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HOMERO LARRAÍN IZQUIERDO

ALEJANDRO FRANCISCO MAC CAWLEY VERGARA

JUAN CARLOS PATTILLO SILVA

RODRIGO FERNANDO CÁDIZ CÁDIZ
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ABSTRACT

Decision-making in healthcare is a complex problem due to uncertainty and dynamics.

One very important issue is related to decisions on patient admissions. In a healthcare

network composed of various hospitals, it should be convenient to consider the combined

capacity of the whole system. Hence, besides admissions to a hospital, the transfer of

patients to others is also possible. These decisions depend not only on the patient’s medical

condition but also on the current capacity of the various areas of the hospitals. In this work,

we have formulated the problem as a Markov Decision Process, and we address it using

a Reinforcement Learning approach where the expected future cost is estimated using an

XGBoost model, combined with simulation, based on the Q-learning methodology. Based

on the obtained policy via reinforcement learning and notions from the literature, general

hospital managerial guidelines are proposed, which end up in a simplified and easy-to-

implement policy with promising results, including a reduction in the average service

time in a 13.38% and a Waiting List size reduction of a 65.86%. Compared to the base

scenario, there is a reduction in the total costs of 71.44%, where the social costs (due to

waiting times and patient bed opportunity costs) are reduced by 87.30%.

Keywords: Healthcare Management - Approximate Dynamic Programming - Simu-

lation - Markov Decision Process - Reinforcement Learning.
xii



RESUMEN

La toma de decisiones en el cuidado de la salud es un problema complejo debido a la

incertidumbre y la realidad dinámica. Un tema muy importante está relacionado con las

decisiones sobre admisiones de pacientes. En una red de atención médica compuesta por

varios hospitales, deberı́a ser conveniente considerar la capacidad combinada de todo el

sistema. Por lo tanto, además de las admisiones a un hospital, también es posible trans-

ferir pacientes a otros. Estas decisiones dependen no solo de la condición médica del

paciente, sino también de la capacidad actual de las diferentes áreas de los hospitales. En

este trabajo, hemos formulado el problema como un Proceso de Decisión de Markov, y lo

abordamos utilizando un enfoque de Aprendizaje por Refuerzo donde se estima el costo

futuro esperado utilizando un modelo XGBoost, combinado con simulación, basado en la

metodologı́a de Q-learning. Basándonos en la polı́tica obtenida a través del aprendizaje

por refuerzo y en nociones de la literatura, se proponen pautas generales de gestión hos-

pitalaria, que resultan en una polı́tica simplificada y fácil de implementar con resultados

prometedores, incluida una reducción en el tiempo de servicio promedio en un 13.38% y

una reducción del tamaño de la lista de espera del 65.86%. En comparación con el esce-

nario base, hay una reducción en los costos totales del 71.44%, donde los costos sociales

(debidos a los tiempos de espera y los costos de oportunidad de las camas para pacientes)

se reducen en un 87.30%.

Palabras Claves: Gestión de la salud - Programación Dinámica Aproximada - Simu-

lación - Proceso de Decisión de Markov - Aprendizaje por Refuerzo.
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1. INTRODUCTION

Healthcare plays an essential role in human development and quality of life. As stated,

for example, by X. Zhang et al. (2017) and Wendt (2009), access to healthcare is a criti-

cal factor that significantly influences health outcomes, thus emphasizing the importance

of providing full coverage to the population. This proposition is not new; the Millen-

nium Development Goals (MDGs) in 2000 and, later, the Sustainable Development Goals

(SDGs) in 2015, proposed by the United Nations (UN), also established the importance of

healthcare for human well-being (United Nations, 2020).

The United Nations responded to this situation by proposing a target for 2030: achiev-

ing universal health coverage. This goal entails ensuring that all individuals have access

to high-quality essential healthcare services.

Unfortunately, access to medical services is not always possible for everybody, espe-

cially in middle and low-income countries, resulting in hazardous living conditions for

those in need. This situation led the UN to propose as a target for 2030 to achieve uni-

versal health coverage, where all individuals must have access to high-quality essential

healthcare services. (United Nations, 2020). In this context, where resources are scarce,

Operations Research (OR) can contribute to optimize the use of healthcare assets, result-

ing in better coverage and, ultimately, an improvement in human development and quality

of life for society. A notable example in this regard is the research done by Lee et al.

(2015), where they improved the Emergency Department quality of care and operational

efficiency, while reducing avoidable readmissions, using a decision support system inte-

grating machine learning, simulation, and optimization.

In this research, we will tackle one of the many problems healthcare services usually

face. Specifically, it is relevant to understand and improve the usage of hospital beds in

a Hospital Network by transferring patients between hospitals, and managing the move-

ments of inpatients (i.e., patients who are admitted to a hospital) between hospital sections.

Green (2005) mentions that this problem has vast opportunities for OR tools to improve

1



efficiency and effectiveness in bed management decisions, which are also related to deci-

sions about the admission of patients.

The lack of hospital beds in Chile’s Public Healthcare System has been a problem for

a long time. Although some initiatives have addressed this problem, bed availability is a

primary concern, leading to the challenge of improving the system’s management.

This situation is exemplified by the fact that Chile has 2.16 beds per 1,000 inhabitants,

which is lower than the 2.8 beds per 1,000 inhabitants recommended by the World Health

Organization (WHO) (Colegio Médico de Chile, 2019). Furthermore, the average of the

Organization for Economic Co-operation and Development (OECD), which Chile is part

of, is 4.8 beds per 1,000 inhabitants (Colegio Médico de Chile, 2019). This shows that

Chile still has a long way to go in terms of providing adequate healthcare facilities to its

citizens. Ultimately, this affects the patient, who ends up waiting, on average, 12 hours

and up to 3 days to be attended, given that there are not enough beds to service the entire

population. The lack of capacity and efficiency in the Chilean Public Healthcare System

has resulted in a precarious situation. Statistical data from 2021 shows that almost 2.3 mi-

llion people are waiting to be attended, and, eventually, it is suspected that approximately

40.000 people died waiting for medical procedures (Ministerio de Salud de Chile, 2023a).

To address this problem, the Chilean Ministry of Health created in 2009 the Central-

ized Bed Management Unit, which later changed its name to Centralized Case Manage-

ment Unit (CCMU). This public entity coordinates and manages the beds in the Public

System, in cooperation with the Private System when needed (Ministerio de Salud de

Chile, 2023b). Given a medical request from a patient of the Public Healthcare System,

the main decisions that the CCMU can take are to:

(i) Transfer: Move the patient between two hospitals from the Public Network.

(ii) Divert: Move the patient to a clinic in the Private System to provide a medical

resolution.

(iii) Admission: Admit the patient to the hospital for medical care.

2



Although the CCMU has achieved certain milestones, its action policy is imperfect

concerning efficiency and effectiveness in bed management decisions in a Hospital Net-

work, requiring consideration of the inpatient management of each hospital in the network.

It has been reported that its operations are not necessarily optimal and well-informed

(Instituto de Sistemas Complejos de Ingenierı́a, 2020), resulting in situations where trans-

fers and diversions are made only when a hospital’s capacity does not allow the patient

admission. This situation results in sub-optimal actions, thus ending in high treatment and

operation costs for the Public System. Also, given that patient allocation is not necessarily

managed correctly, the Hospital Network ends up with high congestion levels, which in-

creases the waiting times to access medical treatment, resulting, for example, in wait times

of over 200 days for patients in the Waiting List (Ministerio de Salud de Chile, 2023a).

Hence, given this situation, the present study proposes, as its primary objective, to

enhance the policy of the CCMU, with a specific focus on reducing the sum of opera-

tional costs and the monetized social costs (i.e., patient waiting times and bed opportunity

costs), thereby improving the overall experience for patients via a proactive methodology.

Specifically, we propose a formulation via a Markov Decision Process (MDP), which can

simultaneously handle the transfers, diversions, and admissions in a Hospital Network, as

well as the inpatient management in each hospital that compose the network. Although

designed for the Chilean reality, this model and related methodology can be applied to

other situations where the healthcare system aims to operate similarly.

To achieve our main objective, this work is structured as follows: Section 2 reviews the

literature and the state-of-the-art models and methodologies regarding the improvement

of hospital bed usage in a Hospital Network, with a special interest in those research

that develops proactive policies in terms of decisions and patient management. Section

3 describes the problem in detail, showing all the relevant features in this study, whereas

Section 4 formulates the MDP model, given the previous section. Section 5 addresses

the biggest challenges regarding the model resolution, describing the proposed solution

approach. Section 6 shows the implementation and results of an example instance, based

3



on real-case studies, which leads to further analysis of the obtained policy. Finally, Section

7 consolidates this study’s major findings and discoveries while proposing extensions and

future lines of research.

4



2. LITERATURE REVIEW

The availability of beds and the management of their usage in a Hospital Network are

vital aspects of hospital operations and productivity. Using OR tools aims to avoid over-

crowding and ensure a desirable patient flow and attention process in every hospital unit,

ultimately increasing the healthcare system service quality and patient medical outcomes

(Sun et al., 2013). The number of studies on this topic has steadily increased since the

early 2000s, in both deterministic and stochastic approaches, although focusing on spe-

cific parts that compose the whole hospital capacity planning and optimization problem

(Humphreys et al., 2022).

An important OR technique used to address this challenge is simulation. The advan-

tages of this tool are that the system’s complex interactions can be represented, including

multiple decisions and uncertain events, such as those regarding patient arrivals and in-

patient flow. This allows the decision-maker to test different policies and system provi-

sions, which ultimately requires comparing them to determine the best decision. Also,

this technique is pretty versatile; Banditori et al. (2013) developed a deterministic integer

programming approach to optimize the master surgical scheduling problem in a hospital,

testing the solution’s robustness against the unpredictability of the duration of surgical

procedures and the duration of hospital stays. On the other hand, Ahalt et al. (2016) pro-

posed a discrete-event simulation approach to determine which crowding scores used at

the Emergency Department are the best for predicting impending crowdedness. Another

example is the study conducted by Devapriya et al. (2015), where they introduce a deci-

sion support tool for managing in terms of planning and budgeting the current and future

bed capacity, also evaluating the benefits from possible improvements in bed provision.

