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(...) all models are approximations. Essentially, all models
are wrong, but some are useful. However, the approximate
nature of the model must always be borne in mind.

Empirical Model-Building and Response Surfaces (1987)
George Box and Norman Draper

Abstract

Aggregation is a tool used to reduce the complexity of economic models in order to draw more clear

and succinct conclusions or simplify analyses. As any approximation, its use may be accompanied with

errors researchers may not be willing to tolerate if they become aware of them. In this work I present

how these errors appear using aggregation across goods and across consumers. To this end, I consider

aggregation as a means to approximate probability distributions over parameters. Using this approach,

I show ways to bound approximation errors by tailoring the parameters of the model. Further, I briefly

discuss a methodology to study the goodness-of-fit of aggregate models in more general settings.
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1. Introduction

Every model is by definition a simplified reality. On the bright side, abstracting from the

complexity of the real world has allowed society to understand the sometimes subtle mechanisms

that rule nature and human behavior. This does not mean that a model is useful for every

purpose. Evidently, whilst some of them can illustrate certain dynamics of the real world very

clearly, approximation in itself may carry errors that harm predictions. This last comment

points directly to the question of which model is the most useful for a given problem. In

particular, when the answer is many the modeler needs to make a choice based on the results

she expects to highlight and the channels she wants to study. The dilemma is by no means alien

to the field of economics. When describing an economy, the researcher faces several different

assumptions that shape the complexity of the model. Although some of them may be made

for feasibility reasons (e.g., because a highly detailed model cannot be solved or simulated or

because data is not available to calibrate it), others serve a transparency purpose, that is, they

intend to highlight the most important results without dwelling on the unnecessary details.

Consequently, in the process of constructing a model, the investigator may choose to follow

Occam’s Razor principle: among the models that are consistent with the evidence, choose the

one that makes the fewest assumptions. This criterion implies that the measure of a (correct)

model is its complexity. However, as Milton Friedman said, “The ultimate goal of a positive

science is the development of a ‘theory’ or, ‘hypothesis’ that yields valid and meaningful (...)

predictions about phenomena not yet observed” and thus “Its performance is to be judged

by the precision, scope, and conformity with experience of the predictions it yields”.1 Hence,

in evaluating the validity of a theory, the robustness of its conclusions should be of critical

importance.

Different strands in the economic literature have studied when predictions derived from

a model are robust to different specifications. In Sutton (2007), the author discusses which

mechanisms in the context of industrial organization still hold in conditions outside the classical

models of, for example, Cournot and Bertrand. A similar motivation can be found in Kajii and

Morris (1997), where they study how sensitive game theory conclusions are to the assumption of

common knowledge of payoffs in a game. The interest in robustness in the context of mechanism

design can be also found in ter Vehn and Morris (2011). An interesting approach is the one in

Basu and Fernald (1997) where the authors try to estimate discrepancies due to “aggregation

effects” when considering a model with a representative firm and one where heterogeneous effects

1 Friedman (1953).
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are considered. Similarly, in Hanushek et al. (1996) the authors try to reconcile contradictory

results in the literature on estimating the value added by schools arguing an important role

of aggregation in the magnitude of omitted variable bias, which can in principle invalidate

previous estimations. Related to this literature there is a concern with models that make use

of aggregated data. Different authors have studied what is called “aggregation bias” arguing

that these models hide important mechanisms that could explain these differences.2 All in all,

different authors have tried to untangle the differences between predictions and realizations by

appealing to the goodness-of-fit of the models used to produce such estimations. In the cases

where the deviations are substantial, a revision to the model must be made.

As an example, consider the case of the representative agent model. The assumption that

there is only one consumer in the economy is useful and has been key to understand important

qualitative results, especially in macroeconomics. Nevertheless, employing this model to predict

future realizations of certain key variables such as aggregate demand or marginal propensity to

consume (MPC) may be inaccurate if heterogeneity effects are in place. In other words, there

is a shadow price in the approximation (which the investigator can be willing to pay or not)

if she wishes to use the model for another, more quantitative-driven purpose. This point is

made clearly in Carroll (2000) in the context of the buffer-stock model: “Representative-agent

models are typically calibrated to match an aggregate wealth-to-income ratio” but “the typical

household’s wealth is much smaller than the wealth of such a representative agent (...), this

would lead one to expect that the behavior of the median household may not resemble the

behavior of a representative agent with a wealth-to-income ratio similar to the aggregate ratio”.

The evidence quickly backs this view up: while the annual MPC predicted by the representative

agent model is about 0.04, many empirical analyses estimate this parameter to lie between 0.2

and 0.5.3

The aforementioned model is a particular case of a common practice in economics: aggre-

gation. The other canonical example of its use is aggregation across goods, where instead of

describing the myriad of goods available in an economy they are grouped into one or more

categories. Regarding these two implementations, precedent theoretical literature focused on

one side of the problem: When is it possible to carry out this practice and describe precisely the

same economy. In the case of the representative agent, the necessary and sufficient condition is

that the indirect utility function of every consumer has the Gorman form.4 When aggregation

2 See, for example Lee et al. (1990); Ravallion (1998); Feenstra and Hanson (2000); Imbs et al. (2005).
3 Carroll (2000).
4 Gorman (1953).
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is applied to goods, the answer has been more elusive but two results have arisen. First, the

Hicks-Leontief (composite commodity) theorem allows aggregation if relative prices are con-

stant within the group of goods that are to be bundled.5 A somewhat weaker requirement is

proposed by Lewbel (1996): bundling is feasible if all group relative prices are independent of

price indexes and income. The second answer states that grouping some goods is allowed if

preferences between them are “independent” of the remaining goods present in the economy.6

For the two kinds of aggregation mentioned before, the conditions for them to hold are highly

restrictive and not typically met in econometric or theoretical applications. As mentioned

before, the literature has assumed (disregarding these conditions) exact aggregation of both

types in constructing models and making econometric estimations and this practice comes at

a price. As stated in the preceding discussion, the validity of these models is directly attached

to the size of such cost. If the question an investigator is seeking to answer allows for the use

of aggregate models without incurring in a severe deviation from predictions, then not having

exact aggregation is of minor importance. In other words, compliance of the conditions for

aggregation is not a problem as long as the parameters of the simplified model are calibrated

in such a way that the estimation error is below some tolerance predefined by the modeler.

Hence, understanding and quantifying these differences is crucial in determining and measuring

the goodness-of-fit of these models. Consequently, and in contrast with some of the articles

mentioned earlier, in this work I intend to give a theoretical look at how these deviations

appear using simple models, and understand how a researcher might limit them. To this

end, the main insight I employ is that aggregation is trading off heterogeneity for simplicity

and from here is where errors make their appearance. Explicitly, I model heterogeneity as

a probability distribution over the relevant parameters of the economy, where relevance is

understood depending on the research question being asked. In that context, aggregation is

replacing the distribution of unknown relevant parameters by a Dirac distribution centered at

a point chosen by the modeler. Thus, the approximation error is closely related to the nature

of the original and the approximate distributions, specifically to some finite set of moments of

them.

Reformulating the problem in this manner has consequences beyond the particular case of

aggregate models. Diversity appears naturally in many applications and hence modeling it as a

distribution allows the investigator to define the problem in clearer terms. After determining the

relevant sources of heterogeneity in the specific context, it only remains to pick an appropriate

5 Leontief (1936); Hicks (1946).
6 See for example Gorman (1959).
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measure of the error that, conditional on the precision desired, narrows the range of distributions

available for replacement. The advantage of this line of thinking is that the optimal metric can

be created following the Friedman guidelines mentioned above. This way, models are evaluated

under the scope of the quality of their predictions and not on their complexity. Moreover, the

methodology proposed here serves also as a decision rule, leaving arbitrary choices outside the

modeling process.

