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Magnetic relaxation due to spin pumping in thick ferromagnetic films in contact with normal metals

S. M. Rezende,1,* R. L. Rodrı́guez-Suárez,2 and A. Azevedo1
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Spin pumping is the most important magnetic relaxation channel in ultrathin ferromagnetic layers in contact
with normal metals (NMs). Recent experiments indicate that in thick films of insulating yttrium iron garnet (YIG)
there is a large broadening of the ferromagnetic resonance (FMR) lines with deposition of a thin Pt layer which
cannot be explained by the known damping processes. Here we present a detailed study of the magnetic relaxation
due to spin pumping in bilayers made of a ferromagnetic material (FM) and a NM. Two alternative approaches
are used to calculate the transverse and longitudinal relaxation rates used in the Bloch-Bloembergen formulation
of damping. In one we consider that the dynamic exchange coupling at the interface transfers magnetic relaxation
from the heavily damped conduction electron spins in the NM layer to the magnetization of the FM layer while
the other utilizes spin currents and the concept of the spin-mixing conductance at the interface. While in thin FM
films, the relaxation rates vary with the inverse of the FM layer thickness; in thick films, they become independent
of the thickness because in the FM/NM structure the FMR excitation has a surface mode character. Regardless
of the thickness range the longitudinal relaxation rate is twice the transverse rate resulting in damping of the
magnetization with constant amplitude characterizing a Gilbert process. The enhanced spin-pumping damping
explains the experimental observations in YIG/Pt bilayers.
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I. INTRODUCTION

The manner by which the magnetization relaxes toward
equilibrium is governed by the spin interactions and the
detailed structure of a magnetic system, and its understanding
is important from the point of view of basic physics and for
technological applications. The relaxation rate determines the
damping of the excitations in magnetic materials, the most
important of which are the spin waves, or magnons, and
also the minimum switching time for magnetization revearsal
in bits of magnetic recording media. For several decades
the magnetic relaxation has been investigated experimentally
and theoretically in bulk and thin film materials.1–4 In bulk
magnetic insulators the relaxation occurs through intrinsic
mechanisms involving magnon-magnon and magnon-phonon
processes as well as extrinsic mechanisms such as scattering
by impurities or sample shape irregularities.1–4 In bulk metallic
materials the relaxation is dominated by processes involving
the conduction electrons.5,6 In very thin films and multilayers
new physical relaxation processes have been discovered in
the last decade, the most important ones being two-magnon
scattering off the irregularities at the surfaces or interfaces7,8

and the spin pumping mechanism.9–12

In recent years, structures made of bilayers of ferromagnet
(FM)/normal metal (NM) films have been attracting con-
siderable interest due to the discoveries of the spin Hall
effect (SHE)13,14 and the inverse spin Hall effect (ISHE).15,16

In a FM/NM bilayer undergoing ferromagnetic resonance
(FMR) driven by microwave radiation, it has been found15–18

that the precessing magnetization in the FM injects spins
into the adjacent NM layer, creating a spin current that is
converted into a charge current by means of the ISHE. This
allows the conversion of spin currents into a spin-pumping
dc voltage VSP opening immense possibilities in the field of
spintronics.19 A very important development in this field was
the demonstration that the ferrimagnetic insulator yttrium iron

garnet (Y3Fe5O12-YIG) can be used in FM/NM structures to
study spin-charge current conversion.20 Bilayers made with
YIG and NMs with strong spin-orbit coupling, such as Pt,
have drawn great attention due to their ability in converting
magnetic signals into electric signals and vice versa and
in transporting spin information over large distances.20–42

Since in YIG the relaxation mechanisms involving conduction
electrons are not effective, its FMR linewidth is two orders of
magnitude smaller than in FMs such as permalloy (Py). As a
result, the FMR and the VSP spectra exhibit 20–23 many peaks
corresponding to the spin-wave magnetostatic modes.43,44

Recently it has been observed that the deposition of a Pt
layer with thickness of a few nm produces an unusually large
broadening of the microwave absorption lines in YIG films
with thickness of several μm.21,23,42 This cannot be explained
by the known models for magnetic relaxation and poses new
challenges in the field of spintronics.

This paper addresses the question of the magnetic relaxation
in bilayers of FM materials and nonmagnetic metals. Central
to the problem is the spin-pumping damping mechanism
originating in the flow of angular momentum out of the FM
layer into the NM layer. This problem can be tackled with
two different formulations. One of them, more appropriate for
insulating FM, consists of considering that at the FM/NM
interface the spins of the FM layer interact with the NM
conduction electron spins through the exchange interaction.
The coupled motion of the FM magnetization with the NM spin
accumulation transfers to the FM magnetization an additional
relaxation from the overdamped motion of the conduction
electron spins. Alternatively one can use only spin currents,
but as we show here, it is necessary to consider the effect of
the transverse components of the spin current in addition to
the component with polarization parallel to the static magnetic
field used in the conventional model.9,10 Both treatments yield
the same results. We show that the known expression for the
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spin-pumping damping applies only to FM/NM bilayers that
have FM-layer thickness below a critical thickness. As the FM
thickness increases, the spin-pumping damping crosses over to
another regime, which accounts for the observed broadening
of the FMR lines in thick YIG films with deposition of a
very thin Pt layer. This becomes clear when one treats the
relaxation of both longitudinal and transverse components of
the magnetization.

The paper is organized as follows. In Sec. II, we review the
phenomenological forms for introducing the damping in the
Landau-Lifshitz (LL) equations of motion of the magnetiza-
tion with the main objective of laying the ground to show the
importance of considering the transverse relaxation. Section III
is devoted to the two most important extrinsic relaxation
mechanisms in very thin FM films and bilayers: two-magnon
scattering and spin pumping. We show that the spin pumping
produced by the spin current polarized in the direction of the
applied field accounts only for the longitudinal relaxation. In
Sec. IV, we present the two alternative calculations of the
transverse relaxation rate in FM/NM bilayers, one based on
the exchange interaction at the interface and the other based
on spin currents. In Sec. V, we show that if the FM film
thickness is larger than a critical value, both of the longitudinal
and transverse relaxation rates become independent of the
FM film thickness, and the results explain the experimental
observations in YIG/Pt. Section VI, summarizes the main
results.

