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A set of four finite energy QCD sum rules are used to determine the magnetic field dependence of the
sum of the up- and down-quark masses of QCD, (mu þmd), the pion decay constant fπ , the pion massmπ ,
the gluon condensate, hαsG2i, and the squared energy threshold for the onset of perturbative QCD, s0,
related to the Polyakov loop of lattice QCD. As a first input we take the magnetic evolution of the chiral
quark condensate from lattice QCD and/or Nambu–Jona-Lasinio results. As a second input we take three
different possible conditions concerning the quark and pion masses.
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I. INTRODUCTION

The method of QCD sum rules (QCDSR) [1] is a well-
established technique to obtain results in QCD analytically,
thus complementing Lattice QCD simulations (LQCD). The
extension of QCDSR to finite temperature, as first proposed
in [2], has contributed significantly to the understanding of
hadronic as well as QCD dynamics in this regime [3]. A
further extension of QCDSR to account for the presence of
strong magnetic fields was proposed recently in [4].
Modern applications of QCDSR are based on a pioneer

proposal relating QCD to hadronic physics in the complex
squared-energy s-plane [5]. The only singularities of
current correlators lie on the right-hand plane. They are
in the form of poles on the real s-axis (stable hadrons), or on
the second Riemann sheet (hadronic resonances). The
threshold for the onset of perturbative QCD (PQCD) in
this plane is named s0, with s0 ≳ 1 GeV2. Next, Cauchy

theorem is invoked in the s-plane (see Fig. 1), leading to
finite energy QCD sum rules (FESR)

1

π

Z
s0

0

ImΠðsÞjHadPðsÞds ¼
−1
2πi

I
Cðs0Þ

ΠðsÞjQCDPðsÞds;

ð1Þ
where PðsÞ is an analytic integration kernel. If singular
kernels are needed in applications, Eq. (1) will have to
include the residues at the poles.
In the QCD-FESR framework at finite temperature [3],

quark-gluon deconfinement emerges mostly, but not exclu-
sively, from the behavior of s0ðTÞ, as well as other hadronic
parameters. For instance, in the light-quark and heavy-light
quark systems s0ðTÞ turns out to be a monotonically
decreasing function of temperature, vanishing at a critical
value, Tc, the deconfinement temperature. It should be
mentioned that recently an intriguing connection has been
found between s0ðTÞ and the Polyakov loop, the deconfining
object of LQCD [6]. For heavy-heavy quark systems it was
first found using QCD sum rules that these states survive the
critical temperature for deconfinement [7]. This unexpected
situation was later confirmed by LQCD determinations [8].
Another important recent result in this framework

is the temperature dependence of the light-quark masses,
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ðmu þmdÞðTÞ, and the pion decay constant, fπðTÞ [9]. The
latter decreases with increasing temperature, independently
of the behavior of the pion mass, as expected from the
standard chiral-symmetry scenario in QCD. In contrast, the
light quark masses increase substantially with temperature,
approaching their constituent quark values, thus hinting at
deconfinement.
Turning to matter in the presence of magnetic fields, a

QCD FESR analysis at zero temperature was performed
recently in the chiral limit [4]. The leading magnetic
corrections, quadratic in the field, indicate that s0 is
proportional to the absolute value of the quark condensate,
jhq̄qij. Thus, s0 increases with increasing field, i.e.,
parameters describing chiral-symmetry restoration behave
similarly to those associated with deconfinement. In
addition, it was found that the gluon condensate also
increases with increasing field strength.
In this paper we improve on the analysis of [4] by

considering three current correlators, the light-quark axial-
vector current correlator, ΠAA

μν , the hybrid correlator involv-
ing a light-quark axial-vector current and its divergence,
Π5ν, and the correlator of the divergence of the light-quark
axial-vector current, ψ5, in the presence of a magnetic field.
The magnetic field will enter as a correction to the
propagator in an expansion in powers of eB. Two FESR
are considered for ΠAA

μν , with integration kernels PðsÞ ¼ 1

and PðsÞ ¼ s. One FESR is invoked for Π5νðsÞ with
PðsÞ ¼ 1, and one FESR for ψ5ðsÞ with PðsÞ ¼ 1. This
procedure allows for the prediction of four relevant param-
eters. With this choice of correlators and FESR there is no

contribution from the spin projected quark conden-
sate hq̄σ12qi.1
The sum rules provide the behavior of the threshold for

PQCD, s0, the pion mass, mπ, the pion decay constant, fπ ,
the quark masses, mq, and the gluon condensate, hαsG2i.
One input is required. One possibility is to input the
magnetic evolution of the quark condensate, hq̄qi, from
the Nambu-Jona-Lasinio (NJL) model [10], which agrees
with LQCD results [11]. An alternative input involves three
different possibilities, (i) the behavior of the pion mass is
given by results from NJL [10], (ii) the ratio mq=m2

π is
assumed constant, with both masses evolving with the
magnetic field, and (iii) the quark masses are assumed to be
independent of the magnetic field.
Results from this analysis show that s0, and fπ always

increase with increasing magnetic field, i.e., they are robust
quantities. However, the evolution of the gluon condensate
is strongly dependent on the assumptions being made for
the behavior of the pion and the quark masses.

