as N or C responsive were found to
be regulated by some type of CN interaction in our study
(model 3). For example, a previous study identified 1,176
genes regulated in Arabidopsis roots in response to a 20 min
NO,-treatment [2]. Out of the 1,176 genes from that previous
nitrate study, 667 had reliable responses in our dataset, and
were assigned to a CN-regulatory model class as described in
the previous section. Of these 667 genes, we found 149 genes
(22%) to be exclusively N responsive in our treatment condi-

tions. By contrast, our study shows that 78% of the nitrate
inducible genes were in fact regulated by N interactions with
C. These genes include those encoding enzymes and trans-
porters associated with N assimilation functions, such as
nitrate transport and nitrate reduction. Therefore, a large
proportion of previously reported N-responsive genes may
exhibit modulation depending on the carbon background.
Similarly, we were able to assign a regulatory pattern for 523
genes of the 978 genes that were previously reported to be
regulated by C [17]. Of these 523 C-regulated genes, only 91
(17%) followed a 'C independent of N' mode of regulation in
our treatment conditions (model 2 in Figure 1a). Thus, our
data show for the first time that a large portion of the previ-
ously reported C-responsive genes (83%) may in fact respond
to C in interaction with N. In contrast, only 6 out the 2,565
genes found in our study to follow model 2 in our classifica-
tion method (C independent of N), were reported to be regu-
lated by CN in previous studies [13,14,17].

Our results indicate a major role for CN interactions, which is
a more prominent regulatory mechanism than previously
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suggested. In addition, they suggest that systematic experi-
mental designs that cover a large range of treatment condi-
tions not only allow one to infer quantitative models of gene
responses, but are also more effective at detecting gene regu-
lation than traditional approaches with only one treatment
and control. Overall, a combined total of 9,417 genes were
found to respond to C, N or CN in our study or at least one
other published experiment. This indicates that a much
greater portion of the Arabidopsis transcriptome is control-
led by C and/or N metabolites than previously thought.

Previous studies on individual genes suggested that the C/N
ratio may be an important signal for the control of gene
expression in plants [23]. The systematic experimental space
used in our study allowed us to evaluate the significance of C/
N ratio differences for the control of global gene expression in
Arabidopsis roots. For a gene to be regulated by the C/N
ratio, similar gene expression levels are expected whenever
the ratio is the same, regardless of the dose of the nutrient sig-
nals. Similarly, ratio-responsive genes would be expected to
exhibit different responses when the ratio is altered. We com-
pared the mRNA levels of genes at C/N ratios of 2/1, 6/1 and
18/1. Clustering, ANOVA and correlation analysis failed to
detect any significant ratio-dependent control of global gene
expression in our conditions (data not shown). This result
suggests that the C/N ratio model (model 4 in Figure 1) is
likely not a major regulatory mechanism, at least under the
conditions tested. Instead, our results are consistent with the
hypothesis that the ratio or balance between C and N is
sensed through C- and N-responsive pathways that intersect
at either the signaling level or the metabolite level (for exam-
ple, a CN metabolite).

The interdependence of C and N is most evident when analyz-
ing the putative functions of genes regulated by C and/or N
metabolites. The genes we identified as regulated by models 1
(Cindependent of N), 2 (N independent of C) and 3 (CN inter-
action) showed functional overlap with regard to control of
biological processes. This means that a single biological
process contained genes regulated according to different
models of C and/or N response. Primary and secondary
metabolism are predominant functions that exhibited modu-
lation by C and/or N. In addition to metabolic functions, cat-
egories related to various aspects of protein metabolism,
including protein synthesis, degradation, targeting and regu-
lation of protein activity, are also over-represented among
genes modulated in response to the C and/or N treatments.
These results suggest that C and N signals are required to
coordinate the synthesis of cytoplasmic and organellar pro-
teins in Arabidopsis roots, and that protein synthesis is
highly sensitive to the CN status of the plant.