II. RELAXATION OF THE MAGNETIZATION IN
FERROMAGNETIC MATERIALS

The relaxation of the magnetization in ferromagnetic
materials manifests in several forms, the most important ways
being the damping of spin waves and the time it takes to
switch the magnetization in a bit of magnetic-recording media.
The most widely used technique to measure the magnetic
relaxation rate is FMR, in which a radio requency (rf) magnetic
field is used to excite one or more spin-wave modes with
small wave numbers.45 The FMR absorption linewidth is
determined by the damping experienced by the magnetization
as it precesses about the equilibrium direction driven by the rf
field, usually with frequency in the microwave range. In a fer-
romagnetic material, the atomic spins are coupled together by
exchange and dipolar interactions. If the system is driven by a
microwave field with frequency ω, the spins within a very small
volume remain tightly parallel to each other by virtue of the
exchange interaction so that the system may be described very
well by the behavior of its magnetization. Even in a magneti-
cally saturated sample, the magnetization vector varies in space
due to the presence of thermal or driven spin waves so that it has
to be described by �M(�r,t). If relaxation is neglected, the motion
of the magnetization vector in space and time is governed
by the LL equation,46 d �M(�r,t)/dt = γ �M(�r,t) × �Heff(�r,t),
where γ = gμB/h̄ is the gyromagnetic ratio, μB is the Bohr
magneton, g is the spectroscopic factor (approximately two
for electron spins), and �Heff(�r,t) is an effective magnetic field
to which the spins respond. There are several contributions
to the effective field such as the applied external static and rf
magnetic fields, magnetic dipolar, exchange, and anisotropy.
Initially we assume that there is only a static magnetic field

H and consider a coordinate system with the z axis in
the field direction so that Hz = H − Nz4πM , where Nz is the
demagnetizing factor along the z direction and 4πM is the
saturation magnetization. Of course, in the case of a film
magnetized in the plane, Hz = H . A microwave-driving field
applied perpendicularly to the static field drives the precession
of the magnetization around the z direction. Relaxation can
be introduced phenomenologically in the LL equation of
motion in several forms. The most widely used was introduced
by Gilbert47 and consists of representing the relaxation
mechanisms by a torque that pulls the magnetization toward the
equilibrium direction, leading to the Landau-Lifshitz-Gilbert
(LLG) equation,1,2

d �M(�r,t)
dt

= γ �M(�r,t) × �Heff(�r,t) + α

M
�M(�r,t) × d �M(�r,t)

dt
,

(1)

where α is an adimensional quantity called the Gilbert
damping parameter. Equation (1) is easily solved in the linear
approximation by writing the magnetization as �M(�r,t) =
ẑMz + x̂mx(�r,t) + ŷmy(�r,t), where mx,my � Mz. Assuming
initially for simplicity a uniform magnetization and no external
driving or microwave dipolar field, and considering solutions
for the small-signal time-varying components of the magne-
tization mx and my in the form exp(iωt), Eq. (1) leads to the
following linear equations:

iωmx = (γHz + iαω)my, iωmy = −(γHz + iαω)mx,

(2)

from which we find ω = ωr + iαω, where ωr = γHz. Equa-
tion (2) shows that if the magnetization is deviated from the
equilibrium direction, its transverse components vary with
exp(iωr t) exp(−αωt), meaning that the magnetization vector
precesses about the z direction with frequency ωr = γHz

and with amplitude that decays exponentially in time with
a relaxation rate η = αω. In a FMR experiment, the sample
is placed in a microwave cavity with fixed driving frequency
ω and the static magnetic field H is swept. At the field value
for which ωr ≈ ω, an absorption line is observed with a full
linewidth 2�H , where the half-width of the FMR absorption
line is related to the relaxation rate by �H = η/γ . Thus, one
can express the FMR (half) linewidth in terms of the Gilbert
damping parameter,

�HFMR = αωr/γ. (3)

Equation (3) is a central result of the LLG phenomenology;
the FMR linewidth scales linearly with the FMR frequency.
Note that in order to increase the signal-to-noise ratio, the
FMR experiments are done with a low-frequency modulation
in the external field and use lock-in amplification, so that
one measures the field derivative of the absorption line. For
a Lorentzian lineshape the peak-to-peak linewidth of the
field-derivative is �Hpp = 2αωr/(γ

√
3). Note also that in

low-loss materials, such as YIG, the presence of spin waves is
noticeable so that in FMR experiments one observes several
absorption lines corresponding the spin waves with small wave
numbers, the so-called magnetostatic modes.20–24,43,44 The
main mode is the one in which the magnetization precession
is nearly uniform throughout the sample.

014404-2



MAGNETIC RELAXATION DUE TO SPIN PUMPING IN . . . PHYSICAL REVIEW B 88, 014404 (2013)

FIG. 1. (Color online) Illustration of relaxation processes of the
magnetization precessing about an equilibrium direction. (a) The
magnetization relaxes with constant magnitude, which is characteris-
tic of the Gilbert damping expressed by the LLG Eq. (1). (b) Illustrates
a process that occurs in many insulating ferro- or ferrimanetic
materials. The transverse components of the magnetization relaxes
rapidly to zero while the z component stays constant, as described by
the B-B relaxation terms in Eqs. (4) and (5) for T1 � T2.

Although the LLG equation is the most widely used form
to describe the damped motion of the magnetization, it does
not apply to some important relaxation processes. The dot
products of both terms on the right-hand side of Eq. (1)
with �M(�r,t) vanish, indicating that in the Gilbert damping
the magnetization vector describes a spiraling motion toward
the equilibrium direction with constant magnitude,1,2,48,49 as
represented in Fig. 1(a). This is the relaxation process that
prevails in bulk FM metals because the spins of the magnetic
d-electrons interact strongly with the spins of the conduction
s-electrons, which are in close contact with the lattice thermal
bath. However, in insulating ferro- and ferrimagnetic materials
with weak spin-orbit coupling, the relaxation processes take
place in a quite different manner. They are better described by
a relaxation form introduced by Bloch50 for nuclear magnetic
resonance51 and adapted by Bloembergen52 to paramagnetic53

or ferromagnetic relaxation.1,2 The Bloch-Bloembergen (B-B)
phenomenology considers that the longitudinal and transverse
components of the magnetization have different relaxation
rates so that B-B equations of motion for the magnetization
are writen as1,2,48–54

