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Abstract 
Over the past two decades or so, an enormous amount of work has 
been done to improve the Expected Utility model. Two areas have 
attracted major attention: the possibility of describing unforeseen 
contingencies and the need to accommodate the kind of behavior 
referred to in Ellsberg’s paradox. This essay surveys both. 
 
 
 
 

                                                 
1 fzurita@faceapuc.cl I am very grateful to Burkhard Schipper, who was kind enough to patiently clarify my doubts 
regarding his work in a series of e-mails; to Federico Weinschelbaum for endless discussions; to Rodrigo Harrison and 
seminar participants at the Pontifical Catholic University of Chile for comments; and to Paolo Ghirardato for a long talk 
some years ago that brought this subject to my attention.  
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“But it does seem that the recent «incomplete market» studies may 
have left some of the most striking instances of incompleteness 
unstudied and in particular have given no indication how the Savage 
paradigm is to be deployed when we go beyond the weather and 
earthquakes.”      
  Kenneth Arrow and Frank Hahn (1999) 

 

1. Introduction 
  
Expected Utility Theory is a cornerstone of economic analysis. It rationalizes individual 
decision making in ignorance, that is, when the decision maker does not know the 
consequences of each possible action. As situations of this kind are pervasive in economic 
life, it is not surprising that the theory has been so widely applied, to problems ranging 
from portfolio choice, gambling, insurance, investment, and education, to more intricate 
social phenomena such as coordination, delegation, or trading, to name just a few. 
  
However, economists are finding a growing number of applications in which it seems 
incomplete and deficient, where observed behavior looks paradoxical through its lens. 
These paradoxes concern primarily more complex forms of ignorance. Consider, for 
instance, General Equilibrium Theory under uncertainty. Clearly, modern economies do not 
possess the type or the number of assets the model predicts, for it is extremely easy to find 
examples of untraded contingencies and in that sense, asset markets are incomplete. The 
study of incomplete market economies, however, has typically taken the incompleteness as 
a starting point, without explaining its source (with a few exceptions, notably Allen and 
Gale, 1989). Arrow and Hahn (1999) close their perceptive discussion of the internal 
consistency of the model with our opening quotation. A basic message of theirs is that 
economists have in some sense abused Expected Utility Theory (henceforth EUT), putting 
it to work at tasks for which it was not designed, such as analyzing the sophisticated forms 
of uncertainty that characterize asset market transactions. Over the past decade or so, much 
work has been done to produce a model that can handle these more complex forms of 
uncertainty, that is, that can go beyond earthquakes. This article surveys this work.  
  
In particular, it focuses on two concepts that cannot be described in the language provided 
by Expected Utility Theory: unawareness and ambiguity. 
 
The first refers to a situation in which the decision maker (henceforth DM) does not know 
the consequence of each available act and does not even imagine all possible consequences, 
and hence may eventually find himself in an unforeseen situation.  
 
EUT’s neglect of the higher level of ignorance posed by unawareness has important 
implications. For instance, a central result in Contract Theory asserts that two parties 
engaged in a long-term relationship will prefer to sign a complete contract over an 
incomplete one, meaning that all conflicts of interest that may arise in the relationship 
should be considered in the contract. This proposition is largely refuted by the evidence, as 
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observed contracts are often vague and leave many contingencies undefined, which in turn 
often end up being renegotiated or legally disputed. Pioneered by Hart and Moore (1988), a 
branch of Contract Theory, Incomplete Contract Theory, has explored the implications that 
contracts could not be written on the variables of interest, say x , but on correlated 
variables, say y . Although this shortcut has allowed the study of many aspects of contracts, 
the foundations of this branch remain doubtful (Maskin and Tirole, 1999). The 
development of an Incomplete Contract Theory with solid foundations still awaits the 
development of a theory of behavior in conditions of unawareness. I describe in Section 3 
some promising approaches on how to construct such a theory. 
  
Speculation constitutes yet another example. The celebrated No Trade Theorem (Milgrom 
and Stokey, 1982) establishes that private information alone cannot be a motive for trade if 
there is common knowledge of rationality and all individuals have common priors. This 
latter assumption also involves their foreseeing a common set of contingencies; Heifetz, 
Meier and Schipper (2003) provide an example showing that this assumption is necessary 
for the No Trade Theorem. Thus, the development of an unforeseen contingencies theory 
may pave the way for a more intuitive and empirically relevant theory of speculation than 
we currently have. 
  
In all these cases, extending EUT to accommodate the possibility of unawareness appears 
as a promising research area. This extension, however, has proved not to be simple, and the 
development of a tractable model is yet to come. Section 3 discusses the difficulties 
involved and promising new results as well. 
  
The second strand of literature this article reviews is that of ambiguity, which in general 
terms investigates the behavioral consequences of non-additive representations of beliefs.  
 
That the EU model relies on probabilities to represent beliefs is a fact. The implications of 
this fact, however, depend on the meaning attached to the mathematical concept of 
probability. For instance, to an objectivist observer, who feels that a probability is part of 
the description of an object or process, like weight or mass, EUT is essentially a normative 
theory whose positive value depends on its predictive ability. This analyst, however, may 
wish to distinguish situations in which the probabilities are known to the decision maker 
from those where they are not. For him, EUT only applies to the former class of situations, 
while the study of the latter, when the decision maker may have an ambiguous belief, 
requires a different tool. 
 
A subjectivist, on the other hand, understands probabilities as an expression of the 
(personal) doubts the decision maker entertains in a particular decision problem. He uses 
the EU model because if the decision maker’s behavior obeys certain properties, then he 
knows that he can represent it as the result of the maximization of an EU function, 
regardless of the decision maker’s level of knowledge or ignorance. He would rely on the 
EU model to predict behavior as long as it is empirically satisfactory. It turns out that in 
some classes of problems, it is not. As a consequence, the theory needs to be amended. The 
choice problem occurs under ambiguity if the observed behavior can be better predicted by 
a non-additive belief. 
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How one interprets probability plays such an important role in determining the reasons 
behind attempts to generalize EUT’s representation of beliefs that I have discussed the 
interpretation issue at some length. Keeping this multiplicity of meanings in mind also turns 
out to be crucial to understanding what EUT is – and what it is not. For this reason, I placed 
this discussion at the beginning, in Section 2. 
 
Sections 3 and 4 discuss unawareness and ambiguity, respectively. The method consists of 
a general review of the theory, including its most commonly used applications and some 
recent advances. The review is not all-comprehensive, but focuses on identifying areas in 
which EUT’s current use are problematic.  
 
I should stress that this article is intended for a general audience within the profession. 
While there are good surveys available on these topics (like those of Dekel, Lipman and 
Rustichini, 1998b, on unawareness, and Ghirardato, 1993, on ambiguity) they tend to be too 
formal for most economists to fully grasp and apply. Instead, this article emphasizes 
interpretation, keeping the formal description to a minimum (although some is nonetheless 
necessary). 
 

2. The Expected Utility Model 
  
A choice problem occurs when a DM faces many mutually exclusive courses of action. Let 
A  represent the set that contains all those acts. If the DM knew the consequence of each, 
he could evaluate those consequences directly, using, for example, function ( )V a . Choice 
Theory assumes such an evaluation is possible and deduces the V  function by looking at 
actual choices: the observed decision corresponds to the best evaluated among the available 
acts. Hence, if *a  was chosen when a  was available, we infer that ( ) ( )*V a V a≥  for all 

a A∈ , or equivalently, that ( )* arg maxa Aa V a∈= . 
  
Uncertainty is a situation in which the DM does not know the consequence of each act. 
Although our usual image involves a DM who does not know what will happen in the 
future at the time when the decision is called for, the facts of which he is uncertain may or 
may not have already happened. Conceptually, whether or not the DM knows something 
has already happened or will happen is immaterial; all that matters is that the DM does not 
know about it. We can nevertheless identify an important dimension involving time: the 
moment at which the DM is ignorant and must decide (call it ex ante), another when the 
decision has been made and he may find out about something but not everything (call it 
interim), and a final moment when the DM learns what the consequences of his decision 
were (call it ex post). These three instants are intimately related in Decision Theory. 
  
The EU model assumes that ex ante the DM is capable of listing all possible scenarios or 
states of the world. A state of the world is a description of all relevant aspects of reality that 
explain a given consequence. Knowing the state of the world is equivalent to knowing what 
the consequence of each act is or would have been, that is, a state of mind in which 
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ignorance or uncertainty vanish. For instance, when the DM buys a lottery ticket, he does 
not know (he is uncertain) if he will win or not. He may list the possibilities: in the state of 
the world in which the winning number is his, he wins; in the other he does not; and it is 
irrelevant to this description whether the winning number has already been picked or not.  
  
Say that Ω  contains the list of all possible states of the world. Consider it a finite set, for 
reasons that will become clear later on. Observe that only one state is or will be “true” ex 
post, and all the rest will be declared to have looked plausible ex ante but proved “wrong” 
ex post. Label ( ),c aω  the consequence of act a  in state Ω  and ( )( ),u c aω  the ex post 
evaluation of consequence ( ),c aω  (which will obtain under act a  if ω  is the true state).  
  
Observe that if only one state were considered possible, then the ex ante evaluation of the 
act may well be viewed as corresponding to the ex post evaluation of the consequence, that 
is ( ) ( )( ),V a u c aω= . This is in fact the usual convention in the timeless Choice Theory, 
where the ex ante and ex post instants are not distinguished. It is clear, however, that this 
cannot be so with uncertainty, as the evaluation of acts will vary with the states. 
  
The EU model asks the DM in addition to hold numerically representable ex ante beliefs or 
degrees of trust in the truthfulness of each state. Moreover, these beliefs are assumed to be 
representable by a probability. Let ( )π ω  be the ex ante degree of confidence on ω  being 
the true state. 
  
The EU model holds that the DM behaves (i.e., chooses actions) as if maximizing a 
function such as this: 
 
( ) ( )( ) ( ) ( )( ), ,V a E u c a u c a

ω

ω π ω ω
∈Ω

 = =  ∑  (1) 

 
that is, the function that evaluates acts (called utility function) corresponds to the expected 
value of the function that evaluates consequences (called the Bernoulli or felicity function). 
  