Another vital aspect of OR tools applied in healthcare is the utilization of mathematical

formulations. These formulations, particularly using queueing theory, aim to enhance bed

management, reduce wait times, and address the challenge of increasing demand (Green,

2006). The study conducted by McManus et al. (2004) addressed the allocation problem of

5



scarce resources in the Intensive Care Unit, based on real-world data, they constructed an

accurate mathematical model of patient flow, which correctly predicted demand levels and

helped to determine the appropriate supply of beds. Alternatively, the research done by de

Bruin et al. (2007) studied the bottlenecks in the emergency care chain of cardiac in-patient

flow in a university medical center, optimizing the bed allocation over it and retrieving

useful data in terms of patient dynamics and Length of Stay (LOS), which ultimately gave

insights for future decision-making.

Studies concentrating on deterministic and stochastic optimization are another form of

OR that can be implemented in healthcare. For instance, Feng et al. (2015) developed and

solved via heuristics a multi-objective stochastic model for medical resource allocation in

Emergency Departments, minimizing the average length of stay of patients and medical

resource waste costs. Similarly, Zhou et al. (2018) proposed a multi-objective stochastic

programming model that aims to maximize hospital revenue and equity among different

types of patients, allocating hospital ward resources, which are often pretty limited. Fi-

nally, Burdett et al. (2017) developed an analysis of hospital resources and capacity, cou-

pled with different mixed integer linear programming models, which helped to determine

the maximum number of patients that the system could attend in a certain time window,

later validating these results in a real-case scenario.

It is important to note that these examples represent only a small portion of the exten-

sive research that utilizes OR tools in healthcare. Even though the mentioned studies, as

well as others not reported, achieve great results in describing the system or obtaining an

optimized (and usually increased) bed provision and/or configuration via a mathematical

formulation, a much more sophisticated and proactive focus, based on simulation and

optimization simultaneously, is needed. The review done by Humphreys et al. (2022)

manifests this issue, adding that previous research tends to focus on certain parts of the

hospital, which ultimately neglects that a hospital is one body, where each component is
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intricately related to the others, needing an integral and detailed description to obtain sig-

nificant and valuable results. This is essential to achieve a real-world solution that can be

effectively implemented.

Given these research gaps proposed by the authors and the opportunity to increase

efficiency with the available resources, instead of just increasing them, this study must de-

velop a decision frame that pairs simulation and optimization. Also, it must be capable of

optimizing different costs in a complex and detailed network, considering patient equity

and the possibility of scaling up to real-world scenarios. To achieve these tasks, we will

focus on specific research studies that have developed proactive policies regarding deci-

sions and patient management, with real-world applications, ideally. In our analysis, we

found that the bed management problem can be categorized into two scales. The first one,

referred to as the macro-scale dimension, handles the admission, transfer, and diversion

actions that the CCMU could take in a complex hospital network. On the other hand, the

micro-scale dimension handles the inpatient management in each hospital.

Regarding the macro-scale dimension, the first research is titled An approximate dy-

namic programming approach to the admission control of elective patients, by J. Zhang,

Dridi, and Moudni (2021). In this study, the authors tackle the problem associated with the

elective demand admission problem, specifically regarding surgery scheduling for a com-

plex and diverse waiting list regarding patient diagnoses and medical conditions. Given

the problem, an MDP model is proposed, which is solved using Approximate Dynamic

Programming, based on a novel reinforcement-learning-based approach that can handle

the curses of dimensionality resulting from the large scale of realistically sized problems.

The most important contribution of this research, in terms of our study, is that a dynamic

and long-term proactive policy is obtained that can handle real-world problems, reduce

operational costs and waiting times, and increase equity between patients. The biggest

opportunities from this research are to extend the model to the downstream patient flow

into other units following their surgery, as well as the necessity to incorporate a solution
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approach that can handle non-linear costs, which their ADP proposal neglects via a cost

linearization.

Another relevant study in terms of the macro-scale problem is the one defined in Iden-

tifying proactive ICU patient admission, transfer and diversion policies in a public-private

hospital network, by Marquinez, Sauré, Cataldo, and Ferrer (2021). In this research, an

infinite-horizon MDP, with a cost-effective policy for transferring ICU patients between

hospitals or diverting them to private clinics, is obtained for a real-case scenario. Given the

courses of dimensionality, the MDP’s solution approach is based on an equivalent linear

programming model using column generation. This study excels in being the first dynamic

bed allocation problem that handles multiple hospitals and multiple types of patients at the

same time, as well as collaboration between public and private hospitals through the ex-

ternalization of care services. Similarly to the previous research, the biggest opportunity

is to extend the model to a complex and dynamic patient flow, considering the multiple

units that interact inside a hospital. Also, the proposed Approximate Lineal Optimization

solution method fails to represent and handle the non-linear costs of the real-life problem

regarding wait-time and, subsequently, the health hazards that a patient must assume. Fi-

nally, it is possible to consider elective demand in a waiting list, just as J. Zhang et al.

(2021) proposed in their model, to cover the complete reality and decisions of the Health

System.

Regarding the micro-scale dimension, it is relevant to mention the study: A proac-

tive transfer policy for critical patient flow management, by González, Ferrer, Cataldo,

and Rojas (2018). This research proposes an MDP model to improve the inpatient flow

between the Emergency Department and other hospital units. Similarly to Marquinez

et al. (2021), the solution method, given the courses of dimensionality, is based on the

Approximate Lineal Optimization method, retrieving an equivalent linear programming

model using column generation. The main contribution is the possibility of obtaining a

long-term action policy for the inpatient management flow in a complex hospital model

that considers the interactions between critically ill patients and the different departments
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within the hospital. The biggest opportunity is to extend the model to a complex and dy-

namic network, considering multiple hospitals simultaneously, as well as the possibility

of giving medical resolution to patients in the private system, something that Marquinez et

al. (2021) propose. Furthermore, it is worth mentioning that the proposed linear approach

does not necessarily adjust to reality’s complexity in terms of costs.

In conclusion, the present study aims to gather and extend the opportunities these stu-

dies have as features, integrating them and representing the relationships between hospitals

and their units in a complex network. To achieve this, an integral and detailed model, based

on a Markov Decision Process (MDP), is formulated to obtain significant and valuable

results.

9



3. PROBLEM DESCRIPTION

3.1. Macro-Scale Problem

In the context of the macro-scale dimension of the problem, we will consider a public

hospital network similar to Marquinez et al. (2021). This network consists of H hospi-

tals; each receives urgent patients at their Emergency Department (ED) and can transfer

patients between them. Additionally, the Public Network can divert patient’s requests to

private hospitals. As suggested by the authors, the clinics in the Private System (PS) can

accommodate a virtually infinite number of requests with various medical conditions. Fig-

ure 3.1 illustrates this dimension of the problem; in this case, it shows what Hospital 1 can

do with the demand that has arrived at its ED.

Figure 3.1. Diagram of the Macro-Scale Dimension of the Problem for the
Emergency Demand
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Additionally, the network features a Dynamic Elective Patient Waiting List (WL),

which includes requests from the population that must be addressed within a specific time

frame. Although this last part apparently simplifies the problem presented by J. Zhang

et al. (2021), our proposal can effectively model the emergency patients that arrive at the

hospitals, as well as the elective demand that the Public System must service. The Public

Network can also divert patients from the Waiting List to the clinics in the Private System

if necessary, satisfying all their health requirements. Figure 3.2 illustrates this dimension

of the problem; in this case, it shows what the Decision Maker can do with the demand

that has arrived at the Network WL.

Figure 3.2. Diagram of the Macro-Scale Dimension of the Problem for the
Elective Demand
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3.2. Micro-Scale Problem

In the context of the small-scale dimension of the problem, which deals with inpa-

tient flows within a hospital’s units, we propose an extension from the problem studied by

González et al. (2018). In this scenario, emergency patients arrive at the hospital’s ED and

can be admitted to the inner units; if not, they are transferred to another hospital’s ED or

diverted to the PS. Patients are assigned to specific units based on their medical needs, as

follows: For surgery requirements, the Operating Room (OR); for high complexity con-

ditions, the Intensive Care Unit (ICU); those with medium complexity to the Step Down

Unit (SDU), and the ones with low complexity are accommodated in the Ward. Addition-

ally, the elective demand from the WL first passes through the General Admission (GA)

process before being transferred to the inner units (OR, ICU, SDU, WARD). Inpatients

may move between the inner units until their medical needs are fully addressed; at this

point, they are discharged from the WARD.

Compared to González et al. (2018), in our study, we will consider all kinds of possi-

ble transitions, which implies a greater complexity in the stochasticity and dynamism of

the problem. Furthermore, we consider resource consumption in the OR, although we as-

sume that all the requests for this resource can be accommodated in the hospital’s surgical

schedule.

Figure 3.3 provides a representation of the micro-scale dimension of the problem. At

the top, it shows the type of actions taken, and at the bottom, it outlines the various types

of possible transitions that a patient could take. It is important to observe that we outline

some uncommon transitions to facilitate the representation of the case study. Also, it is

important to mention that although inpatient transfers between hospitals are possible, for

the sake of simplicity, we will not consider them in this study.
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Figure 3.3. Diagram of the Micro-Scale Dimension of the Problem

Note that every hospital represented in Figures 3.1 is modeled assuming the proposal

from Figure 3.3. This generates the connection between both scales, where the decisions

from the Macro-Scale (diversions, admissions, and transfers) will affect each hospital’s

resource utilization, thus requiring optimal inpatient management between each hospital’s

units.

3.3. Decision Making Period and Horizon

To model this problem, a reasonable time frame between actions must be defined.

However, one may think that a shorter time window means better modeling, which is

not necessarily needed to achieve good results. As stated by González et al. (2018) and

Marquinez et al. (2021), time discretization must be according to the decisions being taken.

In our study, the decision-making timeline is represented in Figure 3.4.
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Figure 3.4. Diagram of the Decision Making Timeline

In our study, fractions of the day are considered. Following the literature (González

et al., 2018; Martinez et al., 2019; J. Zhang et al., 2021), it is valid to consider two win-

dows of 12 hours. We assume that the preparation times for beds, as well as the times for

transfers, diversions, and admissions of patients, occur within the given time frame, pro-

vided that they are shorter than the time window itself. However, it is possible to further

discretize time without affecting the modeling and solution strategy. Also, the model is

constructed with an infinite horizon, aiming to derive a stationary operational policy, given

the sequential decision process behind the modeling.

3.4. Patients

3.4.1. Aggregation by Diagnosis-Related-Groups

Although each patient has its characteristics, such as age, sex, comorbidities, diagno-

sis, procedures, and other aspects, developing a model or strategy to consider each particu-

lar case will make it unmanageable by any Operations Research methodology. To address
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this management problem, Fetter et al. (1980) and Fetter (1991) developed a classifica-

tion scheme based on the relation between the demographic, diagnostic, and therapeutic

characteristics of patients and the hospital outputs they utilize. This clustering, known as

the Diagnosis-Related-Groups (DRG), leads to a reasonable amount of patient types to

manage.

