
PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

EXTENDING QUERY LANGUAGES FOR

DATA EXCHANGE

JUAN REUTTER DE LA MAZA

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Advisor:

MARCELO ARENAS

Santiago de Chile, March 2009

c©MMIX, JUAN REUTTER DE LA MAZA



PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

EXTENDING QUERY LANGUAGES FOR

DATA EXCHANGE

JUAN REUTTER DE LA MAZA

Members of the Committee:

MARCELO ARENAS

YADRAN ETEROVIC

PABLO BARCELÓ

JORGE VERA

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Santiago de Chile, March 2009



A mi familia, a Francisca



iv

ACKNOWLEDGMENTS

I would like to thank Marcelo Arenas, my advisor, and Pablo Barceló, from Universi-

dad de Chile, for their help, patience and dedication, I am sure they put their best efforts in

explaining and teaching me many useful tools and advices, for which I am most grateful.

Additional thanks to Jorge Pérez for his helpful comments and guidance on some difficult

proofs.



v

TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

RESUMEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Data Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. Thesis Outline/Document Organization . . . . . . . . . . . . . . . . . . . . 6

2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2. Data exchange settings and solutions . . . . . . . . . . . . . . . . . . . . . 7

2.3. Universal solutions and canonical universal solution . . . . . . . . . . . . . 9

2.4. Certain answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3. Extending Query Languages for Data Exchange: DATALOGC(6=) Programs . . . . 12

3.1. DATALOGC(6=) Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4. Complexity and Expressiveness of DATALOGC(6=) programs . . . . . . . . . . . 16

5. Conjunctive Queries with two Inequalities . . . . . . . . . . . . . . . . . . . . 29

6. Combined Complexity of Data Exchange . . . . . . . . . . . . . . . . . . . . . 46

6.1. Combined Complexity of DATALOGC(6=) programs . . . . . . . . . . . . . . 46

6.2. Combined Complexity of CQ 6= . . . . . . . . . . . . . . . . . . . . . . . . 48

7. Conclusion and future Research . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.1. General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.2. Future Research Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



vi

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

APPENDIX A. Additional Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Proof of Proposition 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Proof of Theorem 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Proof of Proposition 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Proof of Proposition 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



vii

LIST OF TABLES

6.1 Combined complexity of computing certain answers. . . . . . . . . . . . . . . . 48



viii

ABSTRACT

Data exchange is the problem of taking data structured under a source schema and creat-

ing an instance of a target schema that reflects as accurately as possible the source data.

The class of unions of conjunctive queries (UCQ) has been shown to be particularly

well-behaved for data exchange; its certain answers can be computed in polynomial time

(data complexity). But this is not the only class with this property; the certain answers to any

DATALOG program can also can be computed in polynomial time. The problem is that both

UCQ and DATALOG do not allow negated atoms, as adding an unrestricted form of negation

to these languages yields to intractability.

In this work, we propose a language called DATALOGC(6=) that extends DATALOG with a

restricted form of negation, and study some of its fundamental properties. In particular, we

show that the certain answers to a DATALOGC(6=) program can be computed in polynomial

time (data complexity), and that every union of conjunctive queries with at most one inequal-

ity or negated relational atom per disjunct, can be rewritten as a DATALOGC( 6=) program in

the context of data exchange. Furthermore, we show that this is also the case for a syntac-

tic restriction of the class of unions of conjunctive queries with at most two inequalities per

disjunct. This syntactic restriction is given by two conditions that are optimal, in the sense

that computing certain answers becomes intractable if one removes any of them. Finally,

we provide a thorough analysis of the combined complexity of computing certain answers to

DATALOGC(6=) programs and other related query languages. In particular, we show that this

problem is EXPTIME-complete for DATALOGC( 6=), even if one restricts to conjunctive queries

with single inequalities, which is a fragment of DATALOGC( 6=) by the result mentioned above.

Keywords: Data Exchange, Datalog, Query, Database Theory.



ix

RESUMEN

El problema del Data Exchange consiste en tomar datos estructurados bajo un esquema

fuente y crear una instancia de un esquema destino que refleje lo más adecuadamente posible

los datos fuente.

La clase de unión de consultas conjuntivas (UCQ) se comporta particularmente bien en el

entorno de Data Exchange; sus respuestas certeras se pueden computar en tiempo polinomial

(complejidad de datos). Pero esta no es la única clase con esa propiedad: las respuestas

certeras para cualquier programa en DATALOG también pueden seer computadas en tiempo

polinomial. El problema es que tanto UCQ como DATALOG no permiten la negación de

átomos, pues el añadir negación no restringida vuelve intratable el problema.

En este trabajo, proponemos un lenguaje llamado DATALOGC( 6=), que extiende al lenguaje

DATALOG con una forma restringida de negación, y estudiamos algunas de sus propiedades

fundamentales. En particular, mostramos que las respuestas certeras a programas DATALOGC(6=)

pueden ser computadas en tiempo polinomial (complejidad de datos), y que toda unión de

consultas conjuntivas con a lo más una desigualdad o átomo negado por disyunción puede ser

reescrita como un programa en DATALOGC( 6=). Ms aún, mostramos que este también es el

caso para una restricción sintáctica de la clase de uniónes de consultas conjuntivas con a lo

más dos desigualdades por disyunción. Esta restricción es óptima, pues el computar respues-

tas certeras se vuelve intratable al remover cualesquiera de ellas. Finalmente, proveemos

de un análisis detallado de la complejidad combinada de computar las respuestas certeras

a un programa en DATALOGC(6=) y otros lenguajes de consulta relacionados. En particular,

mostramos que este problema es EXPTIME-completo para DATALOGC(6=), incluso si se re-

stringe a consultas conjuntivas con una desigualdad, que es un fragmento de DATALOGC(6=)

por los resultados enunciados anteriormente.

Palabras Claves: Data Exchange, Datalog, Consultas, Base de Datos.



1

1. INTRODUCTION

1.1. Data Exchange

Data exchange is the problem of computing an instance of a target schema, given an in-

stance of a source schema and a specification of the relationship between source and target

data. Data exchange is considered to be an old and relevant database problem, and it is used

in many tasks that require transferring information between independent applications. Never-

theless, the theoretical foundations of data exchange have only been laid out very recently by

the seminal work of Fagin, Kolaitis, Miller and Popa (2005).

As an example, consider a biologic laboratory A that is currently analyzing a series of

proteins and whose data is stored under a particular schema. Should the need arise to compare

the results with a new protein, it could be more efficient to borrow the results from another

laboratory, say B, that has already analyzed this protein. Unfortunately, since both labs are

independent, they probably have their data structured under different schemas. Therefore,

even if B give access to their data to A, the latter may be unable to find an appropriate answer

for their queries. The problem then consists in how to restructure the data received from B in

order to answer their queries correctly.

The first attempts to build a system that supported data exchange where made decades

ago with the construction of the EXPRESS system (Shu, Housel, Taylor, Ghosh, & Lum,

1977). Nowadays, with the proliferation of web data in its various forms and the emergence

of e-business applications that need to communicate data yet remain autonomous, the need

for data exchange has steadily increased. In this context, both the study of data exchange and

schema mappings have become an active area of research during the last years in the database

community (see e.g. (Fagin, Kolaitis, Miller, & Popa, 2005; Fagin, Kolaitis, & Popa, 2005;

Arenas, Barceló, Fagin, & Libkin, 2004; Fagin, Kolaitis, Popa, & Tan, 2005; Libkin, 2006;

Kolaitis, Panttaja, & Tan, 2006; Kolaitis, 2005)). Furthermore, fueled by the incorporation of

the Clio system into IBM’s software for database management (Haas, Hernández, Ho, Popa,

& Roth, 2005), data exchange is slowly earning its place in the computer software industry.



2

Following the foundation laid by Fagin, Kolaitis, Miller and Popa (2005), in formal terms

a data exchange setting is a tripleM = (S,T,Σst), where S is a source schema, T is a target

schema, and Σst is a mapping defined as a set of source-to-target dependencies (Fagin et al,

2005) that specifies how to map data from S to T. Given a source instance I , the goal in data

exchange is to materialize a target instance J that is a solution for I , that is, J together with

I must conform to the mapping Σst.

An important issue in data exchange is that the existing specification languages usually

do not completely determine the relationship between source and target data and, thus, there

may be many solutions for a given source instance. This immediately raises the question

of which solution should be materialized. Initial work on data exchange (Fagin, Kolaitis,

Miller, & Popa, 2005) has identified a class of “good” solutions, called universal solutions. In

formal terms, a solution is universal if it can be homomorphically embedded into every other

solution. It was proved in (Fagin, Kolaitis, Miller, & Popa, 2005) that for the aforementioned

data exchange settings, a particular universal solution called the canonical universal solution

can be computed in polynomial time. It is important to notice that in this result the complexity

is measured in terms of the size of the source instance, and the data exchange specification

Σst is assumed to be fixed. Thus, this result is stated in terms of data complexity (Vardi,

1982).

A second important issue in data exchange is query answering. Queries in the data ex-

change context are posed over the target schema, and –given that there may be many solutions

for a source instance– there is a general agreement in the literature that their semantics should

be defined in terms of certain answers (Imielinski & Lipski, 1983; Abiteboul & Duschka,

1999; Lenzerini, 2002; Fagin, Kolaitis, Miller, & Popa, 2005). More formally, given a data

exchange setting M = (S,T,Σst) and a query Q over T, a tuple t̄ is said to be a certain

answer to Q over I underM, if t̄ belongs to the evaluation of Q over every possible solution

J for I underM.

The definition of certain answers is highly non-effective, as it involves computing the

intersection of (potentially) infinitely many sets. Thus, it becomes particularly important to



3

understand for which classes of relevant queries, the certain answers can be computed effi-

ciently. In particular, it becomes relevant to understand whether it is possible to compute the

certain answers to any of these classes by using some materialized solution. Fagin, Kolaitis,

Miller, and Popa (2005) have shown that this is the case for the class of union of conjunctive

queries (UCQ); the certain answers to each union of conjunctive queries Q over a source

instance I can be computed in polynomial time by directly posing Q over the canonical uni-

versal solution for I . Again, it is important to notice that this result is stated in terms of data

complexity, that is, the complexity is measured in terms of the size of the source instance, and

both the data exchange specification Σst and the query Q are assumed to be fixed.

The good properties of UCQ for data exchange can be completely explained by the fact

that unions of conjunctive queries are preserved under homomorphisms. But this is not the

only language that satisfies this condition, as queries definable in DATALOG, the recursive

extension of UCQ, are also preserved under homomorphisms. Thus, DATALOG is as good as

UCQ for data exchange purposes. In particular, the certain answers to a DATALOG program

Π over a source instance I can also be computed efficiently by evaluating Π over the canonical

universal solution for I .

1.2. Summary of Contributions

Unfortunately, both UCQ and DATALOG keeps us in the realm of the positive, while

most database query languages are equipped with negation. Thus, the first goal of this work

is to investigate what forms of negation can be added to DATALOG while keeping all the

good properties of DATALOG, and UCQ, for data exchange. It should be noticed that this

is not a trivial problem, as there is a trade-off between expressibility and complexity in this

context. On the one hand, one would like to have a query language expressive enough to be

able to pose interesting queries in the data exchange context. But, on the other hand, it has

been shown that adding an unrestricted form of negation to DATALOG (or even to conjunctive

queries) yields to intractability of the problem of computing certain answers (Abiteboul &

Duschka, 1999; Fagin, Kolaitis, Miller, & Popa, 2005). In this respect, the following are our

main contributions.



4

• We introduce a query language called DATALOGC(6=) that extends DATALOG with a

restricted form of negation, and that has the same good properties for data exchange

as DATALOG. In particular, we prove that the certain answers to a DATALOGC(6=)

program Π over a source instance I can be computed by evaluating Π over the

canonical universal solution for I . As a corollary, we obtain that computing certain

answers to a DATALOGC(6=) program can be done in polynomial time (in terms of

data complexity).

• To show that DATALOGC(6=) can be used to express interesting queries in the data

exchange context, we prove that every union of conjunctive queries with at most

one inequality or negated relational atom per disjunct, can be efficiently expressed

as a DATALOGC(6=) program in the context of data exchange.

• It follows from the previous result that the certain answers to every union of con-

junctive queries with at most one inequality or negated relational atom per disjunct

can be computed in polynomial time (in terms of data complexity). Although this

corollary is not new (it is a simple extension of a result in (Fagin, Kolaitis, Miller,

& Popa, 2005)), the use of DATALOGC(6=) in the context of data exchange opens

the possibility of finding new tractable classes of query languages with negation.

In fact, we also use DATALOGC(6=) to find a tractable fragment of the class of con-

junctive queries with two inequalities.

It is known that for the class of conjunctive queries with inequalities, the problem of

computing certain answers is CONP-complete in terms of data complexity (Abite-

boul & Duschka, 1999; Fagin, Kolaitis, Miller, & Popa, 2005). In fact, it has been

shown that the intractability holds even for the case of two inequalities (Madry,

2005). However, very little is known about tractable fragments of this class. In

our research, we have found a syntactic restriction for the class of unions of con-

junctive queries with at most two inequalities per disjunct, and proven that every

query conforming to it can be expressed as a DATALOGC( 6=) program in the context

of data exchange. It immediately follows that the data complexity of computing

certain answers to a query conforming to this restriction is polynomial.



5

The syntactic restriction mentioned above is given by two conditions. We con-

clude this part of the investigation by showing that these conditions are optimal

for tractability, in the sense that computing certain answers becomes intractable if

one removes any of them. It should be noticed that this gives a new proof of the

fact that the problem of computing certain answer to a conjunctive query with two

inequalities is CONP-complete.

The study of the complexity of computing certain answers to DATALOGC(6=) programs will not

be complete if one does not consider the notion of combined complexity. Although the notion

of data complexity has shown to be very useful in understanding the complexity of evaluating

a query language, one should also study the complexity of this problem when none of its

parameters is considered to be fixed. This corresponds to the notion of combined complexity

introduced in (Vardi, 1982), and it means the following in the context of data exchange. Given

a data exchange settingM, a query Q over the target and a source instance I , one considers

I as well as Q andM as part of the input when computing the certain answers to Q over I

underM. In this work, we study this problem and establish the following results.

• We show that the combined complexity of the problem of computing certain an-

swers to DATALOGC( 6=) programs is EXPTIME-complete, even if one restricts to

the class of conjunctive queries with single inequalities (which is a fragment of

DATALOGC(6=) by the result mentioned above). This refines a result in (Kolaitis et

al., 2006) that shows that the combined complexity of the problem of computing

certain answers to unions of conjunctive queries with at most one inequality per

disjunct is EXPTIME-complete.

• We also consider the class of conjunctive queries with an arbitrary number of in-

equalities per disjunct. More specifically, we show that the combined complexity

of the problem of computing certain answers is CONEXPTIME-complete for the

case of conjunctive queries with k inequalities, for every k ≥ 2.

• One of the reasons for the high combined complexity of the previous problems is

the fact that if data exchange settings are not considered to be fixed, then one has

to deal with canonical universal solutions of exponential size. A natural way to



6

reduce the size of these solutions is to focus on the class of LAV data exchange

settings (Lenzerini, 2002), which are frequently used in practice.

For the case of DATALOGC(6=) programs, the combined complexity is inherently

exponential, and thus focusing on LAV settings does not reduce the complexity of

computing certain answers. However, we show in this thesis that if one focus on

LAV settings, then the combined complexity is considerably lower for the class of

conjunctive queries with inequalities. More specifically, we show that the com-

bined complexity goes down to NP-complete for the case of conjunctive queries

with single inequalities, and to Πp
2-complete for the case of conjunctive queries

with k inequalities, for every k ≥ 2.

1.3. Thesis Outline/Document Organization

In chapter 2 we introduce the terminology and some previous results that will be used

in the thesis. Chapter 3 contains the syntax and semantics of DATALOGC( 6=) programs. In

chapter 4, we study some of the fundamental properties of DATALOGC(6=) programs concern-

ing complexity and expressiveness. In chapter 5 we study a syntactic restriction that leads

to tractability of the problem of computing certain answers for unions of conjunctive queries

with two inequalities per disjunct. Chapter 6 contains a thorough analysis of the combined

complexity of computing certain answers to DATALOGC(6=) programs and other related query

languages. Conclusions are in chapter 7.



7

2. BACKGROUND

2.1. Preliminaries

A schema R is a finite set {R1, . . . , Rk} of relation symbols, with each Ri having a fixed

arity ni > 0. Let D be a countably infinite domain. An instance I of R assigns to each

relation symbol Ri of R a finite ni-ary relation RI
i ⊆ Dni . The domain dom(I) of instance I

is the set of all elements that occur in any of the relations RI
i . We often define instances by

simply listing the tuples attached to the corresponding relation symbols.

We assume familiarity with first-order logic (FO), and some of its extensions (DATALOG).

In this paper, CQ is the class of conjunctive queries and UCQ is the class of unions of con-

junctive queries. If we extend these classes by allowing inequalities or negation (of relational

atoms), then we use superscripts 6= and ¬, respectively. Thus, for example, CQ 6= is the class

of conjunctive queries with inequalities, and UCQ¬ is the class of unions of conjunctive

queries with negation. As usual in the database literature, we assume that the negated rela-

tional atoms and inequalities that appear in conjunctive queries are safe, in the sense that every

variable that appears in a negated relational atom or an inequality in a query, also appears in

a non-negated relational atom in the query.

We also assume familiarity with the theory of computational complexity.

2.2. Data exchange settings and solutions

As is customary in the data exchange literature, we consider instances with two types

of values: constants and nulls (Fagin, Kolaitis, Miller, & Popa, 2005; Fagin, Kolaitis, &

Popa, 2005). More precisely, let C and N be infinite and disjoint sets of constants and nulls,

respectively, and assume that D = C ∪ N. If we refer to a schema S as a source schema,

then for every instance I of S, it holds that dom(I) ⊆ C. On the other hand, if we refer to a

schema T as a target schema, then for every instance J of T, it holds that dom(J) ⊆ C∪N.

Slightly abusing notation, we use C(·) to denote a built-in unary predicate such that C(a)

holds if and only if a is a constant, that is a ∈ C.



8

A data exchange setting is a tuple M = (S,T,Σst), where S is a source schema, T

is a target schema, S and T do not have predicate symbols in common and Σst is a set of

FO-dependencies over S∪T (in (Fagin, Kolaitis, Miller, & Popa, 2005) and (Fagin, Kolaitis,

& Popa, 2005) a more general class of data exchange settings is presented, that also includes

target dependencies). As usual in the data exchange literature (e.g., (Fagin, Kolaitis, Miller, &

Popa, 2005; Fagin, Kolaitis, & Popa, 2005)), we restrict the study to data exchange settings in

which Σst consists of a set of source-to-target dependencies. A source-to-target dependency

(std) is a dependency of the form ∀x̄ (φ(x̄) → ∃ȳ ψ(x̄, ȳ)), where φ(x̄) is a conjunction of

relational atoms over S and ψ(x̄, ȳ) is a conjunction of relational atoms over T. A source

(resp. target) instance K for M is an instance of S (resp. T). We usually denote source

instances by I, I ′, I1, . . . , and target instances by J, J ′, J1, . . . .

The class of data exchange settings considered in this paper is usually called GLAV

(global-&-local-as-view) in the database literature (Lenzerini, 2002). One of the restricted

forms of this class that has been extensively studied for data integration and exchange is the

class of LAV settings. Formally, a LAV setting (local-as-view) (Lenzerini, 2002) is a data ex-

change settingM = (S,T,Σst), in which every std in Σst is of the form ∀x̄ (S(x̄)→ ψ(x̄)),

for some S ∈ S.

An instance J of T is said to be a solution for I underM = (S,T,Σst), if the instance

K = (I, J) of S ∪T satisfies Σst, where KS = IS for every S ∈ S and KT = JT for every

T ∈ T. IfM is clear from the context, we shall say that J is a solution for I .

Example 2.1. LetM = (S,T,Σst) be a data exchange setting. Assume that S consists

of one binary relation symbol P , and T consists of two binary relation symbols Q and R.

Further, assume that Σst contains stds P (x, y) → Q(x, y) and P (x, y) → ∃zR(x, z). Then

M is also a LAV setting.

Let I = {P (a, b), P (a, c)} be a source instance. Then J1 = {Q(a, b), Q(a, c), R(a, b)}

and J2 = {Q(a, b), Q(a, c), R(a, n)}, where n ∈ N, are solutions for I . In fact, I has

infinitely many solutions. �



9

2.3. Universal solutions and canonical universal solution

It has been argued in (Fagin, Kolaitis, Miller, & Popa, 2005) that the preferred solutions

in data exchange are the universal solutions. In order to define this notion, we first have to

revise the concept of homomorphism in data exchange. Let K1 and K2 be instances of the

same schema R. A homomorphism h from K1 to K2 is a function h : dom(K1)→ dom(K2)

such that: (1) h(c) = c for every c ∈ C ∩ dom(K1), and (2) for every R ∈ R and every tuple

ā = (a1, . . . , ak) ∈ RK1 , it holds that h(ā) = (h(a1), . . . , h(ak)) ∈ RK2 . Notice that this

definition of homomorphism slightly differs from the usual one, as the additional constraint

that homomorphisms are the identity on the constants is imposed.

LetM be a data exchange setting, I a source instance and J a solution for I underM.

Then J is a universal solution for I underM, if for every solution J ′ for I underM, there

exists a homomorphism from J to J ′.

Example 2.2 (Example 2.1 continued). Solution J2 is a universal solution for I , while

J1 is not since there is no homomorphism from J1 to J2. �

It follows from (Fagin, Kolaitis, Miller, & Popa, 2005) that for the class of data exchange

settings studied in this paper, every source instance has universal solutions. In particular, one

of these solutions - called the canonical universal solution - can be constructed in polyno-

mial time from the given source instance (assuming the setting to be fixed), using the chase

procedure (Beeri & Vardi, 1984). We shall define canonical universal solutions directly as in

(Arenas et al., 2004; Libkin, 2006).

In the following, we show how to compute the canonical universal solution of a source

instance I in a data exchange setting (S,T,Σst). For each std in Σst of the form:

φ(x̄, ȳ) → ∃w̄ (T1(x̄1, w̄1) ∧ · · · ∧ Tk(x̄k, w̄k)),

where x̄ = x̄1∪· · ·∪x̄k and w̄ = w̄1∪· · ·∪w̄k, and for each tuple ā from dom(I) of length |x̄|,

find all tuples b̄1, . . . , b̄m such that I |= φ(ā, b̄i), i ∈ [1,m]. Then choose m tuples n̄1, . . . , n̄m

of length |w̄| of fresh distinct null values over N. Relation Ti (i ∈ [1, k]) in the canonical



10

universal solution for I contains tuples (πx̄i
(ā), πw̄i

(n̄j)), for each j ∈ [1,m], where πx̄i
(ā)

refers to the components of ā that occur in the positions of x̄i. Furthermore, relation Ti in

the canonical universal solution for I only contains tuples that are obtained by applying this

algorithm.

This definition differs from the one given in (Fagin, Kolaitis, Miller, & Popa, 2005),

where a canonical universal solution is obtained by using the classical chase procedure. Since

the result of the chase used in (Fagin, Kolaitis, Miller, & Popa, 2005) is not necessarily

unique (it depends on the order in which the chase steps are applied), there may be multiple

non-isomorphic canonical universal solutions. Clearly, under our definition, the canonical

universal solution is unique up to isomorphism and can be computed in polynomial time from

I . For a fixed data exchange settingM = (S,T,Σst), we denote by CAN the transformation

from source instances to target instances, such that CAN(I) is the canonical universal solution

for I underM.

2.4. Certain answers

Queries in a data exchange settingM = (S,T,Σst) are posed over the target schema T.

Given that there may be (even infinitely) many solutions for a given source instance I with

respect toM, the standard approach in the data exchange literature is to define the semantics

of the query based on the notion of certain answers (Imielinski & Lipski, 1983; Abiteboul &

Duschka, 1999; Lenzerini, 2002; Fagin, Kolaitis, Miller, & Popa, 2005).

Let I be a source instance. For a queryQ of arity n ≥ 0, in any of our logical formalisms,

we denote by certainM(Q, I) the set of certain answers of Q over I under M, that is, the

set of n-tuples t̄ such that t̄ ∈ Q(J), for every J that is a solution for I underM. If n = 0,

then we say that Q is Boolean, and certainM(Q, I) = true iff Q holds for every J that

is a solution for I under M. We write certainM(Q, I) = false if it is not the case that

certainM(Q, I) = true.

LetM = (S,T,Σst) be a data exchange setting andQ a query over T. The main problem

studied in this paper is:



11

PROBLEM: CERTAIN-ANSWERS(M, Q).

INPUT: A source instance I and a tuple t̄ of constants from I .

QUESTION: Is t̄ ∈ certainM(Q, I)?

Since in the above definition both the setting and the query are fixed, it corresponds (in terms

of Vardi’s taxonomy (Vardi, 1982)) to the data complexity of the problem of computing cer-

tain answers. Later, in chapter 6, we also study the combined complexity of this problem.



12

3. EXTENDING QUERY LANGUAGES FOR DATA EXCHANGE: DATALOGC(6=)

PROGRAMS

The class of unions of conjunctive queries is particularly well-behaved for data exchange;

the certain answers of each union of conjunctive queries Q can be computed by directly

posing Q over an arbitrary universal solution (Fagin, Kolaitis, Miller, & Popa, 2005). More

formally, given a data exchange setting M, a source instance I , a universal solution J for

I under M, and a tuple t̄ of constants, t̄ ∈ certainM(Q, I) if and only if t̄ ∈ Q(J). This

implies that for each data exchange settingM, the problem CERTAIN-ANSWERS(M, Q) can

be solved in polynomial time if Q is a union of conjunctive queries (because the canonical

universal solution for I can be computed in polynomial time and Q has polynomial time data

complexity).

The fact that the certain answers of a union of conjunctive queries Q can be computed by

posingQ over a universal solution, can be fully explained by the fact thatQ is preserved under

homomorphisms, that is, for every pair of instances J, J ′, homomorphism h from J to J ′, and

tuple ā of elements in J , if ā ∈ Q(J), then h(ā) ∈ Q(J ′). But UCQ is not the only class of

queries that is preserved under homomorphisms; also DATALOG, the recursive extension of

the class UCQ, has this property. Since DATALOG has polynomial time data complexity, we

have that the certain answers of each DATALOG query Q can be obtained efficiently by first

computing a universal solution J , and then evaluating Q over J . Thus, DATALOG preserves

all the good properties of UCQ for data exchange.