The rest of the paper proceeds as follows. To motivate the subsequent discussion, in Section 2

I summarize the problems and existing results regarding conditions under which aggregation is

permitted. Then, I present three settings to illustrate how approximation errors appear when

using aggregate models to estimate future economic variables. First, in Section 3, I propose a

representative agent model in the context of aggregate demand estimation. Second, in Section 4,

I study a different setting with a representative agent model but where the objective is to

estimate the MPC. The third model, in Section 5, mixes the two canonical types of aggregation

by presenting an economy composed of several individuals consuming various goods, where good

aggregation takes a different form for each of the agents. Finally, in Section 6 I discuss how to

generalize the problem of heterogeneity approximation, detailing the precise methodology that

must be followed in order to reformulate it.

2. Existing results in aggregation

The economic literature has recognized two forms of aggregation. First, the problem of

consumer aggregation or the representative agent model seeks to describe the aggregate demand

of a multi-person economy by focusing only on the aggregate determinants of demand (e.g.,

the aggregate income), as opposed to the distribution of such variables. The second class

of aggregation focuses on describing demands for categories of goods without distinguishing

the individual consumption of each element in the group. I refer to this last problem as the

“Hicksian aggregation problem”.

Both kinds of aggregation are widely used in economic models. The representative consumer

is a salient feature of macroeconomic models, like the ones developed by Robert Lucas in 1978 to

study asset prices and by Kydland and Prescott in 1982, that began the theory of real business

cycles.7 These authors also make use of aggregation across goods by employing a two-good

model, although this feature has also been widely used to study the behavior of savings (in

7 See Lucas (1978) and Kydland and Prescott (1982).
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particular, precautionary savings during the life cycle) or consumption dynamics.8 Empirical

studies also make use of both forms of aggregation. Some of them assume all consumers are

equal – which is an example of consumer aggregation – and others overcome problems in the

data (e.g., availability or comprehensiveness) by stating that agents choose consumption on the

category and not on individual goods.9

In what follows I formally describe the problems about aggregation the early literature tried

to answer. These questions aimed at finding conditions that ensured aggregation did an exact

fit of a heterogeneous model. In order to describe both problems I rely heavily on Varian (1992).

2.1. The representative agent problem

Consider an economy composed by n consumers indexed by i “ 1, . . . , n. Their demand

functions of the k goods in the economy are summarized in the vector xipp, yiq, where p is

the price vector of the goods and yi is the income of agent i. The aggregate demand vector is

defined by

Xpp, y1, . . . , ynq “
n
ÿ

i“1

xipp, yiq. (1)

The question that automatically arises is: Can this aggregate demand function be regarded

as the one generated by a single (or “representative”) consumer? According to (1), the pre-

vious question is equivalent to looking for conditions under which X does not depend on the

distribution but on the aggregate income

Y :“
n
ÿ

i“1

yi.

The definitive answer to this problem came with Gorman (1953). According to his result, X

is a function of Y if and only if for every i P t1, . . . , nu the indirect utility function has the

Gorman form

vipp, yiq “ aippq ` bppqyi,

where ai, b are functions that must only depend on p and b has to be the same across consumers.

This functional requirement is somewhat restrictive but at least two particular examples are

worth mentioning: homothetic and quasilinear utility functions. For the first, the indirect

8 See Carroll (1992), Gourinchas and Parker (2002), Gul and Pesendorfer (2004), Parker and Preston (2005)
for some examples.

9 See Kaplan and Violante (2014), Berger and Vavra (2015), Kan et al. (2017), Fagereng et al. (2017) for
some examples.
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utility functions is

vpp, yq “ bppqy, (2)

whereas for the second

vpp, yq “ appq ` y.

Both examples clearly have the Gorman form. However, some homothetic functions can differ

in the function v between consumers and therefore aggregation is not possible. As an example,

for k “ 2, an economy of consumers with Cobb-Douglas utility functions

upx1, x2q “ xαi
1 x

1´αi
2 ,

where at least two αi are different does not allow for aggregation. In this case the function vppq

in (2) is different among individuals and the Gorman form is not present.

Observe that the main objective of the representative agent problem is to find an alternative

model that is coherent with the original. That is, this new, simpler model has to describe the

exactly same economy as the disaggregate one. Backing this task is the idea that models

should fit exactly in the context they intend to describe. However, since the original model

is an approximation by itself, a more consistent approach is to consider the second fit as an

additional layer of estimation and weigh its suitability in terms of the accuracy loss and the

potential additional insight obtained.

2.2. Hicksian aggregation problem

For this problem consider the following setting. Assume the consumption vector of some

agent is divided in two bundles px, zq. Accordingly, the price vector is separated into pp,qq.

Thus, if the utility function of the consumer is u, then the demand for the x goods is

xpp,q, yq “ argmax
x,z

upx, zq

s.t. px` qz “ y.

(3)

In numerous models, there is no interest in the consumption of each of the x-goods but

only in the demand for the bundle (e.g., focus on expenditure in savings against expenditure in

different financial instruments). Hence, the Hicksian aggregation problem is finding conditions

under which this approximation can be made without losing information. This implies finding

a quantity index X “ gpxq, a price index P “ fppq and a new utility function UpX, zq such
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that the solution
XpP,q, yq “ argmax

X,z
UpX, zq

s.t. PX ` qz “ y.

(4)

satisfies

Xpfppq,q, yq “ gpxpp,q, yqq.

In other words, the objective is to find an alternative model that is coherent with the original.

This brings out again the discussion at the end of the preceding section: Aggregation can be

regarded as a second layer of approximation and pondered in terms of its benefits and costs. In

this particular setting, the nature of the approximation is different, but the essential objective

of simplifying the world remains.

At least two situations exist under which these alternative models can be found: functional

and Hicksian separability. In the first, assume that the preference relation represented by u has

the following “independence” property

px, zq ą px1, zq ðñ px, z1q ą px1, z1q @ x,x1, z, z1. (5)

This independence property implies that there exists a function v such that

upx, zq “ Upvpxq, zq,

where Upv, zq is increasing in v. In this case, the consumer values consumption of x only

through v. For example, consider x to be different types of food. Independence in this context

can manifest if the agent only values the amount of calories she gets from x. In that situation,

all kinds of food are valued differently according to the amount of calories per unit each of

them give but the consumer only cares about the total caloric intake. The preceding example

suggests a particularity of this type of separability. Following the same nomenclature: The

consumer chooses the amount of calories and the total amount to spend on food first and then

she decides the individual consumption of each kind of food. Models that show this feature are

often referred to as hierarchical consumption models.

By calling mx :“ p ¨ xpp,q, yq, it can be shown that the following equality holds

xpp,q, yq “ argmax
x

vpxq

s.t. px “ mx.
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Therefore, if epp, vq is the expenditure function of the previous problem, then

vpxpp,q, yqq “ argmax
v,z

Upv, zq

s.t. epp, vq ` qz “ y.

However, note that the latter problem does not have the same structure as (4). This only

happens if v has a particular structure such that

epp, vq “ eppqv.

This property holds if, for example, v is homothetic and thus the Cobb-Douglas utility function

is an example in which this kind of aggregation is admissible. This discussion shows that under

functional separability this consumption model is hierarchical.

On the other hand, Hicksian separability is present in the following situation. Assume that

p “ tp0, where t is a scalar and p0 is a fixed price vector. Letting P :“ t and X :“ p0x, define

the following indirect utility function

V pP,q, yq “ argmax
x,z

upx, zq

s.t. Pp0x` qz “ y.

