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ABSTRACT

Complex Event Processing (CEP) has emerged as the unifying field for technologies

that require processing and correlating heterogeneous distributed data in real-time. CEP

finds applications in diverse domains, which has resulted in a large amount of proposals

for processing complex events. However, existing CEP frameworks are based on ad-hoc

solutions that do not rely on solid theoretical ground, making them hard to understand,

extend or generalize. Moreover, they are usually presented as informal programming in-

terfaces, and using each of them requires learning a completely new set of skills.

In this thesis we embark on the task of giving a rigorous framework to CEP. As a

starting point, we propose a formal language for specifying complex events, called CEPL,

that contains the common features used in the literature and has a simple and denotational

semantics. We also formalize the so-called selection strategies, which are the cornerstone

of CEP and had only been presented as by-design extensions to existing frameworks. With

a well-defined semantics at hand, we study how to efficiently evaluate CEPL for process-

ing complex events. Towards this goal, we provide optimization results based on rewrit-

ing formulas by proposing a normal form for dealing with unary filters. Furthermore,

we introduce a formal computational model for CEP based on transducers and symbolic

automata, called match automata, that captures the regular core of CEPL, i.e. formulas

with unary predicates. By using CEPL rewriting techniques and automata-based trans-

lations, we show that formulas in the regular core of CEPL can be evaluated efficiently

(constant time per event) when the next selection strategy is used. By gathering all these

results together, we propose a framework for efficiently evaluating CEPL, establishing

solid foundations for future CEP systems.

Keywords: complex event processing, CEP systems, CEP framework, selection

strategies, streaming, efficient evaluation, well-defined semantics, au-

tomata, logic.
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RESUMEN

Complex Event Processing (CEP) ha surgido como el campo unificador para las tec-

nologı́as que requieren procesar y correlacionar en tiempo real datos heterogeneos y dis-

tribuidos. CEP tiene aplicaciones en diversas areas, lo que ha resultado en que haya un

gran numero de propuestas para procesar eventos complejos. Sin embargo, los sistemas

CEP existentes están basados en soluciones ad-hoc que no se sustentan en bases teóricas

sólidas, lo que los hace difı́ciles de entender, extender y generalizar. Además, son presen-

tados generalmente de manera informal como iterfaces de programación, y el utilizar cada

uno de ellos requiere aprender un conjunto completamente nuevo de conocimientos.

En esta tesis buscamos definir un marco riguroso para CEP. Comenzamos proponiendo

un lenguaje formal para especificar eventos complejos, llamado CEPL, que contiene los

operadores más comunes utilizados en la literatura y el cual tiene semántica simple y deno-

tacional. Además, formalizamos las llamadas estrategias de selección, que son la piedra

angular de CEP y en los sistemas existentes son presentadas sólo como extensiones en

su diseño. Con la semántica ya definida, estudiamos cómo evaluar eficientemente CEPL.

Obtenemos resultados de optimización basados en la reescritura de fórmulas, proponiendo

una forma normal para manejar filtros unarios. Además, damos un modelo computa-

cional formal para CEP basado en transductores y autómatas simbólicos, llamado match

automata, el cual captura el fragmento regular de formulas con predicados unarios. Uti-

lizando técnicas de reescritura y transformando a autómata, mostramos que el fragmento

regular de CEPL puede ser evaluado eficientemente (tiempo constante por evento) cuando

se utiliza la estrategia de selección next. Con estos resultados, proponemos un marco para

evaluar eficientemente CEPL, estableciendo bases sólidas para futuros sistemas CEP.

Palabras Claves: procesamiento de eventos complejos, sistemas CEP, marco CEP, es-

trategias de selección, streaming, evaluación eficiente, semántica

bien definida, autómatas, lógica.
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1. INTRODUCTION

The problem of automatically processing continuously arriving information has been

present in the database community since the conception of the first Database Management

Systems. The so-called Active Database Systems (ADBMS) (Paton & Dı́az, 1999) pre-

sented a first attempt to solve this problem by allowing users to write triggers that are

executed upon arrival of tuples. The main goal of ADBMSs was to provide integrity and

persistence, focusing on secondary storage (see, e.g., (McCarthy & Dayal, 1989; Gatziu,

Fritschi, & Vaduva, 1996)). Naturally, this made ADBMSs poor in terms of performance.

Data Stream Management Systems (DSMS) were introduced to work on main memory

and overcome this limitation (Golab & Özsu, 2003). Like traditional database manage-

ment systems, DSMSs are concerned with executing relational queries but over dynamic

data (see for example (Chen, DeWitt, Tian, & Wang, 2000; Abadi et al., 2003; Arasu et al.,

2003)), and maintaining a live version of the results over time. Since DSMSs focus on re-

lational queries over streams, they offer limited reactive capabilities and only see streams

as data arriving by parts, and not as a sequence of events (Cugola & Margara, 2012b).

Modern applications must rapidly react to data arriving in high-throughput environ-

ments. Moreover, in scenarios like Network Intrusion Detection (Mukherjee, Heberlein, &

Levitt, 1994), Industrial Control Systems (Groover, 2007) or Real-Time Analytics (Sahay

& Ranjan, 2008), streams must be seen as data events, giving high importance to the

order in which the information arrives. Since ADBMSs and DSMSs only fulfill these

requirements partially, different communities have proposed domain-specific frameworks

and tools for dealing with their particular needs.

Complex Event Processing (CEP) has emerged as the unifying field of technologies

for the aforementioned scenarios. From a general perspective, the main requirement of a

CEP framework is detecting situations of interest under high-throughput streams. Promi-

nent examples of CEP systems include Sase (Wu, Diao, & Rizvi, 2006), Cayuga (Demers,

Gehrke, Hong, Riedewald, & White, 2006), Amit (Adi & Etzion, 2004) and CEDR (Barga,

Goldstein, Ali, & Hong, 2007), among others (see (Cugola & Margara, 2012b) for a good
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survey). With the objective of making CEP systems applicable to real-life situations, is-

sues like scalability, fault tolerance and distribution have been the main focus of these

systems. Other design decisions, like query languages, are generally adapted to match

computational models that can efficiently process data (see for example (Zhang, Diao,

& Immerman, 2014)). This has produced new data management and optimization tech-

niques, generating promising results in the area (Demers et al., 2006; Barga et al., 2007;

Cugola & Margara, 2012a).

Unfortunately, most of CEP systems present solutions for a particular domain. It

is hard to find a common theoretical ground, which makes CEP frameworks difficult to

understand, extend or generalize. For this reason, they are commonly presented as ap-

plication programming interfaces, implying that using each of them requires learning a

completely new set of skills. Next, we start motivating our work by discussing the current

state of CEP systems.

As it has been claimed several times (Galton & Augusto, 2002; Zimmer & Unland,

1999; Cugola & Margara, 2010) the languages for detecting complex events over streams

generally lack well-defined denotational semantics. The semantics of several languages

are defined either by examples (Luckham, 1996; Adi & Etzion, 2004; Cugola & Margara,

2009), or by intermediate automata models (Wu et al., 2006; Schultz-Møller, Migliavacca,

& Pietzuch, 2009; Pietzuch, Shand, & Bacon, 2003). Although there are frameworks

that introduce formal semantics (e.g. (Demers et al., 2006; Barga et al., 2007; Akdere,

Çetintemel, & Tatbul, 2008; Cugola & Margara, 2010; Anicic et al., 2010)), they do not

meet the expectations to pave the foundations of CEP languages. For instance, some

of them are too complicated (e.g. sequencing is combined with filters), have unintuitive

behavior (e.g. sequencing operator is non-associative), or are severely restricted (e.g. basic

operations are supported). As an example, iteration is a fundamental operator in CEP

and has not yet been defined successfully as a compositional operator. Since iteration is

difficult to define and evaluate, it is usually restricted by not allowing nesting or reuse

of variables (Wu et al., 2006; Demers et al., 2006). Thus, without a formal and natural

semantics the languages for CEP are in general cumbersome.
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The lack of simple denotational semantics also makes it hard to introduce general

query optimization techniques. It is common to find complicated heuristics and optimiza-

tions that cannot be replicated in other frameworks (see e.g. (Zhang et al., 2014)). Further-

more, optimizations are usually proposed at the architecture level (Mansouri-Samani &

Sloman, 1997; Demers et al., 2006; Pietzuch et al., 2003), preventing a unifying optimiza-

tion theory. This also makes hard to leverage well-known techniques like query rewriting,

which is well known in database management systems (Abiteboul, Hull, & Vianu, 1995;

Ramakrishnan & Gehrke, 2003). An exception here is (Schultz-Møller et al., 2009) which

uses very limited techniques of query rewriting.

Another limitation of existing CEP frameworks is that, for optimization and query

evaluation, they used ad-hoc automata models (Demers et al., 2006; Barga et al., 2007;

Akdere et al., 2008) without considering previous work in automata theory (Sakarovitch,

2009). These models are usually complicated (Pietzuch et al., 2003; Schultz-Møller et al.,

2009), non-standard (Cugola & Margara, 2010; Agrawal, Diao, Gyllstrom, & Immerman,

2008) or informally defined (Demers et al., 2006). For instance, some CEP frameworks

enhanced non-deterministic finite state automata with predicates (Agrawal et al., 2008;

Schultz-Møller et al., 2009; Pietzuch et al., 2003), buffers (Agrawal et al., 2008), func-

tions (Schultz-Møller et al., 2009), time intervals (Pietzuch et al., 2003), etc. Although

some of these features have been studied before in automata theory (Sakarovitch, 2009;

Veanes, 2013; Alur & Dill, 1994), they are defined without considering previous work in

this field. A proof of this claim is that, although finite state automata is a natural model

for CEP, there is no common model for CEP in the literature.

Given this scenario, the main goal of this thesis is to give solid foundations to CEP

systems in terms of the query language and query evaluation. Towards these goals, our

contributions can be divided in two parts. The first part is dedicated to provide a formal

language that allows for expressing the most common features of CEP systems, namely

sequencing, filtering, disjunction, and iteration. Inspired in previous CEP frameworks,

we introduce CEPL, a logic that contains the main operators found in the literature and

has well-defined compositional and denotational semantics. We also formalize the notion

3



of selection strategies which is usually discussed directly (Zhang et al., 2014) or indi-

rectly (Barga et al., 2007) in the literature but has not been properly formalized.

In the second part, we embark on the design of a formal framework for CEPL evalua-

tion. This framework must consider three main building blocks for the efficient evaluation

of CEPL: (1) syntactical techniques for rewriting CEPL queries, (2) a well-defined in-

termediate evaluation model, and (3) efficient translation and algorithms to evaluate this

model. About rewriting techniques, we study the structure of CEPL by introducing natu-

ral syntactic restrictions (well-formed and safe formulas) and show that these restrictions

are relevant for query evaluation. Further, we give a general result on rewriting CEPL

formulas into the so-called LP-normal form, a normal form for dealing with unary filters.

About the intermediate evaluation model, we introduce a formal computational model for

the regular fragment of CEPL, called match automata. We show that this model has good

properties (e.g. complementation and determinization) and study the evaluation of match

automata by showing that a relevant class of this model can be evaluated efficiently in a

streaming fashion. We provide algorithms for translating CEPL to match automata. Inter-

estingly, we show that under the next selection strategy, formulas in the regular fragment

of CEPL can be evaluated efficiently (constant time per event under data complexity) by

providing a translation to unambiguous match automata.

Finally, we bring together our results to present a formal framework for evaluating

CEPL, and show the main issues for efficient evaluation in CEP systems. Moreover, this

framework gives foundations to CEP and settles the bases for future CEP systems.

Organisation. We give an extensive and intuitive introduction to Complex Event Process-

ing and our framework in Section 2. The logic and selection strategies are formalized in

Section 3 and 4, respectively. The syntactical structure of the logic is studied in Section 5

and the computational model and its properties are given in Section 6. Section 7 is devoted

to the evaluation of the logic with match automata. Section 8 puts all the results in per-

spective and presents our evaluation framework for CEP Systems. We finally give some

concluding remarks in Section 9.
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2. EVENTS IN ACTION

In this section we motivate and present the main features and challenges of CEP. The

examples used in this section will also serve throughout the thesis as running examples.

In a usual CEP setting, events arrive in a streaming fashion to a system that must

detect certain patterns (Cugola & Margara, 2012b). For the purpose of illustration assume

there is a stream produced by wireless sensors positioned in a farm, whose objective is

both to detect fires and achieve optimal irrigation. For the sake of simplification, assume

that there are three sensors, and each of them can measure both temperature (in Celsius

degrees) and relative humidity (as percentage of vapor in the air). Each sensor is assigned

an id in {0,1,2}. The events produced by the sensors consist of the id of the sensor and

a measurement of temperature or humidity. For the sake of brevity, we write T (id, tmp)
for an event reporting temperature tmp from sensor with id id, and similarly H(id, hum)
for events reporting humidity. We present such a stream in Figure 2.1, where each column

represents an event and the value row is the temperature or relative humidity if the event

is of type temperature (T ) or humidity (H), respectively.

As previously mentioned, complex events are generally specified by domain experts

in the form of patterns. For the sake of illustration, assume that the position of sensor 0 is

particularly prone to fires, and it has been detected that a temperature measurement above

40 degrees Celsius followed by a humidity measurement of less than 25% represents a fire

with high probability. Then, such sequence of two events is a complex event of interest.

Let us intuitively explain the syntax and semantics with which a domain expert could

express this as a pattern (from now on a formula) in our framework:

ϕ1 = (T AS x;H AS y) FILTER (x.tmp > 40 ∧ y.hum <= 25 ∧ x.id = 0 ∧ y.id = 0)

This formula is asking for two events, one of type temperature (T ) and one of type hu-

midity (H). The events of type temperature and humidity are given names x and y, re-

spectively, and the two events are filtered to select only those pairs (x, y) representing a

high temperature and low humidity measured by sensor 0. Before defining the semantics

5



type H T H H T T T H H . . .
id 2 0 0 1 1 0 1 1 0 . . .value 35 45 20 25 40 42 25 70 18

index 0 1 2 3 4 5 6 7 8 . . .

FIGURE 2.1. A stream S of events measuring temperature (T ) and humidity (H).
“value” contains degrees and humidity for T - and H- events, respectively.

of ϕ1, let us discuss what would be the expected result of evaluating this formula over a

stream. A first important remark is that event streams are noisy in practice, and one does

not expect the events matching a formula to be contiguous in the stream. Then, a CEP

engine needs to be able to dismiss irrelevant events (as opposed to regular expressions).

The semantics of the sequencing operator (;) will thus allow for arbitrary events to occur

in between the events of interest. A second remark is that in CEP the events matching

a formula are particularly relevant to the end user. Therefore, every time that a formula

matches a complex event in the stream, the final user should obtain enough information to

retrieve the events that compose the complex event. Therefore, the output of evaluating a

formula over a stream is a set of matches, where each match is the set of indexes (stream

positions) of the events that witness the complex event.

We proceed to intuitively explain the evaluation of ϕ1 over the stream S (Figure 2.1).

Let S[i] be the event with index i in the stream. What we expect as output is a set of pairs

{i, j} such that S[i] is of type T , S[j] is of type H , i < j, and they satisfy the conditions

expressed in the FILTER. By inspecting this stream, we can see that the pairs satisfying

these conditions are {1,2}, {1,8}, and {5,8}. These are the elements that the user should

get as output in order to retrieve the events from the stream for further analysis.

Formula ϕ1 illustrates in a simple way the two most elemental features of CEP, namely

sequencing and filtering (Cugola & Margara, 2012b; Arasu et al., 2003; Zhang et al., 2014;

Abadi et al., 2003; Buchmann & Koldehofe, 2009). But although it detects a set of possible

fires, it restricts the order in which the two events must occur, namely the temperature must

be measured before the humidity. Naturally, this could prevent the detection of a fire in

which the humidity was measured first. This motivates the introduction of disjunction,

another common feature in CEP engines (Cugola & Margara, 2012b; Arasu et al., 2003).
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In our framework, disjunction is expressed by means of the OR operator. To illustrate, we

extend ϕ1 by allowing events to appear in arbitrary order.

ϕ2 = [(T AS x;H AS y) OR (H AS y;T AS x)]

FILTER (x.tmp > 40 ∧ y.hum <= 25 ∧ x.id = 0 ∧ y.id = 0)

Intuitively, the OR operator allows for any of the two patterns to be matched, and then

applies the filter as in ϕ1. The result of evaluating ϕ2 over the stream S of Figure 2.1 is

the same as evaluating ϕ1 over S plus the match {2,5}.

So far we have illustrated the use of CEP as a mean to raise alerts when a certain com-

plex event occurs, but from a wider scope the objective of CEP is to retrieve information

of interest from streams. For example, assume that we want to see how does temperature

change in the location of sensor 1 whenever there is a sudden increase of humidity. A

problem here is that we don’t know a priori the amount of temperature measurements,

and therefore we need to capture an unbounded amount of events. An operator for itera-

tion (Cugola & Margara, 2012b; Arasu et al., 2003; Wu et al., 2006), commonly denoted

by +, is generally introduced in CEP frameworks for solving this problem. The + opera-

tor introduces several difficulties in the semantics of CEP languages. For example, since

events are not required to occur contiguously in a stream, the nesting of + is particularly

tricky and most frameworks simply disallow this (see for example (Wu et al., 2006; Arasu,

Babu, & Widom, 2006; Demers et al., 2006)). Coming back to our example, the formula

for measuring temperatures whenever a sudden increase of humidity is detected by sensor

1 is:

ϕ3 = [H AS x; (T AS y FILTER y.id = 1)+;H AS z]

FILTER (x.hum < 30 ∧ z.hum > 60 ∧ x.id = z.id = 1)

Intuitively, variables x and z witness a sudden increase of humidity from less than 30%

to more than 60%, and y captures temperature measures between x and z. Note that the

filter for y is included inside the + operator. Some frameworks allow to declare variables

7



inside a + and filter them outside that operator (see, e.g., (Wu et al., 2006)). Although it

is possible to define the semantics for that syntax (simply as a universal quantifier over

the occurrences of the variable), this form of filtering makes the definition of nesting +
difficult. Another semantic subtlety of the + operator is the association of y to an event.

Given that we want to match the event (T AS y FILTER y.id = 1) an unbounded number

of times: do we want to associate y to one event or to different events across repetitions?

Certainly, we want the latter option since each of the matched temperatures (i.e. T events)

will be different. In Section 3, we introduce a natural semantics that allows for nesting

arbitrarily many + and associate variables (inside + operators) to different events across

repetitions.

Now let us explain the semantics of ϕ3 over stream S (Figure 2.1). First, notice

that the only two humidity events satisfying the top-most filter are S[3] and S[7]. The

temperature measurements between these two events are S[4] and S[6]. As expected,

the match {3,4,6,7} is part of the output. However, there are also other matches in the

output. Since, as discussed, there might be irrelevant events between relevant ones, the

semantics of + must allow for skipping arbitrary events. Actually, in the presented match

we are already skipping some humidity and temperature events. This implies that, in order

to provide well-defined compositional semantics, one must allow for skipping events that

might be of interest (in our example, temperature measurements of sensor 1). Therefore,

the matches {3,6,7} and {3,4,7} are also part of the output.

The set of matches generated by formulas ϕ1 and ϕ3 raises an interesting question:

are users interested in receiving all matches? Are some matches more informative than

others? Coming back to the output matches of ϕ3 ({3,6,7}, {3,4,7} and {3,4,6,7}), one

can easily argue that the biggest match is more informative than others since all matches

are contained in it. A more complicated analysis deserves the matches output by ϕ1.

In this scenario, the pairs that have the same second component (e.g., {1,8} and {5,8})

represent a fire occurring at the same place and time, so one could argue that only one

of the two is necessary. Given that {1,8} happens before {5,8}, a user would probably

want {1,8} as the only output match of ϕ1 when the last event of the stream is received.
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The decision of generating only a subset of the matches, and which subset to return, is

generally called a selection strategy (Wu et al., 2006; Zhang et al., 2014). A common

design across CEP-systems is that formulas are defined to extract all matches and it is

responsibility of the users to apply selection strategies over formulas to restrict the set of

output matches. Selection strategies are a fundamental feature of CEP but, unfortunately,

there is no previous proposal that has defined them formally. A special mention deserves

the so-called next selection strategy (Wu et al., 2006; Zhang et al., 2014) which in CEP

systems usually models the idea of outputting the “most consecutive” match. Although

the semantics of next has been proposed or mentioned in previous papers (e.g (Barga et

al., 2007)), it is usually defined incorrectly (Wu et al., 2006; Zhang et al., 2014) or across

the language making simple operators complicated (Demers et al., 2006). In Section 4 we

formally define selection strategies, including next. Furthermore, we show in Section 7

that the next selection even allows to optimize the evaluation of formulas.

As it can be deduced from the examples above, the evaluation of CEP formulas can

easily become computationally intensive. For example, the + operator allows for a power-

set construction, potentially introducing an exponential blowup in the number of results.

Therefore, the effectiveness of a CEP framework is based not only on the expressive power

of its formulas, but also on the efficiency with which formulas can be evaluated. Because

of their similarities with regular expressions, it is common to find automata-based models

for evaluating CEP formulas in the literature (Demers et al., 2006; Barga et al., 2007;

Akdere et al., 2008). In Section 6, we introduce a model named match automata that is

based on synchronized transducers (Frougny & Sakarovitch, 1993) and symbolic automata

(Veanes, 2013). We also provide a translation from CEP formulas like the ones presented

above to match automata.

When evaluating a match automaton over a stream, an important optimization is to

stop the runs that will not lead to a match as soon as possible. To illustrate this fact,

consider again formula ϕ1. Syntactically, this formula states “find an event x followed by

an event y, and then check that they satisfy the filter conditions”. However, we would like

an execution engine to only consider those events x with id = 0 and whose temperature

9



measurement is more than 40 degrees. Only afterwards the possible matching events y

should be considered. In Section 5 we present rewriting techniques for CEP formulas that

allow for this type of optimization. In particular, we present a procedure for pushing filter

conditions as close to the definition of the variables as possible. For example, formula ϕ1

can be restated as

ϕ′1 = [(T AS x) FILTER (x.tmp > 40 ∧ x.id = 0)];

[(H AS y) FILTER (y.hum <= 25 ∧ y.id = 0)]

In this case the translation is straightforward because the FILTER condition of ϕ1 only

contains conjunctions. However, when adding logical disjunction the rewriting needs a

more involved analysis of the formula.