II. VACUUM CURRENT CORRELATORS

The axial-vector current correlator is defined as

ΠAA
μν ðq2Þ ¼ i

Z
d4xeiqxh0jT½AμðxÞA†

νð0Þ�j0i

¼ qμqνΠ0ðq2Þ þ gμνΠ1ðq2Þ; ð2Þ

where AμðxÞ¼∶d̄ðxÞγμγ5uðxÞ∶ is the (electrically charged)
axial-vector current, and qμ is the four-momentum carried
by the current. The functions Π0;1ðq2Þ are free of kin-
ematical singularities, a key property needed in writing
dispersion relations and sum rules. Their normalization
from the leading order in PQCD is

Π0ðq2ÞjPQCD ¼ −
1

4π2
lnð−q2=μ2Þ; ð3Þ

Π1ðq2ÞjPQCD ¼ 1

4π2
q2 lnð−q2=μ2Þ: ð4Þ

The operator product expansion (OPE) of current corre-
lators in QCD is given by

Πðq2ÞjQCD ¼ C0Î þ
X
N¼1

C2Nðq2; μ2Þ
ð−q2ÞN hÔ2Nðμ2Þi; ð5Þ

where hÔ2Nðμ2Þi≡ h0jÔ2Nðμ2Þj0i, μ2 is a renormalization
scale, the Wilson coefficients CN depend on the Lorentz
indexes and quantum numbers of the currents, and on the
local gauge invariant operators ÔN built from the quark and
gluon fields of the QCD Lagrangian. These operators are

Re(s)

Im(s)

FIG. 1. Integration contour in the complex s-plane. The dis-
continuity across the real axis brings in the hadronic spectral
function, while integration around the circle involves the QCD
correlator. The radius of the circle is s0, the onset of QCD.

1This condensate is otherwise not negligible in comparison
with the standard ones in the vacuum.
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ordered by increasing dimensionality and the Wilson
coefficients are calculable in PQCD. The unit operator
above has dimension d≡ 2N ¼ 0 and C0Î stands for the
purely perturbative contribution. The dimension d≡ 2N ¼
2 term in the OPE cannot be constructed from gauge
invariant operators built from the quark and gluon fields of
QCD (apart from quark mass corrections). In addition,
there is no evidence for a d ¼ 2 genuine term from analyses
using experimental data [12,13]. Hence, the OPE starts at
dimension d≡ 2N ¼ 4. Quark mass corrections are non-
leading in the case of the axial-vector correlator, Eq. (2),
and will be neglected in the sequel. The contributions at
dimension d ¼ 4 arise from the vacuum expectation values
of the gluon field squared (gluon condensate), and of the
quark-antiquark fields (the quark condensate) times the
quark mass.
While the Wilson coefficients in the OPE, Eq. (5) can be

computed in PQCD, the values of the vacuum condensates
cannot be obtained analytically from first principles, as this
would be tantamount to solving QCD analytically and
exactly. These condensates can be determined from the
QCDSR themselves, in terms of some input experimental
information, e.g., spectral function data from eþe− anni-
hilation into hadrons, or hadronic decays of the τ-lepton.
Alternatively, they may obtained by LQCD simulations. An
exception is the value of the quark condensate which is
related to the pion decay constant through the Gell-Mann-
Oakes-Renner (GMOR) relation [14,15], a QCD low
energy theorem.
The nonperturbative power corrections for Π0ðq2Þ are

given in terms of the gluon and the quark condensates

Π0ðq2ÞjNPQCD ¼ 1

q4

�
mudhq̄qi þ

1

12π
hαsG2i

�
; ð6Þ

where G2 ≡GμνGμν, hq̄qi≡ hūui ¼ hd̄di, vacuum isospin
symmetry breaking will be neglected in the sequel, and

mud ≡ ðmu þmdÞ: ð7Þ

Recent values of these quantities are hαsG2i ¼ 0.037�
0.015 GeV4 [16],mudð2 GeVÞ ¼ 8.2� 0.4 MeV [17], and
hq̄qið2 GeVÞ ¼ −ð267� 5 MeVÞ3 [15].
The second current correlator to be considered

is Π5νðq2Þ, involving an axial-vector current and its
divergence

Π5νðq2Þ ¼ i
Z

d4xeiqxh0jT½i∂μAμðxÞA†
νð0Þ�j0i

¼ qνΠ5ðq2Þ: ð8Þ

In contrast to ΠAA
μν ðq2Þ, where quark-mass terms are non-

leading in PQCD, in this case they are explicit through
∂μAμðxÞ ¼ mud∶d̄ðxÞiγ5uðxÞ∶. The QCD expression for
Π5ðq2Þ up to order 1=q2 is given by

Π5ðq2ÞjQCD ¼ −
3

8π2
mud

2 lnð−q2=μ2Þ þ 2
mud

q2
hq̄qi: ð9Þ

The third current correlator is

ψ5ðq2Þ ¼ i
Z

d4xeiqxh0jT½∂μAμðxÞ∂νA†
νð0Þ�j0i: ð10Þ

Its QCD expression to order 1=q2 is given by

ψ5ðq2ÞjQCD ¼ −
3

8π2
mud

2q2 lnð−q2=μ2Þ

−
1

8π

mud
2

q2
hαsG2i þ 1

2

m3
ud

q2
hq̄qi: ð11Þ

If the axial-vector current correlator, Eq. (2), were to be
written instead in terms of transverse and longitudinal
components, the longitudinal part would be related to
Π5ðq2Þ through a Ward identity. Also, Π5ðq2Þ is related
to ψ5ðq2Þ also through a Ward identity. Hence, the use of
one FESR for Π5ðq2Þ and one for ψ5ðq2Þ, with kernel
PðsÞ ¼ 1, is equivalent to the use of two FESR for Π5ðq2Þ,
with integration kernels PðsÞ ¼ 1 and PðsÞ ¼ s. However,
in the presence of a magnetic field the Ward identities are
modified as shown below. Thus, both correlators will be
used, instead of a single one involving two FESR.
To complete the information on the current correlators,