The solution U of the dual problem

UpX, zq “ argmin
P,q

V pP,q, yq

s.t. PX ` qz “ y,

by definition satisfies
V pP,q, yq “ argmax

X,z
UpX, zq

s.t. PX ` qz “ y.

showing that aggregation is possible with gpxq “ p0x and fppq “ t. This result, presented by

both Leontief (1936) and Hicks (1946), has been called the Hicks-Leontief theorem. As with

functional separability, note that the theorem presents sufficient but not necessary conditions

to find the functions g, f and U . In his work, Lewbel (1996) relaxes the assumptions of the

Hicks-Leontief theorem by not asking for constant relative prices through time but instead

for them to be independent of both the price index and income. In terms of data analysis,

9



the generalized composite commodity theorem of Lewbel does not ask for a correlation of one

between the price of the x-goods and their index.

One of the most common applications of good aggregation under Hicksian separability

assumptions are two-good models. Here, the interest is in the demand for one good while

bundling all the other goods in only one category. These kind of models are frequently used in

the macroeconomic literature where the study of aggregate consumption dynamics is greatly

simplified by assuming agents just consume and save (and hence there are only two goods

available). Observe that for this to happen and in accordance with the conditions in Lewbel

(1996) it must be true that relative prices of all goods in the economy are independent of

income and the price index. This requirement is stringent at its best. It is conceivable that

high-income consumers suffer changes in some relative prices that low-income ones do not. This

last situation crucially depends on the nature of the goods being bundled. In the extreme case

where the two-good model is employed, the definition of the category consumption is too broad

to ensure the conditions for the generalized theorem hold.

3. Aggregation across consumers

3.1. Description of the economy

Consider a two period economy (t “ 0, 1) composed by agents that consume two goods

xt “ pxt, ztq valued at prices pt “ ppt, qtq P R2
``. For simplicity, all subscripts t are omitted

unless needed. Each individual in this setting is identified with a pair py, αq, where y is her

income and α determines the form of her Cobb-Douglas utility function

uαpxq :“ upy,αqpxq “ xαz1´α.

Both y and α follow a joint distribution, F , with support S Ă p0,8q ˆ p0, 1q. Observe that in

principle y and α can be correlated. The marginal distributions are Fy and Fα, respectively.

For every fixed vector p, the agents choose the consumption bundle xpp, y, αq by maximizing

u over x subject to their respective budget restriction. Specifically, the agent identified with

the pair py, αq solves

max
x

uαpxq

s.t. p ¨ x “ y.

10



Hence, for good 1

xpp, y, αq “ α
y

p
,

and thus its aggregate demand is

Xpp, Fy, Fαq “
1

p

ż

S

yα dF pα, yq “
1

p
Eryαs “

1

p

´

ErysErαs ` Covpy, αq
¯

.

Similar expressions are obtained for the personal and aggregate demands of good z.

3.2. The researcher’s problem

Suppose now an investigator wishes to describe the aggregate demand of good 1 at time 1.

She has access to a full description of the income distribution of the agents in the economy in

t “ 0 (that is, she knows Fy0) but preferences at any time are not available to her. She also

knows X0, the aggregate demand of good 1 at time 0.10 In this setting, if X1 is the aggregate

demand for cellphones then our researcher wishes to estimate consumption of mobiles at t “ 1

by using data available at t “ 0 on income and aggregate consumption of these devices.

Since individual preferences are unknown to her, she assumes all individuals are equal, that

is, there exists α such that every agent in this economy has utility function uα. Given that

aggregation is possible when the parameters of the Cobb-Douglas utility function are the same

for all individuals (see Section 2.1), this assumption is equivalent to saying only one person

exists in the economy. Put differently, what the researcher is doing is approximate Fα by δα

where δx is the Dirac distribution centered at x. Analogously, she is approximating F with a

joint distribution G over the same support S and with marginals Fy and δα. This alternative

interpretation goes in line with the discussion at the end of Section 2.1, where the use of

aggregate models is an additional layer of approximation within the construction of a model.

Under the previous assumption, the representative agent has utility function

UαpX,Zq “ XαZ1´α,

and since Eryts is the aggregate income of this economy at time t, the best estimation for Xt is

pXtppt, Fyt , αq “ α
Eryts

pt
.

10 Observe that by assuming complete knowledge on the distribution of income and on the aggregate demand
I am abstracting the discussion from the appearance of estimation errors due to sampling.
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3.3. The estimation error

As mentioned in the introduction, the aggregation assumption imposes a shadow price on the

estimation. The error in this case arises from the differences between the individual demands

for x1 and the ones estimated by the simplified model. Indeed, observe that

Xpp, F q ´ pXpp, Fy, αq “

ż

S

yα

p
´
yα

p
dF py, αq,

“

ż

S

xpp, y, αq ´ xpp, y, αq dF py, αq,

and thus the accuracy in the estimation, although observable in macroeconomic variables, has

its roots in microeconomic differences. Moreover, conditional on having the correct distribution

of income, this discrepancy depends only on the choice of α.

Note that the monetized error (with sign) in the estimation at time t, as a function of α is

Dtpαq :“ pt

!

Xtppt, Fyt , Fαtq ´
pXtppt, Fyt , αq

)

“ Eryts
"

Erαts `
Covpyt, αtq

Eryts
´ α

*

, (6)

and observe that this difference does not depend on prices. Consequently, the error can be

reduced to zero if

α “ Erαts `
Covpyt, αtq

Eryts
looooooooooomooooooooooon

:“Mt

.11 (7)

Observe that this equation says that taking α as the expectation of αt is not enough. Instead,

some heterogeneity correction (in the form of the covariance of income and preferences) is

necessary to obtain an exact fit at time t. Recalling the interpretation of the single consumer

assumption as a way to approximate Ft, then (7) says that the only features of the distribution

that are important to have an exact fit at time t are its first and second moments. This

finding suggests that what matters when estimating aggregate variables (with a certain degree

of precision) using representative consumer models are a finite set of statistics of the underlying

distribution of the population.

Since the researcher has access to X0, then α can be chosen optimally to reduce the es-

timation error at t “ 0. Indeed, the optimal choice of α given this information is M0 and

11 Note that Mt “ Erαts `
Erytαts ´ ErytsErαts

Eryts
“

Erytαts
Eryts

. This is positive because yt and αt are. Mt is

also smaller than 1 because αt ă 1 and thus
Erytαts
Eryts

ă
Eryts
Eryts

“ 1. Hence, Mt P p0, 1q.

12



consequently, by (6), the estimation error in t “ 1 is

Eryts
!

M1 ´M0

)

. (8)

If preferences do not change, then letting α :“ α0 “ α1, it follows that

M1 ´M0 “
Covpy1, αq

Ery1s
´

Covpy0, αq

Ery0s
. (9)

Moreover, if y1 “ Ry0 for some R ą 0, then α “M0 eliminates the estimation error at t “ 1.

3.4. An example

To illustrate the appearance and magnitude of the estimation error in a model as the one

described above, consider the following setting. Preferences are the same in both periods and

α „ Up0, 1q (the marginal distribution of α is uniform). At t “ 0, the income follows a log-

Normal distribution with parameters pµ, σ0q with µ “ 10 and σ0 “ 0.25. The joint distribution

F0 is such that S0 “ tpy, αq : P py0 ď yq “ αu. This condition implies that Covpy0, αq ě 0.

To construct this joint distribution I take 107 draws from each marginal distribution, then sort

each list in ascending order to finally pair each of the 107 points of each distribution in the

order given in the previous step. The support of the distribution constructed this way can be

seen in the thick line in Figure 1.

