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Abstract. We study mappings between Riemannian 2-manifolds which have constant principal
stretching factors (cps-mappings). Such mappings f can be described in terms of the relationship
between the geodesic curvature of the curves of principal strain at p and that of their images at f(p).
In the context of local coordinates this relationship takes the form of a nonlinear hyperbolic system,
the blow-up properties of which depend on the Gaussian curvatures of the two manifolds. We use
the theory of such systems to study global existence when both manifolds are the hyperbolic plane
H
2 and obtain a simple description of all cps-mappings of H

2 onto itself. We also obtain a distortion
result for disks in H

2 as well as some nonexistence results for cps-mappings of the Euclidean plane
onto certain classes of manifolds. In addition, our treatment of cps-mappings in H

2 yields, virtually
as a corollary, a generalization of a theorem of Epstein to the effect that a curve in hyperbolic n-space
whose geodesic curvature is bounded by 1 must be simple.
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1. Introduction. Consider a thin liquid film which upon solidification acquires
a cryptocrystalline structure; that is, at each point a suitably oriented infinitesimal
square of the original liquid becomes an (again, suitably oriented infinitesimal) rect-
angular crystal whose side lengths are constant multiples of the side length of the
square. Such a process produces a deformation of the surface originally formed by
the liquid, and in this paper we examine the class of deformations—those having
constant principal strains—that can be realized in this manner. It turns out that the
associated mappings are governed by hyperbolic systems of partial differential equa-
tions, a circumstance which in retrospect is not surprising since one would expect that
singularities, in higher derivatives of the deformation, for example, propagate along
the sides of the microscopic crystals, that is, along the associated curves of principal
strain. This hyperbolicity in conjunction with the additional element of nonlinearity
underlies most of what follows.
To give an idea of some of the relevant issues, we briefly describe the situation in

the planar context (see [Ge1] for further details). Let 0 < m1 < m2. A differentiable,
orientation preserving mapping f of a domain U ⊂ R

2 into R
2 has constant principal

stretches m1, m2 if there are functions θ, θ on U such that its Jacobian Jf satisfies

Jf = T (−θ)S(m1,m2)T (θ),(1.1)

where

T (θ) =

[
cos θ sin θ
− sin θ cos θ

]
and S(m1,m2) =

[
m1 0
0 m2

]
.

Throughout, such f will be called (m1,m2)-mappings, or less specifically cps-
mappings (“cps” for constant principal strain). This direct manner of expressing the
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condition that a mapping has constant principal stretches m1,m2 turns out to be
rather uninformative, it being far better to work with the compatibility conditions for
a matrix function to be a Jacobian; for this reason one adds the additional hypothesis
that Jf be locally Lipschitz continuous on U . (See the first paragraph of section 5
for comments about this regularity assumption.) A straightforward calculation shows
that a necessary and sufficient condition that locally Lipschitz functions θ and θ
give the Jacobian of an (m1,m2)-mapping (in a simply connected domain) via the
formula (1.1) is that

D1(m1θ −m2θ) = 0 and D2(m2θ −m1θ) = 0(1.2)

hold almost everywhere (a.e.), where D1 and D2 denote differentiation in the direc-
tions eiθ and ieiθ, respectively. These equations relate the curvatures of the curves
(to be referred to henceforth as i-characteristics) along which the stretching factor is
mi and their images. Indeed, if the curvature of the former at p ∈ U is κi and that of
the latter at f(p) is κi, then (1.2) simply says that κi = κi/mj , where {i, j} = {1, 2}.
These equations constitute a genuinely nonlinear diagonal hyperbolic system for the
pair of functions θ, θ, so that, in light of a general principle established by Lax [L],
one expects cps-mappings to display a marked tendency to form singularities. Specif-
ically, the blow-up law for system (1.2) says, in the case of sufficiently differentiable
mappings (and actually for all cps-mappings in the appropriate weak sense), that
at each point p the derivative of κi in the direction of the j-characteristic through
p and toward the concave side of the i-characteristic through this point is κ2

i , from
which it follows at once that the curvatures of both of the characteristics of f at p
are bounded above by 1/dist(p, ∂U). Two immediate consequences of this are (i) a
cps-analogue of Liouville’s theorem—the only cps-mappings of the entire plane onto
itself are affine and (ii) the compactness of the class of all (m1,m2)-mappings of U
into R

2 with respect to the topology of uniform convergence of the first-order deriva-
tives on compact subsets. This blow-up principle also allows one to show that the
radius of the largest concentric subdisk of the unit disk ∆ whose image under all

(m1,m2)-mappings f : ∆→ R
2 is convex is

(
m1

m2

)2
. In fact, in conjunction with (1.2)

the growth law for the κi plays a decisive role in the analysis of other aspects of cps-
mappings and of the intimately related “principal strain line inclination function” θ
(whose integral curves together with their orthogonal trajectories form what is known
in plasticity and optimum structure theory—see [Hil] and [He]—as Hencky–Prandtl
nets), such as boundary behavior [Ge3], [Ge4], the nature and distribution of isolated
singularities [Ge3], and the determination of all cps-self-homeomorphisms of certain
domains [Ge4]. A number of these properties of cps-mappings are strikingly similar
to their conformal analogues.
In the present paper we examine some of these issues in the context of 2-dimensio-

nal manifolds. We begin in section 2 by establishing the counterparts of (1.2) and the
blow-up law, whose formal derivations are somewhat more involved than in the pla-
nar case. In section 3 we discuss the analytic details necessary to deal with questions
of global existence and behavior, and in addition analyze the relationship between
cps-mappings and a generalization of Hencky–Prandtl nets in the constant Gaus-
sian curvature context; more than anything these considerations involve appropriate
rewriting of the equations derived in section 2 in coordinate form so as to make mani-
fest the exact nature of the underlying hyperbolicity. In section 4 we apply the results
of section 3 first to show that in certain situations there exist no globally defined
cps-mappings and then, in the special case of the hyperbolic plane H

2, to do the
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following: (i) completely describe the (wide) class of cps-mappings of H
2 onto itself,

(ii) prove a generalization of a theorem of Epstein [E1], [E2] about the curvature of
self-intersecting curves in hyperbolic n-space H

n, and (iii) derive an analogue for H
2

of the planar radius of convexity result mentioned in the preceding paragraph.
In the planar context one could consider in addition to cps-mappings other sim-

ilarly defined classes such as the one consisting of mappings with Jacobian of the
form

Jf = T (−θ)S(m1(θ, θ),m2(θ, θ))T (θ)

for any given pair of everywhere distinct positive functionsm1(θ, θ),m2(θ, θ) of period
π in each variable (that is, mappings for which the principal strains are given functions
of the directions of the principal strain lines and their images). Such a generalization is
not possible in context of Riemannian 2-manifolds owing to the absence of an absolute
reference direction. Indeed, since the principal stretches (and combinations of them)
are the only intrinsically definable first-order parameters associated with a mapping
between manifolds, in this context there are only two natural classes of mappings
defined by point-independent conditions on their Jacobians: conformal mappings and
(m1,m2)-mappings. (We are considering here only families of mappings for which,
loosely speaking, the set of possible Jacobians at each point is governed by two pa-
rameters.) For this reason, cps-mappings constitute a natural object of study above
and beyond their interpretation as deformations arising in certain physical situations.

2. Formal considerations. Let V and V be C∞ Riemannian 2-manifolds, both
metric tensors being denoted by 〈·, ·〉, which we sometimes subscript with V or V for
additional clarity. Let U ⊂ V be a domain. The principal stretches (henceforth to be
called principal strains in slight abuse of accepted terminology) of a mapping f : U →
V at a point p ∈ V at which the Jacobian transformation Jf (p) is nonsingular are the
square roots of the eigenvalues of the transformation J∗

f (p)Jf (p) of the tangent space
of V at p onto itself. Let U ⊂ V be a domain andm1,m2 be distinct positive constants.
Then f : U → V is an (m1, m2)-mapping if Jf is locally Lipschitz continuous and
the principal strains of f are everywhere given by the pair (m1, m2). As one can
imagine from what was said above about the planar case, the direct expression of
this condition as a nonlinear 2 × 2 system of partial differential equations in terms
of local coordinate systems for V and V is not very revealing, although as we shall
explain in section 3 a small amount of information can be gleaned from it. Here also
it is much more appropriate to consider a derived higher order system, specifically
a second-order one—which has an elegant coordinate-free formulation—in which the
geometric structures of V and V present themselves in a most transparent way.
In dealing with the differential geometric aspects we shall, apart from minor

variations, adhere to the notation of Hicks [Hic] . In general, the counterpart for V of
any object A associated with V will be denoted by A. The Lie bracket of two vector
fields X1, X2 will be denoted as usual by [X1, X2]. It is clear that if U ⊂ V is a simply
connected domain, then f : U → V is an (m1, m2)-mapping if and only if its Jacobian
Jf is locally Lipschitz continuous and there exist locally Lipschitz continuous fields
X1, X2 on U such that 〈Xi, Xj〉 = δij and 〈JfXi, JfXj〉 = mimjδij . The fields X1, X2

are principal direction fields for f .
The unit vector JfXi/mi will be denoted by Xi. The covariant derivative in the

direction X of the vector field Y will be denoted by DXY . In addition, DXi
(DXi

) will

be abbreviated by Di (Di), and the same symbols DXα, Diα will be used to denote
the derivative of the scalar function α in the corresponding directions. We shall use
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the following facts (see [Hic]). If f : U → V is a diffeomorphism and X, Y , and Z are
vector fields on V, then

Jf [X,Y ] = [JfX, JfY ],(2.1)

DXY −DY X = [X,Y ],(2.2)

and

DX〈Y,Z〉 = 〈DXY,Z〉+ 〈Y,DXZ〉.(2.3)

Furthermore, if Y is a vector field and α, β are scalar functions, then

DX(αY ) = (DXα)Y + αDXY(2.4)

and

DαX+βZ(Y ) = αDXY + βDZY.(2.5)

Let {X1, X2} be an orthonormal pair of locally Lipschitz vector fields on some
domain U in V . The covariant derivativeDlXk exists a.e., and the equations appearing
in this paragraph hold a.e. in U . As a consequence of (2.3) we have that

0 = Dl〈Xj , Xk〉 = 〈DlXj , Xk〉+ 〈Xj , DlXk〉

so that

〈DlXj , Xj〉 = 0 and 〈DlXj , Xk〉 = −〈DlXk, Xj〉(2.6)

and with the convention that {i, j} = {1, 2}, which will be in force throughout, this
means that there are locally bounded measurable scalar functions κi such that

DiXi = κiXj and DiXj = −κiXi.(2.7)

At a point p at which it exists (and it does so a.e. on U), κi(p) is the geodesic curvature
of the integral curve through p of the field Xi. Now consider the pairs of orthonormal
fields {X1, X2} and {X1, X2} associated with an (m1, m2)-mapping f : U → V . It
follows from (2.2) and (2.7) that

[Xi, Xj ] = DiXj −DjXi = κjXj − κiXi(2.8)

so that

κj = 〈[Xi, Xj ], Xj〉.