This classification has proven to be useful in different aspects; Zapata (2018) mentions

that, in Chile, the DRG classification system has helped clinical and managerial staff to

improve patient flow, making them work together. One key aspect of these improvements

is the different metrics that we can retrieve to make comparisons of performance between

different hospitals in a network and, even more relevant, between two different years of

operations in the same system. This proposal is done by the Case Mix Report proposed

by Fetter et al. (1980). For the sake of our study, let us assume that we have a DRG

classification with K different groups. Also, given a reference system, which can be

the non-optimized scenario (i.e., the hospital network outcomes under the current non-

improved management policy), let us define Pk as the proportion of DRG k of the reference

system cases, and Ak the average stay for DRG k in the reference system. Similarly, let

us define pk and ak as the metrics for DRG k in the case study system, which can be the

optimized scenario (i.e., the hospital network outcomes under the improved management

policy), for the proportion and the average Length of Stay (LOS), respectively.

Given these values, Fetter et al. (1980) proposed the following metrics:

(i) Average Lenght of Stay (ALOS): For the reference system, as well as the case

study system, we can obtain the average stay of the system as follows:

A =
∑
k

AkPk

a =
∑
k

akpk
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(ii) LOS Index: It is the relative measure of LOS. This index compares how the case

study would attend to patients compared with the reference system’s treatment

duration standards. The formula is the following:

LOS Index =

∑
k

akPk∑
k

AkPk

The numerator estimates the ALOS if we have attended the reference system

Case Mix P with the case study treatment durations a. On the other hand, the

denominator calculates the ALOS of the reference system. If we improve effi-

ciency in treating the same patients, the desirable index would be lower than 1.

Values higher than 1 represent a reduction in efficiency.

(iii) Case Mix Index: It is the relative measure of Case Mix Complexity (where the

complexity is proportional to the patients’ stay). This index compares how the

reference system would have attended the case study patients compared with the

reference system’s Case Mix. The formula is the following:

Case Mix Index =

∑
k

Akpk∑
k

AkPk

The numerator estimates the ALOS if we have attended the case study Case

Mix p with the reference system treatment durations A. On the other hand, the

denominator calculates the ALOS of the reference system. If we increase the

Case Mix complexity, this index will be higher than 1. Values lower than 1

represent a less complex case study.

(iv) Differences: Although we can directly compare a and A, we can not separate

the effects due to changes in LOS (directly related to efficiency) and Case Mix.

To separate them, we can use the proposition by Kitagawa (1955), which is
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mentioned by Fetter et al. (1980) in the proposal of the Case Mix Report.

a− A︸ ︷︷ ︸
∆ ALOS

=
∑
k

Pk(ak − Ak)︸ ︷︷ ︸
Difference due to LOS

+
∑
k

Ak(pk − Pk)︸ ︷︷ ︸
Difference due to Case Mix

+
∑
k

(ak − Ak)(pk − Pk)︸ ︷︷ ︸
Difference due to the interaction

This formula was reviewed by Gupta (1978), resulting in a simplified version:

a− A︸ ︷︷ ︸
∆ ALOS

=
∑
k

(Pk + pk)(ak − Ak)

2︸ ︷︷ ︸
Difference due to LOS

+
∑
k

(Ak + ak)(pk − Pk)

2︸ ︷︷ ︸
Difference due to Case Mix

Separating these terms lets us better understand the reasons behind changes in

ALOS between the systems.

One big issue regarding the DRG classification system is the necessity of many per-

sonnel compiling and classifying each patient regularly to achieve as close to real-time

classification as possible. This staffing problem is coupled with human error, resulting in

misclassifications that endanger the DRG applications. Thankfully, new approaches that

use Machine Learning have been developed to address these problems, such as Machine

Learning Approaches for Early DRG Classification and Resource Allocation by Gartner

et al. (2015) and Early prediction of diagnostic-related groups and estimation of hospital

cost by processing clinical notes by Liu et al. (2021).

3.4.2. Length of Stay and Patient Flow Model

Given the DRG classification system, it is easier to incorporate desirable properties for

each group. The first one is the LOS distribution, which tends to fit well with lognormal-

based models in every hospital unit, as reported in the literature (Min & Yih, 2010; Samu-

dra et al., 2016; X. Zhang et al., 2019; Zhu et al., 2018). We want to point out that

choosing this distribution does not necessarily imply that it is the only one possible in

real-life scenarios, existing other options that the proposed model can handle either way.

Regarding patient flow modeling, it can be assumed that the entity arrival follows

a Poisson distribution (Astaraky & Patrick, 2015; Samudra et al., 2016; Truong, 2015;
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Van Riet & Demeulemeester, 2015). In contrast, the inpatient requirements distributions,

including the discharge, can be modeled with a Markov Chain, using the distinctions pro-

posed by González et al. (2018). Similar to the LOS modeling, it is important to remark

that there could be other alternatives to represent real-life phenomena regarding this last

aspect. Also, it is important to mention that these requirements originate from medical

staff decisions, where the model at the Micro-Scale dimension is a tool to handle, orga-

nize, and optimize inpatient flow based on these medical requests.

3.4.3. Waiting Time Costs

The mortality rate in Chilean hospitals rose in connection with the waiting time for

patients with non-prioritized health conditions (Martinez et al., 2019). This situation is

supported by the study conducted by Plunkett et al. (2011), where evidence indicates that

delays in admission and transfers are linked to unfavorable outcomes in terms of mortality.

To achieve patient equity and healthcare optimization, as well as a way to compare the

economic costs regarding operations from transfers and diversions, a simple and effective

way to assign economic value to waiting time effects is needed.

Although there are different approaches, we will focus on a strategy that could merge

a statistical approach with the expert knowledge of medical staff. To achieve that, first of

all, let us define T as the maximum waiting time (in periods) allowed in the system for any

patient at any unit. Based on that, the statistical approach suggests that we could estimate

the death (or irreparable damage) probability for any waiting time period t ≤ T . There

are numerous studies regarding this issue, such as the ones conducted by Martinez et al.

(2019) and Plunkett et al. (2011). Although many of these insights are concentrated in the

Emergency Department, they fail to explain this phenomenon in other hospital units. Also,

there is not always enough historical information to completely understand each DRG

probabilities at every unit, requiring other sources of information. Specifically, medical

staff, based on their experiences, can help fill the missing information gaps. Thus, not only

is the model more precise in terms of quantifying waiting time effects, but it also includes
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the clinician’s opinions and expertise, which gives the model greater validity and appeal

before healthcare professionals.

As an example of what can be obtained, Figure 3.5 represents three different evo-

lutions over time. It is observed that, independent of the risk level, every curve has at

the cumulative waiting time T a coefficient equal to 1. In that situation, the patient’s in-

tegrity is completely in danger. For instance, the High-Risk curve resembles the increasing

mortality rate for a patient waiting at the ED, as reported by Plunkett et al. (2011). The

Medium-Risk curve could be appropriate for an inpatient waiting to be transferred from

the Ward to the SDU, while the Low-Risk curve is suitable, for example, for an elective

patient waiting at the WL.

Figure 3.5. Representation of Different Waiting Time Coefficients over
Time

Given these coefficients, we can multiply them by the statistical value of life, usually

used in Chile in the Social Evaluation of Projects, to obtain a monetary value for the risks
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associated with the waiting time. It is important to mention that, for practical purposes,

we seek to evaluate the economic appreciation that society assigns to a marginal decrease

in fatality risk. Consequently, it should not be interpreted as the monetary value of a life,

since the latter is invaluable.

3.5. Bed Opportunity Cost

It is also important to consider the detrimental effects in terms of operational efficiency

and costs that the healthcare system must assume in case of inpatient overstay at certain

hospital units. As stated by Madeira et al. (2021), there is evidence to determine that

prolonged stays considerably affect the operational efficiency, as well as the costs of the

hospital network. In this way, it is necessary to reduce these situations to optimize the use

of public resources.

Batista et al. (2021) proposes that inpatient overstay costs, in terms of the detriment

of patient service, require hospital managers to establish specific values, following their

preferences and internal policies. On the other hand, authors such as Seidel, Whiting,

and Edbrooke (2006) and Tan et al. (2012), were able to estimate a monetary value for

the inpatient overstay, considering the misutilization of resources (staffing, equipment,

etc.) that the hospital is assuming. Similarly to the waiting time costs, we consider that

the Bed Opportunity Cost must consider both statistical and hospital manager preferences

approach in order to have a robust estimation, but also a credible and attractive one to

healthcare professionals.
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4. MODEL FORMULATION

It is important to simplify the problem before creating a mathematical model. This

involves identifying decision variables that focus on the Macro-Scale actions, such as the

admission and diversion of patients, and the transfers between emergency departments

to manage the emergency demand. Additionally, it is equally important to manage the

Micro-Scale actions which involve the flow of inpatients to ensure that medical requests

are promptly serviced.

Given the actions taken, an operational cost is incurred due to the Macro-Scale actions

(transfers and diversions). Also, an opportunity cost is assumed at the end of each modeled

period due to the waiting times that some patients are experiencing and the beds they

occupy that could be attending the correct type of inpatient. These two costs represent

the immediate costs. Additionally, the resulting state of the system (i.e., how the different

types of patients are occupying the system’s capacity at every hospital) at the end of a

period affects the expected future costs that the system will have. Thus, the problem

requires minimizing the sum of the immediate costs with the discounted expected future

costs.

At the end of each period, the problem must satisfy certain constraints regarding bed

capacity by each unit. This ensures that all inpatients who have been accommodated can

receive proper attention and care.

Let us assume a set of all types of patients P that the system can treat. This set includes

all the potential combinations of DRGs, medical requirements, and waiting periods. This

set will be detailed in section 4.3. Specifically, let us consider the patients from type

p ∈ P . If we delineate the issue concerning patients of type p, Figure 4.1 offers a visual

depiction of this specific patient management challenge. Note that we only present a

pair of hospitals for a more precise representation. Immediately, it can be noted that this

situation resembles a network flow problem for each p ∈ P . The capacity constraints bind

all these sub-problems into one big problem.
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Figure 4.1. Diagram of the Problem on a 2 Hospital Network for Each
Type of Possible Patient

Additionally, we can define a synthetic notation to facilitate the formulation of the dif-

ferent metrics and, subsequently, the mathematical model notation based on Gupta (1978).
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For instance, given a two-index variable xij and coefficient αij , where (i, j) ∈ I × J , we

can define:

x∗jα∗j =
∑
i∈I

xijαij

xi∗αi∗ =
∑
j∈J

xijαij

x∗∗α∗∗ =
∑
i∈I

∑
j∈J

xijαij

Obviously, this notation can be extended to an N dimensional variable.