Figure 1: Support of F0 and F1

0 20000 40000 60000 80000

y

0.0

0.2

0.4

0.6
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1.0
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y0 (σ = 0.25)

y1 (σ = 0.45)

y1 (σ = 0.65)

y1 (σ = 0.85)

y1 (σ = 1.05)

y1 (σ = 1.25)

The thick line represents the joint distribution at t “ 0. The thin lines are five
different examples of joint distributions at t “ 1, varying in the value of σ1.
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Under these parameters and according to (7), the optimal choice of α at t “ 0 is

α “ Erα0s `
Covpy0, α0q

Ery0s
“ 0.57, (10)

which is 14% bigger than the mean of the distribution of α.12 Now, suppose that between t “ 0

and t “ 1 there is a redistribution of income between each of the two halves of the distribution

determined by the median. In particular, I assume there is a “transfer” from the poorest to

the richest half. A modification like this can occur for example, after an unequal growth in

income or after a financial crisis. To generate this change I take y1 „ log -Normalpµ, σ1q,

with σ1 ě σ0. To see the effects that different values of σ1 have in the estimation error I

consider σ1 P r0.25, 1.25s. Note that both y0 and y1 have the same median but the tails of both

distributions are heavier, as shown in Figure 2.13 I assume that the joint distribution at t “ 1,

F1, still satisfies S1 “ tpy, αq : P py0 ď yq “ αu and thus I construct it using the same algorithm.

This assumptions means that the redistribution did not change the rank of each individual. In

order to illustrate the differences between S0 and the different supports S1, in Figure 1 I show

both sets, using the same values for σ1 as in Figure 2. From Figure 1 it is clear that given that

more mass is moved to the tails of the income distribution, preferences grow more quickly at

the beginning of the interval p0,8q and higher values of α are restricted to high values of y.

It follows from Figure 1 that the covariance between α and y1 changes depending on the

value of σ1. Hence, according to (8) and (9), the estimation error changes with σ1. In Figure 3

I show the relationship between the estimation error, Dpαq and σ1 for 0.25 ď σ1 ď 1.25 in

monetary terms. The maximum difference is close to 10 000 which representes nearly half of

the median income.14 The figure also shows that the error is monotone in σ1 and weakly

convex, as can be seen from the proximity of the curve to the straight line that joins the

extremes. Finally, observe that the error is positive for all the considered values of σ1 and the

reason comes directly from the particular construction of this example. Since the covariance

between y0 and α is always positive and grows (or stalls) at t “ 1, then M1 ěM0 for all values

of σ1 (see (7)) and so, according to (8), D1pαq ě 0 for every σ1.

As noted in (10), the value of α is slightly over the mean value of the preference marginal

distribution. From the previous exercise at least two questions arise: How different is the

optimal α in (10) from those needed to reduce the error to zero at t “ 1? Is it possible, in the

12 Since α „ Up0, 1q, Erαs “ 0.5.
13 The median of a log-Normal distribution with parameters µ and σ is eµ. For µ “ 10, we have that

eµ « 22 026.
14 10 000 is approximately 0.45 times the median income.
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Figure 2: Densities of y0 and y1 for different values of σ1

0 20000 40000 60000 80000

y

y0 (σ = 0.25)

y1 (σ = 0.45)

y1 (σ = 0.65)

y1 (σ = 0.85)

y1 (σ = 1.05)

y1 (σ = 1.25)

All distributions have µ “ 10 and σ according to the legend. The thick line
represents the income distribution at t “ 0. The thin lines are five different
examples of distributions at t “ 1. The dashed gray line corresponds to the
common median at, approximately, 22 026.

Figure 3: Estimation error D1pαq as a function of σ1
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The blue line shows D1pαq as a function of σ1. The dashed gray line joins the
two extremes of the curve.
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context of this setting, to obtain optimal α that completely cover the p0, 1q interval?

Both questions are closely related, since each one requires studying the response of α to

changes in the value of σ1. However, the answers point to different aspects of this setting. The

solution to the first question may give additional insights about how sensitive is the model to

the choice of parameters. For example, if the relationship between the optimal α at t “ 1 and

σ1 is strongly convex, then a representative agent model is very reactive to even the smallest

changes in the underlying heterogeneity of the economy. On the other hand, the answer to the

second question illustrates how unrestrained the error can be in the parameter selection even

in a simple model like the one presented here. Observe, however, that in this setting, given

that Covpy1, αq ě 0, the value of α is always greater or equal than Erαs “ 0.5 (see (7)).

To address the first question I compute M1 (that according to (7) is equal to the optimal

α at t “ 1) for the different values of σ1 P r0.25, 1.25s and plot them in Figure 4. The figure

shows that the optimal value of α grows fairly linear with σ1 in this range, which is illustrated

by the closeness of both the blue and gray lines. Note that for σ1 “ 1.25 the optimal α is

approximately equal to 0.811 which is 42.3% bigger than the chosen value of 0.57.

Figure 4: Optimal α at t “ 1 as a function of σ1
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The blue line shows the optimal α at t “ 1 as a function of σ1. The dashed gray
line joins the two extremes of the curve. Note that for σ1 “ 0, the optimal value of
α is the same as the one computed at t “ 0, approximately at 0.57 (see (10)).

Now, to find an answer to the second question, I conduct the following exercise. I take the

same distributions as before, that is, α „ Up0, 1q, y „ log -Normalpµ, σq with µ “ 10 and allow

σ to move between 0 and 5. As before, the joint distribution of py, αq satisfies the same condition

over its support. Next, I compute the optimal α using (7) for these parameters and plot them

in Figure 5. As mentioned above, α ě 0.5 for every σ in the considered range. Observe that the

curve is highly concave, meaning that α can be highly sensitive to the change of σ. In fact, the
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growth in the optimal α is very steep at the beginning, reaching 0.9 approximately at σ “ 1.83.15

Additionally, growth after σ “ 2.91 is greatly reduced: The derivative at this point is 0.01 and

since α “ 0.98, then the semi-elasticiy is also close to 0.01.16 The previous calculation implies

that from 0.98 onwards the growth in α is lower than 1%. It is also interesting to highlight the

opposite curvature of the functions in Figures 3 and 5. According to (7) and (8), the error is a

multiple of the difference between the optimal α and as a result what drives the convexity of

the curve in Figure 3 is the growth in the mean of y1. As a final remark, note that, although

this setting does not allow for α ă 0.5, reversing the covariance between α and y produces a

similar picture as that of Figure 5, but the curve is concave decreasing instead of increasing

and with an asymptote at α “ 0.

Figure 5: Optimal α at t “ 1 as a function of σ
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The blue line shows the optimal α as a function of σ, computed according to
(7), with α „ Up0, 1q and y „ log -Normalpµ, σq, with µ “ 10. The dashed
gray line joins the two extremes of the curve.

15 For σ “ 1.809, α “ 0.899 and for σ “ 1.834, α “ 0.902.
16 The semi-elasticity of α in this context is

1

α
¨
Bα

Bσ
.
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4. Consumer aggregation in dynamic models

4.1. The model

Consider the following model where a consumer, identified with parameters pρ, βq solves the

following problem

max
tctut

8
ÿ

t“1

βt
c1´ρt

1´ ρ
,

s.t. kt`1 “ p1´ δqpyt ´ ct`1q,

yt “ kt ` θtk
α
t ,

(11)

where Ct is consumption at time t, Kt`1 is the capital at the start of period t ` 1 and Yt

represents the total resources available (income) at time t. Let cpyq represent the infinite-

horizon consumption as a function of current resources, where both variables are normalized by

permanent labor income, that is, y “
Y

wL
and similarly for c.17 A salient feature of these models

is that c is a highly concave function of y, but for low and high values of income the function is

nearly linear, as in Figure 6. This behavior may harm predictions of the (aggregate) marginal

propensity of consumption (MPC) using a representative agent model if the aggregate income is

high but wealth is very unequally distributed. As expected, the difference between empirically

estimated MPCs and the one predicted by the representative agent model is substantial, while

the former are found between 0.2 and 0.5, the latter is only 0.04 under standard parameters.18

Figure 6: Consumption function
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The blue line shows the (normalized) consumption as a function of the cash-
on-hand y. The model that produces this type of function includes permanent
and idiosyncratic shocks, as in Krusell and Smith (1998).