Unfortunately, both UCQ and DATALOG keep us in the realm of the positive (i.e. negated

atoms are not allowed in queries), while most database query languages are equipped with

negation. It seems then natural to extend UCQ (or DATALOG) in the context of data exchange

with some form of negation. This is justified by the fact that negation can be used to express

interesting properties in data exchange, as shown in the following example.1

Example 3.1. Consider a data exchange setting with S = {E(·, ·), A(·), B(·)}, T =

{G(·, ·), P (·), R(·)} and Σst = {E(x, y) → G(x, y), A(x) → P (x), B(x) → R(x)}. Notice
1Note that this is not immediately evident as, for instance, for every single conjunctive query Q with at least one
negated relational atom, it holds that certainM(Q, I) = false for every source instance I .



13

that if I is a source instance, then the canonical universal solution CAN(I) for I is such that

EI = GCAN(I), AI = P CAN(I) and BI = RCAN(I).

Let Q(x) be the following UCQ¬ query over T: ∃x∃y (P (x) ∧ R(y) ∧ G(x, y)) ∨

∃x∃y∃z (G(x, z) ∧ G(z, y) ∧ ¬G(x, y)). It is not hard to prove that for every source in-

stance I , certainM(Q, I) = true iff there exist elements a, b ∈ dom(CAN(I)) such that a

belongs to P CAN(I), b belongs to RCAN(I) and (a, b) belongs to the transitive closure of the

relation GCAN(I). That is, certainM(Q, I) = true iff there exist elements a, b ∈ dom(I) such

that a belongs toAI , b belongs toBI and (a, b) belongs to the transitive closure of the relation

EI . �

It is well-known (see e.g. (Libkin, 2004)) that there is no union of conjunctive queries

(indeed, not even an FO-query) that defines the transitive closure of a graph. Thus, if Q

and M are as in the previous example, then there is no union of conjunctive queries Q′

such that Q′(CAN(I)) = certainM(Q′, I) = certainM(Q, I), for every source instance I . It

immediately follows that negated relational atoms add expressive power to the class UCQ in

the context of data exchange (see also (Arenas et al., 2004)). And not only that it follows

from (Fagin, Kolaitis, Miller, & Popa, 2005) that inequalities also add expressive power to

UCQ in the context of data exchange.

In this chapter, we propose a language that can be used to pose queries with negation,

and that has all the good properties of UCQ for data exchange.

3.1. DATALOGC(6=) Programs

Unfortunately, adding an unrestricted form of negation to DATALOG (or even to CQ)

not only destroys preservation under homomorphisms, but also easily yields to intractability

of the problem of computing certain answers (Abiteboul & Duschka, 1999; Fagin, Kolaitis,

Miller, & Popa, 2005). More precisely, there is a settingM and a query Q in UCQ 6= such

that the problem CERTAIN-ANSWERS(M, Q) cannot be solved in polynomial time (unless

PTIME = NP). In particular, the set of certain answers ofQ cannot be computed by evaluating

Q over a polynomial-time computable universal solution. Next we show that there is a natural



14

way of adding negation to DATALOG while keeping all of the good properties of this language

for data exchange. In chapter 4, we show that such a restricted form of negation can be used

to express many relevant queries (some including negation) for data exchange.

Definition 3.1 (DATALOGC( 6=) programs). A constant-inequality Datalog rule is a rule of

the form:

S(x̄) ← S1(x̄1), . . . , S`(x̄`),C(y1), . . . ,C(ym), u1 6= v1, . . . , un 6= vn, (3.1)

where

(a) S, S1, . . ., S` are (non necessarily distinct) predicate symbols,

(b) every variable in x̄ is mentioned in some tuple x̄i (i ∈ [1, `]),

(c) every variable yj (j ∈ [1,m]) is mentioned in some tuple x̄i (i ∈ [1, `]), and

(d) every variable uj (j ∈ [1, n]), and every variable vj , is equal to some variable yi

(i ∈ [1,m]).

A constant-inequality Datalog program (DATALOGC( 6=) program) Π is a finite set of constant-

inequality Datalog rules.

For example, the following is a constant-inequality Datalog program:

R(x, y) ← T (x, z), S(z, y),C(x),C(z), x 6= z

S(x) ← U(x, u, v, w),C(x),C(u),C(v),C(w), u 6= v, u 6= w

For a rule of the form (3.1), we say that S(x̄) is its head. The set of predicates of a program Π,

denoted by Pred(Π), is the set of predicate symbols mentioned in Π, while the set of inten-

sional predicates of Π, denoted by IPred(Π), is the set of predicates symbols R ∈ Pred(Π)

such that R(x̄) appears as the head of some rule of Π.

Assume that Π is a DATALOGC( 6=) program and I is a database instance of the rela-

tional schema Pred(Π). Then T (I) is an instance of Pred(Π) such that for every R ∈

Pred(Π) and every tuple t̄, it holds that t̄ ∈ RT (I) if and only if there exists a rule R(x̄) ←

R1(x̄1), . . . , R`(x̄`),C(y1), . . . ,C(ym), u1 6= v1, . . . , un 6= vn in Π and a variable assignment



15

σ such that (a) σ(x̄) = t̄, (b) σ(x̄i) ∈ RI
i , for every i ∈ [1, `], (c) σ(yi) is a constant, for

every i ∈ [1,m], and (d) σ(ui) 6= σ(vi), for every i ∈ [1, n]. Operator T is used to define

the semantics of constant-inequality Datalog programs. More precisely, define T 0
Π (I) to be I

and T n+1
Π (I) to be T (T nΠ (I)) ∪ T nΠ (I), for every n ≥ 0. Then the evaluation of Π over I is

defined as T ∞Π (I) =
⋃
n≥0 T nΠ (I).

A constant-inequality Datalog program Π is said to be defined over a relational schema R

if R = Pred(Π)rIPred(Π) and ANSWER ∈ IPred(Π). Given an instance I of R and a tuple

t̄ in dom(I)n, where n is the arity of ANSWER, we say that t̄ ∈ Π(I) if t̄ ∈ ANSWERT
∞
Π (I0),

where I0 is an extension of I defined as: RI0 = RI forR ∈ R andRI0 = ∅ forR ∈ IPred(Π).

As we mentioned before, the homomorphisms in data exchange are not arbitrary; they

are the identity on the constants. Thus, given that inequalities are witnessed by constants in

DATALOGC(6=) programs, we have that these programs are preserved under homomorphisms.

From this we conclude that the certain answers to a DATALOGC( 6=) program Π can be com-

puted by directly evaluating Π over a universal solution.

PROPOSITION 3.1. LetM = (S,T,Σst) be a data exchange setting, I a source instance,

J a universal solution for I underM, and Π a DATALOGC(6=) program over T. Then for every

tuple t̄ of constants, t̄ ∈ certainM(Π, I) iff t̄ ∈ Π(J).

This proposition will be used in chapter 4 to show that DATALOGC( 6=) programs preserve

the good properties of conjunctive queries for data exchange.



16

4. COMPLEXITY AND EXPRESSIVENESS OF DATALOGC(6=) PROGRAMS

We start this chapter by studying the expressive power of DATALOGC(6=) programs. In

particular, we show that these programs are expressive enough to capture the class of unions

of conjunctive queries with at most one negated atom per disjunct. This class has proved

to be relevant for data exchange, as its restriction with inequalities is one of the few known

extensions of the class UCQ for which the problem of computing certain answers is tractable

(Fagin, Kolaitis, Miller, & Popa, 2005).

Theorem 4.1. Let Q be a UCQ query over a schema T, with at most one inequality

or negated relational atom per disjunct. Then there exists a DATALOGC( 6=) program ΠQ

over T such that for every data exchange setting M = (S,T,Σst) and instance I of S,

certainM(Q, I) = certainM(ΠQ, I). Moreover, ΠQ can be effectively constructed from Q in

polynomial time.

Before presenting the proof of Theorem 4.1, we sketch the proof by means of an example.

Example 4.1. Let M be a data exchange setting such that S = {E(·, ·), A(·)}, T =

{G(·, ·), P (·)} and

Σst = {E(x, y)→ ∃z(G(x, z) ∧G(z, y)), A(x)→ P (x)}.

Also, let Q(x) be the following query in UCQ 6=,¬:

(P (x) ∧ G(x, x)) ∨ ∃y (G(x, y) ∧ x 6= y) ∨ ∃y∃z (G(x, z) ∧ G(z, y) ∧ ¬G(x, y))

We build a DATALOGC( 6=) program ΠQ such that certainM(Q, I) = certainM(ΠQ, I). The

set of intensional predicates of the DATALOGC(6=) program ΠQ is {U1(·, ·, ·), U2(·, ·), dom(·),

EQUAL(·, ·, ·), ANSWER(·)}. The program ΠQ over T is defined as follows:



17

• First, the program collects in dom(x) all the elements that belong to the active

domain of the instance of T where ΠQ is evaluated:

dom(x) ← G(x, z) (4.1)

dom(x) ← G(z, x) (4.2)

dom(x) ← P (x) (4.3)

• Second, the program ΠQ includes the following rules that formalize the idea that

EQUAL(x, y, z) holds if x and y are the same elements:

EQUAL(x, x, z)← dom(x), dom(z) (4.4)

EQUAL(x, y, z)← EQUAL(y, x, z) (4.5)

EQUAL(x, y, z)← EQUAL(x,w, z), EQUAL(w, y, z) (4.6)

Predicate EQUAL includes an extra argument that keeps track of the element z

where the query is being evaluated. Notice that we cannot simply use the rule

EQUAL(x, x, z)← to say that EQUAL is reflexive, as DATALOGC(6=) programs are

safe, i.e. every variable that appears in the head of a rule also has to appear in its

body.

• Third, ΠQ includes the rules:

U1(x, y, z) ← G(x, y), dom(z) (4.7)

U2(x, z) ← P (x), dom(z) (4.8)

U1(x, y, z) ← U1(u, v, z), EQUAL(u, x, z), EQUAL(v, y, z) (4.9)

U2(x, z) ← U2(u, z), EQUAL(u, x, z) (4.10)

Intuitively, the first two rules create in U1 and U2 a copy of G and P , respectively,

but again with an extra argument for keeping track of the element where ΠQ is

evaluated. The last two rules allow to replace equal elements in the interpretation

of U1 and U2.



18

• Fourth, ΠQ includes the following rule for the third disjunct of Q(x):

U1(x, y, x) ← U1(x, z, x), U1(z, y, x) (4.11)

Intuitively, this rule expresses that if a is an element that does not belong to the

set of certain answers to Q(x), then for every pair of elements b and c such that

(a, b) and (b, c) belong to the interpretation of G, it must be the case that (a, c) also

belongs to it.

• Fifth, ΠQ includes the following rule for the second disjunct of Q(x):

EQUAL(x, y, x) ← U1(x, y, x) (4.12)

Intuitively, this rule expresses that if a is an element that does not belong to the

set of certain answers to Q(x), then for every element b such that the pair (a, b)

belongs to the interpretation of G, it must be the case that a = b.

• Finally, ΠQ includes two rules for collecting the certain answers to Q(x):

ANSWER(x)← U2(x, x), U1(x, x, x),C(x) (4.13)

ANSWER(x)← EQUAL(y, z, x),C(y),C(z), y 6= z (4.14)

Intuitively, rule (4.13) says that if a constant a belongs to the interpretation of P

and (a, a) belongs to the interpretation of G, then a belongs to the set of certain

answers to Q(x). Indeed, this means that if J is an arbitrary solution where the

program is being evaluated, then a belongs to the evaluation of the first disjunct of

Q(x) over J .

Rule (4.14) says that if in the process of evaluating ΠQ with parameter a, two

distinct constants b and c are declared to be equal (EQUAL(b, c, a) holds), then a

belongs to the set of certain answers to Q(x). We show the application of this rule

with an example. Let I be a source instance, and assume that (a, n) and (n, b)

belong to G in the canonical universal solution for I , where n is a null value.

By applying rule (4.1), we have that dom(a) holds in CAN(I). Thus, we con-

clude by applying rule (4.7) that U1(a, n, a) and U1(n, b, a) hold in CAN(I) and,



19

therefore, we obtain by using rule (4.12) that EQUAL(a, n, a) holds in CAN(I).

Notice that this rule is trying to prove that a is not in the certain answers to Q(x)

and, hence, it forces n to be equal to a. Now by using rule (4.5), we obtain that

EQUAL(n, a, a) holds in CAN(I). But we also have that EQUAL(b, b, a) holds in

CAN(I) (by applying rules (4.2) and (4.4)). Thus, by applying rule (4.9), we ob-

tain that U1(a, b, a) holds in CAN(I). Therefore, by applying rule (4.12) again, we

obtain that EQUAL(a, b, a) holds in CAN(I). This time, rule (4.12) tries to prove

that a is not in the certain answers to Q(x) by forcing constants a and b to be the

same values. But this cannot be the case and, thus, rule (4.14) is used to conclude

that a is in the certain answers to Q(x). It is important to notice that this conclu-

sion is correct. If J is an arbitrary solution for I , then we have that there exists a

homomorphism h : CAN(I) → J . Given that a and b are distinct constants, we

have that a 6= h(n) or b 6= h(n). It follows that there is an element c in J such that

a 6= c and the pair (a, c) belongs to the interpretation of G. Thus, we conclude that

a belongs to the evaluation of the second disjunct of Q(x) over J .

It is now an easy exercise to show that the set of certain answers to Q(x) coincide with the

set of certain answers to ΠQ, for every source instance I . �

We now present the proof of Theorem 4.1. Proof: Assume that T = {T1, . . . , Tk}, where

each Ti has arity ni > 0, and that Q(x̄) = Q1(x̄) ∨ · · · ∨ Q`(x̄), where x̄ = (x1, . . . , xm)

and each Qi(x̄) is a conjunctive query with at most one inequality or negated relational atom.

Then the set of intensional predicates of DATALOGC(6=) program ΠQ is

{U1, . . . , Uk,DOM, EQUAL,ANSWER},

where each Ui (i ∈ [1, k]) has arity ni + m, DOM has arity 1, EQUAL has arity 2 + m and

ANSWER has arity m. Moreover, the set of rules of ΠQ is defined as follows.



20

• For every predicate Ti ∈ T, ΠQ includes the following k rules:

DOM(x) ← Ti(x, y2, y3, . . . , yni−1, yni
)

DOM(x) ← Ti(y1, x, y3, . . . , yni−1, yni
)

· · ·

DOM(x) ← Ti(y1, y2, y3, . . . , yni−1, x)

• ΠQ includes the following rules for predicate EQUAL:

EQUAL(x, x, z1, . . . , zm) ← DOM(x),DOM(z1), . . . ,DOM(zm)

EQUAL(x, y, z1, . . . , zm) ← EQUAL(y, x, z1, . . . , zm)

EQUAL(x, y, z1, . . . , zm) ← EQUAL(x,w, z1, . . . , zm), EQUAL(w, y, z1, . . . , zm)

• For every predicate Ui, ΠQ includes the following rules:

Ui(y1, . . . , yni
, z1, . . . , zm) ← Ti(y1, . . . , yni

),DOM(z1), . . . ,DOM(zm)

Ui(y1, . . . , yni
, z1, . . . , zm) ← Ui(w1, . . . , wni

, z1, . . . , zm),

EQUAL(w1, y1, z1, . . . , zm), . . . ,

EQUAL(wni
, yni

, z1, . . . , zm)

• Let i ∈ [1, `]. First, assume that Qi(x̄) does not contain any negated atom. Then

Qi(x̄) is equal to ∃ū (Tp1(ū1)∧· · ·∧Tpn(ūn)), where pj ∈ [1, k] and every variable

in ūj is mentioned in either ū or x̄, for every j ∈ [1, n]. In this case, program ΠQ

includes the following rule:

ANSWER(x̄) ← Up1(ū1, x̄), . . . , Upn(ūn, x̄),C(x1), . . . ,C(xm) (4.15)

Notice that this rule is well defined since the setx̄ is the set of free variables of

∃ū (Tp1(ū1) ∧ · · · ∧ Tpn(ūn)). Second, assume that Qi(x̄) contains a negated rela-

tional atom. Then Qi(x̄) is equal to ∃ū (Tp1(ū1) ∧ · · · ∧ Tpn(ūn) ∧ ¬Tpn+1(ūn+1)),

where pj ∈ [1, k] and every variable in ūj is mentioned in either ū or x̄, for every



21

j ∈ [1, n+ 1]. In this case, program ΠQ includes the following rule:

Upn+1(ūn+1, x̄) ← Up1(ū1, x̄), . . . , Upn(ūn, x̄). (4.16)

This rule is well defined since ∃ū (Tp1(ū1) ∧ · · · ∧ Tpn(ūn) ∧ ¬Tpn+1(ūn+1)) is a

safe query. Finally, assume that Qi(x̄) contains an inequality. Then Qi(x̄) is equal

to ∃ū (Tp1(ū1) ∧ · · · ∧ Tpn(ūn) ∧ v1 6= v2), where pj ∈ [1, k] and every variable in

ūj is mentioned in either ū or x̄, for every j ∈ [1, n], and v1, v2 are mentioned in ū

or x̄. In this case, program ΠQ includes the following rules:

EQUAL(v1, v2, x̄) ← Up1(ū1, x̄), . . . , Upn(ūn, x̄) (4.17)

ANSWER(x̄) ← EQUAL(u, v, x̄),C(u),C(v),

u 6= v,C(x1), . . . ,C(xm) (4.18)

We note that the first rule above is well defined since ∃ū (Tp1(ū1)∧ · · ·∧Tpn(ūn)∧

v1 6= v2) is a safe query.

Let ā be a tuple of elements from the domain of a source instance I . Each predicate Ui in

ΠQ is used as a copy of Ti but with m extra arguments that store tuple ā. These predicates

are used when testing whether ā is a certain answer for Q over I . More specifically, the

rules of ΠQ try to construct from CAN(I) a solution J for I such that ā 6∈ Q(J). Thus,

if in a solution J for I , it holds that ā ∈ Q(J) because ā ∈ Qi(J), where Qi(x̄) is equal to

∃ū (Tp1(ū1)∧· · ·∧Tpn(ūn)∧¬Tpn+1(ūn+1)), then ΠQ uses rule (4.16) to create a new solution

where the negative atom of Qi does not hold. In the same way, if in a solution J for I , it holds

that ā ∈ Q(J) because ā ∈ Qi(J), whereQi(x̄) is equal to ∃ū (Tp1(ū1)∧· · ·∧Tpn(ūn)∧v1 6=

v2), then ΠQ uses rule (4.17) to create a new solution where the values assigned to v1 and v2

are equal (predicate EQUAL is used to store this fact). If v1 or v2 is assigned a null value, then

it is possible to create a solution where the values assigned to these variables are the same.

But this is not possible if both v1 and v2 are assigned constant values. In fact, it follows from

(Fagin, Kolaitis, Miller, & Popa, 2005) that this implies that it is not possible to find a solution



22

J ′ for I where ā 6∈ Q(J ′), and in this case rule (4.18) is used to indicate that ā is a certain

answer for Q over I .

By using the above observations, it is not difficult to prove that for every data exchange

settingM = (S,T,Σst) and for every instance I of S, it is the case that certainM(Q, I) =

certainM(ΠQ, I). This concludes the proof of the theorem. �

At this point, a natural question about DATALOGC(6=) programs is whether the different

components of this language are really needed, that is, whether inequalities and recursion are

essential for this language. Next, we show that this is indeed the case and, in particular, we

conclude that both inequalities and recursion are essential for Theorem 4.1.

It was shown in (Fagin, Kolaitis, Miller, & Popa, 2005) that there exist a data exchange

setting M and a conjunctive query Q with one inequality for which there is no first-order

query Q? such that for every source instance I , it holds that certainM(Q, I) = Q?(CAN(I)).

Thus, given that a non-recursive DATALOGC( 6=) program is equivalent to a first-order query,

we conclude from Proposition 3.1 that recursion is necessary for capturing the class of unions

of conjunctive queries with at most one negated atom per disjunct.

PROPOSITION 4.1 ((Fagin, Kolaitis, Miller, & Popa, 2005)). There exist a data exchange

setting M and a Boolean conjunctive query Q with a single inequality such that for every

non-recursive DATALOGC(6=) program Π, it is the case that

certainM(Q, I) 6= certainM(Π, I) holds, for some source instance I .

In the following proposition, we show that the use of inequalities is also necessary for

capturing the class of unions of conjunctive queries with at most one negated atom per dis-

junct. We note that this cannot be obtained from the result in (Fagin, Kolaitis, Miller, & Popa,

2005) mentioned above, as there are DATALOGC(6=) programs without inequalities that are not

expressible in first-order logic.



23

PROPOSITION 4.2. There exist a data exchange setting M and a Boolean conjunctive

query Q with a single inequality such that for every DATALOGC(6=) program Π without in-

equalities, certainM(Q, I) 6= certainM(Π, I) for some source instance I .

Proof: LetM = (S,T,Σst) be a data exchange setting defined as follows:

• The source schema S consists of one binary relation symbol M , and the target

schema consists of one binary relation symbol N ; and

• the set Σst of source-to-target dependencies consists only of the single stdM(x, y)→

N(x, y).

Moreover, let Q be the query ∃x∃y(N(x, y)∧x 6= y). We show that for every DATALOGC(6=)

program Π without inequalities, certainM(Q, I) 6= certainM(Π, I) for some instance I of S.

For the sake of contradiction, assume that there exists a DATALOGC( 6=) program Π0 with-

out inequalities such that for every source instance I certainM(Q, I) = certainM(Π0, I)

holds, and let I1 = {M(a, b)} and I2 = {M(c, c)}. It is not hard to see that certainM(Q, I1) =

true and certainM(Q, I2) = false.

Let J1 = {N(a, b)} and J2 = {N(c, c)} be target instances. It is easy to see that J1 and

J2 are universal solutions for I1 and I2, respectively. Given that certainM(Q, I1) = true,

we have that Π0(J1) = true. Let h be a function from dom(J1) to dom(J2) defined as

h(a) = h(b) = c. Since Π0 is a DATALOGC(6=) program without inequalities, it must be pre-

served under h (because hmaps constants to constants, and maps the pair (a, b) ∈ NJ1 into the

pair (h(a), h(b)) = (c, c) ∈ NJ2). We conclude that Π0(J2) = true. Hence, given that J2 is

a universal solution for I2, we conclude from Proposition 3.1 that certainM(Π0, I2) = true.

But we assume that certainM(Q, I2) = certainM(Π0, I2) and, therefore, we obtain a contra-

diction since certainM(Q, I2) = false. �

Notice that as a corollary of Proposition 4.2 and Theorem 4.1, we obtain that DATALOGC( 6=)

programs are strictly more expressive than DATALOGC(6=) programs without inequalities.



24

We conclude this chapter by studying the complexity of the problem of computing certain

answers to DATALOGC( 6=) programs. It was shown in Proposition 3.1 that the certain answers

of a DATALOGC(6=) program Π can be computed by directly posing Π over CAN(I). This

implies that for each data exchange settingM, the problem

CERTAIN-ANSWERS(M,Π) can be solved in polynomial time if Π is a DATALOGC(6=) pro-

gram (since CAN(I) can be computed in polynomial time and Π has polynomial time data

complexity).

PROPOSITION 4.3. The problem CERTAIN-ANSWERS(M,Π) can be solved in polyno-

mial time, for every data exchange settingM and DATALOGC(6=) program Π.

From the previous proposition and Theorem 4.1, we conclude that the certain answers to

a union of conjunctive queries with at most one negated atom per disjunct can also be com-

puted in polynomial time. We note that this slightly generalizes one of the polynomial time

results in (Fagin, Kolaitis, Miller, & Popa, 2005), which is stated for the class of unions of

conjunctive queries with at most one inequality per disjunct. The proof of the result in (Fagin,

Kolaitis, Miller, & Popa, 2005) uses different techniques, based on the chase procedure. In

chapter 5, we show that DATALOGC(6=) programs can also be used to express (some) unions

of conjunctive queries with two inequalities per disjunct.

A natural question at this point is whether CERTAIN-ANSWERS(M,Π) is PTIME-complete

for some data exchange setting M and DATALOGC(6=) program Π. It is easy to see that

this is the case given that the data complexity of the evaluation problem for DATALOG pro-

grams is PTIME-complete. But more interestingly, from Theorem 4.1 we have that this result

is also a corollary of a stronger result for UCQ 6= queries, namely that there exist a data

exchange setting M and a conjunctive query Q with one inequality such that the problem

CERTAIN-ANSWERS(M, Q) is PTIME-complete.

PROPOSITION 4.4. There exist a LAV data exchange settingM and a Boolean conjunc-

tive query Q with one inequality such that CERTAIN-ANSWERS(M, Q) is PTIME-complete.



25

Proof: LetM = (S,T,Σst) be a data exchange setting defined as follows. Source schema

S consists of a unary relation V , a binary relation S, and a 4-ary relation P . Target schema

T consists of a binary relation T and a 4-ary relation R. Set Σst consists of the following

source-to-target dependencies:

V (x) → ∃y T (x, y) (4.19)

S(x, y) → T (x, y) (4.20)

P (x, y, w, z) → R(x, y, w, z) (4.21)

Furthermore, Boolean query Q over T is defined as:

∃x∃y∃w∃z∃x′ (R(x, y, w, z) ∧ T (x, x′) ∧ T (y, y) ∧ T (w,w) ∧ T (z, z) ∧ x 6= x′).

Next we show that CERTAIN-ANSWERS(M, Q) is PTIME-complete under LOGSPACE re-

ductions.

Membership of CERTAIN-ANSWERS(M, Q) in PTIME follows from (Fagin, Kolaitis,

Miller, & Popa, 2005). PTIME-hardness is established from a LOGSPACE reduction from

Horn-3CNF to the complement of CERTAIN-ANSWERS(M, Q), where Horn-3CNF is the

satisfiability problem for propositional formulas in CNF with at most 3 literals per clause, and

with at most one positive literal per clause. This problem is known to be PTIME-complete

(see, e.g., (Greenlaw, Hoover, & Ruzzo, 1995)). More precisely, for every Horn-3CNF for-

mula φ, we construct in logarithmic space an instance Iφ of S such that φ is satisfiable if and

only if certainM(Q, Iφ) = false.

Without loss of generality, assume that formula φ = C1 ∧ · · · ∧ Ck, where each Ci

(i ∈ {1, . . . , k}) is a clause of the form either p ∨ ¬q ∨ ¬r or p or ¬p ∨ ¬q ∨ ¬r, being p, q

and r arbitrary propositional variables. Then instance Iφ is defined as follows:

• The interpretation of unary relation V in Iφ is the set of propositional variables

mentioned in φ.



