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Abstract

One-loop corrections to the neutrino mass matrix within the MSSM with bilinear R-parity violation are 
calculated, paying attention to the approach in which an effective 3 × 3 neutrino mass matrix is used. The 
full mass matrix is block-diagonalized, it is found that second and third order terms can be numerically im-
portant, and this is analytically understood. Top–stop loops do not contribute to the effective 3 ×3 approach 
at the first order, nevertheless they contribute at the third. An improved 3 × 3 approach that includes these 
effects is proposed. A scan over parameter space is made supporting the conclusions.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

The evidence for neutrino oscillation comes from many experiments around the world [1–9]. 
The activity around neutrino physics has grown due to a more precise determination of neutrino 
oscillation parameters, specially coming from experiments connected with the reactor angle θ13

[10–14]. Global fits [15] using data from the mentioned experiments allow to extract three mixing 
angles: two large θ21 and θ23, one small θ13, and two mass scales �m2

21 and �m2
32. This infor-

mation, constitutes an experimental evidence that the Standard Model (SM) must be extended.
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If neutrinos are massive Majorana particles, lepton number violating terms must be present. 
In the Minimal Supersymmetric Standard Model (MSSM) [16] with Bilinear R-parity Violation 
(BRpV) [17], R-parity is broken via lepton number violation, introducing a bilinear term at the 
superpotential level [18–21]. Therefore, neutrino masses and mixing angles are generated via 
a low-energy see-saw mechanism, mixing neutrino flavor-eigenstates and neutralinos. Although 
this solution is appealing to explain neutrino masses and mixing angles, signals for supersym-
metry at the LHC have not been seen [22]. Since the majority of the searches are based on 
supersymmetry with bilinear R-parity conserved, there is an open window for it.

In the MSSM with R-parity violation, one neutrino mass is generated at tree-level, while the 
other two neutrinos remain massless. To reconcile theoretical predictions with the experimental 
data requires going beyond the tree-level approximation [23]. Several authors have shown the 
dependence of the neutrino masses in terms of the parameter which bilinearly violate R-parity, 
and also how to determine these from collider physics [24]. Improvements in the precision mea-
surement of the neutrino parameters [25], as it will be discussed, suggest to go beyond one-loop
order in the calculation of the neutrino masses.

The most convenient way to numerically introduce one-loop corrections to neutrino masses 
in this model is through the 7 × 7 mass matrix, which includes 4 neutralinos and 3 neutrinos. 
If this mass matrix is block-diagonalized, an effective 3 × 3 neutrino mass matrix is generated, 
and it is very convenient when an algebraical understanding is sought. Nevertheless, the 3 × 3
approach can miss important numerical effects. This motivates a more careful treatment of the 
block-diagonalization, leading to an improved 3 × 3 approach.

The paper is organized as follows. In Section 2, introductory remarks about neutrino mass 
generation in BRpV are provided. Section 3 shows how loop corrections are treated in this article. 
Section 4 develops algebraic approximations that explain the numerical effects. In Section 5, 
in order to support the algebraic calculations, a scan over parameter space has been performed. 
Finally, conclusions on the findings are provided.

2. Neutrino masses in bilinear R-parity violation

Models with BRpV include a bilinear term in the superpotential that violates simultaneously 
R-parity and lepton number. The superpotential has the following form,

W = WYuk + εab

(−μĤa
d Ĥ b

u + εiL̂
a
i Ĥ

b
u

)
, (2.1)

where in WYuk one has the usual R-Parity Conserving (hereafter, RpC) Yukawa terms. Here the 
explicit bilinear terms are shown, with μ the higgsino mass and εi the BRpV mass parameters. In 
this work trilinear R-parity violating terms are not considered, motivated by models that generate 
BRpV and not TRpV [26]. The terms shown in Eq. (2.1) induce a mixing between neutralinos 
and neutrinos, forming a set of seven neutral fermions F 0

i . The corresponding tree-level mass 
terms can be written by a 7 × 7 mass matrix as follows,

M0
N =

[
M0

χ mT

m 0

]
. (2.2)

The sub-matrix M0
χ is the usual tree-level neutralino mass matrix of the MSSM, and m is the 

BRpV mixing matrix which mix neutralinos and neutrinos. Those are given by,
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M0
χ =

⎡
⎢⎢⎢⎣

M1 0 − 1
2g′vd

1
2g′vu

0 M2
1
2gvd − 1

2gvu

− 1
2g′vd

1
2gvd 0 −μ

1
2g′vu − 1

2gvu −μ 0

⎤
⎥⎥⎥⎦ ;

m =
⎡
⎢⎣

− 1
2g′v1

1
2gv1 0 ε1

− 1
2g′v2

1
2gv2 0 ε2

− 1
2g′v3

1
2gv3 0 ε3

⎤
⎥⎦ . (2.3)