We conclude this section by illustrating one more common feature of CEP, namely

correlation. Correlation is introduced by filtering events with predicates that involve more

than one event. For example, consider that we want to see how does temperature change

at some location whenever there is a sudden increase of humidity there. Then, what we

need is a pattern similar to ϕ3 where all the events must be produced by the same sensor,

but that sensor is not necessarily sensor 1. This is achieved by the following pattern:

ϕ4 = [H AS x; (T AS y FILTER y.id = x.id)+;H AS z]

FILTER (x.hum < 30 ∧ z.hum > 60 ∧ x.id = z.id)

Notice that here the filters contain the binary predicates x.id = y.id and x.id = z.id that

force all events to have the same id. Although this might seem simple, the evaluation of

formulas that correlate events introduces new challenges. Intuitively, formula ϕ4 is more

complicated in the sense that the value of x must be remembered and used during the

evaluation in order to compare it with all the incoming events. If the reader is familiar

with automata theory (Hopcroft & Ullman, 1979; Sakarovitch, 2009), this behavior is

clearly not “regular” and it will not be captured by a finite state model. In this thesis, we

want to study and characterize the regular part of CEP-systems. Therefore, in Sections 6
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and 7 we restrict our analysis to formulas with unary predicates (like ϕ1, ϕ2 and ϕ3) that

capture the regular core of CEP-languages, and postpone the analysis of formulas like

ϕ4 for future work. It is important to mention here that the semantics of our language

proposal (plus the selection strategies and rewriting of formulas) is defined in general and

not restricted to any subfragment.

We have illustrated sequencing, filtering, disjunction, iteration and correlation, and

we discussed optimization techniques and features of CEP that will be further developed

in the rest of the thesis. In the next section we proceed to formally define the syntax and

semantics of CEP formulas.
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3. A QUERY LANGUAGE FOR CEP

In this section we present a formal language for specifying complex events called

CEP-logic. We first introduce the basic notions and then proceed to define the opera-

tions found regularly in the literature (Section 3.2). Finally, in Section 3.3 we introduce

operators that provide further CEP features but are found less frequently in the literature.

3.1. Basic Definitions

Let A be a set of attribute names and let D be a set of values. A relation name R is

any finite subset of A. IfR is a relation name, then anR-tuple is a function t ∶ R →D. We

say that the type of an R-tuple t is R, and denote this by type(t) = R. A database schema

R (or just schema) is a finite set of relation names. For any relation name R, tuples(R)
denotes the set of all possible R-tuples, i.e., tuples(R) = {t ∶ R → D}. Similarly, for any

database schema R, tuples(R) is the set of all R-tuples for R ∈ R.

Given a schema R, an R-stream S is an infinite sequence S = t0t1 . . . where ti ∈
tuples(R). When R is clear from the context, we refer to S simply as a stream. Given

a stream S = t0t1 . . . and a position i ∈ N, the i-th element of S is denoted by S[i] = ti,
and the sub-stream titi+1 . . . of S is denoted by Si. Here, we suppose that the order of the

sequence implicitly defines an order among tuples and we usually call S[i] an event of S at

time i. Furthermore, contrary to other frameworks (Pietzuch et al., 2003) we consider that

the time of each event is implicitly given by the order of the stream and we do not consider

extensions like intervals. We leave these extensions for future work (see Section 9).

Let X be a set of variables and P(R) a set of predicates over tuples(R), where each

P ∈ P(R) has arity arity(P ). For the sake of simplification, for each P ∈ P(R) we

write P (x1, . . . , xn), where n = arity(P ) and x1, . . . , xn ∈ X. We define the set F(R) of

selection formulas over R as the smallest set of formulas such that P(R) ⊆ F(R) and is

closed under conjunction, disjunction and negation. For example, if P(R) contains the

predicates P1(x) ∶= x.hum < 30, P2(z) ∶= z.hum > 60 and P3(x, z) ∶= x.id = z.id, then

the outer-most filter of ϕ4 (see Section 2) is a formula in F(R).
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An assignment is a partial function σ ∶ X ⇀ tuples(R). Given an assignment σ

and a predicate P (x1, . . . , xn) in P(R), we say that σ satisfies P (denoted by σ ⊧ P ) if

P (σ(x1), . . . , σ(xn)) evaluates to true. For every formula in F(R) that is not a predicate,

the semantics is defined recursively as usual. Finally, for the computational complexity

analysis we assume that given an assignment σ and α ∈ F(R), it takes time O(1) to verify

whether σ ⊧ α.

3.2. Core CEP Logic

Now we proceed to give the syntax of what we call the core of CEP-logic (core-CEPL

for short), a logic inspired by previous CEP frameworks (e.g. (Wu et al., 2006; Demers et

al., 2006; Barga et al., 2007)). This language features those operations commonly found

in the literature.

The set of formulas in core-CEPL, or core formulas for short, is given by the following

grammar:

ϕ ∶= R AS x ∣ ϕ FILTER α ∣ ϕ OR ϕ ∣ ϕ ; ϕ ∣ ϕ+

where R is a relation name, x is a variable in X and α is a selection formula in F(R).

As opposed to existing frameworks, we do not restrict the use of variables, or nesting of

operators. In particular, we allow for arbitrary nesting of +.

Now we proceed to define the semantics of core formulas, for which we need to

introduce some further notation. A match M is defined as a non-empty and finite set of

natural numbers. As mentioned in the previous section, a match contains the positions that

witness the satisfaction of a formula over a stream, and moreover, they are the final output

of evaluating a formula over a stream. We denote by ∣M ∣ the size of a match M and by

min(M) and max(M) the minimum and maximum element of M , respectively. Given a

stream S = t0t1 . . . andM = {i1, i2, . . . , in} with ij < ij+1, the subsequence ti1ti2 . . . tin of S

is denoted by S[M]. Intuitively, if S[i] is an event of S, S[M] represents a complex event.

Given two matches M1 and M2, we denote by M1 ⋅M2 the concatenation of two matches,

that is, M1 ⋅M2 ∶=M1 ∪M2 whenever max(M1) < min(M2) and empty otherwise.
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In core-CEPL formulas, variables are second class citizens because they are only

used to filter and select particular events in a stream, i.e. they are not retrieved as part

of the output. As examples in Section 2 suggest, we are only concerned with finding

the positions that witness the match and not which position corresponds to which vari-

able. The reason behind this is that the operator + allows for repetitions, and therefore

variables under a (possibly nested) +-operator would need to have a special meaning,

particularly for filtering operations. This discussion motivates the following definitions.

Given a core-CEPL formula ϕ we denote by var(ϕ) the set of all variables that appear

in ϕ (i.e. as R AS x or in a selection formula α) and by vdef(ϕ) all variables defined

in ϕ by a clause of the form R AS x. Furthermore, we denote by vdef+(ϕ) all variables

in vdef(ϕ) that are defined outside the scope of all +-operators. For example, in the

formula ϕ = (T AS x ; (H AS y)+) FILTER z.id = 1 we have that var(ϕ) = {x, y, z},

vdef(ϕ) = {x, y}, and vdef+(ϕ) = {x}.

The last notion needed for defining the semantics of core-CEPL is how to assign vari-

ables to events. Here, the notion of assignments introduced in Section 3.1 is not enough

for the semantics since they assign tuples to variables loosing the relative position of data

inside a stream. In other words, two tuples in a stream can be equal with respect to its

content (i.e. data) but they will be different with respect to its position. For this reason,

we want to assign positions to variables instead of just tuples. Formally, a valuation is a

partial function ν ∶ X ⇀ N. Given a stream S, a valuation ν naturally induces an assign-

ment νS from variables to tuples(R) defined by νS(x) = S[ν(x)] for every x ∈ dom(ν).

Finally, given a finite subset U ⊆ X and two valuations ν1 and ν2, we define the valuation

ν1[ν2 → U] by ν1[ν2 → U](x) = ν2(x) if x ∈ U and ν1[ν2 → U](x) = ν1(x) otherwise.

Now we are ready to define the semantics of a core-CEPL formula ϕ. Given a match

M , a stream S, and a position i ∈ N, we say that M belongs to the evaluation of ϕ over S

starting at position i and under the valuation ν (denoted by M ∈ ⟦ϕ⟧(S, i, ν)) if one of the

following conditions holds:

● ϕ = R AS x, M = {ν(x)}, type(S[ν(x)]) = R and i ≤ ν(x).
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● ϕ = ρ FILTER α, M ∈ ⟦ρ⟧(S, i, ν) and νS ⊧ α.

● ϕ = ρ1 OR ρ2 and (M ∈ ⟦ρ1⟧(S, i, ν) or M ∈ ⟦ρ2⟧(S, i, ν)).

● ϕ = ρ1 ; ρ2 and M =M1 ⋅M2 for two matches M1 and M2 such that M1 ∈ ⟦ρ1⟧(S, i, ν)
and M2 ∈ ⟦ρ2⟧(S, j, ν), with j = max(M1) + 1.

● ϕ = ρ+ and there is a valuation ν′ such that either M ∈ ⟦ρ⟧(S, i, ν[ν′ → U]) or M ∈
⟦ρ ; ρ+⟧(S, i, ν[ν′ → U]), where U = vdef+(ρ).

There are a couple of important remarks here. First, notice that the valuation ν can be

defined over a superset of the variables mentioned in the formula. This is important for the

sequencing operator (;) because we require the matches from both sides to be produced

with the same valuation. Second, when we evaluate a subformula of the form ρ+, we

carry the value of variables defined outside the subformula. For example, the subformula

(T AS y FILTER y.id = x.id)+ of ϕ4 does not define the variable x. However, from the

definition of the semantics we see that x will be already assigned (because R AS x occurs

in the upper level). This is precisely where other frameworks fail to formalize iteration,

as without this construct it is not easy to correlate the variables inside + with the ones

outside, as we illustrate in ϕ4.

Notice also that the sequencing operator (;) is associative. Although this might seem

natural, there are CEP frameworks with formal semantics in which this is not the case

(see, e.g., (Demers et al., 2006)). This is one of the reasons to include the position i in our

definition, as it restricts the matches produced by the right-hand side of a sequence only

to those occurring after the left-hand side was matched. Also, this will allow us to give

compositional semantics to selectors (Section 4).

As it was previously mentioned, in a core-CEPL formula variables are just used for

comparing attributes with FILTER and are not relevant for the final output. To this end,

we say that M belongs to the evaluation of ϕ over S, denoted by M ∈ ⟦ϕ⟧(S), if there

exists a valuation ν such thatM ∈ ⟦ϕ⟧(S,0, ν), namely, we evaluate ϕ over S starting from

position 0. As an example, the reader can check that the matches presented in Section 2

are indeed matches of ϕ1 to ϕ3 over the stream of sensors measurements.
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3.3. Other operators

We now extend the syntax and semantics of core-CEPL by adding new operators.

Some of these operators are natural extensions of the core language and others have been

proposed in previous work (Barga et al., 2007; Adi & Etzion, 2004). Specifically, the

syntax of the extended core CEP-logic (or ecore-CEPL) is given by extending the grammar

of core-CEPL with the following operators:

ϕ ∶= ϕ AND ϕ ∣ ϕ ALL ϕ ∣ ϕ UNLESS ϕ

We call ϕ an ecore-CEPL formula (or simply ecore formula).

Similar to core-CEPL, we define the semantics of ecore-CEPL over a stream S by

using the notions of matches and valuations. The semantics of the core operators are as

defined in Section 3.2, and the semantics of a formula ϕ = ρ1 OP ρ2, where OP is any of

the new operators AND, ALL, and UNLESS, is defined recursively as follows: given a match

M , a stream S, a position i and a valuation ν, we say that M ∈ ⟦ϕ⟧(S, i, ν) if one of the

following conditions holds:

● OP = AND, M ∈ ⟦ρ1⟧(S, i, ν) and M ∈ ⟦ρ2⟧(S, i, ν).

● OP = ALL and M =M1 ∪M2 for two M1 and M2 such that both M1 ∈ ⟦ρ1⟧(S, i, ν) and

M2 ∈ ⟦ρ2⟧(S, i, ν) hold.

● OP = UNLESS, M ∈ ⟦ρ1⟧(S, i, ν) and for all M ′ and ν′ with min(M) ≤ min(M ′) ≤
max(M ′) ≤ max(M), it holds that M ′ ∉ ⟦ρ2⟧(S, i, ν[ν′ → vdef+(ρ2)]).

The AND operator simply selects those matches produced by both formulas. Although this

is natural for sets, it is very restrictive for matching events. On the contrary, ALL is more

flexible and allows to combine two matches. In this sense, ALL is similar to sequencing

but allows that the matches occur at any point in time, even overlapping and intersecting.

For example, formula ϕ2 of Section 2 asks for a temperature measurement and a humidity

measurement that can occur in any order and satisfy a certain condition. This formula

could have been written more succinctly as [(T AS x) ALL (H AS y)] FILTER (. . .). The
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objective of the UNLESS is to introduce negation. It is important to mention that the negated

formula (the right-hand side) is restricted to matches between the start and end of matches

for the formula in the left-hand side. This is motivated by the fact that a match should

not depend on objects that are distant in the stream. For example, consider that we want

to see a drastic increase in temperature. This can be expressed as a sequence of a low

temperature (less than 20 degrees) and a high temperature (more than 40 degrees), where

no other temperatures occur in between. This can be expressed by the following pattern:

[(T AS x) FILTER (x.tmp < 20); (T AS y) FILTER (y.tmp > 40)]

UNLESS[(T AS z) FILTER (z.tmp >= 20 ∧ z.tmp <= 40)]

We stress that valuations are not part of the output, and as in core-CEPL we write M ∈
⟦ϕ⟧(S) when there is a valuation ν such that M ∈ ⟦ϕ⟧(S,0, ν).
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4. SELECTION STRATEGIES

Matching complex events is usually a computationally intensive task. As our running

example and the definition of ecore-CEPL might suggest, the main reason behind this

is that the amount of matches can grow exponentially in the size of the stream, forcing

systems to process large numbers of candidate matches. In order to optimize the matching

processes, it is common to restrict the set of results (Carlson & Lisper, 2010; Wu et al.,

2006; Zhang et al., 2014). This is one of the cornerstones of CEP systems, and most of the

proposals in the literature introduce them simply as ad-hoc extensions matching particular

computational models. For a more general approach, we introduce the so-called selection

strategies as unary operators (called selectors). Formally, we define the syntax of full

CEP-logic, or simply CEPL, by the following grammar:

ϕ ∶= R AS x ∣ ϕ FILTER α ∣ ϕ OR ϕ ∣ ϕ ; ϕ ∣ ϕ +

ϕ AND ϕ ∣ ϕ ALL ϕ ∣ ϕ UNLESS ϕ

STRICT(ϕ) ∣ NXT(ϕ) ∣ MAX(ϕ)

We now proceed to define the semantics of the selectors, starting with the strict-

contiguity selector STRICT. Recall that formula ϕ1 in Section 2 detects complex events

composed by a temperature above 40 degrees Celsius followed by a humidity of less than

25%. As already argued, in general one could expect many other events between x and

y. However, it could be the case that this particular pattern is of interest only if the events

occur contiguously in the stream, namely a temperature right after a humidity measure.

The strict-contiguity selector STRICT only allows strictly consecutive matches. Formally,

for any CEPL formula ϕwe have thatM ∈ ⟦STRICT(ϕ)⟧(S, i, ν) holds ifM ∈ ⟦ϕ⟧(S, i, ν)
and for every i, j ∈ M , there is no k ∈ N ∖M such that i < k < j (i.e., M is an interval).

For example, in our running example STRICT(ϕ1) would only produce the match {1,2},

although {1,8} and {5,8} are also matches for ϕ1 over S.
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The STRICT contiguity selector is generally included in CEP frameworks because it

allows to carry over good properties from regular expressions. However, for reasons we

have already discussed it is not particularly interesting to capture contiguous events in

streams. In CEP one would like to have more flexible selection strategies that allow for

obtaining fewer yet meaningful results. One notion that appears often in the literature is

that of selecting only those matches that are as consecutive as possible. For example,

consider again the pattern ϕ1 and the stream S from Section 2. As we discussed, both

{1,8} and {5,8} are matches for ϕ1 over S. Now, if a user didn’t want to obtain all

matches, which of these two matches would he prefer? Here is where the notion of “most

consecutive” appears. It is widely accepted that the first match is preferred over the second,

since the first event of {1,8} occurred before the first event of {5,8}, and therefore the first

match is more consecutive in the stream. Another intuition behind this notion is that it is

better to match the next event instead of skipping it and selecting another event in the

future.

The above example motivates the semantics of the next selection strategy, which has

been discussed and used in most of the CEP systems (Cugola & Margara, 2012b) as an

special operator (Barga et al., 2007; Wu et al., 2006; Zhang et al., 2014) or behind the

semantics of the sequencing operator (Demers et al., 2006). However, they fail to define it

correctly since they either mix the semantics of selectors with the semantics of sequencing

or iteration, or they define the selector semantics for a restricted set of operators (e.g. they

cannot support Kleene closure). In our framework, we formalize the semantics of the next

operator based on a special order over matches. This allows us to capture the intuition of

“more consecutive” reflected in the literature, while giving a general definition.

Let M1 and M2 be two matches. The symmetric difference between M1 and M2 is

denoted by M1△M2 and is the set of all elements either in M1 or M2 but not in both. We

say that M1 ≤next M2 if either M1 = M2 or min(M1 △M2) ∈ M2. For example, we have

that {5,8} ≤next {1,8} since the minimum element in {5,8} △ {1,8} = {1,5} is 1, which

is in {1,8}. Notice that the ⊆-relation is a refinement of the ≤next-relation in the sense that

if M1 ⊆M2 then M1 ≤next M2. This follows the intuition that the more elements a match

19



has, the more consecutive it is. Moreover, one can prove that the ≤next-relation forms a

total order among matches, implying the existence of a maximum over any finite set of

matches.

Lemma 4.1. ≤next is a total order between matches.

PROOF. For ≤next to be a total order between matches, it has to be reflexive (trivial),

anti-symmetric, transitive, and total. The proof for each property is given next.

Anti-symmetric. Consider any two matches M1 and M2 such that M1 ≤next M2 and

M2 ≤next M1. M2 ≤next M1 means that either M1 = M2 or (1) min{(M1 ∪M2) − (M1 ∩
M2)} ∈M1, and M1 ≤next M2 that either M2 =M1 or (2) min{(M2∪M1)−(M2∩M1)} ∈
M2. If (1) were true, it would mean that (2) could not be true, so M2 =M1 would have to

be true, becoming a contradiction. So, the only possible scenario is that M1 =M2.

Transitivity. Consider any three matches M1, M2 and M3 such that M1 ≤next M2 and

M2 ≤next M3. M1 ≤next M2 means that either M1 = M2 or (1) min{(M1 ∪M2) − (M1 ∩
M2)} ∈M2. If M1 =M2, then M1 ≤next M3 because M2 ≤next M3. Now, if M1 ≠M2, then

(1) must hold, which means that the lowest element that is either in M1 or M2, but not in

both, has to be in M2. Let’s call this element l1. M2 ≤next M3 means that either M2 =M3

or (2) min{(M2∪M3)−(M2∩M3)} ∈M3. Again, ifM2 =M3, thenM1 ≤next M3 because

M1 ≤next M2. Now, if M2 ≠M3, then (2) must hold, which means that the lowest element

that is either in M2 or M3, but not in both, has to be in M3. Let’s call this element l2.

Given that M1 ≠M2 and M2 ≠M3, define for every i ∈ {1,2,3} and j ∈ {1,2} the set

M
<lj
i as the set of elements ofMi which are lower than lj , i.e.,M<lj

i = {x ∣ x ∈Mi∧x < lj}.

It is clear that M<l1
1 =M<l1

2 and M<l2
2 =M<l2

3 , because of (1) and (2), respectively. Also,

because of (2) it holds that l2 ∉M2, so l1 ≠ l2.

Consider first the case where l1 < l2. This means that (3) M<l1
1 =M<l1

3 . Moreover, if

l1 were not in M3, it would contradict (2), so (4) l1 ∈M3 must hold. With (3) and (4), it

follows that l1 is the lowest element that is either in M1 or M3 but not in both, and it is in

M3. This proves that min{(M1 ∪M3) − (M1 ∩M3)} ∈M3, and thus M1 ≤next M3.
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Now consider the case where l2 < l1. This means that (5) M<l2
1 = M<l2

3 . Because l2

is not in M2, it cannot be in M1, otherwise it would contradict (1), so (6) l2 ∉ M1 must

hold. Also, because of (2) we know that (7) l2 ∈M3 must hold. With (5), (6) and (7), it

follows that l2 is the lowest element that is either in M1 or M3 but not in both, and it is in

M3. This proves that min{(M1 ∪M3) − (M1 ∩M3)} ∈M3, and thus M1 ≤next M3.

Total. Consider any two matches M1 and M2. If M1 = M2, then M1 ≤next M2 holds.

Consider now the case where M1 ≠M2. Define the set M = (M1∪M2)/(M1∩M2) which

is the set of all elements either in M1 or M2, but not in both. Because M1 ≤next M2, there

must be at least one element in M . In particular, this implies that there is a minimum

element l in M . If l is in M2, then M1 ≤next M2 holds, and if l is in M1, then M2 ≤next M1

holds. �

We now define the semantics of the next selector NXT(ϕ): for any CEPL formula ϕ

we have M ∈ ⟦NXT(ϕ)⟧(S, i, ν) if M ∈ ⟦ϕ⟧(S, i, ν) and for every match M ′ such that

M <next M ′ and max(M) = max(M ′), it holds that M ′ ∉ ⟦ϕ⟧(S, i, ν). In our running

example, {1,8} satisfies NXT(ϕ1) on S, as there is no “more consecutive” match satisfying

ϕ1 in the same prefix. Note that we compare matches with respect to ≤next that have the

same final position. This ensures that the maximum match always exists and that the

optimality of a match only depends on the matches over the same prefix.

Another selector that has been proposed in the literature is that of selecting only the

maximal matches in terms of inclusion. This corresponds to obtaining those matches that

are as informative as possible, and therefore contain the biggest sets of events. Formally,

for any CEPL formula ϕ we have that M ∈ ⟦MAX(ϕ)⟧(S, i, ν) holds iff M ∈ ⟦ϕ⟧(S, i, ν)
and for all matches M ′ such that M ⊂ M ′ and max(M) = max(M ′), it holds that M ′ ∉
⟦ϕ⟧(S, i, ν). Coming back to our example, the MAX selector will output both matches

{1,8} and {5,8} for ϕ1, given that both matches are maximal in terms of set inclusion. On

the contrary, formula ϕ3 produced the matches {3,6,7}, {3,4,7}, and {3,4,6,7}. Then

if we evaluate MAX(ϕ3) over the same stream, we will obtain only {3,4,6,7} as output,

which is the maximal match. It is interesting to note that if we evaluate NXT(ϕ3) over the
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stream we will also get {3,4,6,7} as the only output, illustrating that next yields matches

with maximal information.

So far we have extensively discussed the foundations of CEP. We presented a for-

mal language with well-defined semantics that contains most of the operators found in

the literature, including the so-called selection strategies. This is an important and foun-

dational first step, but is not enough for defining a complete and practical framework for

CEP. In the rest of the thesis we study several practical aspects of CEPL. We start by dis-

cussing the syntactic form of CEPL formulas, and define syntactic restrictions that charac-

terize semantic properties of interest. Then, we present a computational model and show

how CEPL formulas in the introduced syntactic fragments can be evaluated in this model.

Moreover, we identify a fragment of CEPL that can be efficiently evaluated. Finally, we

put all pieces together and present a complete framework for evaluating the studied CEPL

formulas in practice.
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5. SYNTACTIC ANALYSIS OF CEPL

In this section we study the syntactic form of CEPL formulas, and define the classes of

well-formed formulas and safe formulas. These classes are based on syntactic restrictions

that characterize semantic properties of interest. Then, we define a convenient normal

form for CEPL and show that any formula can be rewritten in this form.

5.1. Syntactic restrictions of formulas

The definition of CEPL provides well-defined semantics for all formulas, allowing for

a more concise theoretical analysis. However, there are some formulas whose semantics

can be unintuitive. Consider for example the formula:

ϕ5 = (H AS x) FILTER (y.tmp ≤ 30).

Here, x will be naturally bounded to the only element in a match, but y will not add a

new position to a match. By the semantics of CEPL, a valuation ν for ϕ5 must assign

a position for y that satisfies the filter, but such position is not restricted to occur in the

match. Moreover, y is not necessarily bounded to any of the events seen up to the last

element in the match, and thus a match could depend on future events. For example, if

we evaluate ϕ5 over our running example S (Figure 2.1), we have that {2} ∈ ⟦ϕ5⟧(S),

however, a streaming evaluation of ϕ5 would have to wait until the event at position 6 to

output this match.

To avoid formulas with unintuitive semantics we define a natural notion of well-

formed formulas. As the previous example illustrates, this requires defining where vari-

ables are bounded by a sub-formula of the form R AS x. The set of bound variables of a

formula ϕ is denoted by bound(ϕ) and is recursively defined as follows:

● bound(R AS x) = {x}

● bound(ρ FILTER α) = bound(ρ)

● bound(ρ1 OR ρ2) = bound(ρ1) ∩ bound(ρ2)
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● bound(ρ+) = ∅

● bound(ρ1 UNLESS ρ2) = bound(ρ1)

● bound(ρ1 OP ρ2) = bound(ϕ1) ∪ bound(ϕ2)

● bound(SEL(ρ)) = bound(ρ)

where OP ∈ { ; ,AND,ALL} and SEL is any selection strategy. Note that for the OR operator

a variable must be defined in both formulas in order to be bounded. Similarly, in the case

of UNLESS the variables that count are the ones in ϕ1 since ϕ2 is just checking that some

matches do not exist. We say that CEPL formula ϕ is well-formed if for every sub-formula

of the form ρ FILTER α and every variable x ∈ var(α), there is another sub-formula ρx

such that x ∈ bound(ρx) and ρ is a sub-formula of ρx. Note that this definition allows

for including filters with variables defined in a wider scope. For example, formula ϕ4 in

Section 2 is well-formed although variable x is used in the filter y.id = x.id and defined

outside the +-operator.

As it was previously discussed, we would like to consider only CEPL formulas that

can output matches as soon as the last position of the match is seen. We formalize this

with the notion of streamable formulas. Given streams S1 and S2, we say that S1 is equal

to S2 up to position i, denoted by S1 =i S2, if S1[j] = S2[j] for each j ≤ i. Then, we say

that a formula ϕ is streamable if for every match M and stream S = t0t1 . . . it holds that

M ∈ ⟦ϕ⟧(S) if, and only if, M ∈ ⟦ϕ⟧(S′) for every stream S′ such that S =max(M) S′. In

other words, streamable formulas can (in principle) be evaluated in a streaming fashion

given that the belonging of M to ⟦ϕ⟧(S) only depends on the prefix t0t1 . . . tmax(M).

The next result shows that if we restrict to the class of well-formed formulas, we do

have the streamable property.

Theorem 5.1. Every well-formed formula is streamable.

PROOF. Let ϕ be a well-formed formula. In order to prove that ϕ is streamable we

first define the following lemmas:
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Lemma 5.1. Consider any CEPL formula ϕ, stream S, match M , valuation ν, and

i ∈ N. If M ∈ ⟦ϕ⟧(S, i, ν) , then ν(x) ∈M for every x ∈ bound(ϕ).

PROOF. We prove this by induction over the formula ϕ:

● Consider ϕ = R AS x. Then, bound(ϕ) = x and, by definition, M ∈ ⟦ϕ⟧(S, i, ν) implies

that M = {ν(x)}. Therefore, the lemma holds.

● Consider ϕ = ρ FILTER α. Then, M ∈ ⟦ϕ⟧(S, i, ν) implies that M ∈ ⟦ρ⟧(S, i, ν),

therefore by induction hypothesis ν(x) ∈ M for every x ∈ bound(ρ). Moreover

bound(ϕ) = bound(ρ), thus ν(x) ∈M for every x ∈ bound(ϕ).

● Consider ϕ = ρ1 OR ρ2. Then, M ∈ ⟦ϕ⟧(S, i, ν) implies that either M ∈ ⟦ρ1⟧(S, i, ν) or

M ∈ ⟦ρ2⟧(S, i, ν). Without loss of generality, assume that it is the first case. Then,

by induction hypothesis ν(x) ∈ M for every x ∈ bound(ρ1). Moreover, because

bound(ϕ) = bound(ρ1 ∩ ρ2), then ν(x) ∈M for every x ∈ bound(ϕ).

● Consider ϕ = ρ1 ; ρ2. Then, M ∈ ⟦ϕ⟧(S, i, ν) implies that there exist matches M1 and

M2 with M =M1 ⋅M2 such that M1 ∈ ⟦ρ1⟧(S, i, ν) and M2 ∈ ⟦ρ2⟧(S,max(M1) + 1, ν).

By induction hypothesis ν(x) ∈ Mi for every x ∈ bound(ρi). Because bound(ϕ) =
bound(ρ1) ∪ bound(ρ2) and both M1,M2 ∈ M , it holds that ν(x) ∈ M for every x ∈
bound(ϕ).

● Consider ϕ = ρ+. By definition, bound(ϕ) = ∅, therefore the lemma trivially holds.

● Consider ϕ = ρ1 AND ρ2. Then, by definition M ∈ ⟦ϕ⟧(S, i, ν) means that both M ∈
⟦ρ1⟧(S, i, ν) and M ∈ ⟦ρ2⟧(S, i, ν) hold. Therefore, by induction hypothesis ν(x) ∈M
for every x ∈ bound(ρ1) ∪ bound(ρ2) = bound(ϕ).

● Consider ϕ = ρ1 ALL ρ2. By definition, M ∈ ⟦ϕ⟧(S, i, ν) means that there exist matches

M1 and M2 such that M = M1 ∪M2 and both M ∈ ⟦ρ1⟧(S, i, ν) and M ∈ ⟦ρ2⟧(S, i, ν)
hold. Then, by induction hypothesis ν(x) ∈ Mi for every x ∈ bound(ρi). Moreover,

becauseM =M1∪M2 and bound(ϕ) = bound(ρ1)∪bound(ρ2), it holds that ν(x) ∈M
for every x ∈ bound(ϕ).
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● Consider ϕ = ρ1 UNLESS ρ2. By definition, M ∈ ⟦ϕ⟧(S, i, ν) implies M ∈ ⟦ρ1⟧(S, i, ν),

therefore by induction hypothesis ν(x) ∈ M for every x ∈ bound(ρ1). Moreover,

bound(ϕ) = bound(ρ1), therefore ν(x) ∈M for every x ∈ bound(ϕ).

Given that the lemma holds in all cases, the lemma is shown. �

For the next lemma, define the set unbound(ϕ) ⊆ X such that x ∈ unbound(ϕ) if

there exist a sub-formula of the form ϕ′ FILTER α, x ∈ var(α) and there does not exist

another sub-formula ϕx such that x ∈ bound(ϕx) and ϕ′ is a sub-formula of ϕx. In other

words, we define the set unbound(ϕ) of all variables that witness that a formula is not

well-formed.

Lemma 5.2. Consider any CEPL formula ϕ, stream S, match M , valuation ν, and

i, j ∈ N. If M ∈ ⟦ϕ⟧(S, i, ν), m ≤ j for every m ∈M and ν(x) ≤ j for all x ∈ unbound(ϕ),

then M ∈ ⟦ϕ⟧(S′, i, ν) for every stream S′ such that S =j S′.

PROOF. We prove this by induction over ϕ:

● Consider ϕ = R AS x. Then, by definition M ∈ ⟦ϕ⟧(S, i, ν) means that M = {ν(x)},

type(S[ν(x)]) = R and i ≤ ν(x). Moreover, because ν(x) ≤ j then S′[ν(x)] =
S[ν(x)], thus type(S′[ν(x)]) = R and M ∈ ⟦ϕ⟧(S′, i, ν).

● Consider ϕ = ρ FILTER α. Then, M ∈ ⟦ϕ⟧(S, i, ν) implies that M ∈ ⟦ρ⟧(S, i, ν), and

unbound(ϕ) = unbound(ρ), thus ν(x) ≤ j for all x ∈ unbound(ρ). Consider any

stream S′ such that S =j S′. Then, by induction hypothesis M ∈ ⟦ρ⟧(S′, i, ν). Because

of Lemma 5.1, for every x ∈ bound(ϕ) it holds that ν(x) ≤ j. Notice that every variable

x in α is either bounded or unbounded, therefore it holds that ν(x) ≤ j for every x in α.

Moreover, because νS ⊧ α then νS′ ⊧ α, thus M ∈ ⟦ϕ⟧(S′, i, ν).

● Consider ϕ = ρ1 OR ρ2. Then, M ∈ ⟦ϕ⟧(S, i, ν) means that either M ∈ ⟦ρ1⟧(S, i, ν) or

M ∈ ⟦ρ2⟧(S, i, ν). Without loss of generality, assume that it is the first case. Because

unbound(ρ1) ⊆ unbound(ϕ), ν(x) ≤ j for all x ∈ unbound(ρ1). Consider any stream

S′ such that S =j S′. Then, by induction hypothesis M ∈ ⟦ρ1⟧(S′, i, ν), thus M ∈
⟦ϕ⟧(S′, i, ν).
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● Consider ϕ = ρ1 ; ρ2. Then, M ∈ ⟦ϕ⟧(S, i, ν) implies that there exist matches M1 and

M2 with M = M1 ⋅M2 such that M1 ∈ ⟦ρ1⟧(S, i, ν) and M2 ∈ ⟦ρ2⟧(S,max(M1) +
1, ν). Moreover, because ν(x) ≤ j for all x ∈ unbound(ϕ) then ν(x1) ≤ j for all x1 ∈
unbound(ρ1)∖bound(ρ2). Also, if x ∈ unbound(ρ1)∩bound(ρ2), then by Lemma 5.1

it holds that x ∈M2. Moreover, m ≤ j for everym ∈M andM2 ⊆M , therefore ν(x) ≤ j
for all x ∈ unbound(ρ1), and similarly ν(x) ≤ j for all x ∈ unbound(ρ2). Consider any

stream S′ such that S =j S′. Then, by induction hypothesis M1 ∈ ⟦ρ1⟧(S′, i, ν) and

M2 ∈ ⟦ρ2⟧(S′,max(M1) + 1, ν), thus M ∈ ⟦ϕ⟧(S′, i, ν).

● Consider ϕ = ρ+. Then it holds that unbound(ρ) = unbound(ϕ), therefore ν(x) ≤ j
for all x ∈ unbound(ρ). By definition, there exists ν′ ∈ val(M) such that either M ∈
⟦ρ⟧(S, i, ν[ν′ → U]) or M ∈ ⟦ρ ; ρ+⟧(S, i, ν[ν′ → U]) where U = vdef+(ρ). Consider

any stream S′ such that S =j S′. By induction hypothesis, the first and second cases

directly imply that M ∈ ⟦ρ⟧(S′, i, ν[ν′ → U]) and M ∈ ⟦ρ ; ρ+⟧(S′, i, ν[ν′ → U])
respectively, thus M ∈ ⟦ϕ⟧(S′, i, ν).

● Consider ϕ = ρ1 AND ρ2. Then, by definition M ∈ ⟦ϕ⟧(S, i, ν) means that both M ∈
⟦ρ1⟧(S, i, ν) and M ∈ ⟦ρ2⟧(S, i, ν) hold. Similarly to the ; case, by Lemma 5.1 it holds

that ν(x) ≤ j for all x ∈ unbound(ρ1) ∪ unbound(ρ1). Consider any stream S′ such

that S =j S′. By induction hypothesis M ∈ ⟦ρ1⟧(S′, i, ν) and M ∈ ⟦ρ2⟧(S′, i, ν), thus

M ∈ ⟦ϕ⟧(S′, i, ν).

● Consider ϕ = ρ1 ALL ρ2. By definition, M ∈ ⟦ϕ⟧(S, i, ν) means that there exist matches

M1 and M2 such that M = M1 ∪M2 and both M ∈ ⟦ρ1⟧(S, i, ν) and M ∈ ⟦ρ2⟧(S, i, ν)
hold. Again, similarly to the ; case it holds by Lemma 5.1 that ν(x) ≤ j for all

x ∈ unbound(ρ1) ∪ unbound(ρ1). Consider any stream S′ such that S =j S′. There-

fore, by induction hypothesis M1 ∈ ⟦ρ1⟧(S′, i, ν) and M2 ∈ ⟦ρ2⟧(S′, i, ν), thus M ∈
⟦ϕ⟧(S′, i, ν).

● Consider ϕ = ρ1 UNLESS ρ2. By definition, M ∈ ⟦ϕ⟧(S, i, ν) implies M ∈ ⟦ρ1⟧(S, i, ν)
and for all M ′ and ν′ such that min(M) ≤ min(M ′) and max(M ′) ≤ max(M), M ′ ∉
⟦ρ2⟧(S, i, ν[ν′ → vdef+(ρ2)]). Moreover, unbound(ρ2) ⊆ unbound(ϕ) ∪ bound(ρ1)
and unbound(ρ1) ⊆ unbound(ϕ), therefore ν(x) ≤ j holds for all x ∈ unbound(ρ1) ∪
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unbound(ρ2). Consider any stream S′ such that S =j S′. Then, by induction hypoth-

esis M ∈ ⟦ρ1⟧(S′, i, ν). Moreover, if there were an M ′ and ν′ such that min(M) ≤
min(M ′), max(M ′) ≤ max(M) and M ′ ∈ ⟦ρ1⟧(S′, i, ν′) by induction hypothesis it

would mean that M ′ ∈ ⟦ρ1⟧(S, i, ν′) which is a contradiction, therefore there exist no

such M ′ and ν′. Then, it holds that M ∈ ⟦ϕ⟧(S′, i, ν).

Given that the lemma holds in all cases, the lemma is shown. �

Now, with Lemma 5.2 the proof is straightforward: because ϕ is well-formed then

unbound(ϕ) = ∅, and because of Lemma 5.2 (with i = 0 and j = max(M)), for every

match M and stream S it holds that M ∈ ⟦ϕ⟧(S) if, and only if, M ∈ ⟦ϕ⟧(S′) for every

stream S′ such that S =max(M) S′, thus ϕ is streamable. �

One can easily argue that it would be desirable for a CEP-system to restrict the users

to only write well-formed formulas. Indeed, the well-formed property can be checked ef-

ficiently by a syntactic parser and users should understand that all variables in a formula

must be correctly defined. Given that well-formed formulas are streamable and have a

well-defined variable structure, in the future we restrict our analysis to well-formed for-

mulas.

Another issue for CEPL is that the reuse of variables can easily produce unsatisfiable

formulas. For example, the formula ψ = T AS x ; T AS x is not satisfiable (i.e. ⟦ψ⟧(S) = ∅
for every S) because variable x cannot be assigned to two different positions in the stream.

This issue arises when variables are reused on conjunctive operators like sequencing ( ; )

or ALL. On the other hand, we do not want to be too conservative and disallow the reuse

of variables in the whole formula (e.g. ϕ2 in Section 2 will not be permitted). This

motivates the notion of safe CEPL formulas. We say that a CEPL formula is safe if for

every subformula of the form ϕ1 OP ϕ2 with OP ∈ { ; ,AND,ALL} it holds that vdef+(ϕ1) ∩
vdef+(ϕ2) = ∅. For example, all CEPL formulas introduced so far are safe except for ψ.

The safe notion is a mild but useful restriction to help the evaluation of CEPL and can

effectively be checked during parsing time. However, safe formulas are a subset of CEPL
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and it could be the case that this prevents users from writing certain patterns. We show

in the next result that this is never the case for the core fragment. Formally, we say that

two CEPL formulas ϕ and ψ are equivalent, denoted by ϕ ≡ ψ, if for every stream S and

match M , it is the case that M ∈ ⟦ϕ⟧(S) if, and only if, M ∈ ⟦ψ⟧(S).

Theorem 5.2. Let ϕ be a core-CEPL formula. Then, there is a safe formula ϕ′ such

that ϕ ≡ ϕ′ and ∣ϕ′∣ is at most exponential in ∣ϕ∣.

PROOF. To prove this theorem, we first show that one can push disjunction (by means

of OR) to the top-most level of every core-CEPL formula. Formally, we say that a CEPL

formula ϕ is in disjunctive-normal form if ϕ = (ϕ1 OR ⋯ OR ϕn), where for each i ∈
{1, . . . , n}, it is the case that:

● Every OR operator in ϕi occurs in the scope of a + operator.

● For every subformula of ϕi of the form (ϕ′i)+, it is the case that ϕ′i is in disjunctive

normal form.

Now we show that every formula can be translated into disjunctive normal form.

Lemma 5.3. Every formula ϕ in core-CEPL can be translated into disjunctive-normal

form in time at most exponential ∣ϕ∣.

PROOF. We proceed by induction over the structure of ϕ.

● If ϕ = R AS x, then ϕ is already free of OR.

● If ϕ = ϕ1 OR ϕ2, the result readily follows from the induction hypothesis.

● If ϕ = (ϕ′)+, by induction hypothesis ϕ can be translated into disjunctive normal form.

● If ϕ = ϕ′ FILTER α, we know by induction hypothesis that ϕ′ is equivalent to a for-

mula (ϕ1 OR ⋯ OR ϕn). Therefore, ϕ is equivalent to (ϕ1 OR ⋯ OR ϕn) FILTER α. We

show that this latter formula is equivalent to (ϕ1 FILTER α) OR ⋯ OR (ϕn FILTER α).

Let S be a stream and assume M ∈ ⟦(ϕ1 OR ⋯ OR ϕn) FILTER α⟧(S). Then, there

is a valuation ν such that M ∈ ⟦(ϕ1 OR ⋯ OR ϕn)⟧(S,0, ν) and νS ⊧ α. By defini-

tion of OR, this implies that there is an i ∈ {1, . . . , n} such that M ∈ ⟦(ϕi)⟧(S,0, ν).
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As νS ⊧ α, we have M ∈ ⟦(ϕi) FILTER α⟧(S,0, ν). We can then immediately con-

clude that M ∈ ⟦(ϕ1 FILTER α) OR ⋯ OR (ϕn FILTER α)⟧(S,0, ν), and therefore M ∈
⟦(ϕ1 FILTER α) OR ⋯ OR (ϕn FILTER α)⟧(S). The converse follows from an analo-

gous argument.

● If ϕ = (ϕ1;ϕ2), by induction hypothesis we know that ϕ1 is equivalent to a formula

(ϕ1
1 OR ⋯ OR ϕ1

n) and ϕ2 is equivalent to a formula (ϕ2
1 OR ⋯ OR ϕ2

m). Let ϕ′ be

ϕ′ = (ϕ1
1;ϕ

2
1) OR (ϕ1

1;ϕ
2
2) OR ⋯ OR (ϕ1

1;ϕ
2
m) OR (ϕ1

2;ϕ
2
1) OR ⋯ OR (ϕ1

2;ϕ
2
m) OR

⋯ OR (ϕ1
n;ϕ2

1) OR ⋯ OR (ϕ1
n;ϕ2

m).

We show that ϕ ≡ ϕ′. Let S be a stream and let M be a match. If M ∈ ⟦ϕ⟧(S),

then there is a valuation ν and two matches M1 and M2 such that M = M1 ⋅M2, M1 ∈
⟦ϕ1⟧(S,0, ν) and M2 ∈ ⟦ϕ2⟧(S,0, ν). Then, there are two numbers i and j such that

M1 ∈ ⟦ϕ1
i ⟧(S,0, ν) and M2 ∈ ⟦ϕ2

j⟧(S,0, ν). As M = M1 ⋅M2, it immediately follows

that M ∈ ⟦ϕ1
i ;ϕ

2
j⟧(S), and thus M ∈ ⟦ϕ′⟧(S).

For the converse assume M ∈ ⟦ϕ′⟧(S). Then, there is a valuation ν, a match M and

two numbers i and j such that M ∈ ⟦ϕ1
i ;ϕ

2
j⟧(S,0, ν). Therefore there are two matches

M1 and M2 such that M = M1 ⋅M2, M1 ∈ ⟦ϕ1
i ⟧(S,0, ν) and M2 ∈ ⟦ϕ2

j⟧(S,0, ν). By

semantics of OR, we have M1 ∈ ⟦ϕ1⟧(S,0, ν) and M2 ∈ ⟦ϕ2⟧(S,0, ν). As M =M1 ⋅M2,

it readily follows that M ∈ ⟦ϕ1;ϕ2⟧(S) = ⟦ϕ⟧(S).