their hadronic representation involves the lowest state, i.e.,
the pion

ImΠ0ðq2ÞjHAD ¼ 2πf2πδðq2 −m2
πÞ ð12Þ

where fπ ¼ 92.28� 0.07 MeV and the charged pion mass2

mπ ¼ 139.57018� 0.00035 MeV [18]. The next hadronic
state, the a1ð1260Þ, with full width Γa1 ¼ 250–600 MeV
[18] can be safely neglected, as it lies above the threshold
for PQCD, s0 ≃ 1 GeV2, and its width is quite large in
comparison with the zero-width of the pion. This situation
would still prevail even if s0 grows somewhat in the
presence of a magnetic field.
The hadronic spectral function for the other two corre-

lators, Π5ðq2Þ and ψ5ðq2Þ is given by

ImΠ5ðq2ÞjHAD ¼ 2πf2πm2
πδðq2 −m2

πÞ; ð13Þ

and

Imψ5ðq2ÞjHAD ¼ 2πf2πm4
πδðq2 −m2

πÞ: ð14Þ

2Hereafter we will refer fπ and mπ to the charged pion decay
constant and charged pion mass, respectively.
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III. QCD FINITE ENERGY SUM
RULES IN VACUUM

We consider the FESR, Eq. (1), involving Π0, Eqs. (3),
(6), (12), and Π5, Eqs. (9), (13), and ψ5, Eqs. (11), (14).
The resulting four FESR (in vacuum) are

2f2π ¼
s0
4π2

; ð15Þ

2f2πm2
π ¼

s20
8π2

−mudhq̄qi −
1

12π
hαsG2i; ð16Þ

2f2πm2
π

mud
¼ −2hq̄qi þ 3

8π2
muds0; ð17Þ

2f2πm4
π

mud
2

¼ 3s20
16π2

−
1

2
mudhq̄qi þ

1

8π
hαsG2i; ð18Þ

where higher order quark-mass corrections of order
(mud

2=s0) were neglected. Notice that Eq. (17) is the
GMOR relation [14,15], including a higher order quark-
mass correction, i.e., Oðm2

qÞ.
We use as an input the charged pion mass and pion decay

constant, in order to obtain, as a result, all the other
parameters. These results are needed only as the vacuum
normalization of the magnetic field behavior of the various
QCD and hadronic parameters. In other words, they are not
to be considered as predictions of their vacuum values. The
reason being that no hadronic states beyond the pion are
included. These states are the a1ð1260Þ and the broad
pionic resonances πð1300Þ, πð1800Þ, lying well beyond the
integration range of the magnetic FESR.

IV. CURRENT CORRELATORS IN AN
EXTERNAL MAGNETIC FIELD

The presence of an external magnetic field modifies
current correlators in several ways. First is the minimal
coupling with the vector potentialA. Since the axial-vector
current carries positive electric charge e (the elementary
proton charge), its derivative is

D · AðxÞ ¼ ½∂x − ieAðxÞ�μAμðxÞ: ð19Þ

Hence, the new definition of the correlators in configura-
tion space is

ΠAA
μν ðx; yÞ ¼ ih0jT½AμðxÞA†

νðyÞ�j0i ð20Þ

Π5νðx; yÞ ¼ ih0jT½iD · AðxÞA†
νðyÞ�j0i ð21Þ

ψ5ðx; yÞ ¼ ih0jT½iD · AðxÞ½iD · AðyÞ�†�j0i; ð22Þ

and the covariant derivative of the quark fields qðxÞ
becomes

DμqðxÞ≡ ½∂x − ieqAðxÞ − igGðxÞ�μqðxÞ: ð23Þ

In the hadronic sector we use the axial-vector current
field description from chiral perturbation theory (χPT) in
terms of charged pion fields

AμðxÞ ¼ −fπDμπ
þðxÞ: ð24Þ

In this case the covariant divergence of the axial-vector
current is D · AðxÞ ¼ fπm2

ππ
þðxÞ. This relation is obtained

from the new equations of motion for the charged pion,
ðD2 þM2

πÞπþðxÞ ¼ 0, where the covariant derivative is
defined as

Dμπ
þðxÞ ¼ ½∂x − ieAðxÞ�μπþðxÞ: ð25Þ

A. Ward identities

The covariant derivative will modify the usual Ward
identities in configuration space to the following

½i∂x þ eAðxÞ�μΠAA
μν ðx; yÞ ¼ Π5νðx; yÞ − Δνðx; yÞ ð26Þ

½−i∂y þ eAðyÞ�νΠ5νðx; yÞ ¼ ψ5ðx; yÞ þ Δ5ðx; yÞ ð27Þ

with

Δνðx; yÞ ¼ δðx0 − y0Þh0j½A0ðxÞ; A†
νðyÞ�j0i ð28Þ

Δ5ðx; yÞ ¼ δðx0 − y0Þh0j½DðxÞ · AðxÞ; A†
0ðyÞ�j0i: ð29Þ

In the QCD sector, these Δ terms can be easily calculated
through the quark anticommutation relations