The matrix m includes the sneutrino vacuum expectation values vi . These vevs appear induced 
by the εi in the superpotential as well as by the corresponding soft bilinear terms, not shown in 
this article (for more details, see [20,27]). Eq. (2.2) can be block-diagonalized using the rotation 
matrix,

R0
bd =

[
1 − 1

2ξT ξ ξT

−ξ 1 − 1
2ξξT

]
, (2.4)

with ξ = mM0
χ

−1
. In this way, the block-diagonal mass matrix is,

Mbd,0
N =

[
M0

χ + 1
2 (mT m(M0

χ )−1 + (M0
χ )−1mT m) 0

0 −m(M0
χ )−1mT

]

≡
[

Mbd,0
χ 0

0 Mbd,0
ν

]
. (2.5)

The correction in the neutralino sector is usually ignored, while the correction in the neutrino 
sector is the well known tree-level neutrino effective mass matrix,

Mbd,0
ν = −m(M0

χ )−1mT = M1g
2 + M2g

′ 2

4 det M0
χ

⎡
⎣ Λ2

1 Λ1Λ2 Λ1Λ3

Λ2Λ1 Λ2
2 Λ2Λ3

Λ3Λ1 Λ3Λ2 Λ2
3

⎤
⎦ , (2.6)

with Λi = μvi + εivd . The matrix clearly has only one eigenvalue different from zero, which is 
experimentally unacceptable.

It is known that this problem is solved by radiative corrections. Concentrating only on loops 
with neutrinos in the external legs, one has for example,

where F 0
k are the mentioned neutral fermions and S0


 are scalars formed by the mixing between 
Higgs bosons and sneutrinos [20]. These contributions can be calculated approximately in the 
block-diagonalized basis, obtaining a generalization to the neutrino mass matrix in Eq. (2.6), 
which is customary to write as,[

Mbd(1)
] = AΛiΛj + B(Λiεj + Λjεi) + Cεiεj , (2.7)
ν ij
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where the parameter A receives tree-level contributions given in Eq. (2.6), while the parameters 
B and C are loop generated. It is also worth mentioning that the parameter C is scale invariant, 
while B is not.

As mentioned, the neutrino/neutralino tree-level mass matrix is completely diagonalized. This 
is done by applying an extra rotation to the one shown in Eq. (2.4). This is,

R0
xd =

[
N 0
0 Nν

]
. (2.8)

The matrix Nν diagonalizes the effective tree-level neutrino mass matrix given in Eq. (2.6) [21], 
and the N matrix diagonalizes the 4 × 4 neutralino mass matrix. The net effect is to have,

Md,0
N = R0

xd R0
bd M0

N R0T
bd R0T

xd =
(

Md,0
χ 0

0 Md,0
ν

)
. (2.9)

It is at this point that quantum corrections are included,

M1
N =Md,0

N + �M1
N =

(
Md,0

χ + δMχ δmT

δm Md,0
ν + δMν

)
, (2.10)

where δMχ are one-loop corrections within the neutralino 4 × 4 sub-matrix, δMν the one-loop 
corrections to the 3 × 3 neutrino sub-matrix, and δm refers to the one-loop corrections to the 
neutralino/neutrino mixing sector. The above matrix can be block-diagonalized again, obtaining 
the following result,

Mbd,1
N =

[
Mbd,1

χ 0

0 Mbd,1
ν

]
, (2.11)

where there have been defined,

Mbd,1
ν = Md,0

ν + δMν − δm
(
Md,0

χ

)−1
δmT + δm

(
Md,0

χ

)−1
δMχ̃

(
Md,0

χ

)−1
δmT (2.12)

and

Mbd,1
χ = Md,0

χ + δMχ (2.13)

Notice that the last two terms in Eq. (2.12) are of second and third order in our block-
diagonalization expansion, and thus they are susceptible to be neglected. Nevertheless, since 
the neutrino masses are several orders of magnitude smaller than the neutralino masses, the two 
terms are numerically important.