The EU model is thus built on the following ideas: (i) The choice depends on an evaluation 
of the possible consequences (as opposed to principles, rules of thumb, etc., even though 
such ingredients may sometimes be considered part of the consequences); (ii) The list of 
possible consequences is complete, and we could in principle find a probability function 
that describes the DM ex ante beliefs affecting choices, and (iii) The evaluation of 
consequences and probabilities has the particular, linear form of Equation (1). 
  
An axiomatization of EU is a set of axioms or assumptions about how DM behaves, which 
ensures (iii). There are many different axiomatizations of the EU model. Each, however, is 
built on a different idea of what a probability is, and hence in some sense constitutes a 
different theory. The most widely accepted axiomatizations of EU are also the polar cases 
in the dimension of interpretation: John von Neumann and Oskar Morgenstern’s (1946) and 
Leonard Savage’s (1957).  
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The main difference between them is their distinctive way of describing acts. While for von 
Neumann and Morgenstern an act is a probability distribution over consequences in itself, 
for Savage it is merely a map from states to consequences, deprived of any probability 
judgments in principle. For instance, if a DM is invited to bet on the outcome of a coin toss, 
von Neumann and Morgenstern would characterize the decision problem as composed of 
two mutually exclusive acts, described by: 

Accepting: ( ) ( ) 1Pr winning 1,000 Pr losing 100
2

= =  

Rejecting: ( ) ( )Pr winning 1,000 Pr losing 100 0= =  
 
while Savage would do it by:  
 

Accepting:  win 1,000 if heads, lose 100 otherwise 
Rejecting:  win/lose nothing in any event 

 
Thus, in the treatment of von Neumann and Morgenstern, the probability is part of the 
description of the possibilities an individual faces, the courses of action open to him. Using 
this concept, the most natural interpretation of probability is of an objective nature: the 
probability exists outside the DM. A drawback is that since in any decision-making 
problem, the DM must know the alternatives from which he must choose, it follows that he 
must know the probabilities of each state. Depending on the application, this assumption 
may be too strong, and yet it is unavoidable if one wants to have a decision model at all. 
  
Savage, on the other hand, characterizes acts as maps between states and consequences, 
with no probability judgments attached to them. In this approach, a DM understands an act 
as a list of possible consequences, one for each possible state of the world: :a cω → . The 
most striking aspect of Savage’s theory is that he manages to identify a set of behavioral 
assumptions that imply an expected utility representation of preferences, involving a 
probability function – which can be interpreted as the DM’s implied (as opposed to 
declared or known) beliefs – and which, moreover, satisfies all properties of probabilities. 
  
The significance of this fact is twofold. First, if one is willing to assume that an individual’s 
behavior obeys these properties, then the existence of a probability function, to be 
interpreted as the DM’s implicit beliefs, is granted. That is, the idea that an individual’s 
beliefs are representable by a probability function does not involve a separate assumption. 
Specifically, it is not necessary to postulate anything about the DM’s knowledge about 
empirical frequencies or the like. 
  
On the other hand, Savage defines the notion of conditional preferences, to be interpreted as 
the preference ranking over acts after learning that an event has occurred. The 
representation of this conditional preference also takes the form of an expected utility, 
obtained from the unconditional one by an update of the probability that satisfies the 
definition of conditional probability. Hence, the implied beliefs satisfy Bayes’ law, giving 
support to understand this as a dynamic theory in which inference from evidence is fully 
logical. 
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These polar axiomatizations, then, rest on a completely objective and a completely 
subjective view of probability, respectively. There are some intermediate views as well 
(e.g., Anscombe and Aumann 1963). Each of these axiomatizations provides a basis for a 
different theory of decision making under uncertainty, around a common mathematical 
model. 
  
Since there are also many probability models, it is useful to state that the mathematical 
notion of probability referred to throughout this article is the mainstream formalization 
among probabilists, as per Kolmogorov (1950). For the sake of completeness, its basic 
structure is described briefly below. 
 

2.1 The Probability Model 
  
An event E  is a subset of the set of states, Ω . E  is perhaps more naturally defined as the 
set of states at which a given proposition p  is true (e.g., p ≡ “It will rain tomorrow”). 
Models that take as primitives the set of propositions are called syntactic, while those 
which take events as primitives are called semantic.2 An algebra M  is a set of events, with 
the properties of being closed under complementation and union, that is: 
 

(A1)  ,∅ Ω∈M  
(A2)  cE E∈ ⇒ ∈M M  
(A3) , ' 'E E E E∈ ⇒ ∪ ∈M M  

  
An algebra is therefore the set of events describing the model’s uncertain variables. From a 
syntactic perspective, the above properties involve the requirement that if one can talk 
about a given proposition, one should also be able to talk about its negation (A2); that there 
exists a proposition that is trivially true, or a tautology, and also its negation (A1); and that 
one can compound the available propositions to form new ones, with the logical connective 
“or” (A3) (and “and” by appealing to the de Morgan’s laws, for ( )' '

cc cE E E E∩ = ∪ ). 
Hence, if p ≡  “it will rain tomorrow” and q ≡  “the apple is rotten” are expressible in the 
model (i.e., ,p q∈M ), then “it will not rain tomorrow”, “the apple is not rotten”, “the 
apple is either rotten or not rotten”, “it will not rain tomorrow but the apple is rotten”, etc, 
also are. 
 
A σ-algebra is an algebra that satisfies the following additional property: 
  

(A3’)  If { }iE  is an infinite collection of disjoint elements of M , then 

1iE E∞
=≡ ∈∪ M . 

  
If Ω  is finitely dimensional, clearly (3’) is not different from (3); it only has bite over 
infinite dimensional state spaces. 

                                                 
2 Aumann (1999a, b) offers a comprehensive but rather technical comparison of these models. 



 8

  
A probability π  is a function that assigns to each event E∈M  a real number in the 
interval [0,1], [ ]: 0,1π →M , with the following properties: 
 

( 1π )  ( ) ( )0, 1π π∅ = Ω =  (normalization) 

( 2π )  ( ) ( )' ' , 'E E E E E Eπ π⊆ ⇒ ≤ ∀ ∈M  (monotonicity) 

( 3π )  ( ) ( ) ( ) ( )' ' 'E E E E E Eπ π π π∪ = + − ∩  (finite additivity) 
 
Depending on the interpretation, ( )Eπ  can be a numerical judgment about the degree of 
truth in the proposition that E  implicitly describes, or the degree of confidence in the 
occurrence of E , or the frequency at which E  has been observed over some period of time. 
The structure imposed on π  entails the requirements that tautologies (or the universe of 
possibilities or observations) receive the highest value (true or always) and their negation 
the lowest (false or never) (normalization); that the less demanding a proposition, the 
higher its degree of truth or frequency (monotonicity); and that if two propositions cannot 
be simultaneously true, then the proposition “either of them” should be assigned the sum of 
the degrees of truth of each individual proposition (additivity).  
 
If one knew whether each proposition were true or false, one would know the “truth”. 
There are many possible truths and the probability describes the degree of truth or 
confidence about each. Call each possible truth a state of the world – a full description of 
all relevant propositions – and label it ω . The union of all those states is a tautology if the 
list is so comprehensive (complete) that one can be certain that one of them must be true. 
Hence, this union must be Ω . Since each state is an event in its own right, describable as 
unions and intersections of other events, and since two states cannot be simultaneously true, 
the list of all states Ω  can be used alternatively to describe M . Indeed, all events in 
M can be written as unions of elements of Ω . This is why sometimes people 
(inappropriately) write [ ]: 0,1π Ω→ , because using this function, the probability of any 

event E∈M  can be computed as ( ) ( )
E

E
ω

π π ω
∈

= ∑  (where this last equality comes from 

additivity and the fact that { } { }'ω ω∩ =∅  for any two different states). 
 
Two remarks are in order. First, it should be clear by now that a probability is simply a real 
function with some properties and, as such, it may be useful to represent many different 
concepts. The most important of these are discussed in Section 2.2. EUT inherits this 
characteristic, for there are many interpretations that can be attached to the EU model as 
well. Second, the reference to propositions is not necessary to define events, and the 
semantic model can be constructed abstracting completely from any (explicit) syntactic 
model.  
 
Paralleling conditions (A3) and (A3’), very often the latter property, additivity, is 
strengthened to require countable additivity, that is: 
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( 3'π )  If 1i iE E∞
== ∪ , where { }iE  is a collection of countable many disjoint sets, 

then ( )
1

i
i

E Eπ
∞

=

=∑ . 

  
Although the replacement of ( 3π ) by ( 3'π ) stirs some controversy among probabilists and 
philosophers, finite and countable additivity are equivalent in the finitely dimensional state 
spaces, which are the focus of this essay. 
  
In the context of EUT, probabilities are used to represent beliefs, however acquired, more 
often than as a degree of truth. The probability model may account for dynamics of beliefs, 
by way of the concept of conditional probability. The probability of an event A  conditional 
on an event B  is defined by3: 
 

( ) ( )
( )

|
A B

A B
B

π
π

π
∩

=   (2) 

 
whenever ( ) 0Bπ > .  
  
( )|A Bπ  is interpreted as the belief or degree of confidence in the occurrence of A  after 

knowing that event B  occurred. Ex ante, the DM thought that B  could happen, but 
assigned a probability of ( )1 Bπ−  to B  not happening. After realizing B  occurred, she 

must adjust her beliefs to account for the fact that now she knows cB  is impossible and will 
from now on assign it a probability of 0.  
 
When applied to states that remain plausible, say , ' Bω ω ∈ , the definition of conditional 
probability entails that their relative likelihoods do not change: 
 

{ }( )
{ }( )

{ }( )
( )

{ }( )
( )

{ }( )
{ }( )

( )
( )

|
'' | ' '

B
B B
B B

B

π ω
π ω π ωπ π ω

π ωπ ω π ω π ω
π

∩

= = =
∩

 (3) 

 
Bayes’ rule, on the other hand, connects ( )|A Bπ  with ( )|B Aπ  as follows:  
 

                                                 
3 It might also be deduced from a set of axioms, much in the spirit of Savage' work. See, for 
example, Bernardo and Smith (1994), chapter 2.  
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( ) ( ) ( )
( ) ( )

|
|

| i i
i

B A A
A B

B A A
π π

π
π π

=
∑

 (4) 

 
where { }iA  is a partition of Ω , that is, a collection of nonempty, pairwise disjoint sets, 
whose union is Ω . Observe that applying the definition of conditional probability in 
Equation (2), the rule reduces to the following statement:  
 

( ) ( ) ( )| i i
i

B B A Aπ π π=∑  (5) 

 
If { }iA  is a list of mutually excluding events that the DM thinks of as possible ex ante, and 
if the DM observes ex post the occurrence of one such event, and if his beliefs about B  
change from ( )Bπ  to some ( )| iB Aπ , then Bayes’ rule is a consistency requirement 
between ex ante and ex post beliefs. Equation (5) asserts that the ex ante beliefs are the 
expected value of the ex post beliefs. If the DM were to believe something different ex ante, 
then he would use the information implicit on that belief to adjust some or all ex post 
beliefs. 
  