Δνðx; yÞ ¼ h0jðd̄γνd − ūγνuÞj0iðxÞδ4ðx − yÞ ð30Þ

Δ5ðx; yÞ ¼ imudh0jðd̄dþ ūuÞj0iðxÞδ4ðx − yÞ; ð31Þ

and in the case of the hadron sector, using the commutation
relation for pion fields gives

Δ0ðx; yÞ ¼ 0 ð32Þ

Δjðx; yÞ ¼ f2π½−i∂y þ eAðyÞ�jδ4ðx − yÞ ð33Þ

Δ5ðx; yÞ ¼ −if2πm2
πδ

4ðx − yÞ ð34Þ

In the presence of a magnetic field the Schwinger phase
generates a non-locality in any current correlator, i.e.,
Πðx; yÞ ≠ Πðx − yÞ. Although this statement is in general,
our particular case is not affected by nonlocal terms. Hence
we can define

Πðq2Þ≡
Z

d4xeiq·xΠðx; 0Þ ¼
Z

d4ye−iq·yΠð0; yÞ: ð35Þ
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The justification is as follows. In the symmetric gauge the
Schwinger phase vanishes if one of the coordinates is zero.
Therefore, the phase factor vanishes if x ¼ 0 or y ¼ 0 in the
case of one-loop PQCD diagrams, tree-level diagrams (as
in the hadronic sector), or diagrams involving the chiral
condensate. The only diagrams under consideration that
may include non-vanishing phase factors are the gluon
condensate ones. Nevertheless, the phase factor can be
expanded in powers of the magnetic field, while increasing
the inverse power of momentum 1=q2N . We find that these
contributions do not survive in the sum rules under
consideration, since the gluon condensate is a dimen-
sion-four operator. One should keep this in mind if higher
dimensional sum rules are considered.
With the definition of the correlators in momentum

space, the new Ward identities can be written as

QμΠAA
μν ðq2Þ ¼ Π5νðq2Þ − Δνðq2Þ ð36Þ

Q�νΠ5νðq2Þ ¼ ψ5ðq2Þ þ Δ5ðq2Þ; ð37Þ

where Q includes the vector potential of the external field
in momentum space. Considering the symmetric gauge,
the vector potential is AðxÞ ¼ − 1

2
Fμνxν. In this case the

covariant derivative in momentum space is defined as

Qμ ¼ qμ þ
ie
2
Fμν

∂
∂qν : ð38Þ

B. Tensor structures

We consider an homogeneous external magnetic field
along the z axis. The electromagnetic field tensor can then
be written in the convenient form Fμν ¼ Bϵ⊥μν, with the
perpendicular antisymmetric tensor defined as ϵ⊥μν ¼
gμ1gν2 − gμ2gν1. This term will appear in all tensor struc-
tures and lead to the separation of vectors into parallel and
perpendicular projections. Another term entering this
analysis is the contraction of the external momentum
with the antisymmetric perpendicular tensor q̃μ ≡ ϵ⊥μνqν.
The metric is gμν ¼ gkμν þ g⊥μν, so that e.g., q2⊥ ¼ −q2⊥. The
magnetic field introduces several modifications in the
tensor structure of the current correlators. Basically it
consists of any combination of qμ gμν and ϵ⊥μν which
produces a rich variety of new independent components,
usually associated with new condensates. For instance, for
ΠAA

μν ðq2Þ the possible structures are gμν, ϵ⊥μν, g⊥μν, and all the
pair combinations of qμ, q⊥μ and q̃μ. Similarly, the possible
structures for Π5νðq2Þ are qμ, q⊥μ , and q̃μ.
A simple way to isolate a given contribution is to project

it such as to exclude all other possibilities. For instance,
the Π0ðq2Þ function of the axial-vector correlator can be
obtained as

Π0ðq2Þ ¼
�
2
qμkq

ν
k

q4k
−
gμνk
q2k

�
ΠAA

μν ðq2Þ: ð39Þ

Similarly the Π5ðq2Þ component of Π5νðq2Þ, not the only
term in a magnetic field, can be obtained as

Π5ðq2Þ ¼
qμk
q2k

Π5νðq2Þ: ð40Þ

V. MAGNETIC FIELD CONTRIBUTION TO
THE CURRENT CORRELATORS

The presence of a magnetic field is to be reflected in the
charged particle propagators. These will be expressed in a
power series involving the magnetic field [19]. The quark
and the pion propagator become

Sqðx; yÞ ¼ eieqϕðx;yÞ
Z

d4k
ð2πÞ4 e

−ik·ðx−yÞX
n

SðnÞq ðkÞ ð41Þ

Dπðx; yÞ ¼ eieπϕðx;yÞ
Z

d4p
ð2πÞ4 e

−ik·ðx−yÞX
n

DðnÞ
π ðpÞ; ð42Þ

with eiϕ the Schwinger phase, ei the corresponding
particle-charge, ϕ defined in the symmetric gauge as

ϕðx; yÞ ¼ −
1

2
Fμνxμyν; ð43Þ

and the index n in the sums referring to the power in the
field, i.e., Bn. It is important to point out that the series is
well defined along the contour in the complex s-plane,
Fig. 1. This is due to the integration path not crossing
through the positive real s axis, except at s0 generating the
discontinuity. Hence, the only terms needed for magnetic
corrections in QCD are the following