Given the problem description, the mathematical formulation of a cost-minimization

MDP will be presented in the next sections.

4.1. Assumptions

To ensure the convergence and feasibility of the model solution and to maintain a

consistent formulation regarding the system dynamics, it is imperative to declare our as-

sumptions:

(i) Patients are assumed to not die during the care process.

(ii) Patients have infinite waiting disposition.

(iii) There is the availability of logistic resources to perform all transfers and deriva-

tions that the decision-maker deems appropriate.

(iv) Time discretization allows for patient transfers and sanitation and bed prepara-

tion processes.

(v) The model has finite returns, i.e.:

|c(s⃗1, a⃗)| < ∞ ∀s⃗1 ∈ S1, ∀a⃗ ∈ X(s⃗1)

(vi) The process is stationary, meaning returns and probabilities are independent of

time.
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4.2. Bellman Equations

The general Bellman Equations for an MDP, where it is expected to minimize a cost

function, are:

C(s⃗1) = min
a⃗∈X(s⃗1)

{
c(s⃗1, a⃗) + λ

∑
u⃗∈S1

C(u⃗)p (u⃗|s⃗2)

}
∀s⃗1 ∈ S1

Where s⃗1 represents the pre-decision state, s⃗2 the post-decision state, a⃗ represents

the actions, c(s⃗1, a⃗) the Cost-to-Go, and u⃗ represents the possible future states. Each

component will be detailed in the following sections.

4.3. Sets

The sets considered in the model are the following:

Hospitals: h ∈ {1, 2, . . . , H}

Admission Units (N1): n ∈ {ED, GA}

Service Units (N2): n ∈ {OR, ICU, SDU, WARD}

Hospital Units (N ): N1 ∪N2

Diagnosis Related Groups (DRG): g ∈ {1, 2, . . . , G}

Modeled Periods for Patient Waiting Time (T): t ∈ {1, . . . , T}

Patient Types: p ∈ P = {N2 × DRG × T}, where p represents a patient with

need of care n(p), DRG g(p) and waiting time t(p).

4.4. Parameters

The parameters considered in the model are the following:

Φn
h ∈ Z+: Capacity of unit n ∈ N in hospital h.

ω̄ ∈ Z+: Capacity of the WL.
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ρp: Average cost of deriving a patient of type p ∈ P to the PS from the WL at

the beginning of the period.

θhp ∈ R+: Average cost of deriving to the PS an ED patient of type p ∈ P from

hospital h at the beginning of the period.

ϑh1h2
p ∈ R+: Average cost of transferring an ED patient of type p ∈ P between

hospitals h1 and h2 at the beginning of the period.

νp ∈ R+: Average cost per waiting period for a patient of type p ∈ P in the WL

at the end of the period.

ϕhn
p ∈ R+: Average cost per waiting period for a patient of type p ∈ P in

hospital h and unit n ∈ N at the end of the period.

µ ∈ R+
0 : Weight factor for waiting costs.

4.5. States

As recommended by Powell (2011, 2012), the model states can be divided into a Pre-

Decision State and a Post-Decision State, where the Post-Decision State is achieved after

the optimal decision for the Pre-Decision State is taken. The benefits of using this model-

ing approach include its ability to simplify the handling of the various types of curses of

dimensionality, which often arise in MDP formulations.

4.5.1. Start of a Period (Pre-Decision State)

S1 := {s⃗1 : (ω⃗1, α⃗1)}

Where:

ωp
1 ∈ Z+

0 : Number of patients of type p ∈ P on the WL at the start of the period.

αphn
1 ∈ Z+

0 : Number of patients of type p ∈ P in hospital h and unit n ∈ N at

the start of the period.
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4.5.2. End of a Period (Post-Decision State)

S2 := {s⃗2 : (ω⃗2, α⃗2)}

Where:

ωp
2 ∈ Z+

0 : Number of patients of type p ∈ P on the WL at the end of the period.

αphn
2 ∈ Z+

0 : Number of patients of type p ∈ P in hospital h and unit n ∈ N at

the end of the period.

4.6. Actions

The admissions, diversions, and transfers in the model are represented as follows:

X(s⃗1) := {a⃗ : (η⃗, κ⃗, v⃗, w⃗, x⃗) ∈ F(s⃗1)} ∀s⃗1 ∈ S1

Where:

ηp ∈ Z+
0 : Number of patients of type p ∈ P on the WL derived to the PS at the

start of the period.

κh
p ∈ Z+

0 : Number of patients of type p ∈ P on the WL who are admitted to GA

of hospital h at the start of the period.

vhp ∈ Z+
0 : Number of patients of type p ∈ P derived to the PS from the ED of

hospital h at the start of the period.

wh1h2
p ∈ Z+

0 : Number of patients of type p ∈ P transferred from the ED between

hospital h1 and h2 at the start of the period.

xhn1n2
p ∈ Z+

0 : Number of patients of type p ∈ P transferred within hospital h

between units n1 ∈ N and n2 ∈ N2 at the start of the period.

Each action a⃗ belongs to F(s⃗1), meaning that it satisfies:
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(i) Transition within a period: The action taken can ensure a correct transition be-

tween the pre-decision and post-decision states, respecting their respective na-

ture (non-negativity). Note that the set of constraints resembles a network-flow

problem, where the patient flow is being optimized.

- Waiting List:

(a) The number of patients of type p ∈ P of the post-decision state is equal to

the number of patients of type p ∈ P minus the ones diverted to the PS and the

admitted to the hospitals.

ωp
2 = ωp

1 − ηp − κ∗
p ∀p ∈ P

- Hospital’s GA:

(a) The number of patients of type p ∈ P with a waiting time equal to 1 in each

hospital h of the post-decision state is equal to the number of patients of type

p ∈ P with a waiting time equal to 1 in each hospital h plus the ones admitted

from the WL with the same DRG g and medical requirement n ∈ N2.

αphn
2 = αphn

1 +
∑

u∈U(p)

κu
h ∀p ∈ {p ∈ P : t(p) = 1}

∀h ∈ {1, . . . , H}

∀n ∈ {GA}

Where U(p) = {u ∈ P : n(u) = n(p) ∧ g(u) = g(p)}

(b) The number of patients of type p ∈ P with a waiting time higher than 1

in each hospital h of the post-decision state is equal to the number of patients of

type p ∈ P with a waiting time higher than 1 in each hospital h minus the ones
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admitted to the service unit n2 ∈ N2.

αphn1

2 = αphn1

1 − xhn1n2
p ∀p ∈ {p ∈ P : 1 < t(p) ∧ n(p) = n2}

∀h ∈ {1, . . . , H}

∀n1 ∈ {GA}

∀n2 ∈ N2

- Hospital’s ED:

(a) The number of patients of type p ∈ P in each hospital h of the post-decision

state is equal to the number of patients of type p ∈ P in each hospital h, minus

the ones diverted to the PS, plus the ones transferred from the other hospital’s

ED, minus the ones transferred to the other hospital’s ED and minus the ones

admitted to the service unit n2 ∈ N2.

αphn1

2 = αphn1

1 − vhp + w∗h
p − wh∗

p − xhn1n2
p ∀p ∈ {p ∈ P : n(p) = n2}

∀h ∈ {1, . . . , H}

∀n1 ∈ {ED}

∀n2 ∈ N2

- Hospital’s Service Units:

(a) The number of patients of type p ∈ P with a waiting time equal to 1 in

each hospital h of the post-decision state is equal to the number of patients of

type p ∈ P with a waiting time equal to 1 in each hospital h plus the ones

transferred from the different units of the hospital with the same DRG g and
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medical requirement n ∈ N2.

αphn
2 = αphn

1 +
∑

u∈U(p)

xh∗n
u ∀p ∈ {p ∈ P : t(p) = 1 ∧ n(p) = n}

∀h ∈ {1, . . . , H}

∀n ∈ N2

Where U(p) = {u ∈ P : n(u) = n(p) ∧ g(u) = g(p)}

(b) The number of patients of type p ∈ P with a waiting time higher than 1

in each hospital h of the post-decision state is equal to the number of patients of

type p ∈ P with a waiting time higher than 1 in each hospital h.

αphn
2 = αphn

1 ∀p ∈ {p ∈ P : 1 < t(p) ∧ n(p) = n}

∀h ∈ {1, . . . , H}

∀n ∈ N2

(c) The number of patients of type p ∈ P with a waiting time higher than 1 in

each hospital h of the post-decision state is equal to the number of patients of

type p ∈ P with a waiting time higher than 1 in each hospital h minus the ones

transferred to the other hospital’s service unit.

αphn1

2 = αphn1

1 − xhn1n2
p ∀p ∈ {p ∈ P : 1 < t(p) ∧ n(p) ̸= n1}

∀h ∈ {1, . . . , H}

∀n2 ∈ N2

(ii) Capacity constraints: The decision taken must ensure that, after reaching the

post-decision state, each unit capacity must be respected.
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- Waiting List:

ω∗
2 ≤ ω̄

- Hospital’s Units:

α∗hn
2 ≤ Φn

h ∀h ∈ {1, . . . , H}

∀n ∈ N

It is important to remember that for all initial states s⃗1 ∈ S1 and all possible actions a⃗

in A(s⃗1), it holds that:

s⃗2 := f(s⃗1, a⃗)

Where the Post-Decision State s⃗2 is achieved by the result of the implementation of

the actions a⃗ over the Pre-Decision State state s⃗1.

4.7. Period Transition

After reaching the post-decision state in period t, the system status must be updated

following the process outlined in Figure 3.4, thereby transitioning to a new pre-decision

state in period t + 1. Given the process’s inherent stochasticity, the network’s inpatient

status and medical requirements (i.e., the service unit that must attend to the patient) could

change. Also, new medical requests can arrive at the WL and the hospital’s EDs. However,

certain transitions are still deterministic. It follows that:

(i) Deterministic Part:

The following constraints ensure that patients in the system add one period to

their waiting time status.

- Waiting List:
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Patients of type p ∈ P that end up waiting a period for medical attention in the

WL.

ω
u(p)
1 = ωp

2 ∀p ∈ {p ∈ P : 1 < t(p) < T}

ωp
1 = ωp

2 + ω
z(p)
2 ∀p ∈ {p ∈ P : t(p) = T}

Where u(p) = {u ∈ P : n(u) = n(p) ∧ g(u) = g(p) ∧ t(u) = t(p) + 1}

Where z(p) = {z ∈ P : n(z) = n(p) ∧ g(z) = g(p) ∧ t(z) = t(p)− 1}

- Hospital’s GA:

Patients of type p ∈ P that end up waiting a period for medical attention at each

hospital’s GA.