I remarked earlier that in the work of von Neumann and Morgenstern probabilities are 
exogenous, and hence it is an additional assumption that they satisfy Bayes’ rule. Whether 
it is an obvious, reasonable, or just plausible assumption is a matter, in part, of what 
interpretation is given to the notion of probability, as the next section discusses. In Savage’s 
development, on the contrary, the satisfaction of Bayes’ rule is the consequence of 
behavioral assumptions. 
  
The axiomatic development of these theories and the proof of their respective 
representation theorems are widely available in graduate textbooks (e.g., Mas Colell et al.) 
and hence not given in this essay. What these sources do not emphasize (with the notable 
exception of Kreps’ authoritative exposition, 1988), however, is the difference among 
available interpretations. An important source of differences stems from the disparate 
meanings attached to the term “probability,” as surveyed below. A fuller discussion can be 
found in Hájek (2002). 
  

2.2 Views on Probability 

A. Objective Views 
  
Objective views of probability hold that “probability” is a characteristic of the object under 
consideration, like weight, mass or temperature, and not of the observer. Presumably, the 
probability of an event can be learned through scientific examination, be it by empirical 
research or introspective reasoning. 
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The idea that probabilities are objective leads immediately to questions about the validity of 
EU theory as a positive theory. To be sustained, the theory needs to explain how these 
probabilities are “revealed” or “known” to decision makers.  
 
The significance of this for EUT is that it severely limits its applicability to situations in 
which such probabilities can be computed. Several authors have argued against the 
possibility of applying this (or even any) mathematical model to explain behavior under 
uncertainty. In his General Theory, for example, Keynes distinguished between long-run 
and short-run expectation: the former referred to situations in which individuals can 
accumulate too little evidence to base judgments on it, thereby rendering probability 
assessments impossible. Knight, on the other hand, is credited for his distinction between 
risk (a situation in which the DM cannot predict the consequence but knows the 
probabilities) and uncertainty (where the latter knowledge is also absent), obviously 
holding an objective view. 
 
Hence, from the perspective of EUT, objective views suffer from the common drawback 
that it cannot be taken as a universal, positive theory of human behavior, for in many, 
perhaps most, instances the relevant probabilities cannot be assumed to be known. This fact 
is of extraordinary importance and often overlooked.  
  
Friedman’s (1953) epistemological view, however, provides a partial reconciliation of 
objective views and universal applicability: the model must be judged by its predictions and 
not by its assumptions. The trouble is that from one model many predictions are drawn. If 
the researcher focuses on one prediction, then this may work. However, the discipline 
constantly seeks a general model that provides particular predictions. For instance, if the 
CAPM is taken to predict that expected returns are linearly related to their “betas”, it may 
be of no consequence to assume that all investors “know” the joint distribution that 
characterizes asset returns. If it is taken to predict that all investors will hold a market 
portfolio, however, one is forced to look at the assumptions with more suspicion. 
  
At any rate, universality may be the main practical reason behind why many economists 
declare their support for the subjectivist view. However, in many applications of EU theory 
in economics it is easy to recognize some, and often much, objectivism, a notable example 
being the Theory of Rational Expectations. A quick review of the most common objective 
interpretations follows. 
  
i.  The Classical View 
  
Generally speaking the classical interpretation of probability holds that a DM should list all 
possibilities, consider each of them as “equally likely,” and then deduce the probability of 
each event by “counting” the different ways that such event occur. The probability of an 
event is thus defined by the ratio “number of states consistent with the occurrence of the 
event/total number of states”. 
  
For instance, consider a gamble where a woman flips a coin once. If the outcome is heads, 
she pays $2 to a bettor. If tails, she flips it again. If the outcome of the second trial is heads, 
she pays $22 to the bettor. Otherwise she tosses it again, and so on. If, in the first n trials, 
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the outcome was heads, the prize in case of tails in the (n+1)th trial is $2n+1. According to 
the classical interpretation, every gambler in this situation should consider the probability 

of winning exactly $2n to be 1
2

n
 
 
 

. This conclusion is arrived at in the following way: “The 

number of outcomes in each trial is 2: the coin either comes up heads or tails. Hence, in 
each trial, the probability of heads is 1

2 . Therefore, after n trials, the possible outcomes take 

the form (x heads, n-x tails), and for each of these, there are 
n
x

 
 
 

 sequences of heads-tails 

consistent with such outcome. However, the game ends the first time a tails appears. 
Therefore, to win exactly $2n, in the first (n-1) trial the outcome has to be heads and in the 

last one, tails. The probability of that is clearly 1
2

n
 
 
 

 . 

  
Possibly the earliest construction of EU is that of Bernoulli (1738), who proposed it as a 
solution to the Saint Petersburg paradox, one of the early discussions on the notion of 
value. The Saint Petersburg paradox used a gamble like the above to say that such a gamble 
has an infinite expected payoff, but clearly no one should be willing to pay even finite 
amounts such as, say, $1,000,000. In effect, if ( )c n  is the consequence of obtaining tails 
for the first time in trial n ,  
 

( )
0 0

1 2 1
2

n
n

n n
E c n

∞ ∞

= =

 = =      
∑ ∑  (6) 

 
which does not converge. Bernoulli, then, proposed the following “solution”: if the gambler 
does not evaluate the state according to the prize he obtains, but rather according to a 
function ( )( )u c n , then he will be willing to pay a finite amount, as long as this function is 

concave. For instance, if ( )u c c= , 
 

( )( )
0

1 2 2.4
2

n
n

n
E u c n

∞

=

   = ≈    
∑ , (7) 

 
a much more reasonable amount to pay for such a game. Of course, what Bernoulli 
constructed was the expected-utility function, giving simultaneously an argument for its use 
in decision theory (whether to pay an amount x  for the right to play) and for what later 
became known as risk aversion, represented by the concavity of the Bernoulli function. 
Interestingly, then, EUT was born of a classical, objective view of probability. 
  
There are many objections to the classical view of probability. Possibly the most 
devastating is the fact that any problem admits more than one description of the set of 
states. Since every state carries the same probability, different descriptions lead to different 
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probabilities and hence to different preferences over acts. To give an obvious example, if 
the possibility of the coin landing on its edge is considered, then the probability of winning 
exactly $2n should be ( )1

3
n  instead of ( )1

2
n . In the face of this, the theory does not uniquely 

predict what a DM would do. 
 
 
ii. The Propensity View 
  
The propensity view in some sense extends the notion of classical probability to allow for 
non-equal probability assignments, while retaining the idea that the probability is a 
characteristic of the object. Probability is then a deep, unknown parameter, which exists 
whether or not an observer is aware of its existence or value. Probability can be learned 
about by means of scientific investigation and the empiricist must experiment to discover 
its value. The deep parameter, however, can only be known precisely in an experiment that 
considers infinitely many repetitions. 
  
Hence, a coin propends to exhibit a balanced number of heads and tails when tossed, in the 
same way a given light bulb propends to remain operational about 5,000 hours. 
  
However, it is extremely unclear why these propensities must obey the properties usually 
attributed to probabilities (that is, normalization, monotonicity and additivity of either 
kind.) Each of these properties should in itself be the object of scientific inquiry. Yet, it is 
very hard to imagine a test for, say, normalization. Or more substantially, how to test 
whether the limit of a sequence of experiments is the purported distribution. 
  
On the other hand, the definition entails a great deal of vagueness. Since all experiments 
must consider finitely many repetitions, then some notion of closeness must be adopted. 
These notions take the form of a set of conventions among researchers, which are often 
hard to defend – consider the magical number 30 as the minimum number of observations 
in regression analysis or the 5% considered the acceptable level of significance in statistical 
inference. 
  
A more basic objection refers to the assumption that the experiments were made under 
“similar conditions.” In many cases one might be forced to accept that if the conditions 
were literally the same, one should expect to see the same outcome. If, for instance, the 
coin was flipped two times, with the same force being applied in the same point, etc., it 
should land in the same place, in the same position. If this is true, then saying that 50% of 
the times it lands heads up merely says that the conditions were not the same in all coin 
flips. 
 
The trouble is perhaps that often attached to the propensity view is the idea that random 
events exist in nature: the outcome of a coin flip is random, as is the duration of a light bulb 
or the price of a financial asset. In many instances, whether random variables exist in nature 
or only are artifacts to represent the observer’s ignorance is of no consequence in research. 
Yet accepting the former means that random variables cannot be used to represent 
processes we know or feel are not random. The example of the previous paragraph 
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suggested that the outcomes of coin flips are deterministic, although hard for humans to 
predict. Consider a different example: a child who is learning basic mathematics could 
certainly entertain doubts when faced with the question, How much is 322 plus 25? He may 
entertain many possibilities and may not be confident of his answer. Can his choice of 
answer be modeled by a EU maximization? As the result of the sum is not really random, 
an adherent to the first view would say no: random variables are for random events. A 
subjectivist, on the other hand, would be happy to do so. 
  
In general, questions like “What is the probability that candidate X wins in the next poll?” 
are meaningless under this view. EUT, hence, would not be applicable to situations where 
probabilities cannot be defined. 
 
  
iii. The Frequentist View  
  
The frequentist view holds that probability refers to the frequency with which each 
particular event occurs, upon repeating an experiment under similar conditions a large 
number of times. It is in essence a mere, but convenient, description of the data.  
 
As such, to the frequentist probability is not defined for one-shot experiments (or they are 
trivial: the probability of an outcome is either 0 or 1, depending on the observed outcome). 
As a consequence, this view supports a narrow application of EUT, as did the previous one. 
 
  
iv. The Logical View 
  
The logical view maintains that probability refers to the degree of truth of a proposition. 
Under this paradigm, probability is an extension of propositional logic, constructed over a 
syntactic model.  
 