Sð0Þq ðkÞ ¼ i
=kþmq

k2 −m2
q

ð44Þ

Sð1Þq ðkÞ ¼ −γ1γ2ðeqBÞ
ð=kk þmqÞ
ðk2 −m2

qÞ2
ð45Þ

Sð2Þq ðkÞ ¼ 2iðeqBÞ2
ðk2 −m2

qÞ4
½k2⊥ð=kþmqÞ − =k⊥ðk2k −m2

qÞ�: ð46Þ

There will be infrared divergences from the magnetic
contributions, which are safely controlled by the magnetic
quark masses. Hence, it is necessary to keep finite quark
masses to leading order in expansions in terms ofmq=s0. In
the case of the pion, the only contribution is that of the

propagator at zero magnetic field Dð0Þ
π ðpÞ ¼ i=ðp2 −m2

πÞ.
This is because the next term is Dð1Þ

π ¼ 0, and the other
terms do not survive in the FESR under consideration.
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A. PQCD sector

The leading order magnetic field correction to a current
correlator in QCD,OðeBÞ, is indicated in Fig. 2 as a wiggly
line attached to the up-quark and to the down quark (upper/
lower solid lines, respectively). The next-to-leading order
contribution, OðeBÞ2, is shown in Fig. 3 No additional
contributions are needed, as they do not contribute to the
chosen FESR. As mentioned earlier, the Schwinger phase
in one-loop PQCD diagrams vanishes in the symmetric
gauge, after setting the coordinate y ¼ 0 or x ¼ 0.
Starting with the axial-vector current correlator, the struc-

tures in the PQCD sector contributing to the two FESR are

ΠAA
μν ðq2Þ ¼ qμqνΠ0ðq2Þ þ gμνΠ1ðq2Þ þ iϵ⊥μνΠ̃1ðq2Þ

þ q⊥μ q⊥ν Π⊥
0 ðq2Þ þ g⊥μνΠ⊥

1 ðq2Þ
þ ðqμq⊥ν þ qνq⊥μ ÞΠ2ðq2Þ ð47Þ

Notice that only Π0ðq2Þ is relevant.
The diagrams contributing toΠ0ðq2Þ are shown in Fig. 3.

The diagrams of Fig. 2 contribute only to Π̃1ðq2Þ, entering
Eq. (47). The next-to-leading order magnetic field correc-
tion involves three diagrams, as shown in Fig. 3. They are
labeled (1,1), (2,0), and (0,2), respectively, denoting the
order of magnetic insertions in ðu; dÞ. Unlike the leading
order magnetic correction, and the (1,1) term, the diagrams
(2,0) and (0,2) are infrared divergent. Hence, quark masses
must remain nonzero.
With the frame choice q⊥ ¼ 0, and q2k ≡ s, the relevant

magnetic contributions to Π0 are

Πð1;1Þ
0 ðsÞ ¼ 3

2π2
euedB2

Z
1

0

dx
1

½s −M2ðxÞ�2 ; ð48Þ

Πð2;0Þ
0 ðsÞ ¼ 1

2π2
ðeuBÞ2

Z
1

0

dx
1 − x

x2

½s −M2ðxÞ�2 ; ð49Þ

Πð0;2Þ
0 ðsÞ ¼ 1

2π2
ðedBÞ2

Z
1

0

dx
x

ð1 − xÞ2
½s −M2ðxÞ�2 ; ð50Þ

where the quark charges are defined as

eu ¼
2

3
e; ed ¼ −

1

3
e; ð51Þ

and where

M2ðxÞ≡ m2
u

1 − x
þm2

d

x
: ð52Þ

It should be noticed from the results for the second
and third diagrams in Fig. 3, Eqs. (49) and (50), that
logarithmic quark-mass (infrared) singularities will appear
as a consequence of magnetic field overlapping. In QCD
in the vacuum, logarithmic light-quark mass singularities
in current correlators appear at next to leading order in
perturbation theory. They can be removed by a suitable
procedure [20,21]. The situation here is rather different in
that the source of the singularities is the presence of the
external magnetic field, at leading order in perturba-
tive QCD.
The general structure of Π5ν is

Π5νðq2Þ ¼ qνΠ5ðq2Þ þ q⊥ν Π⊥
5 ðq2Þ þ iq̃νΠ̃5ðq2Þ ð53Þ

where we are interested only in Π5ðq2Þ. The diagrams in
Fig. 2 only contribute to Π̃5ðq2Þ, as indicated in Eq. (53).
The magnetic contributions to Π5ðq2Þ, are of order
ðs −M2Þ−2. Therefore they do not contribute to the
FESR under consideration (PðsÞ ¼ 1). This fact will be
discussed in more detail in the next section.
Finally, the correlator involving the axial-vector current

divergences has only one structure and the magnetic

FIG. 2. QCD current correlator to leading order in the magnetic
field,OðeBÞ. Upper line is the up-quark, and lower line the down-
quark. Wiggly line represents the interaction with the external
magnetic field.