The large number of genes found to be regulated by C and/or
N in this study constituted a technical challenge for placing
the results in a biological context. The first logical step to
address the molecular mechanisms underlying the biological
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associations of genes is to analyze their properties in the con-
text of what is known. However, this task was impractical
considering that we had to analyze several thousand genes.
We found that integrating existing knowledge into a relatively
simple qualitative network graph greatly simplified the task
of extracting biological meaning from the microarray data
and finding functional associations between CN regulated
genes. Using the genes regulated by C, N or CN as a query, we
were able to identify a gene subnetwork of 2,620 intercon-
nected genes that is modulated by these metabolite treat-
ments. Visual inspection of the resulting gene network graph
revealed highly connected subregions, suggestive of protein
complexes or highly connected metabolic or signaling net-
works. Further graph clustering analysis and functional
annotation of the resulting clusters confirmed the biological
identity of these subnetworks as biological modules or molec-
ular machines controlled by C and/or N. For example, protein
synthesis and protein degradation machineries are regulated
by the C or CN treatments. Other processes represented in CN
regulated biomodules include chromatin assembly (nucleo-
some), RNA metabolism, transport, actin cytoskeleton for-
mation, signal transduction and many aspects of metabolism.

We found that C and/or N could regulate gene expression at
multiple levels. We found known or putative transcription
factors to be regulated in our CN treatments. However, tran-
scriptional control is likely to represent a subset of the mech-
anisms involved in adjusting gene product levels in response
to various CN regimes. We found many signal transduction
components in the CN gene network, including genes of
unknown function that are likely to code for putative recep-
tors, protein kinases and protein phosphatases in this CN net-
work. Interestingly, we also found that the CN gene network
contained many components of the ubiquitin-mediated
protein degradation pathway controlled by C, N or by CN
interaction. In addition, we found known targets of miRNAs
to be CN regulated in the gene network. These results suggest
that post-transcriptional control by miRNAs and protein deg-
radation play a prominent role in the regulation of gene
expression and controlling gene product levels in response to
CN metabolites in plants.

The potential role of auxin in adjusting plant physiology to
different CN regimes was also evident from the multinetwork
analysis. Interestingly, the Transport Inhibitor Response 1
(TIR1) gene expression was regulated by both C and N. TIR1
is thought to encode the auxin receptor [24]. This regulation
of expression of the auxin receptor could provide a point of
integration for C and N responses in Arabidopsis. Auxin has
been proposed as a systemic signal involved in shoot to root
communication of the N status of the shoot [25]. In addition
to regulatory factors known to act in the auxin signaling path-
way (ARF and IAA proteins), we found genes coding for auxin
efflux carriers and auxin transport proteins in the gene net-
work, suggesting that auxin transport in the root may be
directly regulated by N and C. This supports a model in which
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N regulation of auxin transport and auxin responses in the
root may allow the root to adjust growth and development as
a function of the local N supply.

The results of our CN network analysis provide a starting
point for future studies by identifying the regulatory factors -
or network hubs - that are likely to be important for the regu-
lation of gene networks in Arabidopsis roots in response to
CN. By combining existing knowledge into qualitative net-
work models, and using this as a scaffold on which to inter-
pret microarray data, this allowed us to identify molecular
machines controlled by C and/or N. As more genome-wide
information about plant gene interactions becomes available,
the predictive power of such multinetwork models will
increase. We hope that this work on CN regulatory gene net-
works serves as an exemplar for the integration and analysis
of genome wide datasets in Arabidopsis, and that our qualita-
tive network model described herein will become a valuable
resource for the scientific community.