That such an extension can be satisfactorily made, and that it can be made by using 
probabilities, is a matter of controversy among logicians. But even assuming it can, it is not 
clear at all why individuals should base their behavior on these numerical values. For 
instance, a given proposition (event) may be considered to be more confirmed by evidence 
than another, and hence assigned a higher probability. Yet, EU requires the DM to behave 
differently when the ratio of these probabilities is, for example, 2, than when it is 3, 
although both cases conform equally to the notion that the first proposition is better 
confirmed by evidence than the second one. Put another way, the cardinality of 
probabilities is essential to decisions based on EU, although it is not necessarily so to 
represent degrees of confirmation. 
 
 
B. The Subjective, Personalistic, or Bayesian, View 
  
The subjective view of probability holds, on the other hand, that probability is a numerical 
representation of the degree of belief, or confidence, a DM has in a specific event 
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occurring. The probability is thus a characteristic of the subject and not the object. It is an 
expression of his ignorance and doubts, in his present state of knowledge. 
  
As such, it gains universality: every DM may hold beliefs and doubts about many events, 
be they random or not, if one insists on the existence of random events. It is not necessary 
to assume that the DM has experience with “similar” problems or that he knows relevant 
empirical frequencies. The subjectivist holds that, nonetheless, every DM may have an 
assessment, and that that assessment can be written in the form of a probability. This is not 
to say that experience, knowledge or information is useless to making an assessment: the 
theory would eventually explain belief-change in the presence of information, and in 
general, reconcile it with objectivist views in situations where a large number of 
experiments can be performed. It just does not limit itself to this kind of situation. 
 
Thus, a DM may have beliefs about who is going to win the 2011 presidential election, 
despite the fact that the candidates have not even been officially nominated. Moreover, 
these beliefs are assumed to exist (even though we cannot think of a frequency distribution 
created from a large number of similar experiments), to differ from the “favorable 
cases/possible cases” formula (which would not only assign the same probability to each 
possible candidate, namely 1/10,000,000 in the case of Chile!), and to vary across people as 
well. Thus, besides its intuitive appeal and beautiful construction, the strong point of the 
subjective approach is its universal applicability to any decision problem. In the end, when 
faced with a decision problem, every DM makes a choice, so it is nice to have a theory that 
accounts for it or explains it.  
  
The following informal summary of the meaning of “the probability of heads is 1

2 ” using 
the different interpretations may be useful: 
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Table 1: The Meaning of the Phrase “The probability of heads is 1
2 .” 

View/School [Probability is] Meaning/Interpretation 
Classical [A characteristic of the experiment of tossing a coin]  
Heads is one of the two possible outcomes of the experiment with “tossing a coin.” 
Propensity [A characteristic of coins]  
Coins propend to land heads up as much as they propend to land tails up when tossed. 
Frequentist [Summary of evidence from many experiments]  
Experiments of tossing a coin a large number of times systematically result in balanced 
histograms for heads and tails. 
Logical [Degree of truth]  
The degree of truth in the proposition “the coin will land heads” is the same as that of the 
analogous proposition regarding tails, before we have a chance to observe the outcome. 
Subjective [A description of a person’s beliefs] 
I see no evidence to favor one outcome over another, and thus would be willing to take any 
side on a bet on the coin landing heads. 
 
 
C. Economists’ Mainstream Interpretation 
  
A paradox to EU as a positive theory is any systematic deviation from its predictions. 
Observe, however, that we can accommodate an EU representation of preferences in all 
surveyed views on probability, although with wider or narrower applicability to different 
decision problems, and that some phenomena may be contradictory to EU theory under a 
particular interpretation, while not under other interpretations. 
  
Consider, for instance, the purchase of lottery tickets. Suppose that the gambler does it for 
the money, not the fun of gambling. Under a classical interpretation, such behavior is 
paradoxical if we further assume pervasive risk aversion, for such a transaction lowers the 
expected value and increases the risk of the individual’s consumption bundle. Therefore, a 
EU maximizer would never do it, under a classical interpretation. 
  
Under a subjective interpretation, on the other hand, there is no contradiction in assuming 
that all buyers believe they have higher chances of winning than other average buyers. The 
probability of winning is subjective and does not need to correspond to the ratio 1-over-the 
number of tickets sold. There is no conceptual problem in characterizing a situation in 
which all feel simultaneously luckier than the rest. 
  
It should be stressed, however, that economists generally welcome the universality derived 
from Savage’s development, but is reluctant to fully embrace the subjective view, mainly 
because there is the belief that taking subjectivism literally would render the theory almost 
empty: the “anything is possible’’ critique.  
  
In principle, there could be no connection between observed frequencies, however they 
may have been arranged, and beliefs. This is not to say that subjectivism holds that there is 
no link between beliefs and evidence, quite on the contrary. After all, Bayesianism obtained 
its name from Bayes’ analysis of how rational people should interpret evidence and adjust 
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beliefs accordingly. The point is that the learning procedure implied by Bayes’ rule by itself 
does not restrict what an individual’s beliefs should be at a certain point in time, even if we 
know what evidence he has been exposed to, without knowing his initial or prior beliefs, 
which need not be restricted by the data in any way. 
 
Thus, popular applications of EU theory in all areas of economics impose either 
homogeneous beliefs – all individuals believe the same – or disparate information but 
common priors, so that everybody would believe the same if fed with the same information, 
the so-called Harsanyi doctrine. This is the case of rational expectation models in 
macroeconomics and finance (e.g., the CAPM, Grossman and Stiglitz, 1980)), and game-
theoretical models of information (e.g., Spence, 1973, Riley, 1979, and Vickrey, 1961).4  
 
Furthermore, when these models are analyzed empirically, the individuals’ beliefs are taken 
to correspond to suitably defined empirical frequencies. This is the case, for instance, with 
the Efficient Market Hypothesis discussion. 
  
The following was an actual classroom discussion in a finance course. The professor asked 
“What is the variance of tomorrow’s price of IBM shares?” A student replied that next 
day’s IBM share price did not have a variance, that while possibly every person was 
uncertain about the value, the beliefs of each could be represented by a probability function, 
which in turn could have an associated variance. Not knowing the value of the variance of 
an individual’s beliefs amounts to saying that his beliefs are unknown to the observer; if the 
individual of interest is oneself, then not knowing the variance means that one is uncertain 
about one’s own beliefs – but at this point, the question of what that variance is loses its 
original appeal. Clearly, the student adhered to a subjectivist view, while his professor to an 
objective, propensity view. What is interesting about this anecdote is that it illustrates that, 
although in many cases a question asked under one view can easily be rephrased to make 
sense in another, there are some research questions that seem important under one view but 
empty under another. This is a consequence of the fact that economists sometimes use a 
common model for radically different theories. 
 
The professor’s understanding of probability seems pervasive among economists. 
Incidentally, when asked to choose which of the five interpretations in Table 1 best 
represents their understanding of the phrase “the probability of heads is 1

2 ”, the five 
colleagues I asked chose the second one, and four doubted 2 and 3 were equivalent. Of 
course this does not prove anything, but illustrates the idea that if there is a mainstream 
interpretation, it is of an objective nature. 
  
Apparently, then, economists welcomed the idea of applying EU pervasively to represent 
behavior under uncertainty, as it freed them from the narrow applicability sought by 
Keynes, for  instance, but did not embrace the view about probability that supported such 
universality. 

                                                 
4 For a comprehensive discussion of the Common Prior Assumption in Economics, see Morris 
(1995). Gul (1998) and Aumann (1998) present opposite views on the role of subjectivism in 
economic theory. 
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Thus, although the interpretation and applicability of probability to economics was the 
subject of much discussion in the first half of the 20th century, by the second half the 
mathematical model had been accepted and was being widely applied (McGoun 1995). 
Since the debate over the meaning was never actually settled (although Savage’s work, 
1957, calmed down theorists), the new mathematical models received ambiguous 
interpretations. Empiricists, on the other hand, embraced propensity views, even when the 
more natural interpretations of the models might be subjective, because of the need to have 
ready counterparts to the individual’s beliefs in the data.  
 

2.3 EU’s underlying knowledge structure 
  
Regardless of the interpretation given to “probability,” the assumption that a DM’s beliefs 
can be represented by a probability function implies that the DM’s knowledge at each point 
in time obeys a particular logical structure, namely, a Kripke-S5 system. A Kripke-S5 is a 
system of knowledge that satisfies what are generally considered highly demanding but 
desirable logical principles. Under objectivist interpretations, such requirements are fine, 
for probabilities should obey logic. Under subjective interpretations, they constitute 
assumptions over reasoning that preclude what could be labeled as “reasoning mistakes.” 
This section explains these ideas in some detail. It should be stressed that the contents of 
this section are widely available elsewhere (see, for instance, Osborne and Rubinstein’s 
textbook, 1994); they are included here because the concepts developed in this section will 
be used extensively in the next. 
 
I have said that Ω  contains a list of all possibilities that ex ante the DM envisions for a 
given future date (or all the hypotheses he considers could be true). Only one state will 
obtain (or is true). The DM may not learn the truth under all circumstances, however. This 
may be represented by means of a possibility correspondence, 
 

 
( )

: 2P
Pω ω

ΩΩ→

→
 (8) 

 
indicating at each state what states the DM considers ex post to be possible.  
  
In the particular case in which the individual always discovers the true state, we have 
( ) { }P ω ω=  for all ω∈Ω . In general, however, it is possible that the DM is not 

completely sure about the occurrence of a state and entertains more than one possibility. 
  
It is standard in economic analysis to impose on P  the requirement that the conclusions be 
“logical.”  This means that no state exists in which the DM is sure that the true state has not 
occurred, because it would be impossible to see conclusive evidence against the true: 
  

(P1)  ( ), Pω ω ω∀ ∈Ω ∈  
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If the DM does not see conclusive evidence against 'ω  when ω  is the true state, then he 
should not see conclusive evidence against ω  when 'ω  is the true state, for if he did, at 'ω  
he could reject ω  as a possibility, and knowing that, he could reject 'ω  at ω  on the 
grounds that he cannot reject ω  and hence he cannot be at 'ω . 
  