αphn
1 = 0 ∀p ∈ {p ∈ P : t(p) = 1}

∀h ∈ {1, . . . , H}

∀n ∈ {GA}

α
u(p)hn
1 = αphn

2 ∀p ∈ {p ∈ P : 1 < t(p) < T}

∀h ∈ {1, . . . , H}

∀n ∈ {GA}

αphn
1 = αphn

2 + α
z(p)hn
2 ∀p ∈ {p ∈ P : t(p) = T}

∀h ∈ {1, . . . , H}

∀n ∈ {GA}
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Where u(p) = {u ∈ P : n(u) = n(p) ∧ g(u) = g(p) ∧ t(u) = t(p) + 1}

Where z(p) = {z ∈ P : n(z) = n(p) ∧ g(z) = g(p) ∧ t(z) = t(p)− 1}

- Hospital’s ED:

Patients of type p ∈ P that end up waiting a period for medical attention at each

hospital’s ED.

α
u(p)hn
1 = αphn

2 ∀p ∈ {p ∈ P : 1 < t(p) < T}

∀h ∈ {1, . . . , H}

∀n ∈ {ED}

αphn
1 = αphn

2 + α
z(p)hn
2 ∀p ∈ {p ∈ P : t(p) = T}

∀h ∈ {1, . . . , H}

∀n ∈ {ED}

Where u(p) = {u ∈ P : n(u) = n(p) ∧ g(u) = g(p) ∧ t(u) = t(p) + 1}

Where z(p) = {z ∈ P : n(z) = n(p) ∧ g(z) = g(p) ∧ t(z) = t(p)− 1}

- Hospital’s Service Units:

Patients of type p ∈ P that end up waiting a period for medical attention at

each hospital’s service unit n ∈ N2, waiting to be transferred to a service unit
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n(p) ̸= n.

αphn
1 = 0 ∀p ∈ {p ∈ P : t(p) = 1 ∧ n(p) ̸= n}

∀h ∈ {1, . . . , H}

∀n ∈ N2

α
u(p)hn
1 = αphn

2 ∀p ∈ {p ∈ P : 1 < t(p) < T ∧ n(p) ̸= n}

∀h ∈ {1, . . . , H}

∀n ∈ N2

αphn
1 = αphn

2 + α
z(p)hn
2 ∀p ∈ {p ∈ P : t(p) = T ∧ n(p) ̸= n}

∀h ∈ {1, . . . , H}

∀n ∈ N2

Where u(p) = {u ∈ P : n(u) = n(p) ∧ g(u) = g(p) ∧ t(u) = t(p) + 1}

Where z(p) = {z ∈ P : n(z) = n(p) ∧ g(z) = g(p) ∧ t(z) = t(p)− 1}

(ii) Stochastic Part:

Let us define a new set of patients: Q = {q ∈ Q : N2 × DRG}. This set

represents all the possible combinations of medical requirements and DRGs the

system can attend. These types of patients are the ones that arrive at the WL and

the hospital’s EDs with t(q) = 1 (i.e., waiting time equal to 1).

- Waiting List:

Let W q be the random variable representing arrivals of patients of type q to
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the WL. Thus:

W q = ωp
1 ∀(p, q) ∈ {P ×Q : n(p) = n(q) ∧ g(p) = g(q) ∧ t(p) = 1}

Each arrival event is independent of the rest, with probability P (W q = ωp
1). The

previous expression represents the probability of arrivals of patients from type q

being ωp
1 , which feeds the new pre-decision state for the next period. For simplic-

ity, the compound probability from all these variables is equal to P
(
W⃗ q = ω⃗p

1

)
- Hospital’s ED:

Let Aq
h be the random variable representing arrivals of patients of type q to the

hospital’s h ED. Thus:

Aq
h = αphn

1 ∀(p, q) ∈ {P ×Q : n(p) = n(q) ∧ g(p) = g(q) ∧ t(p) = 1}

∀h ∈ {1, . . . , H}

∀n ∈ {ED}

Each arrival event is independent of the rest, with probability P
(
Aq

h = αphn
1

)
.

The previous expression represents the probability of the number of arrivals of

patients from type q in hospital h being αphn
1 , which feeds the new pre-decision

state for the next period. For simplicity, the compound probability from all these

variables is equal to P
(
A⃗ = α⃗1

)
- Hospital’s Unit:

Let Chnk
p be the variable representing the number of patients of type p ∈ P from

hospital h located in unit n ∈ N2, and transitioning to care need k ∈ N2 at the

end of the period. It is known that a patient served in unit n can either maintain

their care needs (n = k) or change them (n ̸= k).
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By construction, it holds that:

αphn
2 = Chn∗

p ∀p ∈ {p ∈ P : n(p) = n}

∀h ∈ {1, . . . , H}

∀n ∈ N2

We aim to study the probability of transitioning to:

(a) Patients that remain being treated at service unit n:

α
u(p)hn
1 = Chnn

p ∀p ∈ {p ∈ P : n(p) = n ∧ 1 < t(p) < T}

∀h ∈ {1, . . . , H}

∀n ∈ N2

αphn
1 = Chnn

p + Chnn
z(p) ∀p ∈ {p ∈ P : n(p) = n ∧ t(p) = T}

∀h ∈ {1, . . . , H}

∀n ∈ N2

Where u(p) = {u ∈ P : n(u) = n(p) ∧ g(u) = g(p) ∧ t(u) = t(p) + 1}

Where z(p) = {z ∈ P : n(z) = n(p) ∧ g(z) = g(p) ∧ t(z) = t(p)− 1}

(b) Patients that update their treatment requirements to service unit k ̸= n:

αphn
1 =

∑
u∈U(p)

Chnk
u ∀p ∈ {p ∈ P : n(p) ̸= n ∧ n(p) = k ∧ t(p) = 1}

∀h ∈ {1, . . . , H}

∀k ∈ N2

Where U(p) = {u ∈ P : n(u) = n ∧ g(u) = g(p)}
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Without loss of generality, for any t(p), we want to study the random variable:

P
(
Chn1

p = c1, . . . , C
hnN2
p = cN2 | α

phn
2 = Chn∗

p

)
It is important to remark that 0 ≤ ck ≤ α ∀k ∈ N2. It can be shown that this

expression is equivalent to:

P

(
Chn2

p = c2, . . . , C
hnN2
p = cN2 | Chn1

p = c1, α
phn
2 − c1 =

N2∑
k=2

Chnk
p

)
P
(
Chn1

p = c1
)

Given that Chn1
p = c1, it is important to remark that 0 ≤ ck ≤ αphn

2 − c1 ∀k ∈

N2 \ {1}. Now, it can be shown that this expression is equivalent to:

P

(
Chn3

p = c3, . . . , C
hnN2
p = cN2 | Chn2

p = c2, C
hn1
p = c1, α

phn
2 − c1 − c2 =

N2∑
k=3

Chnk
p

)
· P
(
Chn2

p = c2 | Chn1
p = c1

)
· P
(
Chn1

p = c1
)

Now, given that Chn1
p = c1 and Chn2

p = c2, it is important to remark that 0 ≤

ck ≤ αphn
2 − c1 − c2 ∀k ∈ N2 \ {1, 2}. Following this logic, we arrive at the

following expression:

∏
k∈N2

P
(
Chnk

p = ck | Chnk−1
p = ck−1, . . . , C

hn1
p = c1

)

Let δhnkp ≥ 0 be the probability that a patient of type p ∈ P from hospital h

located in unit n, transitions to care needs of type k ∈ N2 at the end of the

period. It can be shown that:

P
(
Chnk

p = ck | Chnk−1
p = ck−1, . . . , C

hn1
p = c1

)
=

P

(
Binomial

(
n = αphn

2 −
k−1∑
u=1

cu, p =
δhnkp∑N2

u=k δ
hnu
p

)
= ck

)
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Note that it holds:

δhn∗p = 1 ∀p ∈ {p ∈ P : n(p) = n}

∀h ∈ {1, . . . , H}

∀n ∈ N2

Thus, it holds:

P
(
C⃗ = C⃗ | α⃗2

)
=

H∏
h=1

∏
n∈N2

∏
p∈P

{∏
k∈N2

P
(
Chnk

p = ck | Chnk−1
p = ck−1, . . . , C

hn1
p = c1

)}

Once we determine C⃗, it is easy to determine the new state 1⃗. Additionally, in the case

of n = WARD, it must be considered that a possible transition is the end of patient care,

which ultimately frees up hospital resources.

Based on the previously developed probabilities, it can be concluded that the probabil-

ity of transition from the post-decision state s⃗2 to a pre-decision state u⃗ ∈ S1 is:

p(u⃗|s⃗2) = P
(
W⃗ q = ω⃗p

1

)
· P
(
A⃗ = α⃗1

)
· P
(
C⃗ = C⃗ | α⃗2

)
4.8. Cost-to-Go

Finally, the cost function is formulated. It can be divided between the pre-decision

state (operational costs) and the post-decision state (opportunity costs). Also, the decision-

maker could modify the value µ, which we will consider equal to 1, for the sake of this

study.

c(s⃗1, a⃗) = c1(s⃗1, a⃗) + µ · c2(s⃗2) ∀s⃗1 ∈ S, ∀a⃗ ∈ X(s⃗1)

The cost at the beginning of the period considers the diversions and transfer costs,

which are defined as:

c1(s⃗1, a⃗) = η∗ρ∗ + v∗∗θ
∗
∗ + w∗∗

∗ ϑ∗∗
∗

37



The first term represents the sum of diversion costs from the WL, the second term

represents the sum of diversion costs from the hospital’s EDs, and the last term represents

the sum of transfer costs between the hospital’s EDs.

The cost at the end of the period considers the waiting times and bed opportunity costs,

which are defined as:

c2(s⃗2) = ω∗
2ν∗ + α∗∗∗

2 ϕ∗∗
∗

The first term represents the sum of waiting time costs from patients at the WL, while

the second one considers the waiting time costs for patients at the different hospital’s

units, as well as the bed opportunity costs from the beds that are being ‘misused’ by these

patients waiting.
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5. SOLUTION APPROACH

The following chapter outlines the methodologies implemented to optimize the prob-

lem. We start with the Q-learning and Reinforcement-Learning approach, focusing on the

simulation and optimization techniques implemented. Additionally, different Q-learning

enhancements are described, as well as the mathematical formulation behind the Machine

Learning model.

5.1. The Q Function

Given the complexity of the problem, which involves a vast number of possible system

states resulting in a high degree of complexity in both the states and actions dimensions,

as well as the numerous stochastic transitions, it is necessary to solve this problem using

an approximate method (Powell, 2011, 2012). To achieve this, first of all, we must make

some changes to the classic Bellman Equations. Specifically:

C(s⃗1) = min
a⃗∈X(s⃗1)

{
c(s⃗1, a⃗) + λ

∑
u⃗∈S1

C(u⃗)p (u⃗|s⃗2)

}
∀s⃗1 ∈ S1

We define: ∑
u⃗∈S1

c(u⃗)p(u⃗|s⃗2) = Eu⃗ [c(u⃗) | s⃗2] = Q (s⃗2) ∀s⃗2 ∈ S2

Where Q (s⃗2) is a function that represents the expected value of the post-decision state

s⃗2. The Bellman Equations are reduced to:

C(s⃗1) = min
a⃗∈X(s⃗1)

{c(s⃗1, a⃗) + λQ (s⃗2)} ∀s⃗1 ∈ S1

Now, the main task is to determine a good approximation of Q. There are several

possible techniques, such as a Miopic Adjustment, Rolling Horizon, Lookahead, and Pa-

rameterization methods, among others. In this research, we will focus on the Q-learning
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approach, which is a straightforward method for agents to acquire optimal behavior in

regulated Markovian environments (Watkins & Dayan, 1992). The Q-learning approach

will be coupled with a Reinforcement-Learning methodology, which involves acquiring

effective strategies for sequential decision challenges by optimizing a cumulative future

reward signal (Sutton & Barto, 2018), which is expected to be represented by the function

Q.

5.2. General Overview of the Q-learning and Reinforcement-Learning Approach

The Q-learning and Reinforcement-Learning strategies can be summarized in the follo-

wing figure:

Figure 5.1. General Diagram of the Q-learning and Reinforcement-
Learning Approach

Stages (1) and (2) consider a Simulation and Optimization approach, where the agent

samples experiences that later can be used to learn a better policy. In this study, the sim-

ulation is programmed in Python 3.10.11, while the optimization problem is programmed

in Gurobi 10.0.2. Steps (3) and (4) are related to the learning process based on the expe-

riences. Each of these components, as well as their details, will be explained in the next
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section. Although one can iterate indefinitely, a stopping criteria is needed. In our case,

we used two convergence criteria; the first one is based on the new experiences values,

while the second one measured the Q values that were predicted and their changes over

time. When both measures achieved a steady state, the training was ended.

It is worth noting that this approach involves offline training to minimize the compu-

tational resources required for real-time processing and problem-solving. Only the first

stage is utilized during the actual implementation of the model in a real-world scenario.

However, all relevant data must be collected for future retraining of the Q model.

5.3. Useful Methodologies

5.3.1. Stage 1: Simulation and Optimization

To correctly understand the solution approach, first of all, it is necessary to define

certain elements. We can solve our patient management problem using a discrete-event

simulation approach. This method allows the system to evolve dynamically between time

frames, and we can make optimal decisions at each period to get the best results. By

applying this approach, we can obtain specific elements at each time frame t:

• An initial pre-decision state s⃗1 ∈ S1

• An action a⃗ ∈ X(s⃗1) taken by the current policy π .

• A cost c(s⃗1, a⃗) incurred.

• An final post-decision state s⃗2 ∈ S2, given the pre-decision state and the action

taken.

Figure 5.2 represents this framework, where an agent (i.e., the decision-maker) chooses

an action, given an initial state s⃗1. This decision is supported by an optimization model,

optimized within the policy π step.
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Figure 5.2. Diagram of the Simulation and Optimization Approach

From now on, and to keep the important elements, we will register at each time step t

the tuple (St, Ct), where St = s⃗2 and Ct = c(s⃗1, a⃗).

5.3.2. Stages 2 and 3: Replay Buffer

Based on Lin (1992), a Replay Buffer is a set of previously observed transitions that

are stored for a certain amount of time. These stored transitions are used multiple times;

thus, the learning agent recalls its previous encounters and iteratively feeds these experi-

ences to its learning algorithm, simulating the agent’s re-experience of past occurrences.

Eventually, as the Replay Buffer fills its capacity, the older experiences are changed by

new ones. In our case, given a simulation run i with J time frames sampled, its Replay

BufferRi is represented as:

Ri =
{
(Si

1, C
i
1), . . . , (S

i
t , C

i
t), . . . , (S

i
J , C

i
J)
}
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Now, given I simulations runs, the final Replay BufferR is defined as:

R =
I⋃

i=1

Ri

In our case, each simulation run sampled 1000 time frames in the stationary phase,

with a Replay Buffer size of 120 simulation runs or, in other terms, 120,000 total experi-

ences. We sampled 3,000 experiences between learning phases.

5.3.3. Stage 4: Machine Learning Approach and Enhancements

5.3.3.1. Justification

In this study, the function Q will be acquired through a machine learning approach,

which later can be embedded in the optimization model. One of the reasons behind the se-

lection of this approach is the possibility of modeling non-linear relations, which González

et al. (2018) and Marquinez et al. (2021) propose as an improvement, compared to the Ap-

proximate Linear Optimization Approach used by both of the authors. In our research, we

implemented a traditional solution approach using a multi-step Lookahead, similar to the

Sample Average Approximation (SAA) method. However, we faced two major issues dur-

ing this process. Firstly, we encountered endogeneity, which refers to the situation where

decisions made in the present affect future probabilities. For instance, transferring a pa-

tient to a different hospital can impact the future possibilities regarding the availability of

beds at that hospital. Secondly, we faced an explosive increase in the size of the problem

due to scenario sampling, which led to intractable execution times for the case study.

There has been increasing interest in recent years to incorporate machine learning

models in optimization models. This has resulted in numerous publications. A notable

example is the research conducted by Maragno et al. (2023) titled Mixed-Integer Opti-

mization with Constraint Learning, where the authors suggest a comprehensive process

for data-informed decision-making, where the constraints and objectives are derived di-

rectly from the data through machine learning. The resulting models are then integrated
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into an optimization framework, testing it in a diet planning application and a cancer treat-

ment optimization problem.

This has also resulted in the development of research software packages. In our case,

we pay attention to the Gurobi Machine Learning package. As it is stated by Gurobi

Optimization (2023), it consists in:

A Python package to help use trained regression models in mathemati-

cal optimization models. The package supports a variety of regression

models (linear, logistic, neural networks, decision trees,. . . ) trained

by different machine learning frameworks (scikit-learn, Keras and Py-

Torch).

5.3.3.2. Base Guidelines

Q must be considered the output from a regression model, where its prediction de-

pends on the post-decision state St, but also on a set of parameters θ. Initially, based on

Van Hasselt et al. (2016), the selected machine learning model for this research was a

Deep Neural Network with ReLU activation, aiming to implement their Deep Reinforce-

ment Learning approach. With that in mind, briefly, it is proposed that, given an iteration

k, where the neural network parameters are θk, we can define:

Q(St) ≈ Y i
t = Ci

t+1 + λQ(Si
t+1, θk)

Where Y i
t represents the new estimation of the expected value for the post-decision

state St. The new parameters θk+1 are obtained minimizing the loss function:

I∑
i=1

J−1∑
j=1

(
Y i
t −Q(Si

t , θk+1)
)2
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5.3.3.3. Challenges and Extensions

When optimizing the model, we encountered errors due to the linearization of ReLU

expressions in the neural network embedded in the optimization model. This led to errors

in the regressor’s predictions, undermining Q value prediction.

To get over this problem, a new approach was proposed. Lookup Tables (Powell, 2011)

and, later on, more sophisticated approaches, such as the Dynamic Lookup Tables (Ulmer,

2017), have proven useful in solving MDPs with the courses of dimensionality. Generally

speaking, the idea behind this approach is to partition the post-decision vector space into

subsets with similar Q values. In this case, a balance between broad and detailed divisions

is desired in the post-decision space. Opting for a broad division may lead to a quick

yet inadequate approximation, as it treats diverse states equally during evaluation. On the

other hand, an overly detailed partitioning might lead to limited observations of states,

consequently causing an inefficient approximation process by the overfitting produced by

the scarce observations by partitioning.

5.3.3.4. Lookup Tables by Decision Trees

Although there are different methods to achieve good partitioning, decision tree classi-

fier regressors and their variants caught our attention. Decision trees are a way of dividing

observations into distinct leaves through a series of feature splits (Maragno et al., 2023).

As stated by the authors, a split node makes a partition by the inequality Ax ≤ b; on the

other hand, a terminal node (i.e., leaf node), gives us a prediction p. Figure 5.3 represents

an example of a generic decision tree.
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Figure 5.3. Diagram of a Generic Decision Tree

Every leaf can be characterized as a polyhedron, specifically a collection of linear

constraints that all leaf members must adhere to (Maragno et al., 2023), thus resulting in

the partitions that a Lookup Table aims to achieve. For instance, the partition achieved by

Node 6 is represented as P6 :=
{
x : AT

1 x > b1, A
T
5 x ≤ b5

}
.

Regarding the mathematical formulation of this regressor, we will focus on the pro-

posals by Bertsimas and Dunn (2017) and Maragno et al. (2023). Given a decision tree

with L leaf nodes and S split nodes, let us define li as the binary variable equal to 1 if x

belongs to partition Pi and pi its associated prediction.

Let us call S i ⊂ S the splits that observations in leaf i must ‘visit’. Given a leaf

node i and a split node j ∈ S i, if i follows the left split from j, we can ensure that

AT
j x ≤ bj . Otherwise, we can ensure that AT

j x > bj , which is equivalent to−AT
j x < −bj .

We can remove the strict inequalities using a sufficiently small ϵ parameter, giving us the

expression −AT
j x ≥ −bj − ϵ.
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Additionally, let us define Aj , which is equal to Aj if leaf i follows the left split of a

node j (i.e., AT
j x ≤ bj) and −Aj , otherwise. Similarly, let us define bj , which equals bj

if leaf i follows the left split of a node j and −bj − ϵ, otherwise. We can represent the

decision tree and its prediction y for x with the following equations:

A
T

j x−M(1− li) ≤ bj ∀ i ∈ L, ∀ j ∈ S i

∑
i∈L

li = 1

y =
∑
i∈L

pili

Where M is a sufficiently large number. For a better understanding of the previous equa-

tions, the generic regression tree presented in Figure 5.3 can be mathematically formulated

as follows:
A⊤

1 x−M (1− l3) ≤ b1,

A⊤
2 x−M (1− l3) ≤ b2,

A⊤
1 x−M (1− l4) ≤ b1,

−A⊤
2 x−M (1− l4) ≤ −b2 − ϵ,

−A⊤
1 x−M (1− l6) ≤ −b1 − ϵ,

A⊤
5 x−M (1− l6) ≤ b5,

−A⊤
1 x−M (1− l7) ≤ −b1 − ϵ,

−A⊤
5 x−M (1− l7) ≤ −b5 − ϵ,

l3 + l4 + l6 + l7 = 1,

y − (p3l3 + p4l4 + p6l6 + p7l7) = 0

Random Forest arises as a typical option among the tree-based models, which ensem-

ble a collection of tree regressors (i.e., a forest). This regression method consists of a

collection of tree predictors, where each tree relies on the values of a random feature vec-

tor that is independently sampled and follows the same distribution for all trees within the
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forest (Breiman, 2001). After the model is trained, predictions for unseen samples are

made, averaging the predicted value for each regression tree as follows:

y =
1

N

N∑
i=1

pi

Recently, new tree-based models have been developed, among them, the XGBoost

model stands out for its good results. Briefly, it is a tree-boosting technique, widely

adopted and highly effective in the field of machine learning, being remarkable for its

scalability in all kinds of scenarios (Chen & Guestrin, 2016). Given these properties,

as well as its versatility, this model is selected. In terms of the model hyperparameters,

they are optimized using Optuna, an automated hyperparameter optimization framework

(Akiba et al., 2019). In contrast to Random Forest, a calibrated and trained XGBoost

model output y is computed as:

y =
N∑
i=1

βiyi

Where yi is the predicted value of the i-th tree regression model and βi is the weight

associated with the prediction. Given the trained model with N trees, the approximated
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MDP model that we are solving is:

C(s⃗1) = min
a⃗∈X(s⃗1)

{c(s⃗1, a⃗) + λQ (s⃗2)} ∀s⃗1 ∈ S1

Q (s⃗2) =
N∑

n=1

βnyn (5.1)

yn =
∑
i∈Ln

pni l
n
i ∀n ∈ {1, · · · , N} (5.2)

(An
j )

T s⃗2 −Mn(1− lni ) ≤ bnj ∀ i ∈ Ln, ∀ j ∈ S i
n,

∀n ∈ {1, · · · , N} (5.3)∑
i∈Ln

lni = 1 ∀n ∈ {1, · · · , N} (5.4)

yn =
∑
i∈Ln

pni l
n
i ∀n ∈ {1, · · · , N} (5.5)

Constraint (6.1) calculates the Q (s⃗2), given the decision tree models. Constraints

(6.2), (6.3), (6.4) and (6.5) calculates the predicted value for each tree n ∈ {1, · · · , N}

from the XGBoost model.

The two most significant benefits of the Lookup table represented via an XGBoost

model for the Q function approximation, compared to the neural network approach, are:

firstly, the proposed model has a mathematical formulation that is compatible with the

optimization problem, preserving the core structure; secondly, the errors between the re-

gressor and the mathematical formulation associated with it are, on average, lower than

10−4%, which is acceptable, compared to the higher values that we obtained with the

neural network approach.

5.3.3.5. Multi-step Learning

Classic Q-learning considers for each learning step the cost for the next period exclu-

sively, resulting in the approximation:

Y i
t = Ci

t+1 + λQ(Si
t+1, θk)
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Sutton (1988) proposed a multi-step learning approach, which can lead to a faster

convergence if correctly calibrated. For instance, let us consider n future periods, the

truncated n-step return is defined as:

Y i
t (n) =

n−1∑
u=0

Ci
t+1+u + λQ(Si

t+n, θk)

Also, the loss function is changed, resulting in:

I∑
i=1

J−n∑
j=1

(
Y i
t (n)−Q(Si

t , θk+1)
)2

5.3.3.6. Decoupling the Q-learning Process

Although the classic Q-learning approach had achieved significant results, Van Hasselt

et al. (2016) mentions that it can suffer from important biases. This is produced because,

at each training iteration, we consider:

Q(Si
t) ≈ Ci

t + λQ(Si
t+1)

Thus, the Q function constantly feeds back on itself, resulting in subestimated values,

given that we are minimizing. We propose an approach that decouples these values to

avoid this undesired situation, reducing the Q-learning process’s biases. To achieve this,

we will learn multiple value functions; one will be the Target Model, with parameters θk,

as well as the Critic Models, with parameters θrk. The Target Model will be embedded in

the optimization problem, estimating the Q function, while the Critic Models will be used

to reduce biases.

Given an iteration k with a Replay BufferR, let us consider R critic models. Also, let

us consider a truncated n-step return for the critic models, which is defined as:

YC
i
t =

n−1∑
u=0

Ci
t+1+u + λ max

r=1,...,R

{
Q(Si

t+n, θ
r
k)
}
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The max operator makes it more likely to select overestimated values, which aims to

counter the subestimations that the classic approach does (Van Hasselt et al., 2016). On

the other hand, for the Target Model, let us consider the classic approach, where:

YT
i
t = Ci

t+1 + λQ(Si
t+1, θk)

As a simulation run i becomes older, the experiences contained in the replay buffer

Ri ⊂ R become less ideal for good policy learning, as old experiences tend to be worse,

thus needing to give the associated n-step returns less importance as they get older. This

implies that the Y i
t values to train the new value functions must be obtained using a

weighted average, where the weight, defined as αi for the term YC
i
t, decays over time,

resulting in the expression:

Y i
t = (1− αi)YT

i
t + (αi)YC

i
t

Which can be extended as:

Y i
t = (1− αi)

[
Ci

t+1 + λQ(Si
t+1, θk)

]
+ (αi)

[
n−1∑
u=0

Ci
t+1+u + λ max

r=1,...,R

{
Q(Si

t+n, θ
r
k)
}]

The weight αi can have different functional forms. It is important that, as the sample

gets older, this weight tends to zero. For instance, and after some calibration experiments,

given a simulation run i sampled u iterations ago, a good value for αi is defined as:

αi = 0.99u

After obtaining the Y set of values from R, with their respective S states, they are

split into the training set and the test set. The training set is divided into a random split

for training data and validation data, independently for each Critic Model. The training

data will be used to learn from the experiences and fit the model, while the validation data

will be used to evaluate the model learning and avoid overfitting. On the other hand, the

test set will be used as an unbiased evaluation of each Critic Model fit, where the one
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with the lowest error will pass its parameters to the target model. In our study, the metric

implemented is the Mean Squared Error. Also, it is important to remark that all these splits

must ensure that the partitions are correctly balanced for an optimal learning process.

The whole training process is presented in Algorithm 1.
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Algorithm 1 Q-learning
Require:

R: Replay Buffer

θk: Target Model Hyper-parameters

θrk: Critic Models Hyper-parameters

Ensure:

θk+1: New Target Model Hyper-parameters

θrk+1: New Critic Models Hyper-parameters

for (i, t) ∈ {(i, t) : i ∈ I, t ∈ J, t ≤ J − n} do ▷ Get new Q values

YC
i
t =

∑n−1
u=0 C

i
t+1+u + λmaxr=1,...,R

{
Q(Si

t+n, θ
r
k)
}

YT
i
t = Ci

t+1 + λQ(Si
t+1, θk)

Y i
t = (1− αi)YT

i
t + (αi)YC

i
t

end for

Stest, Ytest, Straining, Ytraining ← S, Y ▷ Get the test and training split

for r ∈ R do ▷ Train each Critic Model

Strain, Ytrain, Svalidation, Yvalidation ← Straining, Ytraining

θrk+1 ← model fit (Strain, Ytrain, Svalidation, Yvalidation)

end for

θk+1 ← argmin r=1,...,R

{
MSE

(
θrk+1, Stest, Ytest

)}
▷ Evaluate each Critic Model and

obtain the Target Model
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5.3.3.7. ϵ-greedy Exploration

In the basic reinforcement learning methodology, the agent optimizes the objective

function to decide which decisions must be taken:

C(s⃗1) = min
a⃗∈X(s⃗1)

{c(s⃗1, a⃗) + λQ (s⃗2)} ∀s⃗1 ∈ S1

The limitation of this approach is that the agent exclusively exploits the problem do-

main, with a high probability of ending in a sub-optimal policy. To improve the policy, the

agent can act ϵ-greedily in terms of the optimization problem. This means assuming that:

Q (s⃗2) = 0 ∀s⃗2 ∈ S2

This ends up in a situation where the agent decides with the lowest immediate value

(thus, the greedy action). To balance exploration and exploration, the greedy action is

taken with a probability ϵ, whereas the proactive action (where Q (s⃗2) ̸= 0) is taken with

probability (1− ϵ). The idea behind this strategy is to introduce exploration by randomly

selecting unnecessarily optimal actions, which can lead the agent to correct its current

estimates, as well as the possibility of discovering new policies that it would not have

considered before. In the case of this study, we considered a constant value of ϵ = 0.01

during the training process.
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6. EXPERIMENTS AND RESULTS

In this section, we present the main results for the solution approach proposed for

obtaining an approximate optimal patient diversion, admission, and transfer policy. It is

important to note that, although trained and tested on a specific instance, the methodology

should adapt to any scenario without losing generality, thanks to the flexibility of the ma-

chine learning approach. Additionally, we will focus on the behavior and improvements

of the obtained policy regarding costs, occupation, and waiting times, reviewing the ac-

tions being taken in general terms. The latter is because it is not feasible to determine the

optimal action in every possible state.

6.1. Test Instance

The following test instance was generated based on the different research studies pre-

sented in Chapter 2: Literature Review and Chapter 4: Model Formulation.

6.1.1. Network Capacity

As mentioned earlier, the system has a limited number of beds available per unit. This

resource is crucial for attending to patient requests, and as the system gets crowded, the

number of available beds becomes scarce. The number of beds per unit is based on the

research of Marquinez et al. (2021) and González et al. (2018). For our test instance,

we have three hospitals with identical capacity per unit, which is not an accurate repre-

sentation of real-life scenarios where each hospital has a different bed capacity per unit.

However, this approach will help us interpret and comprehend the results while avoiding

the phenomenon where a high-capacity hospital absorbs all the demand like a sink. The

amount of beds by hospital and unit is presented in Table 6.1.
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Table 6.1. Number of Beds by Hospital and Unit

Hospital 1 Hospital 2 Hospital 3

ED 15 15 15

GA 15 15 15

OR 6 6 6

ICU 60 60 60

SDU/WARD 165 165 165

For simplicity, we will merge the SDU and WARD units and focus on analyzing the

more complex units present at a hospital.