Materials and methods

Plant growth and treatments

We used Arabidopsis thaliana Col-o for all experiments. The
plants were grown hydroponically on nutrient solution as
described previously [26]. Briefly, plants were grown on sand,
placed in custom-designed styrofoam rafts in a growth cham-
ber (EGC, Chagrin Falls, OH, USA) at 22°C with 60 mmol
photons m=2slight intensity and 8 h/16 h light/dark cycles.
The seeds were initially germinated in tap water. After one
week, the water was replaced with a complete nutrient solu-
tion [26]. All the experiments were performed with six week
old plants. Nutrient solutions were renewed weekly and on
the day before the experiments. For treatments, individual
rafts were transferred to containers with 300 ml of nutrient
solution supplemented with various concentrations of nitrate
(as a mix of 2/1 KNO,/Ca(NO,),) and/or sucrose. The N-free
nutrient solutions contained 0.25 mM K,SO, and 0.25 mM
CaCl, instead of KNO, and Ca(NO,),. Plants were transferred
to treatment media at the beginning of the light period and
were harvested 8 h afterwards. Roots and leaves were har-
vested separately and quickly frozen in liquid N,,. All experi-
ments were carried out in duplicate with the exception of the
no sucrose/no nitrate treatment, which was performed four
times. For the time course experiments, plants were grown
hydroponically in phytatray boxes (P1552, Sigma, St. Louis,
MO, USA) with Murashige and Skoog basal medium (For-
mula 97-5068EA, GIBCO, Grand Island, NY, USA) supple-
mented with 3 mM sucrose and 1 mM NH, as ammonium
succinate (205049, MP Biomedicals, LLC. Solon, OH, USA).
Plants were transferred to treatment media at the beginning
of the light period and harvested 0.5, 1, 2, 4, or 8 h afterwards.
Roots were harvested and quickly frozen in liquid N, for RNA
isolation.
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Microarray hybridization

Total RNA extraction was performed as described previously
[27]. cDNA was synthesized from 8 pg total RNA using T7-
Oligo(dT) promoter primer and reagents recommended by
Affymetrix (Santa Clara, CA, USA). Biotin-labeled cRNA was
synthesized using the Enzo BioArray HighYield RNA Tran-
script Labeling Kit (Enzo, New York, NY, USA). The concen-
tration and quality of the cRNA was evaluated by A,/ .5, M
reading and 1% agarose gel electrophoresis. We used 15 ug of
labeled cRNA to hybridize the Arabidopsis ATH1 Affymetrix
gene chip for 16 h at 42°C. Washing, staining and scanning
were performed as recommended by Affymetrix. Image
analysis and normalization to a target median intensity of 150
was performed with the Affymetrix MAS v5.0 set at default
values. We analyzed the reproducibility of replicates using the
correlation coefficient and visual inspection of scatter plots of
pairs of replicates. We discarded one of the four replicates for
the o C/0 N treatment because of poor reproducibility. All
raw and normalized data are available from the ArrayExpress
database [28] under experiment E-MEXP-828.

Clustering analysis

For clustering analysis all the individual treatments were
compared against the three replicates of the 0 C/o N treat-
ment. The three comparisons were processed as follows.
First, all data points with absent calls (MAS v5.0 quality con-
trol) in both treatment and baseline hybridizations were
labeled with 'NA' values. Second, data points with an absent
call in one hybridization and present call in the other hybrid-
ization were required to have a raw intensity of >100. Third,
data points in which two or more replicates were not consist-
ent (different change calls by MAS v5.0) were labeled with
'NA'. All ratios were expressed as log,(treatment/control).
These processed files were used for hierarchical clustering
using the S-PLUS hclust() function with the average linkage
method and correlation as similarity metric. Clusters were
defined with the cutree() function at a 0.5 correlation cutoff.

Analysis of variance and regression analysis of
expression patterns

AOV and regression analysis (LM) were carried out using the
S-PLUS aov() and Im() functions, respectively. The AOV
equation used was:

Y=+ Ggerose + Oitrate + Xsucrosenitrate T €

where Y is the response (expression of a gene represented by
the normalized signal reported by the MAS v5.0 software.), |t
is the global mean and the alpha coefficients correspond to
the effects of sucrose, nitrate and the interaction between
sucrose and nitrate, respectively. The LM equation used was:

Y= b, + b,*sucrose + b,*nitrate + b,*(sucrose*nitrate) + €

where Y is the response and the b, to b, coefficients corre-
spond to the intercept, the dose effects of sucrose and nitrate
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and their interaction, respectively. We tested additional equa-
tions for the LM analysis but found no significant improve-
ment in r2 values. We used the z scores of the concentrations
as predictors in the LM. Each gene was analyzed separately
with the AOV and LM equations. Then, the residuals from
AOV were subjected to LM analysis and the residuals from
LM analysis were subjected to AOV analysis. The equations
were the same, but with Y replaced by the residuals. We
addressed multiple testing by controlling the false discovery
rate at 5% as described previously [29]. Patterns of regulation
as shown in Table 1 were defined based on the coefficients
that were found to be significant by the AOV analysis. When-
ever the interaction term was significant, contrasts were used
to assess the contribution of the main effects. The 95% confi-
dence interval of the mean in the C, N and/or CN treatments
was used to rank the effects when two or more coefficients
were found to be significant. All analysis was carried out in S-
PLUS using existing or custom made functions.

Gene-expression profiles using quantitative PCR
Q-PCR was performed as before [30]. Briefly, 1 ug of total
RNA was used for cDNA synthesis using the Thermoscript
RT-PCR kit (Invitrogen Life Technologies, Carlsbad, CA,
USA). Reverse transcription was performed with 1 ug of total
RNA and oligo(dT),, as a primer. cDNAs were used for real
time Q-PCR with the LightCycler instrument (Roche Diag-
nostics, Mannheim, Germany). Each mRNA value was cor-
rected by the measurements obtained in the same sample for
clathrin (At4g24550) mRNA. The primer sequences utilized
were: At1g59750 (forward, AACTTGAGCCCCTAGT; reverse,
CTACAGCGACAGCACC), At2giy500 (forward, TTACGT-
TCTTCGGCAGT; reverse, GTGAGGGCCAGTATCG),
At1g76520 (forward, ATGCGTGTGCTATCGA; reverse, GCT-
TCCGTGCCGATTA), At5g62000 (forward, CAAGCTCAG-
GCTAGGG; reverse, CCAGCTCAGCGACTAA), At3g62980
(forward, CTCGCGTAGGTCCTTG; reverse, CACTGGTGGG-
TACACT), At4g24550 (forward, ATACACTGCGTGCAAAG;
reverse, TTCGCCTGTGTCACAT). We used SYBRG for all
genes, except clathrin, with the Light Cycler DNA Master
SYBR Green I kit (Roche Diagnostics). For clathrin the fol-
lowing probes were used: AAGAAGCAGGGCCAGT--FL, LC
Red640-GCATGACGTTCACGATACCTATGT--PH with the
Light Cycler DNA Master Hybridization Probes kit (Roche
Diagnostics).

Functional analysis in lists of genes

Functional analysis was performed using the classification
scheme developed by the Munich Information Center for Pro-
tein Sequences (MIPS) [31]. The frequency of each individual
MIPS functional term in a list of genes was compared to the
frequency of the term in the whole genome. A p value of over-
representation was then calculated using the hypergeometric
distribution. To correct for multiple testing we used a clique
approach: we multiplied the unadjusted p values by the min-
imal number of nodes from which all other nodes can be
inferred. Terms that are found statistically over-represented
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are displayed in a color-coded network graph using the View
package from GO-TermFinder module. An interface to the
program used to perform this analysis, BioMaps, is available
on the web [20]. BioMaps is a modification of the GOTerm-
Finder package developed by Gavin Sherlock and available
from CPAN.

Additional data files

The following additional data are available with the online
version of this paper. Additional data file 1 is a complete list
of gene expression patterns and gene annotation. This file
contains detailed information about the regulation and anno-
tation for the genes. This file supports Table 1 in the main
text. Additional data file contains graphical representations
of the different gene expression responses and network views.
This file contains four supplemental figures. Figure S1: cen-
troid plots for each pattern determined by AOV as indicated
in the Results section. Figure S2: bird's-eye view of the gene
network model. Figure S3: higher resolution version of Figure
4. Figure S4: comparison of microarray and Q-PCR data.
Additional data file 3 contains all interaction information col-
lected to produce the network model used in this paper. Addi-
tional data file 4 contains the legend for each edge label used
in Additional data file 3. Additional data file 5 contains the
CHP files generated with the Affymetrix MAS v5.0 software as
described in the Materials and methods.
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