(P2)  ( ) ( ) ( )' 'P P Pω ω ω ω∀ ∈ ⇒ =  
  
  
Lemma P  satisfies P1 and P2 if and only if it induces a partition on Ω . 
  
Proof: See, for instance, Osborne and Rubinstein (1994), p. 68. 
  
A possibility correspondence that satisfies these properties is, consequently, called 
partitional. An interesting feature of partitional possibility correspondences is that they 
imply a fully logical knowledge structure on the part of the DM. 
  
Say that the DM knows that an event E  obtained if E  is true in every state he considers 
possible. Consequently, from P  we can define the knowledge operator:  
 

( ) ( ){ }|K E P Eω ω= ∈Ω ⊆  (9) 

 
which indicates, for each event E , in what states the DM knows that E  is true. Intuitively, 
since set inclusion is defined as implication of belonging (i.e., 

( ) ( )P E P Eω ω ω ω⊆ ⇔ ∈ ⇒ ∈ ), knowledge of ( )P ω  involves knowledge of all 
events it implies. Similarly, K¬  indicates that the individual does not know whether E  is 
true or not (which should not be confused with ( )K E¬ , knowing that E¬  is true.) 
  
A system of knowledge ( ), KΩ  is a Kripke-S5 if it satisfies the following properties: 
  

(K1) ( )K Ω = Ω  (necessitation) 

(K2)  ( ) ( ) ( )' 'K E K E K E E∩ = ∩  

(K3) ( )K E E⊆  

(K4) ( )( )K K E E= (positive introspection) 

(K5) ( ) ( )( )K E K K E¬ = ¬ (negative introspection) 
  
K1 asserts that in all states, the DM knows the tautologies. K2 that the states for which he 
knows events E  and 'E  are true are those in which he knows both events. K3 says that the 
states in which E  is known do not include states in which it is false. These first three 
axioms are satisfied by many knowledge functions; the next two, in turn, only by partitional 
structures. 
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K4 requires the DM to be aware of his knowledge: if the DM knows E , he must know that 
he knows it. K5 further requires that if he does not know something, he knows that he does 
not know it. 
  
Theorem: K  satisfies K1-K5 if and only if P  is partitional.  
Proof: See, for instance, Osborne and Rubinstein (1994), p. 70. 
 
These axioms amount to a strong requirement on the deductive capabilities of the DM. 
Consider the following example (taken from Dekel, Lipman and Rustichini, 1998a, referred 
to from now on as DLR, who in turn adapted it from Geanakoplos, 1989): 
  
“While Watson never reported it, Sherlock Holmes once noted an even more curious 
incident, that of a dog that barked and the cat that howled in the night. When Watson 
objected that the dog did not bark and the cat did not howl, Holmes replied ‘that is the 
curious incident to which I refer.’ Holmes knew that this meant that no one, neither man 
nor dog, had intruded on the premises the previous night. For had a man intruded, the dog 
would have barked. Had a dog intruded, the cat would have howled. Hence, the lack of 
either of these two signals means that there could not have been a human intruder or canine 
intruder.” 
  
Following DLR, say that a  is the state in which there is a human intruder, b  the state in 
which there is a canine intruder, and c  the state in which there is no intruder at all. 
Watson’s set of states is therefore { }, ,a b cΩ = , and his possibility correspondence:  
 

( )
{ }
{ }

{ }, ,

WP
a a
b b
c a b c

ω ω

 

Table 2: Watson’s Possibility Correspondence 
 

meaning that when there is a human intruder or a canine intruder, he is aware of its 
presence, but when there is no intruder he considers possible all three states, because he 
fails to realize that had a man or a dog intruded, he would know it, and therefore, as he does 
not know it, the state must be { }c . In contrast, the logically-sophisticated Holmes has the 
possibility correspondence HP : 
 

( )
{ }
{ }
{ }

HP
a a
b b
c c

ω ω

 

Table 3: Holmes’ Possibility Correspondence 
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To be sure, Watson’s knowledge system is not a Kripke S5. In particular, his knowledge 
system fails to satisfy property K5, negative introspection, which can be appreciated by 
comparing the last two columns of Table 4. For instance, in state c  he knows that he does 
not know { }a , but he does not know this fact: { }( )( ) { }( )K K a K a¬ ≠ ¬ . 

 
( ) ( ) ( )( ) ( ) ( )( )

{ } { } { } { } { } { }
{ } { } { } { } { } { }
{ } { }
{ } { } { } { }
{ } { } { } { } { }
{ } { } { } { } { }

,
,

, ,
, , ,
, ,
, ,

E P E K E K K E K E K K E

a a a a b c b
b b b b a c a
c a b c

a b a b a b c
a c a a b c b
b c b b a c a

¬ ¬

∅ ∅ ∅ ∅ Ω Ω

∅ ∅ Ω Ω
− ∅
−
−

Ω − Ω Ω ∅ ∅

 

Table 4: Watson’s Knowledge Structure 
 
An important feature of a non-partitional possibility correspondence is that the probabilities 
they generate fail to satisfy Bayes’ rule in the following sense: if ( )|Eπ ω  is the degree of 
confidence on E  when the true state is ω , then the analog to Equation (5) is  
 

( ) ( ) ( )|E E
ω

π π ω π ω
∈Ω

= ∑  (10) 

 
However, ( ) ( )( )| |E E Pπ ω π ω= . Since the possibility correspondence is not partitional, 
then in general we have: 
 

( ) ( )( ) ( )|E E P
ω

π π ω π ω
∈Ω

≠ ∑  (11) 

 
In the example, if Watson regarded the three possibilities as equally likely, his prior beliefs 
in each event would be given by:  
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( )

{ }
{ }
{ }
{ }
{ }
{ }

1
3
1
3
1
3
2
3
2
3
2
3

0

,
,
,

1

WE E

a
b
c

a b
a c
b c

π
∅

Ω

 

Table 5: Watson’s Beliefs 
 

 
It can readily be checked that this function satisfies properties 1 3π π− . However, the 
probability of there being an intruder (event { },a b ) does not coincide with the sum of the 
corresponding conditional probabilities as Bayes’ rule asserts:  
 

{ }( ) { }( ) { }( )

{ } ( )( ) { }( )
, ,

, ,

2, , |
3

, |

1 1 2 1 81* 1* *
3 3 3 3 9

a b c

a b c

a b a b

a b P
ω

ω

π π ω π ω

π ω π ω
=

=

= ≠

=

= + + =

∑

∑  (12) 

  
The problem stems from the fact that when c  is true, Watson does not realize it, and 
considers everything as possible. His conditional belief should be { } { }( ), |a b cπ  rather than 

{ } { }( ), | , ,a b a b cπ . It is clear, on the other hand, that Holmes’ possibility correspondence is 
partitional, his knowledge function satisfies Kripke’s S5 conditions, and his beliefs satisfy 
Bayes’ rule.   
  
Therefore, when we invoke an EU representation of behavior and impose (in the von 
Neumann Morgenstern case) or deduce (in the Savage case) the satisfaction of Bayes’ rule 
for conditional beliefs, we are ruling out incomplete logical deductions like Watson’s. 
  
The next two sections discuss aspects of the EU hypothesis that seem problematic and 
remain in search of an answer. 
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3. Unawareness 
  
Thus far, we have characterized an EU maximizer as a fully logically-consistent individual 
– either because his subjective beliefs have that property or because he knows the objective 
probability function that logically satisfies that property. This section holds on to that idea, 
but explores the possibility that his knowledge of the problem at hand is incomplete, in the 
sense that some possibilities may not cross his mind at the time the decision is called for. 
This does not mean that the likelihood of this event was deemed negligible, but rather the 
more extreme situation in which the DM does not foresee a possibility or is unaware of it. 
  
Under a subjectivist view, the idea of unawareness complements the notion of ignorance 
quite naturally. If an individual ignores what will happen in the future, we say that he is 
uncertain. If he does not know everything that could happen, we say that he is unaware of 
some possibilities. Note that we will say that anything the DM imagines as possible is 
indeed possible, while anything that is ex post observed to have happened but was not 
considered ex ante, was possible – an unforeseen contingency. 
  
In introductory examples of EU theory this case does not arise: the DM is uncertain of the 
weather the following day and within the example it is obvious that rain/not rain exhaust all 
the possibilities. Or the DM is uncertain about whether an earthquake will occur before 
year’s end. Or, at most, he is uncertain about the level of consumption he will achieve if he 
invest in a particular portfolio, and the possibilities are well covered by the positive real 
numbers. In all these examples, it would appear as logically impossible that a state from 
outside the specified state space materializes. 
 
But it is not. All those descriptions reflect the way the DM sees the problem at hand with 
the information and resources available at the time of decision. However, his ex post 
evaluation of the act may as well be based on variables not considered ex ante. For 
instance, when purchasing an umbrella, a woman did not foresee that by choosing a fancy 
color she would be chased by confused bees. Her ex ante description of the problem did not 
include the bees that conformed her ex post account of the consequence of her decision. 
 
Moreover, some decision problems are better described by an incomplete set of 
consequences. Consider the case of scientific research, where the outcome is not only 
uncertain, but often unimaginable. Similarly, consider the case of a writer who is planning 
to write a novel. She does not know what the finished novel will look like. So let’s say she 
lists all possibilities: in her mind this must be all the books in the world, limited perhaps to 
her language, written, to be written, never to be written. This is logically plausible, as the 
writer knows all the letters and can certainly imagine all combinations of the characters,5 so 
in principle she could imagine all possible books and the process of writing would involve 
choosing from among those possibilities. The same would be true, of course, of the 
outcome of scientific research reports in the form of papers. Or more generally, of any 
ideas amendable of written communication, including of course, music. 

                                                 
5 Reminiscent of the problem presented in Borges’ short story “The Library of Babel” (in “The 
Garden of Forking Paths”, 1941). 
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This is clearly not possible, perhaps because of the brain’s or cognition’s physical 
restrictions. In the case of the writer, she probably cannot hold even one whole book in her 
mind at the same time. Observe, then, that the possibility of unforeseen contingencies is 
latent even in finitely dimensional state spaces (as in the book example, if we take the 
number of pages of every book to be bounded.) 
  