3. High order effects on neutrino masses

In order to show these effects, one-loop corrected neutrino masses in a specific supersym-
metric scenario are calculated. A few of the parameters that define this benchmark are shown in 
Table 1, where the given scalar masses correspond to the third generation. In addition, in Table 2
are shown the masses of a few relevant particles. This scenario was generated using the code 
SUSPECT [28] for the RpC part. In particular, the Higgs boson mass is 126 GeV, as measured 
by experiments [29]. In addition, SUSPECT allows the calculation for: (i) the deviation from 
unity of the ρ parameter �ρ = 7.7 × 10−6 [30,31], (ii) the anomalous magnetic moment of the 
muon �aμ = 5.7 ×10−11 [30,32], and (iii) the branching ratio for the radiative decay of a bottom 
quark B(b → sγ ) = 3.3 × 10−4 [33].
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Table 1
Supersymmetric parameters at the renormalization scale Q =
4233 GeV. Sfermion mass parameters are given for the third 
generation.

Parameter Value Units

tanβ 16.7 –
μ 3171 GeV
M1 409 GeV
M2 587 GeV
M3 5240 GeV
MQ 4436 GeV
MU 4037 GeV
MD 4668 GeV
ML 1668 GeV
MR 1964 GeV

Table 2
Part of the supersymmetric spectrum 
(in GeV).

Particle Mass

h 126
A 3168
χ0

1 405

χ+
1 626

ν̃τ 1667
τ̃1 1666
t̃1 4142
b̃1 4583

The BRpV part is handled by our own code. Since BRpV parameters are much smaller than 
the supersymmetric scale represented by the Higgsino mass parameter μ, the extra contributions 
to the above loop quantities from BRpV are negligible. The selected BRpV parameters are given 
in Table 3. Note that the values for εi are large enough to make the radiative corrections to 
neutrino masses very important. The experimental values for the neutrino parameters are given 
in Table 4.

First of all, a study on how important are the different loops in the determination of the neu-
trino parameters has been performed. In Fig. 1 one works in the plane formed by the atmospheric 
�m2

23 and the solar �m2
12 neutrino mass parameters. In vertical and horizontal dashed lines 

the 3σ experimental limits for these parameters are shown. At approximately the center of this 
allowed region one has the predictions from our scenario using the full 7 × 7 mass matrix, rep-
resented by a dark (black) diamond. Flowing from this point one has several arrows ending in 
circles (red), one for each loop. What it is done here is to omit in every entry of the 7 × 7 mass 
matrix the contribution from the corresponding loop, and show the prediction for the mass dif-
ferences in these conditions.

The contributions from the bottom–sbottom, neutralino–neutral scalar, and chargino–charged 
scalar loops are large as expected (Fig. 1-top). The not-so-known effect is the importance of the 
top–stop loops, which are large enough to move the prediction outside the 3-σ region when it 
is not included (Fig. 1-bottom). The reason for the unexpectedness of this result is that these 
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Table 3
BRpV parameters.

Parameter Value Units

ε1 0.162 GeV
ε2 −0.043 GeV
ε3 0.192 GeV
Λ1 0.153 GeV2

Λ2 0.178 GeV2

Λ3 0.067 GeV2

Table 4
Experimental neutrino observables.

Observable Central value 3σ exp. value Units

�m2
atm 2.56 × 10−3 2.31–2.74 × 10−3 eV2

�m2
sol 7.62 × 10−5 7.12–8.20 × 10−5 eV2

sin2 θatm 0.639 0.36–0.68 –
sin2 θsol 0.305 0.27–0.37 –
sin2 θrea 0.024 0.017–0.033 –

loops do not contribute to the neutrino masses in the 3 × 3 approach, which is very popular. 
The contribution by these loops appears through the last term in Eq. (2.12), which is of third 
order. As explain in the next section, this contribution is proportional to the top quark Yukawa 
coupling and needs the presence of the bottom–sbottom loops as well. One may also see that in 
this particular scenario, the 3 × 3 approximation does not work since it gives a prediction for the 
solar and atmospheric mass squared parameters which are off by several orders of magnitude, 
represented by a cross (blue).

Second of all, in Fig. 2 a similar process is performed. This time a specific loop in a given 
entry in the 7 × 7 mass matrix is omitted. For the arrows ending in a square (magenta), one is 
omitting all the loops at each (3, 3), (3, 4) and (4, 4) matrix elements. For the arrows ending 
in a circle (red), one is omitting the up-sup loops for the same matrix elements. Finally, for the 
arrows ending in a triangle (blue), one is omitting all the loops except up-sup, also for the same 
matrix elements. The lesson draw from the figure is that the importance of the top–stop loops 
lies in the higgsino section of the mass matrix. This is clear since the corrections in that sector 
are proportional to the top quark Yukawa coupling.