17 If ctpyq is the optimal normalized consumption as a function of normalized current resources, then cpyq :“
lim
nÑ8

cT´npyq, where T is the last period of the finite horizon counterpart of problem (11).
18 See Carroll (2000).
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One way to make better predictions is to modify the model to produce a skewed distribution

of income, more similar to the data. Of course, if that same data hints how to choose the pa-

rameters of the representative agent model, then its use can produce more reasonable estimates

without incorporating more complexity. Hereinafter I use the same argument as the one in

Section 3 to understand how the basic representative agent model in (11) can be calibrated to

obtain a better prediction for the MPC.

4.2. The problem of estimating the MPC

Suppose the economy is composed by agents identified by their preference parameters (β,

ρ) and their income y, distributed according to F with marginals Fβ,ρ and Fy, respectively.

According to the model in (11), for every pair pβ, ρq there is an optimal consumption cβ,ρ and

thus the (aggregate) MPC is

MPCpF q “

ż

S

c1β,ρpyq dF,

where S :“ suppF is the support of the distribution F . Note that using the law of total

expectation we can write

MPCpF q “ Ey
”

Epβ,ρq | yrc1β,ρpyqs
ˇ

ˇ

ˇ
y
ı

. (12)

Note that if patience (β) and risk aversion (ρ) are known from income, then (12) gives a

reasonable method to compute the MPC.

Suppose now that an investigator wishes to compute the MPC for this economy but instead

of using a heterogeneous model (because data on preferences may not be available), she chooses

a pair of parameters (β, ρ) to propose a representative consumer model. Solving (11) for these

values gives a consumption function cβ,ρ. Suppose this researcher has access to Fy, that is, she

has data on income. As discussed in Section 3, the previous modeling decision is equivalent

to approximating Fβ,ρ by a Dirac distribution δβ,ρ or, in more broader terms, approximate F

by another distribution G with marginals δβ,ρ and Fy and with the same support. Hence, the

MPC in this context is

MPCpGq “

ż

S

c1
β,ρ
pyq dG “ Ey

”

c1
β,ρ
pyq

ı

. (13)

In consequence, using (12) and (13), the estimation error with sign is

Dpβ, ρq :“ Ey
”

Epβ,ρq | yrc1β,ρpyq ´ c1β,ρpyqs
ˇ

ˇ

ˇ
y
ı

.
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This means that, as shown in Section 3, the estimation error arises from differences in the

“estimated” MPC for each agent. Of course, the aggregate model is not in principle capturing

directly the individual MPC. Nevertheless when thought of it as approximating the heterogene-

ity in the economy, then it is possible to interpret that is indeed the case.

Sadly, for a model like (11) there is no analytic expression for cβ,ρ and thus neither one for

c1β,ρ. Still, conditional on having a Taylor approximation to a given desired degree of precision,

it is clear that these functions depend on a finite amount of moments of the joint distribution

of β, ρ and y. Hence, Dpβ, ρq also depends on a finite number of moments of F , allowing a

tailoring in the approximation of the heterogeneity with the objective of reducing the estimation

error.

4.3. Numerical example

In this section I show that an optimally chosen representative agent model can provide

close estimates of the aggregate MPC without modeling the heterogeneity of the population.

As mentioned above, every pair pβ, ρq in the economy is associated with a consumption function

cβ,ρ from which the MPC at the respective income value y is obtained. To assess how different

the policy functions are depending on these parameters, observe Figure 7.

Figure 7: Consumption functions at different values of ρ and β
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(b) ρ “ 3
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Each line is a different consumption function. In Panel (a), β “ 0.99 for all values of ρ. Similarly, in Panel
(b) for all different consumption functions, ρ “ 3.

In Panel (a), where β is fixed at 0.99 and ρ varies from 1 to 5, the concavity of the function

is greater as ρ grows. It is also interesting to note that the curves are almost parallel for

high-income agents, meaning that for different values of ρ, the MPC is very similar if y is large

enough. On the other hand, in Panel (b), ρ is fixed at 3 and β varies from 0.89 to 0.99. All

functions are fairly similar but, again, the concavity increases as β gets closer to 0.99. Contrary
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to what is shown in Panel (a), the curves have different slopes for large values of y, meaning that

the MPC differs significantly for each β. As a final remark, note that the smooth transitions

showed in this figure strongly suggest that the choice of the parameters of a representative agent

model can balance the underlying heterogeneity of the agents’ policy functions when estimating

the aggregate MPC.

In order to make the last point explicit, consider the following setting. There are 200 agents

in the economy with β, ρ and y independent random variables. The distribution F is obtained

by first taking 200 independent draws from the following distributions:

β: triangular distribution with lower limit 0.9, and with upper limit and mean equal to

0.99.

ρ: triangular distribution with lower limit 1, upper limit 5 and mean 3.

y: uniform distribution over the interval r0, 10s.

Then, a triple pβ, ρ, yq is associated to each agent. The distribution of pβ, ρq in the economy

is presented in Figure 8. As can be seen in the figure, the majority of agents are close to the

intersection of the dashed lines, that correspond to the mean (and mode) of the underlying

distributions. The joint distribution of the triples pβ, ρ, yq is presented in Figure 9 to further

illustrate the independency of the variables.

Figure 8: Distribution of β and ρ in the economy
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The figure shows the marginal distribution Fβ,ρ. Each dot represents an agent
in the economy. The dashed lines correspond to ρ “ 3 and β “ 0.99, the
means of the triangular distributions.
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Figure 9: Joint distribution of β, ρ and y in the economy
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The figure shows the distribution Fβ,ρ,y. Each dot represents an agent in the
economy.

According to the previous section, the joint distribution generated this way determines an

aggregated MPC and the choice of pβ, ρq is aimed at keepingDpβ, ρq close to zero. Assuming the

only known feature of the distribution of pβ, ρq is its boundaries – in this example, β P r0.9, 0.99s

and ρ P r1, 5s – then I construct a grid with 10 000 points by taking 100 evenly spaced points

from each interval and making all possible combinations. Next, for each pair pβ, ρq I compute

the MPC associated to a representative agent model with these parameters. The results of

this procedure are depicted in Figure 10.

Figure 10: Computed MPC for each pair pβ, ρq
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The figure shows the computed MPC for each pair
`

β, ρ
˘

in a 10 000 point
grid constructed in r0.9, 1s ˆ r1, 5s. The red plane is set at the real value of
the MPC for this economy, approximately at 0.176.

22



From the figure it is clear that the blue and red planes intersect in more than one point.

Moreover, the intersection is a curve. The figure also shows that the estimated MPC is more

responsive to β than to ρ, which is clear from the higher slope that the blue surface has on

the β axis relative to the ρ one. This last observation is in line with Carroll (2000), where the

choice of two different β values is crucial to obtain a closer estimate of the MPC.