26

• The interpretation of binary relation S in Iφ is the set of tuples {(b, b), (h, f)},

where b, h and f are fresh constants (not mentioned as propositional variables in

φ).

• For every clause Ci in Iφ (i ∈ {1, . . . , k}), the interpretation of 4-ary relation P in

Iφ contains the following tuple:

– (p, q, r, b) if Ci = p ∨ ¬q ∨ ¬r,

– (p, b, b, b) if Ci = p, and

– (h, p, q, r) if Ci = ¬p ∨ ¬q ∨ ¬r.

Clearly, Iφ can be constructed in logarithmic space from φ.

Next, we show that certainM(Q, Iφ) = false if and only if φ is satisfiable.

(⇒) Assume first that certainM(Q, Iφ) = false.

In the settingM, the canonical universal solution CAN(Iφ) for Iφ is as follows. Assume

that ⊥q is the null generated by applying rule (4.20) to each atom V (q) in Iφ. Then the

interpretation of R in CAN(I) is equal to the interpretation of P in I , and the interpretation

of T in CAN(I) contains tuples (b, b), (h, f) and (q,⊥q) for every propositional variable q

mentioned in φ.

Given that certainM(Q, Iφ) = false, there exists a solution J for I such that Q(J) =

false. Let h : CAN(I) → J be an homomorphism from CAN(I) into J , and let σ be

the following truth assignment for the propositional variables mentioned in φ: σ(q) = 1 iff

h(⊥q) = q. Next we show that σ satisfies φ. More precisely, we prove that σ(Ci) = 1, for

every i ∈ {1, . . . , k}. We consider three cases:

• Assume that Ci = p. Since R(p, b, b, b) belongs to J , and also T (b, b) belongs to

J , it must be the case that h(⊥p) = p since Q(J) = false and (p,⊥p) belongs

to the interpretation of T in CAN(I). We conclude that σ(p) = 1 and, hence,

σ(Ci) = 1.

• Assume that Ci = p ∨ ¬q ∨ ¬r and σ(q) = σ(r) = 1. Then by definition of h, we

have that h(⊥q) = q and h(⊥r) = r and, therefore, (q, q) and (r, r) belong to the



27

interpretation of T in J . Thus, given that R(p, q, r, b) and T (b, b) belong to J , it

must be the case that h(⊥p) = p since Q(J) = false and (p,⊥p) belongs to the

interpretation of T in CAN(I). We conclude that σ(p) = 1 and, hence, σ(Ci) = 1.

• Assume that Ci = ¬p∨¬q∨¬r. For the sake of contradiction, assume that σ(p) =

σ(q) = σ(r) = 1. Then by definition of h, we have that h(⊥p) = p, h(⊥q) = q

and h(⊥r) = r and, therefore, (p, p), (q, q) and (r, r) belong to the interpretation

of T in J . Thus, given that R(h, p, q, r), T (h, f) belong to J and h 6= f holds,

we conclude that Q(J) = true, which contradicts our initial assumption. We

conclude that σ(p) = 0 or σ(q) = 0 or σ(r) = 0, which implies that σ(Ci) = 1.

(⇐) Assume that φ is satisfiable, and let σ be a truth assignment for the propositional variables

in φ such that σ(φ) = 1. Furthermore, assume that CAN(Iφ) is constructed as above. From

σ, define a function f from dom(CAN(Iφ)) into dom(CAN(Iφ)) as follows:

f(v) =

q v = ⊥q and σ(q) = 1

v otherwise

Let J? be a solution for Iφ underM obtained from CAN(Iφ) by replacing each occurrence

of an element v with f(v). Next we show that Q(J?) = false and, thus, we conclude that

certainM(Q, Iφ) = false.

Assume, for the sake of contradiction, that Q(J?) = true. Then, there exists a func-

tion h : {x, y, w, z, x′} → dom(J?) such that R(h(x), h(y), h(w), h(z)), T (h(x), h(x′)),

T (h(y), h(y)), T (h(w), h(w)) and T (h(z), h(z)) are all tuples in J?, and h(x) 6= h(x′). To

prove that this leads to a contradiction, we consider three cases.

• Assume that h(x) = p, where p is a propositional variable, and h(y) = h(w) =

h(z) = b. Then by definition ofM and Iφ, we have that p is a clause in φ. But

given that h(x) = p, h(x) 6= h(x′) and T (h(x), h(x′)) is a tuple in J?, it is the case

that h(x′) = ⊥p. Thus, given that ⊥p is an element of J?, it holds that σ(p) = 0

since f(⊥p) = ⊥p. We conclude that σ(φ) = 0 since σ(p) = 0, which contradicts

our initial assumption.



28

• Assume that h(x) = p, h(y) = q and h(w) = r, where p, q and r are propositional

variables, and h(z) = b. Then by definition ofM and Iφ, we have that p∨¬q∨¬r

is a clause in φ. But given that h(x) = p, h(x) 6= h(x′) and T (h(x), h(x′)) is a

tuple in J?, it is the case that h(x′) = ⊥p. Thus, given that ⊥p is an element of

J?, it holds that σ(p) = 0 since f(⊥p) = ⊥p. Moreover, given that T (h(y), h(y))

and T (h(w), h(w)) are tuples in J?, it holds that T (q, q) and T (r, r) are tuples in

J?. Thus, f(⊥q) = q and f(⊥r) = r and, hence σ(q) = σ(r) = 1. We conclude

that σ(φ) = 0 since σ(p) = 0 and σ(q) = σ(r) = 1, which contradicts our initial

assumption.

• Assume that h(x) = h, h(y) = p, h(w) = q and h(z) = r, where p, q and r are

propositional variables. Then by definition ofM and Iφ, we have that ¬p∨¬q∨¬r

is a clause in φ. But given that T (h(y), h(y)), T (h(w), h(w)) and T (h(z), h(z))

are all tuples in J?, it holds that T (p, p), T (q, q) and T (r, r) are all tuples in J?.

Thus, f(⊥p) = p, f(⊥q) = q and f(⊥r) = r and, hence σ(p) = σ(q) = σ(r) = 1.

We conclude that σ(φ) = 0 since σ(p) = σ(q) = σ(r) = 1, which contradicts our

initial assumption.

This concludes the proof of the proposition. �

It is worth mentioning that it follows from Proposition 3.1 in (Kolaitis et al., 2006) that

there exist a data exchange settingM containing some target dependencies and a conjunctive

query Q with one inequality such that the problem CERTAIN-ANSWERS(M, Q) is PTIME-

complete. Proposition 4.4 shows that this result holds even when no target dependencies are

provided.



29

5. CONJUNCTIVE QUERIES WITH TWO INEQUALITIES

As we mentioned before, computing certain answers to conjunctive queries with more

than just one inequality is an intractable problem. Indeed, there is a LAV setting M and a

Boolean conjunctive query Q with two inequalities such that CERTAIN-ANSWERS(M, Q) is

CONP-complete (Madry, 2005). Therefore, unless PTIME = NP, Theorem 4.1 is no longer

valid if we remove the restriction that every disjunct ofQmust contain at most one inequality.

The intractability for conjunctive queries with two inequalities is tightly related with the

use of null values when joining relations and checking inequalities. In this chapter, we inves-

tigate this relationship, and provide a syntactic condition on the type of joins and inequalities

allowed in queries. This restriction leads to tractability of the problem of computing certain

answers. Indeed, this tractability is a corollary of a stronger result, namely that for every

conjunctive query Q with two inequalities, if Q satisfies the syntactic condition, then one can

construct a DATALOGC( 6=) program ΠQ such that certainM(Q, I) = certainM(ΠQ, I) for ev-

ery source instance I . It should be noticed that DATALOGC(6=) programs are used in this case

as a tool for finding a tractable class of queries for the problem of computing certain answers.

To define the syntactic restriction mentioned above, we need to introduce some terminol-

ogy. LetM = (S,T,Σst) be a data exchange setting. Then for every n-ary relation symbol

T in T, we say that the i-th attribute of T (1 ≤ i ≤ n) can be nullified underM, if there is an

std α in Σst such that the i-th attribute of T is existentially quantified in the right hand side of

α. Notice that for each settingM and source instance I , if the i-th attribute of T cannot be

nullified underM, then for every tuple (c1, . . . , cn) that belongs to T in the canonical univer-

sal solution for I , it holds that ci is a constant. Moreover, if Q is a UCQ 6= query over T and

x is a variable in Q, then we say that x can be nullified under Q andM, if x appears in Q as

the i-th attribute of a target relation T , and the i-th attribute of T can be nullified underM.

LetM be a data exchange setting and Q a conjunctive query with two inequalities, and

assume that if x appears as a variable in the inequalities ofQ, then x cannot be nullified under

Q and M. In this case, it is straightforward to prove that CERTAIN-ANSWERS(M, Q) is

tractable. Indeed, the previous condition implies that for every source instance I , if Q holds



30

in CAN(I), then all the witnesses for Q in CAN(I) make comparisons of the form c 6= c′,

where c and c′ are constants. Thus, we have that certainM(Q, I) can be computed by simply

evaluatingQ over CAN(I). Here we are interested in finding less obvious conditions that lead

to tractability. In particular, we would like to find queries that do not restrict the use of null

values in such a strict way.

Let Q be a conjunctive query with two inequalities over a target schema T. Assume that

the quantifier free part of Q is of the form φ(x1, . . . , xm) ∧ u1 6= v1 ∧ u2 6= v2, where φ is

a conjunction of relational atoms over T and u1, v1, u2 and v2 are all mentioned in the set

of variables x1, . . ., xm (Q is a safe query (Abiteboul, Hull, & Vianu, 1995)). We are now

ready to define the two components of the syntactic restriction that leads to tractability of

the problem of computing certain answers. We say that Q has almost constant inequalities

under M, if u1 or v1 cannot be nullified under Q and M, and u2 or v2 cannot be nullified

under Q andM. Intuitively, this means that to satisfy Q in the canonical universal solution

of a source instance, one can only make comparisons of the form c 6= ⊥ and c 6= c′, where

c, c′ are constants and ⊥ is a null value. Moreover, we say that Q has constant joins under

M, if for every variable x that appears at least twice in φ, x cannot be nullified under Q and

M. Intuitively, this means that to satisfy Q in the canonical universal solution of a source

instance, one can only use constant values when joining relations.

Example 5.1. LetM be a data exchange setting containing two stds: P (x, y)→ T (x, y)

and P (x, y)→ ∃z U(x, z). The first and second attribute of T , as well as the first attribute of

U , cannot be nullified underM. On the other hand, the second attribute of U can be nullified

underM.

Let Q(x) be query ∃y∃z(T (y, x) ∧ U(z, x) ∧ x 6= y ∧ x 6= z). Then we have that

Q has almost constant inequalities under M because variables y and z cannot be nullified

under Q and M, but Q does not have constant joins because variable x appears twice in

T (y, x)∧U(z, x) and it can be nullified under Q andM. On the other hand, query U(x, y)∧

U(x, z) ∧ x 6= z ∧ y 6= z has constant joins but does not have almost constant inequalities,



31

and query U(x, y) ∧ T (x, z) ∧ x 6= z ∧ y 6= z has both constant joins and almost constant

inequalities. �

Although the notions of constant joins and almost constant inequalities were defined for

UCQ 6= queries with two inequalities, they can be easily extended to the case of conjunctive

queries with an arbitrary number of inequalities. In fact, the notion of constant joins does not

change in the case of an arbitrary number of inequalities, while to define the notion of almost

constant inequalities in the general case, one has to say that each inequality x 6= y in a query

satisfies the condition that x or y cannot be nullified. With this extension, we have all the

necessary ingredients for the main result of this chapter.

Theorem 5.1. LetM = (S,T,Σst) be a data exchange setting and Q a UCQ 6= query

over T such that each disjunct of Q either (1) has at most one inequality and constant joins

underM, or (2) has two inequalities, constant joins and almost constant inequalities under

M. Then there exists a DATALOGC( 6=) program ΠQ over T such that for every instance I of

S, certainM(Q, I) = certainM(ΠQ, I). Moreover, ΠQ can be effectively constructed from Q

andM in polynomial time.

Proof: Assume that T = {T1, . . . , Tk}, where each Ti has arity ni > 0, and that Q(x̄) =

Q1(x̄) ∨ · · · ∨ Q`(x̄), where x̄ = (x1, . . . , xm) and each Qi(x̄) is either (1) a conjunctive

query, with at most one inequality or negated relational atom, and with constant joins, or

(2) a conjunctive query with two inequalities but with constant joins and almost constant

inequalities. Further, assume that W ⊆ {1, . . . , `} is the set of all indexes j such that Qj(x̄)

contains two inequalities, and that pj is the number of existentially quantified variables in Qj .

The set of intensional predicates of DATALOGC(6=) program ΠQ is

{U1, , . . . , Uk, DOM, EQUAL, (EQUALleft,j)j∈W , (EQUALright,j)j∈W ,

ANSWER, (ANSWERleft,j)j∈W , (ANSWERright,j)j∈W},

and the arity of each predicate is defined as follows:

• each Ui, for i ∈ [1, k], has arity ni +m;



32

• DOM has arity 1;

• EQUAL has arity 2 +m;

• each predicate of the form EQUALleft,j or EQUALright,j , for j ∈ W , has arity

2 + pj +m;

• ANSWER has arity m; and

• each predicate of the form ANSWERleft,j or ANSWERright,j , for j ∈ W , has arity

pj +m.

The set of rules of ΠQ is defined as follows (if ȳ = (y1, . . . , yn), we use DOM(ȳ) as a

shortening for DOM(y1), . . . ,DOM(yn)).

• For every predicate Ti ∈ T, ΠQ includes the following ni rules:

DOM(x) ← Ti(x, y2, y3, . . . , yni−1, yni
)

DOM(x) ← Ti(y1, x, y3, . . . , yni−1, yni
)

· · ·

DOM(x) ← Ti(y1, y2, y3, . . . , yni−1, x)

Intuitively, predicate DOM collects the elements that belong to the domain of the

extensional instance.

• ΠQ includes the following rules for predicate EQUAL:

EQUAL(x, x, z̄) ← DOM(x),DOM(z̄)

EQUAL(x, y, z̄) ← EQUAL(y, x, z̄)

EQUAL(x, y, z̄) ← EQUAL(x,w, z̄), EQUAL(w, y, z̄)



33

• ΠQ includes the following rules for predicate EQUALleft,j , for each j ∈ W , where

ū is a tuple of pj fresh variables:

EQUALleft,j(x, x, ū, z̄) ← DOM(x),DOM(ū),DOM(z̄)

EQUALleft,j(x, y, ū, z̄) ← EQUALleft,j(y, x, ū, z̄)

EQUALleft,j(x, y, ū, z̄) ← EQUALleft,j(x,w, ū, z̄), EQUALleft,j(w, y, ū, z̄)

• ΠQ includes the following rules for predicate EQUALright,j , for each j ∈ W , where

ū is a tuple of pj fresh variables:

EQUALright,j(x, x, ū, z̄) ← DOM(x),DOM(ū),DOM(z̄)

EQUALright,j(x, y, ū, z̄) ← EQUALright,j(y, x, ū, z̄)

EQUALright,j(x, y, ū, z̄) ← EQUALright,j(x,w, ū, z̄), EQUALright,j(w, y, ū, z̄)

• For every predicate Ui, i ∈ [1, k], the program ΠQ includes the following rules,

where ȳ = (y1, . . . , yni
), and z̄ = (z1, . . . , zm) are tuples of fresh variables:

Ui(ȳ, z̄) ← Ti(ȳ),DOM(z̄)

• Let i ∈ [1, `]. First, assume that Qi(x̄) does not contain any inequality. Then Qi(x̄)

is equal to ∃ū (Ts1(ū1) ∧ · · · ∧ Tsn(ūn)), where sj ∈ [1, k] and every variable in

ūj is mentioned in either ū or x̄, for every j ∈ [1, n]. In this case, program ΠQ

includes the following rule:

ANSWER(x̄) ← Us1(ū1, x̄), . . . , Usn(ūn, x̄),C(x1), . . . ,C(xm)

Notice that this rule is well defined since the set x̄ is the set of free variables of

∃ū (Ts1(ū1) ∧ · · · ∧Tsn(ūn)).

Second, assume that Qi(x̄) contains an inequality. Then Qi(x̄) is equal to the

formula ∃ū (Ts1(ū1)∧· · ·∧Tsn(ūn)∧v1 6= v2), where si ∈ [1, k] and every variable

in ūi is mentioned in either ū or x̄, for every i ∈ [1, n], and v1, v2 are mentioned in



34

ū or x̄. In this case, program ΠQ includes the following rules:

EQUAL(v1, v2, x̄) ← Us1(ū1, x̄), . . . , Usn(ūn, x̄)

ANSWER(x̄) ← EQUAL(u, v, x̄),C(u),C(v), u 6= v,C(x1), . . . ,C(xm)

We note that the first rule above is well defined since the query ∃ū (Ts1(ū1) ∧ · · · ∧

Tsn(ūn) ∧ v1 6= v2) is a safe query. Further, in this case ΠQ also contains the

following rules for each j ∈ W , assuming ȳ is a tuple of pj fresh variables:

EQUALleft,j(v1, v2, ȳ, x̄) ← Us1(ū1, x̄), . . . , Usn(ūn, x̄),DOM(ȳ)

EQUALright,j(v1, v2, ȳ, x̄) ← Us1(ū1, x̄), . . . , Usn(ūn, x̄),DOM(ȳ)

We note that the rules above are also well defined since ∃ū (Ts1(ū1)∧ · · · ∧ Tsn(ūn)∧

v1 6= v2) is a safe query.

Finally, assume that Qi(x̄) contains two inequalities, and Qi has constant joins and

almost constant inequalities. Further, assume that Qi(x̄) is equal to the formula

∃ū (Ts1(ū1)∧ · · · ∧ Tsn(ūn)∧ v1 6= v2 ∧ v3 6= v4), where each sj ∈ [1, k] and every

variable in ūj is mentioned in either ū or x̄, for every j ∈ [1, n], and v1, v2, v3, and

v4 are mentioned in ū or x̄. In this case, program ΠQ includes the following rules:

EQUALleft,i(v1, v2, ū, x̄) ← Us1(ū1, x̄), . . . , Usn(ūn, x̄)

EQUALright,i(v3, v4, ū, x̄) ← Us1(ū1, x̄), . . . , Usn(ūn, x̄)



35

Further, in this case ΠQ also contains the following rules for each j ∈ W , assuming

ȳ is a tuple of pj fresh variables:

EQUALleft,j(v3, v4, ȳ, x̄) ← Up1(ū1, x̄), . . . , Upn(ūn, x̄),C(v1),

EQUALleft,j(v2, w, ȳ, x̄),C(w), v1 6= w

EQUALleft,j(v3, v4, ȳ, x̄) ← Up1(ū1, x̄), . . . , Upn(ūn, x̄),C(v2),

EQUALleft,j(v1, w, ȳ, x̄),C(w), v2 6= w

EQUALleft,j(v1, v2, ȳ, x̄) ← Up1(ū1, x̄), . . . , Upn(ūn, x̄),C(v3),

EQUALleft,j(v4, w, ȳ, x̄),C(w), v3 6= w

EQUALleft,j(v1, v2, ȳ, x̄) ← Up1(ū1, x̄), . . . , Upn(ūn, x̄),C(v4),

EQUALleft,j(v3, w, ȳ, x̄),C(w), v4 6= w

EQUALright,j(v3, v4, ȳ, x̄) ← Up1(ū1, x̄), . . . , Upn(ūn, x̄),C(v1),

EQUALright,j(v2, w, ȳ, x̄),C(w), v1 6= w

EQUALright,j(v3, v4, ȳ, x̄) ← Up1(ū1, x̄), . . . , Upn(ūn, x̄),C(v2),

EQUALright,j(v1, w, ȳ, x̄),C(w), v2 6= w

EQUALright,j(v1, v2, ȳ, x̄) ← Up1(ū1, x̄), . . . , Upn(ūn, x̄),C(v3),

EQUALright,j(v4, w, ȳ, x̄),C(w), v3 6= w

EQUALright,j(v1, v2, ȳ, x̄) ← Up1(ū1, x̄), . . . , Upn(ūn, x̄),C(v4),

EQUALright,j(v3, w, ȳ, x̄),C(w), v4 6= w

Finally, the program ΠQ also includes the following rules for each j ∈ W , assum-

ing ȳ is a tuple of pj fresh variables:

ANSWERleft,j(ȳ, x̄) ← EQUALleft,j(u, v, ȳ, x̄),C(u),C(v), u 6= v

ANSWERright,j(ȳ, x̄) ← EQUALright,j(u, v, ȳ, x̄),C(u),C(v), u 6= v

ANSWER(x̄) ← ANSWERleft,j(ȳ, x̄),ANSWERright,j(ȳ, x̄),C(x1), . . . ,C(xm)



36

It can be proved that for every data exchange settingM = (S,T,Σst) and instance I of S,

certainM(Q, I) = certainM(ΠQ, I). This concludes the proof of the theorem. �

It immediately follows from Proposition 4.3 that if a data exchange setting M and a

UCQ 6= query Q satisfy the conditions mentioned in Theorem 5.1, then the problem denoted

by CERTAIN-ANSWERS(M, Q) is in PTIME. Furthermore, it can also be shown that the

properties of having constant joins and almost constant inequalities are helpful in reducing

the complexity of computing certain answers to unions of conjunctive queries with at most

one inequality per disjunct.

PROPOSITION 5.1. Let Q be a UCQ 6= query with at most one inequality per disjunct. If

every disjunct of Q has constant joins under a settingM, then CERTAIN-ANSWERS(M, Q)

is in NLOGSPACE, and if in addition every disjunct of Q has almost constant inequalities

underM, then CERTAIN-ANSWERS(M, Q) is in LOGSPACE.

Proof: Before proving the proposition, we mention a couple of remarks that will be useful

in the proof. First, it is immediate from the definition of canonical universal solution that

CAN(I) can be computed not only in polynomial time, but also in LOGSPACE for each

source instance I . Second, if tuple T (p1, . . . , pn) belongs to the CAN(I) for an arbitrary

source instance I under M, and the i-th attribute of T (1 ≤ i ≤ n) is not existentially

quantified inM, then pi has to be a constant.

We now prove the proposition, and start with part (1). Let M = (S,T,Σst) be a data

exchange setting and Q a query that is the union of conjunctive queries, with at most one

inequality per disjunct and without negated relational atoms, and such that each disjunct of Q

has constant joins. We prove next that there exists a query Q′, such that the data complexity

of Q′ is in NLOGSPACE, and certainM(Q, I) = Q′(CAN(I)), for every source instance I . It

will immediately follow that CERTAIN-ANSWERS(M, Q) is in NLOGSPACE (the algorithm

first computes CAN(I) in LOGSPACE, and then evaluatesQ′ over CAN(I) in NLOGSPACE).



37

The query Q′ will be defined in transitive closure logic (for a precise definition of this

logic, see e.g. Chapter 10.6 in (Libkin, 2004)). In order to do so, we need to introduce some

extra terminology and prove an intermediate result (Lemma 5.1).

Assume that Q is Q1(x̄) ∨ · · · ∨ Q`(x̄), where x̄ = (x1, . . . , xm), m ≥ 0. Let I be an

arbitrary source instance and t̄ = (t1, . . . , tm) a tuple of constants from I . We construct an

undirected graph G(Q, I, t̄) as follows:

• The nodes of G(Q, I, t̄) are the elements in CAN(I) plus two fresh elements µ and

ν, i.e. neither µ nor ν belongs to CAN(I);

• there exists an edge between elements p and p′ inG(Q, I, t̄), p, p′ ∈ dom(CAN(I)),

iff for some i ∈ [1, `], (1) Qi(x̄) is of the form ∃ȳ(φ(x̄, ȳ) ∧ u 6= v), where φ(x̄, ȳ)

is a conjunction of relational atoms over T, and u, v ∈ {x̄, ȳ}, and (2) there is

an assignment σ : {x̄, ȳ} → dom(CAN(I)), such that σ(x̄) = t̄, (CAN(I), σ) |=

φ(x̄, ȳ) ∧ u 6= v, σ(u) = p and σ(v) = p′; and

• there exists an edge between µ and ν in G(Q, I, t̄) iff for some i ∈ [1, `], Qi(x̄) is

of the form ∃ȳφ(x̄, ȳ), where φ(x̄, ȳ) is a conjunction of relational atoms over T,

and CAN(I) |= Qi(t̄).

We say that G(Q, I, t̄) has a contradiction path (or c-path), if there is a path in G(Q, I, t̄)

from a constant c ∈ dom(CAN(I)) to a different constant c′ ∈ dom(CAN(I)), or an edge

between µ and ν. Next claim shows that checking whether a tuple t̄ of constants from CAN(I)

belongs to the certain answers ofQ for I is equivalent to checking for the presence of a c-path

in G(Q, I, t̄).

Lemma 5.1. Let Q be as defined above. For every source instance I and tuple t̄ of

constants from I , it is the case that

t̄ ∈ certainM(Q, I) ⇔ G(Q, I, t̄) has a c-path.

Proof: Fix a source instance I and a tuple t̄ of constants from I . Assume first that there

is no path in G(Q, I, t̄) from some constant c ∈ dom(CAN(I)) to some different constant



38

c′ ∈ dom(CAN(I)), and there is no edge inG(Q, I, t̄) between µ and ν. Thus, each connected

component of G(Q, I, t̄) with elements in dom(CAN(I)) consists of at most one constant and

zero or more null values. With each connected componentM with elements in dom(CAN(I)),

we identify an element id(M) ∈ M as follows: id(M) = c, if M contains a constant c, and

id(M) = n for an arbitrary null value n ∈ M , otherwise. Let J∗ be the solution obtained

from CAN(I) by replacing each occurrence of an element p ∈ dom(CAN(I)) in connected

component M with the element id(M). It is not hard to see that every element in t̄ belongs to

J∗. We prove that J∗ 6|= Q(t̄), and, thus, that certainM(Q, I) = false.

Assume otherwise. Then there exists i ∈ [1, `] such that J∗ |= Qi(t̄). Assume first thatQi

is of the form ∃ȳ1, . . . , ȳn(T1(x̄1, ȳ1)∧· · ·∧Tn(x̄n, ȳn)∧u 6= v), where {T1, . . . , Tn} ⊆ T, x̄ =

{x̄1} ∪ · · · ∪ {x̄n}, and u, v ∈ {x̄, ȳ1, . . . , ȳn}. Thus, there exist tuples p̄1, . . . , p̄n of elements

in CAN(I) and an assignment σ : {x̄}∪{ȳ1}∪· · ·∪{ȳn} → dom(J∗) defined by σ(x̄) = t̄ and

σ(ȳj) = p̄j , for every 1 ≤ j ≤ n, such that (J∗, σ) |= T1(x̄1, ȳ1) ∧ · · · ∧ Tn(x̄n, ȳn) ∧ u 6= v.