dmx,y

dt
= γ ( �Heff × �M)x,y − mx,y

T2
, (4)

dMz

dt
= γ ( �Heff × �M)z − Mz − M

T1
, (5)

where we have omitted the time and spatial dependences
for simplicity, T1 and T2 are, respectively, the longitudinal
and transverse relaxation times, and 1/T1 and 1/T2 are the
corresponding relaxation rates. In insulating FM materials,
the longitudinal and transverse relaxations are governed by
different physical processes so that T1 and T2 can be quite
different. Usually T2 is determined by the spin interactions that
redistribute the energy in the precessing magnetization in the
magnetic system, whereas T1 is determined by processes that
thermalize with the lattice. In many materials T1 � T2 so that
the relaxation process occurs essentially in two steps: one in

which the z component of the magnetization remains constant
while the tip of the magnetization vector spirals towards the
z axis with characteristic time T2, as illustrated in Fig. 1(b),
followed by another step in which the length of magnetization
increases to the saturation value in a time T1. This is essentially
what happens in YIG where T2 caused by magnon-magnon
processes that conserve Mz is one order of magnitude smaller
than T1, which is long due to the weak spin-orbit coupling. Of
course, the physical processes that are responsible for T1 and
T2 occur simultaneously so that the two steps cannot actually
be separated. In general, several mechanisms contribute to the
relaxation acting as independent channels through which the
energy flows out of the excited magnetic state so that the total
relaxation rate is the sum of the individual contributions and
the total half-linewidth is

�H =
∑

λ

1/(2υγ Tλ), (6)

where Tλ is the relaxation time of mechanism λ and υ is
an exponent that is 1 for a mechanism contributing only to
the longitudinal relaxation and 0 for transverse relaxation. In
closing this section, we note that many authors call the source
of the FMR linewidth as Gilbert damping, regardless of its
origin. As we have shown, this is not strictly correct, as some
relaxation processes can be adequately described by the LLG
equations but others require the B-B formulation. Only if a
relaxation process has T2 = T1/2 does the magnitude of �M
remain constant during the relaxation, and then the B-B and
the LLG forms are essentially equivalent.

III. DAMPING MECHANISMS IN THIN
FILMS AND BILAYERS

It has been known for several decades that in bulk magnetic
insulators the magnetic relaxation occurs through intrinsic
mechanisms involving magnon-magnon and magnon-phonon
processes as well as extrinsic mechanisms such as scattering
by impurities or surface imperfections.1,2 In bulk metallic
materials, the relaxation is dominated by processes in which
the energy of the magnetic moments is transferred directly to
the spins of the conduction electrons.4,5 In the late 1990s, it
was realized that in ultrathin magnetic films the sample quality
and surface roughness played an important role in the spin
relaxation and that the FMR linewidth increased substantially
as the film thickness decreased below certain values. 6–8,55–57 It
was also realized that the linewidth increased further if certain
nonmagnetic metals (NM) were deposited on FM films form-
ing FM/NM bilayers.11,12 The first observation was explained
by Arias and Mills7 (AM) based on a mechanism involving
two-magnon scattering while the second was explained by
Tserkovnyak, Bratass, and Bauer9,10 with a new mechanism
that was called spin pumping. In this section, we briefly review
those two mechanisms because they are necessary for the
interpretation of the experiments and for understanding the
formulation of the spin-pumping damping proposed here for
thick FM films in contact with NMs.

We recall that spin waves are the excitations of the magne-
tization in a FM material, and their quanta are called magnons.
The semiclassical view of a spin wave with frequency ωk and
wave vector �k is a spatially varying magnetization precessing
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about the equilibrium direction with frequency ωk and with
phase �k · ⇀

r . The variation of ωk with �k, called dispersion
relation, depends on the applied static field, magnetization,
shape, and spin-interaction parameters.1,2 Since the spin wave
is associated with deviations of the spins from the equilibrium
direction, the creation or destruction of magnons change the
small-signal transverse magnetization components mx and my .
One magnon corresponds to one spin deviation shared by all
spins. Since the saturation magnetization is M = gμBNS/V ,
where N is the number of spin S in volume V , the z component
of the magnetization is directly related to the total number of
magnons in the sample1,2

Mz = M − (gμB/V )
∑

k

nk. (7)

The spin-spin interactions give rise to processes involving
three- or four-magnon scattering that conserve both energy and
momentum and constitute the main intrinsic source of spin-
wave damping.1 Processes in which an externally driven spin-
wave mode relaxes into degenerate modes without momentum
conservation require the presence of irregularities in the sample
shape and thus are called extrinsic. Two-magnon scattering
had been a well-known extrinsic relaxation mechanism in
both insulating1,58 and metallic59,60 bulk samples when AM7

showed that in ultrathin ferromagnetic films the two-magnon
scattering due to defects and imperfections on the surfaces and
interfaces were an important source of spin-wave damping.

According to AM, the low-wave number spin waves,
such as the k ≈ 0 FMR mode, have a large number of
degenerate k > 0 modes because the dispersion relation has
a broad minimum at k ≈ 104 − 105 cm−1. This is because
in films magnetized in the plane, the k = 0 frequency is
ω0 = γ [H (H + 4πM − HS)]1/2, where HS = 2KS/MtFM is
the surface anisotropy field. As k increases, the frequency
initially decreases due to the dipolar interaction and then
increases because of exchange. The decay of the k ≈ 0 modes
into degenerate mode requires the existence of momentum
nonconserving two-magnon interactions that are provided by
the variation in the surface anisotropy at the defects and
imperfections on the film surfaces and interfaces, which
become increasingly important as the film thickness decreases.
For a static magnetic field H applied in the plane of the film
with thickness tFM and magnetization M , for H � 4πMeff ,
the half-width at half-maximum (HWHM) can be written
approximately as7,61

�H2M = 16

π

s(2KS/M)2

D
sin−1

(
H

H + 4πMeff

)1/2 1

t2
FM

,

(8)

where D is the exchange stiffness constant, s is a ge-
ometrical factor characteristic of the surface roughness,
4πMeff = 4πM − HS is the effective magnetization, and
HS = 2KS/(MtFM) is the surface anisotropy field. For films
magnetized in the plane, the FMR frequency is1