FIG. 3. QCD current correlator at next-to-leading order in the
magnetic field, O½ðeBÞ2�. Upper line is the up-quark, and lower
line the down-quark. Wiggly line represents the interaction with
the external magnetic field. The current correlator associated with

the first diagram is labeled as Πð1;1Þ
μν , the second as Πð2;0Þ

μν , and the
third as Π0;2

μν .
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contributions arise from the diagrams in Fig. 3. Choosing
q⊥ ¼ 0 and q2k ≡ s, gives

ψ ð1;1Þ
5 ðsÞ ¼ −

3

4π2
mud

2euedB2

Z
1

0

dx
1

s −M2ðxÞ ð54Þ

ψ ð2;0Þ
5 ðsÞ ¼ 1

4π2
mud

2ðeuBÞ2
Z

1

0

dx
1 − x

x
s −M2ðxÞ ð55Þ

ψ ð0;2Þ
5 ðsÞ ¼ 1

4π2
mud

2ðedBÞ2
Z

1

0

dx
x

1 − x
s −M2ðxÞ ; ð56Þ

where terms of order ðs −M2Þ−2 are omitted as they do not
contribute to the FESR with PðsÞ ¼ 1, unlike the case of
Π5ðq2Þ. Notice that logarithmic terms are also present in
Eqs. (55) and (56).
While the integration in the variable x is rather compli-

cated, ultimately these expressions enter the contour
integral in the complex s-plane. This feature simplifies
considerably the integration, as discussed in the next
section.

B. The nonperturbative QCD sector

In the nonperturbative QCD sector both the quark and
the gluon condensates develop a magnetic field depend-
ence. They will be determined by the FESR themselves.
Regarding the quark condensate in the presence of a
magnetic field there is an additional contribution from a
condensate hq̄σ12qi, where σμν ¼ i½γμ; γν�=2 [22] (see also
Gatto and Ruggieri in [23], and references therein). This
condensate does not appear in Π0ðq2Þ used in the FESR
with PðsÞ ¼ 1 and PðsÞ ¼ s, nor in Π5ðq2Þ or ψ5ðq2Þ for
PðsÞ ¼ 1. However this term will be present in Π5ðsÞ with
kernel PðsÞ ¼ s. The fact that Π5ðsÞ with PðsÞ ¼ s and
ψ5ðsÞ with PðsÞ ¼ 1 provide different information at finite
eB, unlike the vacuum case, is related to the new Ward
identities. The new condensate hq̄σ12qi can be calculated
from FESR using other structures. Although it is an
interesting contribution, it is beyond the scope of this
analysis. Another issue to be considered is that in a
magnetic field the quark condensates and the quark masses
will be flavor dependent. Hence, the contributions to the
chiral condensate in Sec. II change as follows: hq̄qi →
hūuþ d̄dið1 − ΔudÞ=2 in Eq. (6), and hq̄qi→ hūuþ d̄di=2
in Eq. (9), and hq̄qi → hūuþ d̄dið1 − 3ΔudÞ=2 in Eq. (11),
where

Δud ≡ mu −md

mu þmd

hūu − d̄di
hūuþ d̄di : ð57Þ

An estimate of Δud can be obtained by considering md ≈
2mu and including the values of the condensates obtained at
finite magnetic field in [11]. This gives Δud ∼ 0.1. In
particular, for eB ¼ 0.2 GeV2 one has Δud ¼ 0.013, and

for eB ¼ 1 GeV2 one has Δud ¼ 0.067. Hence, one can
safely ignore this correction.
The case of the gluon condensate must be treated with

care. The diagrams involving the gluon condensate have
several Schwinger phase terms, with not all depending on
x, y. Hence, they do not vanish for our choice of gauge.
In detail, in the symmetric gauge the Schwinger phase can
be written as in Eq. (43). The diagrams contributing to the
gluon condensate are shown in Fig. 4. Considering e.g., the
bottom left diagram in Fig. 4, omitting γ-matrices it can
be written as

ΠhαG2iðx; yÞ ∝ tr
Z
zw
Suðx; zÞSuðz; wÞSuðw; yÞSdðy; xÞ:

ð58Þ

The phase of the propagator at the centre of this equation
does not vanish if x ¼ 0 or y ¼ 0. However, one can
expand these phases as

eieuϕðz;wÞ ¼ 1 − i
eu
2
Fμνzμwν þ � � � ð59Þ

The powers in coordinates correspond to derivatives in
momentum space which will increase the power of the
denominator in the propagator. Hence, as the correlators
involving the gluon condensate for ϕ ¼ 0 are of order
ðs −M2Þ−2, the next contribution to the phase expansion
generates a term ∼ðs −M2Þ−3, or a higher order denom-
inator. All these terms vanish in the FESR under
consideration.
Finally, in principle there are new condensates due to

Lorentz symmetry breaking in an external magnetic field.
For instance, the gluon condensate term hαsGμν

2i should
split their components into parallel and perpendicular,
or mixed contributions [24]. In addition, the condensate
hq̄Dqi¼−imqhq̄qi should split into hq̄Dkqi and hq̄D⊥qi.
This kind of splitting is associated with the new tensor
structure mentioned in Sec. IV B. The role of such objects
will be explored elsewhere.