In these examples, learning is not of the shrinking nature presented by Bayes’ rule, where 
the DM uses the evidence to discard possibilities, but of an expanding nature: evidence may 
not help the individual discard states initially considered possible, which then do not 
materialize, but instead reveal other unforeseen events that actually happened or could 
happen in the future. 
 
The reader may object to this as a criticism of EUT by pointing out that predictive, rather 
than descriptive accuracy is its purpose. Indeed, the fact that EUT does not describe the 
process of writing cannot be considered a major objection if it still predicts well. And yet, 
should not the model that predicts the best available contract between two parties 
anticipating future conflicting interest include a complete description of what each should 
do in every state of nature? As emphasized earlier, some EUT predictions do indeed refer to 
the description of contracts, laws, and market organization, issues in which the ex ante 
indescribability of future contingencies is crucial. One must be aware of an event in order 
to have a belief about it and make a decision associated with it. 
  
In Subsection 2.1 I discuss some difficulties involved in the extension of the EU model to 
incorporate unawareness and some possibly fruitful applications in Subsection 2.2. 
  

2.1 The Description of Unawareness 
  
When looking at examples such as that of Watson, some authors (e.g., Geanakoplos 1989) 
conjectured that it would be possible to extend the state-space model to account for 
unawareness, by departing from partitional possibility correspondences. Yet, the task has 
proven not to be so simple. 
  
Certainly, in state c , when the dog does not bark, Watson seems to be unaware of this. If 
( )P ω  is reinterpreted as the states the DM cannot discard (either because he thinks they 

are possible or because he is unaware of them), then ( )P c  would include the possibilities 
of the dog barking and the cat howling, as in Table 2.  
 
Paralleling the definition of the knowledge operation, one may wish to construct an 
unawareness operator ( )U E , indicating at what states the DM is unaware of an event E .  
 
It seems natural to require that if the DM is unaware of an event E , then he should not 
know E  nor know that he does not know it, for the latter would imply that the event is in 
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his mind. Thus, a possible definition (although some authors have suggested the need to 
strengthen it) of unawareness is given by: 
 

( ) ( ) ( )( )U E K E K K E≡ ¬ ∩¬ ¬  (13) 

 
We can check in Table (6) (continued from Table 4) that at c  Watson seems to be unaware 
of { }a : not only at that state does he not know of the event { }a  ( { }( ) { }c K a a∉ = ), but 

also he does not know that he does not know it ( { }( )( ) { }c K K a b∉ ¬ = ), that is, he is 

unaware of his lack of knowledge.  
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Table 6: Watson’s Unawareness Structure 
 
DLR show, however, that this example has an awkward feature: while { }( ) { }U a c= , that 

is, at c  Watson is unaware of { }a , at the same time { }( )( ) { }( )U U a U c= =∅ , that is, 

Watson is aware (i.e. not unaware) of the fact that he is unaware of { }a . Moreover, this 
feature is not specific to this example, but common to standard state-space models.  
 
This is a devastating result that militates against the idea of amending the model, as 
suggested by Geanakoplos (1989). There are other ways, nonetheless. Below we will 
review two (currently unpublished) propositions. Their common element is to stress the 
need of incorporating into the state the description of the DM’s epistemic status. 
  
Rather than proposing a new model, Ely (1998) presents a reconciling interpretation. He 
argues that the breakdown of negative introspection is not intended to reflect logical 
inconsistencies in the reasoning of the DM, but rather his failure to capture “the whole 
picture” (which the modeler sees), i.e., his lack of understanding of the way his perception 
works, which also happens to be the source of his unawareness.  
 

( ) ( )( )

{ } { } { } { }
{ } { } { } { }
{ }
{ } { } { }
{ } { } { } { }
{ } { } { } { }

( )

, ,
, ,

,
, , ,
, , ,

E K E K K E U E

a b c a c c
b a c b c c
c

a b c c
a c b c a c c
b c a c b c c

¬ ¬ ¬

∅ Ω ∅ ∅

Ω ∅ ∅
Ω

Ω ∅ Ω ∅
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Ely conjectures that this can be captured by a model based on a collection of partitions of 
Ω , { }ωΠ , one for each state, representing the DM’s understanding of the situation at each 
state. The modeler knows that at state ω  the thinking of the DM will be characterized by 

( )ω ωΠ , although at that state, the DM thinks that at state 'ω  he would have thought 

( )'ω ωΠ . Since at each ω  his possibility correspondence is a partition, the DM’s model is 
internally consistent. Thus, Watson’s case could be modeled in the following fashion: 
 

( ) ( ) ( )
{ } { } { }
{ } { } { }
{ } { } { }

, , ,
, , ,
, , , ,

W W W
a b cP P P

a a a c a b c
b b c b a b c
c b c a c a b c

ω ω ω ω

 

Table 6: Watson’s Possibility Correspondences in Ely’s View 
 
Observe that while the modeler “sees” the main diagonal, reconstructing Table 2 and 
recognizing Watson’s violation of negative introspection, Watson does not know what he 
would have thought in other states, and is unaware of some possibilities. At state c  he 
thinks everything is possible and holds the logically consistent (but incorrect) belief that he 
would have thought the same had state a  occurred.  
 
Under this approach, the criticism that DLR raises over the unawareness operator of 
Equation (13) is no longer valid: when applied to the modeler’s understanding of the 
situation, it is fine for him to say that at c  Watson is unaware of { }a , and the modeler is 

aware of this fact, but not Watson. Observe that at c , { }( )cK a =∅ , and also 

{ }( ),cK b c =∅ , so in no state does he know that there was a human intruder or its 
negation. 
 
Schipper (2002), on the other hand, proposes rewriting the model, which not only allows 
for a form of unawareness immune to the DLR critique, but also has the advantage of being 
capable of incorporating multiple individuals, and speaking of “interactive unawareness.” 
This is certainly a must for the theory to be useful for analyzing social problems. 
Nonetheless, I will focus on individual decision making here.  
 
Schipper introduces a crucial modification to the state-space model, namely, a redefinition 
of the concept of state, in two dimensions. In the first place, he includes in the state the 
description of the epistemic status of the individual (which obviously leads to an 
enlargement of the state space.) There are three possible epistemic statuses regarding a fact 
or proposition: the DM may be unaware of it; he may be aware of it but not necessarily 
know its “value” (call it know whether), or lastly he may know its value (call it know 
that). In principle, then, we could have as many states as combinations of these three status 
with the “old” (or external) states. In the second place, he allows the state to be an 
incomplete description of the (external variables of the) world. Indeed, while for Savage a 
state is a complete description of all relevant variables in a decision problem, for Schipper 
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it will be a complete description from the DM’s point of view and, consequently, as 
incomplete as the DM’s understanding of the problem. 
 
In the Holmes-Watson example, redefine a  as the state in which there is a human intruder, 
there is no canine intruder, and Watson knows it; b  the state in which there is a canine 
intruder, there is no human intruder, and Watson knows it; and c  the state in which there is 
no intruder at all and Watson is unaware of both the possibility of there being a canine or a 
human intruder. It turns out that we need three further states to describe Watson’s 
unawareness: the state at which Watson is unaware of both possibilities, there is no canine 
intruder and there is a human intruder ( d ); the state at which Watson is unaware of both 
possibilities, there is a canine intruder and no human intruder ( e ); and finally, the state at 
which Watson is unaware of both possibilities ( f ). These states are necessary to describe 
Watson’s epistemic status for reasons that should become clear shortly. Table 7 
summarizes the list of states; in it, H and C are taken to be the propositions “there was a 
human intruder” and “there was a canine intruder,” respectively. 
 

( ) ( ) ( ) ( ) ( ) ( )H H C C k H k H k C k C u H u C
a
b
c
d
e
f

ω ¬ ¬ ¬ ¬
× × × ×

× × × ×
× × × ×

× × × ×
× × × ×

× ×

 

Table 7: The Expanded State Space 
 
 
Observe that while the description of states , , ,a b c d  and e  entails the description of both 
the possibility of a canine and of a human intruder, the description of state f  does not 
involve any possibility of a canine or a human intruder. In that sense, these are really two 
different groups of states, as they require different expressive powers. Hence, the state 
space can be regarded as comprising the states from the spaces { }, , , , ,C H a b c d eΩ =  (where 

the possibilities of a canine and a human intruder can be expressed), and { }f∅Ω =  (where 
no possibility can be expressed). Intuitively, the DM “lives” in one such space. 
 
The event “there was a canine intruder” corresponds to { },b e ; the event “there was not a 

canine intruder” to { }, ,a c d . Observe that the state f  belongs to neither event, in spite of 
the fact that one is the complement of the other. This is so because this state belongs to a 
space where the possibility of a canine intruder cannot be described. As remarked earlier, 
the state is no longer a complete description of all relevant variables, as in Savage, but a 
complete description of all relevant variables according to the DM, at his present epistemic 
status, which may be incomplete.  
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As a consequence, in general we now have cE E∪ Ω  for those events related to the 
DM’s environment. Moreover, complements should be considered in the space where the 
event is defined (and upwards), for the proposition that defines it cannot be described in 
lower-expressive power spaces. Schipper, then, defines events as the states in the base 
space that satisfy a proposition plus their projection into higher-expressive power spaces.  
 
Interestingly, the universe and the empty sets from all these sets should be regarded as 
different. Recall that every set is the collection of elements that satisfy a given proposition, 
and hence the empty set represents a contradiction and the universe a tautology. The point 
to note is that in all the spaces different propositions can be expressed, and hence different 
tautologies and contradictions. We will thus label , ,C H ∅∅ ∅  the contradictions in each of 
them. Being aware of ,C H∅  is logically distinct from ∅∅ , for the former implies awareness 
of the possibility of a canine and a human intruder, while the latter of none. 
 
In contrast, all states specify the DM’s epistemic condition, so that for those events 
regarding his epistemic status we have cE E∪ = Ω , as usual. 
 
In the example, we have { }, , , , ,a b c d e fΩ = . Watson’s possibility correspondence may be 
represented as in Table 7.  
 

( )
{ }
{ }

{ }
{ }
{ }
{ }

, , ,
, , ,
, , ,
, , ,

WP
a a
b b
c c d e f
d c d e f
e c d e f
f c d e f

ω ω

 

Table 8: Watson’s Possibility Correspondence in Schipper’s View 
 
From this possibility correspondence we can readily obtain Watson’s knowledge structure. 
Table 9 reproduces it for a selected number of events.  