In particular, σ(u) 6= σ(v).

For every j ∈ [1, n], let us denote by t̄j the value of σ(x̄j). By definition of J∗, every

tuple Tj(t̄j, p̄j) (1 ≤ j ≤ n) is obtained from a tuple Tj(t̄j, r̄j) in J by replacing each element

r ∈ r̄j in the connected component M of G(Q, I, t̄) by id(M). Let us define an assignment

σ′ : {x̄} ∪ {ȳ1} ∪ · · · ∪ {ȳn} → dom(CAN(I)) as follows: σ′(x̄) = t̄ and σ′(ȳj) = r̄j , for

each 1 ≤ j ≤ n. We show that σ′ is well-defined. Assume that z is a variable that appears

in at least two different positions in (ȳ1, . . . , ȳn). We show that σ′ assigns the same value

to each appearance of z. Indeed, since z appears in two different positions in (ȳ1, . . . , ȳn) it

must be the case that z is a join variable in T1(x̄1, ȳ1)∧· · ·∧Tn(x̄n, ȳn). By hypothesis, Q has

constant joins inM, and, thus, z does not appear existentially quantified inM. Thus, σ(z)

is a constant and σ(z) = σ′(z) (because CAN(I) only contain constants in the positions of

attributes that do not appear existentially quantified inM). It immediately follows that every

appearance of z in (ȳ1, . . . , ȳn) is assigned the same value by σ′.

We conclude that (CAN(I), σ′) |= T1(x̄1, ȳ1) ∧ · · · ∧ Tn(x̄n, ȳn). If σ′(u) = σ′(v), then

σ(u) = σ(v), which is a contradiction. Assume then that σ′(u) 6= σ′(v). By definition of



39

G(Q, I, t̄), σ′(u) and σ′(v) are in the same connected component of G(Q, I, t̄). But then, by

definition of J∗ it must be the case that σ(u) = σ(v), which is our desired contradiction.

Assume now that Qi is of the form ∃ȳ1, . . . , ȳn(T1(x̄1, ȳ1) ∧ · · · ∧ Tn(x̄n, ȳn)), where

{T1, . . . , Tn} ⊆ T and x̄ = {x̄1} ∪ · · · ∪ {x̄n}. Following the same reasoning it is possible

to show that (CAN(I), σ′) |= T1(x̄1, ȳ1) ∧ · · · ∧ Tn(x̄n, ȳn). Thus, CAN(I) |= Qi(t̄), which

implies that there is an edge between µ and ν in G(Q, I, t̄). This is again a contradiction.

Assume, on the other hand, that there is a path in G(Q, I, t̄) from a constant c such

that c ∈ dom(CAN(I)) to a different constant c′ ∈ dom(CAN(I)) (the case when there

is an edge between µ and ν in G(Q, I, t̄) can be handled similarly). Let J∗ be an arbi-

trary solution for I , and let h be a homomorphism from CAN(I) to J∗. Then there must

be two adjacent elements p and p′ in the connected component of c in G(Q, I, t̄), such

that h(p) 6= h(p′). Further, since p and p′ are adjacent in G(Q, I, t̄), there must be an

i ∈ [1, `] such that (1) Qi(x̄) is of the form ∃ȳ(φ(x̄, ȳ) ∧ u 6= v), where φ(x̄, ȳ) is a

conjunction of relational atoms over T, and u, v ∈ {x̄, ȳ}, and (2) there is an assignment

σ : {x̄, ȳ} → dom(CAN(I)), such that σ(x̄) = t̄, (CAN(I), σ) |= φ(x̄, ȳ) ∧ u 6= v, σ(u) = p

and σ(v) = p′. Then J∗ |= φ(h(t̄), h(σ(ȳ))) ∧ h(σ(u)) 6= h(σ(v)), because conjunctive

queries are preserved under homomorphisms and h(p) = h(σ(u)) 6= h(σ(v)) = h(p′). Thus,

(J∗, t̄) |= ∃ȳ(φ(x̄, ȳ) ∧ u 6= v), because t̄ = h(t̄). We conclude that J∗ |= Q(t̄), and, there-

fore, since J∗ was arbitrarily chosen, that t̄ ∈ certainM(Q, I). This finishes the proof of the

lemma. �

We define the query Q′ in three steps. Assume, without loss of generality, that for each

1 ≤ i ≤ s ≤ `, Qi(x̄) is of the form ∃ȳi(φi(x̄, ȳi) ∧ ui 6= vi), where φi(x̄, ȳi) is a conjunction

of relational atoms over T, and ui, vi ∈ {x̄, ȳi}, and for each s < j ≤ `, Qj(x̄) is of the form

∃ȳjφj(x̄, ȳj), where φj(x̄, ȳj) is a conjunction of relational atoms over T. Then:



40

(i) Define a formula A(z1, z2, x̄) as follows, where z1 and z2 are fresh variables, i.e. z1

and z2 are not mentioned in Q(x̄):

A(z1, z2, x̄) ≡
∨

1≤i≤s

∃ȳi(φi(x̄, ȳi) ∧ z1 6= z2 ∧ z1 = ui ∧ z2 = vi).

Intuitively, the formula A(z1, z2, x̄) defines the adjacency in the graph G(Q, I, x̄),

with respect to elements in CAN(I);

(ii) define a formula α(x̄) as follows,

α(x̄) ≡
∨

s<j≤`

∃ȳjφj(x̄, ȳj).

Intuitively α(x̄) checks whether there is an edge between µ and ν in G(Q, I, x̄);

and

(iii) finally, the query Q′(x̄) is defined as:

(α(x̄) ∨ ∃w1∃w2(C(w1) ∧C(w2) ∧ w1 6= w2

∧ (w1, w2) ∈ TrCl.A(u, v, x̄))) ∧ C(x1) ∧ . . .C(xm)

where (w1, w2) ∈ TrCl.A(u, v, x̄) expresses that the pair (w1, w2) belongs to the

transitive closure of the adjacency relation defined by the pairs (u, v) that satisfy A

parameterized by x̄.

It immediately follows from Lemma 5.1 that for every source instance I , certainM(Q, I) =

Q′(CAN(I)). Further, it is well-known that the data complexity of any formula in transitive

closure logic is in NLOGSPACE (see e.g. Chapter 10.6 in (Libkin, 2004)). This concludes

the first part of the proposition.

Now we prove part (2). Let Q be as in the first part of the proof, but with the addition that

each disjunct of Q has almost constant inequalities. Lemma 5.1 continues being the case in

this setting, but notice that now if there is a c-path inG(Q, I, t̄) then there is a c-path of length

at most 3. Thus, in this case Q′(x̄) can be expressed as the FO formula that checks whether

there is an edge between µ and ν in G(Q, I, t̄), or a c-path of length at most 3 in G(Q, I, t̄).



41

Since the data complexity of any FO formula is in LOGSPACE (see e.g. Chapter 6 in (Libkin,

2004)), we conclude that the problem of computing certain answers for this class of queries

and settings is in LOGSPACE. �

An obvious question at this point is how natural are the conditions used in Theorem 5.1.

Although we cannot settle this subjective question, we are at least able to show that these

conditions are optimal in the sense that removing any of them leads to intractability for the

class of UCQ 6= queries with two inequalities.

Theorem 5.2.

(1) There exist a LAV data exchange setting M and a query Q such that Q is the

union of a Boolean conjunctive query and a Boolean conjunctive query with two

inequalities that has both constant joins and almost constant inequalities under

M, and such that CERTAIN-ANSWERS(M, Q) is CONP-complete.

(2) There exist a LAV data exchange setting M and a Boolean conjunctive query Q

with two inequalities, such that Q has constant joins under M, Q does not have

almost constant inequalities underM and CERTAIN-ANSWERS(M, Q) is CONP-

complete.

(3) There exist a LAV data exchange setting M and a Boolean conjunctive query Q

with two inequalities, such that Q has almost constant inequalities under M, Q

does not have constant joins underM and CERTAIN-ANSWERS(M, Q) is CONP-

complete.

Proof: We will only show the proof for the first part of the theorem. For the details of the

second and third part, see the appendix A. The proof for (1) is as follows:

We prove that there exists a LAV data exchange settingM and a query Q such that Q is the

union of a Boolean conjunctive query and a Boolean conjunctive query with two inequal-

ities that has both constant joins and almost constant inequalities under M, and such that

CERTAIN-ANSWERS(M, Q) is CONP-complete.



42

The LAV settingM = (S,T,Σst) is as follows. The source schema S consists of two

relations: A binary relation P and a ternary relation R. The target schema T consists of three

relations: Two binary relations T and S, and a ternary relation U . Further, Σst is the following

set of source-to-target dependencies:

P (x, y) → ∃z(T (x, z) ∧ T (y, z) ∧ S(x, y))

R(x, y, z) → U(x, y, z)

Furthermore, Boolean query Q is defined as:

∃x∃y∃z(U(x, y, z) ∧ T (x, x) ∧ T (y, y) ∧ T (z, z)) ∨

∃x∃y∃w∃z(T (x, y) ∧ T (w, z) ∧ S(x,w) ∧ x 6= y ∧ w 6= z).

We denote the first disjunct of Q by Q1 and the second by Q2. Clearly, Q2 has constant joins

and almost constant inequalities inM. On the other hand, Q1 does not have constant joins.

Next we show that CERTAIN-ANSWERS(M, Q) is CONP-complete.

Membership of CERTAIN-ANSWERS(M, Q) in CONP follows from (Fagin, Kolaitis,

Miller, & Popa, 2005). The CONP-hardness is established from a reduction from 3SAT to

the complement of CERTAIN-ANSWERS(M, Q). More precisely, for every 3CNF proposi-

tional formula φ, we construct in polynomial time an instance Iφ of S such that φ is satisfiable

iff certainM(Q, Iφ) = false.

Given a propositional formula φ ≡
∧

1≤j≤mCj in 3CNF, where each Cj is a clause, let

Iφ be the following source instance:

• The interpretation of P in Iφ contains the pair (q,¬q), for each propositional vari-

able q mentioned in φ; and

• the interpretation of R in Iφ contains all tuples (α, β, γ) such that for some 1 ≤

j ≤ m, Cj = (α ∨ β ∨ γ).

Clearly, Iφ can be constructed in polynomial time from φ.



43

The canonical universal solution J for Iφ is as follows, where we denote by ⊥q (or ⊥¬q)

the null generated by applying the std P (x, y)→ ∃z(T (x, z)∧T (y, z)∧S(x, y)) to P (q,¬q):

• The interpretation of the relation T in J contains the tuples (q,⊥q) and (¬q,⊥q),

for each propositional variable q mentioned in φ;

• the interpretation of the relation S in J is just a copy of the interpretation of the

relation P in Iφ; and

• the interpretation of the relation U in J is just a copy of the interpretation of the

relation R in Iφ.

We prove now that φ is satisfiable iff certainM(Q, Iφ) = false.

(⇒) Assume that φ is satisfiable, and let κ be a truth assignment for the propositional

variables of φ such that κ(φ) = 1. From κ, define a function f from J into J as

follows:

f(v) =


¬q v = ⊥q and κ(q) = 1

q v = ⊥q and κ(q) = 0

v otherwise

Let J∗ be the solution for Iφ obtained from J by replacing each occurrence of

an element v in J by f(v). We show next that Q(J∗) = false, and, thus, that

certainM(Q, Iφ) = false.

Assume, for the sake of contradiction, that Q(J∗) = true. Then Q1(J∗) = true

or Q2(J∗) = true. Assume first that the latter holds. Then there is a func-

tion h : {x, y, z, w} → dom(J∗) such that T (h(x), h(y)), T (h(z), h(w)), and

S(h(x), h(z)) are all tuples in J∗, and h(x) 6= h(y) and h(z) 6= h(w). Since

S(h(x), h(z)) belongs to J∗, it follows that for some propositional variable q men-

tioned in φ, h(x) = q and h(z) = ¬q. Further, since T (h(x), h(y)) and T (h(z), h(w))

belong to J∗, we have that h(y) = f(⊥q) = h(w). But then f(⊥q) 6= q and

f(⊥q) 6= ¬q, which contradicts the definition of J∗. Assume, on the other hand,

that Q1(J∗) = true. Then there is a function h : {x, y, z} → dom(J∗) such that



44

the tuples U(h(x), h(y), h(z)), T (h(x), h(x)), T (h(y), h(y)), and T (h(z), h(z))

are all tuples in J∗. Then by definition ofM and Iφ, there exists a clause (α∨β∨γ)

in φ such that h(x) = α, h(y) = β, and h(z) = γ. Since L(h(x), h(x)) = L(α, α)

belongs to J∗, it follows that f(⊥α) = α, and thus, that κ(α) = 0. Similarly,

κ(β) = 0 and κ(γ) = 0. But this is a contradiction, since κ(φ) = 1, and thus,

κ(α) = 1 or κ(β) = 1 or κ(γ) = 1.

(⇐) Assume that certainM(Q, Iφ) = false. Then there exists a solution J ′ such that

Q(J ′) = false. Let h : J → J ′ be an homomorphism from J into J ′, and let κ

be the following truth assignment for the propositional variables mentioned in φ:

κ(q) = 1 iff h(⊥q) = ¬q. We show next that κ(Cj) = 1, for each 1 ≤ j ≤ m, and,

thus, that φ is satisfiable.

Consider an arbitrary j ∈ [1,m], and assume that Cj = (α ∨ β ∨ γ). Then, since

U(α, β, γ), T (α, h(⊥α)), T (β, h(⊥β)), and T (γ, h(⊥γ)) belong to J ′, it must be

the case that α 6= h(⊥α) or β 6= h(⊥β) or γ 6= h(⊥γ). Further, since either

S(α,¬α) or S(¬α, α) belongs to J∗, and both T (α, h(⊥α)) and T (¬α, h(⊥α))

belong to J∗, we conclude from the fact that Q2(J∗) = false that h(⊥α) = α

or h(⊥α) = ¬α. Similarly, h(⊥β) = β or h(⊥β) = ¬β, and h(⊥γ) = γ or

h(⊥γ) = ¬γ. Thus, h(⊥α) = ¬α or h(⊥β) = ¬β or h(⊥γ) = ¬γ, and, therefore,

that κ(α) = 1 or κ(β) = 1 or κ(γ) = 1. We conclude that κ(Cj) = 1.

This concludes the proof of the first part of the theorem. �

It is important to notice that although the problem of computing certain answers to UCQ 6=

queries has been considered in the literature, none of the results of Theorem 5.2 directly

follows from any of the known results for this problem. In particular, Fagin et al. showed

in (Fagin, Kolaitis, Miller, & Popa, 2005) a similar result to (1), namely that the problem

of computing certain answers is CONP-complete even for the union of two queries, the first

of which is a conjunctive query and the second of which is a conjunctive query with two

inequalities. The difficulty in our case is that the second query is restricted to have constant



45

joins and almost constant inequalities, while Fagin et al. considered a query that does not

satisfy any of these conditions. Moreover, Ma̧dry proved in (Madry, 2005) a similar result

to (2) and (3), namely that the problem of computing certain answers is CONP-complete for

conjunctive queries with two inequalities. The difficulty in our case is that we consider a query

that has constant joins in (2) and a query that has almost constant inequalities in (3), while

Ma̧dry considered a query that does not satisfy any of these conditions. In fact, we provide

in (2) and (3) two new proofs of the fact that the problem of computing certain answer to a

conjunctive query with two inequalities is CONP-complete.

We conclude this chapter with a remark about the possibility of using the conditions

defined in this chapter to obtain tractability for UCQ 6=. As we mentioned above, the notions

of constant joins and almost constant inequalities can be extended to UCQ 6= queries with an

arbitrary number of inequalities. Thus, one may wonder whether these conditions lead to

tractability in this general scenario. Unfortunately, the following proposition shows that this

is not the case, even for the class of UCQ 6= queries with three inequalities.

PROPOSITION 5.3. There exist a LAV data exchange settingM and a Boolean conjunc-

tive query Q with three inequalities, such that Q has both constant joins and almost constant

inequalities underM, but the problem CERTAIN-ANSWERS(M, Q) is CONP-complete.

Proof: See appendix A



46

6. COMBINED COMPLEXITY OF DATA EXCHANGE

Beyond the usual data complexity analysis, it is natural to ask for the combined complex-

ity of the problem of computing certain answers: What is the complexity if data exchange

settings and queries are not considered to be fixed? To state this problem, we shall extend the

notation defined in chapter 2. Let DE be a class of data exchange settings and C a class of

queries. In this chapter, we study the following problem:

PROBLEM: CERTAIN-ANSWERS(DE, C).

INPUT: A data exchange setting M = (S,T,Σst) ∈ DE, a

source instance I , a query Q ∈ C and a tuple t̄ of con-

stants from I .

QUESTION: Is t̄ ∈ certainM(Q, I)?

It is worth mentioning that a related study appeared in (Kolaitis et al., 2006). Even though the

focus of that paper was the combined complexity of the existence of solutions problem, some

of the results in (Kolaitis et al., 2006) can be extended to the certain answers problem. In

particular, some complexity bounds for unions of conjunctive queries with inequalities can be

proved by using these results. Nevertheless, in this chapter we prove stronger lower bounds

that consider single conjunctive queries with inequalities, and which cannot be directly proved

by using the results of (Kolaitis et al., 2006).

We start by stating the complexity for the case of DATALOGC(6=) queries. The study

continues by considering some restrictions of DATALOGC(6=) that lead to lower combined

complexity, and which are expressed in the form of conjunctive queries with single inequali-

ties. We conclude this study by examining unrestricted CQ 6= queries, which are not rewritable

in DATALOGC(6=) (unless PTIME = NP). The results of this chapter are summarized in Table

6.1, where we let k-CQ 6= be the class of CQ 6= queries with at most k inequalities.

6.1. Combined Complexity of DATALOGC( 6=) programs

We showed in Proposition 3.1 that the certain answers of a DATALOGC(6=) program can

be computed by directly posing the query over the canonical universal solution. It can be



47

shown that such an approach can compute the certain answers to a DATALOGC(6=) program

in exponential time, although canonical universal solutions can be of exponential size if data

exchange settings are not considered to be fixed. And not only that it can be proved that this

is a tight bound.

Theorem 6.1. CERTAIN-ANSWERS(GLAV,DATALOGC(6=)) is EXPTIME-complete.

Proof: The EXPTIME-hardness follows directly from Theorems 4.1 and 6.2: The problem of

computing certain answers is already EXPTIME-hard for the class of conjunctive queries with

single inequalities (see Theorem 6.2), and it follows from Theorem 4.1 that for each query

Q in this class, one can construct in polynomial time a DATALOGC(6=) program ΠQ such that

certainM(Q, I) = certainM(ΠQ, I), for every source instance I .

For membership in EXPTIME, in chapter 3 we showed that in order to compute the cer-

tain answers of a DATALOGC(6=) program Π for a source instance I , it suffices to evaluate Π

over CAN(I). It is well known that every DATALOG program Π with negated atoms can be

evaluated over an instance D in time |D||Π| (see e.g. (Abiteboul et al., 1995), (Vardi, 1982)).

Hence, since for every source instance I , CAN(I) is of size at most |I||Σst| (Fagin, Kolaitis,

Miller, & Popa, 2005), we obtain an exponential bound for computing the certain answers of

a DATALOGC(6=) program. �

Note that the above problem has to deal with canonical universal solutions of exponential size.

Then restricting these solutions to be of polynomial size would be a natural approach to reduce

the complexity of the problem. There are at least two ways to do this. The obvious one would

be to fix the data exchange settings, and leave only queries and source instances as input. The

less obvious but more interesting case is to restrict the class of data exchange settings to be

LAV settings. However, for the case of DATALOGC(6=) programs, the combined complexity is

inherently exponential, and thus reducing the size of canonical universal solutions does not

help in improving the upper bound.

PROPOSITION 6.1. CERTAIN-ANSWERS(LAV,DATALOGC(6=)) is EXPTIME-complete.



48

Query GLAV setting LAV setting
DATALOGC(6=) EXPTIME-complete EXPTIME-complete
1-CQ 6= EXPTIME-complete NP-complete
k-CQ 6=, k ≥ 2 CONEXPTIME-

complete
Πp

2-complete

TABLE 6.1. Combined complexity of computing certain answers.

Proof: The membership in EXPTIME follows from the proof of Theorem 6.1. The exponen-

tial bound is obtained with the evaluation of a DATALOG program Π with negated atoms over

CAN(I). For the EXPTIME-hardness, we will show a reduction from the problem of checking

whether a tuple t̄ belongs to the evaluation of a DATALOG program Π′ over an instance I .

This problem is well known to be EXPTIME-hard (see e.g. (Abiteboul et al., 1995), (Vardi,

1982)). It is clear that every DATALOG is also a DATALOGC(6=) program. LetM be a copying

data exchange setting, that is, a (LAV) setting (S,T,Σst) such that S contains all the relation

symbols in I , T is a copy of S and Σst consists of dependencies of the form R(x̄) → R′(x̄)

for each relation symbol R in S, where R′ is the copy in T of the relation R in S. From

the results in chapter 3 and the construction of CAN(I), it is straightforward to prove that

t̄ ∈ Π(I) if and only if t̄ ∈ certainM(Q, I). �

It was shown in Theorem 4.1 that every conjunctive query with one inequality can be

efficiently translated into a DATALOGC(6=) program. Hence, the class of 1-CQ 6= queries form

a subclass of the class of DATALOGC(6=) programs. Thus, it is natural to ask whether the

EXPTIME lower bound carries over this class, and whether the LAV restriction could be useful

in this case. These are the motivating questions for the next section.

6.2. Combined Complexity of CQ 6=

We leave the DATALOGC( 6=) queries to concentrate on the analysis of CQ 6= queries in

data exchange. We first study the class 1-CQ 6=, that is, the class of conjunctive queries with

only one inequality. It is worth mentioning that an EXPTIME lower bound can be obtained



49

from (Kolaitis et al., 2006) for the case of unions of 1-CQ 6= queries. We refine this result to

the case of 1-CQ 6= queries, and therefore present a stronger lower bound:

Theorem 6.2. CERTAIN-ANSWERS(GLAV, 1-CQ 6=) is EXPTIME-complete.

Proof(Sketch): Membership in EXPTIME can be proved as follows. The certain answers to

each union of conjunctive queries for a source instance I , under a settingM, can be computed

in polynomial time in the size of CAN(I) (Fagin, Kolaitis, Miller, & Popa, 2005). But as we

mentioned before, the size of CAN(I) is at most |I||Σst|. It follows that the certain answers to

each union of conjunctive queries with respect to a source instance I , under a settingM, can

be computed in exponential time in the size of I .

The proof of the lower bound is a refinement of a proof shown in (Kolaitis et al., 2006),

where the theorem was proved for a union of two CQ 6= queries. The EXPTIME-hardness is es-

tablished from a reduction from the Single Rule Datalog Problem (Gottlob & Papadimitriou,

2003), which is the following problem: given a DATALOG program Π consisting of only one

rule and some of facts with only constants, is it the case that a tuple t̄ belongs to the evaluation

of Π over an empty instance? That is, we ask whether t̄ ∈ Π(∅). We shall call these programs

Single Rule Datalog Programs (sirup). The combined complexity of this problem was shown

to be EXPTIME-complete by Gottlob and Papadimitriou (2003). For the details of this proof,

see the appendix A. �

It is natural to ask what happens in the case of unrestricted queries and, more specifically,

for queries with two inequalities. It was noted that the data complexity becomes higher when

dealing with two inequalities, and a similar behavior should be expected for the combined

complexity. Indeed, we have that:

Theorem 6.3. CERTAIN-ANSWERS(GLAV, k-CQ 6=) is CONEXPTIME-complete, for ev-

ery k ≥ 2.

Proof: First, we prove the membership in CONEXPTIME. The certain answers to each k-

UCQ 6= query for a source instance I , under a settingM, can be computed in CONP time in



50

the size of CAN(I) (Fagin, Kolaitis, Miller, & Popa, 2005). But as we mentioned before, the

size of CAN(I) is at most |I||Σst|. It follows that the certain answers to each k-UCQ 6= query

Q with respect to a source instance I , under a settingM, can be computed in CONEXPTIME

time in the size of I ,M and Q.

The coNEXPTIME-hardness will be established with a reduction from the satisfiability

problem for the Bernays-Schönfinkel class of Boolean FO formulas, which is known to be

NEXPTIME-complete (see, e.g., (Börger, Grädel, & Gurevich., 2001)), to the complement of

the problem CERTAIN-ANSWERS(GLAV, 2-CQ 6=). Formally, the Bernays-Schönfinkel class

of Boolean FO formulas is defined as the class of all FO formulas of the form ∃x̄∀ȳψ(x̄, ȳ),

where ψ is quantifier-free and does not contain function symbols. Along the proof we show

the following: For every Boolean FO formula φ in the Bernays-Schönfinkel class, one can

construct in polynomial time a GLAV data exchange setting M = (S,T,Σst), a conjunc-

tive query Q with two inequalities, and an instance I of S, such that φ is satisfiable iff

certainM(Q, I) = false.

Fix a Boolean FO formula φ ≡ ∃x1, . . . ,∃xp∀y1, . . . ,∀ymψ in the Bernays-Schönfinkel

class. Assume, without loss of generality, that the vocabulary of φ is constant-free and that ψ

does not contain atomic formulas of the form x = y. Also, let {R1, . . . , Rn} be the set of all

relation symbols mentioned in ψ. For each relation Ri, 1 ≤ i ≤ n, we let ri denote the arity

of Ri. Along the proof we heavily use the following property of φ: Either φ is unsatisfiable,

or it has a model of cardinality at most p (see, e.g., (Börger et al., 2001)).

We split our reduction into two parts:

• First, we construct in polynomial time from φ a GLAV data exchange settingM =

(S,T,Σst), a query Q that is a union of conjunctive queries with at most two

inequalities per disjunct, and an instance I of S, such that φ is satisfiable iff

certainM(Q, I) = false. Although this is still not sufficient to prove the theo-

rem, because Q belongs to UCQ 6=, the construction helps obtaining intuition for

the second part of the proof, which is technically more involved.



51

• Afterwards, using a refinement of the techniques in the first part of the proof, we

construct in polynomial time from φ another GLAV data exchange setting M′ =

(S′,T′,Σ′st), a conjunctive query Q′ with two inequalities, and an instance I ′ of S′,

such that φ is satisfiable iff certainM′(Q′, I ′) = false.