By (2.8) and (2.1), which may be applied since f is a local diffeomorphism,

κj = 〈[Xi, Xj ], Xj〉 = 〈[JfXi/mi, JfXj/mj ], Xj 〉 = 〈[JfXi, JfXj ], Xj 〉/mimj

= 〈Jf [Xi, Xj ], Xj 〉/mimj = 〈Jf (κjXj − κiXi), Xj 〉/mimj

= 〈κjJfXj − κiJfXi, Xj 〉/mimj

= 〈κjmjXj − κimiXi, Xj 〉/mimj = κj/mi.
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We thus have the fundamental curvature equations

κj = κj/mi a.e. in U, j = 1, 2.(2.9)

We next consider how the curvatures change as we move along characteristics, and
for the time being we shall assume that the mapping in question is of class C3. (We
shall explain in section 3—see Theorem 3.2—in what way this additional regularity
requirement is in fact superfluous.) We use the fact that the Gaussian curvature of a
2-dimensional manifold V at a point p is given by 〈R(X,Y )Y,X〉 for all orthonormal
pairs X,Y of vectors in the tangent space of V at p, where

R(X,Y )Y = DXDY Y −DY DXY −D[X,Y ]Y.

In particular we have from (2.7) and (2.8)

R(X1, X2)X2 = D1D2X2 −D2D1X2 −D[X1,X2]X2

= D1(κ2X1) +D2(κ1X1)−Dκ2X2−κ1X1
X2,

so that upon taking into account (2.4), (2.5), and (2.7) again, we have

R(X1, X2)X2 = κ1κ2X2 + (D1κ2)X1 − κ1κ2X2 + (D2κ1)X1 − κ2
2X1 − κ2

1X1.

Thus, if K and K denote Gaussian curvature on V and V , we have

K = 〈R(X1, X2)X2, X1〉 = D1κ2 +D2κ1 − κ2
2 − κ2

1(2.10)

and

K = 〈R(X1, X2)X2, X1〉 = D1κ2 +D2κ1 − κ2
2 − κ2

1.(2.11)

In light of the fundamental relations (2.9) and the fact that Xi = JfXi/mi, it then
follows that Diκj(f(p)) = (Diκj(p))/m

2
i , so that (2.11) may be written as

K = (D1κ2)/m
2
1 + (D2κ1)/m

2
2 − κ2

2/m
2
1 − κ2

1/m
2
2.(2.12)

Upon solving the linear system for D1κ2 and D2κ1 given by (2.10) and (2.12), we
obtain

Djκi = κ2
i + ci, i = 1, 2,(2.13)

where

ci = m2
j

m2
iK −K

m2
i −m2

j

.(2.14)

We emphasize that when these blow-up equations (2.13) are written out fully in co-
ordinate form the functions giving the mapping itself appear as arguments of K, so
that they do not in general characterize the net of principal strain lines in an in-
trinsic fashion. Although they purport to tell us something about how far along a
characteristic from a given point a singularity—a point where the mapping fails to be
locally Lipschitz—must lie, their content in this regard is meaningless unless one has
information about K and K. For this reason, the most interesting cases by far are
those in which at least one of these curvatures is constant.
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Given an orthonormal pair of fields X1, X2 on U ⊂ V we refer to arcs of the
integral curves of the field Xk as k-arcs. A domain Q ⊂ U will be said to be a
characteristic quadrilateral of X1, X2 (or of an associated cps-mapping) if ∂Q is a
Jordan curve lying in D containing four points a, b, c, d occurring in that order when
∂D is traversed (in one direction or the other) and such that ab and cd are i-arcs, and
bc and da are j-arcs. For such a Q we denote by Q+

i the i-side (i.e., ab or cd) along
which Xj points toward the inside of Q. This i-side of Q will be referred to as the
positive i-side. The other, negative, i-side will be denoted by Q−

i . For an i-arc C we
write

∆(C) =

∫
C

κids,

the unoriented arc length integral of κi along C. Let U ⊂ V be simply connected, and
let f : U → V be an (m1,m2)-homeomorphism. For each characteristic quadrilateral
Q ⊂ U the positive sides of Q are mapped onto the positive sides of the image
quadrilateral Q. Because the exterior angles of a characteristic quadrilateral are all
π/2, the Gauss–Bonnet formula says

∆(Q+
1 )−∆(Q−

1 ) + ∆(Q
+
2 )−∆(Q−

2 ) = −
∫
Q

KdA.(2.15)

However, the cps-conditions and (2.9) together imply that

∆(Q
σ

i ) =
mi

mj
∆(Qσ

i ), i = 1, 2, σ = +,−,

so that application of the Gauss–Bonnet formula to Q gives

m1

m2

(
∆(Q+

1 )−∆(Q−
1 )
)
+

m2

m1

(
∆(Q+

2 )−∆(Q−
2 )
)
= −m1m2

∫
Q

K(f)dA.(2.16)

Upon solving the system (2.15), (2.16) for the ∆(Q+
i )−∆(Q−

i ), we obtain

∆(Q+
i )−∆(Q−

i ) = −
∫
Q

cidA(2.17)

for every closed characteristic quadrilateral Q ⊂ U, where ci is given in (2.14). Al-
though we have only shown that (2.17) holds for quadrilaterals on whose closure f is
one-to-one, these equations can easily be seen to hold for any characteristic quadri-
lateral by the standard process of breaking them up into smaller quadrilaterals. We
note that in light of (2.15) and the fact that c1 + c2 = K the validity of (2.17) with
one value of i implies it with the other one.
In the planar context a Hencky–Prandtl (HP) net on a simply connected domain

D consists of two mutually orthogonal one-parameter families of curves covering D
with the property that for any two fixed curves C1, C2 belonging to one of the families,
the change in the inclination of the tangent is the same along all subarcs of curves
of the other family which join a point of C1 to a point of C2. For simply connected
domains, an orthogonal pair of curve families is an HP net if and only if it is the
net of principal strain lines of a cps-mapping. This gives an intrinsic characterization
of principal strain lines that, unlike one based (2.13), does not make reference to
third-order derivatives. In order to obtain such an intrinsic characterization in the
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nonplanar context, one needs to assume that the curvature K of the image manifold
V is constant, and in order to avoid a clumsy formulation as well as to preserve the
symmetry of the discussion, we shall assume that the curvature K of V is constant
as well. Thus for such a V we will say that two mutually orthogonal locally Lipschitz
unit vector fields X1, X2 on a simply connected domain U ⊂ V are an (m1,m2,K)-HP
pair if either of the equations

∆(Q+
i )−∆(Q−

i ) = −ciA(Q),

where A(Q) is the area of Q, is satisfied for all relevant quadrilaterals; here, of course,
the curvatures κi are defined by the first equation in (2.7). Thus we have derived the
following.

Theorem 2.1. If V and V have constant Gaussian curvature K and K, respec-
tively, and f : V → V is an (m1,m2)-mapping, then the corresponding principal fields
X1, X2 are an (m1,m2,K)-HP pair.
In the next section (see Theorem 3.4) we show that, conversely, given an (m1,m2,K)-

HP pair on a simply connected domain U in V, there is an (m1,m2)-mapping f of
U into a manifold V with constant Gaussian curvature K, and that this mapping is
unique up to rigid motions in V .

3. Analytic considerations. In investigating cps-mappings two fundamental
directions are to be pursued. On the one hand, one would like to say something
about the global behavior of all possible cps-mappings of a given domain, that is, to
develop some elements of a distortion theory for such mappings. This aspect of the
theory is to be based on the three fundamental relations derived in the preceding
section: the curvature equations, the blow-up equations, and the HP property, and
an example will be discussed in section 4. On the other hand, one should also be able
to manufacture such mappings, that is, to construct solutions to the corresponding
differential equations, and this is the point we address in this section.
The most straightforward approach is that of DeTurck and Yang [DY] in which

one considers the differential equations which state that the eigenvalues of the trans-
formation J∗

f (p)Jf (p) (of the tangent space at p onto itself) are the m2
i . Specifically,

we consider coordinates (u1, u2) and (u1, u2) for neighborhoods U,U in V, V , respec-
tively. For convenience we further assume that U = {(u1, u2)

∣∣|u1|, |u2| < ε}. In terms
of these coordinate systems let (f1, f2) = f : U → U be an (m1,m2)-mapping for
which the length change produced by f on the arc corresponding to u2 = 0 is every-
where strictly between m1 and m2. DeTurck and Yang showed that there are four
pairs of real-analytic functions Fσ

k , 1 ≤ σ ≤ 4, k = 1, 2, of twelve variables such that
for one of the four values of σ,

∂fk
∂u2
(u) = Fσ

k

(
∂f

∂u1
,m1,m2, G(u), G(f(u))