When it is convenient to work with a 3 × 3 neutrino mass matrix, the second and third order 
terms in Eq. (2.12) should be included, because they are numerically important. Once that is 
done, the precision obtained with the 7 × 7 approach is recovered. In Table 5 the prediction for 
the neutrino observables in the same scenario introduced before is shown. In the second and third 
column the usual 7 × 7 and 3 × 3 approaches are shown. In the last column the extra terms in 
Eq. (2.12), calling the approach as 3 × 3full, is included. It is clear the recovery in precision.

The second order is given by the third term in Eq. (2.12). In the chosen scenario, this term is 
also very important. That can be understood from Fig. 1-top and Fig. 2. In Fig. 1-top the effect of 
the first order is seen by the cross (blue). The fact that this prediction is so small is an indication 
that this first order effect is also small. On the other hand, the effect of the third order seen in 
Fig. 2, although large when compared to experimental errors, is small compared to full expansion 
(first plus second plus third order), therefore, the second order is very important.
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Fig. 1. Influence of loop corrections on �m2
atm and �m2

sol in the whole 7 × 7 mass matrix. The lower figure is a zoom-in 
of the top one.

Fig. 2. Influence of loop corrections on �m2
atm and �m2

sol in a given matrix element of the 7 × 7 mass matrix. (For 
interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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Table 5
Neutrino observables calculated in the different approaches.

Observable 7 × 7 3 × 3 3 × 3full

�m2
atm 2.56 × 10−3 2.02 × 10−6 2.56 × 10−3

�m2
sol 7.62 × 10−5 1.53 × 10−8 7.57 × 10−5

sin2 θatm 0.639 0.839 0.640

sin2 θsol 0.305 0.442 0.303

sin2 θrea 0.024 0.407 0.024

4. Algebraic approximations

Here, approximated algebraic expressions for second and third order terms from the top–stop 
contribution to the solar mass are found, in order to better understand the numeric results shown 
in the previous section. These numerical calculations show that top–stop loops contribute impor-
tantly.

The contribution from top–stop loops to the second order term in Eq. (2.12) is studied. In 
the higgsino sector the relevant matrix elements of the inverse neutralino mass matrix, following 
Appendix B is,(

M0
χ

)−1
34 = (

M0
χ

)−1
43 ≈ − 1

μ
. (4.14)

Therefore,

−[
δmM−1

χ0 δmT
]
ij

= 1

μ
[δmi3δmj4 + δmi4δmj3]ij = 1

μ

(
δmtt̃

3,Λ

)(
δmtt̃

4,Λ

)
ΛiΛj , (4.15)

and it does not contribute to the solar mass, since it is proportional to ΛiΛj . In fact, since the 
top–stop coupling to neutrinos does not include ε terms, none of the quantities δmtt̃

ij will produce 
a contribution to the solar mass. Thus, third order term is studied next.

The third order term in Eq. (2.12), given by

δm
(
Md,0

χ

)−1
δMχ

(
Md,0

χ

)−1
δmT , (4.16)

is written in the basis where the tree-level neutralino mass matrix has already been diagonalized. 
If work is to be done in the original basis instead, the term to analyze is,

δm
(
M0

χ

)−1
δMχ

(
M0

χ

)−1
δmT , (4.17)

where δm (and δMχ̃ ) in Eq. (4.16) is written in the diagonal basis, while δm (and δMχ̃ ) in 
Eq. (4.17) is written in the original basis. The same notation is used for both out of simplicity.

In order to algebraically understand the issues mentioned in the previous section a few ap-
proximations are performed. First, notice that down-type quarks contribute to δm with a term 
proportional to εi , while up-type quarks do not, as can be seen from Appendix A. Thus, in this 
approximation,

(δm)ij = δmi3δj3. (4.18)

Second, notice that the (4, 4) matrix element in the neutralino sector makes a strong numerical 
effect on the neutrino parameters, and up-type quarks contribute to it. To isolate this effect it is 
assumed,
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(δMχ)ij = δMχ,44δi4δj4. (4.19)

With this, the contribution from top–stop loops to the third order term in Eq. (2.12) is,[
δm

(
M0

χ

)−1
δMχ

(
M0

χ

)−1
δmT

]
ij

≈ δMtt̃
χ,44

(
M0

χ

)−2
34

(
δmbb̃

i3

)(
δmbb̃

j3

)
≈ δMtt̃

χ,44

(
M0

χ

)−2
34

[
δmbb̃

3,ΛΛi + δmbb̃
3,εεi

]
× [

δmbb̃
3,ΛΛj + δmbb̃

3,εεj

]
. (4.20)

Approximating further the εε term is,

[
δm

(
M0

χ

)−1
δMχ

(
M0

χ

)−1
δmT

]εε
ij

≈
[

nch
2
t

32π2
× 2 × 2μ

][
− 1

μ

]2[ nch
2
b

64π2μ
× 2 × 2μ

]2

εiεj

= 2n3
ch

2
t h

4
b

(16π2)3μ
εiεj ≈ n3

cg
6m2

t m
4
b

4(16π2)3s2
βc4

βm6
Wμ

εiεj

≈ 10−2
t4
βεiεj

μ
eV, (4.21)

which gives the same order of magnitude of the solar mass squared difference, thus it should not 
be neglected.

5. General scan over parameter space

In order to see the 0 of the different approximations a general scan over the parameter space 
was made. As it was explained in Section 3 the code SUSPECT [28] was used for the running 
of the RpC supersymmetric parameters, and our own code for the neutrino observables from the 
R-parity violating parameters (since R-parity violation is small, the use of MSSM RGEs for the 
RpC parameters is a good approximation). Randomly selected values for the RpC parameters at 
the GUT scale are generated and SUSPECT is used to find their counterpart at the weak scale, 
including a correct electroweak symmetry breaking. At this point the following cuts are added: 
the Higgs mass, 124 < mh < 126 GeV, �ρ, �aμ, B(b → sγ ) (see first paragraph in Section 3). 
Then, randomly generated values for the RpV parameters are added to the 0 parameters, and with 
all of them a seed point in parameter space at the weak scale is defined. Using an implementation 
of the Markov chain [34] and starting from the seed point just described, a movement in steps 
is implemented, minimizing a χ2 function that includes neutrino experimental parameters only 
(mass squared differences and mixing angles) towards a final point that satisfy neutrino physics. 
Finally, cuts on the masses of the following supersymmetric particles are implemented mχ+

1
>

600 GeV, mχ0
1

> 300 GeV, m

̃
> 1 TeV, mq̃ > 2 TeV, mg̃ > 2 TeV [35,36].

Following Section 3, some of the parameters at the weak scale that define the points that 
satisfy all cuts lie in intervals described in Table 6. Similarly, the interval for some of the physical 
masses are indicated in Table 7. The high value for the squark masses (and soft mass parameters 
as well) is due to the Higgs mass, which needs high squarks masses in order to reach the value 
mh ∼ 125 GeV. For the same reason (although contributing at two loops), the gluino mass is also 
high: mg̃ > 3500 GeV including radiative corrections.

In Fig. 3 the 0 of the 3 × 3 approximation in the μ–tanβ plane is shown. Different colors 
according to the ratio �m2

sol(3×3)/�m2
sol(7×7) are displayed (in principle), i.e., the solar mass 

squared difference calculated with the 3 ×3 approximation in comparison with the same neutrino 
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Table 6
Intervals for each parameters at the low scale.

Parameter Minimum Maximum Units

tanβ 9.11 48.8 –
μ 655 4495 GeV
M1 313 897 GeV
M2 567 1597 GeV
M3 3296 5952 GeV
MQ 2862 6093 GeV
MU 1616 5834 GeV
MD 2427 6458 GeV
ML 1007 5176 GeV
MR 1024 4899 GeV
ε1 −0.117 0.158 GeV
ε2 −0.235 0.303 GeV
ε3 −0.156 0.277 GeV
Λ1 −0.102 0.112 GeV2

Λ2 −0.118 0.124 GeV2

Λ3 −0.130 0.116 GeV2

Table 7
Part of the supersymmetric spectrum (in GeV).

Particle Minimum Maximum

h 124 126
A 1097 4128
χ0

1 310 897

χ+
1 601 1651

ν̃τ 1005 5176
τ̃1 1001 4800
t̃1 2973 6234
b̃1 3216 6559

observable calculated with the full 7 × 7 matrix. It is seen that the solar mass calculated with the 
3 × 3 approximation is always off by more than 50%. In fact, it is observed in the scan that it is 
always smaller, and very often the error is much larger than 50%. Considering the experimental 
errors in the measurement of the solar mass, the 3 × 3 approximation is not reliable anymore.

In Fig. 4 a similar comparison is made, but this time for the solar mass calculated with the 3 ×
3full approximation. Furthermore, displayed are four quadrants that refer to four different values 
for the error: 0.1%, 1%, 2%, and 5%. In the lower-right frame (5%) it is seen that the 3 × 3full

approximation is much better than the usual 3 × 3: almost all the time the solar mass lies within 
5% with respect to the calculated with the 7 ×7 matrix. At the level of 0.1% (upper-left), even the 
3 × 3full approximation fails in comparison with 7 × 7. In addition, from the sequence of frames 
in Fig. 4 it can be concluded that the 3 × 3full is more reliable at high values of tanβ . This can be 
understood from the fact that at high values of tanβ the bottom quark Yukawa coupling is larger 
and, therefore, bottom quark effects are more 0. This makes the 3 × 3full approximation more 
reliable, and simultaneously the 3 × 3 approximation less reliable, at high values of tanβ .

Finally in Fig. 5 it is seen the effect of the up type quarks and squarks on the solar mass, 
displayed in the same μ– tanβ plane. Notice that these loops contribute to the solar mass only 
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Fig. 3. Solar mass squared difference calculated with the 3 × 3 approximation, in comparison with the one calculated 
with the 7 × 7 matrix.

Fig. 4. Solar mass squared difference calculated with the 3 × 3full approximation, in comparison with the one calculated 
with the 7 × 7 matrix.

via the third order term. In the scan the effect of removing all together the up-sup loops from the 
7 × 7 matrix is shown, and a 0 with the solar mass calculated with the full 7 × 7 matrix is done. 
In most of the points the effect of the up-sup loops is large (larger than 5% in the figure).
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Fig. 5. Effect of the removal of the up-type quark and squark loops.

6. Conclusions

It was shown that the 3 × 3 approach in the calculation of neutrino masses in the MSSM 
with BRpV, in the light of the present accuracy of the experimental results, sometimes does not 
give an acceptable answer. This was understood by studying the 3 × 3 second and third order 
terms in the block-diagonalization of the 7 × 7 mass matrix. When it is convenient to work with 
3 × 3 matrices, it was shown also that keeping these terms gives a very similar result compared 
to the ones extracted from the 7 × 7 neutrino mass matrix. In addition, in the 3 × 3 approach, the 
top–stop loops do not contribute, nevertheless, they can be numerically important. These loops 
contribute through the already mentioned third order term, and it was shown that the contribution 
is dependent on the bottom as well as the top quark Yukawa couplings. The second order term in 
Eq. (2.12) can also be very important. In fact, a scenario was chosen where it is crucial. All these 
issues motivate a two-loop calculation of neutrino masses in this model. A scan over parameter 
space is made to show that the conclusions are general, and not driven by the chosen point shown 
in Section 3. Most of these numerical effect come from the high value of the Higgs boson mass.
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Appendix A. Squark loop contributions

A.1. Top–stop loops in δMχ

It is numerically observed that among the 16 matrix elements of δMχ , the (4, 4) is the one 
that gives the largest contribution. In addition, the top–stop loops have an important effect on 
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this matrix element. In order to algebraically understand the phenomena, this contribution is 
calculated. The coupling between neutral fermions and top–stop quarks is,

= i

[
Otnt̃

Ljk

(1 − γ5)

2
+ Otnt̃

Rjk

(1 + γ5)

2

]
,

with

Otnt̃
Ljk = ηj

4gtW

3
√

2
N ∗

j1R
t̃
k2 − ηjhtN ∗

j4R
t̃
k1,

Otnt̃
Rjk = − g√

2

(
Nj2 + 1

3
tWNj1

)
Rt̃

k1 − htNj4R
t̃
k2, (A.1)

and where ht is the top quark Yukawa coupling, Rt̃ is the (assumed real) 2 × 2 rotation matrix 
that diagonalizes the stop quark mass matrix, N is the (assumed real) 7 × 7 rotation matrix that 
diagonalizes the neutralino sector, and ηj is the sign of the corresponding fermion j . Notice 
that the complex conjugated N ∗ is kept only for reference, since one assumes it is real. If this 
coupling is specialized to the case when the neutral fermion is a neutralino one finds,

= i

[
O

tχt̃
Ljk

(1 − γ5)

2
+ O

tχt̃
Rjk

(1 + γ5)

2

]
,

with

O
tχt̃
Ljk = ηj

4gtW

3
√

2
N∗

j1R
t̃
k2 − ηjhtN

∗
j4R

t̃
k1,

O
tχt̃
Rjk = − g√

2

(
Nj2 + 1

3
tWNj1

)
Rt̃

k1 − htNj4R
t̃
k2. (A.2)

In this case, N is the (real) 4 ×4 rotation matrix that diagonalizes the neutralino mass sub-matrix, 
and ηj is the sign of the j -th neutralino mass. The relevant loop is formed with those couplings,

= iΣtt̃
ij

(
p2),

with,

Σtt̃
ij

(
p2) = nch

2
t Ni4Nj4

16π2

2∑
k=1

[
mtR

t̃
k1R

t̃
k2(ηiPL + ηjPR)B

ptt̃

0

− /p
(
Rt̃2

k1ηiηjPL + Rt̃2
k2PR

)
B

ptt̃

1

] + ... (A.3)

Here the three dots mean that only the terms proportional to h2
t are shown. Also, the fact that the 

matrix N is real was already used.
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When evaluating δMij
χ it should be understood that in the basis where the neutralinos are 

diagonal, one wants to evaluate the neutralino mass at p2, and symmetrize over i and j . Thus,

δMij
χ = nch

2
t Ni4Nj4

32π2

2∑
k=1

{
−1

2
mtR

t̃
k1R

t̃
k2(ηi + ηj )
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B

χi t t̃

0 + B
χj t t̃

0

)

+ 1

2

(
Rt̃2

k1ηiηj + Rt̃2
k2

)(
mχ0

i
B

χi t t̃
1 + mχ0

j
B

χj t t̃

1

)}
,

= nch
2
t Ni4Nj4

32π2

2∑
k=1

{
1

2
mtst̃ ct̃ (−1)k(ηi + ηj )

(
B

χit t̃
0 + B

χj t t̃

0

)

+ 1

2

(
c2
t̃
ηiηj + s2

t̃

)(
mχ0

i
B

χi t t̃
1 + mχ0

j
B

χj t t̃

1

)}
. (A.4)

The contribution to the (4, 4) neutrino/neutralino mass matrix element is therefore,

δM44
χ = nch

2
t N

2
44

32π2

2∑
k=1

{
2mtst̃ ct̃ (−1)kη4B0

(
m2

χ0
4
;m2

t ,m
2
t̃k

) + mχ0
4
B1

(
m2

χ0
4
;m2

t ,m
2
t̃k

)}
,

(A.5)

which is an approximation for the top–stop loop contribution to δM44
χ .

A.2. Bottom–sbottom loops in δMχ

Bottom–sbottom loops contribute importantly to δMχ , and through it, also contribute impor-
tantly to the third term in Eq. (2.12). Bottom–sbottom loops contribute importantly to δMν too, 
but they are not the focus of this study. The neutral fermion coupling to bottom–sbottom quarks 
is,

= i

[
Obnb̃

Ljk

(1 − γ5)

2
+ Obnb̃

Rjk

(1 + γ5)

2

]
,

with

Obnb̃
Ljk = −ηj

2gtW

3
√

2
N ∗

j1R
b̃
k2 − ηjhbN ∗

j3R
b̃
k1,

Obnb̃
Rjk = g√

2

(
Nj2 − 1

3
tWNj1

)
Rb̃

k1 − hbNj3R
b̃
k2, (A.6)

and where hb is the bottom quark Yukawa coupling, Rb̃ is the (assumed real) 2 × 2 rotation 
matrix that diagonalizes the sbottom quark mass matrix, N is the already defined (and real) 
7 × 7 rotation matrix that diagonalizes the neutralino sector, and ηj is the already defined sign 
of the corresponding fermion j . Specializing this coupling to the case when the neutral fermion 
is a neutralino, one finds,
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= i

[
O

bχb̃
Ljk

(1 − γ5)

2
+ O

bχb̃
Rjk

(1 + γ5)

2

]
,

with

O
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2
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k1,

O
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Rjk = g√

2

(
Nj2 − 1

3
tWNj1

)
Rb̃

k1 − hbNj3R
b̃
k2, (A.7)

and where N is the already defined (real) 4 × 4 rotation matrix that diagonalizes the neutralino 
mass sub-matrix. The bottom–sbottom loops are,

= iΣbb̃
ij

(
p2),

where

Σbb̃
ij

(
p2) = nch

2
bNi3Nj3

16π2

2∑
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k2PR

)
B

pbb̃

1

] + ... (A.8)

and again, only the terms proportional to h2
b are shown. The contribution to δMij

χ is therefore,

δMij
χ = nch

2
bNi3Nj3

32π2

2∑
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mbR
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. (A.9)

The contribution to the (4, 4) neutrino/neutralino mass matrix element is therefore,

δM44
χ = nch

2
bN

2
43

32π2

2∑
k=1

{
2mbsb̃cb̃

(−1)kη4B0
(
m2
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2
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) + mχ0
4
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(
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χ0
4
;m2

b,m
2
b̃k

)}
,

(A.10)

which is an approximation for the bottom–sbottom loop contribution to δM44.
χ
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A.3. Top–stop loops in δm

In δm one has mixing between neutralinos and neutrinos. Therefore, to find the quantum 
corrections in this region of the mass matrix the neutralino–top–stop coupling in Eq. (A.2) is 
needed. Also, to specialize the general coupling in Eq. (A.1) to the neutrino–top–stop coupling 
is needed. One finds,

= i

[
Otνt̃

Ljk

(1 − γ5)

2
+ Otνt̃

Rjk

(1 + γ5)

2

]
,

with
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2
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2

(
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3
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Rk Λj . (A.11)

In the last equalities, the Õ couplings are defined as,
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3
√

2
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2
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)
+ Rt̃

k2htξ4, (A.12)

and the ξij and ξi parameters are defined in Appendix C. The loops contributing to δm are,

= iΣtt̃
i+4,j

(
p2),

with
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1

] + ... (A.13)

where only terms proportional to the Yukawa coupling squared are kept. The above leads to the 
following contribution to δm,

δmtt̃
ij = nch

2
t ξ4Nj4

64π2
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k=1

{
mtst̃ ct̃ (−1)k(ηi + ηj )

[
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Λi . (A.14)

From this result one learns that the second order term in Eq. (2.12) will never generate a solar 
neutrino mass from top–stop loops. This last conclusion arises because there is no term propor-
tional to εi in Eq. (A.14).
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A.4. Bottom–sbottom loops in δm

As it was mentioned before, in δm one has mixing between neutralinos and neutrinos. The 
contribution from bottom–sbottom loops to this quantity starts with the neutral fermion coupling 
to bottom–sbottom quarks, which is given in Eq. (A.6). Specializing that coupling to the case 
when the neutral fermion is a neutrino one finds,

= i

[
Obνb̃

Ljk

(1 − γ5)

2
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2

]
,
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In the last equalities, the Õ couplings are defined as,
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k2. (A.16)

In addition, the neutralino coupling to bottom–sbottom, given in Eq. (A.7), is needed. The 
bottom–sbottom loops contributing to δm are therefore,

= iΣbb̃
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(
p2),

with
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] + ... (A.17)

where again only terms proportional to the Yukawa coupling squared are kept. The above leads 
to the following contribution to δm,
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From this result one learns that the second order term in Eq. (2.12) can generate a solar neutrino 
mass from bottom–sbottom loops, because of the term proportional to εi in Eq. (A.18). But 
that fact is known. More importantly, one learns that the top–stop loops can contribute to the 
solar mass through the third order term in Eq. (2.12), in combination with the bottom–sbottom 
loops.

Appendix B. Inverse neutralino mass matrix

For the reader’s benefit, the inverse of the tree-level neutralino mass matrix is given. Its matrix 
elements are equal to,

(
M0

χ

)−1 = 1

detMχ0

[
Igg Igh

Ihg Ihh

]
, (B.1)

with the following expressions for each sub-matrix,

Igg =
[−M2μ

2 + 1
2g2vuvdμ 1

2gg′vuvdμ

1
2gg′vuvdμ −M1μ

2 + 1
2g′ 2vuvdμ

]
,

I gh =
[− 1

2g′vuM2μ
1
2g′vdM2μ

1
2gvuM1μ − 1

2gvdM1μ

]
,

Ihh =
[

x − 1
4 (g2M1 + g′ 2M2)v

2
u M1M2μ − 1

4 (g2M1 + g′ 2M2)vuvd

M1M2μ − 1
4 (g2M1 + g′ 2M2)vuvd − 1

4 (g2M1 + g′ 2M2)v
2
d

]
, (B.2)

and Ihg = (I gh)T .

Appendix C. Approximated neutralino/neutrino rotation matrix

The neutralino/neutrino 7 × 7 mass matrix is diagonalized, in first approximation, by

N ≈
[

N NξT

−Nνξ Nν

]
(C.1)

where N diagonalizes the 4 × 4 neutralino sub-matrix, Nν diagonalizes the 3 × 3 neutrino sub-
matrix, and the 3 × 4 matrix ξ is part of the block-diagonalization described in Eq. (2.4). The 
parameters ξij = (m M−1

0 )ij are very important and have simple expressions,

χ
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ξi1 = g′M2μ

2 detMχ0
Λi, ξi2 = gM1μ

2 detMχ0
Λi,

ξi3 = (g2M1 + g′ 2M2)vu

4 detMχ0
Λi − εi

μ
, ξi4 = − (g2M1 + g′ 2M2)vd

4 detMχ0
Λi. (C.2)

One defines also the reduce notation ξi1 = ξ1Λi , ξi2 = ξ2Λi , ξi3 = ξ3Λi − εi/μ, and ξi4 = ξ4Λi .
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