Due to the technical characteristic of this proof, we only give the details for the fist part of the

reduction. For the second part, the reader is referred to the appendix A

We need some additional notation. A subformula of ψ is inductively defined as follows:

• If the atomic formula Ri(z̄) appears in ψ, then Ri(z̄) is a subformula of ψ;

• If ξ and γ are subformulas of ψ, then (¬ξ), (ξ∨γ), and (ξ∧γ) are also subformulas

of ψ.

Notice that in particular, ψ is a subformula of itself. Let S1, . . . , S` be an enumeration of all

the subformulas of ψ. Without loss of generality assume that S1 = ψ.

The intuition of the first part of the reduction is the following. We construct a source

instance I such that dom(I) consists of p elements a1, . . . , ap. This is justified by the fact,

mentioned above, that if φ is satisfiable then it has a model of size at most p. We then construct

a set Σst of stds such that for each tuple ā of size ri of elements in dom(I), i ∈ [1, n],R′i(ā,⊥)

belongs to CAN(I), where ⊥ is a fresh null value. The target schema T will contain one

relation Fj of arity m + 1 for each subformula Sj of ψ (j ∈ [1, `]), such that for each tuple b̄

of size m in dom(I), Fj(b̄,⊥) belongs to CAN(I), for every j ∈ [1, `]. We are interested in

those solutions for I in which each such null value is replaced by either value 0 or 1. With

each such solution J we naturally identify structure AJ over the vocabulary {R1, . . . , Rk} as

follows: ā belongs to the interpretation of the symbol Ri in AJ iff R′i(ā, 1) ∈ J . Moreover,

for j ∈ [1, `], Fj(b̄, 1) ∈ J iff AJ satisfies subformula Sj when we respectively assign each

element from b̄ to variables y1, ..., ym and elements a1, . . . , ap to variables x1, . . . , xp.

We begin now the first part of the reduction.



52

• The source schema S consists of three unary relations B, O and U , a set of unary

relations {V1, . . . , Vp} (recall that p is the number of existentially quantified vari-

ables in φ), two ternary relations C and D, and one binary relation E.

• The target schema T consists of a relationR′i of arity ri+1, for each i ∈ [1, n], a set

{V ′1 , . . . , V ′p} of unary relations, two other unary relations O′ and U ′, two ternary

relations C ′ and D′, a binary relation E ′, and an extra set of relations {F1, . . . , F`}

each with arity m + 1 (recall that ` is the number of subformulas of ψ, and that m

is the number of universally quantified variables of φ).

• The instance I is as follows. The domain of I contains the elements a1, ..., ap, plus

two different constants not used elsewhere in the instance, 1 and 0. The interpreta-

tion of each symbol in S in I is as follows:

– BI = {a1, . . . , ap};

– OI = {0} and U I = {1}.

– CI = {(1, 1, 1), (1, 0, 1), (0, 1, 1), (0, 0, 0)}

– DI = {(1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 0)}

– and EI = {(0, 1), (1, 0)}.

– Finally, V I
i = {ai} for each i ∈ [1, p].

• The set Σst of source-to-target dependencies is as follows:



53

– We create a copy of every relation Vi into V ′i . We also create a copy of O, U ,

C, D and E into O′, U ′, C ′, D′ and E ′, respectively:

V1(x) → V ′1(x)

...

Vp(x) → V ′p(x)

O(x) → O′(x)

U(x) → U ′(x)

C(x, y, z) → C ′(x, y, z)

D(x, y, z) → D′(x, y, z)

E(x, y) → E ′(x, y)

– We populate each R′i (of arity ri + 1) with every tuple of arity ri that can be

constructed from the constants in B, and create a new null value associated

with each such tuple:

B(x1), ..., B(xr1) → ∃zR′1(x1, ..., xr1 , z)

...

B(x1), ..., B(xrn) → ∃zR′r(x1, ..., xrn , z)

As we mentioned before, we are interested in those solutions for I that replace

each such null value with either 0 or 1. Informally, with each such solution J

for I we associate a structure AJ over vocabulary {R1, . . . , Rn} as follows: ā

belongs to the interpretation of Ri in AJ iff R′i(ā, 1) ∈ J .

– We do the same for each symbol Fj . That is, we populate each Fj (of arity

m + 1) with every tuple of arity m that can be constructed from the constants



54

in B, and create a new null value associated with each such tuple:

B(x1), ..., B(xm) → ∃zF1(x1, ..., xm, z)

...

B(x1), ..., B(xm) → ∃zF`(x1, ..., xm, z)

Again, we are interested in those solutions that replace each such null value

with 0 or 1. Informally, Fj(ai1 , . . . , aim , 1) belongs to one of these solutions J

iff the subformula Sj of ψ holds in AJ , whenever we assign to the universally

quantified variables y1, ..., ym the elements ai1 , ..., aim and to the existentially

quantified variables x1, . . . , xp the elements a1, . . . , ap.

It is clear at this point what is the canonical universal solution, CAN(I), for I .

Before presenting the query Q, we give an intuition of what Q does: First, Q has

to nondeterministically guess an interpretation of each relation in {R1, . . . , Rk}. It

does so by assigning either a value 1 or a value 0 to every null⊥ such that the tuple

Ri(ā,⊥) belongs to CAN(I). Afterwards, for every solution J in which there are

only values 1 or 0 in the last position of the tuples in a relation Ri, i ∈ [1, . . . , k],

the query will assign a value 1 (resp. 0) to every null⊥ such that the tuple Fj(b̄,⊥)

is in CAN(I) for a relation in {F1, . . . , F`}, and Sj holds (resp. does not hold) in

AJ when we respectively assign each element from b̄ to variables y1, . . . , ym and

elements a1, . . . , ap to variables x1, . . . , xp. Finally, the query will ask for a tuple

in J of the form F1(c̄, 0). If there are no such tuples, then for every assignment of

the universally quantified variables it will be the case that S1 holds in AJ .

The query Q is defined as Qα ∨Qβ ∨Qγ ∨Qδ, where

– Qα is
⋃
i∈[1,n] Q

i
α, where each Qi

α is defined as follows:

∃z1 . . . ∃zri∃n∃v∃w (R′i(z1, ..., zri , n) ∧O′(v) ∧ U ′(W ) ∧ n 6= v ∧ n 6= w).

Note that if the evaluation of Qα over a solution is false, then all the nulls in

the relations Ri of that solution must have been replaced by 0 or 1.



55

– Let Θ ⊆ {1, . . . , `} be the set of all indexes j such that Sj is an atomic

formula. The query Qβ is defined as
⋃
j∈ΘQ

j
β , where for each j such that

Sj = Ri(x̄, ȳ), x̄ is a tuple of variables in {x1, . . . , xp} and ȳ is a tuple of

variables in {y1, . . . , ym}, the query Qj
β is as follows:

∃y1 . . . ∃ym∃n∃v∃x̄ (Fj(y1, ..., ym, n) ∧R′i(x̄, ȳ, w) ∧
∧
xk∈x̄

V ′k(xk) ∧ n 6= w).

Assume that Sj holds (resp., does not hold) in AJ when we assign elements

ai1 , ..., aim to variables y1, ..., ym and elements a1, . . . , ap to variables x1, . . . , xp,

where J is a solution that falsifiesQj
β . IfFj(ai1 , . . . , aim ,⊥) belongs to CAN(I)

then ⊥ must have been replaced by 1 (resp. 0) in J .

– Qγ is defined as
⋃
k 6∈ΘQ

k
γ , where each query Qk

γ is defined as follows:

(i) If Sk ≡ Sg ∨ Sh, then

Qk
γ ≡ ∃y1 . . . ∃ym∃n∃v∃w∃z (Fk(y1, ..., ym, n) ∧ Fg(y1, ..., ym, v) ∧ Fh(y1, ..., ym, w)

∧D′(v, w, z) ∧ n 6= z).

(ii) If Sk ≡ Sg ∧ Sh, then

Qk
γ ≡ ∃y1 . . . ∃ym∃n∃v∃w∃z (Fk(y1, ..., ym, n) ∧ Fg(y1, ..., ym, v) ∧ Fh(y1, ..., ym, w)

∧ C ′(v, w, z) ∧ n 6= z).

(iii) If Sk ≡ ¬Sg, then

Qk
γ ≡ ∃y1 . . . ∃ym∃n∃v∃z (Fk(y1, ..., ym, n) ∧ Fg(y1, ..., ym, v) ∧ E ′(v, z) ∧ n 6= z).

The purpose of this query is similar toQβ , but here we ensure the correct inter-

pretation of subformulas of ψ that are Boolean combinations of other subfor-

mulas. Recall that the tuples in relations C ′, D′ and E ′ only encode the truth

tables of ∧, ∨, and ¬, respectively. For example, if Sk ≡ (Sg ∧ Sh), we will

only set the null of Fk(ā,⊥) to be 1 if there are tuples Fg(ā, 1) and Fh(ā, 1).



56

– Finally, Qδ is defined to be ∃y1 . . . ∃ym∃v(F1(y1, ..., ym, v) ∧ O′(v)). This

query asks for a tuple of the form F1(ā, 0). That is, this query will be falsified

by a solution J if and only if none of the the tuples in the interpretation of F1

in J contains a 0 in the last position.

Example 6.1. Let φ be the formula ∃x1∃x2∀y1(R1(x1, y1) ∨ (¬R1(x2, y1))). Recall that

the source schema S consists of relations B, O, U , C, D, E as described above, plus extra

relations V1 and V2. The target schema T consists of relations O′, U ′, C ′, D′, E ′, R′1, F1, F2,

F3 and F4 (because (R1(x1, y1)∨ (¬R1(x2, y1))) has 4 subformulas). The enumeration of the

subformulas is chosen such that F3 and F4 correspond to the subformulas S3 ≡ R1(x1, y1)

and S4 ≡ R1(x2, y1), respectively, F2 corresponds to S2 ≡ (¬R1(x2, y2)) and F1 corresponds

to S1 ≡ (R1(x1, y1) ∨ (¬R1(x2, y1))).

The source-to-target dependencies are:

V1(x) → V ′1(x)

O(x) → O′(x)

U(x) → U ′(x)

C(x, y, z) → C ′(x, y, z)

D(x, y, z) → D′(x, y, z)

E(x, y) → E ′(x, y)

B(x1), B(x2) → ∃zR′1(x1, x2, z)

B(x1) → ∃zF1(x1, z)



57

B(x1) → ∃zF2(x1, z)

B(x1) → ∃zF3(x1, z)

B(x1) → ∃zF4(x1, z)

The instance I of S is constructed as follows: BI = {a1, a2}, 0I = {0} and U I =

{1}. Furthermore, CI = {(1, 1, 1), (1, 0, 1), (0, 1, 1), (0, 0, 0)}, DI = {(1, 1, 1), (1, 0, 0),

(0, 1, 0), (0, 0, 0)}, and EI = {(0, 1), (1, 0)}. Finally, V I
1 = {a1}, V I

2 = {a2}.

In this case, CAN(I) contains the following interpretations of the symbols R′1, F1, F2,

F3 and F4 (all the other relations are simple copies of the respective relations in I). The

interpretation of R′1 in CAN(I) contains the tuples (a1, a1,⊥1), (a2, a2,⊥2), (a1, a2,⊥3), and

(a2, a1,⊥4). The interpretation of the relations F1 in CAN(I) contains the tuples (a1,⊥5)

and (a2,⊥6); the interpretation of the relations F2 in CAN(I) contains the tuples (a1,⊥7)

and (a2,⊥8); the interpretation of the relations F3 in CAN(I) contains the tuples (a1,⊥9) and

(a2,⊥10); and interpretation of the relations F4 in CAN(I) contains the tuples (a1,⊥11) and

(a2,⊥12).

Finally, the queries Qα, Qβ , Qγ and Qδ in this case are as follows:

• Qα ≡ ∃x1∃x2∃n∃v∃w(R′1(x1, x2, n) ∧O′(v) ∧ U ′(w) ∧ n 6= v ∧ n 6= w);

• Qβ is the union of Q3
β and Q4

β , where:

Q3
β ≡ ∃y1∃n∃v∃x1(F3(y1, n) ∧R′1(x1, y1, w) ∧ V ′1(x1) ∧ n 6= w)

Q4
β ≡ ∃y1∃n∃v∃x2(F4(y1, n) ∧R′1(x2, y1, w) ∧ V ′2(x2) ∧ n 6= w)

• Qγ is the union of Q1
γ and Q2

γ , where:

Q1
γ ≡ ∃y1∃n∃v∃w∃z(F1(y1, n) ∧ F3(y1, v) ∧ F2(y1, w) ∧D′(v, w, z) ∧ n 6= z)

Q2
γ ≡ ∃y1∃n∃v∃z(F2(y1, n) ∧ F4(y1, v) ∧ E ′(v, z) ∧ n 6= z)



58

• Qδ ≡ ∃y1∃v(F1(y1, v) ∧O′(v))

This finishes the example. �

We now continue with the proof of the theorem. We prove next that φ is satisfiable if and

only if certainM(Q, I) = false.

(⇐) Assume first that φ is satisfiable. Then, as we mentioned above, it is satisfiable by

a structure of cardinality at most p. Let A be such structure, and assume that the elements of

A are {b1, . . . , bp}. Further, assume without loss of generality that A satisfies ∀y1, . . . ,∀ymψ

when we assign to each free variable xi in ψ the element bi, i ∈ [1, p]. Define a function h

from CAN(I) into CAN(I) such that for every element v in CAN(I):

• If v is the constant c, then h(v) = v;

• if v is the null value ⊥ such that the tuple R′i(ai1 , . . . , ari ,⊥) belongs to CAN(I),

and the interpretation of Ri in A contains the tuple (bi1 , . . . , bri), then h(v) = 1;

• if v is the null value ⊥ such that the tuple F ′j(ai1 , . . . , aim ,⊥) belongs to CAN(I),

and such that the formula Sj holds inAwhenever we assign to the universally quan-

tified variables y1, . . . , ym the elements bi1 , . . . , bim , bil ∈ {b1, . . . , bp}, l ∈ [1, p],

and to the existentially quantified variables x1, . . . , xp the elements b1, . . . , bp, then

h(v) = 1; and

• otherwise, h(v) = 0

Let J∗ the solution obtained by replacing each occurrence of element v in CAN(I) by h(v).

We show that the evaluation of Q(J∗) = false, and, thus, that certainM(Q, I) = false.

Assume for the sake of contradiction that Q(J∗) = true. Clearly, Qα(J∗) = false.

Furthermore, Qδ(J
∗) = false: Since A satisfies ∀y1, . . . ,∀ypψ when we assign the element

bi to xi, for each i ∈ [1, p], then it must be the case that S1 holds in A whenever we assign

bi1 , . . . , bim to the universally quantified variables and b1, . . . , bp to the existentially quantified

variables.



59

Assume first that Qβ(J∗) = true, and, in particular, that Qj
β(J∗) = true, for j ∈ A.

Further, assume that Qj
β is of the form

∃y1, . . . ,∃ym∃n∃v∃x̄ (Fj(y1, ..., ym, n) ∧R′i(x̄, ȳ, w) ∧
∧
xk∈x̄

V ′k(xk) ∧ n 6= w),

where x̄ is a tuple of elements in {x1, . . . , xp} and ȳ is a tuple of elements in {y1, . . . , ym}.

Then there exists a function f : {y1, . . . , ym, n, v, x̄} → dom(J∗), such that Fj(f(y1), . . . ,

f(ym), f(n)), R′i(f(x̄), f(ȳ), f(w)) and V ′k(f(xk)), for each k such that xk ∈ x̄, belong to

J∗. Further, f(n) 6= f(w).

Assume, without loss of generality that f(n) = 0 (the case when f(n) = 1 is completely

symmetrical). ThenA does not satisfy Sj = Ri(x̄, ȳ), whenever we assign elements b1, . . . , bp

to x1, . . . , xp and elements f(y1), . . . , f(yp) to y1, . . . , ym. Since f(n) 6= f(w), it must be the

case that f(w) = 1. But then R′i(x̄, ȳ) holds in A whenever we assign elements b1, . . . , bp to

x1, . . . , xp and elements f(y1), . . . , f(yp) to y1, . . . , ym. This is a contradiction.

Assume then that Qγ(J
∗) = true, and, in particular, that Qk

γ(J
∗) = true, for some

k 6∈ Θ. Further, assume without loss of generality that Sk is of the form Sg ∨ Sh (the other

two cases are completely symmetrical). Also assume Qk
γ is of the form

∃y1 . . . ∃ym∃n∃v∃w∃z (Fk(y1, . . . , ym, n) ∧

Fg(y1, ..., ym, v) ∧ Fh(y1, . . . , ym, w) ∧D′(v, w, z) ∧ n 6= z).

Then there exists a function f : {y1, . . . , yn, v, w, z} → dom(J∗), such that Fk(f(y1), . . . ,

f(ym), f(n)), Fg(f(y1),. . . ,f(ym), f(v)), Fh(f(y1),. . . ,f(ym), f(w)), and D′(f(v) , f(w),

f(z)), belong to J∗. Further, f(n) 6= f(z).

Assume, without loss of generality, that f(n) = 1 (the case f(n) = 0 is completely

symmetrical). Then A satisfies Sk ≡ (Sg ∨ Sh), whenever we assign elements b1, . . . , bp to

x1, . . . , xp and elements f(y1), . . . , f(yp) to y1, . . . , ym. Since f(n) 6= f(z), it must be the

case that f(z) = 0. Then, from the construction of D, it must be the case that f(v) = 0



60

and f(w) = 0. But then A does not satisfy neither Sg nor Sh whenever we assign elements

b1, . . . , bp to x1, . . . , xp and elements f(y1), . . . , f(yp) to y1, . . . , ym. This is a contradiction.

(⇒) Assume certainM(Q, I) = false. Then there exists a solution J ′ for I such that

Q(J ′) = false. Let h be a homomorphism from CAN(I) to J ′.

Construct from J ′ a structure A as follows: The domain of A is {a1, . . . , ap}. The

interpretation of the relation Ri in A, i ∈ [1, n], is the following: The tuple ā belongs to the

interpretation of Ri in A iff R′i(ā, 1) belongs to J ′. We show next that A satisfies φ. In order

to do so we start by proving the following: We prove that for every j ∈ [1, `], if the tuple

Fj(ai1 , . . . , aim , 1) belongs to J ′, thenA satisfies the formula Sj when we assign ai1 , . . . , aim

to y1, . . . , ym and a1, . . . , ap to x1, . . . , xp. We prove this by induction on the structure of the

subformulas of ψ.

• For the base case, assume that Sj = Ri(x̄, ȳ), where x̄ is a tuple of variables in

{x1, . . . , xp} and ȳ is a tuple of variables in {y1, . . . , ym}. Further, assume that

Fj(bi1 , . . . , bim , 1) belongs to J ′.

Let g : {x1, . . . , xp, y1, . . . , ym} → dom(J ′) be a function, such that g(xi) = ai,

for each i ∈ [1, p], and g(yj) = aij , for each j ∈ [1,m]. We know that CAN(I)

contains a tuple R′i(g(x̄), g(ȳ),⊥), for some null value ⊥, and, thus, J ′ contains

the tuple R′i(g(x̄), g(ȳ), h(⊥)). Further, since Qj
β is of the form

∃y1, . . . ,∃ym∃n∃v∃x̄ (Fj(y1, ..., ym, n) ∧R′i(x̄, ȳ, w) ∧
∧
xk∈x̄

V ′k(xk) ∧ n 6= w),

and we know that Qj
β(J ′) = false, it must be the case that h(⊥) = 1. It follows

that R′i(g(x̄), g(ȳ), 1) belongs to J ′, and, by definition of A, that A satisfies Sj

when we assign ai1 , . . . , aim to y1, . . . , ym and a1, . . . , ap to x1, . . . , xp.

• For the inductive case, assume that Sj ≡ (Sj1 ∧ Sj2) (the cases where Sj ≡

(Sj1 ∨ Sj2) and Sj ≡ (¬Sj1) are completely symmetrical). Further, assume that

Fj(ai1 , . . . , aim , 1) belongs to J ′. We know there are tuples Fj1(ai1 , . . . , aim ,⊥j1)

and Fj2(ai1 , . . . , aim ,⊥j2) in CAN(I), where ⊥j1 and ⊥j2 are null values. There-

fore, J ′ contains the tuples Fg(ai1 , . . . , aim , h(⊥j1)) and Fh(ai1 , . . . , aim , h(⊥j2)).



61

We know that Qk
γ is of the form

∃y1 . . . ∃ym∃n∃v∃w∃z (Fk(y1, . . . , ym, n) ∧

Fg(y1, ..., ym, v) ∧ Fh(y1, . . . , ym, w) ∧ C ′(v, w, z) ∧ n 6= z).

Further, Qk
γ(J

′) = false. Then it must be the case that h(⊥j1) = h(⊥j2) = 1. It

follows that Fj1(ai1 , . . . , aim , 1) and Fj2(ai1 , . . . , aim , 1) belong to J ′.

By the inductive hypothesis, A satisfies Sj1 and Sj2 whenever we assign elements

ai1 , . . . , aim to y1, . . . , ym and elements a1, . . . , ap to x1, . . . , xp. It follows that A

satisfies Sj whenever we assign elements ai1 , . . . , aim to y1, . . . , ym and elements

a1, . . . , ap to x1, . . . , xp.

Finally, since Qδ(J
′) = false, for every tuple ai1 , . . . , aim of elements in {a1, . . . , ap}

it must be the case that (ai1 , . . . , aim , 1) is in the interpretation of F1 in J ′. From the previous

induction, we obtain thatA satisfies S1 = ψ for every assignment of the variables y1, . . . , ym,

when we assign b1, . . . , bp to x1, . . . , xp. In other words, A satisfies φ. This concludes the

first part of the reduction. �

As we mentioned in the previous section, if data exchange settings are not considered

to be fixed, then one has to deal with canonical universal solutions of exponential size when

computing certain answers. A natural way to avoid this problem is by restricting the class

of data exchange settings to be LAV settings. For the case of DATALOGC( 6=) programs, this

restriction does not help in reducing the complexity of computing certain answers. However,

the evaluation of CQ 6= queries is not inherently exponential and, thus, we are able to con-

siderably reduce the complexity by considering LAV settings, as we show in the following

proposition.

PROPOSITION 6.2. CERTAIN-ANSWERS(LAV, 1-CQ 6=) is NP-complete, and for every

k ≥ 2, CERTAIN-ANSWERS(LAV, k-CQ 6=) is Πp
2-complete .



62

Proof: We only show that CERTAIN-ANSWERS(LAV, k-CQ 6=) is Πp
2-complete. That the

problem CERTAIN-ANSWERS(LAV, 1-CQ 6=) is NP-complete can be proved using techniques

in (Fagin, Kolaitis, Miller, & Popa, 2005) for membership, and in (Kolaitis et al., 2006) for

hardness.

First we prove the membership in Πp
2. The certain answers to each k-UCQ 6= queries for

a source instance I , under a settingM, can be computed in CONP time in the size of CAN(I)

(Fagin, Kolaitis, Miller, & Popa, 2005). Specifically, the algorithm will use the chase to

materialize a solution J for which the certain answers are empty if and only if the evaluation

of Q over J is empty. Contrary to Theorem 6.3, for the case of LAV settings, it is clear that

CAN(I) is bounded by |I|. However, the results in (Fagin, Kolaitis, Miller, & Popa, 2005)

assume the query is fixed. If the query is part of the input, we will need a NP oracle in order

to check that the evaluation of Q over J is empty, thus obtaining a Πp
2 bound.

The Πp
2 hardness is established from a reduction of ∀x̄ ∃z̄ 3-SAT(x̄, z̄), which is the fol-

lowing problem: Given a boolean formula φ in 3-CNF with variables partitioned into two sets,

x̄ and z̄. Is it true that for all truth assignments of the variables in x̄ there is a valuation for

the variables in z̄ so that φ′ is satisfied with the overall assignment? This problem is widely

known to be Πp
2-complete.

Let the formula be of the form φ ≡ ∀x̄ ∃z̄
∧

1≤k≤` ψk, where each ψk, 1 ≤ k ≤ ` is

a clause. Let x̄ = {x1, ..., xn} and z̄ = {z1, ..., zm}. Based on φ, we will show a LAV data

exchange settingM = (S,T,Σst), a query Q and an instance I such that certainM(Q, I) =

true if and only if φ is satisfiable.

• the LAV setting (S,T,Σst) is as follows:

The Source schema S consists of two unary relations Î , Ô, two binary relations F ,

S, one tertiary relationE and one octiary relation Ĉ. The Target SchemaG consists

of two unary relations I , O, two binary relations T , TV , one tertiary relation R,

and one octiary relation C.



63

The set Σst of source-to-target dependencies is:

Ô(x) → O(x) (6.1)

Î(x) → I(x) (6.2)

F (x, y) → ∃z, w
(
T (x, z), R(y, x, z), TV (x, z), R(x,w,w), (6.3)

C(w,w,w,w,w,w,w,w)
)

S(x, y) → T (x, y) (6.4)

E(x, y, z) → TV (x, z), R(y, x, z) (6.5)

Ĉ(a, b, c, d, e, f, g, h) → C(a, b, c, d, e, f, g, h) (6.6)

• The elements of the source instance I are x̂1, ..., x̂n, ẑ1, ..., ẑm plus the additional

constants 0, 1, a, b and p1, ..., p`, p`+1. The interpretation of the relations in I are

as follows:

– The interpretations of relations Î and Ô contain the constants 1 and 0, respec-

tively.

– The interpretation of the relation F contains the pairs (x̂i, a), i ∈ {1, ..., n}

– The interpretation of the relation S contains the pair (a, b)

– The interpretation of the relation E contains the triples (ẑj, a, 1) and (ẑj, a, 0),

j ∈ {1, ...,m}

– The interpretation of the relation Ĉ contains seven tuples of the form

(ŝ1k, ŝ2k, ŝ3k, u, v, w, pk, pk+1) for each clause ψk = (s1k ∨ s2k ∨ s3k) in φ

(1 ≤ k ≤ `). The variables u, v, w represent the values of satisfying assign-

ments for ψk and the two last positions pk, pk+1 are used to denote that a partic-

ular tuple corresponds to the k-th clause of φ. For example, if φ ≡ (x1∨¬x2∨

z1), then Ĉ will contain the following seven tuples: (x1, x2, z1, 0, 0, 0, p1, p2),

(x1, x2, z1, 0, 0, 1, p1, p2), (x1, x2, z1, 0, 1, 1, p1, p2),

(x1, x2, z1, 1, 0, 0, p1, p2), (x1, x2, z1, 1, 0, 1, p1, p2), (x1, x2, z1, 1, 1, 0, p1, p2) and



64

(x1, x2, z1, 1, 1, 1, p1, p2). No tuple (x1, x2, z1, 0, 1, 0, p1, p2) occur in S, be-

cause (0, 0, 1) is not a satisfying assignment for φ

• Finally, the query Q is as follows:

Q ≡ ∃e∃f∃g∃u∃x1, ..., xn∃v1, ..., vn∃z1, ..., zm∃w1, ..., wm∃y1, ..., y`+1( ∧
1≤i≤n

(
TV (xi, vi) ∧R(g, xi, vi)

)
∧
∧

1≤j≤m

(
TV (zj, wj) ∧R(g, zj, wj)

)
∧

∧
1≤k≤p

(
C(s1k, s2k, s3k, v1k, v2k, v3k, yk, yk+1)

)
∧ I(e) ∧O(f) ∧ T (g, u) ∧ u 6= e, u 6= f

)
Let #i and ⊥i be the null values obtained from the application of std (3) to the tuple (x̂i, a).