)
, k = 1, 2,

where each of G and G stands for the four elements of the metric tensors of V and
V evaluated as indicated. Each of these systems makes the required statement about
the eigenvalues of J∗

f (p)Jf (p), and that there are four of them is simply a reflection of

the fact that for any given m strictly between m1 and m2, and any nonzero e ∈ R
2,

there are four distinct linear transformations T : R
2 → R

2 with principal stretches
m1, m2 for which Te = me (two orientation preserving and two orientation reversing).
Conversely, in the analytic category the Cauchy–Kowalewski theorem implies that for
each of these four systems the initial value problem f(u1, 0) = f0(u1) has a unique local
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solution provided that along the curve u2 = 0 the given initial mapping f0 changes
arc length by factors lying strictly between m1 and m2. DeTurck and Yang made the
additional very important observation that the linearizations of these four systems
are diagonal hyperbolic, and this allowed them to deduce local existence in the C∞

category. (Their work is actually considerably more general in that it deals with
mappings with distinct principal strains on manifolds of arbitrary dimension.) In
[Ge2] we dubbed the four Cauchy problems collectively the DeTurck–Yang initial
value problem, a term we shall employ in what follows to refer to any one of them.
This approach to the construction of cps-mappings as solutions to first-order

systems, however, throws no light on global existence because it reveals nothing about
how, where, or why singularities form. Information of this nature is, on the other hand,
implicit in the blow-up equations and can be put to use by basing the construction
of cps-mappings either directly on them or, better still, on the analytically simpler
system of curvature equations. We pursue this latter option, but because there are
only two distinct characteristics and we are interested in working with the absolutely
minimal condition of locally Lipschitz continuity of Jf , we do so via the method of
characteristic coordinates. We begin by deriving the necessary equations.
Let U be a (small) neighborhood in V and let (u1, u2) be local coordinates for U ; in

what follows we freely identify points p ∈ U with the corresponding (u1, u2) ∈ R
2. We

denote by ek = ek(p) the Euclidean unit vectors at p ∈ U . A right-hand orthonormal
pair (with respect to the metric of V ) of vectors X1, X2 at u ∈ U is completely
specified by the inclination θ of X1 to the positive u1-axis. In other words, there are

functions α
(i)
k (u, θ) such that in terms of θ

Xi =

2∑
k=1

α
(i)
k (u, θ)ek = Fi(u, θ).(3.1)

If we are dealing with a real-analytic manifold, then the α
(i)
k are, of course, real-

analytic. In the discussion to follow, β will denote specific but not explicitly calculated
(vector- or scalar-valued) functions of arguments to be indicated; these functions will
easily be seen to be real-analytic when we are in that category and to be independent
of the particular fields X1, X2. It is to be borne in mind that the functions denoted by
this symbol may change from line to line and that the symbolDi (Di) is used to denote
both differentiation of scalar functions and covariant differentiation of vector fields in
the direction Xi (Xi). In the calculations to follow we use covariant differentiation
rules (2.4) and (2.5). We have

DiXi = Di

(
2∑

k=1

α
(i)
k (u, θ)ek

)
=

2∑
k=1

(Diα
(i)
k (u, θ))ek + β(u, θ)

= (Diθ )

2∑
k=1

∂α
(i)
k (u, θ)

∂θ
ek + β(u, θ).

Since κi = 〈DiXi, Xj〉, it follows that

κi =

〈
2∑

k=1

∂α
(i)
k

∂θ
ek, Xj

〉
Diθ + β(u, θ) = Pi(u, θ)Diθ + β(u, θ),(3.2)

where Pi(u, θ) = 〈∂Xi

∂θ , Xj〉. Since ∂〈Xi,Xj〉
∂θ = 0, it follows that

Pj(u, θ) = −Pi(u, θ).(3.3)
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Because X1 is of the form β(u, θ)(cos θe1 + sin θe2),

P1 =

〈
∂X1

∂θ
,X2

〉
=

〈
∂β

∂θ
(u, θ)(cos θe1 + sin θe2) + β(u, θ)(− sin θe1 + cos θe2), X2

〉

= β(u, θ)〈− sin θe1 + cos θe2, X2〉 = 0,
since − sin θe1 + cos θe2 is not a multiple of X1. Thus, in light of (3.3) we have

Diθ = Ri(u, θ)κi + Si(u, θ),(3.4)

where Ri(p, θ) and Si(p, θ) are functions which for given V depend only on the argu-
ments p ∈ V and θ.
Let X1, X2 be an orthonormal pair of Lipschitz continuous fields on U ⊂ V and

let Sε = {(t1, t2) : −ε < t1, t2 < ε}. A bi-Lipschitz homeomorphism u : Sε → U is
a characteristic coordinate mapping if each segment ti = constant is carried onto a
j-characteristic. The Lipschitz continuity of the Xi imply that such mappings exist
locally. With reference to such a mapping, in what follows Yi will denote the tangent
field Juei, where the ei are the Euclidean unit vector fields on Sε; more concretely,
(DYiw)(u(t1, t2)) = ∂w(u(t1, t2))/∂ti for scalar functions w. Obviously, [Yi, Yj ] = 0.
Furthermore, we define yi(t1, t2) by

Yi(u(t1, t2)) = yi(t1, t2)Xi(u(t1, t2)) = yi(t1, t2)Fi(u(t1, t2), θ(u(t1, t2))),(3.5)

where Fi is the vector-valued function appearing in (3.1). Note that Yi and yi only
exist a.e. on u(Sε) and Sε, respectively.
Assuming for the moment that u has enough regularity for the calculations to

make sense, we have from the rules (2.4) and (2.5) of covariant differentiation together
with (2.7) that

DYj
Yi = (DYj

yi)Xi − κjyiyjXj(3.6a)

and by symmetry that

DYi
Yj = (DYiyj)Xj − κiyjyiXi.(3.6b)

(In these formulas yk = yk(u
−1(p)).)

Rule (2.2) and the fact [Yi, Yj ] = 0 imply equality of the right-hand sides of (3.6a)
and (3.6b) from which it follows that

∂yi
∂tj
= −κi yiyj .(3.7)

For pairs of functions η = (η1, η2), y = (y1, y2) we define

I1(η, y) =

∫ t2

0

η1(t1, t)y1(t1, t)y2(t1, t)dt,(3.8a)

I2(η, y) =

∫ t1

0

η2(t, t2)y1(t, t2)y2(t, t2)dt.(3.8b)

We need the following lemma which says in what sense (3.7) holds in general.
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Lemma 3.1. For almost all t1 ∈ (−ε, ε), y1 as a function of t2 satisfies

y1(t1, t2) = y1(t1, 0)− I1(κ, y)(3.9)

for almost all t2 ∈ (−ε, ε) and analogously for y2. (Here,κi = κi(u(t1, t2)).)
Proof. It is enough to show that this is the case for sufficiently small ε, since one

can then patch together small squares to conclude that it is so in the original square.
If u is a characteristic coordinate mapping, then so is v(t1, t2) = u(f1(t1), f2(t2)) for
any pair of bi-Lipschitz functions f1, f2. If wk is the counterpart of yk for v, then

wk(t1, t2) = yk(f1(t1), f2(t2))f
′
k(tk),

from which one sees that it is sufficient to prove the statement in the case that y1

and y2 are identically 1 on the lines t2 = 0 and t1 = 0, respectively. By working
with a sequence of smooth approximations to the θ which gives X1, X2, we can ap-

proximate the pair X1, X2 by sequences X
(n)
1 , X

(n)
2 of orthonormal C

∞ fields which
converge uniformly to the Xi in a neighborhood U of the closure of u(Sε), for which

the corresponding curvatures κ
(n)
i are uniformly bounded and converge to the κi in

L1(Sε), and such that X
(n)
i (u(0, 0)) = Xi(u(0, 0)). We consider the corresponding

characteristic coordinate mappings u(n) with corresponding Y
(n)
i and y

(n)
i , where y

(n)
i

is identically 1 on the line tj = 0. Since the y
(n)
i are smooth they satisfy (3.7) and

consequently

y
(n)
i = 1− Ii(κ

(n)
i , y(n)), i = 1, 2.(3.10)

Clearly, u(n) → u uniformly on Sε. Since the fields X
(n)
1 , X

(n)
2 are uniformly Lips-

chitz continuous it follows from elementary facts about the continuous dependence of
solutions of ordinary differential equations on the initial conditions (see [Hille, The-
orem 3.1.1, p. 76]) that the u(n) are also uniformly Lipschitz continuous, so that the

y
(n)
i are uniformly bounded on Sε. Since y

(n)
i is identically 1 on the line tj = 0, (3.10)

implies that for sufficiently small ε

0.9 < |Y (n)
i (u(t1, t2))|V < 1.1

on Sε for all n, so that by reducing ε, if necessary, we may assume that the u(n)

are uniformly bi-Lipschitz on Sε. From this it follows that κi
(n)(u(n)(t1, t2)) tends to

κi(u(t1, t2)) in L1(Sε). For sufficiently small ε > 0, the system made up of (3.9) and
its counterpart for y2 can easily be seen to have a unique solution in L∞(Sε). Indeed,
this solution is the L∞ limit of the sequence generated by the iteration

y
0
= (1, 1), yn+1 = (1, 1)− (I1(κ, yn), I2(κ, yn)).(3.11)

Using this we can easily estimate ‖y − z‖L1 = ‖y1 − z1‖L1 + ‖y2 − z2‖L1 , where y
and z are the solutions corresponding to kernels κ and η, respectively. Let M be an
upper bound for the L∞ norms of the components of κ and η. It follows immediately
from (3.11) that for appropriately small ε > 0 the L∞ norms of the components of
the yn and zn are all at most 2. We have

‖y1,n+1 − z1,n+1‖L1 =

∫ ε

−ε

∫ ε

−ε

∫ t2

0

|κ1y1,ny2,n − η1z1,nz2,n|dτdt1dt2,
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where all the functions in the integrands are evaluated at (t1, τ). Thus,

‖y1,n+1 − z1,n+1‖L1 ≤
∫ ε

−ε

∫ ε

−ε

∫ ε

−ε

|κ1y1,ny2,n − η1z1,nz2,n|dτdt1dt2

≤ 2ε
∫ ε

−ε

∫ ε

−ε

|κ1y1,ny2,n − η1z1,nz2,n|dτdt1

≤ 8ε‖κ− η‖L1 + 2εM

∫ ε

−ε

∫ ε

−ε

|y1,ny2,n − z1,nz2,n|dτdt1

≤ 8ε‖κ− η‖L1 + 4εM‖yn − zn‖L1 .

Obviously, the same bound holds for ‖y2 − z2‖L1 , so that

‖yn+1 − zn+1‖L1 ≤ 16ε‖κ− η‖L1 + 8εM‖yn − zn‖L1 .

Since y0 = z0 = (1, 1), it follows from this that

‖yn+1 − zn+1‖L1 ≤ 16ε‖κ− η‖L1/(1− 8εM),

so that

‖y − z‖L1 ≤ 16ε‖κ− η‖L1/(1− 8εM).(3.12)

Because, as we have explained, κ(n) = κ(n)(u(n)(t1, t2)) tends to κ = κ(u(t1, t2)) in
L1(Sε), it follows from (3.12) that y(n) tends in the L1(Sε) norm to the (unique)
solution y in L∞(Sε) of the system (3.9) with the original κi’s. But then, by replacing
the κ(n) by an appropriate subsequence, we can assume that for almost all fixed
T ∈ (−ε, ε), y(n)(T, t2) and κ(n)(T, t2) converge to y(T, t2) and κ(T, t2), respectively,
in L1(−ε, ε). Thus, for such T it follows from (3.8a) and (3.10) that

y1(T, t2) = 1−
∫ t2

0

κ1(T, t)y1(T, t)y2(T, t)dt,

for almost all t2 ∈ (−ε, ε) and analogously for y2. Finally, we must show that these
yi are our original yi, defined by Yi = yiXi. In other words, we have to show that

the y
(n)
i converge to the yi. As we have seen, u

(n) → u and X
(n)
k (u

(n)(t1, t2)) →
Xk(u(t1, t2)) uniformly on Sε, so that if we denote by θ(n) the θ corresponding to

X
(n)
1 , θ(n)(u(n)(t1, t2)) converges uniformly to θ(u(t1, t2)) on Sε. We have by (3.5)

u(n)(t1, b)− u(n)(t1, a) =

∫ b

a

y
(n)
2 (t1, τ)F2(u

(n)(t1, τ), θ
(n)(u(n)(t1, τ)))dτ.

But, as we saw, on almost all of the lines t1 = T, y(n)(T, t2) tends to y(T, t2) in
L1(−ε, ε), so that for such T we have by letting n → ∞ that

∫ b

a

y2(T, τ)F2(u(T, τ), θ(u(T, τ)))dτ = u(T, b)− u(T, a)

=

∫ b

a

y2(T, τ)F2(u(T, τ), θ(u(T, τ)))dτ,
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from which we conclude that y2(T, t2) = y2(T, t2) for almost all t2 ∈ (−ε, ε) and
analogously for y1. This yields the desired conclusion.
Let U and U be (small) neighborhoods in V and V , and let f : U → U be an

(m1,m2)-mapping. Let (u1, u2) and (u1, u2) be corresponding local coordinates, so
that f is given by u = f(u) = (f1(u), f2(u)). We consider a characteristic coordinate
mapping u of Sε into U for the pairX1, X2 of principal direction fields. Obviously, f ◦u
is a characteristic coordinate mapping for the pair X1, X2. Without loss of generality
we can assume that the yk as well as the corresponding yk for f ◦ u are all positive.
Clearly, yk = mkyk. Let θ and θ be the inclination functions for these pairs of fields.
We derive equations satisfied by the ten functions

uk, yk, λk = κkyk, uk, θ, θ(3.13)

of (t1, t2), k = 1, 2. Note that by the curvature (2.9) the counterpart λk = κkyk of
λk is equal to miλi/mj . In what follows, when we say that ∂w/∂ti = w′ for some
functionsw, w′ defined a.e. on Sε we mean that there is a function v equal to w a.e. on
Sε such that for almost all T ∈ (−ε, ε), v is absolutely continuous on the line tj = T
and ∂v/∂ti = w′ holds in the strict sense a.e. on it. In particular, the preceding lemma
says that (3.7) holds in this sense.
Consider a rectangle αk ≤ tk ≤ βk, k = 1, 2, in Sε. Then since the arc length

element ds = y1dt1 (a.e. along 1-characteristics) and dA = y1y2dt1dt2, (2.17) says
that∫ β1

α1

κ1(t1, α2)y1(t1, α2)dt1 −
∫ β1

α1

κ1(t1, β2)y1(t1, β2)dt1 = −
∫ β2

α2

∫ β1

α1

c1y1y2dt1dt2

and∫ β2

α2

κ2(α1, t2)y2(α1, t2)dt2 −
∫ β2

α2

κ2(β1, t2)y2(β1, t2)dt2 = −
∫ β2

α2

∫ β1

α1

c2y1y2dt1dt2,

where

ci(t1, t2) = ci(u, u) = m2
j

m2
iK(u)−K(u)

m2
i −m2

j

.

Thus, the following equations hold a.e. on Sε:

λ1(t1, t2) = λ1(t1, 0) +

∫ t2

0

c1(t1, τ)y1(t1, τ)y2(t1, τ)dτ

and

λ2(t1, t2) = λ2(0, t2) +

∫ t1

0

c2(τ, t2)y1(τ, t2)y2(τ, t2)dτ

or in derivative form

∂λi

∂tj
= ciy1y2.(3.14)

We also have that

∂u

∂t1
= y1F1(u, θ)(3.15)
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and since y1 = m1y1

∂u

∂t1
= m1y1F 1(u, θ),(3.16)

where Fi(u, θ) is defined in (3.1).
As an immediate consequence of Lemma 3.1 we also have

∂yi
∂tj
= −λiyj(3.17)

(in the sense explained above, of course). Finally, in light of (3.4), we have D1θ =
R1(u, θ)κ1 + S1(u, θ), so that since D1θ =

∂θ
∂t1

/y1 we conclude

∂θ

∂t1
= λ1R1(u, θ) + y1S1(u, θ),(3.18)

and analogously, using the fact that λk = miλi/mj ,

∂θ

∂t1
=

miλi

mj
R1(u, θ) + y1S1(u, θ).(3.19)

We are now able to analyze the sense in which the blow-up equations are satisfied
for cps-mappings which are not necessarily C3. (The argument to follow contains an
alternate derivation of these equations based on the Gauss–Bonnet formula.) Let w
be a finite valued measurable function on an open set D ⊂ R

2. Then for almost all
p ∈ D it is true that for all η > 0

1

πδ2
lim
δ→0

A({ξ : |w(ξ)− w(p)| > η} ∩∆(p, δ)) = 0,(3.20)

where A denotes 2-dimensional measure, and ∆(p, δ) is the disk of radius δ about p.
A point p for which (3.20) holds will be called a point of approximate continuity of
w. For an orthonormal pair X1, X2 of Lipschitz continuous fields on U we denote by
Ei = Ei(X1, X2) the image under u of the set of points of approximate continuity
of κi ◦ u, and it is immediate that this definition is independent of the coordinate
system used. It is easy to see that if κ = κi a.e. in U and p is a point of approximate
continuity of κ, then κi(p) exists and is equal to κ(p).

Theorem 3.2. Let f : U → U be an (m1,m2)-mapping. Then for almost all
p ∈ U, κi (as defined by (2.7)) exists on the entire j-characteristic C through p, and
the restriction of κi to C is differentiable and satisfies the blow-up equation Djκi =
κ2
i + ci along it, where Dj is to be interpreted as arc length differentiation along C.
Proof. It is clearly enough to establish the conclusion in u(Sε) for any character-

istic coordinate mapping u. For convenience let i = 1. There is a set B ⊂ (−ε, ε) of
measure 2ε and functions κ and y which coincide with κ1 ◦ u and y1 a.e. on each line
t1 = T ∈ B and are such that y and λ = κy are absolutely continuous on each of these
lines and satisfy ∂λ

∂t2
= c1yy2 and

∂y
∂t2
= −λy2 in the strict sense a.e. on them. We can

assume in addition that for all T ∈ B almost all points of the 2-arc CT corresponding
to t1 = T are in E1. Then at all points (T, t2) at which the equations are satisfied, we
have

∂κ

∂t2
=

∂(λ/y)

∂t2
=

y2c1y2 + λ2y2

y2
= (c1 + κ2)y2,
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or, in other words,

D2(κ ◦ u−1) = c1 + (κ ◦ u−1)2,(3.21)

where D2 is interpreted as arc length differentiation. Since κ is absolutely continu-
ous (3.21) holds everywhere on CT . It follows easily from this and the fact that almost
all points of CT are of points of approximate continuity of κ ◦ u−1 that in fact all
points of CT are points of approximate continuity of κ ◦ u−1(since the same equation
holds on almost all nearby 2-characteristics). But then from the comment contained
in the last sentence immediately preceding the statement of the theorem we conclude
that (3.21) holds everywhere on CT with κ ◦ u−1 replaced with κi, as desired.
Theorem 3.2 has the following important corollary.
Corollary (compactness principle). Let U be a domain in V and let P ⊂ V

be compact. Then the class of all (m1,m2)-mappings of U into V for which f(U) ⊂ P
is compact in the topology of uniform convergence of first derivatives on compact sets.

Proof. It is enough to see that any p ∈ V and p ∈ V have (small) coordi-
nate neighborhoods U1 and U1 such that the (m1,m2)-mappings f : U → P for
which f(U1) ⊂ U1 have, when expressed in coordinate form, uniformly Lipschitz first
derivatives on U1. For sufficiently small U1 Theorem 3.2 implies that κ1 and κ2 must
be uniformly bounded and the curvature equations then say that the same must be
true for κ1 and κ2. But then (3.4) and its counterpart for the κk and θ imply that the
first derivatives of θ and θ are uniformly bounded on U1 and U1 and in light of (3.1)
and the fact that the Jacobian of f is completely determined by the Xk and Xk it
follows that the first derivatives of the f ∈ C are indeed uniformly Lipschitz.
We now examine the DeTurck–Yang initial value problem from the point of view

of (3.14)–(3.19). Let C be a curve in U with Lipschitz continuous unit tangent and let
(g1, g2) = g : C → U have locally Lipschitz continuous derivative. We assume that the
factor by which g changes arc length (when calculated with respect to the metrics in
U and U) is everywhere strictly between m1 and m2. We want to find the (m1,m2)-
mappings of a neighborhood of C onto a neighborhood of g(C) which coincide with
g on C. We limit consideration to mappings which are orientation preserving with
respect to the coordinate systems u and u; trivial modifications cover the orientation-
reversing mappings. Let T be a unit tangent field to C and let T be the corresponding
unit tangent field JgT/|JgT | to C = g(C). Let X1, X2 and X1, X2 be the fields
associated with an (m1,m2)-extension f of g. Let φ denote the angle, calculated with
respect to the metric of V, betweenX1 and T ; without loss of generality we can assume
that 0 < φ < π. Let φ ∈ (0, π) be the angle between X1 and T . Then

m2
1 cos

2 φ+m2
2 sin

2 φ = |JgT |V and tanφ =
m2

m1
tanφ,(3.22)

so that there are two possible choices for continuous X1 along C, that is, two pos-
sibilities for θ corresponding to an (m1,m2)-mapping of a neighborhood of C onto
a neighborhood of g(C) and coinciding with g on C. The second equation in (3.22)
means that X1 (i.e., θ) is determined once one of these θ is selected. It follows from
the first of these equations that θ is a Lipschitz continuous function of arc length
along C, and then from the second equation that θ is also.
In order to proceed with the present discussion as well as to carry out some of

the derivations in section 4 it is necessary to examine the relationship between the
curvature of the curve C, that of its image under the (m1,m2)-mapping f, and the
values along C of the κi associated with f, which by Theorem 3.2 exist a.e. on C. For
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the moment we assume that Jf is differentiable (as a function of two variables) at
almost all points of C. The following calculation will be valid a.e. on C. By reversing
the direction of some of the vectors X1, X2, X1, X2, if necessary, we can assume that

T = cosφX1 + sinφX2 and T = cosφX1 + sinφX2.(3.23)

Let N = − sinφX1 + cosφX2 be the unit normal to C and let κ = κ(p) denote the
geodesic curvature of C defined by κN = DTT . Applying (2.4), (2.5), and (2.7) we
see that a.e. on C there holds

κN = DTT = DTφ(− sinφX1 + cosφX2) + cosφDTX1 + sinφDTX2

= DTφN + cosφ(cosφD1X1 + sinφD2X1) + sinφ(cosφD1X2 + sinφD2X2)

= DTφN + κ1 cos
2 φX2 − κ2 cosφ sinφX2 − κ1 sinφ cosφX1 + κ2 sin

2 φX1

= DTφN + (κ1 cosφ− κ2 sinφ)N,

so that

κ1 cosφ− κ2 sinφ = κ−DTφ.(3.24)

If κ and N are the analogous entities on V , then we also have

κ1 cosφ− κ2 sinφ = κ−DTφ,

so that in light of the curvature (2.9)

κ1

m2
cosφ− κ2

m1
sinφ = κ−DTφ.

In addition, it follows from the second equation in (3.22) that

cosφ =
m1 cosφ√

m2
1 cos

2 φ+m2
2 sin

2 φ

and

sinφ =
m2 sinφ√

m2
1 cos

2 φ+m2
2 sin

2 φ
.

Since we also have

DTφ =
1√

m2
1 cos

2 φ+m2
2 sin

2 φ
DTφ(f(p)),

it therefore follows that

(3.25)

m1

m2
κ1 cosφ− m2

m1
κ2 sinφ =

√
m2

1 cos
2 φ+m2

2 sin
2 φ κ−DT tan

−1

(
m2

m1
tanφ

)
.

Finally, we point out that this holds for all curves C with Lipschitz continuous tangent,
as can be seen by a simple approximation argument using Theorem 3.2.
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It is now easy to cast the DeTurck–Yang initial value problem in a characteristic
coordinate setting. Let C be a curve in U with Lipschitz continuous unit tangent and
let (g1, g2) = g : C → U have locally Lipschitz continuous derivative. We associate (a
small piece) of C with the diagonal Lε = {(t,−t) : −ε < t < ε} of Sε via a one-to-
one bi-Lipschitz function u(t,−t) of Lε into C having Lipschitz continuous derivative.
The functions φ, φ and consequently θ, θ also are determined on C via (3.22) and then
κ1 and κ2 are determined uniquely a.e. on C as the solution of the system (3.24),
(3.25), so that in effect these six functions, as well as u = (u1, u2) and u = (u1, u2),
are determined on Lε. By interchanging the roles of m1 and m2 and/or reversing the
orientations of the corresponding Xi’s as necessary, we can assume that 0 < φ < π/2,
so that on the initial line y1, y2 > 0. Simple geometry implies that on the initial line

y1(t,−t) =

∣∣∣∣du(t,−t)

dt

∣∣∣∣
V

cosφ, y1(t,−t) =

∣∣∣∣du(t,−t)

dt

∣∣∣∣
V

sinφ.

Thus, all of the functions (3.13) are given on the initial line; these initial values for
uk, yk, uk, k = 1, 2, and θ, θ are continuous; but for λk = κkyk, they are merely
bounded measurable functions. It is well known that for a system of equations of the
form

∂v

∂t1
= A(v, w),

∂w

∂t2
= B(v, w),(3.26)

where v = (v1, . . . , vr) and w = (w1, . . . , ws) are functions of (t1, t2), and where A
and B are Lipschitz continuous, the initial value problem with bounded measurable
initial data v(t,−t) = v0(t), w(t,−t) = w0(t), |t| < ε, is locally well posed. Here the
solutions are bounded measurable functions. The neighborhood of Lε in which the
solution is guaranteed to exist depends, for a given system (3.26), on the range of the
initial functions {(v0(t), w0(t)) : −ε < t < ε}. Furthermore, if we are in the C∞ or
analytic category (i.e., A,B, and the initial data belong to one of these categories)
then the solutions belong to the same category in any domain in which they exist.
The only thing one must do to complete this treatment of the DeTurck–Yang ini-

tial value problem is to show that the function f = u◦u−1 which maps a neighborhood
of the piece u(Lε) of C onto a neighborhood of g(u(Lε)) is an (m1,m2)-mapping. One
would expect such to be the case, but this has in fact been substantially obscured by
the calculations used to arrive at the system. It is, however, not necessary to show
directly that for a solution of this system, with initial data arising from a mapping g
of C into V in the way described above, f is necessarily an (m1,m2)-mapping. Indeed,
for C∞ data (i.e., C and g) one can conclude this solely from the basic principles gov-
erning hyperbolic systems, as is explained fully in [Ge2, section 3]. (It is because this
argument is based on polynomial approximation and the principle of permanence of
functional equations for analytic functions that we have pointed out in several places
that certain functions arising in the calculations were analytic.) One can conclude
in general that f is an (m1,m2)-mapping simply by approximating the initial data
by data in the C∞ category and using the compactness principle together with the
uniqueness of the solution of the initial value problem.
Theorem 3.2 tells us that a solution to a DeTurck–Yang initial value problem will

exist in the entire (two-sided) domain of dependence unless the solution of one of the
ordinary differential equations Djκi = κ2

i+ci blows up along one of the characteristics
along which this equation is valid; with obvious modifications, an analogous statement
holds for the characteristic initial value problem (see discussion immediately following
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Lemma 3.3 below). In particular, we will have such global existence if the initial
values of the κi and the values of m1,m2,K, and K are such that the solutions of
these equations never blow up.
We will need the following.
Lemma 3.3. Let C ⊂ V be an arc with Lipschitz continuous tangent and let

p ∈ C. Let κ1 and κ2 be any two bounded measurable functions on C. Let p ∈ V and
let S be any tangent vector to V at p with |S| ∈ (m1,m2). Then there is an open
subarc C ′ containing p on which there are exactly two f : C ′ → V with Lipschitz
continuous derivative for which f(p) = p and Jf (p)T = S and such that along C the
solutions to the corresponding DeTurck–Yang initial value problems have these κi as
the curvatures of the corresponding curves of principal strain.

Proof. Let z = z(s), −ε < s < ε, be an arc length parametrization of a subarc of
C with z(0) = p. If φ(s) = φ(z(s)), then (3.24) is simply the differential equation

φ′ = κ− κ1 cosφ(s) + κ2 sinφ(s).

If we add the initial condition φ(0) = φ0, where φ0 ∈ (0, π) is either of the solutions
of

m2
1 cos

2 φ0 +m2
2 sin

2 φ0 = |S|,

then there is a unique Lipschitz continuous solution of the corresponding initial value
problem on some interval (−δ, δ). Let C ′ = z((−δ, δ)). Then it is easy to see that there
is an f : C ′ → V with f(p) = p and Jf (p)T = S such that the geodesic curvature
κ(s) at f(z(s)) as stipulated above is determined by (3.25), that is,

κ(s) =

(
m1

m2
κ1 cosφ− m2

m1
κ2 sinφ+DT tan

−1

(
m2

m1
tanφ

))
/

√
m2

1 cos
2 φ+m2

2 sin
2 φ.

But since (3.24) and (3.25) uniquely define κ1 and κ2 once φ, κ, and κ are given,
the solution of the DeTurck–Yang problem corresponding to initial mapping f (with
the Xk, Xk chosen in accordance with the normalizing stipulations implicit in (3.23))
will have principal strain line curvatures coinciding along C ′ with the given κ1

and κ2.
We now discuss the characteristic initial value problem for (m1,m2)-mappings,

which is often easier to apply and more appropriate for the description of certain
classes of such mappings as well as of individual ones. Let Ck, k = 1, 2, be curves
on V with arc length parametrizations wk : [αk, βk] → V, αk < 0 < βk, such that
the unit tangent vector fields Tk(s) are Lipschitz continuous, C1 ∩ C2 = {p}, where
p = w1(0) = w2(0), and 〈T1(0), T2(0)〉 = 0. Given p ∈ V and orthonormal tangent
vectors T 1, T 2 to V at p, the characteristic initial value problem for (m1,m2)-mappings
consists of finding such a mapping f for which the Ck are mk-characteristics and such
that f(p) = p and JfTk(0) = T k. Of course, the possibility of high curvatures of the
initial curves Ck in general precludes the existence of a solution even in a neighborhood
of C1 ∪ C2, but it is a relatively straightforward matter to see, by formulating this
problem in terms of characteristic coordinates via the system (3.14)–(3.19), that it is
well posed in a neighborhood of p. As with the Cauchy problem (i.e., the DeTurck–
Yang problem) the key requirement is that the initial data for the ten functions (3.13)
be Lipschitz continuous, which will clearly be the case for the data we have described.
Here again one must make sure that the solution corresponds to an (m1,m2)-mapping.
However, as we have seen, one can avoid the possibly cumbersome calculations implicit
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in a direct verification by appealing to the theory of hyperbolic systems. Specifically,
in this case the desired conclusion is a consequence of the fact that by using the blow-
up (2.13) together with Lemma 3.3 we can arrange initial data for a DeTurck–Yang
initial value problem along a C∞ curve through p whose tangent at p is orthogonal to
neither of the Tk(0) in such a way that its solution will have the desired characteristics.
The remainder of this section deals with the generalization of HP nets discussed

at the end of section 2. Specifically, we shall prove the following.
Theorem 3.4. Let U be a simply connected domain on a 2-manifold with constant

Gaussian curvature K, and let X1, X2 be an orthonormal pair of Lipschitz continuous
fields on U with curvatures κ1, κ2 defined by (2.7). Let m1,m2 > 0 and K be constants.
Then the following are equivalent.

(i) For almost all p ∈ U, κi is a differentiable function of arc length on the entire
j-characteristic through p along which it satisfies the ordinary differential
equation Djκi = κ2

i + ci, where ci is as given in (2.14). (Note that we are
assuming only that one of the two equations in (2.13) is satisfied; that the
other also holds will follow as a consequence.)

(ii) X1, X2 is an (m1,m2,K)-HP pair.
(iii) There is an (m1,m2)-mapping of U into a 2-manifold V with Gaussian cur-

vature K whose principal strain fields are X1 and X2.
Proof. (i)⇒(ii). Assume that the fields X1, X2 satisfy (i). For notational conve-

nience we deal with the case i = 1. Let u : Sε → U be a characteristic coordinate
mapping for these fields corresponding a small characteristic quadrilateral for which
Lemma 3.1 holds; again without loss of generality we may assume that the yi are
positive. Then for i = 1, 2 there exist functions zi which are equal to yi a.e. on Sε,
which are absolutely continuous on almost all lines tj = constant, and satisfy (3.7) in
the strict sense a.e. on them. Let T be such that the differential equation for κ1 holds
on the 2-arc corresponding to t1 = T and z1 satisfies (3.7) a.e. on this segment. Let
κ(t) = κ1(u(T, t)) and z(t) = z1(T, t). Then the equations say

κ′ = y2(T, t)(c1 + κ2)

and

z′ = −κzy2(T, t)

a.e. on (−ε, ε). Thus,

d(κz)

dt
= κ′z + κz′ = zy2(c1 + κ2)− κ2zy2 = c1zy2,

a.e. on (−ε, ε), so that since κz is Lipschitz continuous on (−ε, ε), it follows that for
almost all T, α2, β2 ∈ (−ε, ε) with α2 < β2 there holds

κ1(u(T, β2))y1(T, β2)− κ1(u(T, α2))y1(T, α2) = c1

∫ β2

α2

y1(T, t)y2(T, t)dt.

Since dA = y1y2dt1dt2 and |du/dt1| = y1dt1, integration with respect to T tells us
that for almost all α2 < β2 and any α1 < β1 in (−ε, ε), (2.17) holds with i = 1 for the
characteristic quadrilateral u([α1, β1]× [α2, β2]). Since by hypothesis κ1 is continuous
on almost all 2-characteristics, this is then true for all α2 < β2. This shows that (ii)
is true locally; that it is true globally follows by breaking large quadrilaterals into
smaller ones.
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(ii)⇒(iii) Let X1, X2 be an (m1,m2,K)-HP pair, and again let u : Sε → U be
a characteristic coordinate mapping for these fields. Equation (3.14) holds since it
was shown to follow from the HP-condition (2.17), and (3.15), (3.17), and (3.18) hold
since they are consequences of the definitions of the uk, yk, λk, and θ. None of these
equations involves any of the barred functions uk, θ; indeed, the only place any of these
functions could enter these equations is in the ci appearing in (3.14), and this does
not happen because of our assumption that the Gaussian curvatures are constant.
Uniqueness for characteristic initial value problems tells us that the only solution
of the system (3.14), (3.15), (3.17), (3.18) for the uk, yk, λk, θ is the one associated
with the given pair X1, X2. If we add (3.16) and (3.19) to the system and solve the
corresponding characteristic initial value problem with the same initial data, we get
an (m1,m2)-mapping of a neighborhood of u(0, 0). But the X1, X2 so arising are still
the original fields. This shows that the desired mapping exists in a neighborhood of
each point of U ; that it exists in all of this simply connected domain will then follow
from the monodromy principle.
(iii)⇒(i). This is a special case of Theorem 3.2.
4. Some applications.

4.1. Nonexistence of cps-mappings. We shall use the blow-up equations to
show that there is no cps-mapping f of the Euclidean plane onto certain (complete,
noncompact) manifolds V . First of all, one notes that the solutions of the ordinary
differential equation y′ = y2 regular at 0 are

y(x) =
y(0)

1− y(0)x
,

so that if y(0) = 0, the solution blows up to the right or left of 0 accordingly as
y(0) is positive or negative. From this it easily follows that if c(x) is a nonnegative
continuous function on R which is not identically 0, then the equation y′ = y2 + c(x)
has no solutions on all of R.
We begin by noting that, as indicted in the introduction, there are no cps-

mappings f of all of R
2 onto itself other than the linear ones. In this case K as

well as K are identically zero, so that both blow-up equations reduce to κ′
i = κ2

i .
From the above comments together with Theorem 3.2, for any such f it follows that
κi = 0 a.e. on each i-characteristic, which means that all characteristics are straight
lines. The linearity easily follows from this.
More interesting, perhaps, are situations in which there exist no cps-mappings

of R
2 onto V at all. In light of the interpretation of such mappings as deformations

produced by the cryptocrystalline solidification of a planar lamina, this rules out the
attainment of certain configurations as the result of such a process. Since V = R

2, K
is identically 0. To facilitate the discussion we assume that m1 < m2. From (2.14) we

have ci =
m2

im
2
j

m2
i−m2

j
K, so that

sgn(c1) = −sgn(K) and sgn(c2) = sgn(K).(4.1)

We have the following.
(1) If K does not change sign on V and is not identically 0, then there are no

cps-mappings f : R2 → V . This follows immediately from the foregoing since if such
an f were to exist in the case of nonnegative K, for example, then by Theorem 3.2
and (4.1) there would exist a 1-characteristic with arc length parametrization z =
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z(s), −∞ < s < ∞, along which c2(z(s)) is nonnegative but not identically 0, and
along which dκ2(z(s))/ds = (κ2(z(s)))

2 + c2(z(s)), which is impossible, as indicated
in the opening paragraph of this section.

For the next case we consider V such that there is a C∞ homeomorphism u : R2 →
V for which there are a finite number of disjoint closed disks ∆k = ∆(pk, rk), k =
1, . . . , n (where ∆(a, r) is the disk |p − a| ≤ r), such that u is an isometry on R

2\
∆1∪· · ·∪∆n and there is some ε > 0 for which K(u(p)) < 0 for rk−ε < |p−pk| < rk,
1 ≤ k ≤ n. We regard the interiors of the u(∆k) as being bumps on an otherwise
planar surface. One can produce such a bump by replacing a disk of radius r by the
surface obtained by rotating the graph of y = q(x), 0 ≤ x ≤ r, about the y-axis,
where q ∈ C∞(R) is even and both q′′(x) > 0 and q′(x) < 0 on some (r′, r). These
bumps have the desired negative curvature in a vicinity of the boundary circle and
any number of them can be grafted into the plane, provided the corresponding closed
disks are disjoint.

(2) There exist no cps-mappings f of R
2 onto such a “bumpy” plane V . Again

assume that such an f existed. Let z = zk(s), k = 1, 2, be arc length parametrizations
of the characteristics through some point p0 lying inside the preimage of one of the
bumps with zk(0) = p0 and increasing s corresponding to the direction of Xk. The
curvatures of the lines of principal strain are bounded since the preimage W of the
union of the bumps is compact, and from the above discussion of blow-up in the
planar case |Diκj(p)| ≤ 1/dist(p,W ) a.e. in R

2\W . From this it follows by a simple
compactness argument on the family of 2-characteristics that there is a 2-characteristic
C which just touches ∂W but is disjoint from W (for example, by minimizing the
area of the part of W to one side of C). It then follows from Theorem 3.2 that there
are 2-characteristics C ′ arbitrarily close to C along which κ1 exists and satisfies the
corresponding blow-up equation. However, in light of the hypothesis, along such a
C ′ sufficiently close to C, c1 ≥ 0 but is not identically 0, which is impossible by the
comment at the end of the first paragraph of this section.

4.2. The hyperbolic plane H
2. We begin by examining blow-up of the solu-

tions of the ordinary differential equations to which the equations (2.13) reduce when
both of the Gaussian curvatures K and K are constant. Upon writing

γ2
i = |ci| = m2

j

∣∣∣∣m2
iK −K

m2
i −m2

j

∣∣∣∣,
(2.13) becomes Djκi = κ2

i ± γ2
i , so we have only to look at the solutions of the

elementary equations κ′ = κ2 + γ2 and κ′ = κ2 − γ2, γ > 0, κ = κ(s). The general
solution of the first is κ(s) = γ tan(γs+C), so that the longest open interval in which
a regular solution can exist has length π/γ. On the other hand, the solutions of
κ′ = κ2 − γ2 are of the form

κ(s) = γ
1 + C e 2γs

1− C e 2γs
,(4.2)

which is regular on the entire s-axis with range (−γ, γ) when C < 0, reduces to the
constant γ when C = 0, and has singularity at s0 = −(1/2γ) logC when C > 0, in
which case the range consists of the intervals (−∞,−γ) for s > s0 and (γ,∞) for
s < s0. In particular, the solution exists on all of R if and only if |κ(0)| ≤ γ.
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Henceforth V = V = H
2, so that K = K = −1. For convenience we also assume

that m1 < m2, which of course constitutes no loss of generality. We have

ci =
m2

j (1−m2
i )

m2
i −m2

j

,

so that both of the equations (2.13) will be of the form κ′ = κ2 − γ2 (γ ≥ 0) if and
only if

m1 ≤ 1 ≤ m2.(4.3)

Specifically, for such m1,m2 they are

Djκi = κ2
i − γ2

i , where γi =

√
m2

j (m
2
i − 1)

m2
i −m2

j

.(4.4)

Consider the characteristic initial value problem with initial mk-characteristic
Ck, k = 1, 2. Let Ck have the arc length parametrization w = wk(s), αk < s <
βk, where 0 ∈ (αk, βk) and where p = w1(0) = w2(0). As was pointed out in the
discussion of this problem in section 3, we are in general guaranteed a solution only
in a neighborhood of p. However, if we assume (4.3) and that the curvatures κk of the
initial curves satisfy

|κk(s)| ≤ γk a.e. on (αk, βk), k = 1, 2,

then the comment in the paragraph immediately preceding the statement of Lemma 3.3
implies that the solution exists in the entire characteristic quadrilateral determined
by the Ck. Among other things this means that C1 and C2 are simple curves and
C1 ∩ C2 = {p}. Thus, in light of the facts that γ2

1 + γ2
2 = 1 and that γ1 can take any

value in [0, 1] with appropriate m1 and m2 satisfying (4.3), we have established the
following.

Theorem 4.1. Let C1 and C2 be curves in H
2 whose arc length parametrizations

have locally Lipschitz derivatives and which meet orthogonally at p. Let λ1, λ2 > 0
satisfy λ2

1 + λ2
2 ≤ 1. If the (unsigned) geodesic curvature of Ck is bounded above by

λk, k = 1, 2, then these curves are both simple and p is their only common point.
With exactly the same hypotheses on the curves this theorem holds in the n-

dimensional hyperbolic space H
n as well. To prove this, it suffices to show that p is

the only common point when C1 and C2 are both simple curves. Indeed, if we have
established this and C1 and C2 satisfy the hypotheses but C1 is not simple, then we
can replace C2 by a geodesic E2 which joins two points of a simple subarc E1 of C1 and
thereby obtain a contradiction since the curvature of E2 is everywhere 0 and that of
E1 is bounded by λ1. Thus we shall assume that C1 and C2 are both simple. Assume
that n ≥ 3 and that they have a second point of intersection q. Let w = wk(s) be
corresponding arc length parametrizations with wk(0) = p and wk(ak) = q, k = 1, 2.
A simple compactness argument allows us to assume that the pair C1, C2 minimizes
a1 + a2, i.e., the sum of the lengths of the two arcs pq. Henceforth dist(z1, z2) will
denote the geodesic distance between points z1, z2 ∈ H

n. Then d
dsdist(p, wk(s)) > 0

on (0, ak), since if it were equal to 0 for some b ∈ (0, ak), then Ck would be orthogonal
to the geodesic joining p to wk(b), and this would give us a new pair of simple curves
for which the sum of lengths of the two arcs joining the two intersection points is
smaller than a1 + a2. Let ε > 0. Then there exists a new pair of simple curves C ′

1
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and C ′
2 with C∞ arc length parametrizations vk on (−1, lk + 1) for which
(i) lk ≤ a1 + a2 + ε;
(ii) the corresponding curvatures κk(s) satisfy κk(s) ≤ λk + ε on (−1, lk + 1),

k = 1, 2;
(iii) vk(0) = p, k = 1, 2;
(iv) vk(lk) = q, k = 1, 2;
(v) dist(p, vk(s)) increases on (0, lk);
(vi) C ′

1 and C ′
2 are orthogonal at their common initial point p;

(vii) for no s ∈ (0, lk] is the geodesic which joins p to vk(s) tangent to C ′
k at vk(s).

Let Vk(s), s ∈ (0, lk] be the unit tangent vector at O to the geodesic ray emanating
from p and passing through vk(s). It follows from (vii) that |V ′

k(s)| > 0 on (0, lk]. It
is also easy to see that lims→0+ |V ′

k(s)| exists. We claim that there exist sk ∈ (0, lk]
such that

A(s1, s2) =

∫ s1

0

|V ′
1(s)| ds+

∫ s2

0

|V ′
2(s)| ds = π/2(4.5)

and

dist(p, v1(s1)) = dist(p, v2(s2)).(4.6)

To see this, consider A(t1, t2) for (t1, t2) ∈ Q = [0, l1] × [0, l2]. Then A(0, 0) = 0
and, because C ′

1 and C ′
2 are orthogonal at p, A(l1, l2) ≥ π/2. Furthermore, since

|V ′
k(s)| > 0 on (0, lk], A(t1, t2) is strictly increasing in each of its arguments. Thus the
set S = {(t1, t2)

∣∣A(t1, t2) = π/2} is a curve which joins the union of the left-hand
side and bottom of Q to the union of its right-hand side and top. (This curve could
degenerate to the point (l1, l2).) But (v) implies that there are increasing continu-
ous functions τk, k = 1, 2, which map [0, 1] onto [0, lk] such that dist(p, v1(τ1(t))) =
dist(p, v2(τ2(t))), t ∈ [0, 1]. This means that there must be a t ∈ (0, 1] such that
(τ1(t), τ2(t)) ∈ S, so that (4.5) and (4.6) hold with (s1, s2) = (τ1(t), τ2(t)).
We consider the following mappings from a domain in H

2 into H
n. Let O ∈ H

2 and
T ∗ be a fixed unit vector in the tangent space of H

2 at O. We define the continuous
function Tk from the interval [0, tk] to the set of unit tangent vectors to H

2 at O by
T (0) = T ∗ and |T ′

k(s)| = |V ′
k(s)|, where Tk(s) moves in the positive sense as s increases

when k = 1, and in the negative sense when k = 2. Let Gk(s) be the geodesic ray
emanating from O in the direction Tk(s) and let Gk(s, σ) be the point on Gk(s) at
distance σ from O, 0 ≤ s ≤ sk, 0 < σ. Let Fk map the sector of H

2 made up of
the Gk(s), 0 ≤ s ≤ sk, into H

n in such a way that Fk(Gk(s, σ)) is the point on the
geodesic ray emanating from p through vk(s) whose distance from p is σ. One easily
sees that Fk is an isometry (as a mapping between surfaces) and that it is locally
one-to-one, so that F−1

k is well defined. Let Ck be the preimage of C
′
k under Fk. Since

Fk is an isometry, the curvature of Ck at Fk(vk(s)) is the curvature of Ck at vk(s)
when calculated from the point of view of C ′

k as a curve in the submanifold made
up of the geodesics joining its points to p; this curvature is at most κk(s). Thus, the

curvature of Ck is bounded above by λk + ε. Let C
′
2 be the curve onto which C2

is carried when H
2 is rotated about O through a positive angle of π/2. Then from

our construction C1 and C
′
2 are simple arcs in H

2 which meet orthogonally at O,
intersect again at their other endpoint, have lengths bounded by a1 + a2 + ε, and
have curvatures bounded, respectively, by λ1 + ε and λ2 + ε. If we allow ε to tend to
0, then a simple compactness argument will provide curves in H

2 which satisfy the
hypotheses of Theorem 4.1 in H

2 but not the conclusion. This contradiction proves
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that the theorem is indeed true in H
n. As an immediate consequence we obtain the

following result due to Epstein [E1], [E2].
Corollary. A curve in H

n whose curvature is everywhere bounded by 1 cannot
intersect itself.
We now give a very simple and quite explicit description of all of the cps-mappings

of the entire space H
2 into itself. Actually, it is easy to see that if f : H2 → H

2 is an
(m1,m2)-mapping, then f is one-to-one and onto, so that we shall speak of the cps-
self-homeomorphisms of H2. Fix a point O ∈ H

2, and consider any (m1,m2)-mapping
f : H2 → H

2, again with the nonrestrictive assumption that m1 < m2. Let Ck be the
k-characteristic passing through O parametrized with respect to arc length by wk,
where w1(0) = w2(0) = O. Since all characteristics of f have infinite length in both
directions, it follows from the above discussion that (4.3) holds. It furthermore follows
from the initial comments that we must have |κk| ≤ γk a.e. on Ck, and conversely, the
discussion of existence and blow-up of the preceding section shows that if these bounds
are satisfied then there exists a corresponding (m1,m2)-mapping, which, moreover, is
uniquely determined by the two functions κ1, κ2 once we assign the image of O and
directions corresponding in the image to the tangent directions of the Ck at O. (Note
that by Theorem 4.1 the conditions |κk| ≤ γk automatically imply that C1 and C2

are simple and only cross at O.) Thus we have the following.
Theorem 4.2. Let O ∈ H

2 be fixed. There is a one-to-one correspondence between
cps-self-homeomorphisms of H

2 and 6-tuples (m1,m2, C1, C2, O, T ), such that
(i) m1 ≤ 1 ≤ m2;
(ii) C1 and C2 are curves, of infinite length in both directions, with Lipschitz

continuous unit tangent vectors and whose (unsigned) geodesic curvatures κk

are bounded by the numbers γk defined in (4.4);
(iii) O ∈ H

2;
(iv) T is an orthogonal transformation of the tangent space at O onto the tangent

space at O.
For each such 6-tuple the mapping is the solution of the corresponding character-

istic initial value problem.
Before continuing we point out that the blow-up conditions allow one to com-

pletely answer the following question: Given simple curves C and C on H
2, of

infinite length in both directions, and whose arc length parametrizations have lo-
cally Lipschitz continuous derivatives, give necessary and sufficient conditions on a
mapping f : C → C for which |df/ds| is locally Lipschitz continuous and satisfies
m1 < |df/ds| < m2 a.e. on C, such that the corresponding DeTurck–Yang initial value
problems have global solutions. To do this we proceed as follows. Let m1 ≤ 1 ≤ m2,
since otherwise there are no global (m1,m2)-mappings of H

2 onto itself by Theo-
rem 4.2. Let z(s), −∞ < s < ∞, be an arc length parametrization of a simple curve
C in V and let z(s) = f(z(s)). Let T = T (s) be the corresponding unit tangent
vector to C at z(s), S = S(s) = JfT (s), and T = S/|S|. We assume that |S(s)|
lies everywhere between m1 and m2 and shall apply the notation, normalizations,
and calculations of the paragraph immediately following the proof of the corollary to
Theorem 3.2 in section 3. Rewriting (3.24) and (3.25) slightly we have

κ1 cosφ− κ2 sinφ = κ− φ′(4.7)

and

m1

m2
κ1 cosφ− m2

m1
κ2 sinφ = |S|κ−DT tan

−1

(
m2

m1
tanφ

)
(4.8)

= |S|κ−m1m2φ
′/|S|2,
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so that solving for κ1 and κ2 we find[
κ1

κ2

]
=
1

D

[
−m2 sinφ

m1
sinφ

−m1 cosφ
m2

cosφ

] [
κ− φ′

|S|κ−m1m2φ
′/|S|2

]
,

whereD = (m2
1−m2

2)
sinφ cosφ
m1m2

. Thus we find from our analysis of the blow-up of the κi

that a necessary and sufficient condition for the solution of the DeTurck–Yang initial
value problem to exist in all of H

2 is that the following hold a.e. for −∞ < s < ∞:

|(κ− φ′)
m2 sinφ

m1
− (|S|κ−m1m2φ

′/|S|2) sinφ| ≤ m2|D|
(
(1−m2

1)

m2
2 −m2

1

) 1
2

,

|(κ− φ′)
m1 cosφ

m2
− (|S|κ−m1m2φ

′/|S|2) cosφ| ≤ m1|D|
(
(m2

2 − 1)
m2

2 −m2
1

) 1
2

.

These bounds are, admittedly, not particularly revealing but they become consider-
ably more so when we limit ourselves to the case in which φ is constant, that is, when
the initial mapping of the curve C onto C has length change |S| = σ, a constant.
Since in this case we have φ′ = 0, the conditions simplify to

|m2κ−m1κσ| ≤
√
(m2

2 −m2
1)(1−m2

1) | cosφ|,

|m1κ−m2κσ| ≤
√
(m2

2 −m2
1)(m

2
2 − 1) sinφ.

Finally, we derive some sharp values for the radius of convexity for cps-mappings
in H

2. Returning to (4.7) and (4.8) above, we see that

κ =
1

|S|
(m1

m2
κ1 cosφ− m2

m1
κ2 sinφ+m1m2φ

′/|S|2
)
,

so that, since |S|2 = m2
1 cos

2 φ+m2
2 sin

2 φ, we have by (4.7) that

|S|3κ = m1m2(κ2 sin
3 φ− κ1 cos

3 φ+ κ) +
m3

1

m2
κ1 cos

3 φ− m3
2

m1
κ2 sin

3 φ.

Thus, writing µ = (m2

m1
)2 we have

|S|3κ
m1m2

= κ− (µ− 1)
(
κ1

µ
cos3 φ+ κ2 sin

3 φ

)
a.e. on C.

Let ∆ = ∆(R, a) denote the disk of radius R and centered at a in H
2 and let

f : ∆ → H
2 be an (m1,m2)-mapping, which, without loss of generality we assume

to be orientation preserving. We apply the above calculations to the curve ∂∆ with
positive orientation so that N and N are inward pointing normals (see (3.23) and the
sentence which follows it). The curve ∂f(∆) is convex if and only if κ = 〈DTT ,N〉 ≥ 0
a.e. on ∂∆, that is, if and only if

κ ≥ (µ− 1)
(
κ1

µ
cos3 φ+ κ2 sin

3 φ

)
.(4.9)
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If p is a point of ∆ at distance d from ∂∆, then it follows from (4.2) that the greatest
value that κi(p) can have is

κmax
i = γi

e2γid + 1

e2γid − 1 = γi coth(γid),(4.10)

since otherwise f would have to have a singularity inside ∆. It is well known and
easily calculated that the hyperbolic geodesic curvature k(r) of a circle of hyperbolic
radius r is given by

k(r) =
1 + tanh2(r/2)

2 tanh (r/2)
.

It then follows from (4.9) that f(∆(r, a)) is convex provided that

k(r) ≥ (µ− 1)max
{

γ1

µ
coth(γ1(R− r)), γ2 coth(γ2(R− r))

}
.(4.11)

For fixed m1 ≤ 1 ≤ m2, R > 0 the right-hand side is increasing, so that since the left-
hand side is decreasing, there is a unique ρ = ρ (m1,m2,R) for which they coincide.

Theorem 4.3. Let m1 ≤ 1 ≤ m2, R > 0. Then ρ (m1,m2,R) is the largest r
such that all (m1,m2)-mappings of ∆(R, a) into H

2 map ∆(r, a) onto simply covered
convex domains.

Proof. That the images of the concentric disk of radius ρ (m1,m2, r) are all con-
vex follows from the preceding discussion. Thus we have only to show that this ρ
cannot be replaced by any larger number. Let i be the index corresponding to the
maximum in (4.11). Let Cj be a geodesic through a and let q ∈ Cj be at distance ρ
from a. Let d > R − ρ, and let Ci be a curve orthogonal to Cj at q whose geodesic
curvature is 0 everywhere except on a small neighborhood N of q along which it is
given by the expression in (4.10), with the “concave side” of N towards the shorter
of the two arcs into which q divides Cj . It is clear then that for sufficiently small
N the solution f to the characteristic initial value problem for (m1,m2)-mappings
with these characteristics exists in all of ∆(R, a). But given any r > ρ, for a
d > R − ρ sufficiently close to R − ρ, (4.9) will be violated for the circle centered
at a and of radius r, that is, the image of the interior of this circle will not be a
convex domain.

5. Comments. In closing we touch on a few of the many questions about cps-
mappings that naturally suggest themselves. First of all, there are reasons to believe
that the Jacobian of a C1-mapping between 2-manifolds having constant principal
strains is necessarily locally Lipschitz continuous. A partial result in this direction
was given in [Ge1], where it was shown that in the planar case this conclusion is
valid under the stronger assumption that the derivatives of the mapping satisfy a
Hölder condition with exponent α > (

√
5− 1)/2, and the arguments given there can

be strengthened to extend this result to the general manifold context with the lower
bound decreased to 1/2.
In section 4 we considered only the radius of convexity problem in H

2 under the
assumption that m1 ≤ 1 ≤ m2 because for other values of the principal stretches
there are no (m1,m2)-mappings of ∆(R, a) into H

2 when R is sufficiently large. This
leads us to the problem of determining the radius of the largest disk on a complete
manifold of constant Gaussian curvature K on which there exist (m1,m2)-mappings
into a manifold of constant Gaussian curvature K. In light of the opening sentences
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of section 1 the answer to this question, and more generally the determination of
maximal domains of existence for cps-mappings on manifolds, would have an obvious
bearing on the appearance of flaws in cryptocrystalline films.
Theorem 4.2 gives a complete description of all cps-mappings of H2 onto itself, and

we have done the same [Ge4] for two planar domains (the half-plane and the exterior
of a disk), but it would appear that the nonlinear hyperbolic nature of the underlying
equations precludes such a description in any appreciable generality. Moreover, it is
most likely that even for many “nice” domains in R

2 there are no such mappings at
all. (Although we believe this to be the case for disks, we have as yet been unable to
come up with a proof.) These circumstances suggest two problems: (1) Find other
manifolds for which it is possible to describe all the cps-self-homeomorphisms. (2)
Find some simple conditions on a manifold which imply that this class is vacuous.
We end with a few words about cps-mappings in higher dimensions, that is, about

mappings with distinct constant principal stretches between n-dimensional manifolds.
The treatment of section 2 can be carried over to this more general context, but the
equations that result are vastly more complicated. In the first place, the higher dimen-
sional counterpart of the system (2.9) of curvature equations, although hyperbolic, is
not diagonal, and in the second place the analogues of the blow-up equations (2.13)
involve not only the principal strain line curvatures but functions that give the rate of
rotation of the frames of principal strain directions as well (see [Ge2]). An example of
Yin [Y] shows that there are nonaffine cps-self-homeomorphisms of R

3, and it would
be of interest to determine all such mappings. Indeed, most of the questions we have
touched on in this paper can be examined in the higher dimensional context as well.
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