ω = γ [H (H + 4πMeff)]
1/2, (9)

where γ = gμB/h̄ ≈ 2.8 GHz/kOe is the gyromagnetic ratio.
Using Eq. (8), one can transform the field dependence of the

linewidth into a frequency dependence,61

�H2M = 16

π

s(2KS/M)2

D

× sin−1

[(
ω2 + ω2

M/4
)1/2 − ωM/2(

ω2 + ω2
M/4

)1/2 + ωM/2

]1/2
1

t2
FM

, (10)

where ωM = γ 4πMeff . Equation (10) shows that the two-
magnon contribution to the linewidth varies with film thickness
as 1/t2

FM. Regarding the frequency dependence, the linewidth
vanishes at ω = 0, initially increases linearly with frequency,
but then it saturates at large ω. It has been shown that when
the FM film is in contact with an antiferromagnetic material,
the two-magnon damping is dominated by processes involving
fluctuations in the exchange coupling between the two layers,
resulting in very large FMR and spin-wave Brillouin light-
scattering linewidths.56,62–64 It has also been shown that the
two-magnon damping has a characteristic variation with the
applied field angle with the plane that allows a clear-cut
determination of its contribution to the FMR linewidth in films
and multilayers.65,66

Note that in two-magnon scattering processes, one magnon
with certain wave number k is created while another with a
different k is destroyed so that the total number of magnons
is unchanged. According to Eq. (7), the z component of the
magnetization is unchanged so that the two-magnon scattering
does not contribute to the T1 relaxation; rather, it is a T2 process.
This means that it is not correct to classify the two-magnon
process as a Gilbert damping mechanism.61 Actually the linear
dependence of the Gilbert damping linewidth on the frequency,
as in Eq. (3), is different from the frequency dependence of the
two-magnon linewidth,7,61 a fact that provides a convenient
way to separate the two contributions in experimental data, as
long as one can vary the microwave frequency over quite a
large range.49

The concept of spin-pumping damping proposed in Refs. 9
and 10 to explain the increase in the FMR linewidth of FM films
when in contact with a NM layer was based on a new physical
picture: the precessing magnetization in the FM layer injects
a pure spin current into the adjacent NM layer. If the FM layer
is metallic, the spin transfer is governed by the reflection and
transmission coefficients at the interface.9,10 For an insulating
FM, the mechanism relies on the interface exchange coupling
between the spins of the d-state electrons in the FM side with
the spins of the s electrons on the NM side.20 As shown in
Refs. 9 and 10 for a metallic bilayer, the spin-current density
at the FM/NM interface (y = 0) is given by9,10

�JS(0) = h̄

4πM2
g

↑↓
eff

⇀

M(y = 0,t) × d
⇀

M(y = 0,t)

dt
, (11)

where
⇀

M(y = 0,t) denotes the time and spatially varying
magnetization at the interface plane y = 0, and g

↑↓
eff is the

real part of the effective spin-mixing conductance including
the effect of the back-flow current. In order to calculate the
damping, one uses the fact that Eq. (11) has the same form of
the Gilbert damping term in Eq. (1). Comparison of Eq. (11)
with the damping term in Eq. (1) leads to a spin-pumping
damping Gilbert parameter αSP = γh̄g↑↓/(4πMtFM), so that
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the additional half-linewidth due to spin pumping becomes9,10

�HSP = h̄g
↑↓
eff ω

4πMtFM
. (12)

Note that for a 10-nm-thick Py film in contact with a Pt
layer, the additional FMR linewidth at a frequency of 10 GHz
calculated with Eq. (12) using 4πM = 11 kG and g↑↓ =
2 × 1015 cm−2 is 11 Oe, which is a sizeable value compared
to a 20-Oe linewidth of a single Py film. However, for a
1-μm-thick Py film, the spin-pumping linewidth reduces to
0.1 Oe, which is very small compared to the one in the bare
film. This shows that the observed broadening42 of the FMR
lines in YIG films with thickness of several micrometers after
deposition of a very thin Pt layer is a challenging issue.

We notice that the magnetization that enters in Eq. (11) is the
vector function calculated at the interface plane, y = 0, whereas
the magnetization in Eq. (1) is a function of space throughout
the volume of the FM layer. This means that Eq. (11) does
not strictly have the same form as the damping term in Eq. (1)
so that at this point it is not clear if in thick FM films the
spin-pumping relaxation is described by the Gilbert damping
phenomenology. An alternative picture of the nature of the
spin-pumping damping is revealed by the following calculation
of the relaxation rate.

Due to angular momentum conservation, the spin current
flowing out of the FM layer results in the relaxation of the z

component of the magnetization. We write the z component
of the total spin-angular momentum in the FM layer (volume
V ) with the precessing magnetization as γ −1

∫
dV Mz and

consider that it relaxes toward equilibrium with a time rate∫
dAJS(0), where the surface integral is carried out through

the interface area. From Eq. (11), one can show10 that the z

component of the spin current pumped by the precessing FM
magnetization with frequency ω is given by

J z
Sy(0) = h̄ωg

↑↓
eff

4πM2
[m+(0)m−(0)], (13)

where m± = mx ± imy . For the uniform precession mode,
the volume and surface integrals above are trivial, and one
obtains an equation for the time derivative of the longitudinal
component of the magnetization

dMz

dt
= γh̄ωg

↑↓
eff

4πM2tFM
[m+(0)m−(0)]. (14)

Using the linear approximation m+m− = m2
x + m2

y ≈
2M(M − Mz), Eq. (14) leads to dMz/dt = −(Mz − M)/T1SP,
where

1

T1SP
= γh̄ωg

↑↓
eff

2πMtFM
. (15)

This result shows that the z component of the spin current
produces a spin-pumping relaxation channel only for the
longitudinal component of the magnetization. Using Eq. (15)
in Eq. (6), we obtain the same result for the spin-pumping
linewidth given by Eq. (12). Note that the well known 1/tFM

dependence of the linewidth on the FM film thickness arises
from the ratio between the area of the interface and the
volume of the film, so that it holds only if the FMR mode is
uniform over the film volume. In order to fully characterize the

damping process, it is necessary to calculate also the transverse
relaxation rate.