Note that the canonical solution J for I underM is as follows:

• The interpretation of I and O in J contains the constants 1 and 0, respectively

• The interpretation of T in J contains the tuple (a, b) and the tuples (x̂i,⊥i) for

i ∈ {1, ..., n}

• The interpretation of TV in J contains tuples (#i,#i) and (x̂i,⊥i) for each univer-

sally quantified variable x̂i in φ and the pairs (ẑj, 0), (ẑj, 1) for each existentially

quantified variable ẑj .

• The interpretation of R in J contains tuples (x̂i,#i,#i) and (a, x̂i,⊥i) for each

universally quantified variable x̂i in φ and the pairs (a, ẑj, 0), (a, ẑj, 1) for each

existentially quantified variable.

• The interpretation of C contains a copy of the interpretation of Ĉ plus one tuple

(#i,#i,#i,#i,#i,#i,#i,#i) for i ∈ {1, ..., n}.

We first illustrate the idea of this reduction with an example.

Suppose φ ≡ ∀x1, x2 ∃z1 (x1 ∨ ¬x2 ∨ ¬z1). We then create the following LAV setting

(S,T,Σst):

• The elements of I are: x̂1, x̂2, ẑ1, 0, 1, a, b, p1, p2



65

• The relations of I are:

– Î = {(1)}, Ô = {(0)}, S = {(a, b)}

– F = {(x̂1, a), (x̂2, a)}

– E = {(ẑ1, a, 1), (ẑ1, a, 0)}

– Ĉ = {(x̂1, x̂2, ẑ1, 0, 0, 0, p1, p2), (x̂1, x̂2, ẑ1, 0, 0, 1, p1, p2),

(x̂1, x̂2, ẑ1, 0, 1, 0, p1, p2), (x̂1, x̂2, ẑ1, 1, 0, 0, p1, p2), (x̂1, x̂2, ẑ1, 1, 0, 1, p1, p2),

(x̂1, x̂2, ẑ1, 1, 1, 0, p1, p2), (x̂1, x̂2, ẑ1, 1, 1, 1, p1, p2)}

The canonical solution contains four null values: #1, ⊥1 and #2, ⊥2, obtained from

the application of std (3) to the tuples (x̂1, a) and (x̂2, a) respectively. The relations in the

canonical universal solution J are as follows:

• I = {(1)}, O = {(0)}

• T = {(x̂1,⊥1), (x̂2,⊥2), (a, b)}

• TV = {(x̂1,⊥1), (x̂2,⊥2), (ẑ1, 1), (ẑ1, 0), (#1,#1), (#2,#2)}

• R = {(a, x̂1,⊥1), (a, x̂2,⊥x2), (a, ẑ1, 1), (a, ẑ1, 0), (x̂1,#1,#1), (x̂2,#2,#2)}

• C = {(x̂1, x̂2, ẑ1, 0, 0, 0, p1, p2), (x̂1, x̂2, ẑ1, 0, 0, 1, p1, p2),

(x̂1, x̂2, ẑ1, 0, 1, 0, p1, p2), (x̂1, x̂2, ẑ1, 1, 0, 0, p1, p2), (x̂1, x̂2, ẑ1, 1, 0, 1, p1, p2),

(x̂1, x̂2, ẑ1, 1, 1, 0, p1, p2), (x̂1, x̂2, ẑ1, 1, 1, 1, p1, p2),

(#1,#1,#1,#1,#1,#1,#1,#1), (#2,#2,#2,#2,#2,#2,#2,#2)}

Finally, the Query Q will be the existential closure of:

Q′ ≡ I(e) ∧O(f) ∧ T (x, u) ∧ TV (x1, v1) ∧ TV (x2, v2) ∧R(x, x1, v1) ∧R(x, x2, v2)∧

∧ TV (z1, w1), R(x, z1, w1) ∧ C(x1, x2, z1, v1, v2, w1, y1, y2) ∧ u 6= e ∧ u 6= f

Intuitively, the relation TV contains the truth value of every variable in φ, that is, a pair

(q̂, 0) represents that the valuation of q is false and a pair (q̂, 1) represents a true value for



66

q. The variables in x̄ will have a pair TV (x̂i,⊥i) in the canonical solution for I , while the

variables in z̄ will have both tuples (ẑj, 0) and (ẑj, 1)

It is clear that no tuple of the form T (a, b) will belong to the evaluation of Q over the

canonical solution. Instead, all of the tuples T witnessing Q will be pairs of the form (x̂i,⊥i).

Informally, the query will be false only if evaluated in solutions where all the ⊥’s have been

replaced with the values 0 or 1. We are interested only in those solutions, because they

represent a particular valuation for the variables in x̄. Suppose that a particular solution J?

has all of the ⊥s replaced by 0 or 1. In order for the evaluation of Q over AJ to be true, there

must exists witnesses for all of the relations TV in Q. From the construction of the relation

C, there must be one tuple of the form (q̂, v) for every variable q mentioned in φ. Due to

Σst, for the case of the universally quantified variables xi, i ∈ {1, ..., n} there exists only one

tuple per variable. On the contrary, for each existentially quantified variable zi, i ∈ {1, ...,m}

there will be two tuples: TV (ẑi, 1) and TV (ẑi, 0). If we are able to find all of the witnesses

we need, intuitively, from the construction of the tuples in relation C, we will be able to find

a valuation for the existentially quantified variables, and the evaluation of Q over J? will

be true. Naturally, if we can do this for all the solutions J that represent a valuation of the

universally quantified set, then φ will be ∀∃-satisfiable.

We now prove that certainM(Q, I) = false if and only if φ is not ∀∃-satisfiable.

(⇐) If φ is not ∀∃-satisfiable, that is, there is valuation σx for the universally quantified

variables such that for every valuation σz for the existentially quantified variables φ is not

satisfiable. Define a function h as follows:

• h(y) = 1 if y = ⊥i belongs to a tuple TV (x̂i,⊥i), xi is a propositional variable

mentioned in φ and σx(xi) = 1

• h(y) = 0 if y = ⊥i belongs to a tuple TV (x̂i,⊥i), xi is a propositional variable

mentioned in φ and σx(xi) = 0

• h(y) = y otherwise.

Let J? be the solution obtained from the canonical solution J by replacing each element y

with h(y). We show that certainM(Q, I) = false.



67

Assume for the sake of contradiction that there is a tuple in the evaluation of Q over

J?. The witness of the relation T in Q cannot be a pair of the form (x̂i,⊥i), because then

h(⊥i) = ⊥i, contradicting the definition of h. The witness to the relation T in Q must then

be the pair (a, b). Then, there must exists a set of tuples (ŝ11, ŝ21, ŝ31, v11, v21, v31, p1, p2) , ..,

(ŝ1`, ŝ2`, ŝ3`, v1`, v2`, v3`, p`, p`+1) plus a series of tuples of the form TV (x̂i, vi), TV (ẑj, vj)

for i ∈ {1, ..., n} and j ∈ {1, ...,m} witnessing all of the relations C and TV in the query.

Choose σz such that for j ∈ {1, ...,m}, σz(zj) = 1 if the pair (ẑj, 1) witness the relation TV

in the query and σz(zj) = 0 if the pair (ẑj, 0) witness that relation. From the construction of

the tuples in C, it is easy to see that σx and σz will satisfy all of the clauses in φ, which is a

contradiction, since φ is not satisfiable.

(⇒) Assume that certainM(Q, I) = false: there is a solution J? where the evaluation

of Q does not hold. It is clear that J? cannot have any unreplaced nulls of the type ⊥; all

of the ⊥i must have been replaced with the values 0 or 1 for every i ∈ {1, ..., n}. Let h

be a homomorfism between the canonical solution J and solution J?. Choose the following

valuation σx for the universally quantified variables xi ∈ {x1, ..., xn}:

• σx(xi) = 1 if h(⊥i) = 1 and there is a tuple TV (x̂i,⊥i) in J .

• σx(xi) = 0 if h(⊥i) = 0 and there is a tuple TV (x̂i,⊥i) in J .

Assume for the sake of contradiction that φ is satisfiable: for every valuation of the uni-

versally quantified variables there is a valuation for the existentially quantified variables that

satisfy φ. Then, in particular, for σx there must exist a valuation σz such that σx, σz satisfy

φ. There are tuples (ŝ11, ŝ21, ŝ31, v11, v21, v31, p1, p2) , .., (ŝ1`, ŝ2`, ŝ3`, v1`, v2`, v3`, p`, p`+1) in

J?, and, since φ is satisfiable, it is clear from the construction of C that if we choose the pairs

(ẑj, σz(zj)) and the pairs (x̂i, h(⊥i)) as witness to the relations TV for the query Q, then the

evaluation of Q over J? will be nonempty, and thus certainM(Q, I) = true. This is again a

contradiction, so we prove that φ can not be satisfiable. �

We conclude this chapter with two remarks. First, notice that fixing data exchange settings

has the same effect than restricting to LAV settings. In fact, the lower bounds in Proposition



68

6.2 remains the same for fixed LAV settings. Second, all the complexity bounds presented in

this chapter remain the same if we allow unions of conjunctive queries with inequalities; if

k-UCQ 6= is the class of unions of k-CQ 6= queries, then

PROPOSITION 6.3.

(1) CERTAIN-ANSWERS(GLAV, 1-UCQ 6=) is EXPTIME-complete, and, for every k ≥

2, CERTAIN-ANSWERS(GLAV, k-UCQ 6=) is CONEXPTIME-complete.

(2) CERTAIN-ANSWERS(LAV, 1-UCQ 6=) is NP-complete, and, for every k ≥ 2, the

problem CERTAIN-ANSWERS(LAV, k-UCQ 6=) is Πp
2-complete.



69

7. CONCLUSION AND FUTURE RESEARCH

7.1. General Remarks

In this work, we proposed the language DATALOGC(6=) that extends DATALOG with a

restricted form of negation, and studied some of its fundamental properties. In particular, we

showed that the certain answers to a DATALOGC(6=) program can be computed in polynomial

time (in terms of data complexity), and we used this property to find tractable fragments of

the class of unions of conjunctive queries with inequalities. We also studied the combined

complexity of computing certain answers to DATALOGC( 6=) programs and other related query

languages.

7.2. Future Research Topics

We have studied thoroughly the class of UCQ 6= queries, but there are many other frag-

ments of FO that may deserve a detailed study. Just as we have found tractable fragments for

the class of UCQ 6=, we plan to make extensive use of DATALOGC(6=) programs as a tool to

find new tractable classes of queries in data exchange. This knowledge would lead to a better

characterization of the problem of query answering in data exchange.

As a part of our future work, we would like to resolve some unsettled fundamental prop-

erties of DATALOGC( 6=) programs. It would be interesting to know, for example, whether is it

decidable if the certain answers to a query Q in UCQ can be computed as the certain answers

to a DATALOGC(6=) program Πq. It would also be important to establish an upper bound to

the expressive power of DATALOGC( 6=) programs. In this respect, we would like to know

whether there is a settingM and a query Q in UCQ 6= such that the problem certain(M, Q)

is in PTIME, but the certain answers to Q cannot be computed as the certain answers to a

DATALOGC(6=) program.

Concerning the use of DATALOGC(6=) as a query language for data exchange, there is

also much to be done. For starters, we would like to see some implementation for this query

language in real-life relational data exchange applications.



70

REFERENCES

Abiteboul, S., & Duschka, O. (1999). Complexity of Answering Queries Using Mate-

rialized Views . Gemo Report 383.

Abiteboul, S., Hull, R., & Vianu, V. (1995). Foundations of databases. Addison-

Wesley.

Afrati, F., & Kolaitis, P. G. (2008). Answering aggregate queries in data exchange. In

Pods ’08: Proceedings of the twenty-seventh acm sigmod-sigact-sigart symposium on

principles of database systems (pp. 129–138). New York, NY, USA: ACM.

Arenas, M., Barceló, P., Fagin, R., & Libkin, L. (2004). Locally consistent transforma-

tions and query answering in data exchange. In Pods ’04: Proceedings of the twenty-

third acm sigmod-sigact-sigart symposium on principles of database systems (pp. 229–

240). New York, NY, USA: ACM.

Atserias, A., Dawar, A., & Kolaitis, P. G. (2006). On preservation under homomor-

phisms and unions of conjunctive queries. J. ACM, 53(2), 208–237.

Beeri, C., & Vardi, M. Y. (1984). A proof procedure for data dependencies. J. ACM,

31(4), 718–741.

Börger, E., Grädel, E., & Gurevich., Y. (2001). The classical desicion problem.

Springer.

Chandra, A. K., & Merlin, P. M. (1977). Optimal implementation of conjunctive

queries in relational data bases. In Stoc ’77: Proceedings of the ninth annual acm sym-

posium on theory of computing (pp. 77–90). New York, NY, USA: ACM.

Fagin, R., Kolaitis, P., Miller, R., & Popa, L. (2005). Data exchange: Semantics and

query answering. Theoretical Computer Science, 336(1), 89–124.

Fagin, R., Kolaitis, P. G., & Popa, L. (2005). Data exchange: getting to the core. ACM

Trans. Database Syst., 30(1), 174–210.



71

Fagin, R., Kolaitis, P. G., Popa, L., & Tan, W.-C. (2005). Composing schema map-

pings: Second-order dependencies to the rescue. ACM Trans. Database Syst., 30(4),

994–1055.

Gottlob, G., & Papadimitriou, C. (2003). On the complexity of single-rule datalog

queries. Inf. Comput., 183(1), 104–122.

Greenlaw, R., Hoover, H., & Ruzzo, W. (1995). Limits to parallel computation: P-

completeness theory. Oxford University Press.

Haas, L. M., Hernández, M. A., Ho, H., Popa, L., & Roth, M. (2005). Clio grows up:

from research prototype to industrial tool. In Sigmod ’05: Proceedings of the 2005 acm

sigmod international conference on management of data (pp. 805–810). New York, NY,

USA: ACM.

Imielinski, T., & Lipski, W. (1983). Incomplete information and dependencies in rela-

tional databases. SIGMOD Rec., 13(4), 178–184.

Kolaitis, P. G. (2005). Schema mappings, data exchange, and metadata management.

In Pods ’05: Proceedings of the twenty-fourth acm sigmod-sigact-sigart symposium on

principles of database systems (pp. 61–75). New York, NY, USA: ACM.

Kolaitis, P. G., Panttaja, J., & Tan, W.-C. (2006). The complexity of data exchange.

In Pods ’06: Proceedings of the twenty-fifth acm sigmod-sigact-sigart symposium on

principles of database systems (pp. 30–39). New York, NY, USA: ACM.

Lenzerini, M. (2002). Data integration: a theoretical perspective. In Pods ’02: Pro-

ceedings of the twenty-first acm sigmod-sigact-sigart symposium on principles of data-

base systems (pp. 233–246). New York, NY, USA: ACM.

Libkin, L. (2004). Elements of finite model theory. Springer.

Libkin, L. (2006). Data exchange and incomplete information. In Pods ’06: Proceed-

ings of the twenty-fifth acm sigmod-sigact-sigart symposium on principles of database

systems (pp. 60–69). New York, NY, USA: ACM.

Madry, A. (2005). Data exchange: On the complexity of answering queries with in-

equalities. In (Vol. 94, pp. 253–257).



72

Shu, N. C., Housel, B. C., Taylor, R. W., Ghosh, S. P., & Lum, V. Y. (1977). Express: a

data extraction, processing, and restructuring system. ACM Trans. Database Syst., 2(2),

134–174.

Vardi, M. Y. (1982). The complexity of relational query languages (extended abstract).

In Stoc ’82: Proceedings of the fourteenth annual acm symposium on theory of comput-

ing (pp. 137–146). New York, NY, USA: ACM.



73

APPENDIX A. ADDITIONAL PROOFS

Proof of Proposition 5.3

The LAV settingM = (S,T,Σst) is as follows. The source schema S consists of two

relations: A binary relation P and a ternary relation R. The target schema T also consists of

two relations: A binary relation T and a ternary relation S. Further, Σst is the following set

of source-to-target dependencies:

P (x, y) → ∃z(T (x, z) ∧ T (y, z))

R(x, y, z) → S(x, y, z)

Furthermore, Boolean query Q is defined as:

∃x1∃y1∃x2∃y2∃x3∃y3(S(x1, x2, x3) ∧ T (x1, y1)∧

T (x2, y2) ∧ T (x3, y3) ∧ x1 6= y1 ∧ x2 6= y2 ∧ x3 6= y3).

Clearly, Q has almost constant inequalities and constant joins inM. Next we show that the

problem CERTAIN-ANSWERS(M, Q) is CONP-complete.

Membership of CERTAIN-ANSWERS(M, Q) in CONP follows from (Fagin, Kolaitis,

Miller, & Popa, 2005). The CONP-hardness is established from a reduction from 3SAT to

the complement of CERTAIN-ANSWERS(M, Q). More precisely, for every 3CNF proposi-

tional formula φ, we construct in polynomial time an instance Iφ of S such that φ is satisfiable

iff certainM(Q, Iφ) = false.

Given a propositional formula φ ≡
∧

1≤j≤mCj in 3CNF, where each Cj is a clause, let

Iφ be the following source instance:

• The interpretation of P in Iφ contains the pair (q,¬q), for each propositional vari-

able q mentioned in φ; and

• the interpretation of R in Iφ contains all tuples (α, β, γ) such that for some 1 ≤

j ≤ m, Cj = (α ∨ β ∨ γ).



74

Clearly, Iφ can be constructed in polynomial time from φ.

The canonical universal solution J for Iφ is as follows, where we denote by ⊥q (or ⊥¬q)

the null generated by applying the std P (x, y)→ ∃z(T (x, z) ∧ T (y, z)) to P (q,¬q):

• The interpretation of the relation T in J contains the tuples (q,⊥q) and (¬q,⊥q),

for each propositional variable q mentioned in φ; and

• the interpretation of the relation S in J is just a copy of the interpretation of the

relation R in Iφ.

We prove now that φ is satisfiable iff certainM(Q, Iφ) = false.

(⇒) Assume that φ is satisfiable, and let κ be a truth assignment for the propositional

variables of φ such that κ(φ) = 1. From κ, define a function f from J into J as

follows:

f(v) =


q v = ⊥q and κ(q) = 1

¬q v = ⊥q and κ(q) = 0

v otherwise

Let J∗ be the solution for Iφ obtained from J by replacing each occurrence of

an element v in J by f(v). We show next that Q(J∗) = false, and, thus, that

certainM(Q, Iφ) = false.

Assume, for the sake of contradiction, that Q(J∗) = true. Then there is a function

h : {x1, x2, x3, y1, y2, y3} → dom(J∗) such that S(h(x1), h(x2), h(x3)), T (h(x1), h(y1)),

T (h(x2), h(y2)), T (h(x3), h(y3)) are all tuples in J∗, and h(x1) 6= h(y1), h(x2) 6=

h(y2), and h(x3) 6= h(y3). Then by definition ofM and Iφ, there exists a clause

(α ∨ β ∨ γ) in φ such that h(x1) = α, h(x2) = β, and h(x3) = γ. Since

L(h(x1), h(y1)) = L(α, f(⊥α)) belongs to J∗, and α = h(x1) 6= h(y1) = f(⊥α),

it follows that κ(α) = 0. Similarly, κ(β) = 0 and κ(γ) = 0. But this is a contra-

diction, since κ(φ) = 1, and thus, κ(α) = 1, κ(β) = 1, or κ(γ) = 1.

(⇐) Assume that certainM(Q, Iφ) = false. Then there exists a solution J ′ such that

Q(J ′) = false. Let h : J → J ′ be an homomorphism from J into J ′, and let κ



75

be the following truth assignment for the propositional variables mentioned in φ:

κ(q) = 1 iff h(⊥q) = q. We show next that κ(Cj) = 1, for each 1 ≤ j ≤ m, and,

thus, that φ is satisfiable.

Consider an arbitrary j ∈ [1,m], and assume that Cj = (α ∨ β ∨ γ). Then, since

S(α, β, γ), T (α, h(⊥α)), T (β, h(⊥β)), and T (γ, h(⊥γ)) belong to J ′, it must be

the case that α = h(⊥α) or β = h(⊥β) or γ = h(⊥γ). It follows that κ(α) = 1 or

κ(β) = 1 or κ(γ) = 1, and, thus, κ(Cj) = 1.

This concludes the proof of the theorem. �

Proof of Theorem 5.2

The details for the first part of the proof are given in the body. The rest of the proof is as

follows:

(2) We now prove that there is a LAV data exchange setting M and a conjunctive query

Q with two inequalities, such that Q has constant joins but does not have almost constant

inequalities underM, and CERTAIN-ANSWERS(M, Q) is CONP-complete.

The LAV settingM = (S,T,Σst) is as follows. The source schema S consists of one

ternary relation symbol M , one binary relation symbol N , and one unary relation symbol

U . The target schema T consists of three relation symbols: One ternary relation P , and two

binary relations R and S. Further, Σst is the following set of source-to-target dependencies:

M(x, y, z) → P (x, y, z)

N(x, y) → ∃z∃u(R(x, z) ∧R(y, u) ∧ S(x, u))

U(x) → S(x, x)

The Boolean query Q is as follows:

∃x1∃y1∃x2∃y2∃x3∃y3(P (x1, x2, x3)∧R(x1, y1)∧S(x2, y2)∧R(x3, y3)∧y1 6= y2∧y2 6= y3).



76

Clearly, Q has constant joins, but does not have constant inequalities inM. We prove next

that the problem CERTAIN-ANSWERS(M, Q) is CONP-complete.

Membership in CONP follows from (Fagin, Kolaitis, Miller, & Popa, 2005). The CONP-

hardness is established from a reduction from POSITIVE-NOT-ALL-EQUAL-3SAT, which is

the following decision problem: Given a propositional formula φ in 3CNF consisting entirely

of positive clauses (p ∨ q ∨ r), is there a valuation to the propositional variables of φ such

that for every clause of φ at least one variable is assigned value 1 and at least one variable is

assigned value 0? This problem is known to be NP-hard (see e.g. the proof of Theorem 5.11

in (Fagin, Kolaitis, Miller, & Popa, 2005)). More precisely, for every 3CNF propositional

formula φ consisting entirely of positive clauses, we construct in polynomial time an instance

Iφ of S such that φ is NOT-ALL-EQUAL-satisfiable iff certainM(Q, Iφ) = false.

Given a propositional formula φ ≡
∧

1≤j≤mCj in 3CNF, where each Cj is a clause

consisting entirely of positive literals, let Iφ be the following source instance, where 1 and 0

are constants not mentioned in φ:

• The interpretation of M in Iφ contains the tuples (q, 1, q̂) and (q, 0, q̂), for each

propositional variable q mentioned in φ, and contains the tuple (p, q, r) if for some

j ∈ [1,m], Cj = (p ∨ q ∨ r);

• the interpretation ofN in Iφ contains the tuple (q, q̂), for each propositional variable

mentioned in φ; and

• the interpretation of U in Iφ contains the elements 0 and 1.

Clearly, Iφ can be constructed in polynomial from φ.

The canonical universal solution J of Iφ is as follows, where we denote by ⊥q and #q

the nulls that are generated in order to witness variables z and u, respectively, when applying

the std N(x, y)→ ∃z∃u(R(x, z) ∧R(y, u) ∧ S(x, u)) to N(q, q̂):

• The interpretation of the relation P in J is just a copy of the interpretation of the

relation M in Iφ;



77

• the interpretation of the relation R in J contains the pairs (q,⊥q) and (q̂,#q), for

each propositional variable q mentioned in φ; and

• the interpretation of the relation S in J contains the pair (q,#q), for each proposi-

tional variable q mentioned in φ, and also contains the pairs (1, 1) and (0, 0).

We prove next that φ is NOT-ALL-EQUAL satisfiable iff certainM(Q, Iφ) = false.

(⇒) Assume first that φ is NOT-ALL-EQUAL-satisfiable, and let κ be a truth assign-

ment for the propositional variables mentioned in φ, such that for every clause

(p ∨ q ∨ r) in φ, it is the case that κ(p) = 1 or κ(q) = 1 or κ(r) = 1, and κ(p) = 0

or κ(q) = 0 or κ(r) = 0. From κ we construct a function f from dom(J) into

dom(J) as follows:

f(v) =



1 v = ⊥q and κ(q) = 1

0 v = ⊥q and κ(q) = 0

1 v = #q and κ(q) = 0

0 v = #q and κ(q) = 1

v otherwise

Let J∗ be the solution for Iφ obtained from J by replacing each occurrence of

an element v in J by f(v). We show next that Q(J∗) = false, and, thus, that

certainM(Q, Iφ) = false.

Assume, for the sake of contradiction, that Q(J∗) = true. Then there is a func-

tion h : {x1, x2, x3, y1, y2, y3} → dom(J∗) such that P (h(x1), h(x2), h(x3)),

R(h(x1), h(y1)), S(h(x2), h(y2)), as well as R(h(x3), h(y3)) belong to J∗, and

h(y1) 6= h(y2) and h(y2) 6= h(y3). Since P (h(x1), h(x2), h(x3) belongs to J∗, we

only have to consider three cases for the value of h(x2):

(i) First, h(x2) = 1. Then it must be the case that h(x1) = q and h(x3) = q̂,

for some propositional variable q mentioned in φ. Further, h(y1) = f(⊥q),



78

h(y2) = 1, and h(y3) = f(#q). It follows that f(⊥q) 6= 1 and f(#q) 6= 1,

which contradicts the definition of the function f .

(ii) Second, h(x2) = 0. This case is similar to the previous one.