 
( ) ( ) ( )( ) ( )( ) ( )( ) ( )

{ } { } { } { } { } { } { }
{ } { } { } { } { } { } { }
{ } { } { } { } { }

{ } { } { } { } { }
{ } { } { } { }
{ } { } { } { } { } { } { }

, ,

, ,

, , , , , , , ,
, , , , , , , ,

, , , , , , , , ,
, , , , , , , , , , ,

, , , , , , , , , , , ,
, , , , , , , , ,

C H C H

C H C H

E K E K E K K E K K E K K E U E

a a b c d e a b a c d e c d e
b b a c d e b a b c d e c d e
c a b c d e a b c d e c d e

c d e a b c d e a b c d e c d e
c d e f c d e f c d e f c d e f

b e b a c d e b a b c d e c d e
∅ ∅ ∅

¬ ¬ ¬ ¬

∅ ∅
∅ ∅

∅ ∅ ∅

 

Table 9: Watson’s Knowledge Structure in Schipper’s View 
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Two elements are noteworthy. Firstly, observe that { }( )( ) { }( ), , , ,U U c d e U c d e= , that is, 

in the states in which the DM is unaware of an event, he is also unaware of this fact. Since 
this is a general property of the model, it is immune to the DKL critique. Secondly, 
compare the event { }, ,c d e , “Watson is unaware of the dog and the man” with the event 

{ }, , ,c d e f , “Watson is unaware of something.” Watson is unaware of the former, but never 
of the latter.  
 
Overall, Schipper’s model is certainly promising as a “grammar” for unawareness that, as 
the reader may have noticed, is based on sets rather than propositions. Li (2003) 
independently developed a model along the same basic lines, namely, incorporating in the 
state the description of the DM’s epistemic status, and allowing for “personal” (thus 
incomplete) states. Li’s model is also based on sets. This is important because set-based 
models are much more tractable, as the literature following Aumann (1976) could 
appreciate.  
 
On top of this grammar, however, we need a model of behavior before we can analyze 
behavior under unawareness. We currently lack such a model, but good progress has been 
made, and it seems very close as Section 4 relates. 
 

3.2 The Behavioral Consequences of Unawareness 
  
Information transmission in financial markets has been studied theoretically ever since the 
development of information economics. While some authors sought to describe in a model 
a situation where investors would trade based on disparate information (Lintner 1969, 
Hirshleifer 1977) generating divergent opinions over capital gains, or speculation, 
economists promptly abandoned this idea on the grounds that rationality would preclude it 
as an equilibrium phenomenon. Thus, Radner (1979) showed that if investors knew the 
connection between asset prices and states, then generic equilibrium prices would be 
perfectly revealing. Milgrom and Stokey (1982) extended the result to more general trading 
environments. Subsequent research has shown this conclusion to be fairly robust even in 
the absence of common knowledge of rationality and other troublesome assumptions.  
 
Heifetz, Meier and Schipper (2003) show an example, however, where two traders agree to 
trade based on private information. This can occur because each of them is unaware of the 
fact that her trading partner also possesses information, and furthermore, each holds a 
theory of her opponent’s behavior which is consistent with what she observes. 
 
Hence, the development of a theory of unawareness revives the old question of information 
transmission in markets. Since Hayek (1945), economists have sought to understand 
modern economies’ division of labor in the task of information processing, yet the rational 
expectations revolution somehow froze the question. 
 
On a different subject, it seems natural that two parties entering into a contract may be 
unaware of some fact that, when revealed, leads them to revise their previous decisions. 
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The balance between commitment and ex post optimality is a delicate one in this context. 
While the purpose of a contract is to commit to particular, ex post undesirable actions, this 
commitment is usually made on limited information. The current literature assumes a 
commonly known state space, precluding unawareness. Since the contract may condition 
on the state, the initial beliefs (probability) do not affect the optimal contract. Explicitly 
considering unawareness forces us to revise these conclusions. 
 
On the other hand, a new benefit of the contract arises under this fresh look: the contract 
itself may generate awareness of certain possibilities –and hence there could be strategic 
incompleteness: a party aware of an event but believing his counterpart unaware, does not 
bring the subject into the discussion to maintain his current state of mind (e.g., the person 
offering a house for rent does not make the contract conditional on plans to build a nuclear 
plant nearby). 
 
These are just a few (important) examples from the myriad of social phenomena that we 
would be able to revisit with an expanded Savage paradigm. 
 

4. Non-expected Utility 
  

4.1 Modeling ambiguity 
 
Ellsberg (1961) suggested two thought experiments that would be critical to the predictive 
value of EUT under any interpretation. He conjectured ordinary people would behave in a 
manner that would be negative for the theory, and subsequent experimental work proved 
him right (Camerer, 1995, pg. 646, surveys some of this experimental work).  
 
There are many versions of the paradox, but all of them are variations on the following 
idea. Consider an individual who is presented two urns (A and B) with 100 chips each, 
either red ( r ) or blue (b ). The individual is told that urn A contains exactly 50 red and 50 
blue chips, and that urn B also contains only red and blue chips, but he is not told in which 
proportions. The individual is asked to bet on a color: one chip is extracted, and if it 
matches the color of his choosing, he wins a prize of value x . If the color is different, he 
gets 0. Before betting on the color, however, he is asked to choose the urn from which the 
chip will be extracted. 
  
Most individuals in experiments of this sort say they do not care which color they bet on, 
but prefer to bet on urn A, the one with the known composition. This behavior is 
inconsistent with the EU model. To see this, let us compute the expected utilities of each 
alternative. The following list indicates the expected utility of betting on urns A and B and 
colors r  and b : 
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

[ ] ; 0

[ ] ; 0

[ ] ; 0

[ ] ; 0

A A

A A

B B

B B

E u A r r u x b u

E u A b r u b u x

E u B r r u x b u

E u B b r u b u x

π π

π π

π π

π π

= +

= +

= +

= +

 (14) 

 
If the individual is indifferent to the colors in both urns, he must associate a 50% chance 
(whatever that means) to obtaining each color from either urn:  
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1[ ] ; [ ] ;
2
1[ ] ; [ ] ;
2

A A

B B

E u A r E u A b r b

E u B r E u B b r b

π π

π π

= ⇒ = =

= ⇒ = =
 (15) 

 
This implies, however, that he must associate the same utility level to both urns: 
 

( ) ( ) ( ) ( )1[ ] 0 [ ]
2

E u A u x u E u B= + =   . (16) 

 
Taken from a different perspective, indifference to colors in A means:  

( ) ( ) ( )1[ ] 0
2

E u A u x u= +    (17) 

 
Meanwhile, the utility of choosing urn B is given by:  
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }[ ] max 0 ; 0B B B BE u B r u x b u r u b u xπ π π π= + +  (18) 

 

so that if ( ) 1
2Brπ < , the individual would prefer to bet on blue and  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1[ ] 0 0 [ ]
2B BE u B r u b u x u x u E u Aπ π= + > + =    (19) 

 

If ( ) 1
2Brπ > , the individual would rather bet on red but still on urn B, using the same 

argument. Therefore, there is no scenario we can think of in which urn A is preferred to urn 
B if the individual associates a 50% chance with each color in A. If he is indifferent to 
colors in B, he must be indifferent to which urn is used. If he is not indifferent to the colors 
in B, then he must prefer B. 
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Hence, if an EU-maximizer is indifferent to the colors in both urns, he must be indifferent 
to which urn is used, a prediction systematically contradicted by experimental data. It is 
important to stress that this prediction is fully behavioral, and does not depend on the 
analyst’s or DM’s understanding of what a probability is, or even on whether a EU-
maximizer thinks consciously or not. 
  
This section describes one effort to amend the EU model to ensure it describes behavior of 
this nature, namely, the Choquet Expected Utility model (henceforth, CEU.) The chief 
proposal is to consider a generalization of probabilities – called capacities – to represent 
beliefs, thus giving rise to an expected utility representation of preferences where the 
probabilities are not additive. There are other theories that rationalize non-additive beliefs 
as well. CEU is possibly the most well known, but this is an area of active research, and 
new developments are to be expected in the near future. 
  
As with the EU model, many interpretations can be given to the CEU model. Originally, 
adherents to objective interpretations of probability coined the term “Knightian 
uncertainty” to refer to situations in which the decision-maker does not know the 
probabilities of events. The term derives from a distinction between risk (the DM cannot 
tell in advance what the outcome of an experiment will be, but knows the probabilities of 
each outcome, as in urn A) and uncertainty (where the knowledge of these probabilities is 
absent, as in urn B) attributed to Frank Knight (1921). For those authors, the CEU model is 
adequate to describe Knightian uncertainty. 
  
This distinction does not make sense under a subjective interpretation, for probabilities 
represent the beliefs of the DM built into his decision criterion together with his tastes, and 
hence whether the individual is conscious of his own doubts or not is of no consequence 
(recall the anecdote of the classroom discussion.) All that matters is the (implicit) degree of 
trust in the occurrence of each event, which rationalizes his choices.  
  
A subjectivist, on the other hand, can also make sense of this model. Under a subjective 
interpretation of probability, Savage’s axioms constitute a nice argument in favor of having 
EU-representable behavior, but not a proof – and the proof must lie in actual behavior. 
Hence, any systematic violation of EU-represented behavior is evidence against some of 
Savage’s axioms. A subjectivist, then, may momentarily assume that beliefs have a 
representation as probabilities, but cannot prove it, for the proof is in the observed 
behavior. Ellsberg’s paradox is an example of a systematic departure from EU-
representable behavior, and Schmeidler’s (1989) axiomatization, which results in a CEU 
representation, offers a plausible adaptation of Savage’s work to accommodate it.  
  
Perhaps with the purpose of welcoming subjectivists to the study of non-additive beliefs, or 
maybe because some subjectivists took it over, lately the early term “Knightian 
uncertainty” has been replaced by “ambiguity,” which seems inoffensive to either view. 
  