IV. RELAXATION OF THE TRANSVERSE COMPONENTS
OF THE MAGNETIZATION IN FM/NM BILAYERS

In this section, we present a theoretical model for the
relaxation of the transverse components of the magnetization
in bilayers of a ferro- or ferrimagnetic material with a NM.
Despite the fact that the microscopic origin of the spin pumping
in bilayers made of FM insulator/NM is different than in FM
metal/NM structures, the physical picture is the same in both
cases. The spin pumping consists of the transfer of spin-angular
momentum from the precessing magnetization in the FM
layer into the NM layer, where the spin current is carried
by the spins of the conduction electrons.9,10 As shown in the
previous section, the angular momentum that flows out of the
FM layer results in a relaxation of the z component of
the magnetization. Here we consider the coupled motion of
the transverse components of the magnetization. This problem
can be tackled with two different formulations.67,68 One of
them consists of considering that at the interface the spins
of the FM interact with the NM conduction electron spins
through the exchange interaction.20,39,40,67,68 The coupled mo-
tion of the FM magnetization with the NM spin accumulation
transfers to the FM magnetization an additional relaxation
from the overdamped motion of the conduction electron spins.
Alternatively, one can use spin currents and represent the
effect of the interface by the spin-mixing conductance,9,10

but it is necessary to consider the longitudinal and transverse
polarizations. In this section, we present the former one. In
both cases, we need to characterize first the spin excitations in
the FM and NM layers separately.

A. Separated FM and NM layers

In the ferromagnetic layer we use a macroscopic approach
and define the magnetization in terms of the spins �Si at
sites i as �M(�r) = gμB

∑
i
�Siδ(�r − �ri). The evolution of the

magnetization components is described by the LL with
damping introduced in the B-B phenomenology, as in Eqs. (4)
and (5). We consider �Heff = ẑH + (D/M)∇2 �M + �hdip, where
H is the in-plane applied field, D is the intraexchange stiffness
parameter, and �hdip is the dipolar field created by the spatial
variation of the magnetization. From Eq. (5), one can show
that the transverse variable m+ = mx + iemy , where e is the
ellipticity of the magnetization precession due to the dipolar
field, satisfies the wave equation,

dm+

dt
= iγHm+ − D∇2m+ − ηFMm+, (16)

where ηFM = 1/T2 is the transverse relaxation rate. For a
time dependence exp(iωt), Eq. (16) has wavelike solutions
exp(±iky), where the wave number k is related to the
frequency by

k2 = (ω − ωFM − iηFM)/γD, (17)

where ωFM = γ [H (H + 4πM)]1/2 is the FMR frequency.
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In the NM layer, we designate the magnetization of the
conduction electrons by �mN (�r,t) and write it as20

�mN (y) = �m0aeffδ(y) + δ �mN (y), (18)

where �m0 = ẑχNJexM is the equilibrium magnetization, χN

is the paramagnetic susceptibility of the conduction electrons,
aeff = ve/a

2
s is the effective interaction range, ve is the

volume per conduction electron, as is the lattice constant
of the localized spins at the interface on the FM side,20 and
δ �mN (y,t) is magnetization deviation, which is related to the
spin accumulation ⇀

μS of Refs. 9 and 10 by

δ �mN = μBN(ε)⇀
μS, (19)

where N(ε) is the density of states. It can be shown that the
magnetization deviation in the NM is governed by the diffusion
equation9,10,20,67,68

∂δ
⇀

mN

∂t
= γeδ

⇀

mN × �H − ηsf δ
⇀

mN + DN∇2δ
⇀

mN, (20)

where γe is the electron gyromagnetic ratio, ηsf is the
relaxation rate of the spin accumulation, which is related to
the electron spin-flip time τsf by ηsf = 1/τsf , and DN is the
spin-diffusion constant. Using δm+

N = δmx
N + iδm

y

N one can
show that

∂δm+
N

∂t
= iωH δm+

N + DN∇2δm+
N − ηsf δm+

N, (21)

where ωH = γeH is the conduction electron spin-resonance
frequency. For a time dependence exp(iωt), Eq. (7) has
solutions exp(±κy), where

κ2 = [i(ω − ωH ) + ηsf ]/DN, (22)

which can also be expressed in terms of the spin-diffusion
length λN using DN = λ2

Nηsf .

B. FM and NM layers interacting through exchange

We now consider that the ferromagnetic film with thickness
tFM is in atomic contact with a nonmagnetic metal layer
(thickness tN ), as illustrated in Fig. 2. The coordinate axes
have the z direction along the field and the y direction

FM  NM  FM  NM  

)(yM
y0y NtyFMty

z

H
m
SJ

sp
SJbf

SJ

y

z

(a) (b) 

)(ymN

FIG. 2. (Color online) Illustration of the ferromagnet
(FM)/nonmagnetic metal (NM) bilayer with the coordinate axes used
to study the FM magnetization damping due to the spin-pumping
process. (a) Coupling of the FM and NM magnetizations through
the exchange interaction at the surface. (b) Spin currents used in an
alternative calculation of the damping.

perpendicular to the interface plane at y = 0. At the interface
sites i, the spins �si of the conduction electrons in the NM
layer interact with the spins �Si in the FM side through the
s-d exchange interaction,20 Hsd = −Jsd

∑
i
�Si · �si , where Jsd

is the exchange-coupling constant. The summation on the
interface sites i can be approximated by a surface integral and
the coupling between the magnetization �M(�r,t) in the FM side,
and the magnetization �mN (�r,t) of the conduction electrons in
the NM side can be represented by the Hamiltonian,20

Hsd = −(Jex/A)
∫

dxdz

∫
dy �M(�r,t) aeffδ(y) · �mN (�r,t),

(23)

where A is the interface area, Jex = JsdS/(h̄γeM) is the
dimensionless exchange-coupling constant, S is an effective
block spin per unit cell, and M is the magnetization of the
FM. In order to make the interface coupling tractable, we
follow Ref. 20 and consider that the magnetizations do not
vary along the interface plane and �mN (�r,t) = �mN (y,t). One
obtains for the total interface exchange-coupling energy per
unit area (energy density),

Eex = −Jex �M(y = 0,t)aeff · �mN (y = 0,t). (24)

From Eq. (24) one can write the surface torque density on
�M(0) at the interface due to the exchange interaction with
�mN (0),

⇀
τ s = Jexaeff( �M × �mN ). (25)

Of course, the torque that �M(0) exerts on �mN (0) is −⇀
τ s .