Finally, to give an idea of how the mentioned curve looks, in Figure 11 I graph the “zero”

difference curves, that is, the points pβ, ρq for which |Dpβ, ρq| is less than or equal than a certain

tolerance. In Panel (a) the tolerance is set to 10´4 while in Panel (b) it is set to 10´5. As seen

in this figure, the curve is fairly smooth and again shows that the difference is more sensitive

to the choice of β than that of ρ. This can be seen in the fact that when the tolerance is 10´4,

for every value of ρ there is a β such that the difference is below the tolerance level but the

converse is not true. This observation brings back the discussion over Figure 7. The reason why

choosing β is more critical than choosing ρ can be derived following two steps. First, the MPC

for different values of ρ is fairly similar for y ą 2, as evidenced by the similarity of the slopes in

Panel (a) of Figure 7. Second, the 80% of the uniform distribution over r0, 10s is contained in

the interval r2, 10s. Hence, the majority of the agents lie in a portion of the income distribution

where the difference in ρ is not significant in the calculation of the MPC. On the contrary,

since the MPC for different values of β may differ greatly, then the range of optimal β available

can be greatly reduced if tolerance is small enough. In the same line, note that decreasing the

tolerance by one order of magnitude strongly reduces the set of optimal parameters available.

Figure 11: “Zero” difference curves
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The figure shows pairs pβ, ρq for which |Dpβ, ρq| is less or equal than a certain tolerance.
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5. Consumer aggregation and category goods

5.1. Description

Consider a two period economy composed by agents that consume n`1 goods: an essential

good z (e.g., water) and n different goods grouped in the vector x. Good z is valued at price

q P R`` and the x goods are valued at prices p P Rn
``. In what follows and for simplicity of

notation, the subscripts t for all variables are omitted unless needed. Each individual in this

setting is identified with a pair py, αq, where y P p0,8q is her income and α P p0, 1q determines

the form of her pseudo-Cobb-Douglas (PCD) utility function

uαpx, zq :“ upy,αqpx, zq “
n
ÿ

j“1

xαj z
1´α

“

˜

n
ÿ

j“1

xαj

¸

z1´α.19

Consumers choose how much of the x goods to consume in each period according to

xpp, q, y, αq :“ argmax
x,z

uαpx, zq,

s.t. px` qz “ y.

(14)

The pairs py, αq follow a distribution F (with marginal distributions Fy and Fα) over their

support S Ă p0,8q ˆ p0, 1q. In this setting, it is possible to aggregate consumption of the x

goods into a single good X (see Section 2.2) given by

gαpxq “

˜

n
ÿ

j“1

xαj

¸1{α

. (15)

In that case, we have

Upgαpxq, zq :“ gαpxq
αz1´α, (16)

which is the usual Cobb-Douglas utility function. Hence, by defining ε :“ p1´ αq´1 and

Pαppq :“

˜

n
ÿ

j“1

p1´εj

¸
1

1´ε

, (17)

we have that the category demand

Xpp, q, y, αq :“ argmax
X,z

UpX, zq,

s.t. PαppqX ` qz “ y,

(18)

19 The choice of this particular utility function is based on the work of Helpman et al. (2008), where they
use a similar function to study international trade. The price index in (17) is also obtained from this work.
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is equal to

Xpp, q, y, αq “ y Ttpα,pq :“ y
α

Pαppq
, (19)

and satisfies

Xpp, q, y, αq “ gα
`

xpp, q, y, αq
˘

. (20)

This means that the disaggregate model is coherent with the aggregate one for each individual

consumer. In other words, aggregation is an exact fit for each agent. Indeed, observe that

the price and quantity indices are specific for each agent as they depend on α. This means

that any attempt to describe this economy using category demands instead of the disaggregate

consumption needs knowledge about the heterogeneity of the population in order to avoid

approximation errors. Hence, although an exact representation for each consumer is available,

doing the same for the economy as a whole requires knowledge about the different preferences,

something that is possibly not available to the modeler.

5.2. The prediction problem

Consider now the following situation. An investigator at time t “ 0 has data available on

disaggregate consumption of the x and z goods, income (i.e., she knows Fy0) and prices. Her

objective is to estimate the aggregate category demand at t “ 1 (e.g., the country demand for

meat next year), X1. For simplicity she assumes that all agents have the same preferences,

which means that all differences in consumption are accounted by differences in income. The

last assumption also implies that she must choose a single parameter α in order to obtain the

category demand and the price index of each agent. Again, in the distribution-approximation

sense, observe that the mentioned assumption has the same effect I discuss above: The aggregate

model imposes an additional level of approximation by replacing Fα with δα. However, note

that in this case bundling goods into a category also represents an approximation but of a

different nature. Both, F and the function xpp, q, y, αq induce a distribution G over the vector

x. Then, gα induces a distribution over X that is in some sense an approximation of G, due to

(20). Because of that, while the approximation is made directly over F , its implications reach

G through gα.

Under the previous assumption, the best estimation for the category demand of each agent

at time t is
pXtppt, yt, αq “ yt Ttpα,ptq “

α

Pαpptq
.
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Thus, the best estimation for the aggregate category demand is

pXtppt, Fyt , αq “

ż 8

0

yt Ttpα,ptq dFyt “ ErytsTtpα,ptq. (21)

5.3. A complex estimation error

To understand how the estimation errors appear in this setting I proceed in two steps. First,

since category demands depend on αt, then for agent pyt, αtq the true value differs from the

estimated one by

Dtpyt, αt, αq :“ Xppt, yt, αtq ´ pXtppt, yt, αq “ yt

´

Ttpαt,ptq ´ Ttpα,ptq
¯

.20 (22)

It is not obvious that this difference is monotone in α for a given pair pyt, αtq. In fact, it is

not. To see this I take n “ 2, pt “ p1, 10q and present differences Dt relative to income (i.e.,

as a percentage) as a function of α for different values of αt in Figure 12.21 For illustrative

purposes I restrict α to the interval r0.15, 0.85s.

Each curve exhibits a strong non-monotonic behavior and is highly concave, increasing its

value quite abruptly when α is low and decreasing slowly when α is high. Related to the former

phenomenon and as showed in the figure, almost all curves cross the horizontal line twice: once

when α “ α in the increasing part of the curve and a second time in a greater value when the

relative error is decreasing. The previous characteristic is important when trying to reduce the

error to zero because it gives, at first glance, a broader range of optimal α to choose. However,

it may be the case that the error tolerance is small enough to restrict the attention to higher

values of α where the relative change in Dt is smaller. The last comment also highlights a

curious feature of this setting: An investigator whose objective is reducing the error to zero

might be interested in selecting a high value of α, away from the real values of preferences, in

order to protect herself from small changes that could be more harmful when α is small. A

final insight can be extracted from the transition between the curves. Note that the blue line

(α “ 0.2) moves downward when α grows to 0.4 but all the remaining curves move upward.

This behavior relates closely to the one of Tt, as shown in Figure 13, where this variable displays

the inverse behavior, decreasing rapidly for small values of α and then growing at a slower rate.

The second step of the analysis consists in studying the aggregate error. To this end, note that

20 Note that in this setting X does not depend on q and consequently, to simplify notation, this variable is
suppressed.

21 Choosing this price vector has only clarifying purposes. All of the features mentioned in the rest of the
paragraph are maintained if pt is changed.
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Figure 12: Dt relative to income as a function of α
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The figure shows Dt relative to income (i.e., Dt{ytˆ100) as a function of α for
the five different αt showed in the legend. The price vector used is pt “ p1, 10q.
The dashed gray line corresponds to Dt “ 0.

Figure 13: Tt as a function of α
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The figure shows Tt as a function of α. The price vector used is pt “ p1, 10q.
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the estimation error (with sign) of X1t is just the integral of Dt over S. To simplify notation

let Tt “ Ttpα,ptq and T t “ Ttpα,ptq. In the simplest case where preferences do not change over

time we have
Dt

`

T t
˘

:“

ż

S

Dtpyt, α, αq

“ E
“

yt Tt
‰

´ ErytsT t

“ Cov pyt, Ttq ` ErytsE rTts ´ ErytsT t

“ Eryts
"

Cov pyt, Ttq

Eryts
` E rTts ´ T t

*

.