(iii) Finally, h(x2) = q, for some propositional variable q mentioned in φ. Then

there is a clause (p ∨ q ∨ r) in φ such that h(x1) = p and h(x3) = r. Further,

h(y1) = f(⊥p), h(y2) = f(#q), and h(y3) = f(⊥r), and f(⊥p) 6= f(#q) and

f(#q) 6= f(⊥r). It follows from the definition of f that f(⊥p) = f(⊥q) =

f(⊥r), and, thus, that κ(p) = κ(q) = κ(r). This is a contradiction because κ

is NOT-ALL-EQUAL.

(⇐) Assume, on the other hand, that certainM(Q, Iφ) = false. That is, there exists a

solution J ′ such that Q(J ′) = false. Let h : J → J ′ be a homomorphism from

J to J ′. Let us define a valuation κ for the propositional variables in φ as follows:

κ(q) = 1 iff h(⊥q) = 1.

We show next that for each 1 ≤ j ≤ m, if Cj = (p ∨ q ∨ r) then κ(Cj) = 1, but it

is not the case that κ(p) = κ(q) = κ(r) = 1. This will show that φ is NOT-ALL-

EQUAL satisfiable. In order to do so, we first show that h(⊥q) = 1 or h(#q) = 1,

and that h(⊥q) = 0 or h(#q) = 0, for every propositional variable q mentioned in

φ.

Assume first, for the sake of contradiction, that h(⊥q) = 0 and h(#q) = 0,

for some propositional variable q mentioned in φ. Consider the function f :

{x1, y1, x2, y2, x3, y3} → dom(J ′), such that f(x1) = q, f(y1) = h(⊥q), f(x2) =

f(y2) = 1, f(x3) = q̂, and f(y3) = h(#q). Then P (f(x1), f(x2), f(x3)),

R(f(x1), f(y1)), S(f(x2), f(y2)), as well as Q(f(x3), f(y3)) belong to J ′, and

f(y1) 6= f(y2) and f(y2) 6= f(y3). Then Q(J ′) = true, which is a contradiction.

In the same way we can prove that h(⊥q) = 0 or h(#q) = 0, for every propositional

variable q mentioned in φ.

Consider now an arbitrary j ∈ [1,m], and assume that Cj = (p ∨ q ∨ r). Con-

sider the function f : {x1, y1, x2, y2, x3, y3} → dom(J ′), such that f(x1) = p,

f(y1) = h(⊥p), f(x2) = q, f(y2) = h(#q), f(x3) = r, and f(y3) = h(⊥r). Then



79

P (f(x1), f(x2), f(x3)), R(f(x1), f(y1)), S(f(x2), f(y2)), as well as

R(f(x3), f(y3)) belong to J ′. Therefore, since Q(J ′) = false, it must be the

case that h(⊥p) = h(#q) or h(#q) = h(⊥r). From the previous remark, either

κ(p) = 1− κ(q) or κ(q) = 1− κ(r). In any case, κ(Cj) = 1, and it is not the case

that κ(p) = κ(q) = κ(r) = 1.

This concludes the proof of the second part of the theorem.

(3) Third, we prove that there is a LAV data exchange settingM and a conjunctive query Q

with two inequalities, such that Q has almost constant inequalities but does not have constant

joins underM, and CERTAIN-ANSWERS(M, Q) is CONP-complete.

The LAV settingM = (S,T,Σst) is as follows. The source schema S consists of two

binary relationsM andN , one ternary relation P , and one 4-ary relationR. The target schema

T consists of two binary relations S and T , one ternary relation U , and one 4-ary relation V .

The set Σst of source-to-target dependencies is:

M(x, y) → ∃z(S(x, y) ∧ S(y, x) ∧ V (x, y, z, z) ∧ U(z, z, z) ∧ S(z, z))

R(x, y, v, w) → ∃z(T (x, z) ∧ T (y, z) ∧ V (v, w, x, z) ∧ V (v, w, y, z))

P (x, y, z) → U(x, y, z)

N(x, y) → T (x, y)

The Boolean query Q over T is as follows:

∃x∃x′∃y∃y′∃z∃z′∃x1∃y1∃x2∃y2(T (x1, y1) ∧ T (x2, y2)

∧ U(x, y, z) ∧ S(x, x′) ∧ S(y, y′) ∧ S(z, z′)∧

V (x1, x2, x
′, x′) ∧ V (x1, x2, y

′, y′) ∧ V (x1, x2, z
′, z′) ∧ x1 6= y1 ∧ x2 6= y2).

Clearly, Q has almost constant inequalities inM, but does not have constant joins inM. We

prove next that CERTAIN-ANSWERS(M, Q) is CONP-complete.



80

Membership in CONPfollows from (Fagin, Kolaitis, Miller, & Popa, 2005). The CONP-

hardness is established from a reduction from 3SAT to the complement of the problem stud-

ied, namely CERTAIN-ANSWERS(M, Q). More precisely, for every 3CNF propositional for-

mula φ, we construct in polynomial time an instance Iφ of S such that φ is satisfiable iff

certainM(Q, Iφ) = false.

Given a propositional formula φ ≡
∧

1≤j≤mCj in 3CNF, where each Cj is a clause, let

Iφ be the following source instance:

• The interpretation of the binary relation M in Iφ contains the pair (q,¬q), for each

propositional variable q mentioned in φ;

• the interpretation of the binary relation N in Iφ contains the pairs (a, b) and (c, d),

where a, b, c and d are fresh constants (not mentioned as propositional variables in

φ);

• the interpretation of the ternary relation P in Iφ contains all triples (α, β, γ) such

that for some 1 ≤ j ≤ m, (α ∨ β ∨ γ) = Cj; and

• the interpretation of the 4-ary relation R in Iφ contains the tuple (q,¬q, a, c), for

each propositional variable q mentioned in φ.

Clearly, Iφ can be constructed in polynomial time from φ.

Let #q be the null obtained from the application of the std M(x, y) → ∃z(S(x, y) ∧

S(y, x) ∧ V (x, y, z, z) ∧ U(z, z, z) ∧ S(z, z)) to the tuple M(q,¬q), and let ⊥q (or ⊥¬q) be

the null obtained from the application of the std R(x, y, v, w) → ∃z(T (x, z) ∧ T (y, z) ∧

R(v, w, x, z)∧R(v, w, y, z)) to the tuple (q,¬q, a, c). The canonical universal solution J for

Iφ is as follows:

• The interpretation of S in J contains the pairs (q,¬q), (¬q, q), and (#q,#q), for

each propositional variable q mentioned in φ;

• the interpretation of T in J contains a copy of the interpretation of N in Iφ and the

pairs (q,⊥q), (¬q,⊥q), for each propositional variable q mentioned in φ;



81

• the interpretation of U in J contains a copy of the interpretation of P in Iφ and the

tuple (#q,#q,#q), for each propositional variable q mentioned in φ; and

• the interpretation of V in J contains the tuples (q,¬q,#q,#q), (a, c, q,⊥q), and

(a, c,¬q,⊥q), for each propositional variable q mentioned in φ.

We prove next that certainM(Q, Iφ) = false iff φ is satisfiable.

(⇐) Assume that φ is satisfiable, and let κ be a truth assignment for the propositional

variables mentioned in φ such that κ(φ) = 1. Define a function f from dom(J)

into dom(J) as follows:

f(v) =


q v = ⊥q and κ(q) = 1

¬q v = ⊥q and κ(q) = 0

v otherwise

Let J∗ be the solution for Iφ obtained from J by replacing each occurrence of

an element v in J by f(v). We show next that Q(J∗) = false, and, thus, that

certainM(Q, Iφ) = false.

Assume, for the sake of contradiction, that Q(J∗) = true. Then there is a func-

tion h : {x, x′, y, y′, z, z′, x1, y1, x2, y2} → dom(J∗), such that T (h(x1), h(y1)),

T (h(x2), h(y2)), U(h(x), h(y), h(z)), S(h(x), h(x′)), S(h(y), h(y′)), S(h(z), h(z′)),

V (h(x1), h(x2), h(x′), h(x′)), V (h(x1), h(x2), h(y′), h(y′)), and V (h(x1), h(x2),

h(z′), h(z′)) belong to J∗, and, furthermore, h(x1) 6= h(y1) and h(x2) 6= h(y2).

Since V (h(x1), h(x2), h(x′), h(x′)) belongs to J∗, there are only two cases to con-

sider with respect to the values h(x1) and h(x2):

(i) The first case is that h(x1) = q and h(x2) = ¬q, for some propositional vari-

able q mentioned in φ. But then h(y1) = h(y2) = f(⊥q), because T (h(x1), h(y1)

and T (h(x2), h(y2)) belong to J∗ . It follows that f(⊥q) 6= q and f(⊥q) 6= ¬q,

which is in contradiction with the definition of the function f .



82

(ii) The second case is that h(x1) = a and h(x2) = c. But then h(x′) = q

or h(x′) = ¬q, for some propositional variable q mentioned in φ. Since

S(h(x), h(x′)) belongs to J∗, it must be the case that for some clause (α∨β∨γ)

in φ, h(x) = α, h(y) = β and h(z) = γ. Furthermore, h(x′) = ¬α. Since

κ(φ) = 1, it must be the case that κ(α) = 1 or κ(β) = 1 or κ(γ) = 1. Assume

that κ(α) = 1. Since V (h(x1), h(x2), h(x′), h(x′)) = V (a, c,¬α,¬α) belongs

to J∗, it follows that f(⊥α) = ¬α. But then κ(α) = 0, which contradicts our

previous assumption. The cases κ(β) = 1 or κ(γ) = 1 are identical.

(⇒) Assume, on the other hand, that certainM(Q, I) = false. Then there exists a

solution J ′ for Iφ such that Q(J ′) = false. Let h be a homomorphism from J to

J ′. Let us define a truth assignment κ for the propositional variables mentioned in

φ as follows: κ(q) = 1 iff h(⊥q) = q. We prove next that for each 1 ≤ j ≤ m,

κ(Cj) = 1, and, therefore, that φ is satisfiable.

Let clause Cj be (α ∨ β ∨ γ) (j ∈ [1,m]). We prove first that h(⊥α) 6= ¬α

or h(⊥β) 6= ¬β or h(⊥γ) 6= ¬γ. Assume otherwise. Then the function f :

{x, x′, y, y′, z, z′, x1, y1, x2, y2} → dom(J ′) defined as f(x1) = a, f(y1) = b,

f(x2) = c, f(y2) = d, f(x) = α, f(x′) = ¬α, f(y) = β, f(y′) = ¬β, f(z) = γ,

f(z′) = ¬γ satisfies that T (f(x1), f(y1)), T (f(x2), f(y2)), U(f(x), f(y), f(z)),

S(f(x), f(x′)), S(f(y), f(y′)), S(f(z), f(z′)), V (f(x1), f(x2), f(x′), f(x′)),

V (f(x1), f(x2), f(y′), f(y′)), V (f(x1), f(x2), f(z′), f(z′)) belong to J ′. Further,

f(x1) 6= f(y1) and f(x2) 6= f(y2). Then Q(J ′) = true, which is a contradiction.

We prove second that for each propositional variable q mentioned in φ, h(⊥q) =

q or h(⊥q) = ¬q. Assume otherwise. Then the function f : {x, x′, y, y′, z,

z′, x1, y1, x2, y2} → dom(J ′) defined as f(x1) = q, f(y1) = h(⊥q), f(x2) = ¬q,

f(y2) = h(⊥q), f(x) = f(x′) = f(y) = f(y′) = f(z) = f(z′) = #q, sat-

isfies that T (f(x1), f(y1)), T (f(x2), f(y2)), U(f(x), f(y), f(z)), S(f(x), f(x′)),

S(f(y), f(y′)), S(f(z), f(z′)), V (f(x1), f(x2), f(x′), f(x′)), and also satisfies



83

V (f(x1), f(x2), f(y′), f(y′)) and V (f(x1), f(x2), f(z′), f(z′)) belong to J ′. Fur-

ther, f(x1) 6= f(y1) and f(x2) 6= f(y2). Then Q(J ′) = true, which is a contra-

diction.

We finally prove that κ(Cj) = 1. Assume first that h(⊥α) 6= ¬α. Then h(⊥α) = α,

and, thus, κ(α) = κ(Cj) = 1. The cases when h(⊥β) 6= ¬β and h(⊥γ) 6= ¬γ are

identical.

This concludes the proof of the theorem. �

Proof of Proposition 6.2

Membership in EXPTIME can be proved as follows. The certain answers to each union of

conjunctive queries for a source instance I , under a settingM, can be computed in polynomial

time in the size of CAN(I) (Fagin, Kolaitis, Miller, & Popa, 2005). But as we mentioned

before, the size of CAN(I) is at most |I||Σst|. It follows that the certain answers to each

union of conjunctive queries with respect to a source instance I , under a settingM, can be

computed in exponential time in the size of I .

The proof of the lower bound is a refinement of a proof shown in (Kolaitis et al., 2006),

where the theorem was proved for a union of two CQ 6= queries. The EXPTIME-hardness is es-

tablished from a reduction from the Single Rule Datalog Problem (Gottlob & Papadimitriou,

2003), which is the following problem: given a DATALOG program Π consisting of only one

rule and some of facts with only constants, is it the case that a tuple t̄ belongs to the evaluation

of Π over an empty instance? That is, we ask whether t̄ ∈ Π(∅). We shall call these programs

Single Rule Datalog Programs (sirup). The combined complexity of this problem was shown

to be EXPTIME-complete by Gottlob and Papadimitriou (2003).

As in (Kolaitis et al., 2006), let Π be a program containing some facts with only constants

and a single rule of the form A(x̄) ← Q1(x̄1), . . . , Qn(x̄n), where each symbol Qi (1 ≤ i ≤

n) either represents an extensional database predicate or the only intensional predicate A.

Furthermore, we assume that t̄ = (c1, . . . , ck) and we say that t̄ belongs to the evaluation of

Π over the empty instance if and only if t̄ ∈ AT∞Π (∅).



84

The idea of the reduction in (Kolaitis et al., 2006) is to precompute all the possible tuples

that can be returned from the sirup rule into the canonical universal solution of the source

instance, and then simulate the sirup rule with a CQ 6= query. A second query is used to check

whether t̄ ∈ Π(∅). The difficulty in this proof is to show that the bound remains the same,

even for a single CQ 6= query with one inequality.

We now describe a data exchange settingM = (S,T,Σst), a query Q and an instance I

of S such that t̄ ∈ Π(∅) if and only if certainM(Q, I) = true.

• The source schema S consists of four unary relations T , V , F , S plus all the ex-

tensional database predicates R1, . . ., Rm, and two additional relation symbols A

and W . The arity of the relations Ri (1 ≤ i ≤ m) is the same as the corresponding

arities in Π, denoted by li, the arity of the relationA is k and the arity of the relation

W is k + 1.

• The target schema T consists of relations R′1, . . ., R′m, T ′ and A′. The arity of

relation R′i is li + 3 (1 ≤ i ≤ m), T ′ is unary, and A′ has arity k + 3.

• We create the source instance I as follows:

– The interpretation of the relations R1,. . ., Rm and A contains all the tuples

corresponding to the facts.

– The relation W only contains one tuple, based on t̄: W (c1, . . . , ck, d), where d

is a fresh value not occurring elsewhere in I .

– We create a single tuple for each relation T , F and S using constants c, 1, 2,

also not used elsewhere in I: T (c), F (1) and S(2).

– Finally, we populate the unary relation V with all distinct values from Π and

t̄.

Intuitively, the constants 1 and 2 will allow us to use the same query for both

simulating the sirup rule and checking for the tuple t̄. The relations with a 1 will

be used for the simulation of the sirup rule, and the relations with a 2 will be used

when checking whether t̄ ∈ Π(∅).



85

• The set Σst of dependencies is defined as follows. We create a copy of the relation

T in T ′:

T (x) → T ′(x)

We create a copy of the facts in the program such that they may be used when

simulating the sirup rule:

F (z), T (y), R1(x1, ..., xl1) → R′1(x1, ..., xl1 , y, z, z)

...

F (z), T (y), Rm(x1, ..., xlm) → R′m(x1, ..., xlm , y, z, z)

Notice that we use the value z in F to indicate that these tuples will be used for

the simulation of the sirup rule. Next, for each fact, we populate the target with a

series of tuples built using every possible constant value in the source:

S(z), T (y), V (x1), ..., V (xl1) → R′1(x1, ..., xl1 , y, z, z)

...

S(z), T (y), V (x1), ..., V (xlm) → R′m(x1, ..., xlm , y, z, z)

In this case, we use the value z in S to indicate that these tuples will be used when

checking whether t̄ ∈ Π(∅). We then copy the relation A into A′. Intuitively, this

represents that every fact in Π is already computed into our database. We also add

to A′ every possible tuple that could be generated with the program. The value c

in the position k + 2 of the tuples in A′ represents a computed tuple, while a null

value represent one that has not yet been computed:

F (z), S(w), T (y), A(x1, ..., xk) → A′(x1, ..., xk, y, z, w) (A.1)

F (z), S(w), V (x1), ..., V (xk) → ∃n(A′(x1, ..., xk, n, z, w)) (A.2)

The relations F and S ensure that the procedures are run in the correct order, that is,

the query must first compute the tuples, and then check whether t̄ ∈ Π(∅). Finally,



86

we need some extra tuples for the simulation of the sirup rule. We copy the relation

W into A′ with the values of F and S, and add again every possible tuple to the

relation A′, but with other constants:

S(z), F (y),W (x1, ..., xk, u) → A′(x1, ..., xk, u, z, y) (A.3)

S(z), T (y), V (x1), ..., V (xk) → A′(x1, ..., xk, y, z, y) (A.4)

• To define query Q, recall that we are considering a sirup rule of the form A(x̄) ←

Q1(x̄1), ..., Qn(x̄n), where each Qi can be either one of the extensional databases

predicates Rj or the predicate A. Then query Q is defined as follows:

Q = ∃u∃v∃w∃w1 · · · ∃wn∃x1 · · · ∃xk∃y∃z
(
A′(x1, . . . , xk, z, u, w) ∧

T ′(y) ∧ A′(x1, . . . , xk, y, w, v) ∧ z 6= y ∧
∧

1≤i≤n

Q′i(x̄i, y, u, wi)

)
.

Depending on the witness for the first relation A′ in the query, Q can simulate the sirup rule,

or check whether t̄ ∈ Π(∅). We will simulate the sirup rule when the witness for the first

symbol A′ is a tuple of the form (x1, . . . , xk, z, 1, 2). In this case, if z is a null value, then the

inequality z 6= y holds in Q because T ′(y) forces y to be witnessed by the constant c. Then

to make the inequality false, we must set the null value to c. Informally, this means that the

query is simulating an application of the sirup rule to add the tuple (x1, . . . , xk) to Π(∅). On

the other hand, we will check whether t̄ ∈ Π(∅) when the witness for the first symbol A′ in Q

is a tuple of the form (x1, . . . , xk, d, 2, 1). In this case, the witness for the second symbol A′

in Q must be an already computed tuple, that is, a tuple of the form (x1, . . . , xk, c, 1, 2), from

which we conclude that the inequality in Q holds. In fact, from this we will also conclude

that certainM(Q, I) = true, as formally shown below.

Before proving that the reduction works properly, we describe the canonical universal

solution for I . For every i ∈ {1, . . . ,m}, relation R′i contains tuples of the form (ā, c, 1, 1),

for every tuple ā that belongs to the interpretation of Ri in I , and also the tuples of the

form (b̄, c, 2, 2), for all the possible tuples b̄ generated by using the elements in dom(I). The



87

relation T ′ is a copy of the relation T in I . The tuples in the relation A′ result from the last

four dependencies. First, due to the mapping (A.1), we copy every tuple in A from I into

A′, and add the constants c, 1, 2 in its last three positions. Second, for every possible tuple b̄

generated by using the elements in dom(I), mapping (A.2) includes in A′ a tuple of the form

(b̄,⊥, 1, 2), where ⊥ is a fresh null value. We shall generically describe the null values added

by (A.2) as ⊥. Third, mapping (A.3) copies the relation W and adds the constants 2, 1 to

each of the tuple in W . Finally, for every possible tuple b̄ generated by using the elements in

dom(I), mapping (A.4) includes in A′ the tuple (b̄, c, 2, c).

Next we show that certainM(Q, I) = true if and only if t̄ ∈ Π(∅).

(⇒) If certainM(Q, I) = true, then Q holds in all the possible solutions for I under M.

We use this condition to define the following sequence J0, . . . , Ji, . . . of solutions for I .

• J0 is the canonical universal solution for I underM.

• Assume that there exists a tuple t̄i such that t̄i witnesses the satisfaction of the body

of Q in Ji and z is assigned a null value ⊥ in t̄i. Then Ji+1 is generated from Ji by

replacing ⊥ by the value assigned to y in t̄i.

We note that for every tuple t̄i used to generate the sequence J0, . . . , Ji, . . ., the value assigned

to y in t̄i is constant c. Thus, we have that the sequence J0, . . . , Ji, . . . is finite, and we let Jm

be its last element.

By definition ofM, and given that Jm is a solution for I and certainM(Q, I) = true,

we have that there exists a tuple t̄m such that t̄m witnesses the satisfaction of the body of Q

in Jm, z is assigned value d in t̄m and y is assigned value c in t̄m. Furthermore, we also have

that A′(t̄, d, 2, 1) and A′(t̄, c, 1, 2) are both tuples in Jm.

For every i ∈ {0, . . . ,m} and tuple t̄i, let āi be the restriction of t̄i to the variables x1, . . .,

xk. In particular, we have that ām = t̄. By induction on i, next we show thatA(āi) ∈ T i+1
Π (∅).

• i = 0: For every j ∈ {1, . . . , n}, let b̄j be the restriction of ā0 to the tuple of

variables x̄j . By definition of J0 and t̄0, we have that for every j ∈ {1, . . . , n}, if

Q′j = R′p, for some p ∈ {1, . . . ,m}, thenR′p(b̄j, c, 1, 1) holds in J0, and ifQ′j = A′,



88

then A′(b̄j, c, 1, 2) holds in J0. Thus, from the definition of J0, we have that for

every j ∈ {1, . . . , n}, if Q′j = R′p, for some p ∈ {1, . . . ,m}, then Rp(b̄j) is a fact

in Π, and if Q′j = A′, then A(b̄j) is a fact in Π. Therefore, by definition of t̄0, we

conclude that A(ā0) can be deduced from the facts of Π and, thus, A(ā0) ∈ T 1
Π (∅).

• Inductive step: Assume that for every q < i, it holds that A(āq) ∈ T q+1
Π (∅), and

let b̄j be the restriction of āi to the tuple of variables x̄j , for every j ∈ {1, . . . , n}.

By definition of Ji and t̄i, we have that for every j ∈ {1, . . . , n}, if Q′j = R′p, for

some p ∈ {1, . . . ,m}, then R′p(b̄j, c, 1, 1) holds in Ji and, thus, Rp(b̄j) is a fact in

Π by definition of the sequence J0, . . ., Jm. On the other hand, if Q′j = A′, then

A′(b̄j, c, 1, 2) holds in Ji. Let q ≤ i be the smallest index such that A′(b̄j, c, 1, 2)

holds in Jq. If q = 0, then A(b̄j) is a fact in Π and, therefore, A(b̄j) ∈ T q+1
Π (∅).

If q > 0, then A′(b̄j, c, 1, 2) was included in Jq when replacing the z-value of

t̄q−1 by the y-value of this tuple. Thus, by induction hypothesis, we have that

A(b̄j) ∈ T q+1
Π (∅). Therefore, we conclude that A(āi) ∈ T i+1

Π (∅).

Hence, we have that A(ām) ∈ T m+1
Π (∅) and, therefore, t̄ ∈ Π(∅) since ām = t̄. This conclude

the first part of the proof.

(⇐) Assume that t̄ ∈ Π(∅) and, for the sake of contradiction, assume that certainM(Q, I) =

false. Moreover, let Q̂(u, v, w, w1, . . . , wn, x1, . . . , xk, y, z) be a query obtained by remov-

ing the existential quantifiers from Q:

A′(x1, ..., xk, z, u, w) ∧ T ′(y) ∧ A′(x1, ..., xk, y, w, v) ∧ z 6= y ∧
∧

1≤i≤n

Q′i(x̄i, y, u, wi).

We build a sequence of solutions J0, . . ., Ji, . . . and a corresponding sequence of sets of tuples

T0, . . ., Ti, . . . as follows.

• Let J0 be the canonical universal solution for I underM, and T0 = Q̂(J0), that is,

the evaluation of Q̂ over J0.



89

• For every i ≥ 0, let Ji+1 be obtained from Ji by replacing every null value ⊥ in

a tuple of Ti by the constant c, if ⊥ witnesses the inequality of Q̂. Moreover, let

Ti+1 = Q̂(Ji+1).

Given that J0 has finite number of null values, we have that the sequence J0, . . ., Ji, . . . is

finite, and we let Jm be its last element.

Next we show that from the assumption certainM(Q, I) = false, one can deduce that

Q(Jm) = false. Let ψ be the following dependency:

∀u∀v∀w∀w1 · · · ∀wn∀x1 · · · ∀xk∀y∀z
(

(A′(x1, ..., xk, z, u, w) ∧

T ′(y) ∧ A′(x1, ..., xk, y, w, v) ∧
∧

1≤i≤n

Q′i(x̄i, y, u, wi))→ (z = y)

)
.

It is easy to see that solution Jm can be obtained from J0 by repeatedly chasing with ψ. Thus,

it follows from (Fagin, Kolaitis, Miller, & Popa, 2005) that certainM(Q, I) = false if and

only if Q(Jm) = false and, therefore, Q(Jm) = false.

We now show that the fact that Q(Jm) = false leads to a contradiction. Consider the

program evaluation sequence T 0
Π (∅), . . ., T m−1

Π (∅). Next we show by induction on i that if

A(ā) holds in T iΠ(∅), then tuple A′(ā, c, 1, 2) holds in Ji+1.

• i = 0: Assume that A(ā) holds in T 0
Π (∅). Then A(ā) is a fact in Π or it can be

deduced from the facts of Π by using the only rule in this program. Thus, by the

definition of Π, it is easy to see that in both cases A′(ā, c, 1, 2) holds in J1, since

every fact in Π of the form A(b̄) appears in J0 as A′(b̄, c, 1, 2), and every fact in Π

of the form Rp(b̄) appears in J0 as R′p(b̄, c, 1, 1).