Instead of introducing the coupling by adding the torque in
the equations of motion of the magnetizations, as in Ref. 20,

we use for
⇀

M and �mN Eqs. (16) and (20) and impose the
boundary conditions on both sides of the interface. As shown
long ago by Rado and Weertman,69 the boundary condition at
the interface on the FM side (y = 0−) has to take into account
the intraexchange interaction. It states that the total torque
density vanishes at the interface

�M × D

M
∇y

�M + �τs = 0, (26)

where ⇀
τ s is the surface torque density that �mN (0) exerts on

�M(0) at the interface due to the exchange interaction given by
Eq. (25). Using a procedure similar to the one of Rado and
Weertman, one can show that the magnetization deviation at
the interface on the NM side (y = 0+) satisfies the following
boundary condition:

DN

γe

∇yδ
⇀

mN − ⇀
τ s = 0, (27)

where −⇀
τ s is the surface torque density acting on δ

⇀

mN .
Using the expression for the torque density [Eq. (25)]

in the first boundary condition [Eq. (26)], we obtain one
equation relating the transverse magnetization components at
the interface,

Mz

D

M

∂m+

∂y

∣∣∣∣
0

+ J exaeff
[
Mzδm

+
N (0) − mz

N (0)m+(0)
] = 0.

(28)
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Using Eq. (25) in the second boundary condition [Eq. (27)],
one can find another relation between the transverse magneti-
zation components,

DN

γe

∂δm+
N

∂y

∣∣∣∣
0

− iJ exaeff[Mzδm
+
N (0) − m0m

+(0)] = 0. (29)

In order to obtain relations between the transverse magne-
tizations at the interface, m+(0) and δm+

N (0), one needs first
to find the spatial variations of m+(y) and δm+

N (y). For a time
dependence exp(iωt), Eq. (16) has solutions exp(±iky), so
that using the boundary condition ∇ym

+ = 0 at y = −tFM one
finds for the FM side,

m+(y) = [cos ky − tan(ktFM) sin ky]m+(0). (30)

In the NM layer, we assume for simplicity that the thickness
is much larger than the diffusion length, so that for a time
dependence exp(iωt), one obtains from Eq. (21),

δm+
N (y) = δm+

N (0)e−y/λN . (31)

Using Eq. (30) in Eq. (28) and considering that the FM
layer is thin, such that one can use the linear approximation,
tan(ktFM) ≈ ktFM, we obtain

[(ω − ωFM − iηFM) + γβ/tFM]m+(0)

= (λexηsf λN/tFM)δm+
N (0), (32)

where β = Jexaeffm0 and λex is a dimensionless exchange-
coupling parameter,

λex = γ JexaeffM/(ηsf λN ),

that is related to the parameter � in Ref. 20 by λex = 1/�.
Using the Eq. (31) in Eq. (29), one finds

[(ω − ωH − i2ηsf ) + 2λexηsf ]δm+
N (0) = (2β/λN )m+(0).

(33)

Now we multiply Eqs. (32) and (33) to eliminate the mag-
netization variables to obtain an equation for the frequencies
in the small thickness approximation sin ktFM ≈ ktFM,

[(ω −ωFM − iηFM) + γβ/tFM][(ω − ωH − i2ηsf ) + 2λexηsf ]

= 2βλexηsf /tFM. (34)

Equation (34) leads to a second degree equation whose
solutions are the complex eigen frequencies of the coupled
FM-NM magnetizations,

ω1 ≈ ωH + iηsf (35)

ω2 ≈ ωFM + iηFM + i
γβλex

tFM
. (36)

The real and imaginary parts of Eqs. (35) and (36)
correspond, respectively, to the normal mode oscillation
frequencies and relaxation rates. Clearly ω1 is associated with
the motion dominated by the conduction electron spins in the
NM layer, while ω2 is associated with the FMR of the FM
layer. Since ωH ∼ 1010 s−1 and ηsf ∼ 1012 s−1, the motion of
the spins in Pt is heavily overdamped. The important result
revealed in Eq. (36) is that the transverse relaxation rate of the
FMR has, in addition to the intrinsic damping, a contribution
proportional to the square of the exchange-coupling parameter
Jex and inversely proportional to the FM layer thickness.

As remarked earlier, this additional damping is of the type
T2, whereas the spin-pumping relaxation in Eq. (15) is of
the type T1. In order to compare the transverse relaxation
rate with the spin-pumping damping, one must relate the
exchange parameter with the spin-mixing conductance. For
this we use the boundary condition in Eq. (27) to relate the
longitudinal component of the NM magnetization deviation
with the transverse FM magnetization,

δmz
N (0) = −λex

M
Im[δm+

N (0)m−(0)]. (37)

Considering that ηsf � ω,ωH and λex � 1, we ob-
tain from Eq. (33) the following relation, Im[δm+

N (0)] =
(β/ηsf λN )m+(0), so that the longitudinal magnetization de-
viation becomes

δmz
N (y) = − λexβ

ηsf λNM
Im[m+(0)m−(0)]e−y/λN . (38)

From Eq. (38), one can obtain the spin-current density with
polarization z in the NM using J z

S = (DN/γ )∇y(δmz
N ), which

is, in units of angular momentum/(area.time),

J z
S (0) = βλex

M
[m+(0)m−(0)]. (39)

Comparison of Eq. (39) with the spin-pumping current in
Eq. (13) leads to a convenient relation between the exchange-
coupling parameter and the spin-mixing conductance,

βλex = h̄ωg
↑↓
eff

4πM
. (40)

Using Eq. (40) in (36) leads to a transverse relaxation rate

ηexch = 1

T2
= γh̄ωg

↑↓
eff

4πMtFM
. (41)

Comparison of Equations (15) and (41) shows that the trans-
verse relaxation rate due to the exchange coupling between
the oscillators through the interface is 1/2 the longitudinal
relaxation rate due to spin pumping. This means that the
exchange-coupling relaxation is simply the transverse part of
the spin-pumping damping in a process that conserves the
amplitude of the magnetization and characterizes the Gilbert
phenomenology. This result becomes even more clear if the
coupled FM/NM is treated with spin currents only, as we show
in the next section.