(23)

which is in principle very similar to (6) in Section 3.3. However, note now that Dt depends

on prices and hence on their dynamics. In terms of distributions observe that in this case, the

mixed setting implies that the distribution that matters is the one of pyt, Ttq which includes an

additional source of heterogeneity: pt. From (23) we know that the sufficient statistics needed

to obtain an exact fit at time t are, just as in Section 3.3, the first and second moments of that

distribution. The difference in this example is that the new source of variation, prices, may

affect heavily the precision with which these statistics are estimated.

It is clear from (23) that an investigator interested in making the estimation error the

smallest possible should choose α such that

T t “ M̃t :“ E rTts `
Cov pyt, Ttq

Eryts
looooooooooomooooooooooon

:“M̃t

. (24)

Observe that changes in prices may affect the right hand side of (24). If the investigator

only has access to t “ 0 variables, knowing the price dynamics may not be enough to reduce the

estimation error at t “ 1 to zero. Indeed, note that the value of each term in M̃0 is unknown at

t “ 0, thus any correction using knowledge about price changes is not feasible. It is interesting

to note, however, that if relative prices do not change between t “ 0 and t “ 1, that is, if

p1 “ λp0, then using that Pαppq is homogeneous of degree 1 we have T1 “ λ´1T0,

λ´1M̃0 “ ErT1s `
Cov py0, T1q

Ery0s
,

and

T 1 “ λ´1T 0. (25)

Hence, in this scenario, setting T 0 “ M̃0 as in (24) (assuming that reducing the estimation

error to zero at t “ 0 is achievable) and then making the correction in (25) further reduces the
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estimation error if

ˇ

ˇ

ˇ
M̃1 ´ λ

´1M̃0

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
M̃1 ´ M̃0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Cov py1, T1q

Ery1s
´

Cov py0, T1q

Ery0s

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

E rT1s ´ E rT0s `
Cov py1, T1q

Ery1s
´

Cov py0, T0q

Ery0s

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Cov py1, T1q

Ery1s
´

Cov py0, T1q

Ery0s

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

p1´ λqE rT1s `
Cov py1, T1q

Ery1s
´

Cov py0, T0q

Ery0s

ˇ

ˇ

ˇ

ˇ

.

Moreover, if y1 “ Ry0 for some R ą 0, then implementing this correction eliminates the

error, just as what happened in Section 3.3. Finally, note that if prices do not change, then

T0 “ T1 and (23) has the same form as (6). This phenomenon is in line with the previous

discussion: By suppressing the variation or heterogeneity in prices over time we return to the

results of the model in Section 3.

5.4. Numerical example

In this section I construct an example in order to understand this particular setting and

study how the optimal aggregation parameters and the approximation accuracy change between

one period and the next. For this purpose, I take n “ 2 and p0 “ p1, 10q, I assume preferences do

not change (i.e., α0 “ α1 “ α) and consider the same constructions for the joint distributions

F0 and F1 as presented in Section 3.4, except for the fact that, for clarifying purposes, α

is restricted to the interval r0.15, 0.85s.22 In this case I choose µ “ ln 5.5, σ0 “ 0.25 and

σ1 P r0.25, 1.25s. This value of µ ensures that the median consumer can buy half of each of

the x goods. In order to continue the discussion at the end of the preceding section I consider

p1 “ λp0 and two values for λ, λ1 “ 0.5, λ2 “ 1.5. This way, with λ1 the x goods reduce their

cost (relative to z) and viceversa with λ2. The difference between T0 and both T1 is presented

in Figure 14. As can be seen in the image, lower prices rise the value of T1 in contrast to T0,

while greater prices have the opposite effect, as expected from the functional form of Tt. Since

prices appear in the denominator, the increase of Tt after a price fall is greater than its drop.23

In the foregoing section I mentioned that for this setting the important distribution is that

of pyt, Ttq. Consequently, the next step is to investigate its support in a similar fashion as in

Section 3.4. In Figure 15 I present the support of the three joint distributions of interest: the

one of pyt, αtq in Figure 15a, pyt, Ttq with λ1 “ 0.5 in Figure 15b and the one of pyt, Ttq using

22 This is, y0 and y1 follow log-Normal distributions with parameters pµ, σ0q and pµ, σ1q, respectively, α „
Up0.15, 0.85q and the joint distribution is such that individuals with higher α have higher income.

23 Remember that in this scheme T1 “ λ´1T0 and hence, for a given value of T0, the function T1pλq behaves
like x´1.
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Figure 14: T0 and T1 as a function of α
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p1 = (0.5, 5.0)

p1 = (1.5, 15.0)

The figure shows T0 (thick blue line) and T1 (yellow and purple lines) as a
function of α. T0 is computed using p0 “ p1, 10q and each T1 is computed
with p1 “ λip0, where λ1 “ 0.5 and λ2 “ 1.5.

λ2 “ 1.5 in Figure 15c. It is possible to see that while yt and α have positive covariance, for yt

and Tt it is negative and in both cases the relation is not monotonic. Additionally, in Figure 15b

we see that this covariance is increased in absolute value between t “ 0 and t “ 1, as evidenced

by the steeper line that joins the extremes of the t “ 1 curves, which contrasts with the wider

line of the t “ 0 variables. The opposite effect is observed in Figure 15c. It is also worth noting

that to the right side of the median, the relation pyt, Ttq is almost constant in both Panels (b)

and (c), while the highest variability happens to income values below the median. Hence, by

looking back at (22), it is clear that choosing α closer to the one shared by the high-income

fraction of the population may reduce the estimation error further than focusing on the complete

set of agents. Remembering that using the representative agent means changing the support to

a straight horizontal line in each of the panels in Figure 15, then the previous comment means

that in this particular setting, a two-agent model can be a much better approximation, while

still maintaining the simplicity. In graphical terms, a two-agent model appears as a two-valued

function in each of the plots in Figure 15.

For this example, the choice of optimal parameters at t “ 0 is summarized in Table 1.

The value of α is chosen optimally to minimize the (absolute value of the) error at t “ 0 and

then T 0 is computed using the definition. Finally, T 1 is obtained following the aforementioned

correction T 1 “ λ´1T 0. The first two rows of the column are equal precisely because the optimal

parameters are obtained at t “ 0, when no price change has yet occurred. The last row is in

line with the discussion above. The optimal T 1 in both cases is closer to the more constant

part given by the rich half of the population. The last statement finds its explanation directly
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from (22): Since income is higher for this half, is more important to diminish the difference for

these agents than for the other half in order to reduce the error to zero.

The next step is to determine how big the estimation error is at t “ 1. Figure 16 presents

the difference D1pT 1q as a function of σ1 (see (23)), the parameter of redistribution. As we can

see from the figure, the approximation error using this corrected parameter is near zero and in

both cases the aggregate demand is overestimated. Although meaningless because of the order

of magnitude, it is interesting to note that when prices drop, the discrepancy is bigger than

when they increase. In other words, when prices fall from t “ 0 to t “ 1, the overestimation

of the aggregate demand is more pronounced. This result should come with no surprise after

analyzing Figure 15. In Panels (b) and (c) we see that the drop in Tt after a price increase is

smaller than its rise after a price fall. Hence, the change in X1 in the first case is smaller than

in the second (see (19)).

Figure 15: Support of joint distributions

(a) pyt, αq
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(b) pyt, Ttq, λ1 “ 0.5
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(c) pyt, Ttq, λ2 “ 1.5
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The figure shows the support of the joint distributions of pyt, αq, pyt, Ttq with λ1 “ 0.5 and pyt, Ttq with
λ2 “ 1.5 for five different values of σ1. The dashed gray lines correspond to yt “ 5.5, the median of the
distribution. The price vectors used are p0 “ p1, 10q and p1 “ λip0, with i “ 1, 2.
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Table 1: Optimal parameters at t “ 0

λ

0.5 1.5

α 0.75 0.75

T 0 0.75 0.75

T 1 1.5 0.5

The table shows the optimal parame-
ters α, T 0 and T 1 “ λ´1T 0 for the
two values of λ. The price vectors used
are p0 “ p1, 10q and p1 “ λip0, with
i “ 1, 2.

From the discussion at the end of Section 5.3, the correction in (25) is useful only if

ˇ

ˇ

ˇ
M̃1 ´ λ

´1M̃0

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
M̃1 ´ M̃0

ˇ

ˇ

ˇ
.

Using this numerical example it is possible to determine if the change from T 0 to T 1 is capable

of lowering the (absolute value of the) error by directly computing D1pT 0q. In Figure 17 I show

how this difference changes with σ1. Comparing this figure with Figure 16 we see that making

the correction lowers the error by several orders of magnitude: While changing the parameter

obtained at t “ 0 using (25) gives an error of magnitude 10´7, keeping T 0 returns an estimate

that differs with the real value by 10´1, six orders of magnitude greater than in the previous

case. Nevertheless, it must be borne in mind that in order to use T 0 it is not necessary to know

the value of λ, which may not be available at t “ 0. If that is the case, the difference found

may be small enough to choose to maintain the uncorrected parameter.

Figure 16: Estimation error D1pT 1q as a function of σ1
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(b) λ “ 1.5
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The blue line shows D1pT 1q as a function of σ1, computed using (23). T 1 is computed using the correction
in (25). The price vectors used are p0 “ p1, 10q and p1 “ λip0, with i “ 1, 2.
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Figure 17: Estimation error D1pT 0q as a function of σ1

(a) λ “ 0.5
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The blue line shows D1pT 1q as a function of σ1, computed using (23). The price vectors used are p0 “

p1, 10q and p1 “ λip0, with i “ 1, 2.

To close this section I show how the optimal α should evolve depending on the value of σ1.

The results shown in Figures 16 and 17 suggest that α should be constant over time, since the

error commited in both cases is small, especially in the first case. In Figure 18 I show that this

is exactly the case: Both when prices drop and when they increase, the optimal α is the same

regardless the value of σ1. The explanation for this phenomenon is, again, obtained directly

from (24). In this example, Covpyt, Ttq is extremely small, with values around 10´15. This

contrasts with the same statistic for pyt, αtq obtained in Section 3, where Covpyt, αtq is large

and increased monotonically with σ1. The previous explanation implies that T t is very close to

ErTts for every σ1 and for that reason the optimal parameter does not change noticeably.

Figure 18: Optimal α at t “ 1 as a function of σ1

(a) λ “ 0.5

0.25 0.50 0.75 1.00 1.25
σ1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

α

(b) λ “ 1.5
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The blue line shows the optimal α at t “ 1 as a function of σ1. Note that for σ1 “ 0, the optimal value of
α is the same as the one computed at t “ 0: 0.75 (see Table 1). The price vectors used are p0 “ p1, 10q
and p1 “ λip0, with i “ 1, 2.
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6. Concluding remarks

The preceding exercises and problems depict three situations where the inherent diversity of

a model is replaced with a completely homogeneous alternative. In all three cases, aggregation

is used as a tool to overcome the complexity imposed by differences between agents. This work

diverges from previous attempts to study aggregate models not on the objective but on the

means to attain it. Both approaches share a quest to obtain requisites that ensure coherence

between homogeneous and heterogeneous models. However, while the existing literature seek to

impose these requirements on the disaggregate model, I claim instead that a better approach is

to introduce them on the aggregate one. The advantage of this alternative is that it suppresses

all restrictions about what kind of model can be subject to aggregation. As a consequence, all

past models that ignored the conditions to have exact aggregation can be now evaluated in terms

of the quality of the fit, instead of the lack of the right context to apply it. In particular, this

way of thinking the problem has implications on a variety of models where intrinsic differences

are part of their essence.

In broader terms, the main idea I present in this paper is that aggregation can be regarded

as a tool or solution used in the problem of heterogeneity approximation. Following the insights

and lines of argumentation of the foregoing sections, I can reformulate this modeling problem

as follows. Diversity is, in formal terms, the presence of a non-trivial distribution F over a

given set of parameters in the economy. Thus, the question of finding a suitable substitute to

it consists of two parts: 1) determine which aspects of F are relevant to the specific objective

of the model, and 2) establish an appropriate distance between distributions that allows the

researcher to select the best F̂ to replace F . This way, the original problem, which may be

ambiguous in its conception, is replaced by one that is both transparent and susceptible to be

tackled directly using mathematical tools.

The first part of the question is equivalent to determining the most significant sources of

heterogeneity and how to model them. For that reason, the result of this search is inevitably

tied to the particular problem the researcher is trying to confront. However, this does not

necessarily imply that obtaining the answer is difficult. On the contrary, this phase of the

modeling problem was already present and, moreover, is allegedly easier since heterogeneous

features within a model are generally the fundamental part of the question. Nevertheless, it is

clear that when finding the answer, some decision about the extent of the disaggregate nature

of the model has to be made. Indeed, note that the dual of the question asks which aspects of F

are not relevant and, consequently, not included in the approximation problem. An additional
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advantage is that reviewing the most important aspects of the problem at hand may give some

hints regarding the next step: choosing the distance between distributions. By narrowing the

sources of heterogeneity it is conceivable that an appropriate measure of error emerges naturally.

The second stage of the question, adopting a suitable distance, is probably the hardest of

the two. In optimization terms, the problem requires to carefully define the loss function to

use. In the examples developed throughout this text the metrics used are simple differences

between the real and estimated values of the variable of interest. This later implied that the

error can be written in terms of a certain number moments of both the original and approximate

distributions. Arguably, other types of loss functions can result in better alternative models if

their choice is capable of correcting deficiencies that may arise when using the ones I introduced

throughout the text. However, in the case of a researcher interested in a given variable (or set of

variables) X, the simple-difference choice may be backed by the fact that for a certain tolerance

in the goodness-of-fit, a Taylor approximation of X around a previously know point (e.g., the

known value at the moment of the modeling process) can be made. This polynomial provides

the relevant moments of the variables that are needed to have a suitable fit. Therefore, a

possibility is using another distribution F̂ that shares those moments with F . Another option

is using a simpler F̂ that is calibrated using this same approximation, like the examples in the

paper.

The above discussion makes it clear that taking into account the full diversity of the model

and using a completely aggregate one are two extremes of a wide spectrum of possibilities.

Depending on the particular problem to confront, the most desirable approximation likely lies

between the two. For the models I present in this work, the aggregate extreme is always a

feasible solution, but it is not necessarily optimal under every criteria. Moreover, this analysis

only takes care of problems where the interest is predicting an aggregate variable. This is the

crucial feature that implies that the estimation differences depend on some unknown moments

of the original distribution. Specific examples remain to be studied where the interest is of a

different kind (e.g., estimation of treatment effects or robustness of the conclusions of a model).

As mentioned before, it is plausible that the main challenge in any other modeling problem

is the choice of the appropriate measure of error or, in other words, the distance between the

chosen distributions. All in all, for researchers dealing with problems in which diversity of any

kind makes an appearance, this framework provides them the necessary tools to make informed

modeling decisions. As a result, they can base their assumptions exclusively on the question

at hand and the implications of its answer, instead of on stringent conditions that most of the

time are not met.
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