Explaining comparatively the axiomatizations of each theory goes beyond the purpose of 
this essay. Instead, this section attempts to explain at an intuitive level how CEU works. 
The reader who is interested in the formal structure of the model will be best served by 
going to the sources. 
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In the context of the example, Schmeidler’s observation is that we may disassociate 
indifference to colors – no reason to prefer one color over another – from indifference to 
urns. Instead of associating a “probability” to each event, let us say that the individual 
associates a degree of confidence to the occurrence of a state, ν , not necessarily 
represented by a probability. In particular, rewrite Equation 14 as:  
 

( ) ( ) ( ) ( )( ) ( )
( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )
( ) ( )( ) ( ) ( ) ( )

[ ] ; 1 0

[ ] ; 1 0

[ ] ; 1 0

[ ] ; 1 0

A A

A A

B B

B B

E u A r v r u x v r u

E u A b v b u v b u x

E u B r v r u x v r u

E u B b v b u v b u x

= + −

= − +

= + −

= − +

 (20) 

  
Indifference to colors implies:  
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

[ ] ; [ ] ;

[ ] ; [ ] ;
A A

B B

E u A r E u A b v r v b

E u B r E u B b v r v b

= ⇒ =

= ⇒ =
 (21) 

 
However, urn A is preferred to urn B as long as ( ) ( )A Bv r v r> : 
 

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )( ) ( )

[ ] 1 0

[ ] 1 0
A A

B B

E u A v r u x v r u

E u B v r u x v r u

= + −

> = + −
 (22) 

 
The interpretation given to the ( )v i  function is that it represents both a degree of 
confidence in the occurrence of an event and a measure of the ambiguity that the DM 
perceives in his decision problem. Urn A represents a less ambiguous choice than urn B, 
because the individual has more information and hence more confidence in his beliefs, even 
though he has not reason to believe that one color is more likely than the other for either 
urn.  
  
The difference with respect to expected utility theory is that ( ) ( ) 1A Bv r v r+ ≠ , that is, the 
belief is not additive. Mathematically, the belief is not represented by a probability function 
but by a capacity. A capacity is a non-additive probability, that is, a function [ ]: 0,1v →M  
that satisfies 1 2π π−  but not 3π  (in Section 2.1). Thus, a probability is an additive 
capacity. 
  
Schmeidler (1989) proves that an EU-representation of preferences still exists when one of 
Savage’s axioms is relaxed, but where the expectation is not taken over a probability but 
over a capacity. The lack of additivity, however, implies that the usual integral cannot be 
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applied here. The appropriate integral concept is that of Choquet (which explains the name 
of the model). Let ( ) { }1 2, ,..., nf C c c c=  be the set of consequences under act f , where 

( ) ( )1i iu c u c +≥  for all i. The Choquet integral is given by:  
 

( ) ( )( ) ( )
1

1
1 1

in

i i j n
i j

u f dv u c u c v A u c
−

+
= =

 
 = − +  

 
∑∫ ∪  (23) 

 
where ( )1

j jA f c−=  is the event in which consequence jc  obtains under act f .  
  
In the two-state urn example that introduced this section, this definition means that as long 
as ( ) ( ) 1v r v b• •+ < , the higher-utility scenario is weighted by ( )v i , the lower-utility 

scenario by ( )1 v− i , that is, the degree of confidence in its occurrence plus all non-
assigned weight. 
  
If there were two events, this would imply that the indifference curves over risky 
consumption profiles are kinked (and hence non differentiable) at the certainty line. For 
instance, let { }1 2,ω ωΩ =  be the state space and the set of consequences 2\ , that is, 

ordered pairs of positive reals. Then, each act is a bundle ( )1 2,c c  indicating a consumption 
level for each state. Suppose beliefs have the form given by Table 10. 
 

( )

{ }
{ }

{ }

1
1 4

1
2 4

1 2

0

, 1

E v E

ω
ω

ω ω

∅
 

Table 10: A Convex Capacity 
 
Then, if f  is such that 1 2c c> , 
 

( ) ( ) ( )1 2
1 3
4 4

u f dv u c u c= +∫  

 
whereas in the opposite case, when 1 2c c<  
 

( ) ( ) ( )1 2
3 1
4 4

u f dv u c u c= +∫  
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The Choquet integral, then, adds the unassigned weight ( ) ( )1 cv E v E− −  to the worst 

possible outcome. The certainty line separates the cases where state 1ω  is associated to the 
worst outcome from the cases where it is state 2ω . 
 
A capacity is said to be convex if it satisfies: 
 

 ( ) ( ) ( ) ( ) for all ,v A B v A B v A v B A B∪ + ∩ ≥ + ∈M  (24) 

Hence, for a convex capacity, ( ) ( )1 for all cv A v A A≥ + ∈M , as in the urn example. 
However, this need not be always the case. Consider the following example: 
 

( )

{ }
{ }

{ }

3
1 4

3
2 4

1 2

0

, 1

E v E

ω
ω

ω ω

∅
 

Table 11: A Concave Capacity 
 
The CEU in this case is given by:  
 

( )
( ) ( )

( ) ( )

1 2 1 2

1 2

3 1 if 
4 4
1 3 otherwise
4 4

u c u c c c
u f dv

u c u c

 + >= 
 +


∫  (25) 

 
Observe that a DM with such beliefs assigns the “extra” weight (the excess over 1) to the 
best possible outcome, that is, precisely the opposite of the convex-capacity DM. 
Intuitively, the former is being “optimistic”, while the latter “pessimistic.” Recall that the 
form of the capacity is obtained by looking at the DM’s behavior, so beliefs are not really 
separable from attitudes towards ambiguity, as the attitudes towards risk case. For that 
reason, a DM with a convex capacity is called “ambiguity averse” (and the degree of his 
aversion measured by the difference ( ) ( )1 cv A v A − +  ), while a DM with a concave 

capacity is called an “ambiguity lover”, paralleling the terminology “risk averse-risk lover.” 
 
A very interesting feature of this model is that it is capable of rationalizing puzzling 
behavior beyond Ellsberg’s thought experiments. Consider for instance the case of a person 
who bets heavily at a casino and at the same time buys life and health insurance. While a 
risk-averse EU-maximizer is risk-averse in every dimension, a CEU-maximizer need not 
hold equally non-additive beliefs regarding every uncertainty. Thus, the same individual 
can have non-additive beliefs with respect to one variable and additive with respect to 
another. 
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Imagine a person who entertains the following possibilities for the next day: {it rains-there 
is an earthquake, it rains-there isn’t an earthquake, it doesn’t rain-there is an earthquake, it 
doesn’t rain-there isn’t an earthquake} { }, , ,RE RN DE DN≡ . The capacity of Table 12 is 
additive with regard to the possibility of rain, but non-additive with regard to the possibility 
of an earthquake (the 3-state events are omitted for brevity):  
 

( )

{ }
{ }
{ }
{ }

( )
{ }
{ }
{ }
{ }

{ }

0 , 0.7
0.07 , 0.3
0.1 , 0.2

0.03 , 0.3
0.1 , , , 1

E v E E v E
RE RN

RE DE DN
RN RE DE
DE RN DN
DN RE RN DE DN

∅

 

Table 12: A Capacity that is Non-Additive in One Dimension 
 while Additive in the Other 

 
 
In this example, the individual associates a probability of 70% to rain and 30% to not rain, 
and therefore he will behave as an EU maximizer if faced with decisions whose 
consequences depend exclusively on whether it will rain or not. However, his degree of 
confidence in an earthquake happening is 20%, it not happening 30%, and hence he will 
behave as a CEU maximizer in decisions involving earthquake/no earthquake as a state. 
The remaining 50% can be interpreted as the degree to which the situation seems 
ambiguous to him. While this person will behave as very risk averse in situations that 
depend on the occurrence of an earthquake, he will not do so in situations that depend on 
the rain. Hence, the generalization presented by CEU is non-trivial. 
 
The areas in which CEU theory yields interesting predictions are abundant. One example is 
offered by the non-participation puzzle. While EUT predicts that perfectively competitive 
investors would hold every available asset in their portfolios (though in different 
proportions, accounting for differences in beliefs, risk aversion or endowments), typical 
households do not hold stocks. For instance, in the US only one of every five households 
does. In contrast, Dow and Werlang (1992) showed that if an investor had (convex) non-
additive beliefs regarding assets’ returns, then there would be a range of prices at which he 
would not buy or sell, but stay out of the market. Ambiguity aversion offers a 
rationalization of this puzzle. 
 
In contrast to unawareness, ambiguity is essentially a behavioral phenomenon. 
Consequently, there is a much richer literature exploring its implications in social 
situations. Marinacci (2000), for instance, extends the theory of normal form games to 
players with ambiguous beliefs. Eichberger, Kelsey and Schipper (2003) revisit classic 
problems, like that of oligopoly in the views of Cournot and Bertrand. In most cases 
bringing ambiguity into consideration significantly alters individual behavior and 
equilibrium values as well.  
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5. Further Remarks 
  
The development of the EU-model and its associated theories is possibly one of the greatest 
intellectual achievements of the 20th century. During the second half, it made possible the 
development of entire fields, among them financial economics, game theory, the economics 
of information, and modern macroeconomics. Some questions still remain, however, that it 
has not proved capable of answering in its present form, particularly in situations in which 
the uncertainty goes “beyond earthquakes and the weather.” 
  
This essay discussed separately two aspects of individual decision making with potentially 
important behavioral content: unawareness and ambiguity. It turns out that these may be 
intimately connected, as Ghirardato’s (2001) research suggests. 
 
Ghirardato adapted Savage’s model to the unawareness case. His construction consists of 
separating the individual’s subjective state space from the objective state space. The former 
reflects the DM’s understanding of the problem, while the latter the true possibilities. Given 
that the DM’s understanding is limited, his state space is coarser than the objective space. 
Thus, the consequence of an act ( ),c a ω  is unknown even when conditional on a state; 

mathematically, ( ),c a ω  it is a set instead of a point. After extending Savage’s axioms he 
obtains the same EU representation of preferences and therefore a probabilistic 
representation of beliefs, but over the subjective space. Adding some more structure he 
manages to obtain another representation, this time over the objective state space, which 
turns out to be non-additive. Hence, an observer might be able to represent a subject’s 
behavior by means of a CEU because of the subject’s unawareness. 
 
At any rate, these extensions of EUT are an active research field, which is likely to produce 
new answers to old problems. Similarly, the associated development of new tools will make 
economic theory suitable for the analysis of new problems as well, expanding its frontiers, 
just as EUT itself did in the past.  
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