C. Treatment with spin currents

The usual treatment of the spin-pumping damping in
FM/NM bilayers is done entirely in terms of spin currents.9,10

It turns out that, as shown in Sec. II, the calculation of the
damping based on the z component of the spin currents gives
information only on the longitudinal relaxation rate. Here we
calculate the transverse relaxation rate due to the spin-pumping
process using the transverse components of the spin current,
which are also employed in the model for the ac SHE.70,71

As done in the previous section, the interaction between the
FM and NM is introduced through the boundary conditions
expressed by Eqs. (26) and (27). Here the surface torque
density �τs results from the discontinuity in the spin-current
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density in the y direction at the interface,67,68,72

�τs = −( �J sp

S + �J bf

S

) · ŷ, (42)

where �J sp

S , �J bf

S are, respectively, the spin-pumped and back-
flow tensorial spin-current densities illustrated in Fig. 2(b).
In an insulating ferromagnet, the spin current is carried by
spin waves, and the magnon spin current in the y direction
associated with the FM magnetization is given by20,67,73

�Jm
Sy = (D/M)( �M × ∇y

�M). (43)

Notice that the magnon spin current [Eq. (43)] does not
enter in Eq. (42) for the interface torque because it is already
taken into account in the Rado-Weertman boundary condition
[Eq. (26)]. Using Eqs. (42) and (43) in Eq. (26), we find that the
boundary condition at the interface is �Jm

Sy = �J sp

Sy + �J bf

Sy , which
means continuity of spin currents, in agreement with Refs. 39
and 40. Neglecting the ellipticity of the FM magnetization
precession, one can write for the + transverse component of
the magnon spin current, Jm+

Sy = Jmx
Sy + iJ

my

Sy = −iD∇ym
+.

The + transverse component of the pumped spin current
can be calculated with J

sp+
S = (DN/γ )∇y(δm+

N ). Using the
solution of the diffusion [Eq. (21)] and the relation between
δm+

N (0) and m+(0) given by Eq. (33) in the boundary condition
[Eq. (27)], one can show that the sum of the spin-pumped and
back-flow spin-current densities at the interface is given by an
equation similar to the one for the longitudinal spin current,10

J
sp+
Sy + J

bf +
Sy = −h̄ωg

↑↓
eff

4πM
m+(0). (44)

Using the expressions for the spin currents in Eq. (42),
the Rado-Weertman boundary condition [Eq. (26)] at y = 0
leads to iD∇ym

+ − (h̄ωg
↑↓
eff /4πM)m+ = 0. Introducing the y

dependence of the transverse magnetization given by Eq. (30)
in this expression, one obtains

Dk tan(ktFM) − i
h̄ωg

↑↓
eff

4πM
= 0, (45)

where k is related to the frequency ω through Eq. (17).
Equation (45) is easily solved in the small thickness regime,
ktFM � 1, giving the complex eigenfrequency for the excita-
tion of the transverse FM magnetization, ω = ωFM + i(η0 +
ηSP ), where η0 represents the intrinsic damping and

ηSP = 1

T2SP

= γh̄ωg
↑↓
eff

4πMtFM
(46)

is the transverse relaxation rate due to the spin-pumping
process. This result coincides with Eq. (41) and confirms
that the spin-pumping process gives rise to a transverse
relaxation rate, which is half the longitudinal one. As shown
in Sec. II, a relaxation process with 1/T2 = 1/2T1 conserves
the magnitude of the magnetization and characterizes a
Gilbert damping process. From Eqs. (15) and (46), one finds
the Gilbert damping parameter αSP = γh̄g

↑↓
eff /(4πMtFM), in

agreement with the well-known result.9,10

V. SPIN-PUMPING DAMPING IN THICK FM FILMS AND
COMPARISON WITH EXPERIMENTAL DATA

The transverse relaxation rates obtained in Secs. IV B and
IV C that scale with 1/tFM are valid only in thin FM films for
which one can use the linear approximation tan(ktFM) ≈ ktFM.
As the FM film thickness increases, this approximation is
no longer valid, and the transverse relaxation rate deviates
from the relation 1/T2 = 1/T1. In order to find the thickness
scale of validity of the previous calculation, we use the
resonance condition ω = ωFM in Eq. (17) to obtain the real
part of the wave number kr = √

�H/(2D), where �H is the
FMR HWHM. Considering that tan(ktFM) ≈ ktFM is valid for
ktFM < 0.5, one can establish a critical FM thickness below
which the relation 1/T2 = 1/2T1 is satisfied,

tc ≈
√

D/2�H. (47)

For YIG/Pt,42 with D = 5 × 10−9 Oe cm2 and �H ≈ 3
Oe, one obtains tc ≈ 280 nm, whereas for Py,18 with D =
2 × 10−9 Oe cm2 and �H ≈ 20 Oe, tc ≈ 70 nm. For tFM >

tc, the linear approximation breaks down, and the transverse
relaxation rate does not decrease with 1/tFM with increasing
FM film thickness. There is another more compelling reason
for the change in the thickness dependence of the transverse
relaxation. In thick films, only those spins that are close to
the FM/NM interface within a coherence length contribute to
the spin pumping.74 Here the coherence length can be defined
by tcoh = vg/η, where vg is the spin-wave group velocity and
η = 2γ�H is the magnon number relaxation rate assumed to
be dominated by the spin-pumping damping. Thus for tFM >

tcoh, the boundary condition ∇ym
+ = 0 must be applied at

y = −tcoh. Using vg = 2γDk we find for the coherence length

tcoh =
√

D/�H, (48)

so that from Eq. (46) one can obtain an approximate result
for transverse relaxation rate for FM film thickness tFM > tcoh

given by

ηSP ≈ γh̄ωg
↑↓
eff

4πMtcoh
. (49)

Equation (49) reveals that for a FM film thickness tFM >

tcoh, the transverse relaxation rate is independent of the
thickness. Likewise, since in thick films the FMR excitation
acquires a surface-mode character with an effective volume
with thickness tcoh, Eq. (15), for the longitudinal relaxation
rate, has to be replaced by

1

T1SP

≈ γh̄ωg
↑↓
eff

2πMtcoh
. (50)

Equations (49) and (50) show that for tFM > tcoh the relation
1/T2 = 1/2T1 is maintained so that the spin-pumping damping
in thick FM films covered with a NM layer is indeed described
by the Gilbert phenomenology.

The argument of the concentration of the spin excitation
within a coherence length from the interface deserves further
discussion. First we note that assuming that the FMR linewidth
is dominated by the spin-pumping relaxation, using �H =
ηSP /γ in Equations (48) and (49), one can obtain an expression
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for the coherence length in terms of material parameters,

tcoh ≈ 4πMD

h̄ωg
↑↓
eff

. (51)

Using for YIG the values 4πM = 1.76 × 103 G, D =
5 × 10−9 Oe cm, ω = 2π × 1010 s−1, and g

↑↓
eff = 2 ×

1015 cm−2, we obtain tcoh ≈ 600 nm. It is well known that
in a bare YIG film, the low wave-number spin waves are
dominated by the dipolar interaction and are completely
described by the electromagnetic boundary conditions. The
exchange interaction plays a negligible role, and the spin
excitations have either volume or surface character.43,44 The
FMR excitation is a volume mode with rf magnetization
uniform across the thickness, and, in this case, one would
not expect any concentration of spin excitation near one of the
surfaces. However, the presence of the NM layer in contact
with the YIG film completely changes the picture. Since
the spin current vanishes at the interface with the substrate
and is nonzero at the FM/NM interface, the rf transverse
magnetization has to vary across the thickness so that the
intraexchange interaction becomes important. For thick FM
films, the variation of the rf transverse magnetization along
the y direction is given by Eq. (30), and one cannot use the
linear approximation tan(ktFM) ≈ ktFM.

In order to calculate the variation of m+ with y we consider
Eq. (17) at the resonance condition, k2 = −iηSP /(γD). Using
the real and imaginary parts of k in the trigonometric functions
in Eq. (30), one obtains lengthy expressions for the real and
imaginary parts of m+(y), which can be easily calculated
numerically. Figure 3 shows plots of the relative amplitude
|m+(y)|2/|m+(0)|2 across the thickness of a ferromagnetic
film in contact with a nonmagnetic metal layer under FMR
calculated with Eq. (30) using the parameters for YIG and
the following conditions. For tFM � tcoh, the relaxation rate
ηSP is given by Eq. (46); for tFM � tcoh, ηSP is given by
Eq. (49). The plots in Fig. 3 reveal that in the YIG film
with tFM = 0.1 μm, which is much less than the coherence
length, the magnetization amplitude is uniform across the
thickness. For tFM = 0.5 μm, which is comparable but still

-1.0 -0.5 0.0
0.0

0.5

1.0

 tFM = 0.1 m

            0.5 m
            1.0 m
            2.0 m

m
+ (y

) 
2 / m

+ (0
) 

2

 y/tFM

FIG. 3. (Color online) Variation of the relative rf magnetization
amplitude across the thickness of a ferromagnetic film in contact with
a nonmagnetic metal layer under FMR. The calculation was done with
Eq. (30) using parameters appropriate for YIG for four values of the
FM film thickness tFM from top to bottom respectively: 0.1, 0.5, 1.0,
and 2.0 μm.

smaller than tcoh, the magnetization is notably nonuniform. For
thicker films, the concentration of the rf magnetization near the
FM/NM interface rapidly increases with increasing thickness.
For tFM = 2.0 μm, the magnetization profile resembles that
of a surface mode, in support with our argument that in thick
films only those spins that are close to the FM/NM interface
within a coherence length contribute to the spin pumping.

Regarding the interpretation of the large broadening of the
FMR lines observed in thick YIG films with Pt deposition, we
note first that it cannot be attributed to interface two-magnon
scattering relaxation. The linewidths measured42 in YIG/Pt
with the field normal and parallel to the film plane are nearly
the same. However, with the field normal to the plane, the
FMR frequency is at the bottom of the spin-wave manifold.
As a result, there are relatively few degenerate states into
which the FMR (k = 0) mode can decay, so the two-magnon
relaxation rate is small when the field is normal, as predicted
theoretically65 and observed experimentally.66

Comparison of the results for the spin-pumping relaxation
with the experimental FMR linewidth data in YIG/Pt recently
reported42 is not straightforward because of the uncertainties
in the material parameters. The value of the spin-mixing
conductance g

↑↓
eff depends on knowledge of the parameters

for Pt, which have reported results that disagree by factors
larger than 20.75 We assume here the most favorable numbers
and use the data for the spin-pumping/ISHE voltage generated
by FMR reported in Ref. 2, VSP ∝ g

↑↓
eff λSDθSH , to estimate

g
↑↓
eff . With a spin-diffusion length for Pt of λN = 1.7 nm,

from Ref. 75, and a spin Hall angle for Pt of θSH = 0.0037,
from Ref. 20, we obtain g

↑↓
eff = 2.2 × 1015 cm−2. Considering

tcoh = 600 nm for YIG and the measured 2.3 Oe increase
in the linewidth at 10 GHz due to the Pt layer deposition,42

we find from Eq. (49) a value for the effective spin-mixing
conductance in YIG/Pt of g

↑↓
eff = 3.7 × 1015 cm−2. This is

in order of magnitude agreement with the value determined
from data for the spin-pumping/ISHE voltage, showing that
the enhanced spin-pumping damping may account for the
measured FMR linewidth in thick YIG films covered with
a thin Pt layer.

VI. SUMMARY

In summary, we have shown that a full characterization
of the spin-pumping damping in thick ferromagnetic films in
contact with a nonmagnetic metal layer requires the calculation
of the transverse relaxation rate in addition to the longitudinal
relaxation rate that emerges from the usual treatment with
only the longitudinal component of the spin current. Two
alternative approaches were used to calculate the transverse
relaxation rate. In one, we considered the coupled motion of
the FM magnetization with the NM spin accumulation through
the exchange interaction at the interface and found that the
overdamped motion of the conduction electron spins transfers
to the FM magnetization an additional relaxation. The other
treatment involves only spin currents, but one has to consider
the transverse component of the spin current in addition to the
longitudinal one employed in the usual treatment.9,10 Both
treatments yield the same results. For FM layer thickness
tFM smaller than a coherence length tcoh, the transverse and
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longitudinal relaxation rates vary with 1/tFM and for tFM > tcoh

both relaxation rates become independent of the thickness due
to the surface character of the FMR mode. In both cases,
the longitudinal relaxation rate is twice the transverse rate so
that the damping of the magnetization occurs with constant
amplitude characterizing a Gilbert process. The enhanced
spin-pumping damping explains the large broadening observed
in the FMR lines of thick films of YIG with deposition of a
very thin Pt layer.
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