�

Having this result, we proceed to show that a core-CEPL formula in disjunctive nor-

mal form can be translated into a safe formula. To this end, we need to show the following

two lemmas.

Lemma 5.4. Let ϕ be a core-CEPL formula in which every OR occurs inside the scope

of a + operator, and let x ∈ vdef+(ϕ). Then, for every match M , valuation ν, stream S

and i ∈ N such that M ∈ ⟦ϕ⟧(S, i, ν), it is the case that x ∈ dom(ν) and ν(x) ∈M .
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PROOF. We proceed by induction on the structure of ϕ. Let ν be a valuation, S a

stream, i ∈ N and M a match.

● Assume ϕ = R AS x and that M ∈ ⟦ϕ⟧(S, i, ν). By definition, we have M = {ν(x)}.

● Assume ϕ = ϕ′ FILTER α and that M ∈ ⟦ϕ⟧(S, i, ν). Let x ∈ vdef+(ϕ). By definition,

we have that M ∈ ⟦ϕ′⟧(S, i, ν). Since x ∈ vdef+(ϕ′), by induction hypothesis we have

x ∈ dom(µ) and ν(x) ∈M .

● If ϕ = (ϕ′)+ the condition trivially holds as vdef+(ϕ′) = ∅.

● If ϕ = ϕ1;ϕ2, then x ∈ vdef+(ϕ1) or x ∈ vdef+(ϕ2). Assume w.l.o.g. that x ∈
vdef+(ϕ1). If M ∈ ⟦ϕ⟧(S, i, ν), then M = M1 ⋅M2, where M1 ∈ ⟦ϕ1⟧(S, i, ν). As

x ∈ vdef+(ϕ1), by induction hypothesis we have that x ∈ dom(ν) and ν(x) ∈M1 ⊆M ,

concluding the proof.
�

Lemma 5.5. Let ϕ be a core-CEPL formula in which every OR occurs inside the scope

of a + operator, and let S be a stream. If ϕ has a subformula ϕ′ that is not under the scope

of a + operator such that ⟦ϕ′⟧(S) = ∅, then ⟦ϕ⟧(S) = ∅.

PROOF. We proceed by induction on the structure of ϕ. Let S a stream and assume

ϕ′ is a subformula of ϕ such that ⟦ϕ′⟧(S) = ∅. We assume that ϕ′ is a proper subformula,

as otherwise the result immediately follows. For this reason, we can trivially skip the case

when ϕ = R AS x or ϕ = (ϕ1)+.

● If ϕ = ϕ1;ϕ2, then ϕ′ is a subformula of ϕ1 or of ϕ2. Assume w.l.o.g. that ϕ′ is a

subformula of ϕ1. By induction hypothesis, as ⟦ϕ′⟧(S) = ∅ we have that ⟦ϕ1⟧(S) = ∅,

which immediately implies that ⟦ϕ⟧(S) = ∅.

● If ϕ = ϕ1 FILTER α, we know that ϕ′ is a subformula of ϕ1. By induction hypothesis

we have ⟦ϕ′⟧(S) = ∅ and by definition of FILTER we obtain ⟦ϕ⟧(S) = ∅.

�
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Now we are ready to show that any core-CEPL formula in disjunctive-normal form

can be translated into a safe formula, and moreover, this can be done in linear time.

Lemma 5.6. Let ϕ be a core-CEPL formula in disjunctive-normal form. Then ϕ can

be translated in linear time into a safe core-CEPL formula ϕ′.

PROOF. Assume that ϕ = ϕ1 OR ⋯ OR ϕn is a core-CEPL formula in disjunctive-

normal form. By induction, we assume that every sub-formula of the form (ϕ′)+ is already

safe. Now we show that every unsafe ϕi is unsatisfiable, and therefore it can be safely

removed from the disjunction. Proceed by contradiction and assume ϕi is unsafe and

satisfiable. Then, it must contain a subformula of the form ψ1;ψ2 occurring outside the

scope of all + operators, and such that vdef+(ψ1) ∩ vdef+(ψ2) ≠ ∅. Let x ∈ vdef+(ψ1) ∩
vdef+(ψ2). By Lemma 5.5, we know that ψ1;ψ2 must be satisfiable. Therefore, there is a

stream S, a valuation ν and a mappingM such thatM ∈ ⟦ψ1;ψ2⟧(S,0, ν). This implies the

existence of two matchesM1 andM2 such thatM1 ∈ ⟦ψ1⟧(S,0, ν) andM2 ∈ ⟦ψ2⟧(S,0, ν).

Since x ∈ vdef+(ψ1) and ψ1 can only mention OR inside a + operator, by Lemma 5.4

we obtain that ν(x) ∈ M1. Similarly, as x ∈ vdef+(ψ2), we have ν(x) ∈ M2. But as

M = M1 ⋅M2, we have that M1 ∩M2 = ∅, contradicting the facts that ν(x) ∈ M1 and

ν(x) ∈M2.

We have obtained that if any disjunct is unsafe, it cannot produce any results. There-

fore, as safeness is easily verifiable, the result readily follows by removing the unsafe

disjuncts of ϕ. Notice that this need to be done in a bottom-up fashion, starting from the

subformulas of the form (ϕ′)+. �

Theorem 5.2 occurs as a corollary of Lemmas 5.3 and 5.6. Indeed, given a core-CEPL

formula ϕ, one can construct in exponential time an equivalent core-CEPL formula ϕ′ in

disjunctive normal form. Then, from ϕ′ one can construct in linear time a safe formula in

core-CEPL ψ that is equivalent to ϕ, which is exactly what we wanted to show. �

By this result, for core-CEPL we can restrict our analysis to safe formulas without

losing expressiveness of the language. Instead, if we do not impose the safe restriction,
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we will have to assume an exponential blow-up in the rewriting of formulas (see Section 8

for further discussion).

5.2. LP-normal form

In this subsection we study how to rewrite CEPL formulas in order to simplify the

evaluation of unary filters. Intuitively, filter operators in a CEPL formula can become

difficult to handle for a CEP query engine. As it was previously motivated by formula

ϕ1 and ϕ′1 in Section 2, it is easier for a query optimizer to evaluate formulas where

unary predicates are applied directly over their variables (e.g. ϕ′1) and not anywhere in

the formula (e.g. ϕ1). This motivates the definition of formulas in locally parametrized

normal form (LP-normal form). Let Pu(R) be the set of all predicates P ∈ P(R) such

that arity(P ) = 1. Furthermore, define Fu(R) ⊆ F(R) to be the set of all selection

formulas constructed from atomic predicates in Pu(R). Then we say that a formula ϕ is

in LP-normal form if the following condition holds: for every sub-formula ϕ′ FILTER α

of ϕ, if α contains at least one predicate in Pu(R), then ϕ′ = R AS x for some R and x,

and α ∈ Fu(R) with var(α) = {x}. In other words, all filters containing unary predicates

are applied directly to the definitions of their variables. For instance, formula ϕ′1 is in

LP-normal form while formulas ϕ1 and ϕ2 are not. Note that non-unary predicates are not

restricted, and they can be used anywhere in the formula.

One can easily see the advantage for the query engine of using only formulas in LP-

normal form (see Section 7 for further discussion). However, formulas that are not in

LP-normal form can still be very useful for declaring patterns. To illustrate this, consider

the formula:

ϕ6 = (T AS x); ((T AS y FILTER x.temp ≥ 40) OR (H AS y FILTER x.temp < 40))

Here, the FILTER operator works like a conditional statement: if the x-temperature is

greater than 40, then the following event should be a temperature, and a humidity event

otherwise. This kind of conditional statements can be very useful for users and a serious

problem for query engines. Fortunately, the next result shows that one can always rewrite
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a formula to an equivalent LP-normal form formula with an exponential blow-up in the

size of the formula.

Theorem 5.3. Let ϕ be a CEPL formula. Then, there is a CEPL formula ψ in LP-

normal form such that ϕ ≡ ψ, and ∣ψ∣ is at most exponential in ∣ϕ∣.

PROOF. First we give some definitions to simplify notation. Consider a formula α

that has only unary predicates and such that negations are only used over predicates. From

now on we consider all formulas to be in this form, since every formula can be written

this way by pushing negations inside of the formula and changing ∨’s with ∧’s and vice

versa. We will also refer to α as the set literals that appear in α, namely, the set of atomic

formula or its negation (for consistency, if p(x) appears in α only as ¬p(x), we do not

consider p(x)). Also, we consider only unary predicates, since these are the ones that we

need to modify in order for the formula to be in LP-normal form. We use the notation of

α as formula and set indistinctly whenever its meaning is clear from the context. Given a

CEPL formula of the form ϕ = ϕ′ FILTER α, we define the set of unbounded predicates

of ϕ , written as unboundp(ϕ), as all the predicates (and negations) of the filters that

are not instantiated, i.e., p(x) ∈ unboundp(ϕ) if p(x) ∈ α and x ∉ bound(ϕ′). Notice

that, as expected, if ϕ is well-formed then unboundp(ϕ) = ∅, but this does not apply to

subformulas, i.e., there could be a subformula ϕ′ of ϕ such that unboundp(ϕ′) ≠ ∅.

Consider a well-formed CEPL formula ϕ with unary predicates. We first provide a

construction for a CEPL formula in LP normal form and then prove that it is equivalent

to ϕ. The first step of the construction is focused on rewriting the formula in a way that

for every subformula ϕ′ it holds that unboundp(ϕ′) = ∅. The construction we provide

to achieve this is the following. For every subformula of the form ϕ′ FILTER α and ev-

ery predicate p(x) ∈ unboundp(ϕ′), let ϕx be the lowest subformula of ϕ where x is

defined and that has ϕ′ as a subformula. Here we use the fact that ϕ is well-formed,

which means that such ϕx must exist. Then, we rewrite the subformula ϕx inside ϕ as

ϕtx FILTER p(x) OR ϕfx FILTER ¬p(x), where ϕtx and ϕfx are the same as ϕx but replacing

p(x) with TRUE and FALSE, respectively.
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Now that we moved each predicate up to a level where all its variables are defined,

the next step is to move each one down to its variable’s definition. A first approach is

to take every predicate p(x) that appears and move it down to every place where it was

defined, i.e., to every subformula of the form R AS x. The problem with this is that it

would be forcing p(x) to be true, even though this might not be necessary, for example

if p(x) appears in one side of a propositional disjunction. To solve, this we first need to

”unfold” the filters of the formula, which is done by rewriting each subformula recursively

in the following way:

● ϕ′ FILTER α1 ∧ α2 is replaced by (ϕ′ FILTER α1) FILTER α2.

● ϕ′ FILTER α1 ∨ α2 is replaced by ϕ′ FILTER α1 OR ϕ′ FILTER α2.

Notice that, after doing this, all filters have only one predicate, so p(x) can no longer ap-

pear inside a propositional disjunction. Now moving down each predicate is done straight-

forward. For every subformula of the form ϕ′ FILTER p(x), the p(x) filter is removed

from ϕ′ and instead applied over every subformula of ϕ′ with the form R AS x, rewriting

it as R AS x FILTER p(x). Because this step moved every predicate to its definition, the

resulting formula is clearly in LP normal form, completing the construction.

Now we prove that the construction above satisfies the lemma, i.e., ⟦ϕlp⟧(S) = ⟦ϕ⟧(S)
for every stream S, where ϕlp is the resulting formula after doing the construction. To

prove that the first part does not change the semantics, we show that it stays the same after

each iteration. Consider a subformula ϕ′ FILTER α and a predicate p(x) ∈ unboundp(ϕ′).

In particular, the only part modified is ϕx, so it suffices to prove that M ∈ ⟦ϕx⟧(S, i, ν)
holds iff M ∈ ⟦ϕtx FILTER p(x) OR ϕfx FILTER ¬p(x)⟧(S, i, ν). Let S, i, M , ν be any

stream, position, match and valuation, respectively, such that M ∈ ⟦ϕx⟧(S, i, ν). If νS ⊧
p(x), then it is enough to prove that M ∈ ⟦ϕtx⟧(S, i, ν). In a similar way, the only part

in which ϕtx differs with ϕx is that p(x) was set true in α (let αt be the result of do-

ing this). Therefore, it is enough to prove that, for any j, M ′ and ϕ′, if ν′S ⊧ p(x)
holds, then M ′ ∈ ⟦ϕ′ FILTER α⟧(S, j, ν′) iff M ′ ∈ ⟦ϕ′ FILTER αt⟧(S, j, ν′). This is

clearly true since p(x) ⇒ (α ⇔ αt) is a tautology. Notice that we can assure ν′S ⊧
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p(x) holds because νS ⊧ p(x) holds and, when evaluating this part of the formula, the

mapping for x must stay the same, otherwise x must have been inside a +-operator,

which cannot be the case because x ∈ bound(ϕx). Moreover, ν′ has to be equal to

ν. The proof for the case νS ⊧ ¬p(x) is similar considering ϕfx instead of ϕtx, thus

M ∈ ⟦ϕtx FILTER p(x) OR ϕfx FILTER ¬p(x)⟧(S, i, ν). For the opposite direction, let S,

i, M , ν be any stream, position, match and valuation, respectively, such that M be-

longs to ⟦ϕtx FILTER p(x) OR ϕfx FILTER ¬p(x)⟧(S, i, ν). Then, by definition either M ∈
⟦ϕtx FILTER p(x)⟧(S, i, ν) or M ∈ ⟦ϕfx FILTER ¬p(x)⟧(S, i, ν) hold. Without loss of gen-

erality, consider the former case, which implies that νS ⊧ p(x). By the same reason-

ing above M ′ ∈ ⟦ϕ′ FILTER α⟧(S, j, ν′) iff M ′ ∈ ⟦ϕ′ FILTER αt⟧(S, j, ν′), hence M ∈
⟦ϕx⟧(S, i, ν). It is the same for νS ⊧ ¬p(x), thus M ∈ ⟦ϕx⟧(S, i, ν) iff M belongs to

⟦ϕtx FILTER p(x) OR ϕfx FILTER ¬p(x)⟧(S, i, ν). Therefore, if we name ϕ1 as the result

of applying the first part, then ⟦ϕ1⟧(S) = ⟦ϕ⟧(S) for every S.

Now, for the second part we first prove that the “unfolding” does not change seman-

tics, which we do by proving it for each iteration. Consider a stream S, a match M , an

i ∈ N, a CEPL formula ρ, two formulas α1, α2 and a valuation ν. We prove that M ∈
⟦ρ FILTER α1 ∧ α2⟧(S, i, ν) if, and only if, M ∈ ⟦(ρ FILTER α1) FILTER α2⟧(S, i, ν).

This is straightforward: M ∈ ⟦(ρ FILTER α1) FILTER α2⟧(S, i, ν) holds if νS ⊧ α1, νS ⊧
α2 and M ∈ ⟦ρ⟧(S, i, ν), which means the same as M ∈ ⟦ρ⟧(S, i, ν) and νS ⊧ (α1 ∧ α2),

which is the condition for M ∈ ⟦ρ FILTER α1 ∧ α2⟧(S, i, ν) to hold. Similarly, we prove

that M ∈ ⟦ρ FILTER α1 ∨ α2⟧(S, i, ν) iff M ∈ ⟦ρ FILTER α1 OR ρ FILTER α2⟧(S, i, ν) by

definition. M ∈ ⟦ρ FILTER α1 OR ρ FILTER α2⟧(S, i, ν) holds if either M ∈ ⟦ρ⟧(S, i, ν)
and νS ⊧ α1 or M ∈ ⟦ρ⟧(S, i, ν) and νS ⊧ α2. This is the same as M ∈ ⟦ρ⟧(S, i, ν) and

either νS ⊧ α1 or νS ⊧ α2, which is also the same as M ∈ ⟦ρ⟧(S, i, ν) and νS ⊧ (α1 ∨ α2).

Because this is the condition for M ∈ ⟦ρ FILTER α1 ∨ α2⟧(S, i, ν) to hold, then they are

equivalent. If we name ϕ2 as the result of applying the unfolding, then it follows that

⟦ϕ2⟧(S) = ⟦ϕ1⟧(S) for every S.
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Finally, we prove that moving the predicates to their definitions does not affect the

semantics either, for which we show that it stays the same after each iteration. Con-

sider a subformula of the form ϕ′ FILTER p(x). The same way as before, we focus on

the modified part, i.e., we need to prove that M ∈ ⟦ϕ′ FILTER p(x)⟧(S, i, ν) iff M ∈
⟦ϕ′p⟧(S, i, ν), where ϕ′p is the result of adding the filter p(x) for each definition of x in-

side ϕ′, i.e., replace R AS x with R AS x FILTER p(x) where R is any relation. First, let

S, i, M , ν be any stream, position, match and valuation, respectively, such that M ∈
⟦ϕ′ FILTER p(x)⟧(S, i, ν), which means that νS ⊧ p(x). We know that, when eval-

uating every subformula R AS x of ϕ′, the valuation ν must stay the same, because

x ∈ bound(ϕ′), and thus its definition cannot be inside a +-operator (notice that if it ap-

pears inside a +, it represents a value different to x, thus the + subformula can be rewritten

using a new variable x′). Similarly to the reasoning above, it holds that for any j, M ′ and

ϕ′, if ν′S ⊧ p(x), then M ′ ∈ ⟦R AS x FILTER p(x)⟧(S, j, ν′) iff M ′ ∈ ⟦R AS x⟧(S, j, ν′).

Then, because every subformula R AS x behaves the same, M ∈ ⟦ϕ′p⟧(S, i, ν) holds.

For the opposite direction, let S, i, M , ν be any stream, position, match and valuation,

respectively, such that M ∈ ⟦ϕ′p⟧(S, i, ν). We prove that νS ⊧ p(x) must hold, thus

proving that M ∈ ⟦ϕ′ FILTER p(x)⟧(S, i, ν) holds by the same argument as above. By

contradiction, assume that νS ⊧ ¬p(x). Because we showed that when evaluating every

R AS x FILTER p(x) in ϕ′p, the valuation ν must be the same, the only possible way for

M ∈ ⟦ϕ′p⟧(S, i, ν) to hold is if all R AS x appear at one side of an OR -operator. However,

this would contradict the fact that x ∈ bound(ϕ′), thus νS ⊧ p(x) must hold, and so must

M ∈ ⟦ϕ′ FILTER p(x)⟧(S, i, ν). Then, ϕ′ FILTER p(x) and ϕ′p are equivalent, therefore,

if we name ϕlp the result of moving all predicates to their definitions, ⟦ϕlp⟧(S) = ⟦ϕ2⟧(S)
for every S.

Finally, it is easy to check that the size of ϕlp will be at most exponential in the size of

ϕ. Indeed, in each rewriting step (i.e. from ϕ to ϕ1 and from ϕ1 to ϕ2) we can duplicate the

size ϕ in the worst case. Since the number of rewriting steps are at most linear in the size of

ϕ (if we do the rewriting steps bottom up in the parse tree), we have that ∣ϕlp∣ ∈ O(2∣ϕ∣ ⋅ ∣ϕ∣).

�
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The importance of this result and Theorem 5.2 will become clear in the next sections,

where we show that safe formulas in LP-normal form induce efficient evaluation strate-

gies.
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6. COMPUTATIONAL MODEL FOR CEP

In this section, we introduce a formal computational model for evaluating CEPL for-

mulas called match automata. Similar to classical database management systems (DBMS),

it is useful to have a formal model that stands between the query language and the evalua-

tion algorithms, in order to simplify the analysis and optimization of the whole evaluation

process. There are several examples of DBMS that are based on this approach like regular

expressions and finite state automata (Hopcroft & Ullman, 1979; Aho, 1990), and rela-

tional algebra and SQL (Abiteboul et al., 1995; Ramakrishnan & Gehrke, 2003). Here, we

propose match automata as the intermediate evaluation model for CEPL and show later

how to compile any (unary) CEPL formula into a match automaton.

As its name suggests, match automata (MA) are an extension of Finite State Automata

(FSA). The first difference from FSA comes from handling streams instead of words. A

match automaton is said to run over a stream of tuples, unlike FSA which run over words

of a certain alphabet. The second difference arises directly from the first one by the need

of processing tuples, which are infinitely many in contrast to the finite input alphabet of

FSA. To handle this, our model is extended the same way as a Symbolic Finite Automata

(SFA) (Veanes, 2013). SFAs are finite state automata in which the alphabet is described

implicitly by a boolean algebra over the symbols. This allows automata to work with a

possibly infinite alphabet and, at the same time, use finite state memory for processing the

input. Match automata are extended analogously, which is reflected in transitions labeled

by (unary) formulas over tuples.

The last difference addresses the need to output matches instead of a boolean answer.

A well known extension for FSA are Finite State Transducers (Berstel, 2013) which are

automata capable of producing an output whenever an input element is read. We follow

this idea: MA are allowed to generate and output matches when reading a stream, similar

to the class of synchronized transducers (Frougny & Sakarovitch, 1993) (i.e. transducers

whose input and output have the same length). Note that, although general transducers

have bad decidability properties (Berstel, 2013), the class of synchronized transducers is
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closed under union, intersection, and complement, and most of their associated problems

are decidable (Frougny & Sakarovitch, 1993). In particular, our model inherit the good

properties of synchronized transducers which are exploited in Section 7 for building MA

from CEPL formulas.

Before defining the MA model we need some basic definitions. Fix a schema R
and let Fu(R) be the set of all selection formulas with unary predicates (as defined in

Section 5). Given t ∈ tuples(R) and α ∈ Fu(R), we say that t satisfies α, denoted by

t ⊧ α, if σt ⊧ α where σt is the function that assigns t to every variable in α (i.e. σt(x) = t
for every x ∈ var(α)). Finally, without loss of generality we suppose that Fu(R) contains

predicates of the form “type(x) = R” for every R ∈ R. This will help the automata model

to check whether a tuple is of type R or not.

Let R be a schema and ●, ○ be two symbols. A match automaton (MA) over R is a

tuple A = (Q,∆, I, F ) where Q is a finite set of states, ∆ ⊆ Q × (Fu(R) × {●, ○}) × Q
is the transition relation, and I,F ⊆ Q are the set of initial and final states, respectively.

Given an R-stream S = t0t1 . . ., a run ρ of A over S is a sequence of transitions: ρ ∶
q0

α0/m0ÐÐ→ q1
α1/m1ÐÐ→ ⋯ αn/mnÐÐ→ qn+1 such that q0 ∈ I , ti ⊧ αi and (qi, αi,mi, qi+1) ∈ ∆ for every

i ≤ n. We say that ρ is accepting if qn+1 ∈ F and mn = ●. Intuitively, the set of values

i such that mi = ● in a run represent the match generated by that run. It is then natural

to ask for the last position to be in the match, as otherwise a match could depend on

future events. We denote by Runn(A, S) the set of accepting runs of A over S of length

n. Further, we denote by match(ρ) the set of positions where the run marks the stream,

namely match(ρ) = {i ∈ [0, n] ∣ mi = ●}. Given a stream S and n ∈ N, we define the set

of matches of A over S at position n as: ⟦A⟧n(S) = {match(ρ) ∣ ρ ∈ Runn(A, S)} and

the set of all matches as ⟦A⟧(S) = ⋃n ⟦A⟧n(S). Although ⟦A⟧(S) can be an infinite set

of matches, ⟦A⟧n(S) is always finite.

As an example, consider the match automaton A depicted in Figure 6.1. In this MA,

α(x) ∶= type(x) = H and β(x) ∶= type(x) = T ∧ x.temp > 40. Each transition α(x) ∣
● marks one H-tuple and each transition β(x) ∣ ● marks a sequence of T -tuples with
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q1 q2 q3
α(x) ∣ ●

TRUE ∣ ○

β(x) ∣ ●

TRUE ∣ ○

α(x) ∣ ●

FIGURE 6.1. A match automaton that can generate an unbounded amount of
matches over a stream.

temperature bigger than 40. Note also that the transitions labeled by TRUE ∣ ○ allows A to

arbitrarily skip any of the input tuples in the stream. Then, for every stream S, ⟦A⟧(S)
represents the set of all matches that begin and end with an H-tuple and also contain some

of the T -tuples with temperature higher than 40.

It is important to stress that match automata are designed to be an evaluation model

for an expressive sub-fragment of CEPL, called unary CEPL (see Section 7 for the formal

definition). Several computational models have been proposed for complex event process-

ing (Demers et al., 2006; Pietzuch et al., 2003; Wu et al., 2006; Schultz-Møller et al.,

2009); most of them are informal and complex extensions of finite state automata. In our

framework, we want to give a step back compared to previous proposals and define a sim-

ple but powerful model that captures the regular core of CEPL. With “regular” we mean

all CEPL formulas that can be checked with finite state memory. Intuitively, formulas like

ϕ1, ϕ2 and ϕ3 presented in Section 2 can be evaluated using a bounded amount of mem-

ory. In contrast, formula ϕ4 needs unbounded memory to store candidate events seen in

the past, and thus, it calls for a more sophisticated model (e.g. data automata (Segoufin,

2006)). Of course, one would like to have a full-fledged model for CEPL, but this is not

possible if we do not understand first its regular core. For these reasons, a computational

model for the whole CEP logic is left for future work (see Section 9 for more discussion).

The MA model has good closure properties, for example, under union, intersection,

complement and determinization. Formally, we say that a match automaton A is deter-

ministic if ∣I ∣ = 1 and for any two transitions (p,α1,m1, q1) and (p,α2,m2, q2), either α1
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and α2 are mutually exclusive (for every t it is not true that t ⊧ α1 and t ⊧ α2), or m1 ≠m2

(see (Sakarovitch, 2009) for a similar definition of deterministic letter-to-letter transduc-

ers). Then we say that MA are closed under determinization (complement) if for every

MA A, there is a deterministic MA Adet (a MA Ac resp.) such that for every stream S

we have ⟦Adet⟧(S) = ⟦A⟧(S) (⟦Ac⟧(S) = {M ∈ 2N ∣ M is finite} ∖ ⟦A⟧(S) resp.). Fur-

thermore, we say that A is closed under union (intersection) if for every MA A1 and A2,

there exists a MA A such that for every stream S we have ⟦A⟧(S) = ⟦A1⟧(S) ∪ ⟦A2⟧(S)
(⟦A⟧(S) = ⟦A1⟧(S) ∩ ⟦A2⟧(S) resp.).

PROPOSITION 6.1. Match Automata are closed under union, intersection, comple-

ment, and determinization.

PROOF. For the following proof consider any two MA A1 = (Q1,∆1, I1, F1), A2 =
(Q2,∆2, I2, F2) and assume, without loss of generality, that they have disjoint sets of

states, i.e.,Q1∩Q2 = ∅. We first begin by proving closure under union, which is exactly the

same as the proof for FSA closure under union. We define the MA A1∪A2 = (Q,∆, I, F )
as follows. The set of states is Q = Q1 ∪Q2, the transition relation is ∆ = ∆1 ∪∆2; the set

of initial states is I = I1 ∪ I2 and the set of final states is F = F1 ∪ F2.

Next we prove closure under intersection. We define the MA A1 ∩A2 = (Q,∆, I, F )
as follows. The set of states is the Cartesian product Q = Q1 × Q2; the transition rela-

tion is ∆ = {((p1, p2), (α1 ∧α2,m), (q1, q2)) ∣ (pi, (αi,m), qi) ∈ ∆i for i ∈ {1,2}}, that is,

both conditions α1 and α2 must me satisfied by the incoming tuple in order to simulate

both transitions with the same mark m from p1 to q1 and from p2 to q2 of A1 and A2,

respectively; the set of initial states is I = I1 × I2 and the set of final states is F = F1 × F2.

Now we prove closure under determinization. Define the MA Ad = (Qd,∆d, Id, Fd)
component by component. First, the set of states is Qd = 2Q, that is, each state in Qd
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represents a different subset of Q. Second, the transition relation is:

∆d = {(T, (α,m), U) ∣ α ∈ F -types, and q ∈ U iff there is a p ∈ T

and α′ ∈ Fu(R) such that (p, (α′,m), q) ∈ ∆ and α ⊧ α′}.

Here, F is the set of all formulas in the transitions of ∆ and we use the notion of F -types

defined in the proof of Theorem 7.3. Finally, the sets of initial and final states are Id = {I}
and Fd = {T ∣ T ∈ Qd ∧ T ∩ F ≠ ∅}. The key notion here is the one of F -types, which

partitions the set of all tuples in a way that if a tuple t satisfies a formula αt ∈ F -types,

then αt implies the conditions of all transition that a run of A could take when reading

t. This allows us to then apply a determinization algorithm similar to the one for FSA.

Notice that α1 ⊧ ¬α2 for every two different formulas α1, α2 ∈ F -types, so the resulting

MA Ad is deterministic.

Finally, we prove closure under complementation. Basically, the complementation of

a MA is no more than determinizing it and complementing the set of final states. Formally,

we define the MAAc1 = (Q,∆, I, F ) as follows. Consider the deterministic MA det(A1) =
(Qd,∆d, Id, Fd). Then, the set of states, the transition relation and the set of initial states

are the same as of det(A1), i.e., Q = Qd, ∆ = ∆d and I = Id, and the set of final states is

F = Q ∖ Fd. �

A reasonable question to ask at this point is whether one can efficiently evaluate a

MA over a stream. The notion of efficiency here is challenging since we would like

to compute matches in one pass and using a restricted amount of resources. Streaming

algorithms (Ikonomovska & Zelke, 2013; Golab & Özsu, 2003) are a natural example

of efficiency, as they usually restrict the time allowed to process each tuple (e.g., linear

in the size of the tuple) and the space needed to process the first n items of a stream

(e.g., sublinear in n). Since we want to output matches, we cannot expect to use less

than linear space in the processed data (a match could be as long as the stream itself).

Another problem for defining the concept of efficiency is that the input object (a stream)

is infinite. For this reason, we associate to a stream S a special instruction yieldS that
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returns the next element of the stream S. Then, we say that an efficient evaluation strategy

for a match automaton A is an algorithm such that for every stream S (1) the update time

between two calls to yieldS is bounded by O(∣t∣), where t is the tuple returned by the

first of such calls, and (2) it maintains a data structure D such that, after calling yieldS

n times, the set of matches ⟦A⟧n(S) can be enumerated from D with constant delay. The

latter condition basically imposes that no processing is done during output generation.

Formally, it requires the existence of a routine enumerate that receives D as input and

outputs all matches in ⟦A⟧n(S) without repetitions, while spending a constant amount of

time before and after each output. The requirement (1) is a natural restriction imposed

in the streaming literature (Ikonomovska & Zelke, 2013), while (2) is the minimum that

we can ask if an arbitrarily large set of outputs must be produced (Bagan, Durand, &

Grandjean, 2007). We stress that the notion of efficiency introduced here considers the

data complexity of the problem, namely, the number of states and transitions of A are

considered constant in the asymptotic analysis. Notice also that if the schema is fixed

and the values use a fixed amount of memory, we can process each tuple in constant time

(again, in data complexity).

The tools for efficiently evaluating every match automaton have not been developed

yet: this is an interesting research direction to pursue for CEPL query evaluation. Instead,

we focus on the evaluation of a subclass of MA, called finitely ambiguous MA. Formally,

for K ∈ N we say that a MA A is K-ambiguous if for every stream S and for every n ≥ 0

it holds that ∣Runn(A, S)∣ ≤ K. Further, we say that A is finitely ambiguous if A is K-

ambiguous for some K ∈ N. Finitely ambiguous automata have been extensively studied

in the past (Sakarovitch, 2009; Seidl, 1990) with very interesting applications (Mohri,

1997).

Theorem 6.1. Every finitely ambiguous MA A has an efficient evaluation strategy.

PROOF. Consider a K-ambiguous MA A = (Q,∆, I, F ) and the procedure EVAL[A]
in Algorithm 1 as an efficient evaluation strategy of A over any stream S = t0t1⋯ . The
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procedure basically iterates over all tuples of S in the while clause (line 3), assigning at

each iteration the corresponding tuple to the variable t with the instruction yieldS .

Algorithm 1 Evaluate A = (Q,∆, I, F ) over a stream S

1: procedure EVAL[A](S)
2: E ← {(q,∅) ∣ q ∈ I}
3: while t← yieldS do
4: E′ ← ∅
5: for all (q,M) ∈ E do
6: for all (q,α,m, q′) ∈ ∆ do
7: if t ⊧ α ∧ m = ● then
8: E′ ← E′ ∪ {(q′,M ∪ {i}) }
9: else if t ⊧ α ∧ m = ○ then

10: E′ ← E′ ∪ {(q′,M) }
11: end if
12: end for
13: end for
14: E ← E′

15: enumerate({M ∣ ∃q ∈ F. (q,M) ∈ E})
16: end while
17: end procedure

Now we analyze the efficiency of the algorithm regarding the restrictions imposed in

Section 6. At every iteration i (for every i ≥ 0) the set E keeps track of all runs of A over

the prefix t0 . . . ti of S, where each run ρ is represented by a pair (q,M) such that q is the

last state of ρ and M = match(ρ). Then in line 15 it calls the subprocedure enumerate

for returning all matches from runs that ends in a final state. As stated in Section 6, this is

done by a different process, and does not interfere with the asymptotic analysis.

We suppose that M is modeled as a linked list, therefore adding a new position M ∪
{i} takes constant time (line 8). Moreover, duplicating M (e.g. when we have a non-

deterministic branch in A) would also take constant time if we consider that the data

(positions) of all the matches is stored together in a tree-like structure which would allow

runs to share duplicated sections between them. Then, the pair (q,M) could be stored as

a pair (q, n) where n is a node, and M is determined by the positions from n to the root.

The verification of the if conditions (line 7 and 9) requires reading t and verifying whether

t ⊧ α which can be done in constant time (see this assumption in Section 3.1), thus it
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takes O(∣t∣) in total. Then, because the for all clauses (line 6) iterates over all transitions,

it clearly takes time O(∣A∣ ⋅ ∣t∣). Now, it is straightforward to check that K-ambiguity

implies that, for every prefix t0 . . . ti of S, the number of runs of A over S that end at the

same state cannot be more than K, i.e., ∣{(q,M) ∈ E}∣ ≤K for every q ∈ Q. Indeed, if this

does not happen, one could extend all runs ending in this state to have strictly more than

K accepting runs, contradicting the fact that A is K-ambiguous. Therefore, we conclude

that the size of E is always bounded by K ⋅ ∣A∣ and the for all clause in line 5 iterates

over at most K ⋅ ∣A∣ pairs taking time at most O(K ⋅ ∣A∣2 ⋅ ∣t∣) in total. Recall that we are

considering the data complexity of the problem which means that K ⋅ ∣A∣2 is a constant

factor and, thus, the procedure EVAL[A] takes time O(∣t∣) between each call to yieldS .

In other words, EVAL[A] satisfies the first condition of an efficient evaluation strategy.

Finally, one can easily see that EVAL[A] also satisfies the second condition of an

efficient evaluation strategy. Indeed, the matches M are linked lists of pointers and, there-

fore, each time that enumerate has to output the set of matches, it only needs to follow

the linked lists taking constant delay in the whole process. �

Even though the previous results seems restricted to a narrow subclass of MA, we will

see next that it allows for efficient evaluation of an important fragment of CEPL.
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7. COMPILING UNARY CEPL INTO MATCH AUTOMATA

For evaluating unary CEPL we follow an automata-based strategy. Specifically, we

show how to compile a (unary) CEPL formula ϕ into an equivalent MA Aϕ, meaning that

⟦ϕ⟧(S) = ⟦Aϕ⟧(S) for every stream S, to later evaluate Aϕ over streams. Although we

do not know how to efficiently evaluate MA in general, we identify that an interesting

fragment of (unary) CEPL can be evaluated efficiently.

As previously mentioned, we study here how to compile a subfragment of CEPL that

we call unary CEPL. Formally, we say that a CEPL formula ϕ is unary if, for every sub-

formula of ϕ of the form ϕ′ FILTER α, all predicates of α are unary (i.e. α ∈ Fu(R)). For

example, formulas ϕ1, ϕ2, and ϕ3 in Section 2 are unary, but formula ϕ4 is not (the pred-

icate y.id = x.id is binary). It is important to mention that, although the unary fragment

seems restricted, it already presents non-trivial computational challenges. The evaluation

of full CEPL is an interesting project on its own, since it requires new insights on rewriting

techniques and more powerful computational models featuring translations and efficient

evaluation strategies. We leave this direction for future work.

We start by presenting the compilation of unary core CEPL into MA. This construc-

tion is intimately related with the safeness condition and LP-normal form (see Section 5).

Theorem 7.1. For every formula ϕ in unary core-CEPL, there exists a MA Aϕ equiv-

alent to ϕ. Furthermore, Aϕ is of size at most linear in ∣ϕ∣ if ϕ is safe and in LP-normal

form, and of size at most double exponential in ∣ϕ∣ otherwise.

PROOF. For the sake of simplicity, for this proof we will add to the model of MA

the ability to have ε-transitions. Formally, now a transition relation has the structure ∆ ⊆
Q×((Fu(R)×{●, ○})∪{ε})×Q. This basically means the automaton can have transitions

of the form (p, ε, q) that can be part of a run and, if so, the automaton passes from state p to

q without reading nor marking any new tuple. This does not give any additional power to

MA, since any ε-transition (p, ε, q) can be removed by adding, for each incoming transition
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qi qf
β(x) ∣ ●

TRUE ∣ ○

FIGURE 7.1. A match automaton for the formula R AS x FILTER α(x). Here,
β(x) = (type(x) = R) ∧ α(x).

of p, an equivalent incoming one to q, and for each outgoing transition of q an equivalent

outgoing one from p.

The result of Theorem 5.3 shows that we can rewrite every core CEPL formula as

a formula in LP-normal form, so we consider that, if ϕ is not in LP-normal form, then

it is first translated into one with an exponential growth from the beginning. We now

give a construction that, for every core CEPL formula ϕ in LP-normal form, defines a

MA A such that for every match M , M ∈ ⟦A⟧(Si) iff there exists a valuation ν such that

M ∈ ⟦ϕ⟧(S, i, ν) (recall that Si is the stream titi+1 . . .). Moreover, we show two properties:

(1) for every accepting run ρ there exists a valuation ν such that every x ∈ dom(ν) appears

exactly once in ρ and only at the transition ν(x) of ρ; (2) for every ν there exists an

accepting run ρ of A over Si such that every x ∈ vdef+(ϕ) that appears in a transition of

ρ appears while reading S[ν(x)]. This construction is done recursively in a bottom-up

fashion such that, for every subformula, an equivalent MA is built from the MA of its

subformulas. Let ψ be any subformula of ϕ. Then, the MA A is defined as follows:

● If ψ = R AS x FILTER α(x) then A = (Q,∆,{qi},{qf}) with the set of states Q =
{qi, qf} and the transitions ∆ = {(qi, (TRUE, ○), qi), (qi, (β(x), ●), qf)}, where β(x) =
(type(x) = R) ∧ α(x). Graphically, the automaton is the one in figure 7.1. If ψ has no

FILTER the automaton is the same but with β(x) = (type(x) = R).

● If ψ = ψ1 OR ψ2 and A1 = (Q1,∆1,{qi1},{q
f
1}) and A2 = (Q2,∆2,{qi2},{q

f
2}) are the

automata for ψ1 and ψ2,respectively, then A = (Q,∆,{qi},{qf}) where Q is the union

of the states of A1 and A2 plus the new initial and final states qi, qf , and ∆ is the union

of ∆1 and ∆2 plus the empty transitions from qi to the initial states of A1 and A2,
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and from the final states of A1 and A2 to qf . Formally, Q = Q1 ∪ Q2 ∪ {qi, qf} and

∆ = ∆1 ∪∆2 ∪ {(qi, ε, qi1), (qi, ε, qi2), (q
f
1 , ε, q

f), (qf2 , ε, qf)}.

● If ψ = ψ1 ; ψ2 and A1 = (Q1,∆1,{qi1},{q
f
1}) and A2 = (Q2,∆2,{qi2},{q

f
2}) are the au-

tomata for ψ1 and ψ2, respectively, we first define X =X1 ∩X2, where Xi = vdef+(ρi),

and define X = 2X . Now we define the components of A = (Q,∆,{qi1},{q
f
2}). The set

of states is Q = (Q1 ∪Q2) ×X . Then, the transition relation consists of three parts. The

first is ∆′
1 = {((p, Y ), (α,m), (q, Y ′)) ∣ (p, (α,m), q) ∈ ∆1 and Y ′ = Y ∪ (var(α) ∩X)},

which allowsA to simulateA1, gathering the variables of interest at each transition. The

second part is ∆′
2 = {((p, Y ), (α,m), (q, Y )) ∣ (p, (α,m), q) ∈ ∆2 and Y ∩ var(α) = ∅},

which allows A to simulate A2 restricting that no variable of interest can be seen again.

The third part is ∆′
3 = {((qf1 , Y ), ε, (qi2, Y )) ∣ Y ∈ X}, which ends the simulation of A1

and begins the one ofA2. Then, the transition relation ∆ is defined as ∆ = ∆′
1∪∆′

2∪∆′
3.

● If ψ = ψ1+ and A1 = (Q1,∆1,{qi1},{q
f
1}) is the automaton for ψ1, then A is defined

as (Q,∆,{qi1},{q
f
1}) where Q = Q1 and ∆ = ∆1 ∪ {(qf1 , ε, qi1)}. Basically, is the same

automaton for ψ1 with an ε-transition from the final to the initial state.

Now, we need to prove that the previous construction satisfies Theorem 7.1. We will

prove this by induction over the subformulas of ϕ, i.e., assume as induction hypothesis

that the theorem holds for any subformula ψ and its respective MA A.

First, consider the base case ψ = R AS x FILTER α. If M ∈ ⟦A⟧(Si) then there is

a run ρ that gets to the accepting run such that match(ρ) = M . Moreover, ρ must pass

through the transition (qi, (type(x) = R ∧ α(x), qf) while reading a tuple tj at some

position j ≥ i. Then, consider the valuation ν ∶ x → j. Clearly, M = {ν(x)}, type(tj) =
R, and νS ⊧ α, thus M ∈ ⟦ψ⟧(S, i, ν). Further, notice that property (1) holds. For

the other direction, consider that M ∈ ⟦ψ⟧(S, i, ν) for some valuation ν. Then M must

contain only position m = ν(x) such that type(S[m]) = R, i ≤ m and νS ⊧ α hold.

Then ρ = (qi, (TRUE, ○), qi)m−i ⋅ (qi, (β(x), ●), qf) is an accepting run of A over Si, where

(qi, (TRUE, ○), qi)m−i means that it takes the initial loop transition m − i times. Because

match(ρ) = {m} =M , then M ∈ ⟦A⟧(Si). Moreover, notice that property (2) holds.
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Now, consider the case ψ = ψ1 OR ψ2. If M ∈ ⟦A⟧(Si), then there is an accepting

run ρ that also represents either an accepting run of A1 or A2 (removing the ε transitions

at the beginning and end). Assume without loss of generality that it is the first case.

Then, by induction hypothesis, there is a valuation ν such that M ∈ ⟦ψ1⟧(S, i, ν). By

definition this means that M ∈ ⟦ψ⟧(S, i, ν). Notice that hy induction hypothesis, property

(1) holds. For the other direction, consider that M ∈ ⟦ψ⟧(S, i, ν) for some valuation ν.

Then, either M ∈ ⟦ψ1⟧(S, i, ν) or M ∈ ⟦ψ2⟧(S, i, ν) holds. Without loss of generality,

consider the former case. By induction hypothesis, it means that M ∈ ⟦A1⟧(Si), so there

is an accepting run ρ′ of A1 over Si such that match(ρ′) = M . Because ∆ contains ∆1

then the run ρ = (qi, ε, qi1) ⋅ρ′ ⋅ (q
f
1 , ε, q

f) is an accepting run of A over Si. Furthermore, by

induction hypothesis property (2) holds.

Next, consider the case ψ = ψ1 ; ψ2. If M ∈ ⟦A⟧(Si), then there is an accept-

ing run ρ of the form ρ ∶ ρ1 ⋅ ((qf1 , Y ), ε, (qi2, Y )) ⋅ ρ2 and, because of the construction,

M1 = match(ρ1) ∈ ⟦A1⟧(Si) and M1 = match(ρ1) ∈ ⟦A1⟧(Sj), with j = max(M1) + 1.

Then by induction hypothesis there are valuations ν1 and ν2 such that M1 ∈ ⟦ψ1⟧(S, i, ν1),

M2 ∈ ⟦ψ2⟧(S, j, ν2). Moreover, because all transitions of ρ1 are before the ones of ρ2 and

because of property (1), dom(ν1) ∩ dom(ν2) = ∅. Therefore, we can define ν such that

ν(x) = ν1(x) if x ∈ dom(ν1) and ν(x) = ν2(x) if x ∈ dom(ν2). Clearly, because ν repre-

sents both ν1 and ν2, it holds thatM ∈ ⟦ψ⟧(S, i, ν). Moreover, because of the construction,

no x ∈X can appear twice in ρ, and because ν1 and ν2 satisfy property (1), so does ν. For

the other direction, consider a match M such that M ∈ ⟦ψ⟧(S, i, ν) for some valuation ν.

Then there exist matches M1 and M2 such that M1 ∈ ⟦ψ1⟧(S, i, ν), M2 ∈ ⟦ψ2⟧(S, j, ν) and

M =M1 ⋅M2, where j = max(M1)+1. By induction hypothesis, there exist accepting runs

ρ1 and ρ2 ofA1 andA2, respectively, such that match(ρ1) =M1, match(ρ2) =M2. More-

over, from property (2) we know that every x that appears in a transition of ρi appears

while reading S[ν(x)]. In particular, every x ∈ X that appears in ρ1 cannot appear in ρ2

because all transitions of ρ1 are before the ones of ρ2, so they have no positions in com-

mon. Therefore, the run ρ of A that simulates ρ1 ends at a state (qf1 , Y ) (and position j)

such that no x ∈ Y is in ρ2, thus ρ can continue by simulating ρ2 and reaching a final state,
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thus ρ is an accepting run. Notice that match(ρ) = M , thus M ∈ ⟦A⟧(Si). Moreover, ρ

clearly satisfies property (2).

Finally, consider the case ψ = ψ1+. If M ∈ ⟦A⟧(Si), it means that there is an accept-

ing run ρ of A over Si. We define k to be the number of times that ρ passes through

the final state qf , and prove by induction over k that M ∈ ⟦ψ⟧(S, i, ν). If k = 1, it

means that ρ is also an accepting run of A1, thus M ∈ ⟦A1⟧(Si) and, by (the first) in-

duction hypothesis, there exists some valuation ν such that M ∈ ⟦ψ1⟧(S, i, ν), which

implies M ∈ ⟦ψ⟧(S, i, ν). Now, consider the case k > 1. It means that ρ has the form

ρ = ρ1 ⋅ (qf , ε, qi) ⋅ ρ2 where ρ2 passes through qf k − 1 times. Then, M1 = match(ρ1) is

an accepting run of A1 and thus M1 ∈ ⟦ψ1⟧(S, i, ν) for some ν. Furthermore, ρ2 is an ac-

cepting run of A, thus if M2 = match(ρ2) then by induction hypothesis M2 ∈ ⟦ψ⟧(S, j, ν)
for some ν, where j = max(M1). If M = M1 ⋅M2 then M ∈ ⟦ψ1 ; ψ1+⟧(S, i, ν), thus

M ∈ ⟦ψ⟧(S, i, ν). Notice that a valuation ν′ such that dom(ν′) = ∅ also satisfies M ∈
⟦ψ⟧(S, i, ν′), thus it trivially satisfies property (1). For the other direction, consider a

matchM such thatM ∈ ⟦ψ⟧(S, i, ν) for some valuation ν. Then there exists ν′ such that ei-

therM ∈ ⟦ψ1⟧(S, i, ν[ν′ → U]) orM ∈ ⟦ψ1 ; ψ1+⟧(S, i, ν[ν′ → U]) whereU = vdef+(ψ1).

We now prove, by induction over the number of iterations, that M ∈ ⟦A⟧(Si). If there is

just one iteration, then M ∈ ⟦ψ1⟧(S, i, ν[ν′ → U]) and, by induction hypothesis, M ∈
⟦A1⟧(Si), so there is an accepting run ρ of A1 over Si such that match(ρ) =M . Because

∆1 ⊆ ∆, then ρ is also an accepting run of A, thus M ∈ ⟦A⟧(Si). If there are k iterations

with k > 1, it means that M ∈ ⟦ψ1 ; ψ1+⟧(S, i, ν[ν′ → U]). Therefore, there exist matches

M1 and M2 such that M1 ∈ ⟦ψ1⟧(S, i, σ[σ′ → U]), M2 ∈ ⟦ψ1+⟧(S, j, ν[ν′ → U]) and

M =M1 ⋅M2, where j = max(M1). Then, by induction hypothesis, there exist accepting

runs ρ1 of A1 over S and ρ2 of A over Sj such that match(ρ1) =M1 and match(ρ2) =M2

and, because ∆1 ⊆ ∆, ρ1 is also an accepting run ofA. Then, the run ρ = ρ1 ⋅(qf , ε, qi)⋅ρ2 is

an accepting run of A over S. Furthermore, match(ρ) =M1 ⋅M2 =M thus M ∈ ⟦A⟧(Si).

Notice that vdef+(ψ) = ∅, thus every run satisfies property (2).

Finally, it is clear that the size of A is linear with respect to the size of ϕ if ϕ is

safe and already in LP-normal form. However, if ϕ is not safe, then the construction for
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; have an exponential blow-up. Furthermore, if ϕ is not in LP-normal form, then it is

first translated into an equivalent CEPL formula ϕ′ that is, adding an exponential growth.

Then, Aϕ is of size at most double exponential in ∣ϕ∣ and of size at most linear if ϕ is safe

and in LP-normal form. �

Next we focus on how to construct MA from formulas with extended operators like

AND, ALL, and UNLESS. In contrast to the core fragment, these operators are more compli-

cated to evaluate because of the size of their respective MAs. More specifically, let ϕ1 and

ϕ2 be two unary ecore-CEPL formulas and X = vdef+(ϕ1) ∩ vdef+(ϕ2).

Theorem 7.2. Let ϕ = ϕ1 OP ϕ2 be a CEPL formula with OP ∈ {AND,ALL,UNLESS},

and let Aϕ1 and Aϕ2 be two MA equivalent to ϕ1 and ϕ2, respectively. Then, there is a

MA Aϕ equivalent to ϕ of size at mostO(∣Aϕ1 ∣ ⋅ ∣Aϕ2 ∣ ⋅2∣X ∣) if OP ∈ {AND,ALL} and at most

O(∣Aϕ1 ∣ ⋅ 2∣Aϕ2 ∣) if OP = UNLESS.

PROOF. For each OP ∈ {AND,ALL,UNLESS} we give a construction for a MA A =
(Q,∆, I, F ) that is equivalent to the CEPL formula ϕ of the form ϕ1 OP ϕ2. More-

over, we prove that properties (1) and (2) stated in Theorem 7.1 still hold. Let A1 =
(Q1,∆1, I1, F1) and A2 = (Q2,∆2, I2, F2) be the MA equivalent to ϕ1 and ϕ2 respec-

tively, define X = X1 ∩ X2, where Xi = vdef+(ϕi), and define X = 2X . For the first

the case OP = AND, the automaton A is defined as follows. The set of states is Q =
Q1 × Q2 × X . Then the set transition relation consists of all transitions of the form

((p1, p2, Y ), (α1∧α2,m), (q1, q2, Y ′) such that there are transitions (p1, (α1,m), q1) ∈ ∆1

and (p2, (α2,m), q2) ∈ ∆2 with var(α1) ∩ Y = var(α2) ∩ Y = ∅ and Y ′ = Y ∪ (X ∩
(var(α1) ∪ var(α2))). Finally, the sets of initial and final states are I = I1 × I2 × {∅} and

F = F1 × F2 × X , respectively. Basically, the automaton simulates both A1 and A2 and

force them to mark positions at the same time. Moreover, if there is a variable in both ϕ1

and ϕ2, it force them to mark it at the same position.

Now we define the automaton A for the case OP = ALL. Basically, the automaton

simulates both A1 and A2, allowing them to stop their runs at different positions of the
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stream. For this, we add a new symbol �. If a run of A is at state (q1, q2, Y ) it means that

the simulations are in q1 and q2, respectively, and that the variables of X seen so far are Y .

Moreover, if state is �, it means that the simulation of that automaton has ended. The set of

states Q is defined as Q = (Q1 ∪ {�}) × (Q2 ∪ {�}) × X . Then, to simulate both automata

simultaneously we add all transitions of the form ((p1, p2, Y ), (α1 ∧ α2,m), (q1, q2, Y ′)
such that there are transitions (p1, (α1,m1), q1) ∈ ∆1 and (p2, (α2,m2), q2) ∈ ∆2 with

var(α1) ∩ Y = var(α2) ∩ Y = ∅, Y ′ = Y ∪ (X ∩ (var(α1) ∪ var(α2))), and m = ● if

either m1 = ● or m2 = ●, and m = ○ otherwise. Moreover, to continue the simulation

of the first MA after the other ended, we add transitions ((p1,�, Y ), (α1,m1), (q1,�, Y ′))
such that (p1, (α1,m1), q1) ∈ ∆1, var(α1) ∩ Y = ∅ and Y ′ = Y ∪ (var(α1) ∩X). Sim-

ilarly for the second MA, we add transitions ((�, p2, Y ), (α2,m2), (�, q2, Y ′)) such that

(p2, (α2,m2), q2) ∈ ∆2, var(α2)∩Y = ∅ and Y ′ = Y ∪(var(α2)∩X). Finally, to allow one

of the automata to end its simulation, we add the ε-transitions ((p1, pf2 , Y ), ε, (p1,�, Y ))
and ((pf1 , p2, Y ), ε, (�, p2, Y )), where pf1 ∈ F1, p

f
2 ∈ F2. The set of initial states is defined

as I = I1 × I2 × {∅} and the set of final states as F = {(q1, q2, Y ) ∣ q1 ∈ F1 ∪ {�} ∧ q2 ∈
F2 ∪ {�} ∧ Y ∈ X}.

Now, we define A for the case OP = UNLESS. For this part, we need to define some

automaton transformations. Let Ad2 = (Qd
2,∆

d
2, I

d
2 , F

d
2 ) be the result of applying to A2 the

determinization construction in Proposition 6.1. Let A′2 = (Q′
2,∆

′
2, I

′
2, F

′
2) be a boolean

automaton for A2 which is essentially an automaton that gets to an accepting state if there

has been a match in A2 in the prefix read until that point. Its structure is the same, except

that it has an extra state qa which is the only accepting one, i.e.,Q′
2 = Q2∪{qa}, I ′2 = I2 and

F = {qa}. Because A′2 does not return a match, all transitions of ∆2 are copied without

their matching symbols, i.e., for every transition (p, (α,m), q) ∈ ∆2, the transition (p,α, q)
is added in ∆′

2. In addition, for every transition in ∆2 of the form (p, (α, ●), q) with q ∈ F2,

it adds the transition (p,α, qa). We consider only ●-transitions because the MA semantics

restricts that the last transition of a run must be with ●. With this construction we claim

that when we run A′2 over a stream S, if a run is at the accepting state qa while reading

position i, then there is a match M ∈ ⟦A2⟧(S) such that max(M) ≤ i. Now, let Ab2
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be the result of applying determinization over A′2, which is the automaton that we will

use in the sequel. Notice that for both Ad2 and Ab2, the states can be seen as subsets of

Q2 because of the determinization part of their constructions. Because of this, we will

identify states of Qd
2 and Qb

2 as {qd1 , qd2 , . . . , qdk} and {qb1, qb2, . . . , qbk} respectively, where

both are associated to the subset {q1, q2, . . . , qk} ⊆ Q2. Now we are ready to define A.

The set of states is defined as Q = (Q1 × Qd
2) ∪ (Q1 × Qb

2). As notation, we write the

states of Qd
2 and Qb

2 as q to illustrate that it is associated to a subset of states (of Q2).

We define the transition relation as follows. First, for every (p1, (α1, ○), q1) ∈ ∆1 and

(p2, (α2, ○),q2) ∈ ∆d
2 we add ((p1,p2), (α1 ∧ α2, ○), (q1,q2)) into ∆. Second, for every

(p1, (α1, ○), q1) ∈ ∆1 and (p2, α2,q2) ∈ ∆b
2 such that q2 ∉ F b

2 , we add ((p1,p2), (α1 ∧
α2, ○), (q1,q2)) into ∆. Finally, for every (p1, (α1, ●), q1) ∈ ∆1, (p2, α2,q2) ∈ ∆b

2 we

add ((p1,p′2), (α1 ∧ α2, ●), (q1,q2)) into ∆, where p′2 is the analogous of p2 in Ad2, i.e.,

if p2 = {pb1, pb2, . . . , pbk}, then p′2 = {pd1, pd2, . . . , pdk}. The set of initial states is defined as

I = I1 × Id2 and the set of final states as F = F1 ×Qb
2. The idea behind this construction is

that at the beginning the automaton simulates A1 and A2 with only ○-transitions until A1

marks a position. At this point it goes on with the simulation of A1 and simultaneously

verifies that the simulation of A2 can never pass through an accepting state, for which it

uses the boolean automaton Ab2. Notice that we verify this in the construction when we

consider only the transitions of ∆b
2 that do not end in an accepting state.

Now, we prove the correctness of the above constructions. First, consider the AND

case. Consider a match M ∈ ⟦A⟧(Si). Then, there is a run ρ of A of the form:

ρ ∶ (q10, q20,∅) α1/m1ÐÐ→ (q11, q21, Y1) α2/m2ÐÐ→ ⋯ αn/mnÐÐ→ (q1n, q2n, Yn)

Because of the construction, each transition has the form αi = α1
i ∧ α2

i such that the runs:

ρ1 ∶ q10 α1
1/m1ÐÐ→ q11

α1
2/m2ÐÐ→ ⋯ α1

n/mnÐÐ→ q1n

ρ2 ∶ q20 α2
1/m1ÐÐ→ q21

α2
2/m2ÐÐ→ ⋯ α2

n/mnÐÐ→ q2n
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are accepting runs of A1 and A2, respectively, and M = match(ρ1) = match(ρ2). By

induction hypothesis there exist valuations ν1 and ν2 such that M ∈ ⟦ϕ1⟧(S, i, ν1) and

M ∈ ⟦ϕ2⟧(S, i, ν2). Moreover, because of property (1), we know that every variable x ∈
dom(νi) appears exactly once in ρi and only at the transition νi(x) of ρi. Because of the

construction, no variable x ∈ X can appear in two different transitions of ρ, which means

that if it appears at some position of ρ1, then it cannot appear at a different position of ρ2,

and conversely. Therefore, for every x ∈ dom(ν1) ∩ dom(ν2) it holds that ν1(x) = ν2(x).

If we define ν = ν1[ν2 → dom(ν2)], then M ∈ ⟦ϕ1⟧(S, i, ν) and M ∈ ⟦ϕ2⟧(S, i, ν) still

hold, thus M ∈ ⟦ϕ⟧(S, i, ν). Moreover, by induction of property (1) over ρ1 and ρ2, and

because of the construction, property (1) still holds for ν. For the opposite direction,

consider M ∈ ⟦ϕ⟧(S, i, ν) for some ν. By definition it means that M ∈ ⟦ϕ1⟧(S, i, ν) and

M ∈ ⟦ϕ2⟧(S, i, ν) and, by induction hypothesis, there exist accepting runs:

ρ1 ∶ q10 α1
1/m1ÐÐ→ q11

α1
2/m2ÐÐ→ ⋯ α1

n/mnÐÐ→ q1n

ρ2 ∶ q20 α2
1/m1ÐÐ→ q21

α2
2/m2ÐÐ→ ⋯ α2

n/mnÐÐ→ q2n

OverA1 andA2, respectively, such that match(ρ1) = match(ρ2) =M . Moreover, because

of property (2), we know that every x ∈ vdef+(ϕi) that appears in a transition of ρi appears

while reading S[ν(x)]. Now, if we define the run:

ρ ∶ (q10, q20,∅) α1/m1ÐÐ→ (q11, q21, Y1) α2/m2ÐÐ→ ⋯ αn/mnÐÐ→ (q1n, q2n, Yn)

OfA, where each αi = α1
i ∧α2

i and Yi = (αi)∩X , then clearly it is a valid run ofA, because

for every two different transitions, say with αj and αk, it holds that αj ∩ αk ∩ X = ∅.

Because match(ρ) =M , then M ∈ ⟦A⟧(Si). Moreover, by induction of property (2) over

ν with ϕ1 and ϕ2, and because of the construction, property (2) still holds for ρ.

Consider now the ALL case. Consider a match M ∈ ⟦A⟧(Si). Then, there is a run ρ

of A of the form:

ρ ∶ (q10, q20,∅) α1/m1ÐÐ→ (q11, q21, Y1) α2/m2ÐÐ→ ⋯ αn/mnÐÐ→ (q1n, q2n, Yn)
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Where at some position j and some i, for all k ≥ j it is the case that qik = �. Because of the

construction, each transition has the form αi = α1
i ∧ α2

i such that the runs:

ρ1 ∶ q10 α1
1/m

1
1ÐÐ→ q11

α1
2/m

1
2ÐÐ→ ⋯ α1

n1
/m1

n1ÐÐ→ q1n1

ρ2 ∶ q20 α2
1/m

2
1ÐÐ→ q21

α2
2/m

2
2ÐÐ→ ⋯ α2

n2
/m2

n2ÐÐ→ q2n2

Are accepting runs ofA1 andA2, respectively, andM =M1∪M2 , whereM1 = match(ρ1)
and M2 = match(ρ2), i.e., mj = ● only if m1

j = ● or m2
j = ●. Notice that they do not have

to end at the same time. By induction hypothesis, there exist valuations ν1 and ν2 such

that M ∈ ⟦ϕ1⟧(S, i, ν1) and M ∈ ⟦ϕ2⟧(S, i, ν2). By the same reasoning of the AND case,

for every x ∈ dom(ν1) ∩ dom(ν2) it holds that ν1(x) = ν2(x). If we define ν = ν1[ν2 →
dom(ν2)], thenM1 ∈ ⟦ϕ1⟧(S, i, ν) andM2 ∈ ⟦ϕ2⟧(S, i, ν) still hold, thusM ∈ ⟦ϕ⟧(S, i, ν).

Moreover, by induction of property (1) over ρ1 and ρ2, and because of the construction,

property (1) still holds for ν. For the opposite direction, consider M ∈ ⟦ϕ⟧(S, i, ν) for

some ν. By definition it means that M1 ∈ ⟦ϕ1⟧(S, i, ν) and M2 ∈ ⟦ϕ2⟧(S, i, ν) for some

M1 and M2 such that M = M1 ∪M2 and, by induction hypothesis, there exist accepting

runs:

ρ1 ∶ q10 α1
1/m

1
1ÐÐ→ q11

α1
2/m

1
2ÐÐ→ ⋯ α1

n1
/m1

n1ÐÐ→ q1n1

ρ2 ∶ q20 α2
1/m

2
1ÐÐ→ q21

α2
2/m

2
2ÐÐ→ ⋯ α2

n2
/m2

n2ÐÐ→ q2n2

OverA1 andA2, respectively, such that match(ρ1) =M1 and match(ρ2) =M2. Moreover,

because of property (2) and by the same reasoning of the AND case, then the run:

ρ ∶ (q10, q20,∅) α1/m1ÐÐ→ (q11, q21, Y1) α2/m2ÐÐ→ ⋯ αn/mnÐÐ→ (q1n, q2n, Yn)

Where mj = ● only if m1
j = ● or m2

j = ●, is a valid run of A. Because match(ρ) =
M1 ∪M2 =M , then M ∈ ⟦A⟧(Si). Moreover, by induction of property (2) over ν with ϕ1

and ϕ2, and because of the construction, property (2) still holds for ρ.
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Consider now the UNLESS case. Consider a match M ∈ ⟦A⟧(Si). Then, there is an

accepting run ρ of A of the form:

ρ ∶ (q0,q0) α1/m1ÐÐ→ (q1,q1) α2/m2ÐÐ→ ⋯ αn/mnÐÐ→ (qn,qn)

Then, ρ can be spit at position j = min(M) as ρ = ρ1 ⋅ ρ2 such that ρ1 simulates runs

of A1 and A2 simultaneously with only ○ transitions and ρ2 simulates runs of A1 and A′2
simultaneously. Moreover, because of the construction, the run:

ρ1 ∶ q0 α1/m1ÐÐ→ q1
α2/m2ÐÐ→ ⋯ αn/mnÐÐ→ qn

Is an accepting run of A1 over Si. Therefore, match(ρ1) = M ∈ ⟦A1⟧(Si), thus M ∈
⟦ϕ1⟧(S, i, ν) for some ν. Now, by contradiction consider that there exist some M ′ and ν′

such that M ′ ∈ ⟦ϕ2⟧(Si), with min(M) ≤ min(M ′) and max(M ′) ≤ max(M). Then,

there exist the accepting runs:

σd ∶ q0
βd
1 /l1ÐÐ→ q1

βd
2 /l2ÐÐ→ ⋯ βd

k/lkÐÐ→ qk

σb ∶ q0
βb
1ÐÐ→ q1

βb
2ÐÐ→ ⋯ βb

kÐÐ→ qk

Of Ad2 and Ab2, respectively such that k ≤ n, m′
i = ○ for all i < j (recall that they are the

only possible runs for that prefix of S because they are both deterministic). Then, because

min(M) ≤ min(M ′) and max(M ′) ≤ max(M), for every run of A of the form:

ρ′ ∶ (q′0,q0) α′1/m
′

1ÐÐ→ (q′1,q1) α′2/m
′

2ÐÐ→ ⋯ α′k/m
′

kÐÐ→ (q′k,q′k)

Such that m′
i = ○ for all i < j, it holds that q′k ∈ F b. However, because of the con-

struction there is no transition in ∆ that gets to a state of the form (p,q) with q ∈ Fb,
which is a contradiction. Therefore, there is no M ′ and ν′ such that M ′ ∈ ⟦ϕ2⟧(Si), with

min(M) ≤ min(M ′) and max(M ′) ≤ max(M), thus M ∈ ⟦ϕ⟧(S, i, ν). The proof for

the converse case follows directly from this one, it consists of following the steps in the

opposite direction. Clearly, properties (1) and (2) still hold by induction hypothesis, only

by keeping the same ν and ρ of the induction, respectively. �
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The previous result shows the cost that a CEP-system will have to incur if extended

operators are used. It is important to note here that the quadratic or exponential cost is just

with one extended operator, and this does not include the cost of bringing the formula into

LP-normal form. Furthermore, this again shows the advantage of using safe formulas: if

ϕ1 AND ϕ2 or ϕ1 ALL ϕ2 are safe, then the cost 2∣X ∣ in their constructions can be avoided.

We now study how to build MA for CEPL formulas with selection strategies. For this,

we present our results using a more general framework, in which selection strategies are

applied directly over MA. LetA be a MA and SEL a selector in {STRICT,NXT,MAX}. Then

we say that a MA ASEL is equivalent to SEL(A) whenever ⟦SEL(A)⟧(S) = ⟦ASEL⟧(S) for

every stream S.

We begin the discussion with the NXT-operator, probably the most interesting and

meaningful selection strategy for CEP-systems. At first sight, one could think that it is

impossible to build a MA for the NXT-semantics: a MA for computing the next semantics

will have to remember and compare an unbounded number of matches which could lead

to an unbounded amount of memory. Interestingly, this intuition is wrong since one can

always build a MA for computing the next semantics and, moreover, this construction has

a very useful property.

Theorem 7.3. LetA be a MA withN states. Then, there is anN -ambiguous MAANXT

that is equivalent to NXT(A) and of size at most exponential in the size of A.

PROOF. Let R be a schema and A = (Q,∆, I, F ) be a match automaton over R. In

order to define the new match automaton ANXT = (QNXT,∆NXT, INXT, FNXT) we first need to

introduce some notation. We begin by imposing an arbitrary linear order < between the

states of Q, i.e., for every two different states p, q ∈ Q, either p < q or q < p. Let T1 . . . Tk

be a sequence of sets of states such that Ti ⊆ Q. We say that a sequence T1 . . . Tk is a

total preorder over Q if Ti ∩ Tj = ∅ for every i ≠ j. Notice that the sequence is not

necessarily a partition, i.e., it does not need to include all states of Q. A total preorder

naturally defines a preorder between states where “p is less than q” whenever p ∈ Ti,
q ∈ Tj , and i < j. For the sake of simplification, we define the concatenation between set
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of states such that T ⋅ T ′ = TT ′ whenever T and T ′ are non-empty and T ⋅ T ′ = T ∪ T ′

otherwise. The concatenation between sets will help to remove empty sets during the final

construction. Now, given any sequence T1 . . . Tk (not necessarily a total preorder), one can

convert T1 . . . Tk into a total preorder by applying the operation Total Pre-Ordering (TPO)

defined as follows:

TPO(T1 . . . Tk) = U1 ⋅ . . . ⋅Uk where Ui = Ti −
i−1

⋃
j=1

Tj.

Let F = {α1, α2, . . . , αn} be the set of all condition formulas in the transitions of ∆.

Define the equivalence relation =F between tuples such that, for every pair of tuples t1

and t2, t1 =F t2 holds if, and only if, both satisfy the same formulas, i.e., t1 ⊧ αi holds iff

t2 ⊧ αi holds, for every i. Moreover, for every tuple t let [t]F represent the equivalence

class of t defined by =F , that is, [t]F = {t′ ∣ t =F t′}. Notice that, even though there are

infinitely many tuples, there is a finite amount of equivalence classes which is bounded by

all possible combinations of formulas in F , i.e., 2∣F ∣. Now, for every t, define the formula:

αt = ( ⋀
t⊧αi

αi) ∧ ( ⋀
t/⊧αi

¬αi)

and define the new set of formulas F -types = {αt ∣ t ∈ tuples(R)}. Notice that for every

tuple t there is exactly one formula in F -types that is satisfied by t, and that formula is

precisely αt. Finally, we extend the transition relation ∆ as a function such that:

∆(T,α,m) = {q ∈ Q ∣ exist p ∈ T and α′ ∈ Fu(R) s.t. α ⊧ α′ and (p, (α′,m), q) ∈ ∆}

for every T ⊆ Q, α ∈ F -types, and m ∈ {●, ○}.

In the sequel, we define the match automaton ANXT = (QNXT,∆NXT, INXT, FNXT) compo-

nent by component. First, the set of states QNXT is defined as follows:

QNXT = {(T1 . . . Tk, p) ∣ T1 . . . Tk is a total preorder over Q and p ∈ Ti for some i ≤ k}

Intuitively, the state p is the current state of the ‘simulation’ of A and the sets T1 . . . Tk

contain the states in which the automaton could be, considering the prefix of the word
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read until the current moment. Furthermore, the sets are ordered consistently with respect

to the next-match semantic, e.g., if a run ρ1 reach the state ({1,2}{3},1) and other run ρ2

reach the state ({1,2}{3},3), then match(ρ2) < match(ρ1). This property is proven later

in Lemma 7.1.

Secondly, the transition relation is defined as follows. Consider α ∈ F -types, m ∈
{●, ○} and (T , p), (U , q) ∈ QNXT where T = T1 . . . Tk and p ∈ Ti for some i ≤ k. Then we

have that ((T , p), α,m, (U , q)) ∈ ∆NXT if, and only if,

(i) (p,α′,m, q) ∈ ∆ for some α′ such that α ⊧ α′,
(ii) q ∉ ∆(Tj, α,m′) for every m′ ∈ {●, ○} and j < i,

(iii) U = TPO(U ●
1 ⋅ U ○

1 ⋅ . . . ⋅ U ●
k ⋅ U ○

k) where U ●
j = ∆(Tj, α, ●) and U ○

j = ∆(Tj, α, ○)
for 1 ≤ j ≤ k, and

(iv) q ∉ ∆(Ti, α, ●) when m = ○,

(v) (p′, α′,m, q) ∉ ∆ for every p′ ∈ Ti such that p′ < p and every α′ such that α ⊧ α′.

Intuitively, the first condition ensures that the ‘simulation’ respects the transitions of ∆,

the second checks that the next state could not have been reached from a ‘higher’ run,

the third ensures that the sequence is updated correctly and the fourth restricts that if the

next state can be reached either marking the letter or not, it always choose to mark it.

The last condition is not strictly necessary, and removing it will not change the semantics

of the automaton, but is needed to ensure that ANXT is finitely ambiguous. What it does

is making sure that there are no two runs ρ1 and ρ2 that end in the same state such that

match(ρ1) = match(ρ2).

Finally, the initial set INXT is defined as all states of the form (I, q) where q ∈ I and the

final set FNXT as all states of the form (T1 . . . Tk, p) such that p ∈ F and there exists i ≤ k
such that p ∈ Ti and Tj ∩ F = ∅ for all j < i.

Let S = t1t2 . . . be any stream. To prove that the construction is correct, we will need

the following lemma.

Lemma 7.1. Consider a MAA = (Q,∆, I, F ), a stream S, two states (T , p), (T , q) ∈
QNXT with the same sequence T = T1 . . . Tk such that p ∈ Ti, q ∈ Tj for some i and j, and
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two runs ρ1, ρ2 of ANXT over S that have the same length and reach the states (T , p) and

(T , q), respectively. Then, i < j if, and only if:

match(ρ2) ≤next match(ρ1)

PROOF. We will prove it by induction over the length of the runs. Let q0, q′0 ∈ I be

any two initial states of A, not necessarily different. First, assume that both runs consist

of reading a single tuple t. Then, the runs are of the form:

ρ1 ∶ (I, q0) αt/m1ÐÐ→ (T , p) and ρ2 ∶ (I, q′0) αt/m2ÐÐ→ (T , q)

where T = T1T2 = TPO(∆(I,αt, ●)∆(I,αt, ○)) and neither T1 nor T2 can be empty be-

cause p and q are in different sets. For the if direction, the only option is that match(ρ1) =
{1} and match(ρ2) = {}, which implies that m1 = ● and m2 = ○. Then i < j because p ∈ T1
and q ∈ T2. For the only-if direction, because i < j then p ∈ T1 and q ∈ T2, so necessarily

m1 = ● and m2 = ○. Because of this, match(ρ1) = {1} and match(ρ1) = {}, therefore

match(ρ2) ≤next match(ρ1). Now, let S = t1t2 . . . tn . . . and consider that the runs are of

the form:

ρ1 ∶ (I, q0) αt1/m1ÐÐ→ (T1, q1) αt2/m2ÐÐ→ ⋯ αtn−1/mn−1ÐÐ→ (Tn−1, qn−1)αtn/mnÐÐ→ (T , p)

ρ2 ∶ (I, q′0)
αt1/m

′

1ÐÐ→ (T1, q′1)
αt2/m

′

2ÐÐ→ ⋯ αtn−1/m
′

n−1ÐÐ→ (Tn−1, q′n−1)αtn/m
′

nÐÐ→ (T , q)

Notice that both runs have the same sequences T1, . . . ,Tn−1 because each sequence Ti is

defined only by the previous sequence Ti−1 and the tuple ti which implicitly defines the

formula αti . Furthermore, all the runs over the same word must have the same sequences.

Define the runs ρ′1 and ρ′2, respectively, as the runs ρ1 and ρ2 without the last transition.

Consider that Tn−1 has the form Tn−1 = U1U2 . . . Uk, and that qn−1 ∈ Ur and q′n−1 ∈ Us for

some r and s. Notice that, because of the construction, if it is the case that r < s (r > s),
then i < j (i > j resp.) must hold. For the if direction, consider that match(ρ2) ≤next
match(ρ1). If match(ρ′1) = match(ρ′2), by induction hypothesis it means that r = s.

Moreover, the only option is thatmn = ● andm′
n = ○, therefore, by the construction it holds

that i < j. If match(ρ′2) ≤next match(ρ′1), by induction hypothesis it means that r < s
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and because of the construction, i < j. Notice that match(ρ′1) ≤next match(ρ′2) cannot

occur because the lower element of match(ρ′2) not in match(ρ′1) would still be the lower

element of match(ρ2) not in match(ρ1), thus contradicting match(ρ2) ≤next match(ρ1).

For the only-if direction, consider that i < j. It is easy to see that, if r > s, then i cannot

be lower than j, thus we do not consider this case. Now, consider the case that r = s.
Because i < j, it must occur that mn = ● and m′

n = ○, so match(ρ1) = match(ρ′1) ∪
{n} and match(ρ2) = match(ρ′2). By induction hypothesis, match(ρ′1) = match(ρ′2),

therefore match(ρ2) ≤next match(ρ1). Consider now the case that r < s. By induction

hypothesis, match(ρ′2) ≤next match(ρ′1) and, because the last transition can only add n to

both matches, it follows that match(ρ2) ≤next match(ρ1). �

Now, we need to prove that if M ∈ ⟦NXT(A)⟧(S), then M ∈ ⟦ANXT⟧(S) and vice

versa. First, consider a match M ∈ ⟦ANXT⟧(S). To prove that M ∈ ⟦NXT(A)⟧(S), we

need to show that M ∈ ⟦A⟧(S) and that for all matches M ′ such that M ≤NXT M ′ and

max(M) = max(M ′), M ′ ∉ ⟦A⟧(S). Assume that the run associated to M is:

ρ ∶ (U0, q0) αt1/m1ÐÐ→ (U1, q1) αt2/m2ÐÐ→ ⋯ αtn/mnÐÐ→ (Un, qn)

Because of the construction of the transition relation (in particular, the first condition), for

every i it holds that (qi−1, αi,mi, qi) ∈ ∆ for some αi such that αti ⊧ αi. Because ti ⊧ αti ,
then ti ⊧ αi, thus the run:

ρ′ ∶ q0 α1/m1ÐÐ→ q1
α2/m2ÐÐ→ ⋯ αn/mnÐÐ→ qn

is an accepting run of A over S, and thus M ∈ ⟦A⟧(S). Now, recall from construction

of FNXT that there exists i ≤ k such that qn ∈ Ti and Tj ∩ F = ∅ for all j < i, where

T1 . . . Tk = Un. Then, because of Lemma 7.1, M ′ ≤next M for every other M ′ ∈ ⟦A⟧(w)
such that max(M) = max(M ′), otherwise the run of M ′ would end in a state inside a Tj

such that j < i which cannot happen. Therefore, M ∈ ⟦NXT(A)⟧(S).

Now, consider a match M ∈ ⟦NXT(A)⟧(S). Assume that the run associated to M is:

ρ ∶ q0 α1/m1ÐÐ→ q1
α2/m2ÐÐ→ ⋯ αn/mnÐÐ→ qn
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To prove that M ∈ ⟦ANXT⟧(S) we will prove that there exists an accepting run on ANXT.

Based on ρ, consider now the run:

ρ′ ∶ (U0, p0) αt1/m1ÐÐ→ (U1, p1) αt2/m2ÐÐ→ ⋯ αtn/mnÐÐ→ (Un, pn)

Where the matches m1, . . . ,mn are the same, each condition αti is defined by ti and each

Ui is the result of applying the function TPO based on Ui−1 and αti Moreover, each pi is de-

fined as follows. As notation, consider that Ui = T i1 . . . T iki and that every qi is in the ri-th set

of Ui, i.e., qi ∈ T iri . Then, pi is the lower state in T iri such that (pi, (αti+1 ,mi+1, pi+1) in∆,

and pn = qn. Notice that ρ′ is completely defined by ρ and S. We will prove that ρ′ is an

accepting run by checking that all transitions meet the conditions of the transition relation

∆NXT. Now, it is clear that the first condition is satisfied by all transitions, i.e., for every i it

holds that (pi−1, α′,mi, pi) ∈ ∆ for some α′ such that αti ⊧ α′ (just consider α′ = αi). For

the second condition, by contradiction suppose that it is not satisfied by ρ′. It means that

for some i, pi ∈ ∆(T i−1j , ai,m′) for somem′ ∈ {●, ○} and j < ri. In particular, consider that

the state p′ ∈ T i−1j is the one for which (p′, ai,m′, qi) ∈ ∆. Recall that every state inside

a sequence is reachable considering the prefix of the word read until that moment. This

means that there exist the accepting runs:

σ ∶ q′0 α
′

1/m
′

1ÐÐ→ q′1
α′2/m

′

2ÐÐ→ ⋯ α′i−1/m
′

i−1ÐÐ→ q′ α
′

i/m
′

iÐÐ→qi αi+1/mi+1ÐÐ→ ⋯ αn/mnÐÐ→ qn

σ′ ∶ (U0, p′0)
αt1/m

′

1ÐÐ→ (U1, p′1)
αt1/m

′

2ÐÐ→ ⋯ αti/m
′

iÐÐ→(Ui, pi) αti+1/mi+1ÐÐ→ ⋯ αtn/mnÐÐ→ (Un, pn)

Where p′i are defined in a similar way to pi. Define for every run γ and every i the run

γi as γ until the i-th transition. For example, ρi is equal to the run ρ until the state qi.

Then, by Lemma 7.1, match(ρ′i−1) < match(σ′i−1), but match(ρ′) = match(σ′). This is a

contradiction, since match(ρ′) and match(σ′) differ from match(ρ′i−1) and match(σ′i−1)
in that the latters can contain additional positions from i to n, but the minimum position

remains in match(σ′i−1), and therefore in match(σ′). The fourth condition is proven by

contradiction too. Suppose that it is not satisfied by ρ′, which means that for some i,
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pi ∈ ∆(T i−1ri−1
, αti , ●) when mi = ○. Then, the run:

σ ∶ p0 αt1/m1ÐÐ→ p1
αt2/m2ÐÐ→ ⋯ αti−1/mi−1ÐÐ→ pi−1

αti/●ÐÐ→pi αti+1/mi+1ÐÐ→ ⋯ αtn/mnÐÐ→ pn

is an accepting run such that match(ρ) < match(σ), which is a contradiction, since

M ∈ ⟦NXT(A)⟧(S). The third and last conditions are trivially proven because of the

construction of the run. Therefore, ρ′ is a valid run of ANXT over S. Moreover, because

pn = qn ∈ F then ρ′ is an accepting run, therefore match(ρ) =M ∈ ⟦ANXT⟧(S).

Now, we analyze the properties of the automaton ANXT. First, we show that ∣ANXT∣ is at

most exponential over ∣A∣. Notice that each state in QNXT represents a sequence of subsets

of Q, thus each state has at most ∣Q∣ subsets. Moreover, for each one of the subsets there

are at most 2∣Q∣ possible combinations. Therefore, there are no more than 2∣Q∣Q possible

states in QNXT, thus ∣A∣ ∈ O(∣A∣). Now, we know that for every accepting run:

ρ ∶ (T0, q0) αt1/m1ÐÐ→ (T1, q1) αt2/m2ÐÐ→ ⋯ αtn/mnÐÐ→ (Tn, qn)

that ends in a position n, it holds that M = match(ρ) is the biggest among all matches M ′

such that max(M ′) = n, according to ≤next. Moreover, because of Lemma 4.1 we know

that there is only one maximum, meaning that any other accepting run:

ρ′ ∶ (T0, q′0)
αt1/m

′

1ÐÐ→ (T1, q′1)
αt2/m

′

2ÐÐ→ ⋯ αtn/m
′

nÐÐ→ (Tn, q′n)

That ends in position n must define the same match, i.e., match(ρ′) = M . Furthermore,

for this to happen it must occur that both qi and q′i are in the same subset T ir of Ti, for every

i ≤ n. Notice that if ρ ≠ ρ′ then they cannot be both in the same state ate the same time,

otherwise it would contradict the condition 5 in the construction of ∆NXT. Because of this,

the size of Runn(A, S) is bounded by the number of final states, i.e., ∣Runn(A, S)∣ ≤ ∣F ∣.
Therefore ANXT is ∣F ∣-ambiguous. �

The previous result is very important for our framework, as one can always compute

the next semantics of any MA and, moreover, the resulting MA is finitely ambiguous.
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Combined with Theorem 6.1, this leads to an efficient evaluation strategy for unary CEPL

formulas under the next semantics.

Corollary 7.1. For every unary ecore-CEPL formulaϕ, there is an efficient evaluation

strategy for NXT(ϕ). Moreover, if Aϕ is a MA equivalent to ϕ, the efficient evaluation

strategy processes each event in time linear w.r.t. Aϕ.

PROOF. In Algorithm 2 we provide an efficient strategy to evaluate a MA over the NXT

semantics. Similar to the MA of the NXT construction, we need to keep track of the order

of priority between alls runs. For this, the algorithm stores the runs in a queue structure

E, which has the functions enqueue, to add a new element at the end, and dequeue, to

extract the first element. Here, each element in E represents a tuple (T,M) where T is a

non-empty set of states and M is a match. We use the function notin which receives a

state q and a queue E, and has the value TRUE if q does not appear in any run of E, and

FALSE otherwise.

For all (T,M) in E, every q ∈ T represents a run of A whose associated partial match

is precisely M . To this end, the subroutine Update computes the set T ′ of states that can

be reached from all the states of T using a transition with mark m. Afterwards, it adds

the new tuple (T ′,M ′) to E′, where M ′ is equal to M if m = ○, and is equal to M plus

the position i currently read if m = ●. After applying Update over all the elements of

E, the resulting set E′ is similar to the result of the function TPO in Theorem 7.3, in the

sense that the result only stores information about the runs that could lead to a match of

the NXT semantics. The key to achieve this is that the higher runs are updated first (line 5)

and, moreover, the update is first done using ● transitions, and later using ○ (lines 6 and 7).

Therefore, at each iteration the queue E = [(T0,M0), . . . , (Tn,Mn)] is updated in such a

way that:

● The matches follow the (reversed) <next order, i.e., Mn <next Mn−1 <next . . . <next M0.

● No state can appear twice in E, and
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Algorithm 2 Evaluate A = (Q,∆, I, F ) over a stream S with NXT semantics
1: procedure EVAL[A](S)
2: E ← [(I,∅)]
3: while t← yieldS do
4: E′ ← [ ]
5: for (T,M) ← E.dequeue() do
6: E′ ← Update(E′, T,M, t, ●)
7: E′ ← Update(E′, T,M, t, ○)
8: end for
9: E ← E′

10: enumerate(arg minM({ j ∣ (T,M) = E[j] ∧ F ∩ T ≠ ∅ }))
11: end while
12: end procedure
13: procedure Update[A](E′, T,M, t,m)
14: T ′ ← ∅
15: for all q ∈ T ∧ (q,α,m, q′) ∈ ∆ do
16: if t ⊧ α ∧ notin(q,E′) then
17: T ′ ← T ′ ∪ { q′ }
18: end if
19: end for
20: if T ′ ≠ ∅ then
21: if m = ● then
22: E′.enqueue((T ′,M ∪ {i}))
23: else
24: E′.enqueue((T ′,M))
25: end if
26: end if
27: return E′

28: end procedure

● For every q ∈ Ti, the match Mi is the highest of all the partial runs of A that could

currently be in q.

Finally, after updating E the algorithm retrieves the highest match M (w.r.t. the <next
order) if there exists a run associated to M currently in a final state q.

It is clear to see that Algorithm 2 iterates over all states ofA (because each one appears

at most one inE), and for each one it iterates over all transitions that begin at q. Therefore,

if we assume that the transitions are indexed by their initial states, it is easy to see that the

iteration for each event takes linear time over the size of A. �

66



This result guarantees that, if the NXT-semantics is used over a unary CEPL formula,

one can efficiently evaluate the formula over any stream. Furthermore, the size of ANXT(ϕ)

is important for the performance of the evaluation. For this reason, Theorems 7.1 and 7.2

must be considered to keep the construction as small as possible. For the final part of

this section, we discuss how to compile the STRICT and MAX selection strategies. In the

following result, we show that both operators can be run by MA. Unfortunately, they do

not have the finitely ambiguous property as the NXT-operator.

Theorem 7.4. For any MA A, there is a MA ASTRICT equivalent to STRICT(A). Fur-

ther, ASTRICT is of size at most linear in the size of A.

PROOF. Consider a MA A = (Q,∆, I, F ). We will first define a MA ASTRICT =
(QSTRICT,∆STRICT, ISTRICT, FSTRICT) and then prove that it is equivalent to STRICT(A). The

set of states is defined as QSTRICT = {qm ∣ q ∈ Q ∧m ∈ {●, ○}}, the transition relation is

∆STRICT = {(pm, (α,m), qm) ∣ (p, (α,m), q) ∈ ∆)} ∪ {(p○, (α, ●), q●) ∣ (p, (α, ●), q) ∈ ∆},

the initial states are ISTRICT = {q○ ∣ q ∈ I} and the final states are FSTRICT = {q● ∣ q ∈ F}.

Basically, there are two copies of A, the first one which only have the ○ transitions, and

the second one which only have the ● ones, and at any ● transition it can move from the

first on to the second. On an execution, ASTRICT starts in the first copy of A, moving only

through transitions that do not mark the positions, until it decides to mark one. At that

point it moves to the second copy of A, and from there on it moves only using transitions

with ● until it reaches an accepting state.

Now, we prove that the construction is correct, i.e., ⟦ASTRICT⟧(S) = ⟦STRICT(A)⟧(S)
for every S. Let S be any stream. First, consider a match M ∈ ⟦STRICT(A)⟧(S). This

means that M ∈ ⟦A⟧(S) and that M has the form M = {m0,m1, . . . ,mk} with mi =
mi−1 + 1. Therefore, there is an accepting run of A of the form:

ρ ∶ q0 α1/○ÐÐ→ q1
α2/○ÐÐ→ ⋯ αm1−1/○ÐÐ→ qm1−1

αm1/●ÐÐ→ qm1

αm2/●ÐÐ→ ⋯ αmk
/●ÐÐ→ qmk
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Such that match(ρ) =M . Consider now the run over ASTRICT of the form:

ρ′ ∶ q○0 α1/○ÐÐ→ q○1
α2/○ÐÐ→ ⋯ αm1−1/○ÐÐ→ q○m1−1

αm1/●ÐÐ→ q●m1

αm2/●ÐÐ→ ⋯ αmk
/●ÐÐ→ q●mk

It is clear that all transitions of ρ′ are in ∆STRICT, because the ones with ○ are in the first

copy of A, the first one with ● passes from the first copy to the second, and the following

ones with ● are in the second copy. Therefore ρ′ is indeed run of ASTRICT over S, and

because qmk
∈ F , then q●mk

∈ F and ρ′ is an accepting run. Moreover, match(ρ′) = M ,

thus M ∈ ⟦ASTRICT⟧(S).

Now, consider a match M ∈ ⟦ASTRICT⟧(S), of the form M = {m0,m1, . . . ,mk}. It

means that there is an accepting run of ASTRICT of the form:

ρ ∶ q○0 α1/○ÐÐ→ ⋯ αm1−1/○ÐÐ→ q○m1−1
αm1/●ÐÐ→ q●m1

αm2/●ÐÐ→ ⋯ αmk
/●ÐÐ→ q●mk

Such that match(ρ) = M . Notice that ρ must have this form because of the structure

of ASTRICT, which force ρ to have ○ transitions at the beginning and ● ones at the end.

Consider then the run of A of the form:

ρ′ ∶ q0 α1/○ÐÐ→ ⋯ αm1−1/○ÐÐ→ qm1−1
αm1/●ÐÐ→ qm1

αm2/●ÐÐ→ ⋯ αmk
/●ÐÐ→ qmk

Similar to the converse case, it is clear that all transitions in ρ′ are in ∆. Therefore

ρ′ is an accepting run of A over S, and because match(ρ′) = M , it holds that M ∈
⟦STRICT(A)⟧(S).

Finally, notice that ASTRICT consists in duplicating A, thus the size of ASTRICT is two

times the size of A. �

Theorem 7.5. For any MA A, there is a MA AMAX equivalent to MAX(A). Further,

AMAX is of size at most double exponential in the size of A.

PROOF. Let A = (Q,∆, q0, F ) be a match automaton. Without lost of generality,

we assume that A is deterministic. If not, one can determinize A incurring in an extra

exponential blow-up in the number of states. Similarly to the construction of MA for the

NXT, we define the set F -types such that for every tuple t there is exactly one formula
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αt in F -types that is satisfied by t, and extend the transition relation ∆ as a function

∆(T,α,m) for every T ⊆ Q, α ∈ F -types, and m ∈ {●, ○}. Similarly, we overload the

notation of ∆ as a function such that ∆(T,α) = ∆(T,α, ●) ∪∆(T,α, ○).

We define the match automaton AMAX = (QMAX,∆MAX, IMAX, FMAX) such that QMAX = Q ×
2Q, IMAX = {(q0,∅)}, and FMAX = {(q, T ) ∈ QMAX ∣ q ∈ F and T ∩ F = ∅}. For the transition

relation ∆MAX we distinguish two cases depending on whether the transition is marking

or not. For the unmarking transition we have that ((p, T ), (α, ○), (q,U)) ∈ ∆MAX iff U =
∆(T,α)∪∆({p}, α, ●), q ∉ U and there is a formula α′ ∈ Fu(R) such that (p, (α′, ○), q) ∈
∆ and α ⊧ α′, for every (p, T ), (q,U) ∈ QMAX and α ∈ F -types. On the other hand, for the

marking transition we have that ((p, T ), (α, ●), (q,U)) ∈ ∆MAX iff U = ∆(T,α, ●), q ∉ U
and there is a formula α′ ∈ Fu(R) such that (p, (α′, ●), q) ∈ ∆ and α ⊧ α′, for every

(p, T ), (q,U) ∈ QMAX and α ∈ F -types.

Next, we prove the above, i.e., M ∈ ⟦MAX(A)⟧(S) iff M ∈ ⟦AMAX⟧(S). First, we

prove the if direction. Consider a match M such that M ∈ ⟦AMAX⟧(S). To prove that

M ∈ ⟦MAX(A)⟧(S), we first prove that M ∈ ⟦A⟧(S) by giving an accepting run of A
associated to M . Assume that the run of AMAX over S associated to M is:

ρ ∶ (q0, T0) αt1/m1ÐÐ→ (q1, T1) αt2/m2ÐÐ→ ⋯ αtn/mnÐÐ→ (qn, Tn)

Where T0 = ∅, Tn ∩ F = ∅ and ((qi−1, Ti−1), (αti ,mi), (qi, Ti)) ∈ ∆MAX. Furthermore,

q0 ∈ I and qn ∈ F . Also, from the construction of ∆MAX, we deduce that for every i there is

a formula αi such that (qi−1, (αi,mi), qi) ∈ ∆. This means that the run:

q0
α1/m1ÐÐ→ q1

α2/m2ÐÐ→ ⋯ αn/mnÐÐ→ qn

Is an accepting run of A associated to M . Now, we prove by contradiction that for every

M ′ such that M ⊂ M ′, M ′ ∉ ⟦A⟧(S). In order to do this, we define the next lemma, in

which we use the notion of partial run, which is the same as a run but not necessarily

beginning at an initial state.
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Lemma 7.2. Consider a deterministic match automaton A = (Q,∆, I, F ), a stream

S = t1, t2, . . ., a partial run σ ∶ (q0, T0) αt1/m1ÐÐ→ (q1, T1) αt2/m2ÐÐ→ ⋯ αtn/mnÐÐ→ (qn, Tn) of AMAX

over S and a partial run σ′ ∶ p0 α1/m
′

1ÐÐ→ p1
α2/m

′

2ÐÐ→ ⋯ αn/m′

nÐÐ→ pn of A over S. Then, if p0 ∈ T0
and m′

i = ● at every i for which mi = ●, it holds that pn ∈ Tn.

PROOF. This is proved by induction over the length n. First, if n = 0, then pn = p0
and Tn = T0, so pn ∈ Tn. Now, assume that the lemma holds for n − 1, i.e., pn−1 ∈ Tn−1.
Consider the case thatmn = ●. Thenm′

n = ● too, thus (pn−1, (αn, ●), pn) ∈ ∆. Furthermore,

Tn = ∆(Tn−1, αtn , ●) and therefore pn ∈ Tn, because pn−1 ∈ Tn−1. Now, consider the case

mn = ○. Either (pn−1, (αn, ●), pn) ∈ ∆ or (pn−1, (αn, ○), pn) ∈ ∆, so pn ∈ ∆(Tn−1, αtn).

Moreover, ∆(Tn−1, αtn) ⊆ Tn because of the construction of ∆MAX, therefore pn ∈ Tn. �

Now, by contradiction consider a match M ′ such that M ⊂ M ′ and M ′ ∈ ⟦A⟧(S).

Then, there must exist an accepting run of A over S associated to M ′ of the form:

ρ′ ∶ p0 α
′

1/m
′

1ÐÐ→ p1
α′2/m

′

2ÐÐ→ ⋯ α′n/m
′

nÐÐ→ pn

such that m′
i = ● at every i for which mi = ●, and there is at least one i for which mi = ○

and m′
i = ●. Consider i to be the lower position for which this happens. Because A is

deterministic, ρ′ can be rewritten as:

ρ′ ∶ q0 α1/m1ÐÐ→ ⋯ αi−1/mi−1ÐÐ→ qi−1
α′i/●ÐÐ→ pi

α′i+1/m
′

i+1ÐÐ→ ⋯ α′n/m
′

nÐÐ→ pn

Similarly, to ease visualization we rewrite ρ as:

ρ ∶ (q0, T0) αt1/m1ÐÐ→ ⋯ αti−1/mi−1ÐÐ→ (qi−1, Ti−1) αti/○ÐÐ→ (qi, Ti) αti+1/mi+1ÐÐ→ ⋯ αtn/mnÐÐ→ (qn, Tn)

In particular, the transition ((qi−1, Ti−1), (αti , ○), (qi, Ti)) is in ∆MAX, which means that

∆({qi−1}, αti , ●) ⊆ Ti. Moreover, (qi−1, (α′i, ●), pi) ∈ ∆ and, because ti ⊧ α′i, then αti ⊧ α′i
thus pi ∈ Ti. Now, by Lemma 7.2 it follows that pn ∈ Tn. But, because ρ is an accepting run,

Tn ∩F = ∅ and so pn ∉ F , which is a contradiction to the statement that ρ′ is an accepting

run. Therefore, for every M ′ such that M ⊂M ′, M ′ ∉ ⟦A⟧(S), hence M ∈ ⟦MAX(A)⟧(S).
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Next, we will prove the only-if direction. For this, we will need the following lemma:

Lemma 7.3. Consider a deterministic match automaton A = (Q,∆, I, F ), a stream

S = t1, t2, . . ., a run σ ∶ (q0, T0) αt1/m1ÐÐ→ (q1, T1) αt2/m2ÐÐ→ ⋯ αn2/mnÐÐ→ (qn, Tn) ofAMAX over S and

a state p ∈ Q. If p ∈ Tn. Then there is a run σ′ ∶ p0 α1/m
′

1ÐÐ→ p1
α2/m

′

2ÐÐ→ ⋯ αn−1/m
′

n−1ÐÐ→ pn−1
αn/m′

nÐÐ→ p

of A over S such that match(σ) ⊂ match(σ′).

PROOF. It will be proved by induction over the length n. The base case is n = 0,

which is trivially true because T0 = ∅. Assume now that the Lemma holds for n − 1.

Define the run σn−1 as the run σ without the last transition. For any state q ∈ Tn−1, let

σ′q be the run that ends in q such that match(σn−1) ⊂ match(σ′q). Consider the case

mn = ○. Then, either p ∈ ∆(Tn−1, αtn) or p ∈ ∆({qn−1}, αtn , ●). In the former scenario,

there must be a q ∈ Tn−1 and α ∈ Fu(R) such that (q, (αn,m), p) ∈ ∆ and αtn ⊧ α,

with m ∈ {●, ○}. Define σ′ as the run σ′q followed by the transition (q, (α,m), p). Then

σ′ satisfies match(σ) ⊂ match(σ′). In the latter scenario, there must be an α ∈ Fu(R)
such that (qn−1, (α, ●), p) ∈ ∆ and αtn ⊧ α. Define σ′ as σn−1 followed by the transition

(qn−1, (α, ●), p). Then σ′ satisfies match(σ) ⊂ match(σ′). Now, consider the casemn = ●.

Here, p has to be in ∆(Tn−1, αtn , ●), so there must be a q ∈ Tn−1 and α ∈ Fu(R) such

that (q, (α, ●), p) ∈ ∆ and αtn ⊧ α. Define σ′ as the run σ′q followed by the transition

(q, (α, ●), p). Then σ′ satisfies match(σ) ⊂ match(σ′). Finally, the Lemma holds for

every n. �

Consider a match M such that M ∈ ⟦MAX(A)⟧(S). This means that there is an accept-

ing run of A over S associated to M . Define that run as:

ρ ∶ q0 α1/m1ÐÐ→ q1
α2/m2ÐÐ→ ⋯ αn/mnÐÐ→ qn

Where q0 ∈ I , qn ∈ F and (qi−1, (αi,mi), qi) ∈ ∆. To prove that M ∈ ⟦AMAX⟧(S) we give

an accepting run of AMAX over S associated to M . Consider the run:

ρ′ ∶ (q0, T0) αt1/m1ÐÐ→ (q1, T1) αt2/m2ÐÐ→ ⋯ αtn/mnÐÐ→ (qn, Tn)
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Where T0 = ∅, Ti = ∆(Ti−1, αti) ∪ ∆({qi−1}, αti , ●) if mi = ○, and Ti = ∆(Ti−1, αti , ●) if

mi = ●. To be a valid run, every transition (Ti−1, αti ,mi, Ti) must be in ∆MAX, which we

prove now by induction over i. The base case is i = 0, which is trivially true because no

transition is required to exist. Next, assume that transitions up to i− 1 exist. We know that

there is an αi such that αti ⊧ αi and (qi−1, (αi,mi), qi) ∈ ∆, so that condition is satisfied.

We only need to prove that qi ∉ Ti. By contradiction, assume that qi ∈ Ti. Consider the

case that mi = ○. It means that either qi ∈ ∆({qi−1}, αti , ●) or qi ∈ ∆(Ti−1, αti). In the first

scenario, consider a new run σ to be exactly the same as ρ, but changing mi with ●. Then

σ is also an accepting run, and match(ρ) ⊂ match(σ), which is a contradiction to the

definition of the maximal semantic. In the second scenario, there must be some p ∈ Ti−1
and α ∈ Fu(R) such that (p, (α,m), qi) ∈ ∆, where m ∈ {●, ○}. Because of Lemma 7.3, it

means that there is a run σ′ over S:

σ′ ∶ p0 α
′

1/m
′

1ÐÐ→ p1
α′2/m

′

2ÐÐ→ ⋯ α′i−2/m
′

i−2ÐÐ→ pi−2
α′i−1/m

′

i−1ÐÐ→ p

Such that match(ρi−1) ⊂ match(σ′), where ρi−1 is the run ρ until transition i−1. Moreover,

because (p, (α,m), qi) ∈ ∆ we can define the run:

σ ∶ p0 α
′

1/m
′

1ÐÐ→ p1
α′2/m

′

2ÐÐ→ ⋯ α′i−1/m
′

i−1ÐÐ→ p α/mÐÐ→ qi
αi+1/mi+1ÐÐ→ ⋯ αn/mnÐÐ→ qn

Such that match(ρ) ⊂ match(σ), which is also a contradiction. Then, qi ∉ Ti for the

case mi = ○. Now, consider the case mi = ●. Assuming that qi ∈ Ti, it means that qi ∈
∆(Ti−1, αti , ●). Then, there must be some p ∈ Ti−1 and α ∈ F(R) such that (p, (α, ●), qi) ∈
∆. Alike the previous case, because of Lemma 7.3, there is a run:

σ ∶ p0 α
′

1/m
′

1ÐÐ→ p1
α′2/m

′

2ÐÐ→ ⋯ α′i−1/m
′

i−1ÐÐ→ p α/●ÐÐ→ qi
αi+1/mi+1ÐÐ→ ⋯ αn/mnÐÐ→ qn

Such that match(ρ) ⊂ match(σ), which is a contradiction. Then, qi ∉ Ti, therefore

(Ti−1, (αti ,mi), Ti) ∈ ∆MAX for every i. The above proved that ρ′ is a run of AMAX, but

to be a accepting run it must hold that Tn ∩ F = ∅. By contradiction, assume otherwise,

i.e., there is some q ∈ Q such that q ∈ Tn∪F . Then, because of Lemma 7.3, there is another
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accepting run σ of AMAX over S such that M ⊂ match(σ), which contradicts the fact that

M is maximal. Thus, Tn ∩ F = ∅ and ρ′ is an accepting run, therefore M ∈ ⟦AMAX⟧(S).

It is clear that AMAX is of size exponential in the size of A if this is deterministic, and

double exponential if not (because of the exponential cost of determinizing it). �

Probably, the most unintuitive result above is that the MAX-operator can also be evalu-

ated with MA. Similar to the NXT-operator, it seems hard to believe that there exists a MA

that can keep an unbounded number of different maximal matches with a finite number of

states. However, this can be done with finite memory but with a double exponential blow-

up in the number of states. This shows that MA is a powerful model to evaluate CEPL

formulas, and can be further exploited to evaluate selections strategies. Finally, the main

disadvantage of these two operators is that the result is not necessarily finitely ambiguous

and, therefore, we do not know how to evaluate ASTRICT and AMAX efficiently.

73



8. EVALUATION OF UNARY CEPL

In this section, we put all pieces together and present a framework for efficiently eval-

uating CEPL formulas. In light of the results of Section 7, we evaluate unary formulas

of the form NXT(ϕ), for which we know there is an efficient evaluation strategy (Corol-

lary 7.1). Although this is a fragment of CEPL, it settles the bases for a more general

framework.

In Figure 8.1, we show the evaluation cycle of a CEPL formula in our framework with

the main modules and partial results. For understanding the evaluation cycle, consider an

input formula of the form NXT(ϕ) where ϕ is a unary ecore-CEPL formula. The processing

of NXT(ϕ) starts in the Parser module, where we check if ϕ is well-formed (WF) and safe.

These conditions are important to ensure that NXT(ϕ) is streamable (Theorem 5.1) and

satisfiable. Although unsafe formulas are not necessarily unsatisfiable, if a CEP system

wants to allow unsafe formulas, it will have to assume an exponential blow-up in rewriting

ϕ into its safe version (Theorem 5.2). Therefore, for complexity reasons our framework

only receives safe formulas without losing expressive power whenever ϕ is a core-CEPL

formula (recall Theorem 5.2).

The next module (Query rewrite) rewrites a well-formed and safe formula ϕ into a

formula ϕ′ in LP-normal form. For transforming CEPL formulas into LP-normal form,

one can use the rewriting process of Theorem 5.3 which, in the worst case, can pro-

duce an exponential blow-up in the size of ϕ′. To avoid this cost, in many cases one

can apply local rewriting rules which has been extensively studied in relational database

management systems (DBMS) (Abiteboul et al., 1995; Ramakrishnan & Gehrke, 2003).

For example, formula ϕ1 in Section 2 is converted into ϕ′1 by applying a filter push on

(x.tmp > 40 ∧ x.id = 0) and (y.hum <= 25 ∧ y.id = 0), avoiding the exponential blow-up

of Theorem 5.3. As in DBMS, this approach can produce formulas in LP-normal form of

polynomial size (w.r.t. ϕ). Unfortunately, we cannot apply this technique over formulas

like ϕ6 in Section 5, maintaining the blow-up of Theorem 5.3. Despite this, formulas like
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ϕ6 are rather uncommon in practice, and therefore we can assume that local rewriting rules

will usually produce LP-formulas of polynomial size.

The third component, Compilation, receives formula ϕ′ in LP-normal form and builds

a match automaton Aϕ. For representing match automata we can use a compact data

structure (e.g. a transition table (Aho, 1990; Cox, 2007)). By Theorem 7.1, we can

construct Aϕ in polynomial time in the size of ϕ′ whenever ϕ is a core-CEPL formula.

On the contrary, if ϕ is an ecore-CEPL formula, one has to afford an exponential blow-up

with respect to the number of AND, ALL and UNLESS in ϕ (Theorem 7.2). As the number of

extended operators is rather low in practice, however, the cost of compiling ecore-CEPL

formulas should not affect the overall performance.

The last module (Evaluation) takes the MA Aϕ produced by the Compilation module

and evaluates it by using the NXT selector. For this, we can exploit the efficient evaluation

strategy of Corollary 7.1. Moreover, this uses constant time per event (polynomial w.r.t.

Aϕ). Note that the use of NXT is crucial for evaluating ϕ over the input stream efficiently:

from our current results it is not clear whether the same holds for STRICT or MAX selection

strategies.

Summing up, our framework can process queries of the form NXT(ϕ) efficiently with

time and space per item proportional to ϕ if the Query rewrite and Compilation module do

not increase the size of ϕ′ and Aϕ significantly. Given that ϕ is small with respect to the

(unbounded) input stream, one can assume constant time and space processing per-item

(i.e. without considering the size of the output). It is important to note that the design

of our framework highlights the modules that can increase the evaluation cost. As it was

argued above, formulas that are difficult to rewrite into LP-normal form or contain too

many extended operators should not be very common in practice. Still, one can consider

new techniques, models, and selection strategies for the evaluation cycle in our framework

that could overcome these pitfalls.
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FIGURE 8.1. Evaluation framework for CEPL.
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9. CONCLUSIONS AND FUTURE WORK

We have presented a formal framework for Complex Event Processing. We studied

and formalized the different operators found in the literature and the so-called selection

strategies, and we introduced a logic called CEPL that captures the main features of CEP.

Towards building a framework for evaluating this language, we provided many interest-

ing concepts and results for CEPL like syntactic restrictions (well-formed and safe), the

LP-normal form, an evaluation model (MA), translation from unary CEPL to MA, and

efficient evaluation of MA with finite ambiguity, among others. By gathering all these

results together, we proposed the first formal framework for efficiently evaluating unary

CEPL.

This thesis settles the basic foundations for CEP, stimulating many further research di-

rections. In particular, a natural next step is the study of the evaluation of non-unary CEPL

formulas, which require new insight in the rewriting of formulas and new computational

models. Furthermore, a relevant problem for the area is to provide efficient evaluation

strategies for these new computational models, or even for the full class of MA. Another

problem in this line is the design of new selection strategies. In Section 4 we introduce

three important selection strategies but one can envision many other useful strategies that

could boost the evaluation of queries.

Finally, we have studied the fundamental features of CEP languages, leaving other

features outside in order to keep the language and analysis simple. These features include

time windows, aggregation, consumption policies, among others (see (Cugola & Margara,

2012b) for a more exhaustive list). We believe that each of these features can be used to

extend CEPL in new directions to establish more complete frameworks for CEP.
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