• Inductive step: Assume that the property holds for every j < i and that A(ā)

holds in T iΠ(∅). If A′(ā, c, 1, 2) holds in Ji, then by definition of the sequence J0,

. . ., Jm, we have that A′(ā, c, 1, 2) holds in Ji+1. Thus, assume that A′(ā, c, 1, 2)

does not hold in Ji, and notice this implies that A′(ā,⊥, 1, 2) holds in Ji, where

⊥ is a null value, and that A(ā) does not hold in T i−1
Π (∅) (otherwise by induction

hypothesis we obtain that A′(ā, c, 1, 2) holds in Ji). But then we have that A(ā)



90

can be deduced from T i−1
Π (∅) by using the only rule in Π. Thus, there exists an

instantiation A(ā) ← Q1(ā1), . . . , Qn(ān) of the rule of Π such that Q1(ā1), . . .,

Qn(ān) belong to T i−1
Π (∅). Thus, by induction hypothesis and the definition of the

sequence J0, . . ., Jm, we conclude that for every p ∈ {1, . . . , n}, if Q′p = Rq

for some q ∈ {1, . . . ,m}, then Rq(āp, c, 1, 1) holds in Ji−1, and if Q′p = A′,

then A′(āp, c, 1, 2) holds in Ji−1. Therefore, given that both A′(ā,⊥, 1, 2) and

A′(ā, c, 2, c) hold in Ji, we conclude that one of the tuples of Ti has ⊥ as a wit-

ness for the inequality of Q̂. This implies that A′(ā, c, 1, 2) holds in Ji+1 since ⊥ is

replaced by c to obtain Ji+1 from Ji.

By the definitions of the sequence J0, . . ., Jm and the data exchange settingM, it is straight-

forward to prove that T m−1
Π (∅) = T mΠ (∅). Thus, given that t̄ ∈ Π(∅), we have that A(t̄) holds

in T m−1
Π (∅). Therefore, by the property shown above, we have that A′(t̄, c, 1, 2) holds in Jm.

But this implies that Q(Jm) = true since A′(t̄, d, 2, 1) holds in Jm, A′(b̄, c, 2, c) holds in

Jm for every tuple b̄ in dom(I)k, and Ri(b̄i, c, 2, 2) holds in Jm for every tuple b̄i in dom(I)li

(i ∈ {1, . . . ,m}). But this contradicts our initial assumption. �

Proof of Proposition 6.3

As we mentioned before, the problem with the previous query Q is that it is a union

of conjunctive queries with at most two inequalities per disjunct. Fix a FO formula φ that

belongs to the Bernays-Schofinkel class. LetM = (S,T,Σst), Q and I be the setting, query

and instance constructed as previously presented. For φ, we construct next a second data

echange setting, M′ = (S′,T′,Σ′st), an instance I ′ of S′ and a conjunctive query Q′ with

two inequalities, such that certainM(Q, I) = certainM′(Q′, I ′) (that is, φ is satisfiable iff

certainM′(Q′, I ′) = false).

We will need some additional notation. Let again ` be the number of subformulas, and

Θ ⊆ {1, . . . , `} be the set of all indexes j such that Sj is an atomic formula. Let |Θ| be the

size of Θ, that is, the number of atomic subformulas of φ. We will assume that Θ is ordered,

and we will use a function τ : Θ→ {1, . . . , |Θ|} such that τ(j) = m if j is the m-th element

of Θ.



91

Now we show the data exchange settingM′:

• The source schema S′ consists of six unary relations D, E, B, C, O and U , a set

{Q1, ..., Qn} of unary relations (one for each relation Ri), another set of unary re-

lations {V1, ..., Vp} (recall that p is the number of existentially quantified variables

in φ), a binary relation G, a relation Z of arity 4, and a relation A of arity equal to

|Θ|+ 5.

• The target schema T′ consists of a binary relation G′, one relation R′ with arity

maxi∈[1,n] ri + 2, a relation Z ′ of arity 4, a relation A′ with the same arity than A, a

relation F of arity m+2 (recall m is the number of universally quantified variables

in φ), and a set of binary relations {V ′1 , ..., V ′p}.

• The instance I ′ is as follows. The domain of I ′ contains the elements a1, . . . , ap,

and elements s0, . . . , s`, sf , c1, . . . , cn 1, d, and 0. The interpretation of each sym-

bol in S in I ′ is as follows:

– BI′ = {a1, . . . , ap}.

– OI′ = {0}, U I′ = {1} and DI′ = {d}.

– EI′ = {s0, sf} and CI′ = {s1, . . . , s`}.

– QI′

k = {ck} for every k ∈ [1, n].

– V I′
i = {ai} for every i ∈ [1, p].

– GI′ = {(s0, 0), (sf , 0)} ∪ {(si, 1), (si, 0) | i ∈ [1, `]}.

– AI
′ is as follows:

∗ It contains a tuple with only ds, except for a sf in its first position and

values s1, 0 in the last two positions. For example, if the arity of A is 8,

we would create the following tuple: A(sf , d, d, d, d, d, s1, 0).

∗ For each relation i ∈ [1, n], AI′ will contain a tuple in which every

position contains the element d, except for the first position that contains

the element s0, the second position that contains the element ci, and the

last position that contains the element 1.

∗ For each subformula Sj of ψ of the form Ri(z̄), AI′ contains two tuples

with only d’s, except for a sj in the first position, a ci in the (τ(j) + 2)th



92

position and either a value 0 or a value 1 in the last position. For ex-

ample, if if the arity of A is 8, for S2 ≡ R2 and such that τ(2) = 1, we

would create the tuples: A(s2, d, c2, d, d, d, d, 0) andA(s2, d, c2, d, d, d, d, 1)

∗ Then for each subformula Sj , j 6∈ Θ, such that Sj ≡ (Sg ∧ Sh) or

Sj ≡ (Sg ∨ Sh), AI′ contains two tuples, both with only d’s except

for a sj in the first position, and elements sg, sh, and either a value 0

or a value 1 in the last three positions. Continuing with the example,

if if the arity of A is 7 and if S1 ≡ (S2 ∧ S3) then we create tuples

A(s1, d, d, d, s2, s3, 0) and A(s1, d, d, d, s2, s3, 1).

∗ For each subformula Sj , j 6∈ Θ, such that Sj ≡ (¬Sg), AI′ contains

two tuples, both with only d’s except for a sj in the first position, and

elements sg and either a value 0 or a value 1 in the last two positions.

Continuing with the example, if if the arity of A is 7 and if S1 ≡ (¬S2)

then we create tuples A(s1, d, d, d, d, s2, 0) and A(s1, d, d, d, d, s2, 1).

– Finally, we construct ZI′ as follows:

∗ The tuple (sf , 0, 0, 1) belongs to ZI′ .

∗ For each subformula Sj , j ∈ Θ, the following tuples belong to ZI′:

(sj, 0, 0, 1) and (sj, 0, 0, 0).

∗ For each subformula Sj , j 6∈ Θ, such that Sj ≡ Sg∨Sh, the following tu-

ples belong to ZI′: (sj, 1, 1, 1), (sj, 0, 1, 1),(sj, 1, 0, 1) and (sj, 0, 0, 0).

∗ For each subformula Sj , j 6∈ Θ, such that Sj ≡ Sg∧Sh, the following tu-

ples belong to ZI′: (sj, 1, 1, 1), (sj, 0, 1, 0), (sj, 1, 0, 0) and (sj, 0, 0, 0).

∗ For each subformula Sj , j 6∈ Θ, such that Sj ≡ ¬Sg, the following

tuples belong to ZI′: (sj, 0, 1, 0)and (sj, 0, 0, 1).

This finishes the definition of I ′.

• The set Σ′st of source-to-target dependencies is as follows:



93

– We create a copy of G, A and Z into G′, A′ and Z ′, respectively:

G(x, y) → G′(x, y) (A.5)

A(x̄) → A′(x̄) (A.6)

Z(x, y, z, w) → Z ′(x, y, z, w) (A.7)

– For each i ∈ [1, p], we copy every pair of the form (sk, ai), k ∈ [1, `], into V ′i :

V1(x), C(y) → V ′1(y, x) (A.8)

...

Vp(x), C(y) → V ′p(y, x)

– For each i ∈ [1, p], we copy every pair of the form (aj, s0) and (aj, sf ), j ∈

[1, p], into V ′i :

B(x), E(z) → V ′1(x, z) (A.9)

...

B(x), E(z) → V ′p(x, z)

– Let s be maxi∈[1,n] ri. We add the following stds to Σst:

Q1(y), E(z), D(w), O(v),

B(x1), ..., B(xr1), D(xr1+1), ..., D(xs) → ∃n(R′(y, x1, ..., xs, n), (A.10)

R′(w, x1, ..., x1, n), Z ′(z, v, v, n))

...

Qn(y), E(z), D(w), O(v),

B(x1), ..., B(xrn), D(xr1+1), ..., D(xs) → ∃n(R′(y, x1, ..., xs, n),

R′(w, x1, ..., x1, n), Z ′(z, v, v, n))



94

The idea is the following. For each i ∈ [1, n] and tuple aj1 , . . . , ajri
of el-

ements in {a1, . . . , ap}, we add the following tuples to the interpretation of

R′ in CAN(I ′): (si, aj1 , . . . , ajri
, d, . . . , d,⊥) and (d, aj1 , . . . , aj1 ,⊥), where

⊥ is a fresh null value. In such case, we also add the tuples (s0, 0, 0,⊥) and

(sf , 0, 0,⊥) to the interpretation of Z ′ in CAN(I ′).

– The following stds are also in Σst:

C(y), B(x1), ..., B(xm) → ∃nF (y, x1, ..., xm, n) (A.11)

The idea is that the interpretation of F in CAN(I ′) contains for every j ∈ [1, `]

and every tuple of elements ai1 , . . . , aim in {a1, . . . , ap}, a tuple

(sj, ai1 , . . . , aim ,⊥), where ⊥ is a fresh null value.

– The following are also in Σst:

D(y), O(z), B(x1), ..., B(xs) → R′(y, x1, ..., xs, z) (A.12)

D(y), U(z), B(x1), ..., B(xs) → R′(y, x1, ..., xs, z) (A.13)

That is, every tuple of the form (d, ai1 , . . . , ais , 0) and (d, ai1 , . . . , ais , 1), where

ai1 , . . . , ais is a tuple of elements in {a1, . . . , ap}, belongs to the interpretation

of R′ in CAN(I ′).

– Finally, we also add the following stds to Σst:

D(y), O(z), B(x1), ..., B(xm) → F (y, x1, ..., xm, z) (A.14)

D(y), U(z), B(x1), ..., B(xm) → F (y, x1, ..., xm, z) (A.15)

E(y), O(z), B(x1), ..., B(xm) → F (y, x1, ..., xm, z) (A.16)

That is, every tuple of the form (d, ai1 , . . . , aim , 0) and (d, ai1 , . . . , aim , 1),

where ai1 , . . . , aim is a tuple of elements in {a1, . . . , ap}, belongs to the in-

terpretation of F in CAN(I ′). Also, every tuple of form (s0, ai1 , . . . , aim , 0) or

(sf , ai1 , . . . , aim , 0), where ai1 , . . . , aim are elements in {a1, . . . , ap}, belongs

to the interpretation of F in CAN(I ′).



95

This finishes the definition of Σst.

Informally, we code in CAN(I ′) the interpretation of each relation R′i in CAN(I)

using the symbol R′: R′i(ā,⊥) belongs to CAN(I) iff R′(ci, ā, d, . . . , d,⊥) belongs

to CAN(I ′). The interpretation of each Fj in CAN(I) is coded in the same way

using F ′: Fj(b̄,⊥) belongs to CAN(I) iff F (sj, b̄,⊥) belongs to CAN(I ′). Finally,

we use the relation A′ as a controller for the query, such that Q′ correctly simulates

the queries Qα, Qβ, Qγ and Qδ that where used in the first part of the reduction.

This is better explained when we describe the query.

We now show the Boolean CQ query Q′ with two inequalities. We first define a function

κ : Θ→ {1, . . . , n} such that κ(j) = i iff SJ = Ri(x̄i, ȳi). The query Q is as follows:

Q′ ≡ ∃x1, . . . , xp∃y1, . . . , ym∃t0, t1, . . . , t|Θ|

∃z1, . . . zrmax∃q∃r∃k, k′∃u∃v∃w∃w′∃h1, . . . , h|Θ|(
A′(q, t0, t1, . . . , t`Θ , k, k

′, u) ∧R′(t0, z1, . . . , zrmax , v) ∧∧
j∈Θ

(
R′(tτ(j), x̄κ(j), ȳκ(j), h̄τ(j), v)

)
∧
∧
i∈[1,p]

V ′i (q, xi) ∧

F ′(q, y1, . . . , ym, n) ∧ F ′(k, y1, . . . , ym, w) ∧ F ′(k′, y1, . . . , ym, w
′) ∧

Z ′(q, w, w′, v) ∧G(q, w′) ∧ n 6= v ∧ u 6= v

)
where each tuple h̄j , for j ∈ Θ, is a tuple of variables hj such that, if Sj = Ri then rmax =

ri + |h̄j|.

All that remains to show is that certainM(Q, I) = false iff certainM′(Q′, I ′) = false.

We only prove the direction from right to left, the other direction being analogous.

(⇐) Let Ĵ ′ be the a solution for which Q′(Ĵ ′) = false. Build the following function

h : CAN(I)→ CAN(I):



96

• h(n) = 1 if n is a null value in a tuple of the form (b1, . . . , bri , n) in R′i, i ∈ [1, n]

and there is a tuple containing (ci, b1, . . . , bri) in its first ri + 1 positions and a 1 in

the last position in R′ in Ĵ ′

• h(n) = 0 if n is a null value in a tuple of the form (b1, . . . , bri , n) in R′i, i ∈ [1, n]

and there is a tuple containing (ci, b1, . . . , bri) in its first ri + 1 positions and a 0 in

the last position in R′ in Ĵ ′

• h(n) = 1 if n is a null value in a tuple of the form (b1, . . . , bm, n) in F ′j , j ∈ [1, `]

and there is a tuple of the form (sj, b1, . . . , bm, 1) in F ′ in Ĵ ′

• h(n) = 0 if n is a null value in a tuple of the form (b1, . . . , bm, n) in F ′j , j ∈ [1, `]

and there is a tuple of the form (sj, b1, ..., bm, 0) in F ′ in Ĵ ′

• h(n) = n otherwise.

We prove that Q(h(CAN(I))) = false. Assume for the sake of contradiction that

Qα(h(CAN(I))) = true. From the definition of Qα, then there is an i ∈ [1, n], a tuple

(b1, . . . , bri) and an element v, v 6= 0, v 6= 1 Such that the tuple (b1, . . . , bri , v) belongs to the

interpretation of R′i in h(CAN(I)). Let g be an homomorfism such that g(CAN(I ′)) = Ĵ ′.

We let ⊥ represent a null value such that R′(ci, b1, . . . , bri , ..., g(⊥)) belongs to Ĵ ′. It then

follows from the construction of the function h that g(⊥) 6= 0 and g(⊥) 6= 1. In order to

show that Q(Ĵ ′) = true, we build a function f : {x1, . . . , xp, y1, . . . , ym, t0, t1, . . . , t|Θ|, z1,

. . . , zrmax , q, r, k, k
′, u, v, w, w′, h1, . . . , h|Θ|} → dom(Ĵ ′), and then show that the tuples

A′(f(q), f(t0), f(t1), . . . , f(t|Θ|), f(k), f(k′), f(u)), R′(f(t0), f(z1), . . . , f(zrmax), f(v)),

F ′(f(q), f(y1), . . . , f(ym), f(n)), F ′(f(q), f(y1), . . . , f(ym), f(n)),

F ′(f(k′), f(y1), . . . , f(ym), f(w′)), Z ′(f(q), f(w), f(w′), f(v)), G(f(q), f(w)′);

R′(f(tτ(j)), f(x̄κ(j)), f(ȳκ(j)), f(h̄τ(j), f(v)) for j ∈ Θ; and V ′i (f(q), f(xi)) for i ∈ [1, p]

belong to Ĵ ′.

We define f as follows:

• f(µ) = bj if µ = zj for j ∈ [1, rmax]

• f(µ) = b1 if µ = xj for j ∈ [1, p]

• f(µ) = b1 if µ = yj for j ∈ [1,m]



97

• f(µ) = b1 if µ ∈ h̄j for j ∈ [1, |Θ|]

• f(µ) = d if µ = k, µ = k′ or µ = tj for j ∈ [1, |Θ|]

• f(t0) = ci, f(q) = s0, f(u) = 1, f(n) = 0

• f(w) = f(w′) = 0

• f(v) = g(⊥)

Note that f(v) 6= f(n) and f(v) 6= f(u). In ad R(f(t0), f(z1), . . . , f(zrmax), f(v)) =

R(ci, b1, . . . , bri , ..., g(⊥)). This leads to a contradiction: it follows that Q′(Ĵ ′) = true since

the following tuples also belong to g(CAN(I ′)) = Ĵ ′:

• A(s0, ci, d, . . . , d, 1), obtained with (A.6).

• R′(d, b1, . . . , b1, g(⊥)), obtained with (A.10).

• V1(s0, b1), . . . , Vp(so, b1), obtained with (A.9).

• F (s0, b1, . . . , b1, 0), obtained with (A.16).

• F (d, b1, . . . , b1, 0), obtained with (A.14).

• Z(s0, 0, 0, g(⊥)), obtained with (A.10).

• G(s0, 0), obtained with (A.5).

Next, assume for the sake of contradiction that Qβ(h(CAN(I))) = true.

From the definition of Qβ , then there are i, j, i ∈ [1, n] and j ∈ Θ tuples (ai1 , . . . , aim)

and (āx, āy), and elements n and w, n 6= w, such that subformula Sj is Ri(x̄, ȳ), the tuple

(ai1 , . . . , aim , n) belongs to the interpretation of F ′ in h(CAN(I)) and the tuple (āx, āy, w)

belongs to the interpretation of R′i in h(CAN(I)). Since Qα(h(CAN(I))) = false, it is clear

that w must be equal to 0 or to 1. We will show the case when w = 1, so that n 6= 1; the other

case is analogous.

Since the tuple Ri(āx, āy, 1) belongs to h(CAN(I)), there must be a tuple of the form

R′(ci, āx, āy, ..., 1) in Ĵ ′, because otherwise it would contradict the definition of h. Let g be

an homomorfism such that g(CAN(I ′)) = Ĵ ′. In addition, it is easy to see that there is a null

value ⊥ and a tuple F ′(sj, ai1 , . . . , aim ,⊥) in CAN(I ′). Again, by the definition of h, we

obtain that g(⊥) 6= 1.



98

In order to show that Q(Ĵ ′) = true, we build again a function

f : {x1, . . . , xp, y1, . . . , ym, t0, t1, . . . , t|Θ|, z1, . . . , zrmax , q, r, k, k
′, u, v, w, w′, h1, . . . , h|Θ1|}

→ dom(Ĵ ′) Such that the tuples A′(f(q), f(t0), f(t1), . . . , f(t|Θ|), f(k), f(k′), f(u)),

R′(f(t0), f(z1), . . . , f(zrmax), f(v)), F ′(f(q), f(y1), . . . , f(ym), f(n)), F ′(f(q), f(y1), . . . ,

f(ym), f(n)), F ′(f(k′), f(y1), . . . , f(ym), f(w′)), Z ′(f(q), f(w), f(w′), f(v)),

G(f(q), f(w)′); R′(f(tτ(j)), f(x̄κ(j)), f(ȳκ(j)), f(h̄τ(j), f(v)) for j ∈ Θ; and V ′i (f(q), f(xi))

for i ∈ [1, p] belong to Ĵ ′.

We define f as follows:

• f(µ) = aik if µ = yk for k ∈ [1,m]

• f(µ) = ak if µ = xk for k ∈ [1, p]

• f(µ) = a1 if µ = zk for k ∈ [1, rmax]

• f(µ) = a1 if µ ∈ h̄k for k ∈ [1, |Θ|], k 6= τ(j)

• f(µ) = d if µ ∈ h̄τ(j)

• f(µ) = d if µk, µ = k′ or µ = tk for k ∈ [1, |Θ|] such that k 6= τ(j)

• f(tτ (j)) = ci

• f(t0) = d, f(q) = sj , f(u) = 1, f(v) = 1

• f(w) = f(w′) = 0

• f(n) = g(⊥)

Note that f(v) 6= f(n) and f(v) 6= f(u). In addition, from the definition of f we obtain

that F ′(f(q), f(y1), . . . , f(ym), f(n)) = F ′(sj, ai1 , . . . , aim , g(⊥)). It is also the case that

R′(f(tτ(j)), f(xκ(j)1), . . . , f(xκ(j)1), f(yκ(j)1), . . . , f(yκ(j)1), f(hτ(j)1), . . . , f(hτ(j)1 , f(v))

= R′(sj, āx, āy, d, . . . , d, 1).

It follows thatQ′(Ĵ ′) = true since the following tuples also belong to g(CAN(I ′)) = Ĵ ′:

• A(sj, d, d, . . . , d, tτ(j), d, . . . , d, 1), obtained with (A.6).

• R′(d, a1, . . . , a1, 1), obtained with (A.13).

• R′(d, f(yκ(j′)1), . . . , f(yκ(j′)1), f(hτ(j′)1), . . . , f(hτ(j′)1 , 1)) for every j′ 6= j, ob-

tained with (A.10)



99

• V1(sj, b1), . . . , Vp(sj, bp), obtained with (A.8).

• F (sj, ai1 , . . . , aim , g(⊥1)), obtained with (A.11).

• F (d, ai1 , . . . , aim , 0), obtained with (A.14).

• z(sj, 0, 0, 1), obtained with (A.7).

• G(sj, 0), obtained with (A.5).

Next, assume that Qγ(h(CAN(I))) = true. Let k be the index such that the evaluation

of Qk
γ is true in h(CAN(I)). Assume without loss of generality that the subformula Sk = ¬Sg

for some g ∈ [1, `]. (The other two cases are completely symmetrical).

If Qk
γ is true in h(CAN(I)), then there must be a tuple of elements (ak1 , . . . , akm), such

that F ′k(ak1 , . . . , akm , v1) and F ′g(ak1 , . . . , akm , v2, E ′(v2, v3) belong to h(CAN(I)), and v1 6=

v3. The only tuples that belong to the interpretation of E ′ over CAN(I) are (0, 1) and (1, 0).

We assume without loss of generality that v2 = 1 (The case when v2 = 0 is symmetrical). We

obtain that v1 6= 0.

The proofs follows using the same argument as in the case of Qα and Qβ: Notice that

the only tuples in the interpretation of F ′k and F ′g in CAN(I) that contain (ak1 , . . . , akm) are

F ′k(ak1 , . . . , akm ,⊥1) and F ′g(ak1 , . . . , akm ,⊥2), where ⊥1 and ⊥2 represent null values. It

must be the case then that h(⊥2) = 1, and h(⊥1) 6= 0.

From the definition of h, we obtain that there is a tuple F ′(sg, ak1 , . . . , akm , 1) in Ĵ ′. In

addition, it is easy to see that CAN(I ′) contains a tuple of the form F ′(sk, ak1 , . . . , akm ,⊥3).

Let g be a homomorfism such that g(CAN(I ′)) = Ĵ ′. From the definition of h, we obtain that

g(⊥3) 6= 0.

We proceed in a similar fashion and define a function f to show Q′(Ĵ ′) = true.

The function f is defined as follows:

• f(µ) = aki
if µ = yi for i ∈ [1,m]

• f(µ) = ai if µ = xi for i ∈ [1, p]

• f(µ) = a1 if µ = zi for i ∈ [1, rmax]

• f(µ) = a1 if µ ∈ h̄i for i ∈ [1, |Θ|]



100

• f(µ) = d if µ = k or µ = ti for i ∈ [0, |Θ|]

• f(q) = sj , f(u) = 1, f(v) = 0

• f(w) = 0, f(w′) = 1

• f(n) = g(⊥3)

Note that f(n) 6= f(v) and f(u) 6= f(v). It follows that Q′(Ĵ ′) = true since the

following tuples also belong to g(CAN(I ′)) = Ĵ ′:

• A(sj, d, d, sk, 0), obtained with (A.6).

• R′(d, a1, . . . , a1, 0), obtained with (A.12).

• R′(d, f(yκ(j′)1), . . . , f(yκ(j′)1), f(hτ(j′)1), . . . , f(hτ(j′)1 , 1)) for every j′ ∈ [1, |Θ|],

obtained with (A.10)

• V1(sj, b1), . . . , Vp(sj, bp), obtained with (A.8).

• F (sk, ai1 , . . . , aim , g(⊥3)), obtained with (A.11).

• F (sg, ai1 , . . . , aim , 1), from the definition of h.

• F (d, ai1 , . . . , aim , 0), obtained with (A.14).

• z(sj, 0, 1, 0), obtained with (A.7).

• G(sj, 1), obtained with (A.5).

Finally, assume for the sake of contradiction that Qδ(h(CAN(I))) = true. By the def-

inition of Qδ, there must be a tuple (a11 , . . . , a1m) such that F ′1(a11 , . . . , a1m , 0) belongs to

h(CAN(I)). Then, by the definition of h, there is a tuple F ′(s1, a11 , . . . , a1m , 0) in Ĵ ′.

We will use a function f again to prove that Q′(Ĵ ′) = false. It is defined as follows:

• f(µ) = a1k
if µ = yk for k ∈ [1,m]

• f(µ) = a1 if µ = xk for k ∈ [1, p]

• f(µ) = a1 if µ = zk for k ∈ [1, rmax]

• f(µ) = a1 if µ ∈ h̄k for k ∈ [1, |Θ|]

• f(µ) = d if µk or µ = tk for k ∈ [0, |Θ|]

• f(q) = sf , f(u) = 0, f(v) = 1

• f(w) = 0, f(w′) = 0



101

• f(n) = 0

Note that f(n) 6= f(v) and f(u) 6= f(v). It follows that Q′(Ĵ ′) = true since the

following tuples also belong to g(CAN(I ′)) = Ĵ ′:

• A(sf , d, d, s1, 0), obtained with (A.6).

• R′(d, a1, . . . , a1, 1), obtained with (A.13).

• V1(sf , a1), . . . , Vp(sf , a1), obtained with (A.9).

• F (s1, a11 , . . . , a1m , 0), from the definition of h.

• F (d, a11 , . . . , a1m , 0), obtained with (A.14).

• z(sf , 0, 0, 1), obtained with (A.7).

• G(sf , 0), obtained with (A.5).

Finally, since it must be the case that Qα(h(CAN(I))) = false, Qβ(h(CAN(I))) =

false, Qγ(h(CAN(I))) = false and Qδ(h(CAN(I))) = false, we obtain that the evalua-

tion of Q over h(CAN(I)), and then certainM(Q, I) = false. �


