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Abstract
When querying an RDF graph, a prominent feature is the possibility
of extending the answer to a query with optional information. How-
ever, the definition of this feature in SPARQL –the standard RDF
query language– has raised some important issues. Most notably,
the use of this feature increases the complexity of the evaluation
problem, and its closed-world semantics is in conflict with the un-
derlying open-world semantics of RDF. Many approaches for fixing
such problems have been proposed, being the most prominent the
introduction of the semantic notion of weakly-monotone SPARQL
query. Weakly-monotone SPARQL queries have shaped the class
of queries that conform to the open-world semantics of RDF. Un-
fortunately, finding an effective way of restricting SPARQL to the
fragment of weakly-monotone queries has proven to be an elusive
problem. In practice, the most widely adopted fragment for writing
SPARQL queries is based on the syntactic notion of well designed-
ness. This notion has proven to be a good approach for writing
SPARQL queries, but its expressive power has yet to be fully un-
derstood.

The starting point of this paper is to understand the relation
between well-designed queries and the semantic notion of weak
monotonicity. It is known that every well-designed SPARQL query
is weakly monotone; as our first contribution we prove that the con-
verse does not hold, even if an extension of this notion based on
the use of disjunction is considered. Given this negative result, we
embark on the task of defining syntactic fragments that are weakly-
monotone, and have higher expressive power than the fragment of
well-designed queries. To this end, we move to a more general sce-
nario where infinite RDF graphs are also allowed, so that interpo-
lation techniques studied for first-order logic can be applied. With
the use of these techniques, we are able to define a new operator
for SPARQL that gives rise to a query language with the desired
properties (over finite and infinite RDF graphs). It should be no-
ticed that every query in this fragment is weakly monotone if we
restrict to the case of finite RDF graphs. Moreover, we use this re-
sult to provide a simple characterization of the class of monotone
CONSTRUCT queries, that is, the class of SPARQL queries that
produce RDF graphs as output. Finally, we pinpoint the complex-
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ity of the evaluation problem for the query languages identified in
the paper.

1. INTRODUCTION
In the last fifteen years the Semantic Web initiative has received

a lot of attention. From its initial steps, the goal of this initiative
has been to build a World Wide Web with machine-understandable
information [10]. To this end, a first step was to standardize a data
model for the information in the Web. This gave rise to RDF, a
graph-based data model for specifying relationships between re-
sources in the Web [26]. By 2013 more than four million Web do-
mains offered data stored as RDF graphs, creating what is known
as Linked Open Data [35]. Jointly with the release of RDF as a
recommendation of the World Wide Web Consortium (W3C), the
natural problem of querying this data was raised. Several designs
and proposals were presented to solve this issue [16], being the
query language SPARQL the one that finally got more attention.
SPARQL is an SQL-flavored query language for RDF that became
a W3C recommendation in 2008 [34]. The current version of this
language, SPARQL 1.1, was issued in 2013 [44].

The query language SPARQL was originally designed by look-
ing at each desired feature in isolation, but it turned out to be a
rather complicated language when all of these features were put to-
gether. In [29], the authors formalized the syntax and semantics of
SPARQL, presenting the first step towards understanding the fun-
damental properties of this language. This work was followed by
studies about the complexity of query evaluation [37, 24, 6, 31],
query optimisation [23, 32, 13, 14], query federation [11], expres-
sive power analysis [4, 33, 21], and provenance tracking [18, 19].
The theoretical study of SPARQL has impacted the Semantic Web
in several ways, influencing the standard definition of SPARQL by
the W3C and also the form in which users query RDF.

In spite of the advance in our understanding of SPARQL, there
is still a fundamental issue in the definition of this language. The
semantics of SPARQL is defined under a closed-world assumption,
in fact there are SPARQL queries that cannot be answered without
making the assumption that the unavailable data is false. However,
the information in the Web is inherently incomplete and, there-
fore, making such assumption about unavailable data contradicts
the underlying open-world semantics of RDF. To address this prob-
lem, the authors of [30] identify a condition that is satisfied by the
SPARQL queries that are appropriate for the open-world semantics
of RDF, namely weak monotonicity.

Weak monotonicity is an important notion for the study of the
query language SPARQL. However, weak monotonicity is a se-
mantic notion that does not provide much insight on how to write
well-behaved queries. In fact, this notion is not well-suited for



practical applications, as the problem of verifying if a query is
weakly-monotone is undecidable. Hence, finding a fragment of the
class of weakly-monotone SPARQL queries with a simple syntactic
definition is a fundamental task. This problem has been addressed
by defining fragments of SPARQL based on some syntactic restric-
tions. Arguably, the most adopted of these restrictions is that of
well designedness [30, 31, 23, 32, 2, 8, 21]. It is known that ev-
ery well-designed query is weakly monotone [7], but whether the
opposite direction holds is an open problem. As our first contri-
bution, we provide a negative answer to this question proving that
there are (disjunction-free) weakly-monotone queries in SPARQL
that are not equivalent to any well-designed query. Moreover, we
show that this is the case even if we extend well-designed queries
with disjunction at the top-most level.

Given these negative results, we embark on the design of an RDF
query language with a simple syntactic definition and the same ex-
pressive power as the fragment of SPARQL consisting of weakly-
monotone queries. To this end, we move to a more general scenario
where infinite RDF graphs are also allowed, so that interpolation
techniques studied for first-order logic can be applied. Interpolation
techniques have proved to be useful in establishing connections be-
tween semantic and syntactic notions for first-order logic, so they
are a natural choice in this investigation. The application of these
techniques to SPARQL is the most challenging contribution of this
paper, and its consequences provide a significant improvement in
our understanding of the notion of weak monotonicity. In partic-
ular, we make use of Lyndon’s [25] and Otto’s [27] interpolation
theorems to obtain a result that establish a form of equivalence be-
tween the fragment of weakly-monotone SPARQL queries and the
fragment of SPARQL that does not use the operator OPTIONAL
(used in this query language to obtain optional information if avail-
able). This result leads to the definition of a new and simple oper-
ator for SPARQL, the not-subsumed operator (NS), that is used to
remove redundant information from the answer to a query.

With the use of the operator NS, we proceed to introduce two
novel fragments of weakly-monotone queries. We prove that these
fragments are more expressive than the fragments based on the no-
tion of well designedness, and we provide precise characterizations
of their expressive power. In fact, we show that they capture classes
of weakly-monotone queries that are widely used in practice. This,
together with the fact that the syntactic definitions of these frag-
ments are rather simple, shows that these new query languages ful-
fill our original goal. In fact, we think these fragments provide an
interesting new approach for querying RDF graphs.

The input of a SPARQL query is an RDF graph, while its output
is a set mappings. Thus, SPARQL queries cannot be composed in
the sense that the result of a query cannot be used as the input of
another query. To overcome this limitation, the standard definition
of SPARQL by the W3C includes an operator CONSTRUCT [34,
44, 21] that can be used to produce an RDF graph as output (instead
of a set of mappings). This operator is widely used in practice, so
it is a relevant question whether its use in SPARQL is appropriate
for the open-world semantics of RDF.

As opposed to the previous case, in the context of the CON-
STRUCT operator monotonicity is the condition satisfied by the
queries that are appropriate for the open-world semantics of RDF.
Hence, we focus on this notion, and use the results obtained from
interpolation to identify a fragment of the class of CONSTRUCT
queries that captures monotonicity. This fragment has a simple syn-
tactic definition, and, somewhat surprisingly, it uses neither the op-
erator NS nor the operator OPTIONAL. All these properties make
this fragment a promising query language that deserves further in-
vestigation.

Finally, we present a thorough study of the complexity of the
evaluation problem for the query languages introduced in this pa-
per.

Organization of the paper. We give in Section 2 the basic ter-
minology used in the paper. Then we introduce in Section 3 the no-
tions of well designedness and weak monotonicity, and prove that
there are weakly-monotone queries in SPARQL that are not equiv-
alent to any well-designed query. We use interpolation techniques
in Section 4 to show a form of equivalence between the fragment of
weakly-monotone SPARQL queries and the fragment of SPARQL
that does not use the operator OPTIONAL. Inspired by this re-
sult, we define in Section 5 the operator NS. In this section, we
also introduce and study two novel fragments of weakly-monotone
queries. Then we consider the CONSTRUCT operator in Section
6, where we identify a query language with a simple syntactic def-
inition that captures the class of monotone CONSTRUCT queries.
Finally, we provide some concluding remarks and directions for
future research in Section 8. Due to the lack of space, we only pro-
vide sketches for some of the proofs of the results in the paper. The
complete proofs can be found in the appendix.

2. PRELIMINARIES
In this section, we provide the basic terminology that will be

used in the paper.
The Resource Description Framework (RDF) [26] is based upon

identifiers representing Web resources. Assume that I is an infi-
nite set of International Resource Identifiers (IRIs). Then a triple
(s, p, o) ∈ I × I × I is called an RDF triple, where s, p and o are
called the subject, predicate and object of the triple, respectively.
Moreover, an RDF graph is defined to be a finite set of RDF triples.
It should be noticed that constant values (like numbers and strings)
and existential values (resources with unknown identifiers) are also
allowed in RDF, but we disallow them here as the results of the
paper are not affected by their presence. For the sake of readabil-
ity, we also assume that every string can be used as an IRI, which
violates the specification of these identifiers [15].

Example 2.1. Assume that we want to store in RDF informa-
tion about the founders and supporters of different organizations.
Then we need to state every relationship as an RDF triple; for
instance, if a person s founded an organization o, then we store
the triple (s, founder, o). The following table stores such an RDF
graph:

Subject Predicate Object
Gottfrid_Svartholm founder The_Pirate_Bay

Fredrik_Neij founder The_Pirate_Bay
Peter_Sunde founder The_Pirate_Bay

founder sub_property supporter
The_Pirate Bay stands_for sharing_rights
Carl_Lundström supporter The_Pirate_Bay

Notice that a resource mentioned in one triple as a property can
also be mentioned in another triple as the subject or predicate. As
RDF triples are relations between entities, it is also natural to rep-
resent RDF graphs as directed edge-labeled graphs, as shown in
Figure 1.

2.1 The RDF query language SPARQL
SPARQL is essentially a pattern-matching query language for

RDF graphs. To define the syntax of SPARQL, assume there is an
infinite set V of variables disjoint from I. Elements of V are distin-
guished by using ? as a prefix (e.g. ?X, ?Y and ?Z are variables in
V). Then the set of SPARQL graph patterns is recursively defined
as follows:
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Figure 1: An RDF graph with information about founders and
supporters of different organizations.

• A triple in (I∪V)× (I∪V)× (I∪V) is a graph pattern (called
a triple pattern).

• If P1, P2 are graph patterns, then (P1 UNION P2),
(P1 AND P2), (P1 OPT P2) are graph patterns.

• If P is a graph pattern and V is a finite subset of V, then
(SELECT V WHERE P) is a graph pattern.

• If P is a graph pattern and R is a SPARQL built-in condition,
then (P FILTER R) is a graph pattern.

In the previous definition, we have used the notion of SPARQL
built-in condition, which is a propositional formula where atoms
are equalities or inequalities over the set (I∪V) together with some
other features [34]. We restrict to the fragment of built-in condi-
tions presented in [30], which is formally defined as follows:

• If ?X, ?Y ∈ V and c ∈ I, then bound(?X), ?X = c, ?X =?Y are
built in-conditions.

• If R1 and R2 are built-in conditions, then (¬R1), (R1∨R2) and
(R1 ∧ R2) are built-in conditions.

For an operator O in the set {UNION, AND, OPT, FILTER,
SELECT}, we say that a graph pattern P is O-free if O does not
occur in P. To refer to a fragment of SPARQL in which only some
operators are allowed, we use the first letter of the these operators.
For example SPARQL[AFS] represents the fragment of SPARQL
where only the operators AND, FILTER and SELECT are allowed.

To define the semantics of SPARQL we need to recall some fur-
ther notation. If P is a graph pattern, then var(P) and I(P) denote
the sets of all variables and IRIs mentioned in P, respectively. If R
is a built-in condition, then var(R) denotes the set of all variables
mentioned in R. A mapping µ is a partial function µ : V → I.
The domain of µ is the subset of V where µ is defined, and is de-
noted by dom(µ). Given a mapping µ and a triple pattern t such
that var(t) ⊆ dom(µ), we have that µ(t) is the result of replacing
every variable ?X ∈ var(t) by µ(?X). A mapping µ1 is said to be
compatible with a mapping µ2, denoted by µ1 ∼ µ2, if for every
?X ∈ dom(µ1) ∩ dom(µ2) it is the case that µ1(?X) = µ2(?X). In
this case, µ1 ∪ µ2 denotes the extension of µ1 to the variables in
dom(µ2) r dom(µ1) defined according to µ2. If two mappings µ1

and µ2 are not compatible, we write µ1 / µ2.
Let Ω1 and Ω2 be two sets of mappings. Then the join of, union

of, difference between, and left-outer join of Ω1 and Ω2 are defined,

respectively, as follows [30]:

Ω1 Z Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1 ∼ µ2}

Ω1 ∪Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2}

Ω1 rΩ2 = {µ ∈ Ω1 | for all µ′ ∈ Ω2 : µ / µ′}
Ω1 ./Ω2 = (Ω1 Z Ω2) ∪ (Ω1 rΩ2).

Finally, given a mapping µ and a set V ⊆ V, the expression µ|V
represents the mapping that results from restricting µ to dom(µ)∩V .

We have now the necessary terminology to define the semantics
of SPARQL. Given a mapping µ and a built-in condition R, we
say that µ satisfies R, denoted by µ |= R, if one of the following
conditions hold (omitting the usual rules for Boolean connectives):

• R is bound(?X) and ?X ∈ dom(µ);

• R is ?X = c, ?X ∈ dom(µ) and µ(?X) = c;

• R is ?X =?Y , ?X ∈ dom(µ), ?Y ∈ dom(µ) and µ(?X) = µ(?Y).

Moreover, given an RDF graph G and a SPARQL graph pattern P,
the evaluation of P over G, denoted by ~P�G, is recursively defined
as follows:

• if P is a triple pattern, then ~P�G = {µ | dom(µ) =

var(t) and µ(t) ∈ G};

• if P is (P1 AND P2), then ~P�G = ~P1�G Z ~P2�G;

• if P is (P1 OPT P2), then ~P�G = ~P1�G ./ ~P2�G;

• if P is (P1 UNION P2), then ~P�G = ~P1�G ∪ ~P2�G;

• if P is (SELECT V WHERE P′), then ~P�G = {µ|V | µ ∈
~P′�G};

• if P is (P′ FILTER R), then ~P�G = {µ | µ ∈ ~P′�G and
µ |= R}

The following example illustrates the syntax and semantics of
SPARQL.

Example 2.2. Let G be the RDF graph shown in Figure 1. As-
sume we want to retrieve the founders and supporters of organi-
zations that stand for sharing rights. This is achieved by a graph
pattern P = (SELECT {?p} WHERE P1), where P1 is the the fol-
lowing graph pattern:

(?o, stands_for, sharing_rights) AND
((?p, founder, ?o) UNION (?p, supporter, ?o))

The evaluation of P over G is performed in a bottom-up fashion.
We first evaluate the triple patterns, obtaining the following sets of
mappings:

~(?o, stands_for, sharing_rights)�G =
?o

The_Pirate_Bay

~(?p, founder, ?o)�G =

?p ?o
Gottfrid_Svartholm The_Pirate_Bay

Fredrik_Neij The_Pirate_Bay
Peter_Sunde The_Pirate_Bay

~(?p, supporter, ?o)�G =
?p ?o

Carl_Lundström The_Pirate_Bay

Then from the definition of the UNION operator, we obtain that
~(?p, founder, ?o) UNION (?p, supporter, ?o)�G is equal to:



?p ?o
Gottfrid_Svartholm The_Pirate_Bay

Fredrik_Neij The_Pirate_Bay
Peter_Sunde The_Pirate_Bay

Carl_Lundström The_Pirate_Bay

The mappings in this table are combined with the only mapping
in ~(?o, stands_for, sharing_rights)�G through the operator AND,
obtaining that ~P1�G contains exactly the same set of mappings as
in this table. Finally, the operator SELECT is used to keep only the
values in the variable ?p, thus generating the desired list of people:

?p
Gottfrid_Svartholm

Fredrik_Neij
Peter_Sunde

Carl_Lundström

In the previous example, we use a tabular notation for the result
of a SPARQL query. In particular, a mapping µ with dom(µ) =

{?X1, . . . , ?Xn} is represented as a row in a table with columns
?X1, . . . , ?Xn. In what follows, we also refer to such mapping µ
by using the notation [?X1 → µ(?X1), . . ., ?Xn → µ(?Xn)].

Finally, two graph patterns P1 and P2 are said to be equiva-
lent, denoted by P1 ≡ P2, if for every RDF graph G, it holds that
~P1�G = ~P2�G. We use this notion of equivalence to compare
fragments of SPARQL. In particular, we say that two such frag-
ments F1 and F2 have the same expressive power if: (1) for every
graph pattern P1 ∈ F1, there exists a graph pattern P2 ∈ F2 such
that P1 ≡ P2; and (2) for every graph pattern P2 ∈ F2, there ex-
ists a graph pattern P1 ∈ F1 such that P2 ≡ P1. Moreover, we say
F1 is strictly less expressive than F2 if: (1) for every graph pattern
P1 ∈ F1, there exists a graph pattern P2 ∈ F2 such that P1 ≡ P2;
and (2) there exists a graph pattern P2 ∈ F2, for which there is no
graph pattern P1 ∈ F1 such that P2 ≡ P1.

3. WEAK MONOTONICITY VERSUS
WELL DESIGNEDNESS

In this section, we formally introduce the notions of weak mono-
tonicity and well designedness, and discuss their role in identifying
fragments of SPARQL that are appropriate for the open-world se-
mantics of RDF. Moreover, we show that there exist weakly mono-
tone graph patterns that are not expressible as well-designed graph
patterns, thus giving a negative answer to the question of whether
these two notions are equivalent.

3.1 The notion of weak monotonicity
Intuitively, a query language is said to conform to the open-world

assumption if its semantics is defined in a way such that, no as-
sumption is made about the information that is not present when
evaluating a query. This is particularly important when considering
Web data, as in general we cannot make any assumption about the
information that is not available. In fact, the semantics of RDF is
based on an open-world assumption [26]. A notion that captures
this idea for relational query languages is that of monotonicity. A
query is said to be monotone if whenever it outputs an answer over
a database, it outputs that same answer over all extensions of that
database.

The notion of monotonicity is defined as follows for the case
of SPARQL: a graph pattern P is said to be monotone if for ev-
ery two RDF graphs G1 and G2 such that G1 ⊆ G2, it holds that
~P�G1 ⊆ ~P�G2 . On the contrary to the relational scenario, mono-
tonicity is not the right property when trying to capture the idea
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Figure 2: Two RDF graphs G1 and G2 such that G1 ⊆ G2.

of a query that is appropriate for the the open-world semantics of
RDF. This occurs because SPARQL graph patterns allow for op-
tional information, and hence one answer (mapping) to a query can
contain more information than another answer to the same query.
This does not occur in relational databases, where different answers
to the same query have incomparable information.

Example 3.1. Consider the graph pattern

P = (?X,was_born_in,Chile) OPT (?X, email, ?Y),

and let G1 and G2 be the RDF graphs shown in Figure 2. On the
one hand, the answer to P over G1 contains only the mapping µ1 =

[?X → juan], as (?X, email, ?Y) does not match any triple in G1.
On the other hand, the evaluation of P over G2 contains only the
mapping µ2 = [?X → juan, ?Y → juan@puc.cl]. Thus, we have
that ~P�G1 * ~P�G2 as µ1 is not present in the answer to P over
G2, from which we conclude that P is not monotone as G1 ⊆ G2.
However, in this case we can safely say that no information is lost
when evaluating P over G2, as every piece of information in µ1 can
be retrieved from the information in µ2.

In [7], the authors address the issue mentioned in the previous
example by introducing a weaker notion of monotonicity that is
appropriate for the semantics of SPARQL and, in particular, for the
semantics of the OPT operator. To define this concept we need to
introduce some terminology. Given two mappings µ1 and µ2, the
mapping µ1 is said to be subsumed by µ2, denoted by µ1 � µ2, if
dom(µ1) ⊆ dom(µ2) and µ1(?X) = µ2(?X) for every ?X ∈ dom(µ1).
Moreover, µ1 is said to be properly subsumed by µ2, denoted by
µ1 ≺ µ2, if µ1 � µ2 and µ1 , µ2. Finally, given two sets of mappings
Ω1 and Ω2, we have that Ω1 is subsumed by Ω2, denoted by Ω1 v

Ω2, if for every mapping µ1 ∈ Ω1, there is a mapping µ2 ∈ Ω2 such
that µ1 � µ2. With this notation we have the following:

Definition 3.2 ([7]). A graph pattern P is said to be weakly
monotone if for every two RDF graphs G1 and G2 such that G1 ⊆

G2, it is the case that ~P�G1 v ~P�G2 .

Weak-monotonicity overcomes the issues with monotonicity when
capturing the idea of making no assumptions about unknown in-
formation when evaluating a SPARQL query. In fact, if a graph
pattern P is weakly monotone and the evaluation of P over an RDF
graph G produces a mapping µ, then the evaluation of P over any
extension of G produces a mapping that contains at least as much
information as µ. As an example of this, notice that the graph pat-
tern in Example 3.1 is not monotone but weakly monotone.

3.2 The notion of well designedness
The operators in SPARQL are all positive in nature; in fact, nei-

ther a difference operator nor a general form of negation were in-
cluded in the first version of this language [34]. However, as op-
posed to the intuition behind the OPT operator, there exist SPARQL
graph patterns which are not weakly monotone.

Example 3.3. Let P be the graph pattern defined by:

P = (?X,was_born_in,Chile) AND
((?Y,was_born_in,Chile) OPT (?Y, email, ?X)),



and assume that G1 and G2 are the RDF graphs depicted in
Figure 2. In the evaluation of P over G1, we can see that
(?X,was_born_in,Chile) and (?Y,was_born_in,Chile) match the
RDF triple (Juan,was_born_in,Chile). Thus, given that the
triple pattern (?Y, email, ?X) does not match any triple in G1,
we obtain that ~P�G1 = {[?X → Juan, ?Y → Juan]}. On
the other hand, if we evaluate P over G2, we obtain the
same results for the triple patterns (?X,was_born_in,Chile) and
(?Y,was_born_in,Chile). Nevertheless, in this case the triple
(?Y, email, ?X) matches (Juan, email, juan@puc.cl), from which we
conclude that:

~(?Y,was_born_in,Chile) OPT (?Y, email, ?X)�G2 =

{[?Y → Juan, ?X → juan@puc.cl]}.

Hence, given that ~(?X,was_born_in,Chile)�G2 = {[?X → Juan]},
the mappings coming from the two sides of the AND operator are
not compatible. We conclude that ~P�G2 = ∅ and, therefore, P is
not weakly-monotone as G1 ⊆ G2 and ~P�G1 @ ~P�G2 .

Arguably, the graph pattern P in the previous example is unnatural.
In fact, the triple pattern (?Y, email, ?X) offers optional informa-
tion to (?Y,was_born_in,Chile), but at the same time is intended to
match the results of the triple pattern (?X,was_born_in,Chile). To
avoid such patterns the notion of well designedness was introduced
in [30], with the specific goal in mind of disallowing the odd use of
variables shown in the previous example.

Definition 3.4 ([30]). Let P be a graph pattern in
SPARQL[AOF]. Then P is said to be well designed if it
satisfies the following conditions:

• for every sub-pattern of P of the form (P1 FILTER R), it is
the case that var(R) ⊆ var(P1); and

• for every sub-pattern of P of the form (P1 OPT P2) and
every variable ?X ∈ var(P2), if ?X occurs in P outside
(P1 OPT P2), then ?X ∈ var(P1).

For instance, the graph pattern P given in Example 3.3 is not
well designed. To see why this is the case, consider the sub-
pattern (P1 OPT P2) of P with P1 = (?Y,was_born_in,Chile)
and P2 = (?Y, email, ?X). We have that ?X ∈ var(P2), and also
that ?X occurs in P outside (P1 OPT P2) in the triple pattern
(?X,was_born_in,Chile). However, ?X < var(P1), thus violating
the second condition in the definition of well designedness. On
the other hand, the graph pattern shown in Example 3.1 is well de-
signed.

3.3 On the relationship between weak mono-
tonicity and well designedness

It is well known that well designed patterns are weakly mono-
tone, and thus they are appropriate for the open-world semantics
of RDF [30, 7]. However, the rather syntactic definition of well
designedness does not shed light on how close is this notion to
weak monotonicity. In fact, the question of whether every weakly-
monotone graph pattern in SPARQL[AOF] is equivalent to a well-
designed graph pattern is still open. The first contribution of this
paper is to give a negative answer to this question.

Theorem 3.5. There exists a weakly-monotone graph pattern in
SPARQL[AOF] that is not equivalent to any well-designed graph
pattern in SPARQL[AOF].

The notion of well designedness was defined in [30] without con-
sidering the UNION operator. Thus, it is natural to ask whether the

lack of disjunction is the reason behind Theorem 3.5. To show that
this is not the case, consider the following extension of the notion
of well designedness. A graph pattern in SPARQL[AUOF] is said
to be well designed if it is of the form

P1 UNION P2 UNION · · · UNION Pn,

where every disjunct Pi (1 ≤ i ≤ n) is a well-designed graph pat-
tern in SPARQL[AOF]. It is important to notice that every graph
pattern in this class is weakly monotone, and also that this class
has been widely adopted as a good practice for writing SPARQL
queries (see, e.g, [32]). However, the following result shows that
this fragment of SPARQL is not expressive enough to capture weak
monotonicity.

Theorem 3.6. There exists a weakly-monotone graph pattern in
SPARQL[AUOF] that is not equivalent to any well-designed graph
pattern in SPARQL[AUOF].

The previous theorems help to improve the understanding of the
expressive power of well-designed graph patterns, and also moti-
vate the search for more expressive weakly-monotone fragments of
SPARQL with simple syntactic definitions.

4. CAPTURING WEAK MONOTONIC-
ITY UNDER SUBSUMPTION EQUIVA-
LENCE

Interpolation techniques have proved to be useful in establishing
connections between semantic and syntactic notions for first-order
logic (FO); an example of this is the use of Lyndon’s interpola-
tion theorem [25] to show that the semantic notion of monotonic-
ity for FO is characterized by the syntactic notion of being posi-
tive. Interpolation techniques have also proved to be useful in the
database area, for instance to generate plans for answering queries
over physical repositories [41] or with restricted access to some
data sources [9]. Thus, they are an obvious choice to address the
issue of defining an RDF query language that captures the fragment
of weakly-monotone SPARQL queries, which is the motivation of
this section.

It is important to notice that interpolations techniques are known
to fail when restricted to finite models [3], so infinite database
instances are considered in the investigations that use these tech-
niques for relational databases [41, 9]. By following the same idea,
we consider in this paper both finite and infinite RFD graphs, and
we define an unrestricted RDF graph as a (possible infinite) sub-
set of I × I × I. It is also important to notice that in this new
setting, the semantics of SPARQL is defined in the same way as
for the finite case. Moreover, the notions of weak monotonicity
and equivalence of graph patterns are also defined as for the finite
case; but to avoid confusion we say that a graph pattern P is un-
restricted weakly monotone if for every pair G1,G2 of unrestricted
RDF graphs such that G1 ⊆ G2, it holds that ~P�G1 v ~P�G2 , and
we use notation P1 ≡

inf P2 if for every unrestricted RDF graph G,
it holds that ~P1�G = ~P2�G. Finally, it should also be observed
that if a graph pattern is unrestricted weakly monotone then it is
also weakly monotone. Therefore, any query language obtained by
using the results of this section is appropriate for the open-world
semantics of RDF, as every graph pattern in it would be weakly
monotone (in the sense defined in the previous section).

Before stating the main result of this section, we need to dig
deeper into the notion of equivalence for SPARQL graph patterns.
So far we have considered the usual definition of equivalence for
graph patterns P1 and P2, which imposes the condition that the



set of mappings ~P1�G and ~P2�G contain exactly the same el-
ements for every (unrestricted) RDF graph G. But we have ar-
gued in Section 3 that if a mapping µ1 is subsumed by a map-
ping µ2, then µ2 contains at least as much information as µ1, so
if ~P1�G v ~P2�G and ~P2�G v ~P1�G then we can claim that the
set of mappings ~P1�G and ~P2�G are equally informative. Hence,
it is also natural to consider a notion of equivalence of SPARQL
graph patterns based on subsumption. More precisely, two graph
patterns P1 and P2 are said to be subsumption-equivalent [2, 8], de-
noted by P1 ≡s P2 (resp., P1 ≡

inf
s P2), if for every RDF graph G

(resp., unrestricted RDF graph G), it holds that ~P1�G v ~P2�G and
~P2�G v ~P1�G.

We are finally ready to present the main result of this paper. No-
tice that this result is stated in terms of the notion of subsumption-
equivalence, which is a concept that has received a lot of attention
in the last few years [23, 32, 2, 8].

Theorem 4.1. For every unrestricted weakly-monotone graph
pattern P, there exists a graph pattern Q in SPARQL[AUFS] such
that P ≡inf

s Q.

As a corollary of this theorem and the fact that every graph pat-
tern in SPARQL[AUFS] is unrestricted weakly monotone (in fact,
monotone), we obtain the following result that shows that the query
language SPARQL[AUFS] captures the fragment of unrestricted
weakly-monotone SPARQL queries under subsumption equiva-
lence.

Corollary 4.2. A SPARQL graph pattern P is unrestricted
weakly-monotone if and only if there exists a graph pattern Q in
SPARQL[AUFS] such that P ≡inf

s Q.

Proof Sketch of Theorem 4.1. This theorem is obtained by ap-
plying Lyndon’s [25] and Otto’s [27] interpolation theorems. Here
we provide a sketch of the proof of this result.

Let P be a graph pattern. We first need to provide a transla-
tion from RDF and SPARQL to a setting in FO. This transforma-
tion is inspired by the translations given in [5, 33, 21], but with
some modifications needed to apply interpolation techniques. De-
fine LP

RDF as the vocabulary that contains a ternary relation sym-
bol T, a unary relation symbol Dom, a constant symbol ci for each
i ∈ I(P), and a constant symbol n. We say that an LP

RDF-structure
A = 〈D,TA,DomA, {cAi }i∈I , nA〉 corresponds to an unrestricted RDF
graph G if

• D is a set of IRIs plus an additional element N;

• G = TA ∩ (DomA × DomA × DomA);

• for every i ∈ I(G), it is the case that cAi = i; and

• nA = N and N occurs neither in DomA nor in TA.

For every graph pattern P and unrestricted RDF graph G, there is
an infinite set of LP

RDF-structures that correspond to G. We denote
this set by AP

G. At this stage, the constant n and the unary relation
Dom might seem unnecessary; their importance will become clear
later.

Now we need to define a relation between mappings and tuples.
To this end, assume an arbitrary order ≤ over the set of variables
V. Let {?X1, . . . , ?X`} be the set of variables in P ordered under ≤.
Given a mapping µ : var(P) → I, we define the extension of µ to
var(P) as the function µP : var(P) → I such that µP(?X) = µ(?X)
for every ?X ∈ dom(µ), and µP(?X) = N for ?X ∈ var(P) \ dom(µ).
Using this function we define the tuple corresponding to µ as tP

µ =

(µP(?X1), . . . , µP(?X`)). We extend the notion of subsumption to

tuples: given two tuples ā = (a1, . . . , a`) and b̄ = (b1, . . . , b`), we
define ā � b̄ as

ā � b̄ =
∧

i∈[1..`]

ai = bi ∨ ai = N.

With the previous FO setting, we embark on the task of defining
an FO formula ϕP(x̄) that is equivalent to P in the following sense:
for every mapping µ, unrestricted RDF graph G andLP

RDF-structure
A ∈ AG, it is the case that µ ∈ ~P�G if and only if A |= ϕP(tP

µ ).
For the application of Otto’s interpolation theorem, the formula ϕP

should be quantified relative to Dom, meaning that every quantifier
in ϕP is either of the form ∀x(Dom(x) → ψ) or ∃x(Dom(x) ∧ ψ).
This condition makes the construction of ϕP a particularly technical
procedure which is performed by induction over the structure of P;
we skip the details here. A corollary of this construction is that
for every weakly monotone graph pattern there is an equivalent FO
formula with Dom-relativized quantification.

Now we have a formula ϕP that is related to P under a pre-
cise notion of equivalence and is quantified relative to Dom. The
next step is to define a formula asserting that ϕP corresponds
to an unrestricted weakly-monotone graph pattern, for which we
need to move to a new vocabulary. Let LP2

RDF be defined as
LP

RDF ∪ {T
′,Dom′}, where T′ is a ternary relation symbol and Dom′

is a unary relation symbol. This vocabulary is intended to define
structures corresponding to a pair of unrestricted RDF graphs. We
say that an LP2

RDF-structure A corresponds to an unrestricted RDF
graph G if the restriction of A to LP

RDF corresponds to G.
Now consider the following LP2

RDF-formula:

[
ϕP(T,Dom, x̄) ∧ T ⊆ T′ ∧ Dom ⊆ Dom′

]
→

∃ȳ (x̄ � ȳ ∧ ϕP(T′,Dom′, ȳ)). (1)

Here ϕP(T′,Dom′, ȳ) represents the formula ϕP(ȳ) but replacing ev-
ery occurrence of T by T′, and every occurrence of Dom by Dom′.
Besides, the sentence T ⊆ T′ indicates that T is contained in T′,
which is expressed in FO as ∀u∀v∀w (T(u, v,w)→ T′(u, v,w)), and
likewise for the formula Dom ⊆ Dom′. It is not hard to prove that
(1) is satisfied by every LP2

RDF-structure corresponding to an RDF
graph if and only if P is unrestricted weakly-monotone. How-
ever, we will see that to apply interpolation we need a tautology,
and we cannot assert that (1) is a tautology since not every LP2

RDF-
structure corresponds to an unrestricted RDF graph. To overcome
this problem, we define a formula ΦRDF that is satisfied precisely
by those LP2

RDF-structures that correspond to an unrestricted RDF
graph. Now we add ΦRDF to the left-hand side of the implication:

[ΦRDF ∧ ϕP(T,Dom, x̄) ∧ T ⊆ T′ ∧ Dom ⊆ Dom′]→
∃ȳ(x̄ � ȳ ∧ ϕP(T′,Dom′, ȳ)). (2)

It is not hard to prove that if P is unrestricted weakly-monotone,
then this formula is a tautology.

Now we proceed to apply interpolation. Lyndon’s interpolation
theorem [25] asserts that if an implication α → β is a tautology,
then there is a formula θ such that α → θ and θ → β are both
tautologies, and every relational symbol occurring on θ must occur
in both α and β. Moreover, if a relation R only occurs positively
in α or β, then R can only occur positively in θ. Otto extended this
result by proving that if α and β are quantified relative to a set U,
then θ is also quantified relative to U [27]. From these theorems
and formula (2), we can deduce the existence of a new formula



θ(T′,Dom′, x̄) such that the following formulas are tautologies:

[ΦRDF ∧ ϕP(T,Dom, x̄) ∧ T ⊆ T′∧

Dom ⊆ Dom′]→ θ(T′,Dom′, x̄) (3)
θ(T′,Dom′, x̄)→ ∃ȳ (x̄ � ȳ ∧ ϕP(T′,Dom′, ȳ)) (4)

Let G be an unrestricted RDF graph. By considering an LP2
RDF-

structure A that corresponds to G such that TA = T′A and
DomA = Dom′A, and by carefully inspecting (3), we can deduce
that for every LP

RDF-structure A ∈ AG, if A |= ϕP(T,Dom, x̄),
then A |= θ(T,Dom, x̄). Furthermore, from the same structure
and (4) we can deduce that for every LP

RDF-structure A ∈ AG, if
A |= ϕP(T,Dom, x̄), then there is a tuple ȳ such that x̄ � ȳ and
A |= ϕP(T,Dom, ȳ). We conclude that for every tuple ā and every
structure A corresponding to an unrestricted RDF graph, it holds
that ā is a maximal tuple such that A |= ϕP(ā) if and only if ā is a
maximal tuple such that A |= θ(ā) (under the order �) .

Now we proceed to inspect the syntax of formula θ(T′,Dom′, x̄).
From the construction of (2), we can see that in the left-hand
side of the implication the relations T′ and Dom′ occur only pos-
itively. Therefore, these two relations must occur positively in
θ(T′,Dom′, x̄). Moreover, every quantifier in (2) is relativized w.r.t.
either Dom or Dom′, and hence θ(T′,Dom′, x̄) is quantified relative
to Dom′. From these two facts we are able to prove that θ is equiv-
alent to a UCQ with inequalities θ′. This proof requires several
technical details that we have to skip due to the lack of space.

The final step is to define a translation from FO to SPARQL. The
goal of this translation is to transform θ′ (a UCQ with inequalities)
into a SPARQL[AUFS] graph pattern Q. Although this translation
might sound simple, it is not straightforward to define a graph pat-
tern equivalent to θ′ under the same notion of equivalence used for
P and ϕP. Therefore, we use a weaker notion of equivalence: for
every RDF graph G and every structure A ∈ AG such that TA = G,
a mapping µ belongs to ~Q�G if and only if A |= θ′(tQ

µ ). Due to the
lack of space, we omit the details of the construction of the graph
pattern Q satisfying the previous condition.

Summarizing the previous procedure, given a graph pattern P we
constructed an FO-formula ϕP that is equivalent to P. By using in-
terpolation techniques, we showed the existence of a new formula
θ that is equivalent in terms of the obtained maximal tuples to ϕP,
over structures corresponding to unrestricted RDF graphs. We de-
fined a UCQ with inequalities θ′ equivalent to θ, from which we
obtained a SPARQL[AUFS] graph pattern Q that is equivalent to
θ′ under a weaker notion of equivalence. By inspecting every per-
formed step, it can be shown that for every unrestricted RDF graph
G, it is the case that ~P�G ⊆ ~Q�G and ~Q�G v ~P�G. This implies
that P ≡inf

s Q, which was to be shown.

Recall that we introduce in Section 3 the notion of well designed
graph pattern, which is a stronger condition than weak monotonic-
ity. It is interesting to notice that Theorem 4.1 can be proved for
well-designed graph patterns using techniques similar to those pre-
sented in [21]. However, it is not clear how to prove it over unre-
stricted weakly-monotone graph patterns without using a transla-
tion to FO and interpolation techniques.

In the rest of the paper, we will see that Theorem 4.1 turns
out to be a powerful tool for characterizing and capturing seman-
tic properties over different fragments of SPARQL. It is impor-
tant to mention that Theorem 4.1 provides, for every unrestricted
weakly-monotone pattern P, a subsumption-equivalent graph pat-
tern Q that is monotone (as Q is in SPARQL[AUFS]). Hence,
we will need some further operators to obtain unrestricted weakly-
monotone graph patterns, which is the motivation for the next sec-
tion.

5. CAPTURING WEAKLY MONOTONE
FRAGMENTS OF SPARQL

The goal of this section is to introduce RDF query languages that
capture important (and widely used) weakly-monotone fragments
of SPARQL. Inspired by the results in the previous section, we start
by defining in Section 5.1 a new operator for SPARQL. Then we
use this operator in Section 5.2 to define a query language with a
simple syntax and capturing the fragment of unrestricted weakly-
monotone SPARQL queries where subsumed answers are not al-
lowed. Finally, we extend this result in Section 5.3 to consider the
UNION operator.

5.1 A new operator for SPARQL
The result presented in Theorem 4.1 can be reformulated in terms

of the notion of maximal answer for a graph pattern. More pre-
cisely, given a graph pattern P and an unrestricted RDF graph G, the
set of maximal answers of P over G, denoted by ~P�max

G , is defined
as the set of mappings µ ∈ ~P�G for which there is no mapping
µ′ ∈ ~P�G such that µ ≺ µ′. Then Theorem 4.1 tell us that given an
unrestricted weakly-monotone graph pattern P, there exists a graph
pattern Q in SPARQL[AUFS] that preserves the maximal answer
to P, that is, ~P�max

G = ~Q�max
G for every unrestricted RDF graph G.

The idea of preserving only the maximal answers, or remov-
ing the properly subsumed answers, naturally gives rise to a
“not subsumed” (NS) operator for SPARQL. More precisely, let
NS–SPARQL be the extension of SPARQL with the following re-
cursive rule for graph patterns:

• If P is a graph pattern, then NS(P) is a graph pattern. More-
over, given an unrestricted RDF graph G:

~NS(P)�G = ~P�max
G .

A graph pattern of the form (P1 OPT P2) is equivalent to
NS(P1 UNION (P1 AND P2)). Thus, the operator NS can be sim-
ply considered as an alternative way of obtaining optional informa-
tion in the context of incomplete data. In fact, a similar operator for
obtaining maximal answers called minimal union relation was al-
ready studied in the context of relational databases with incomplete
information [17].

A first question about NS–SPARQL is whether it has the same
expressive power as SPARQL, in the sense that for every graph
pattern P in NS–SPARQL, there exists a graph pattern Q in
SPARQL such that P ≡ Q (the opposite direction trivially holds
as NS–SPARQL is an extension of SPARQL). We have already
shown that the operator OPT can be easily simulated by using the
operator NS. But unlike that case, the simulation of the operator
NS in SPARQL is not trivial. In fact, this is proven by providing
an algorithm that takes as input a graph pattern P in NS–SPARQL,
and outputs a graph pattern Q in SPARQL such that P ≡ Q and the
size of Q is double-exponential in the size of P.

Theorem 5.1. The languages SPARQL and NS–SPARQL have
the same expressive power.

Given that NS–SPARQL is an extension of SPARQL, we have
that not every graph pattern in NS–SPARQL is weakly monotone.
However, in the following sections we use the operator NS to iden-
tify query languages with simple syntactic definitions, with good
expressive power and whose graph patterns are all weakly mono-
tone.

5.2 Capturing weak monotonicity for
subsumption-free graph patterns



As mentioned before, the fact that the answer to a SPARQL
query can contain subsumed mappings has given rise to two dif-
ferent notions of equivalence for graph patterns. We start our
search for a fragment of NS–SPARQL capturing weak monotonic-
ity by putting us in an scenario where subsumption is no longer
an issue. More precisely, a graph pattern P in SPARQL is said
to be subsumption-free if for every unrestricted RDF graph G, it
holds that ~P�G = ~P�max

G . Notice that for every pair P1, P2 of
subsumption-free graph patterns, it holds that P1 ≡

inf P2 if and
only if P1 ≡

inf
s P2. Moreover, also notice that subsumption-free

graph patterns are the rule, not the exception, in practice.
As a corollary of Theorem 4.1, we obtain the following:

Corollary 5.2. Let P be a subsumption-free graph pattern. If
P is unrestricted weakly monotone, then there exists a graph pat-
tern Q in SPARQL[AUFS] such that P ≡inf NS(Q).

This corollary motivates the introduction of the notion of simple
graph pattern.

Definition 5.3. A graph pattern is simple if it is of the form
NS(P), where P is in SPARQL[AUFS].

Let SP–SPARQL be an RDF query language consisting of all sim-
ple graph patterns, that is, every query in SP–SPARQL is of the
form NS(P) with P in SPARQL[AUFS]. From Corollary 5.2 and
the fact that every simple graph pattern is subsumption-free, we ob-
tain the following corollary showing that SP–SPARQL is a query
language appropriate for the open-world semantics of RDF, with a
simple syntactic definition and with good expressive power:

Theorem 5.4. Over unrestricted RDF graphs, SP–SPARQL
has the same expressive power as the fragment of unrestricted
weakly-monotone and subsumption-free SPARQL graph patterns.

Notice that in this theorem we compare the expressive power of
two query languages over unrestricted RDF graphs; thus, we use
≡inf instead of ≡ when indicating that the query languages have the
same expressive power.

We conclude this section by considering the important fragments
SPARQL[AOF] and SPARQL[AFS] of SPARQL. The latter in-
cludes the class of conjunctive queries with inequalities, and it is
widely used in practice. The former was extensively studied in
[30], where the notion of well designedness introduced in Section
3 was originally defined.

It is easy to see that every graph pattern in SPARQL[AFS] is
subsumption free. Moreover, from the results proved in [30], it
is possible to conclude that every graph pattern in SPARQL[AOF]
is also subsumption free. Thus, we obtain from Theorem 5.4 the
following result:

Corollary 5.5. Let P be a graph pattern in SPARQL[AOF] or
SPARQL[AFS]. If P is unrestricted weakly-monotone, then there
exists a graph pattern in SP–SPARQL such that P ≡inf Q.

Moreover, for the case of (finite) RDF graphs, it is posible to es-
tablish the following connection between well designedness and
simple graph patterns:

Proposition 5.6. The fragment of well-designed graph patterns
in SPARQL[AOF] is strictly less expressive than SP–SPARQL.

The existence of a graph pattern in SP–SPARQL which is not
equivalent to any well-designed graph pattern in SPARQL[AOF] is
not surprising, as the operator UNION is allowed in SP–SPARQL.
What is interesting from the previous result is that, a well-designed
graph pattern containing arbitrarily nested OPT operators can al-
ways be translated into an equivalent graph pattern with a single
operator NS on the top-most level.

5.3 Including the UNION operator
In Sections 4 and 5.2, we have argued that SPARQL[AUOF] and

SP–SPARQL are good query languages for the open-world seman-
tics of RDF, in particular because of their expressive power. But
these languages are incomparable, as in the former every graph
pattern is monotone but not necessarily subsumption-free, while
in the latter every graph pattern is subsumption-free and weakly
monotone but not necessarily monotone. Thus, it is natural to ask
whether there exists a query language that contains both, and where
every graph pattern is still weakly monotone. This is the motivating
question for this section.

We start our search by allowing the use of disjunction in simple
patterns.

Definition 5.7. A graph pattern P is an ns-pattern if it is of the
form (P1 UNION · · · UNION Pn), where each Pi (1 ≤ i ≤ n) is a
simple pattern.

Let USP–SPARQL be an RDF query language consisting of all ns-
patterns. As our first result, we prove that USP–SPARQL is indeed
more expressive than both SPARQL[AUFS] and SP–SPARQL.

Proposition 5.8. USP–SPARQL is strictly more expressive that
both SPARQL[AUFS] and SP–SPARQL.

From the fact that every simple pattern is unrestricted weakly
monotone, it is easy to conclude that every ns-pattern is unrestricted
weakly monotone. Thus, we conclude from the previous result that
USP–SPARQL is an answer to our motivating question. Moreover,
we obtain the following corollary from Theorem 4.1:

Corollary 5.9. Let P be a graph pattern in SPARQL. Then P
is unrestricted weakly-monotone if and only if there exists a graph
pattern Q in USP–SPARQL such that P ≡inf

s Q.

Finally, we obtain the following characterization of the expressive
power of USP–SPARQL by using Theorem 5.4:

Corollary 5.10. Over unrestricted RDF graphs,
USP–SPARQL has the same expressive power as the fragment
of unions of unrestricted weakly-monotone and subsumption-free
SPARQL graph patterns.

From the results of this section, we can conclude that
USP–SPARQL is also an appropriate query language for the open-
world semantics of RDF, in particular because of their expressive
power and the fact that every graph pattern in USP–SPARQL is
weakly monotone.

6. CAPTURING CONSTRUCT QUERIES
The input of a SPARQL graph pattern is an RDF graph, while

its output is a set mappings. Thus, SPARQL graph patterns cannot
be composed in the sense that the result of a query cannot be used
as the input of another query. Besides, SPARQL queries cannot be
used to define views that will later used by other queries, a common
functionality in relational database systems. To overcome this lim-
itation, the standard definition of SPARQL by the World Wide Web
Consortium includes an operator CONSTRUCT [34] that can be
used to produce as output an RDF graph instead of set of mapping.
This operator is widely used in practice, so it is a relevant ques-
tion whether its use in SPARQL is appropriate for the open-world
semantics of RDF.

The goal of this section is to answer this question. More pre-
cisely, we provide a formal definition of the CONSTRUCT opera-
tor in Section 6.1, and then we identify in Section 6.2 a query lan-
guage with a simple syntactic definition and the same expressive
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Figure 3: An RDF graph containing information about profes-
sors and universities.

power at the class of monotone queries using the CONSTRUCT
operator. It should be noticed that Theorem 4.1 plays a crucial role
in the proof of this latter result.

6.1 The CONSTRUCT operator
We follow the terminology introduced in [21] to define the

CONSTRUCT operator. Let P be a SPARQL graph pattern and
H a finite set of triple patterns. Then

Q = (CONSTRUCT H WHERE P)

is a CONSTRUCT query, where P and H are called the graph pat-
tern and the template of Q, respectively. Moreover, given an RDF
graph G, the evaluation of Q over G is defined as follows:

ans(Q,G) = {µ(t) | µ ∈ ~P�G, t ∈ H and var(t) ⊆ dom(µ)}.

Example 6.1. Let G be the RDF graph shown in Fig-
ure 3, which stores information about professors and universi-
ties. In this scenario, we want to construct an RDF graph
that contains for each professor his/her name, the universi-
ties he/she is affiliated to, and his/her email if this informa-
tion is available. We achieve this with a CONSTRUCT query
Q of the form (CONSTRUCT H WHERE P), where H =

{(?n, affiliated_to, ?u), (?n, email, ?e)} and P is the following graph
pattern:

((?p, name, ?n) AND (?p,works_at, ?u))
OPT (?p, email, ?e)

Notice that in this case the template H contains IRIs that are not
mentioned in G. The evaluation of the graph pattern of P over G
results in the following set of mappings:

?p ?n ?u ?e
µ1 prof_02 Denis PUC_Chile
µ2 prof_01 Cristian U_Oxford cris@puc.cl
µ3 prof_01 Cristian PUC_Chile cris@puc.cl

In the left-hand side of this table we have included names for
the mappings. Then to evaluate Q, we consider the mapping
in this table separately. For the mapping µ1, we have that each
variable in the triple pattern (?n, affiliated_to, ?u) ∈ H is contained
in the domain of µ1, so the triple (µ1(?n), affiliated_to, µ1(?u)) =

(Denis, affiliated_to,PUC_Chile) is included in the output
ans(Q,G). On the other hand, the variable ?e is not in the domain
of µ1, so no triple is produced by this mapping and the triple
pattern (?n, email, ?e) ∈ H. The result of the evaluation process
is the RDF graph depicted in Figure 4. Notice that the triple
(Cristian, email, cris@puc.cl) is generated when considering the
mapping µ2 and µ3 and the triple pattern (?n, email, ?e) ∈ H.
However, as the semantics of the CONSTRUCT operator is
defined as a set of triples, (Cristian, email, cris@puc.cl) can occur
only once in the output ans(Q,G).
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Figure 4: The RDF graph obtained by evaluating the CON-
STRUCT query Q in Example 6.1 over the RDF graph in Fig-
ure 3.

6.2 Capturing monotone CONSTRUCT
queries

In Section 3, we concluded that the notion of monotonicity is
too restrictive when trying to identify fragments of SPARQL that
are appropriate for the open-world semantics of RDF. In that sec-
tion, we also argue that the notion of weak monotonicity is ap-
propriate for this goal, as to compare the answers of two graph
patterns one has to consider the fact that a mapping can be more in-
formative than another one. However, the situation is different for
CONSTRUCT queries, as the answer for such a query is a set of
RDF triples (an RDF graph), and an RDF triple is an atomic piece
of information. In fact, one RDF triple cannot be more informative
than another one. Thus, in the context of CONSTRUCT queries we
consider the notion of monotonicity when trying to identify which
fragment of these queries is appropriate for the open-world seman-
tics of RDF. The notion of monotonicity is defined as follows in
this context:

Definition 6.2. A CONSTRUCT query Q is monotone if for ev-
ery pair G1, G2 of RDF graphs such that G1 ⊆ G2, it holds that
ans(Q,G1) ⊆ ans(Q,G2).

Exactly as in the case of weak monotonicity for graph patterns, this
definition provides no insight about how to find a syntactic char-
acterization of monotone CONSTRUCT queries, which is aggra-
vated by the fact the problem of verifying whether a CONSTRUCT
query is monotone is undecidable.1 Nevertheless, CONSTRUCT
queries enjoy some properties that allow us to address this issue.
The key observation here is that when evaluating the graph pat-
tern of a CONSTRUCT query, it suffices to look only at the non-
subsumed graph patterns. This observation can be formalized by
using the operator NS introduced in Section 5:

Lemma 6.3. For every graph pattern P and template H, the
query (CONSTRUCT H WHERE P) is equivalent to the query
(CONSTRUCT H WHERE NS(P)).

Next we show that this lemma plays a key role in the character-
ization of the monotone fragment of the class of CONSTRUCT
queries. As it is done in Sections 4 and 5, from now on we consider
unrestricted RDF graphs, for which the semantics of the CON-
STRUCT operator is defined in the same way as for the case of
(finite) RDF graphs.

Lemma 6.3 has the following consequence. Assume that we have
a CONSTRUCT query Q = (CONSTRUCT H WHERE P) in
which P is unrestricted weakly monotone. From Theorem 4.1, we
have that there exists a graph pattern P? in SPARQL[AUFS] such
1This is a corollary of the fact that SPARQL and first-order logic
have the same expressive power [5, 38] and the fact that the prob-
lem of verifying whether a first-order logic formula is monotone is
undecidable. In turn, the latter result about monotonicity for first-
order logic is a corollary of the undecidability of the finite satisfia-
bility problem for this logic [42].



that P? ≡inf
s P. Thus, given that the condition P? ≡inf

s P holds if
and only if the condition NS(P?) ≡inf NS(P) holds, we obtain the
following by applying Lemma 6.3:

Q = (CONSTRUCT H WHERE P)
≡ (CONSTRUCT H WHERE NS(P))
≡inf (CONSTRUCT H WHERE NS(P?))
≡ (CONSTRUCT H WHERE P?)

Hence, we obtain the following corollary.

Corollary 6.4. Let Q = (CONSTRUCT H WHERE P) be a
CONSTRUCT query in which P is unrestricted weakly monotone.
Then there exists a graph pattern P? in SPARQL[AUFS] such that
Q ≡inf (CONSTRUCT H WHERE P?).

It is easy to prove that if the graph pattern of a CONSTRUCT query
is weakly monotone, then the CONSTRUCT query is monotone.
However, the opposite direction is not true, as there exist CON-
STRUCT queries that are monotone but whose graph patterns are
not weakly monotone. This prevents the previous corollary from
establishing a general characterization of monotone CONSTRUCT
queries. However, we overcome this limitation with the following
lemma.

Lemma 6.5. For every monotone CONSTRUCT query Q, there
is a template H and an unrestricted weakly monotone SPARQL
graph pattern P such that Q ≡inf (CONSTRUCT H WHERE P).

From this lemma and Corollary 6.4, we can finally obtain a syntac-
tic characterization of monotonicity for CONSTRUCT queries. To
simplify notation, given a set of SPARQL operators O, we denote
by CONSTRUCT[O] the set of CONSTRUCT queries of the form
(CONSTRUCT H WHERE P) such that P is a graph pattern in
SPARQL[O].

Theorem 6.6. Over unrestricted RDF graphs, the class of
monotone CONSTRUCT queries has the same expressive power as
CONSTRUCT[AUFS].

Next we strengthen this result by proving that the SELECT operator
can be removed from the fragment CONSTRUCT[AUFS].

Proposition 6.7. CONSTRUCT[AUF] has the same expressive
power as CONSTRUCT[AUFS].

Thus, we obtain a simpler characterization of the class of monotone
CONSTRUCT queries.

Corollary 6.8. Over unrestricted RDF graphs, the class of
monotone CONSTRUCT queries has the same expressive power as
CONSTRUCT[AUF].

This result culminates our study of CONSTRUCT queries. We
have presented a clean and simple syntactic characterization of the
class of monotone CONSTRUCT queries. It is interesting to no-
tice that the only allowed operators in this characterization are FIL-
TER, AND and UNION. We think this provides evidence to place
CONSTRUCT[AUF] as an interesting query language for RDF that
should be further investigated.

7. THE COMPLEXITY OF THE EVALUA-
TION PROBLEM

So far, we have introduced a new operator and several syntactic
fragments with good properties in terms of expressive power. At
this point, it is natural to ask what is the complexity of the evalu-
ation problem for these fragments, and whether this complexity is

lower than for some well-known fragments of SPARQL. To answer
this question, we study the combined complexity [43] of the eval-
uation problem. More precisely, we pinpoint the exact complexity
of this problem for simple patterns and ns-patterns in Section 7.2,
and for queries in CONSTRUCT[AUF] in Section 7.3.

7.1 A bit of background on computational
complexity

We use complexity classes that might not be familiar to the
reader, and hence we briefly recall their definition. In particular,
we present the Boolean Hierarchy and the complexity class PNP

||
.

The Boolean Hierarchy is an infinite family of complexity
classes based on boolean combinations of languages in NP [46].
The most popular class in this hierarchy is DP, which consists of
all languages that can be expressed as L1 ∩ L2 with L1 ∈ NP and
L2 ∈ coNP. The levels of the boolean hierarchy are denoted by
{BHi}i∈N, and are recursively defined as follows:

• BH1 is the complexity class NP.

• BH2k consists of all languages that can be expressed as L1 ∩

L2, where L1 ∈ BH2k−1 and L2 ∈ coNP.

• BH2k+1 consists of all languages that can be expressed as L1∪

L2, where L1 ∈ BH2k and L2 ∈ NP.

Notice that DP = BH2. The complexity class PNP
||

[20] contains
all problems that can be solved in polynomial time by a Turing
machine that can query a polynomial amount of times (in terms
of the input’s length) an NP oracle, with the restriction that all of
these queries need to be issued in parallel. The parallel access to
the NP oracle prevents the queries to depend on previous oracle
answers. The class PNP

||
is equivalent to ∆P

2 [log n], the complexity
class of all problems that can be solved in polynomial time by a
Turing machine that can make O(log n) queries to an NP oracle,
not necessarily in parallel [12].

7.2 The evaluation problem for simple pat-
terns and ns-patterns

Consider a fragment F of NS–SPARQL. Then the evaluation
problem for F is defined as follows:

Problem : Eval(F )
Input : An RDF graph G, a graph pattern P ∈

F and a mapping µ
Question : Is µ ∈ ~P�G?

As usual, we only consider inputs of finite length and, therefore,
we do not consider in this section unrestricted RDF graphs. Our
complexity results are built upon several studies of the complexity
of evaluating SPARQL graph patterns [32, 30, 37, 7, 22]. In par-
ticular, the key ideas rely on the fact that the evaluation problem is
NP-complete for SPARQL[AUFS] [37] and is coNP-complete for
well-designed graph patterns in SPARQL[AOF] [29].

We start by considering the evaluation problem for simple graph
patterns.

Theorem 7.1. Eval(SP–SPARQL) is DP-complete.

It is interesting to notice that the complexity of evaluating sim-
ple patterns is already higher than that of evaluating well-designed
graph patterns in SPARQL[AOF], which is coNP-complete. This is
to be expected as the former fragment is more expressive than the
latter (see Proposition 5.6).

We continue our study by considering the evaluation prob-
lem for ns-patterns. As an ns-pattern is of the form



(P1 UNION · · · UNION Pk) with each Pi being a simple pat-
tern, an important parameter for the evaluation problem in this con-
text is the maximum number of disjunct Pi in these patterns. Let
USP–SPARQLk be the fragment of USP–SPARQL consisting of all
ns-patterns having at most k disjuncts each. Then we have that:

Theorem 7.2. For every k > 0, it holds that
Eval(USP–SPARQLk) is BH2k-complete.

Finally, we obtain the following combined complexity when con-
sidering ns-patterns with an unbounded number of disjuncts.

Theorem 7.3. Eval(USP–SPARQL) is PNP
||

-complete.

It is important to mention that, although the evaluation problem for
well-designed graph patterns in SPARQL[AOF] is coNP-complete,
these patterns do not allow for projection. If projection is al-
lowed only on the top-most level, then the evaluation problem
for well-designed graph patterns already increases to Σ

p
2 -complete

[23], which is higher than the complexity of the evaluation prob-
lem for USP–SPARQL (unless the polynomial-time hierarchy [40]
collapses to its second level as PNP

||
⊆ ∆P

2 ⊆ ΣP
2 ).

7.3 The evaluation problem for CON-
STRUCT queries

Consider a class G of CONSTRUCT queries. Then the evalua-
tion problem for G is defined as follows:

Problem : Eval(G)
Input : An RDF graph G, a CONSTRUCT

query Q ∈ G and a tripe t
Question : Is t ∈ ans(Q,G)?

As mentioned before, the fragment CONSTRUCT[AUF] is one
of the most important fragments defined in this paper, as it cap-
tures the class of CONSTRUCT queries that are monotone. It
should be noticed that establishing the combined complexity of
CONSTRUCT[AUF] is straightforward, as we rely on the fact that
the evaluation problem for SPARQL[AUF] is NP-complete.

Theorem 7.4. Eval(CONSTRUCT[AUF]) is
NP-complete.

This concludes our study of the complexity of the evaluation prob-
lem for the query languages introduced in this paper. As a final
remark, it is important to mention that the results of this section
provide more evidence in favor of CONSTRUCT[AUF] as an ap-
propriate query language for RDF, as this language not only cap-
tures the notion of monotonicity for CONSTRUCT queries (over
unrestricted RDF graphs), but also has an evaluation problem with
a lower complexity than for well-designed graph patterns with pro-
jection on top (Σp

2 -complete), and general CONSTRUCT queries
(PSPACE-complete).

8. CONCLUDING REMARKS AND FU-
TURE WORK

We have presented a thorough study of the relationship between
different fragments of SPARQL and the notion of weak mono-
tonicity. We showed that one of the most adopted fragments of
SPARQL, namely the class of unions of well-designed graph pat-
terns, has lower expressive power than the fragment of weakly-
monotone graph patterns. We further strengthen this result by prov-
ing that it also holds if disjunction is disallowed in both fragments.
Given this negative result, we moved to a new setting in which RDF

graphs can also be infinite. In this setting, we developed a frame-
work for applying interpolation techniques for first-order logic to
SPARQL, which resulted in a powerful theorem relating the frag-
ment of weakly-monotone graph patterns with SPARQL[AUFS].
This theorem suggested the definition of the operator NS, which is
a natural replacement for the operator OPTIONAL. Using the oper-
ator NS, we defined the weakly-monotone fragments of simple pat-
terns and ns-patterns, and proved that they have higher expressive
power than the fragments defined in terms of well designedness.
Then we focused on the fragment of CONSTRUCT queries. We ap-
plied the results obtained from the use of interpolation techniques,
from which we proved that the fragment of CONSTRUCT queries
restricted to CONSTRUCT, AND, FILTER and UNION precisely
characterizes the notion of monotonicity. Finally, we provided a
thorough study of the combined complexity of the evaluation prob-
lem for the query languages introduced in the paper.

Our results open new research possibilities, starting by the search
for useful extensions of the identified query languages. For exam-
ple, allowing for projection on top of simple and ns-patterns pre-
serves weak monotonicity, and hence this extension could lead to
the definition of new weakly-monotone fragments with higher ex-
pressivity.

Finally, the focus of this paper has been mostly theoretical.
Therefore, the development of more practical studies of the pro-
posed query languages is a promising direction for future research.
For instance, it is important to understand what are the practical
consequences of replacing the operator OPTIONAL by the operator
NS, and whether the aforementioned fragment of CONSTRUCT
queries covers the needs of real-world applications. Moreover,
these new lines of research are open to the development of im-
plementations and optimizations, potentially leading to real-world
applications of the techniques developed in this paper.
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APPENDIX
A. PROOF OF THEOREM 3.5

Statement There exists a weakly-monotone graph pattern in SPARQL[AOF] that is not equivalent to any well-designed graph pattern in
SPARQL[AOF].

To prove this theorem we use the following two results, both proved in [30]:

Proposition A.1. Every well-designed graph pattern in SPARQL[AUF] is equivalent to a well-designed graph pattern in SPARQL[AUF]
that has the form

(· · · ((P1 OPT P2) OPT P3) · · · OPT Pn),

where P1 is OPT-free.

Proposition A.2. Let P be a well-designed graph pattern in SPARQL[AUF]. For every RDF graph G and every mapping µ ∈ ~P�G, it is
the case that dom(µ) = var(P).

Now we are ready to provide the proof of Theorem 3.5.

Proof. Let POPT be the graph pattern [((a, b, c) OPT (?X, d, e)) OPT (?Y, f , g)]. Define the graph pattern P as P =

POPT FILTER (bound(?X) ∨ bound(?Y)). We show that P is weakly-monotone and is not equivalent to any well-designed graph pattern
in SPARQL[AUF]. Let G1 and G2 be two RDF graphs such that G1 ⊆ G2, and let µ ∈ ~P�G1 . By semantics of filter, we have that
µ ∈ ~POPT�G1 . Since POPT is well designed (and hence weakly monotone), this implies that µ ∈ ~POPT�G2 . As µ |= (bound(?X)∨ bound(?Y)),
we finally obtain that µ ∈ ~P�G2 . Now we show that P is not equivalent to any well-designed graph pattern in SPARQL[AUF], assume for
the sake of contradiction that Q is a well-designed graph pattern in SPARQL[AUF] such that P ≡ Q. From Proposition A.1 we can assume
without loss of generality that Q = (· · · ((Q1 OPT Q2) OPT Q3) · · · OPT Qn), where Q1 is OPT-free. Let ` be an IRI not mentioned in Q1,
and define G1 and G2 as the RDF graphs {(a, b, c), (`, e, f )} and {(a, b, c), (`, g, h)}, respectively. It is easy to see that ~P�G1 = [?X → `] and
~P�G2 = [?Y → `]. By Proposition A.2, this implies that the variables ?X and ?Y cannot be mentioned in Q1, as otherwise they would both
be present in the evaluation of P over every RDF graph. Now define the RDF graph G = {a, b, c}. Since Q1 does not mention `, it is clear that
~Q1�G = ~Q1�G1 . As ~Q�G1 , ∅, we obtain that ~Q1�G1 = ~Q1�G , ∅ and therefore ~Q�G , ∅. Since ~P�G = ∅, we obtain a contradiction
with the fact that Q and P are equivalent, which was to be shown.

B. PROOF OF THEOREM 3.6
Statement There exists a weakly-monotone graph pattern in SPARQL[AUOF] that is not equivalent to any well-designed graph pattern

in SPARQL[AUOF].

We need the following proposition:

Proposition B.1 ([30]). Let P be a graph pattern in SPARQL[AOF] and G an RDF graph. Then, for every two distinct mappings
µ1, µ2 ∈ ~P�G, it is the case that µ1 / µ2.

In simple words, this proposition states that a graph pattern in SPARQL[AOF] cannot output two compatible mappings. This is a key
observation int he proof of Theorem 3.6.

Proof. Let P be a graph pattern defined as

P = (?X, a, b) OPT ((?X, c, ?Y) UNION (?X, d, ?Z)).

Since in P both sides of the OPT are monotone, we can directly conclude that P is weakly-monotone. Now we prove that P is not equivalent
to any well-designed graph pattern in SPARQL[AUOF]. Consider the following RDF graphs

G1 = {(1, a, b)} G2 = {(1, a, b), (1, c, 2)}
G3 = {(1, a, b), (1, d, 3)} G4 = {(1, a, b), (1, c, 2), (1, d, 3)}.

By semantics of SPARQL we have:

~P�G1 = {[?X → 1]} ~P�G2 = {[?X → 1, ?Y → 2]}
~P�G3 = {[?X → 1, ?Z → 3]} ~P�G4 = {[?X → 1, ?Y → 2], [?X → 1, ?Z → 3]}

Assume for the sake of contradiction that P is equivalent to the SPARQL[AUOF] well-designed graph pattern P′ =

P1 UNION P2 UNION · · · UNION Pn. By semantics of UNION, there must be an i for which ~Pi�G1 = {[?X → 1]}. Without
loss of generality we can assume i = 1. Since ~P�G2 = {[?X → 1, ?Y → 2]} and G1 ⊆ G2, the weak monotonicity of P1 entails that
~P1�G2 = {[?X → 1, ?Y → 2]}. Moreover, as ~P�G3 = {[?X → 1, ?Z → 3]} and G1 ⊆ G3 it is the case that ~P1�G3 = {[?X → 1, ?Z → 3]}.

Since [?X → 1, ?Y → 2] ∈ ~P1�G2 , G2 ⊆ G4 and ~P�G4 = {[?X → 1, ?Y → 2], [?X → 1, ?Z → 3]}, the weak monotonicity of P1 implies
that [?X → 1, ?Y → 2] ∈ ~P1�G4 . The same analysis over G3 and the mapping [?X → 1, ?Z → 3] shows that [?X → 1, ?Z → 3] ∈ ~P1�G4 .

We conclude that {[?X → 1, ?Y → 2], [?X → 1, ?Z → 3]} ⊆ ~P1�G4 , showing that P1 outputs two compatible mappings when evaluated
over G4. This contradicts Proposition B.1 and therefore P and P′ cannot be equivalent, which was to be shown



C. PROOF OF THEOREM 4.1
Statement For every unrestricted weakly-monotone graph pattern P, there exists a graph pattern Q in SPARQL[AUFS] such that P ≡inf

s Q.

As discussed in the paper, the poof of this theorem is based on Lyndon’s [25] and Otto’s [27] interpolation theorems. We start by presenting
a translation from graph patterns to first-order formulas that will further allow us to papply these results over SPARQL in unrestricted RDF
setting.

Given a graph pattern P, define LP
RDF as the vocabulary that contains a ternary relation symbol T, a unary relation symbol Dom, a constant

symbol ci for each i ∈ I(P), and a constant symbol n. We say that an LP
RDF-structure A = 〈D,TA,DomA, {cAi }i∈I , nA〉 corresponds to an

unrestricted RDF graph G if

• D is a set of IRIs plus an additional element N;

• G = TA ∩ (DomA × DomA × DomA);

• for every i ∈ I(G), it is the case that cAi = i; and

• nA = N and N occurs neither in DomA nor in TA.

For every graph pattern P and unrestricted RDF graph G, there is an infinite set of LP
RDF-structures that correspond to G. We denote this

set byAP
G. At this stage, the constant n and the unary relation Dom might seem unnecessary; their importance will become clear later.

Now we need to define a relation between mappings and tuples. To this end, assume an arbitrary order ≤ over the set of variables
V. Let X = {?X1, . . . , ?X`} be a set of variables ordered under ≤. Given a mapping µ we define the extension of µ to X as the function
µX : dom(µ) ∪ X → I such that µX(?X) = µ(?X) for every ?X ∈ dom(µ), and µX(?X) = N for ?X ∈ X \ dom(µ). Using this function we
define the tuple corresponding to µ under X as tX

µ = (µX(?X1), . . . , µX(?X`)). Given a graph pattern P, and a mapping µ, we define tP
µ as tvar

µ (P).
Moreover, we simplify notation by writing tµ instead of tdom

µ (µ).
Having defined the previous FO setting, we embark on the task of defining an FO formula ϕP(x̄) that is equivalent to P in the following

sense: for every mapping µ, unrestricted RDF graph G and LP
RDF-structure A ∈ AG, it is the case that µ ∈ ~P�G if and only if A |= ϕP(tP

µ ). To
this end we need to take an intermediate step: we create one formula for each subset of var(P). Intuitively, the formula corresponding to a
subset X of var(P) will generate the tuples corresponding to mappings that bind exactly X. We abuse notation by treating FO and SPARQL
variables indistinctly. We also abuse notation by extending every mapping µ to dom(µ) ∪ I, where µ(i) = i for every i ∈ I.

Lemma C.1. For every SPARQL graph pattern P, there is a set {ϕP
X(X̄)}X⊆var(P) of formulas in LP

RDF satisfying the following condition:
Given a mapping µ, an unrestricted RDF graph G and a LP

RDF structure inAG, it is the case that µ ∈ ~P�G if and only if A |= ϕP
dom(µ)(tµ).

Proof. Let P be a SPARQL graph pattern. We proceed by induction on the structure of P.

• Let P = (t1, t2, t3) be a triple pattern and let A ∈ AG for some unrestricted RDF graph G. Since for every RDF graph G and mapping
µ ∈ ~P�G we have var(P) = dom(µ), define ϕP

X(X̄) as a contradiction for every X ( var(P). For X = var(P) define

ϕP
X(X̄) = T(t1, t2, t3) ∧ Dom(t1) ∧ Dom(t2) ∧ Dom(t3).

A mapping µ belongs to ~P�G if and only if (µ(t1), µ(t2), µ(t3)) belongs to G, which occurs if and only if µ(t1), µ(t2), µ(t3) ∈ DomA and
(µ(t1), µ(t2), µ(t3)) ∈ TA, concluding this case.

• Let P = P1 UNION P2 and let A ∈ AG for some unrestricted RDF graph G. For every X ⊆ var(P) define ϕP
X(X̄) as

ϕP
X(X̄) = ϕ

P1
X (X̄) ∨ ϕP2

X (X̄).

Let µ be a mapping and X = dom(µ). By semantics of UNION, µ ∈ ~P�G if and only if µ ∈ ~P1�G ∪ ~P2�G. Hence, by hypothesis we
have µ ∈ ~P�G if and only if A |= ϕ

P1
X (tµ) or A |= ϕ

P2
X (tµ), which is the semantic definition of A |= ϕ

P1
X (tµ) ∨ ϕ

P2
X (tµ).

• Let P = P1 AND P2 and let A ∈ AG for some unrestricted RDF graph G. For every X ⊆ var(P) define the formula ϕP
X(X̄) as

ϕP
X(X̄) =

∨
X1∪X2=X

[
ϕ

P1
X1

(X̄1) ∧ ϕP2
X2

(X̄2)
]
.

Let µ be a mapping and let X = dom(µ). If µ belongs to ~P�G, then there are two compatible mappings µ1 ∈ ~P1�G and µ2 ∈ ~P2�G

such that µ = µ1 ∪ µ2. Let X1 = dom(µ1) and X2 = dom(µ2). By hypothesis, we know that A |= ϕ
P1
X1

(tµ1 ) and A |= ϕ
P2
X2

(tµ2 ) which is
equivalent to A |= ϕ

P1
X1

(tµ1 ) ∧ ϕP2
X2

(tµ2 ). As X1 ∪ X2 = X we have A |= ϕP
X(tµ).

For the converse, if A |= ϕP
dom(µ)(tµ) then there are two sets X1 and X2 such that X1 ∪ X2 = X and both A |= ϕ

P1
X1

(tX1
µ ) and A |= ϕ

P1
X2

(tX2
µ )

hold. Define µi as µ restricted to Xi (i ∈ {1, 2}). It follows from the hypothesis that µ1 ∈ ~P1�G and µ2 ∈ ~P2�G. Since µ1 and µ2 are
compatible (they are both restrictions of µ) and µ = µ1 ∪ µ2, this implies µ ∈ ~P�G, which was to be shown.

• Let P = P1 OPT P2 and let A ∈ AG for some unrestricted RDF graph G. For every X ⊆ var(P) define the formula ϕP
X(X̄) as

ϕP
X(X̄) = ϕ

P1 AND P2
X (X̄) ∨ ϕP

MINUS X(X̄)

where ϕP
MINUS X(X̄) is defined as

ϕ
P1
X (X̄) ∧ ¬

∨
X′⊆var(P2)

∃(X′ \ X)

 ∧
x′∈X′

Dom(x′) ∧ ϕP2
X′ (X̄

′)

 .



Let µ be a mapping and let X = dom(µ). Notice that µ belongs to ~P1 AND P2�G or to ~P1�G \ ~P2�G. In the first case, we know that
A |= ϕ

P1 AND P2
X (tµ). It remains show that if µ ∈ ~P1�G \ ~P2�G then A |= ϕP

MINUS ,X(tµ). As µ ∈ ~P1�G, we know A |= ϕ
P1
X (tµ), so we only

need to prove that there is no set X′ ⊆ var(P2) such that A |= ϕ
P2
X′ (tµ′ ) for some mapping µ′ compatible with µ. But if this was the case,

by hypothesis we would have µ′ ∈ ~P2�G. This contradicts the fact that µ ∈ ~P1�G \ ~P2�G as µ′ and µ are obviously compatible.
For the converse, assume A |= ϕP

X(tµ) where X = dom(µ). If A |= ϕ
P1 AND P2
X (tµ), we know by the AND case that µ ∈ ~P1 AND P2�G

and hence µ ∈ ~P�G. The remaining case is when A |= ϕP
MINUS X(tµ). If this is the case, by hypothesis it readily follows that µ ∈ ~P1�G.

Now we have to prove that µ is not compatible with any mapping in ~P2�G. Proceed by contradiction. Assume there is a mapping
µ′ ∈ ~P2�G compatible with µ. We know A |= ϕ

P2
X′ (tµ′ ) where X′ = dom(µ′). Since µ and µ′ are compatible, µ′ can be obtained by

extending the assignments in µ, and thus A would not satisfy ϕP
MINUS X(tµ), which leads to a contradiction.

• Let P = SELECT V WHERE Q and let A ∈ AG for some unrestricted RDF graph G. For every X ⊆ var(P) such that X * V , the
formula ϕP

X(X̄) is defined as a contradiction. It is immediate to show that this satisfies the equivalence, as P cannot output variables not
mentioned in V . Now, for every X ⊆ var(P) ∩ V define the formula ϕP

X(X̄) as

ϕP
X(X̄) =

∨
Y⊆var(P)|X⊆Y

∃(Y \ X)

∧
y∈Y

Dom(y) ∧ ϕQ
Y (Ȳ)


Let µ be a mapping and let X = dom(µ). If µ belongs to ~P�G, then there is a mapping µ′ ∈ ~Q�G such that µ′

|X = µ. Let Y = dom(µ′).
We have by hypothesis that A |= ϕQ

Y (tµ′ ), where Y = dom(µ′). Since tµ′ is a tuple extending tµ, by replacing the free variables in X
according to tµ we obtain that A |= ∃(Y \ X)ϕQ

Y (tµ′ ). It readily follows that A |= ϕP
X(tµ).

For the converse, if A |= ϕP
dom(µ)(tµ), there must be a tuple ā that extends tµ and a set of variables Y with X ⊆ Y ⊆ var(P), such that

A |= ϕQ
Y (ā). Let µ′ be the mapping such that tµ′ = ā. By hypothesis, we have that µ′ ∈ ~Q�G. But since µ′ corresponds to ā and ā

extends tµ, we have that µ′
|X = µ. We conclude that µ ∈ ~SELECT V WHERE Q�G.

• Let P = P1 FILTER R and let A ∈ AG for some unrestricted RDF graph G. For every X ⊆ var(P) define ϕP
X(X̄) as

ϕP
X(X̄) = ϕ

P1
X (X̄) ∧ ϕR(X̄)

where ϕR(X̄) is inductively defined as follows:

– If R is an equality and var(R) * X, then ϕR = False.
– If R is an equality and var(R) ⊆ X, then ϕR = R.
– If R = bound(x) and x < X then ϕR = False.
– If R = bound(x) and x ∈ X then ϕR = True.
– If R is of the form ¬R1, R1 ∧ R2, or R1 ∨ R2 for filter conditions R1 and R2, then ϕR is the corresponding Boolean combination of
ϕR1 and ϕR2 .

Let µ a mapping and let X = dom(µ). It is easy to see from the definition of ϕR that A |= ϕR(tµ) if and only if µ |= R. By hypothesis we
have µ ∈ ~P1�G if and only if A |= ϕ

P1
dom(µ)(tµ), and hence it readily follows that A |= ϕ

P1
dom(µ)(tµ) ∧ ϕR(X̄) if and only if µ ∈ ~P1�G and

µ |= R, which was to be shown.

Given a SPARQL graph pattern, the previous Lemma allows us to construct a set of formulas that together, in a sense, are equivalent to P.
We now need to transform such set into one single formula. As it can be foreseen, the main issue in this transformation is that mappings do
not bind every variable in var(P), producing a problem in the set of FO free variables.

Lemma C.2. For every SPARQL graph pattern P there is a first-order formula ϕP in LP
RDF that is equivalent to P.

Proof. Let P be a SPARQL graph pattern, and let {ϕP
X(X̄)}X⊆var(P) be the set of formulas obtained from applying Lemma C.1 to P. Let

Y = var(P) and define the first-order formula ϕP(Y) as follows:

ϕP(Y) =
∨
X⊆Y

ϕP
X(X) ∧

∧
z∈var(P)\X

z = n


We show that P and ϕP are equivalent. Let A ∈ AG for some unrestricted RDF graph G.

• [⇒] Let µ ∈ ~P�G and let X = dom(µ). By definition, tP
µ makes variables var(P) \ X equal to n. It follows that A |= y = n for every

y ∈ var(P) \ X when evaluated over tP
µ . Also, we know from Lemma C.1 that A |= ϕP

X(tµ). Hence we have that A |= ϕP(tP
µ ), concluding

this direction.

• [⇐] Let µ be a mapping such that A |= ϕp(µP
t ). Since the variables equal to n in tP

µ are precisely those not in dom(µ), the only disjunct
that can be satisfied is that in which X = dom(µ). Hence, we know that A |= ϕP

dom(µ)(tµ). From Lemma C.1 this directly implies µ ∈ ~P�G,
concluding the proof.



It is important to mention that the previous transformation creates an FO formula with the same set of free variables that the original graph
pattern. Having a transformation from SPARQL to FO, we can now apply the previously mentioned interpolation techniques. Notice that the
formula resulting from a graph pattern can have equalities, and hence we use the version of Otto’s interpolation theorem in which equalities
are allowed.

Newt we need to write a formula expressing weak-monotonicity in our FO setting. Given two tuples x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , yn)
of the same length, define the formula x̄ � ȳ by

x̄ � ȳ =

n∧
i=1

(xi = yi ∨ xi = n).

It can be seen that given two mappings µ1 and µ2, it is the case that µ1 is subsumed by µ2 if and only if tV
µ1
� tV

µ2
for every set V of variables.

Define now the extended vocabularyLP2
RDF asLRDF∪{T′,Dom′}, where T′ is a ternary predicate symbol and Dom′ is a unary predicate symbol.

We say that an LP2
RDF-structure A corresponds to a graph G if the restriction of A to LP

RDF corresponds to G. Let P be a SPARQL graph pattern
and let be the LP

RDF-formula obtained from applying Lemma C.2 to a SPARQL graph pattern ϕP. Consider the following LP2
RDF-formula:[

ϕP(T,Dom, x̄) ∧ T ⊆ T′ ∧ Dom ⊆ Dom′
]
→ ∃ȳ(x̄ � ȳ ∧ ϕP(T′,Dom′, ȳ)). (5)

The idea behind this formula is to state that P is a weakly-monotone graph pattern. Indeed, it is not hard to see that if P is a weakly-monotone
graph pattern then (5) is satisfied by structures that represent RDF graphs. However, there are structures that do not correspond to any RDF
graph, and therefore we cannot assert that the previous formula is a tautology. As we will see later, interpolation techniques can only be
applied over tautologies. To overcome this problem, we define a sentence for stating that the structure corresponds to an RDF graph. This
sentence is defined as

ΦRDF =
∧
i∈I

ci , n ∧
∧
i, j

ci , c j ∧ ¬Dom(n).

It is easy to see that an LP2
RDF-structure satisfies ΦRDF if and only if it corresponds to some RDF graph. By including ΦRDF in the left hand

side of the implication we obtain a proper tautology:[
ΣRDF ∧ ϕ(T,Dom, x̄) ∧ T ⊆ T′ ∧ Dom ⊆ Dom′

]
→ ∃ȳ(x̄ � ȳ ∧ ϕ(T′,Dom′, ȳ)). (6)

Assume now that P is weakly monotone. Since ϕP is equivalent to P (which is weakly-monotone), we know that the above implication is a
tautology. Therefore, we can obtain an interpolant θ(T′,Dom′, x̄) satisfying the conditions from Ottos’s interpolation theorem. Unfortunately,
and as opposed to the applications of interpolation in FO, this interpolant is not necessarily equivalent to ϕP. In particular, we will see that
the interpolant is not only weakly-monotone, but also monotone. However, there is a strong connection between ϕP and θ, which is again
stated in terms of subsumption equivalence.

Definition C.3. Let ϕ(x̄) and ψ(x̄) be two FO formulas. We say that ϕ and ψ are subsumption-equivalent under RDF graphs if for every
structure A corresponding to an RDF graph and every tuple ā, if A |= ϕ(ā) then there is a tuple b̄ such that A |= ψ(b̄) and a � b, and
vice-versa.

Now we are ready to prove the main result obtained from translating SPARQL to FO and applying interpolation.

Theorem C.4. Let P be a weakly-monotone graph pattern. Then there are two LP
RDF-formulas ϕ and ψ such that ϕ is equivalent to P, ψ

is subsumption-equivalent to ϕ under RDF graphs, and ϕ is positive existential.

Proof. Let P be a weakly-monotone graph pattern and let ϕP be the LP
RDF-formula obtained from Theorem C.2. Since ϕP is equivalent to

P, which is weakly-monotone, we know that formula 6 is a tautology. Then, there is an interpolant θ that satisfies the next conditions:

(1)
[
ΣRDF ∧ ϕ(T,Dom, x̄) ∧ T ⊆ T′ ∧ Dom ⊆ Dom′

]
→ θ(T′,Dom′, x̄),

(2) θ(T′,Dom′, x̄)→ ∃ȳ(x̄ � ȳ ∧ ϕ(T′,Dom′, ȳ)),

(3) θ only mentions the predicates T′ and Dom′,

(4) θ is positive in both T′ and Dom′.

As ϕP and ΣRDF are {Dom,Dom′}-relativized and Dom is not mentioned in θ, we can deduce that θ is {Dom′}-relativized. Moreover, Dom′

is mentioned positively in θ from which we conclude, as in the first-order case, that θ is an existential formula. Now it only remains to show
that ϕP and θ are subsumption-equivalent under RDF graphs. Let A be an LP

RDF-structure corresponding to an RDF graph G. Define A′ as the
structure in LP

RDF
′ that results from extending A with T′ = T and Dom′ = Dom.

• [⇒] For this direction we prove a stronger result: every answer to ϕ(T,Dom) is also an answer to θ(T,Dom). Let ā be a tuple such that
A |= ϕ(T,Dom, ā). Since ϕ(T,Dom, x̄) does not mention T′ nor Dom′, we know that A′ |= ϕ(T,Dom, ā). We also know that both T ⊆ T′

and Dom ⊆ Dom′ hold in A, so by (1) we have that A′ |= θ(T′,Dom′, ā). It immediately follows that A |= θ(T,Dom, ā).

• [⇐] Let ā be a tuple such that A |= θ(T,Dom, ā). Since θ(T,Dom, x̄) does not mention T′ not Dom′, and in A′ we have T = T′ and
Dom = Dom′, we know that A′ |= θ(T′,Dom′, ā). By (2), there must be a tuple b̄ such that ā � b̄ and A′ |= ϕ(T′,Dom′, b̄).

We have that θ is a positive existential formula that is subsumption-equivalent under RDF graphs to ϕP, which is equivalent to P, concluding
the proof.



The previous theorem establishes what we obtain from applying interpolation to formulas related to weakly-monotone SPARQL graph
patterns. We now know that given a weakly-monotone SPARQL graph pattern P, there is a positive existential formula ϕP that is subsumption-
equivalent under RDF graphs a formula that is equivalent to P. To simplify notation, whenever this is the case we say that ϕP is subsumption-
equivalent to P, and write ϕP ≡s P. Next we discuss how to transform such formula ϕP back into SPARQL, and what is the syntactic form of
the obtained graph pattern. In this transformation we do not need the equivalence for all structures that correspond to RDF graphs. Instead,
we use a weaker notion of equivalence in which the correspondence between the formula and the graph pattern only holds in very specific
structures.

Definition C.5. Let G be an unrestricted RDF graph and let P be a graph pattern. The first-order structure that represents G for P is
denoted by GP

FO, and is defined as the only LP
RDF-structure with domain I(G) ∪ {N} that corresponds to G.

Notice that in a structure representing an unrestricted RDF graph G, Dom is interpreted as I(G) and T corresponds precisely to the triples
in G. Now we define the notion of equivalence that will hold when transforming a first-order positive existential formula into a SPARQL
graph pattern.

Definition C.6. Given an LP
RDF-formula ϕP and a graph pattern P, we say that P and ϕP are equivalent in RDF structures, denoted by

P ≡RDF ϕ, if for every mapping µ and RDF graph G, it is the case that µ ∈ ~P�G if and only if GP
FO |= ϕ(tP

µ ).

We also use the relation ≡RDF between two FO formulas to assert that they coincide in every structure representing an RDF graph for some
pattern. Now we proceed to define the aforementioned transformation: given a positive existential formula ϕP, we construct a graph pattern
P such that ϕ ≡RDF P. To this end, we first transform our formula into a union of conjunctive queries (UCQ) with inequalities. A UCQ with
inequalities is a formula of the form ϕ(x̄) = ∃ȳ1ϕ1(ȳ1, x̄) ∨ · · · ∨ ∃ȳnϕn(ȳn, x̄), where for every i ∈ {1, . . . , n}:

• ϕi is a conjunction of equalities, inequalities, and positive occurrences of predicates, and

• the set of free variables in ϕi is precisely the set of free variables in ϕP.

Denote by UCQ, the set of all UCQs with inequalities. Before proceeding with our translation, we need to prove that positive existential
formulas can be translated to UCQs with inequalities under certain conditions.

Lemma C.7. Let G be an unrestricted RDF graph and let P be a graph pattern. Let ϕP be a positive existential LP
RDF-formula that is

subsumption-equivalent to P. There is an LP
RDF-formula γ in UCQ, such that

• The predicate Dom does not occur in γ,

• Every equality and inequality in γ contains at least one variable,

• ϕ ≡RDF γ.

Proof. Let ϕP be a positive existential formula in LP
RDF. Define

Adom(x) = ∃y∃z(T(x, y, z) ∨ T(y, x, z) ∨ T(y, z, x))

and let ϕT be the result of replacing in ϕP every occurrence of Dom by Adom. It is clear that ϕT is also a positive existential formula and
that it does not mention the predicate Dom. It is also clear that ϕT ≡RDF ϕ, since in every structure representing an RDF graph Dom and
Adom are equivalent. Since ϕT is positive existential, we can assume w.l.o.g that ϕT(x̄) = ∃ȳ1ϕ1(ȳ1, x̄1) ∨ · · · ∨ ∃ȳnϕn(ȳn, x̄n) where each ϕi is
a conjunction of equalities, inequalities, and positive occurrences of predicates [1] . Notice, however, that the free variables in the disjuncts
are not necessarily x̄. Let ψ be the result of applying the next procedure over ϕT:

(1) remove every equality between two equal constants,

(2) remove every disjunct with an occurrence of T mentioning the constant n,

(3) remove every disjunct with an equality between two distinct constants.

Since equalities between equal constants are tautologies, the first operation does not alter the formula. In a structure corresponding to
an RDF graph, the element associated with the constant n does not appear in any occurrence of the predicate T, so the second operation
preserves the equivalence ≡RDF. Moreover, in structures corresponding to RDF graphs every two constants have different interpretation, and
hence the third operation also preserves the equivalence in these structures. It follows that ϕT ≡RDF ψ. Finally, we transform ψ into a formula
γ such that every disjunct of γ has the same free variables as ψ. Assume that ψ(x̄) = ∃ȳ1ψ1(ȳ1, x̄1) ∨ · · · ∨ ∃ȳnψn(ȳn, x̄n), where x̄ is the set of
free variables in ψ and x̄i is the set of free variables in ψi. For i ∈ {1, . . . , n} define

γi(x̄) =
∨

X⊆x̄\x̄i

∃ȳi

ψi(x̄i, ȳi) ∧
∧
x∈X

Adom(x) ∧
∧

x∈x̄\(x̄i∪X)

x = n


Finally, let γ(x̄) = γ1(x̄) ∨ · · · ∨ γn(x̄). We show that γ(x̄) ≡RDF ψ(x̄).

• Let G be an RDF graph and let ā be a tuple such that GP
FO |= γ(ā). Hence, GP

FO |= γi(ā) for some i ∈ {1, . . . , n}. This implies that
GP

FO |= ∃ȳi(ψ(āi, ȳi)), where āi is the tuple that results from restricting ā to x̄i. By the definition of ψ, this implies that GP
FO |= ψ(ā).



• Let G be an RDF graph and let ā be a tuple such that GP
FO |= ψ(ā). Hence, GP

FO |= ∃ȳi(ψ(āi, ȳi)) for some i ∈ {1, . . . , n}, where ai is the
tuple that results from restricting ā to x̄i. Let X be the set of variables in ā \ āi that are assigned to elements mentioned in TGP

FO . Since
the only element not mentioned in TGP

FO is N, and N is assigned to the constant n, it is clear that

GP
FO |= ∃ȳi

ψ(x̄i, ȳi) ∧
∧
x∈X

Adom(x) ∧
∧

x∈x̄\(x̄i∪X)

x = n


and hence GP

FO |= γ(ā).

We have that γ satisfies the desired conditions. In particular, the set of free variables in every disjunct of γ is x̄. This concludes the proof
since ϕ ≡RDF ϕT ≡RDF ψ ≡RDF γ.

Having this equivalence, we can now present the main transformation from positive existential formulas to SPARQL. As previously
mentioned, we are particularly interested in the syntactic form of the resulting graph pattern.

Theorem C.8. Let ϕP be a positive existential formula. There is a graph pattern P in SPARQL[AUFS] such that ϕ ≡RDF P.

Proof. By Lemma C.7 we can assume w.l.o.g. that (1) ϕP is in UCQ,, (2) in ϕP the predicate Dom is not mentioned, (3) the constant n
is not present in any occurrence of T, and (4) every equality and inequality mentions at least one variable. We proceed by transforming the
disjuncts of ϕP into SPARQL graph patterns. Suppose that ϕP is the following formula

ϕ(x̄) = ∃ȳ1ϕ1(ȳ1, x̄) ∨ · · · ∨ ∃ȳ jϕ j(ȳ j, x̄).

Fix k ∈ {1, . . . , j} and assume

ϕk = T(u1, v1,w1) ∧ · · · ∧ T(un, vn,wn) ∧ a1 = b1 ∧ · · · ∧ am = bm ∧ c1 , d1 ∧ · · · ∧ c` , d`

Where ui, vi and wi are either variables or IRIs, and ai, bi, ci and di are either variables, IRIs or the constant n (for i in the suitable intervals).
For every equality ai = bi, define the filter condition Ri piecewise as ¬bound(?X) if {ai, bi} = {n, ?X} and ai = bi otherwise. For every
inequality ci , di, define the filter condition S i piecewise as bound(?X) if {ci, di} = {n, ?X} and ci , di otherwise. Define the graph pattern Qk

as

Qk = ((u1, v1,w1) AND · · · AND (un, vn,wn)) FILTER (R1 ∧ · · · ∧ Rm ∧ S 1 ∧ · · · ∧ S `)

By the conditions of Lemma C.7 this graph pattern is well-defined, and the free variables in ϕk and Qk are exactly x̄. We now need to prove
that ϕk ≡RDF Qk.

• [⇒] Let G be an RDF graph and µ ∈ ~Qk�G. This implies that µ((ui, vi,wi)) ∈ G. By the definition of GP
FO and tQk

µ , we have
GP

FO |= T(ui, vi,wi) for each i ∈ {1, . . . , n} when replacing variables according to tQk
µ . Now let i ∈ {1, . . . , n}. Recall from the definition

of tQk
µ that variables that are not binded in µ are asigned to N in tQk

µ . Hence, as µ |= Ri and µ |= S i, it is easy to see that GP
FO |= (ai = bi)

and GP
FO |= (ci , di) when replacing variables according to tQk

µ . We conclude that GP
FO satisfies each conjunct of ϕk when variables are

replaced according to µ, and therefore GP
FO |= ϕk(tQk

µ ).

• [⇐] Let G be an RDF graph and let µ be a mapping such that GP
FO |= ϕk(tQk

µ ). We have that GP
FO |= T(ui, vi,wi) when replacing variables

according to tQk
µ , and hence µ((ui, vi,wi)) ∈ G for each i ∈ {1, . . . , n}. Again, the variables assigned to N by tQk

µ are precisely those
variables not binded by µ. Hence, as GP

FO |= (ai = bi) and GP
FO |= (ci , di) when replacing variables according to tQk

µ , it is easy to se that
µ |= Ri and µ |= S i. By the semantics of AND and FILTER , we conclude that µ ∈ ~Qk�G.

We have transformed the conjunctive part of each disjunct of ϕP into a first-order formula. Now we need to include in our transformation
the existential quantification. This is achieved by means of SELECT.

Define the pattern Pk as SELECT x̄ WHERE Qk. We show that Pk ≡RDF ∃ȳkϕk(ȳk, x̄). Let G be an RDF graph.

• [⇒] Let µ ∈ ~Pk�G. By the semantics of SELECT, there must be a mapping µ′ ∈ ~Qk�G such that µ′
|x̄ = µ. Since Qk ≡RDF ϕk, this

implies that GP
FO |= ϕk(t′x̄∪ȳk

µ ). Since the projection of t′x̄∪ȳk
µ to x̄ is precisely t x̄

µ, we have that GP
FO |= ∃ȳkϕk(ȳk, t x̄

µ), concluding the first
direction.

• [⇐] Let µ be a mapping such that GP
FO |= ∃ȳkϕk(ȳk, t x̄

µ). Then, there is a tuple a that extends t x̄
µ by assigning an IRI or the value N to each

variable in ȳk. Hence, a corresponds to t′x̄∪ȳk
µ for some mapping µ′. Since GP

FO |= ϕk(t′x̄∪ȳk
µ ) and ϕk ≡RDF Qk, this means that µ′ ∈ ~Pk�G.

As the restriction of µ′ to x̄ is µ, we have that µ ∈ ~SELECT x̄ WHERE Pk�G.

Having for each disjunct ϕP an equivalent graph pattern, we finally proceed to create a graph pattern that is equivalent to ϕP. This graph
pattern is defined, as expected, as the dijunction between the previously constructed patterns. Let P = P1 UNION · · · UNION P j. It is
immediate to prove that P ≡RDF ϕ: Let G be an RDF graph. A mapping µ belongs to ~P�G if an only if there is a k ∈ {1, . . . , j} such that
µ ∈ ~Pk�G. We already proved this is the case if and only if there is a k ∈ {1, . . . , j} such that GP

FO |= ∃ȳkϕk(ȳk, t x̄
µ), concluding the proof.



At this point we have one transformation from SPARQL to FO and one transformation from FO to graph patterns in SPARQL[AUFS].
The composition of these two transformations does not preserve all the answers, but only the maximal ones. Notice that this is expected, as it
is well known that graph patterns in SPARQL[AUFS] are not only weakly-monotone, but also monotone. We are finally ready to prove that
for every unrestricted weakly-monotone graph pattern P, there exists a graph pattern Q in SPARQL[AUFS] such that P ≡inf

s Q.

Proof. Let P be an unrestricted weakly-monotone SPARQL graph pattern. Let ϕP be the existential first-order formula such that P ≡s ϕ
obtained from applying Lemma C.1. Denote by ψ the UCQ with inequalities equivalent to ϕP constructed by applying Lemma C.7. Now let
Q be the graph pattern such that Q ≡RDF ψ obtained from applying Theorem C.8. We prove that Q is equivalent in maximal answers to P.

• [⇒] Let G be an unrestricted RDF graph and let µ be a mapping in ~P�G. Then, we know that GP
FO |= ϕ(tP

µ ) and hence there is a tuple
ā such that tP

µ � ā and GP
FO |= ψ(a). Let µa be the mapping corresponding to ā. It is easy to see that µ � µa. Moreover, from the

equivalence between ψ and Q we obtain that µa ∈ ~Q�G.

• [⇐] Let G be an RDF graph and let µ be a mapping in ~Q�G. This implies that GP
FO |= ψ(tP

µ ). Since ψ and ϕ are subsumption-equivalent,
there is a tuple ā such that tP

µ � ā and GP
FO |= ϕ(ā). Let µa be the mapping corresponding to ā. It is easy to see that µ � µa. Moreover,

since ϕ and P are equivalent, we conclude that µa ∈ ~P�G.

D. PROOF OF THEOREM 5.1
Statement The languages SPARQL and NS–SPARQL have the same expressive power.

As mentioned in the body, since P1 OPT P2 ≡ NS(P1 UNION (P1 AND P2)) it is trivial to show that SPARQL ⊆ NS–SPARQL.
Therefore we only proceed to prove that every graph pattern in NS–SPARQL is equivalent to a graph pattern in SPARQL.

We first need to prove that every SPARQL graph pattern is equivalent to a graph pattern in UNION-normal-form. A graph pattern P is said
to be in UNION-normal-form if P = P1 UNION P2 UNION · · · UNION Pn, where each Pi (1 ≤ i ≤ n) is UNION-free.

Proposition D.1. Every SPARQL graph pattern is equivalent to a graph pattern in UNION-normal-form.

Proof. Let P be a SPARQL graph pattern. We proceed by induction over the structure of P. We only consider the case in which
P = SELECT V WHERE Q, as the other cases have already been proved 2 for SPARQL[AUOF] in [29].

Assume P = SELECT V WHERE Q. By induction hypothesis we can assume that Q = Q1 UNION · · ·Qn where each disjunct is
UNION-free. We prove that

P ≡ (SELECT V WHERE Q1) UNION · · · UNION (SELECT V WHERE Qn).

Let G be an RDF graph and µ be a mapping.

• [⇒] Assume µ ∈ ~P�G. Then, there is a mapping µ′ ∈ ~Q�G such that µ′
|V = µ. implies there is an i ∈ {1, . . . , n} such that µ′ ∈ ~Qi�G. It

follows that µ ∈ ~SELECT V WHERE Qi�G.

• [⇐] Assume µ ∈ ~SELECT V WHERE Qi�G for i ∈ {1, . . . , n}. Then, there is a mapping µ′ ∈ ~Qi�G such that µ′
|V = µ. It follows that

µ′ ∈ ~Q�G, and hence µ ∈ ~P�G.

To prove that NS–SPARQL is contained in SPARQL we actually make use of a stronger version of UNION-normal-form. We abuse
notation by writing D ∈ P whenever P is a graph pattern in UNION-normal-form and D one of the disjuncts in P.

Lemma D.2. Let P be a SPARQL graph pattern. Then, there is a graph pattern P′ in UNION-normal-form such that P′ ≡ P. Moreover,
for every D ∈ P′ there is a set of variables VD ⊆ var(P) such that for every RDF graph G and every µ ∈ ~D�G, it is the case that dom(µ) = VD.

Proof. Let P be a SPARQL graph pattern. For every V ⊆ var(P), define the graph pattern

PV = P FILTER

∧
?X∈V

bound(?X) ∧
∧

?X∈var(P)\V

¬bound(?X)

 .
Notice that for every graph pattern G, ~PV�G is the set of mappings µ in ~P�G such that dom(µ) = V . Now, define the pattern P′V as the
transformation of PV into UNION-normal-form. It is clear that the domain of every mapping that comes from the disjuncts of P′V must be
exactly V . Define P′ as the disjunction (by means of UNION) of every P′V (V ⊆ var(P)). We prove that P is equivalent to P′. Let G be an
RDF graph and µ ∈ ~P�G. It is clear that µ ∈ ~Pdom(µ)�G, and hence µ ∈ ~P′dom(µ)�G, which implies µ ∈ ~P′�G. For the converse, let µ ∈ ~P′�G.
There is a set V of variables such that µ ∈ ~P′V�G, and hence µ ∈ ~PV�G, which implies µ ∈ ~P�G. Finally, as P′ is a disjunction of graph
patterns in UNION-normal-form, P′ is also in UNION-normal-form. Moreover, the disjuncts in the UNION-normal-form version of PV can
only output mappings whose domain is precisely V , which concludes the proof.

In simple words, the previous lemma allows us to distinguish the set of variables binded by the mappings coming from each disjunct. In
the following we use the operation MINUS , which is defined as follows:

P1 MINUS P2 = (P1 OPT (P2 AND (?x1, ?x2, ?x3))) FILTER ¬bound(?x1).
2The original proof had an issue in the OPT case, it was later corrected in errata by the authors.



Given an RDF graph G, P1 MINUS P2 retrieves the mappings in ~P1�G that are not compatible with any mapping in ~P2�G.
Now we are ready to prove that NS–SPARQL is contained in SPARQL.

Lemma D.3. Every NS–SPARQL graph pattern can be transformed into an equivalent SPARQL pattern.

Proof. Let P be a graph pattern in NS–SPARQL. We proceed by induction over the structure of P. The basic case is trivial as a triple
pattern is already in SPARQL. For the inductive step to succeed we need to prove a slightly stronger property: every graph pattern in
NS–SPARQL can be translated into SPARQL. Assume P = NS (Q), which is the only nontrivial case. By hypothesis we can assume Q is in
SPARQL (it might mention OPT). From Lemma D.2 we can suppose that Q is in UNION-normal-form and, moreover, that each disjunct of
Q can only output mappings binding a fixed set of variables VQ. Let Q′ be a disjunct of Q, and assume Q1, . . . ,Qn are all disjuncts of Q such
that VQ′ ( VQi . Define the graph pattern

Q′NS = Q′ MINUS (Q1 UNION · · · UNION Qn).

We prove that NS (Q) is equivalent to the graph pattern defined as

R = UNION
Q′∈Q

Q′NS.

• [⇒] Let G be an RDF graph and let µ ∈ ~NS (Q)�G. We have that µ ∈ ~Q′�G for some disjunct Q′ of Q, and that there is no mapping
µ′ ∈ ~NS (Q)�G subsuming µ. It follows that there is no disjunct Q′′ of Q and mapping µ′′ ∈ ~Q′′�G such that VQ′ ( VQ′′ and µ ∼ µ′′,
from which we can deduce that µ ∈ ~Q′NS�G.

• [⇐] Let G be an RDF graph and let µ ∈ ~R�G. We have that µ ∈ ~Q′NS�G for some disjunct Q′ of Q. Then, µ ∈ ~Q′�G and there is no
disjunct Q′′ of Q and mapping µ′′ ∈ ~Q′′�G such that VQ′ ( VQ′′ and µ ∼ µ′. This obviously implies that there is no mapping in ~Q�G

subsuming µ, and hence µ ∈ ~NS (Q)�G.

This concludes the proof as the inductive step is trivial for every other operation.

From the previous proof we conclude that the NS operator can be removed by introducing MINUS , which is defined in terms of OPT .
We conclude that every graph pattern in NS–SPARQL is equivalent to a SPARQL graph pattern, which was to be shown.

E. PROOF OF LEMMA 6.5
Statement For every monotone CONSTRUCT query Q, there is a template H and an unrestricted weakly monotone SPARQL graph pattern

P such that Q ≡inf (CONSTRUCT H WHERE P).

Proof. Let q = CONSTRUCT H WHERE P be a CONSTRUCT query. We can assume without loss of generality that var(H) ⊆ var(P),
as every triple in H mentioning a variable not occuring in P can be safely removed. For every triple pattern t ∈ H define a renaming function
σt : V→ V in a way such that:

• For every t, s ∈ H and every v1, v2 ∈ var(P), it is the case that σt(v1) , σs(v2).

• For every t ∈ H and every v ∈ var(P), σt(v) < var(P).

For a mapping µ and a triple t ∈ H, define σt[µ] as the mapping that results from replacing the domain of µ by its image under σt. For every
t ∈ H let Adom(t) be the conjunction (by means of AND) of Adom(?X) for each variable ?X in var(t). If t has no variables then Adom(t) is
considered to be a tautology.

For every t ∈ H define the pattern Pt as the result of replacing in P every occurrence of a variable ?X by σt(?X). For every two triples
t = (t1, t2, t3) and s = (s1, s2, s3) in H define Rt,s as the filter condition (t1 = σs(s1) ∧ t2 = σs(s2) ∧ t3 = σs(s3)), assuming, for the sake of
simplicity, that σs(a) = a for every a ∈ I. Now we define the set of graph patterns that will serve as a basis for our construction. For each
t ∈ H, define Pt as

Pt = SELECT var(t) WHERE
( [

P UNION UNION
s∈H\{t}

[(Ps AND Adom(t)) FILTER Rt,s]
]

FILTER (bound(var(t)))
)

We prove that the next three properties hold for every t ∈ H:

(1) For every graph G and every mapping µ ∈ ~P�G, if µ(t) ∈ ans(q,G), then µ(t) ∈ ans(CONSTRUCT t WHERE Pt,G).

(2) For every graph G, ans(CONSTRUCT t WHERE Pt,G) ⊆ ans(q,G).

(3) Pt is weakly-monotone.

The first property immediately follows from the fact that P is one of the disjuncts of Pt, as if µ(t) ∈ ans(q,G), then the variables in t are
bounded by µ.

Now we proceed with (2). Let G be an RDF graph and let µ be a mapping in ~Pt�G such that µ(t) ∈ ans(CONSTRUCT t WHERE Pt,G).
Hence, µ must come from one of the disjuncts in Pt. If that disjunct is P, then we have that µ is the projection over var(t) of a mapping in
~P�G, and hence µ(t) ∈ ans(q,G). If not, then there is an s ∈ H such that µ is subsumed by a mapping µ′ ∈ ~Ps AND Adom(t) FILTER Rt,s�G.
Then µ′ is the join between two mappings. Let µs be the mapping in ~Ps�G of such join. Since Ps equals P by a renaming of all variables, the
mapping σ−1

s [µs] belongs to ~P�G. Moreover, by the filter condition Rt,s, we know that σ−1
s [µs] must bind all variables in var(s), and hence

σ−1
s [µs](s) ∈ ans(q,G). But from the filter condition we know that σ−1

s [µs](s) equals µ(t), and hence µ(t) belongs to ans(q,G), which was to
be shown.



Finally we prove that Pt is weakly monotone. Let G be an RDF graph and µ ∈ ~Pt�G. We know that dom(µ) = var(t), and hence
µ(t) ∈ ans(CONSTRUCT t WHERE Pt,G). By property 2 this implies that µ(t) ∈ ans(q,G). Let G′ be an RDF graph such that G ⊆ G′.
Since q is monotone, there must be a triple s ∈ H and a mapping µs ∈ ~P�G′ such that µs(s) = µ(t). Hence σs[µs] ∈ ~Ps�G′ . Moreover, since
µs(s) = µ(t), we have that σs[µs] Z µ satisfy Rt,s. Hence, σs[µs] Z µ belongs to ~Ps AND Adom(t) FILTER Rt,s�G′ , and hence µ ∈ ~Pt�G′ .
This actually tells us that Pt is monotone, and therefore weakly-monotone.

Having defined the patterns Pt and proved the three properties above, we proceed with the main result. First, define for each t ∈ H the
CONSTRUCT query qt as CONSTRUCT t′ WHERE P′t , where t′ and P′t are the result of renaming the variables in t and Pt, respectively,
by a single function. Without loss of generality we can assume that for t, s ∈ H, the queries qt and qs have pairwise disjoint sets of variables.
Notice, however, that for every t ∈ H the query qt is equivalent to CONSTRUCT t WHERE Pt, and hence satisfies the three properties
mentioned above. Finally, define H′ and P′ as:

H′ = {t′ | t ∈ H} P′ = UNION
t∈H

Pt.

Let q′ = CONSTRUCT H′ WHERE P′. We prove that q and q′ are equivalent. Let G be an RDF graph.

⇒ Let µ ∈ ~P�G and t ∈ H such that µ(t) ∈ ans(q,G). By the first property proved above, we know that µ(t) is in the answer to
CONSTRUCT t WHERE Pt over G, which implies that µ(t) ∈ ans(CONSTRUCT t′ WHERE P′t ,G). Since P′t is one of the disjuncts
of P′ and t′ ∈ H′, we have that µ(t) ∈ ans(q′,G).

⇐ Let µ ∈ ~P′�G and t ∈ H′ such that µ(t) ∈ ans(q′,G). We know that µ ∈ ~P′s�G for some s′ ∈ H′. If var(t) , ∅ then such
s′ must be t′ as P′t and P′s do not share variables. In this case, µ(t) ∈ ans(CONSTRUCT t′ WHERE P′t ,G), which implies that
µ(t) ∈ ans(CONSTRUCT t WHERE Pt,G). By the second property, this implies µ(t) ∈ ans(q,G). On the other hand, tf t has no
variables, then we still know that µ ∈ ~P′s�G for some s′ ∈ H′. This entails there is a mapping in ~Ps�G. Hence, there is either a
mapping µ′ in ~P�G or in ~Ph�G for some h ∈ H. Since Ph is a renaming of P, in any case there must be a mapping µ′ ∈ ~P�G. Finally,
as t has no variables, µ′(t) = µ(t) ∈ ~P�G.

We proved that q is equivalent to q′ = CONSTRUCT H′ WHERE P′. Since P′ is a disjunction between weakly-monotone graph patterns,
we know that P′ is also weakly monotone, concluding the proof.

F. PROOF OF PROPOSITION 6.7
Statement CONSTRUCT[AUF] has the same expressive power as CONSTRUCT[AUFS].

To prove this proposition we define an effective procedure for removing the UNION operator from a CONSTRUCT query. This procedure
is given by the following recursive definition:

Definition F.1. Let P be a NS–SPARQL graph pattern. The SELECT-free version of P, denoted by Psf, is recursively defined as follows:

• If P is a triple pattern, then Psf = P.

• If P = SELECT V WHERE P′, then Psf is the result of replacing in P′sf every variable in var(P′) \ V by a fresh variable. Notice that
the SELECT is removed.

• If P is (P1 ∗P2), where ∗ is one of {AND,UNION,FILTER}, then Psf = (P1sf ∗P2sf), assuming that the sets of variables var(P1sf) \ var(P)
and var(P2sf) \ var(P) are disjoint.

• If P = NS (P′), then Psf = NS (P′sf).

• If P = P′ FILTER R, then P = P′sf FILTER R.

Now we need to prove the following equivalence between a graph pattern and its SELECT-free version.

Lemma F.2. Let P be a graph pattern. For every RDF graph G, a mapping µ is in ~P�G if and only if there is a mapping µ′ ∈ ~Psf�G such
that µ � µ′ and dom(µ) = dom(µ′) ∩ var(P).

Proof. We proceed by induction. Assume G is an RDF graph and let µ be a mapping.

• If P is a triple pattern the result immediately follows.

• If P is P1 UNION P2, then µ ∈ ~P�G if and only if µ ∈ ~P1�G ∪ ~P2�G. By hypothesis, this occurs if and only if there is a mapping
µ′ ∈ ~P1sf�G ∪ ~P2sf�G such that µ � µ′. This concludes the proof as ~P1sf�G ∪ ~P2sf�G = ~Psf�G.

• Let P = P1 AND P2. If µ ∈ ~P�G,then there are two mappings µ1 ∈ ~P1�G and µ2 ∈ ~P2�G such that µ = µ1 ∪ µ2. By hypothesis,
this implies there are two mappings µ′1 ∈ ~P1sf�G and µ′2 ∈ ~P2sf�G such that µ1 � µ′1 and µ2 � µ′2. We know that µ1 and µ2 only
mention variables in var(P), and are compatible. This implies that µ′1 and µ′2 are compatible, as by definition they cannot have variables
in common that are not mentioned in var(P). Then, µ1 ∪ µ2 ∈ ~Psf�G, which concludes this direction as µ � µ1 ∪ µ2. The opposite
direction is proved by the same argument.

• Let P = P1 OPT P2. We know that µ ∈ ~P�G if and only if µ ∈ ~P1 MINUS P2�G or µ ∈ ~P1 AND P2�G. We prove that
µ ∈ ~P1 MINUS P2�G if and only if µ ∈ ~P1 MINUS P2sf�G, and that µ ∈ ~P1 AND P2�G if and only if µ ∈ ~P1 AND P2sf�G. The
latter case was already proved. By definition, µ ∈ ~P1 MINUS P2�G if and only if µ ∈ ~P1�G and there is no µ′ ∈ ~P2�G compatible
with µ. By hypothesis this occurs if and only if there is a mapping µ1 ∈ ~P1sf�G such that µ � µ1, and there is no mapping µ2 ∈ ~P2sf�G

compatible with µ (as µ2 would be the extension of a mapping in ~P2�G compatible with µ). But these conditions occur if and only if
µ1 ∈ ~P1sf MINUS P2sf�G. This concludes the proof as µ � µ1.



• Let P = P′ FILTER R. Then µ ∈ ~P�G if and only if µ ∈ ~P′�G and µ |= R. By hypothesis, we have that µ ∈ ~P′�G if and only if there
is a mapping µ′ ∈ ~P′sf�G such that µ � µ′. Moreover, the variables in dom(µ′) \ dom(µ) are not mentioned in var(P) and hence they are
not mentioned in R. Hence µ |= R if and only if µ′ |= R, concluding the proof.

• If P = NS(P′), then µ ∈ ~P�G implies µ is a maximal mapping in ~P′�G. By hypothesis, this implies there is a mapping in ~P′sf�G

subsuming µ, and hence there must be a mapping in ~NS (P′sf)�G subsuming µ. For the opposite direction, assume µ′ ∈ ~NS (P′sf)�G.
Then, µ′ is a maximal mapping in ~P′sf�G. Therefore, there must be a maximal mapping µ ∈ ~P′�G such that µ � µ′, as if this was not
the case then µ′ would not be maximal.

• Let P = SELECT V WHERE P′. Assume µ ∈ ~P�G. Then, there is a mapping µ′ ∈ ~P′�G such that µ � µ′. As Psf results from
renaming variables not mentioned in dom(µ) in P′, there must be a mapping µ′′ that is a renaming of µ′ subsuming µ. The opposite
direction readily follows from a similar argument.

Finally we are ready to prove the original proposition, namely that CONSTRUCT[AUF] has the same expressive power as
CONSTRUCT[AUFS].

Proof. We only need to prove that every CONSTRUCT[AUFS] query can be transformed into an CONSTRUCT[AUF] query. Let q =

CONSTRUCT H WHERE P be an CONSTRUCT[AUFS] query. We can assume w.l.o.g that var(H) ⊆ var(P). We prove that q ≡
CONSTRUCT H WHERE Psf. Let G be an RDF graph.

• [⇒] Assume µ(t) ∈ ans(q,G), where µ ∈ ~P�G and t ∈ H. Then, there is a mapping µ′ in ~Psf�G such that µ � µ′. This implies that µ′(t)
is a triple in ans(CONSTRUCT H WHERE Psf,G). As µ � µ′, we obtain that µ′(t) = µ(t), concluding this direction.

• [⇒] Assume µ′(t) ∈ ans(CONSTRUCT H WHERE Psf,G), where µ′ ∈ ~Psf�G and t ∈ H. Then, there is a mapping µ in ~P�G such
that µ � µ′ and dom(µ) = dom(µ′) ∩ var(P). Since var(t) ⊆ var(P) and var(t) ⊆ dom(µ′), we obtain that var(t) ⊆ dom(µ). We conclude
that µ(t) ∈ ans(q,G).

G. PROOF OF THEOREM 7.1
Statement Eval(SP–SPARQL) is DP-complete.

To prove this theorem we make use of the following two lemmas.

Lemma G.1. [[30], Theorem 3.2] There is a polynomial-time algorithm that, given a propositional formula ϕ, generates a mapping µϕ, a
graph pattern Pϕ in SPARQL[AUF] and an RDF graph Gϕ, such that:

(1) dom(µϕ) = var(Pϕ) and I(Pϕ) = I(Gϕ);
(2) every triple pattern in Pϕ mentions variables and IRIs;
(3) if ϕ is satisfiable, then ~P�Gϕ = {µϕ}; and
(4) if ϕ is unsatisfiable, then ~P�Gϕ = ∅.

Lemma G.2. Let G1 and G2 be two RDF graphs such that I(G1) ∩ I(G2) = ∅, and let P be a graph pattern in NS–SPARQL. If P is free
from variable-only triple patterns and I(P) ⊆ I(G1), then ~P�G1∪G2 = ~P�G1 .

Proof. Proceed by induction over the structure of P. If P is a triple pattern, then it must mention some IRI in that is in I(G1)\I(G2). Hence,
P can only match triples in G1. It follows that ~P�G1∪G2 = ~P�G1 . The remaining cases are proven directly from the inductive definition of
graph patterns:

• If P = P1 AND P2, we have ~P�G1∪G2 = ~P1�G1∪G2 Z ~P2�G1∪G2 . By induction hypothesis this is the same as ~P1�G1 Z ~P2�G1 =

~P�G1 .
• If P = P1 UNION P2, we have ~P�G1∪G2 = ~P1�G1∪G2 ∪ ~P2�G1∪G2 . By hypothesis this is the same as ~P1�G1 ∪ ~P2�G1 = ~P�G1 .
• If P = P1 OPT P2, we have ~P�G1∪G2 = ~P1�G1∪G2 ./ ~P2�G1∪G2 . From the hypothesis this is the same as ~P1�G1 ./ ~P2�G1 = ~P�G1 .
• If P = P′ FILTER R, we have ~P�G1∪G2 = {µ ∈ ~P′�G1∪G2 | µ |= R}. By induction hypothesis this is the same as {µ ∈ ~P′�G1 | µ |= R} =

~P�G1 .
• If P = NS(P′), the result immediately follows as ~P′�G1∪G2 = ~P′�G1 .

Now we proceed to prove that the evaluation problem for simple graph patterns is DP-complete.

Proof. According to the definition, the evaluation problem for simple graph patterns corresponds to the language of all triples (G, P, µ)
such that µ ∈ ~P�G, where P = NS(P′) is a simple pattern. This language is in DP since it can be expressed as the intersection of the
following two languages.

{(G, P, µ) | P = NS(P′) is a simple pattern and µ ∈ ~P′�G} (7)
{(G, P, µ) | P = NS(P′) is a s.p. and there is no µ′ ∈ ~P′�G s.t. µ ≺ µ′}. (8)



Language (7) can be solved by a routine for Eval(SPARQL[AUFS]), which is in NP [37]. The second language is in coNP as its complement
consists of the triples (G,NS(P), µ) where P = NS (P′) (which is polynomially verifiable) and there is a mapping µ′ ∈ ~P′�G such that µ ≺ µ′.
This is also in NP as µ′ can be created nondeterministically and P′ is in SPARQL[AUFS].

Now we show that the evaluation problem for simple patterns is DP-hard. We provide a reduction from the well-known DP-complete
problem SAT-UNSAT [28]. This is the problem of deciding, given a pair of propositional formulas (ϕ, ψ), whether ϕ is satisfiable and ψ
is unsatisfiable. Let (ϕ, ψ) be a pair of propositional formulas. Let µϕ, Pϕ, Gϕ and µψ, Pψ, Gψ be the elements provided by Lemma G.1
corresponding to ϕ and ψ, respectively. By renaming variables and IRIs, we can assume w.l.o.g. that the IRIs and variables mentioned in
µϕ, Pϕ, Gϕ are disjoint from those mentioned in µψ, Pψ, Gψ. Consider the graph pattern P = NS(Pϕ UNION (Pϕ AND Pψ)). We show that
µϕ ∈ ~P�Gϕ∪Gψ if and only if (ϕ, ψ) ∈ SAT-UNSAT. Notice that by Lemma G.2 we have that µϕ ∈ ~Pϕ�G if and only if µϕ ∈ ~Pϕ�Gϕ , and that
µψ ∈ ~Pψ�G if and only if µϕ ∈ ~Pψ�Gψ .

(⇒) Suppose for the sake of contradiction that µϕ ∈ ~NS(Pϕ UNION (Pϕ AND Pψ))�G, and that ϕ is unsatisfiable or ψ is satisfiable. We
analyze these cases separately.

– If ϕ is not satisfiable, then we know by Lemma G.1 that ~Pϕ�G = ∅, which implies that ~NS(Pϕ UNION (Pϕ AND Pψ))�G = ∅.
– If ψ is satisfiable, then we have by Lemma G.1 that µψ ∈ ~Pψ�G. Since var(Pϕ) ∩ var(Pψ) = ∅ and ~Pψ�G , ∅, every mapping in
~Pϕ�G is subsumed by some mapping in ~Pϕ AND Pψ�G. Hence, we obtain that

~NS(Pϕ AND Pψ)�G ≡ ~NS(Pϕ UNION (Pϕ AND Pψ))�G.

We know by Lemma G.1 that the empty mapping does not belong to ~Pψ�G, and therefore every mapping in ~Pϕ AND Pψ�G

mentions some variable in var(Pψ). As var(µϕ) ∩ var(Pψ) = ∅, we conclude that µϕ < ~Pϕ AND Pψ�G. Thus, µϕ is not in
~NS(Pϕ UNION (Pϕ AND Pψ))�G, which contradicts our initial assumption.

(⇐) Assume ϕ is satisfiable and ψ is unsatisfiable. By Lemma G.1, this implies that ~Pψ�G = ∅. Hence, in this case we have that
~NS(Pϕ UNION (Pϕ AND Pψ))�G is the same as ~NS(Pϕ)�G. From Lemma G.1, we have that ~Pϕ�G = {µϕ} and, therefore, µϕ ∈
~NS(Pϕ)�G, concluding the proof.

H. PROOF OF THEOREM 7.2
Statement For every k > 0, it holds that Eval(USP–SPARQLk) is BH2k-complete.

Lemma H.1. Let n ∈ N, and for every i ∈ {1, . . . , n} let µi, Gi and Pi be a mapping, an RDF graph and a graph pattern, respectively. If
the following conditions hold

• for every i, j ∈ {1, . . . , n} with i , j, the variables and iris mentioned in (µi, Pi,Gi) are disjoint from the variables and iris mentioned in
(µ j, P j,G j);

• for every i ∈ {1, . . . , n}, it is the case that Pi is a simple pattern which does not mention variable-only triple patterns,

then there is a mapping µ, an ns-pattern P and an RDF graph G such that µ ∈ ~P�G if and only if µi ∈ ~Pi�Gi for some i ∈ {1, . . . , n}.
Moreover, µ, P and G can be computed in polynomial time.

Proof. Let n ∈ N, and for every i ∈ {1, . . . , n} let µi, Gi and Pi be a mapping, an RDF graph and a graph pattern, respectively. First, define
the mapping µ as µ1 ∪ µ2 ∪ · · · ∪ µn. This mapping is correctly defined since var(µi) ∩ var(µ j) = ∅ for every i, j ∈ {1, . . . , n} with i , j.

Now define the RDF graph G as

G =

 ⋃
i∈{1,...,n}

Gi

 ∪
 ⋃

?X∈dom(µ)

(µ(?X), c?X , d?X)


where c?X and d?X are distinct fresh IRIs for every ?X ∈ dom(µ). Adding the new IRIs and their corresponding triples allows us to trivially
match the graph to include the assignment ?X → µ(?X) in any mapping not mentioning ?X. Based on this intuition we proceed to create the
ns-pattern P. Let i ∈ {1, . . . , n} and assume that dom(µ) \ dom(µi) = {?X1, . . . , ?X`}. Assuming that Pi = NS (Qi), define the pattern P′i as

P′i = NS
(
Qi AND (?X1, c?X1 , d?X1 ) AND · · · AND (?X`, c?X` , d?X` )

)
.

Finally, define the graph pattern P by

P = P′1 UNION P′2 UNION · · · UNION P′n

It is clear that the above elements µ, P and G can be computed in polynomial time. Notice that if µi ∈ ~Pi�Gi then µi will appear in the answer
to Qi over G, as Gi ⊆ G and Qi is monotone. Moreover, for every ?X ∈ dom(µ) \ dom(µi) the triple pattern (?X, c?X , d?X) will trivially match
the RDF triple (µ(?X), c?X , d?X).

Now that we have defined µ, P and G, we formally prove that µ is in ~P�G if and only if µi ∈ ~Pi�Gi for some i ∈ {1, . . . , n}. Since
P = P′1 UNION P′2 UNION · · · UNION P′n, we know that µ ∈ ~P�G if and only if µ ∈ ~P′i�G for some i ∈ {1, . . . , n}. Thus, it is sufficient
to show that for each i ∈ {1, . . . , n} it is the case that

µi ∈ ~Pi�Gi if and only if µ ∈ ~P′i�G. (9)



Let i ∈ {1, . . . , n}. Define the mapping µ−i as µ restricted to dom(µ) \ dom(µi). Assume dom(µ−i) = {?X1, . . . , ?X`}. We have

P′i = NS
(
Qi AND (?X1, c?X1 , d?X1 ) AND · · · AND (?X`, c?X` , d?X` )

)
.

Since G contains every triple of the form (µ(?X), c?X , d?X), and the IRIs c?X and d?X are not mentioned anywhere else in G, we know that

~(?X1, c?X1 , d?X1 ) AND · · · AND (?X`, c?X` , d?X` )�G = {µ−i}. (10)

We make use of this fact to prove both directions of (9).

⇒) Assume µi ∈ ~Pi�Gi . By semantics of NS, it is the case that µi ∈ ~Qi�Gi . Since Qi is monotone and Gi ⊆ G, we have µi ∈ ~Qi�G. As µi

and µ−i are compatible, by equation (10) we obtain that

µi ∪ µ−i ∈ ~Qi AND (?X1, c?X1 , d?X1 ) AND · · · AND (?X`, c?X` , d?X` )�G.

Finally, as µi ∪ µ−i = µ and dom(µ) = var(P′i ), we have µ ∈ ~P′i�G.

⇐) Assume µ ∈ ~P′i�G. By the semantics of the NS operator, we know that

µ ∈ ~Qi AND (?X1, c?X1 , d?X1 ) AND · · · AND (?X`, c?X` , d?X` )�G.

Provided that ~(?X1, c?X1 , d?X1 ) AND · · · AND (?X`, c?X` , d?X` )�G = {µ−i}, we have that ~Qi�G must contain a mapping subsuming µi.
This mapping must be exactly µi, as dom(µi) = var(Qi). We conclude that µi ∈ ~NS(Qi)�G = ~Pi�G. From Lemma G.2 we know that
~Pi�G = ~Pi�Gi , concluding the proof.

We now proceed to prove that for every k > 0, it holds that Eval(USP–SPARQLk) is BH2k-complete.

Proof. We first prove by induction that for every k > 0, it holds that Eval(USP–SPARQLk) ∈ BH2k. For k = 1, we have the evaluation
problem for simple patterns, which is complete for DP = BH2. For the inductive case let k > 1 and assume Eval(USP–SPARQLk) ∈ BH2k.
We want to show that Eval(USP–SPARQLk+1) ∈ BH2(k+1). Consider the following two languages:

L1 = {(µ, P1 UNION · · · UNION P j,G) | j ≤ k + 1, for i ∈ [1.. j] Pi is a simple pattern, and µ ∈ ~Pi�G for some i ∈ [1..k]}
L2 = {(µ, P1 UNION · · · UNION Pk+1,G) | for i ∈ [1..k + 1] Pi is a simple pattern, and µ ∈ ~Pk+1�G}

Since Eval(USP–SPARQLk+1) is in BH2k, it is trivial to prove that L1 ∈ BH2k. Moreover, since Eval(SP–SPARQL) is in DP, it is trivial to
show that L2 is also in DP. By simply inspecting L1 and L2 we can see that L1 ∪ L2 = USP–SPARQLk+1. We obtain that Evalk+1 is the union
between a problem in BH2k and a problem in DP. We know from [45] that such a union belongs to BH2k+2, which concludes the containment
part.

Let k > 0. To prove that Eval(USP–SPARQLk+1) is BH2k-hard, we make a reduction from the problem of knowing if a graph has chromatic
number in the set Mk = {6k + 1, 6k + 3 . . . , 8k − 1}. This problem is known as Exact-Mk-Colorability and is proved to be BH2k-complete in
[36].

We will create a function that takes a graph H as input and generates an RDF graph G, a mapping µ and a pattern P =

P1 UNION · · · UNION Pk, such that the chromatic number of G is in Mk if and only if µ ∈ ~P�G. Let H be a graph. Denote by
{m1, . . . ,mk} the elements in Mk. As k > 0 we know that every element in Mk is greater than 3. Hence, the problem of knowing if a graph
has chromatic number m is DP-complete for every m in Mk [36]. Since the evaluation problem for simple patterns is DP-complete, for every
i ∈ {1, . . . , k} we can generate in polynomial time an RDF graph Gi, a mapping µi and a simple pattern Pi, such that µi ∈ ~Pi�Gi if and only if
H has chromatic number mi. Moreover, we can assume w.l.o.g. that for i , j, the variables and IRIs mentioned in µi, Gi and Pi are disjoint
from those mentioned in µ j, G j and P j. Hence, by lemma H.1, we can construct in polynomial time a mapping µ, an ns-pattern P with k
disjuncts, and an RDF graph G such that µ ∈ ~P�G if and only if µi ∈ ~Pi�Gi for some i ∈ {1, . . . , k}. But as mentioned before, this occurs if
and only if H has chromatic number in Mk. This implies that µ ∈ ~P�G if and only if the chromatic number of H is in Mk, concluding the
proof.

I. PROOF OF THEOREM 7.3
Statement Eval(USP–SPARQL) is PNP

||
-complete.

Proof. Let P = P1 UNION P2 UNION · · · UNION Pn be a graph pattern where every Pi (1 ≤ i ≤ n) is a simple pattern. Let G be an
RDF graph and µ be a mapping. Since for every i the problem of deciding if µ ∈ ~Pi�G belongs to DP, it can be solved by two parallel calls
to an NP oracle. Thus, by making 2n calls in parallel to the NP oracle one can decide whether µ belongs to ~Pi�G for some i ∈ {1, . . . , n}.
Therefore, deciding whether µ belongs to ~P�G can be achieved by a polynomial-time Turing machine that asks 2n queries to an NP oracle
in parallel. We conclude that Eval(USP–SPARQL) ∈ PNP

||
-complete.

Now we prove the problem is PNP
||

-hard by providing a reduction from the problem MAX-ODD-SAT. This is the problem of deciding,
given a propositional formula ϕ, whether the truth-assignment that assigns true to the largest number of variables while satisfying ϕ, assigns
true to an odd number of variables. This problem is shown to be PNP

||
-complete in [39].

Let ϕ be a propositional formula with m variables. We can assume without loss of generality that m is even (if not, consider the formula
ϕ ∧ ¬r for a fresh variable r). We want to create an ns-pattern P, an RDF graph G, and a mapping µ such that µ belongs to ~P�G if and
only if ϕ belongs to MAX-ODD-SAT. It is easy to see that given a number k between 1 and m, the problem of deciding whether there is



a truth assignment that satisfies ϕ and assigns true to at least k variables is in NP. Thus, by Cook’s theorem we can create a propositional
formula ϕk such that ϕk is satisfiable if and only if there is a truth assignment that satisfies ϕ and assigns true to at least k variables. Hence,
ϕ belongs to MAX-ODD-SAT if and only if (ϕk, ϕk+1) belongs to SAT-UNSAT for some odd k between 1 and m − 1. By Theorem 7.1,
for every such k we can create a simple pattern Pk, a mapping µk and an RDF graph Gk such that µk belongs to ~Pk�Gk if and only if
(ϕk, ϕk+1) ∈ SAT-UNSAT. We can assume without loss of generality that for every j, k ∈ {1, 3, . . . ,m − 1} with j , k, it is the case that
(dom(µ j) ∪ var(P j)) ∩ (dom(µk) ∪ var(Pk)) = ∅ and (range(µ j) ∪ I(P j) ∪ I(G j)) ∩ (range(µk) ∪ I(Pk) ∪ I(Gk)) = ∅. Hence, by Lemma H.1, we
can construct in polynomial time a mapping µ, an ns-pattern P, and an RDF graph G such that µ ∈ ~P�G if and only if µi ∈ ~Pi�Gi for some
i ∈ {1, 3, . . . ,m − 1}. As mentioned before, this occurs if and only if ϕ belongs to MAX-ODD-SAT, concluding the proof.