FIG. 4. Contribution of the gluon condensates to a two-point
correlator.
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C. Hadronic sector

Next, we consider the hadronic contribution to the
current correlators. The pion contribution to the axial-
vector current is given in Eq. (24). The axial-vector
correlator in momentum space is

ΠAA
μν ðq2ÞjHad ¼ i2f2πQμQ�

νDπðqÞ þ 2f2πgμ0gν0 ð60Þ

where Q is defined in Eq. (38). The constant term on the
right-hand side (r.h.s.) does not contribute to the sum-rules.
Ignoring it, the axial-vector current correlator becomes

ΠAA
μν ðq2Þ ¼ qμqνΠ0ðq2Þ þ iϵ⊥μνΠ̃1ðq2Þ þ g⊥μνΠ⊥

1 ðq2Þ
þ q̃μq̃νΠ̃0ðq2Þ þ iðqμq̃ν − qνq̃μÞΠ3ðq2Þ ð61Þ

Similarly, using the equation of motion for the charged
pion, Π5νðq2Þ and ψ5ðq2Þ become

Π5νðq2ÞjHad ¼ 2iπ2m2
πQ�

νDπðq2Þ ð62Þ

and

ψ5ðq2ÞjHad ¼ 2if2πm4
πDπðq2Þ; ð63Þ

respectively. Finally, Π5ν is given by

Π5νðq2ÞjHad ¼ qνΠ5ðq2Þ þ iq̃νΠ̃5ðq2Þ: ð64Þ

As mentioned earlier, the next to leading order in the
magnetic field expansion in powers of the pion propagator
is proportional to ðs −m2

πÞ−3. Hence, it does not contribute
to the FESR under consideration. Thus, the correlators
Π0ðq2Þ, Π5ðq2Þ and Π5νðq2Þ involve the same hadronic
spectral functions given in Eqs. (12)–(14).

VI. QCD FINITE ENERGY SUM RULES IN AN
EXTERNAL MAGNETIC FIELD

We consider first the contour integrals involving the
overlapping magnetic field contributions, as given in
Eqs. (49), (50), (55) and (56). It is important to notice
that in the vacuum, and even in the chiral limit there will be
magnetic mass generation. Before integrating in the
Feynman parameter it is more convenient to first integrate
in the momentum. The magnetic contribution to the contour
integral in the complex squared-energy s-plane is given by

INn ðs0Þ ¼
−1
2πi

I
Cðs0Þ

dssN−1
Z

1

0

dx
fðxÞ

½s −M2ðxÞ�n ; ð65Þ

where M2 is defined in Eq. (52), and fðxÞ is an arbitrary
function of x. In particular, this contribution is infrared
divergent for massless quarks as f ∝ 1=x and f ∝ 1=
ð1 − xÞ. If N < n, this integral vanishes, while if
N ≥ n this integral is nonvanishing only if M2ðxÞ < s0.

The nonvanishing FESR considered here are for N ¼ n, so
that after integrating in s, INn ðs0Þ becomes

Innðs0Þ ¼ −
Z

1

0

dxfðxÞθðs0 −M2ðxÞÞ: ð66Þ

The restriction imposed by the θ- function leads to the
quadratic equation

ðx − xþÞðx − x−Þ < 0; ð67Þ

with xþ > x−, and x� defined as

x� ¼ 1

2

"
1þm2

d

s0
−
m2

u

s0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2

�
m2

d

s0
þm2

u

s0

�
þ
�
m2

d

s0
−
m2

u

s0

�
2

s #
: ð68Þ

The inequality, Eq. (67), is satisfied only for x− < x < xþ,
so that Eq. (66) can be rewritten as

Innðs0Þ ¼ −
Z

xþ

x−

dxfðxÞ: ð69Þ

The series expansion will be carried out form2
q ≪ s0 and

up to first order. Hence, the integration limits in Eq. (68)
can be approximated as

xþ ≃ 1 −m2
u=s0; ð70Þ

x− ≃m2
d=s0; ð71Þ

which allows handling the IR divergences. After the
expansion in quark masses, there will appear flavor
dependent logarithmic terms. After separating the average
part from the mass difference part, these terms become

lnðs0=m2
uÞ ¼ lnð4s0=mud

2Þ − 2 lnð1þ δmÞ ð72Þ

lnðs0=m2
dÞ ¼ lnð4s0=mud

2Þ − 2 lnð1 − δmÞ ð73Þ

with δm ≡ ðmu −mdÞ=ðmu þmdÞ. The contribution of δm
is negligible compared to the logarithm term. A numerical
estimate formd ¼ 2mu ≃ 10 MeV, and s0 ≃ 1 GeV2 shows
that 2 lnð1� δmÞ is at least one order of magnitude smaller
than lnð4s0=mud

2Þ. Therefore, the mass-difference contri-
bution can be safely neglected.

VII. RESULTS

The FESR involving magnetic field corrections are

2f2π ¼
s0
4π2

þOðmud
2Þ ð74Þ
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2f2πm2
π ¼

1

8π2

�
s20 −

2

9
ðeBÞ2½10 lnð4s0=mud

2Þ − 27�
�

þ 1

2
mudhūuþ d̄di − 1

12π
hαsG2i þOðmud

2s0Þ
ð75Þ

2f2πm2
π

mud
¼ −hūuþ d̄di þ 3

8π2
muds0 þOðmud

3Þ ð76Þ

2f2πm4
π

mud
2

¼ 3

16π2

�
s20 −

20

27
ðeBÞ2½lnð4s0=mud

2Þ − 1�
�

−
1

4
mudhūuþ d̄di þ 1

8π
hαsG2i þOðmud

2s0Þ:
ð77Þ

where mπ and fπ are functions of the magnetic field. The
only restriction is mud

2 ≪ s0, which remains valid for all
values of eB under consideration. There are six parameters
to be determined, i.e., mud, mπ, fπ , s0, hq̄qi, and hαsG2i.
Since there are only four independent FESR, two inputs are
required. We separate them into vacuum inputs and
magnetic evolution inputs:
(1) The vacuum parameters are the charged pion mass

and the pion decay constant.
(2) As a first input, we choose the magnetic evolution of

the quark condensates from NJL results [10], which
agree with LQCD [11].

(3) For the second magnetic input we choose three
different scenarios:
(a) The first scenario involves the magnetic evolu-

tion of the charged pion mass provided by NJL
calculations [10].

(b) The second one involves the linear relation
between m2

π and mud, i.e., m2
π ¼ Bmud from

the Nambu-Goldstone realization of chiral
SUð2Þ × SUð2Þ symmetry. It is assumed that
B is independent of the magnetic field, i.e.,
mud=m2

π ¼ constant.
(c) In the third scenario, the quark masses are

assumed magnetic field independent, i.e.,
mud ¼ constant.

In principle one could assume that f2π depends on the
magnetic field as the quark condensate does. However, this
leads to unexpected results, e.g., negative quark mass
values, implying a vanishing pion mass. An interesting
consequence of the magnetic dependence of quark masses
is that the GMOR relation either breaks down, or is
modified as

m2
πf2π ¼

mud

1þ 3
2
mud

2

m2
π

hūuþ d̄di: ð78Þ

This kind of modification was obtained in [25,26], where
magnetic dependent quark masses were considered.

Figure 5 shows the magnetic evolution of the normalized
quark mass mud. For high values of eB it increases
approaching the constituent quark mass. A similar effect
was found for the thermal evolution of mud [9].
The magnetic evolution of s0 is shown in Fig. 6 for

the three input schemes. This behavior validates the
relation mud

2 ≪ s0 as seen in Fig. 7. Also, the ratio
eB=s0 in Fig. 7 shows s0 to be always the dominant scale
in this range.
Figure 8 shows the magnetic evolution of the pion decay

constant for both quark mass schemes, as well as the case
using results from χPT [27]. Notice that the input using the
NJL pion mass and the input for mud=mπ

2 generate a
similar behavior of fπ . This is perhaps the most robust
prediction of this analysis.
We recall that the magnetic evolution of s0 and f2π are

identical

s0ðBÞ
s0ð0Þ

¼ f2πðBÞ
f2πð0Þ

: ð79Þ

FIG. 5. Magnetic evolution of the sum of the up- and down-
quark masses for two of the conditions used as an input.

FIG. 6. Magnetic evolution of the continuum hadronic thresh-
old for the three conditions used as an input.
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However, the only scheme that leads to the same magnetic
evolution of f2π and the chiral condensate is the one
considering a constant quark mass.
In Fig. 9 we show the magnetic dependence of the

charged pion mass for the three different cases, including
the result using χPT from [27]. All curves increase with

increasing magnetic field, except for the case of constant
mud. This result reinforces the importance of the magnetic
field behavior of mud.
Finally, we consider the behavior of the gluon conden-

sate. This is an interesting parameter because it is not
related to chiral symmetry restoration, but rather to con-
formal symmetry [28,29]. Figure 10 shows the magnetic
behavior of the normalized gluon condensate for the three
different cases. For a constant quark mass the gluon
condensate drops dramatically. This strongly suggests that
a constant quark mass is not a valid approximation. In the
case where mud=m2

π is constant, the gluon condensate
increases slightly to then decrease gently with increasing
magnetic field. A decreasing hG2i was found in [30],
vanishing at a similar critical value of eB. For the pion mass
as an input from NJL the gluon condensate starts decreas-
ing followed by a sharp increase. The two cases considering
magnetic evolution of quark masses show no important
variations for eB < 0.7 ½GeV2�.

VIII. CONCLUSIONS

In this paper we determined the magnetic behavior of
several QCD and hadronic parameters using a set of four
FESR. Two sum rules involved the correlator of two axial-
vector currents, one involved the axial-vector current
together with its divergence, and another involved two
divergences of the axial-vector currents. The magnetic
field behavior of the chiral condensates was an input from
NJL or from LQCD. Three different scenarios were
considered. The first used the magnetic field dependence
of the pion mass according to NJL results. The second
scenario assumed a constant ratio mudðeBÞ=m2

πðeBÞ. The
third case assumed a constant quark mass, independent of
the magnetic field, which can be discarded as concluded
from Figs. 9 and 10. The qualitative magnetic field
behavior of fπ and s0 appears robust as it results from
the first two cases. Regarding the gluon condensate, its

FIG. 7. Evolution of the ratios mud
2=s0 and eB=s0 considering

the three conditions used as an input.

FIG. 8. Magnetic evolution of fπ considering the three con-
ditions used as an input. For comparison, we include the χPT
result from Ref. [27].

FIG. 9. Magnetic evolution of the charged pion mass. For
comparison, we include the χPT result from Ref. [27].

FIG. 10. Magnetic evolution of the gluon condensate consid-
ering the three conditions used as an input. For comparison, we
include the LQCD results from Ref. [24].
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behavior above eB ≃ 0.7 GeV2 is strongly dependent on
whether the pion mass is given by NJL or it is such that
mud=m2

π is constant. Below this critical magnetic field
strength the sum rule results are in good agreement with
LQCD. The behavior of the gluon condensate for extreme
values of the magnetic field would require further study,
beyond the scope of this paper.
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