6.1.2. Demand

In terms of demand, we will consider 8 different DRGs, although in reality, there are

more than 300 groups in the original classification system proposed by Fetter et al. (1980).

The first 4 DRG are exclusively urgent requirements, meaning that patients with a DRG

from these groups only arrive at the hospital’s ED. On the other hand, the remaining DRGs

are exclusively elective, meaning that patients with a DRG from these groups only arrive

at the Network WL. Even though, in reality, this is not necessarily true, we made this on

purpose to better analyze and interpret the results obtained. Currently, the healthcare sys-

tem is experiencing high demand which is leading to reactive referrals across all hospitals

and an increase in waiting lists. To address this issue, it is important to implement proac-

tive diversions as suggested by Marquinez et al. (2021). This will help to decongest the

system and maintain an optimal occupancy level, resulting in better service for patients.

6.1.2.1. Demand Composition

The emergency demand (DRG 1 to DRG 4), represents 49.69% of the total demand,

while the elective demand (DRG 5 to DRG 8) sums up to the 50.31% remaining. This

56



proportion aims to balance the demand between emergency requests at EDs and requests

of the WL, which can be postponed in the face of emergencies but must be satisfied. The

average arrivals by DRG per period are presented in table 6.2

Table 6.2. Average Arrivals per Period by DRG

DRG Mean Arrival Rate [patients/period] Percentage of Total Demand [%]

1 4.11 13.16%

2 3.92 12.54%

3 4.18 13.36%

4 3.32 10.63%

5 5.10 16.33%

6 3.93 12.57%

7 4.33 13.86%

8 2.36 7.55%

GENERAL 31.25 100%

The average arrivals by DRG per period in the network are presented in table 6.3. Ad-

ditionally, table 6.4 shows the average relative arrivals by DRG per period in the Network.
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Table 6.3. Average Arrivals per Period in the Network

Mean Arrival Rate [patients/period]

DRG WL HOSPITAL 1 HOSPITAL 2 HOSPITAL 3

1 0.00 2.01 1.08 1.02

2 0.00 1.43 1.71 0.78

3 0.00 1.51 1.38 1.29

4 0.00 1.18 1.18 0.96

5 5.10 0.00 0.00 0.00

6 3.93 0.00 0.00 0.00

7 4.33 0.00 0.00 0.00

8 2.36 0.00 0.00 0.00

GENERAL 15.72 6.12 5.35 4.06

Table 6.4. Average Relative Arrivals by DRG per Period in the Network

Relative Mean Arrival Rate [%]

DRG WL HOSPITAL 1 HOSPITAL 2 HOSPITAL 3

1 0.00% 48.81% 26.31% 24.88%

2 0.00% 36.42% 43.64% 19.94%

3 0.00% 36.08% 32.94% 30.97%

4 0.00% 35.53% 35.65% 28.82%

5 100.00% 0.00% 0.00% 0.00%

6 100.00% 0.00% 0.00% 0.00%

7 100.00% 0.00% 0.00% 0.00%

8 100.00% 0.00% 0.00% 0.00%

From table 6.3, it is determined that there is an imbalance in demand. Hospital 1 re-

ceives, on average, a higher demand, whereas Hospital 3 receives the least. Considering
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that all of them have the same amount of resources (beds), there is an opportunity to trans-

fer the emergency demand to increase the network efficiency. It has been observed from

the data in table 6.4 that the demand for DRG is not uniformly distributed among hospi-

tals. This presents an opportunity to optimize the efficiency of the network by rearranging

the patients through transfers.

The average arrivals per period by DRG and medical requirement are presented in

table 6.5. Additionally, table 6.6 shows the average relative arrivals by DRG and medical

requirement per period.

Table 6.5. Average Arrivals by DRG and Requirement per Period

Mean Arrival Rate [patients/period]

DRG OR ICU SDU & WARD

1 1.61 1.56 0.95

2 1.56 1.53 0.83

3 1.63 1.60 0.95

4 1.40 1.30 0.62

5 1.64 1.79 1.67

6 1.30 1.42 1.21

7 1.48 1.48 1.37

8 0.84 0.80 0.72

GENERAL 11.45 11.48 8.33
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Table 6.6. Average Relative Arrivals by DRG and Requirement per Period

Relative Mean Arrival Rate [%]

DRG OR ICU SDU & WARD

1 39.16% 37.86% 22.98%

2 39.67% 39.14% 21.19%

3 38.93% 38.32% 22.76%

4 42.06 39.25% 18.70%

5 32.14% 35.15% 32.72%

6 33.08% 36.02% 30.902%

7 34.24% 34.08% 31.68%

8 35.57% 33.78% 30.64%

From both tables, it is clear that medical requirements with lower complexity have, on

average, lower demand in the case of emergency demand. Additionally, the proportions

among elective DRGs have a balanced arrival rate among the units.

6.1.2.2. Demand Average LOS

It is essential to understand the length of stay for each DRG. The following table

displays the average LOS by DRG based on their medical necessity.
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Table 6.7. Average LOS by DRG and Medical Requirement

Mean LOS [days]

DRG OR ICU SDU & WARD

1 0.59 3.44 9.26

2 0.61 5.06 10.82

3 0.57 1.64 4.46

4 0.58 2.72 8.11

5 0.50 2.02 5.57

6 0.50 1.48 3.72

7 0.55 3.27 8.99

8 0.54 2.99 8.36

Based on the data presented in Table 6.7, it can be concluded that the OR Average

LOS is roughly the same for each DRG. However, when looking at the ICU, as well as

the SDU & Ward, there are noticeable differences. For instance, DRG 2 and DRG 3 have

significantly different LOS in these units, although they share the same type of demand

(emergency).

6.1.2.3. Inpatient Evolution

The evolution of a patient’s medical condition during hospitalization can be modeled

using a Markov Chain, as proposed by González et al. (2018). When a patient com-

pletes their medical treatment in a particular unit i ∈ N2, they transition to another unit

j ∈ N2 : i ̸= j. Generally, a patient’s condition tends to improve, but there is a possi-

bility of deterioration, as suggested by González et al. (2018) in their research extensions.

Furthermore, in the lowest complexity unit, in this case, the SDU & WARD, there is a

chance that the patient may require further treatment in that unit. Although each DRG
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has a different transition matrix, we will illustrate the average transition matrix for clarity

purposes.

Table 6.8. Average Transition Matrix for Medical Requirements

OR ICU SDU & WARD Discharge

OR 0.00 0.92 0.08 0.00

ICU 0.08 0.00 0.92 0.00

SDU & WARD 0.01 0.05 0.00 0.94

6.1.2.4. Costs by DRG

As previously mentioned, the primary goal of this research is to minimize the total ope-

rational and social costs (such as patient wait times and bed opportunity costs). Since the

references used in this study have different currencies, a monetary unit has been defined

to combine these costs. The costs were adjusted manually to ensure the scales between

different expenses were reasonable. However, in real-world scenarios, it can be challen-

ging to compile these costs as estimating bed opportunity costs and the statistical value of

a life can be debatable.

In terms of the hazards associated with patient integrity due to waiting times, the

methodology used is the one presented in subsection 3.4.3. It is important to note that,

for this scenario, the statistical value of a life is considered to be 6.2660. Compared to

other costs, this is the highest in the instance, highlighting the significance we place on the

fairness and well-being of patients.

Tables 6.9, 6.10 and 6.11 present the bed opportunity cost for each unit and DRG by

hopsital. This cost must be interpreted as the detrimental effects in terms of operational

efficiency and costs that the healthcare system must assume in case of inpatient overstay

at certain hospital units.
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Table 6.9. Bed Opportunity Cost in Hospital 1 by Unit and DRG

DRG 1 DRG 2 DRG 3 DRG 4 DRG 5 DRG 6 DRG 7 DRG 8

ED 0.0886 0.1605 0.0916 0.1407 0.0498 0.1521 0.0843 0.1112

GA 0.0664 0.1204 0.0687 0.1055 0.0374 0.1141 0.0632 0.0834

OR 0.0443 0.0802 0.0458 0.0704 0.0249 0.0760 0.0422 0.0556

ICU 0.0221 0.0401 0.0229 0.0352 0.0125 0.0380 0.0211 0.0278

SDU/WARD 0.0111 0.0201 0.0115 0.0176 0.0062 0.0190 0.0105 0.0139

Table 6.10. Bed Opportunity Cost in Hospital 2 by Unit and DRG

DRG 1 DRG 2 DRG 3 DRG 4 DRG 5 DRG 6 DRG 7 DRG 8

ED 0.0975 0.0822 0.1726 0.1133 0.0763 0.0499 0.1256 0.0793

GA 0.0732 0.0616 0.1294 0.0850 0.0572 0.0374 0.0942 0.0594

OR 0.0488 0.0411 0.0863 0.0567 0.0382 0.0250 0.0628 0.0396

ICU 0.0244 0.0205 0.0431 0.0283 0.0191 0.0125 0.0314 0.0198

SDU/WARD 0.0122 0.0103 0.0216 0.0142 0.0095 0.0062 0.0157 0.0099

Table 6.11. Bed Opportunity Cost in Hospital 3 by Unit and DRG

DRG 1 DRG 2 DRG 3 DRG 4 DRG 5 DRG 6 DRG 7 DRG 8

ED 0.1624 0.0928 0.0862 0.1246 0.1475 0.0510 0.0500 0.0834

GA 0.1218 0.0696 0.0646 0.0934 0.1106 0.0382 0.0375 0.0626

OR 0.0812 0.0464 0.0431 0.0623 0.0738 0.0255 0.0250 0.0417

ICU 0.0406 0.0232 0.0215 0.0311 0.0369 0.0127 0.0125 0.0209

SDU/WARD 0.0203 0.0116 0.0108 0.0156 0.0184 0.0064 0.0063 0.0104

From these tables, it is observed that the emergency DRGs (1 to 4) have higher costs

than elective ones (5 to 8). Furthermore, the opportunity cost for the admission units (ED
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and GA) is higher than the service units (OR, ICU and SDU & WARD), as a result of

not having these beds available for care means not being able to attend to future medical

requests. It is essential to note that this cost structure may not be applicable in all cases.

As previously mentioned, the opportunity cost of a bed should take into account both the

statistical data and the preferences of the hospital manager, which can vary from case to

case.

The table below shows the affinity (i.e., lowest bed opportunity cost) for each DRG by

the hospitals in the network. A lower value (1) indicates a higher affinity, while a higher

value (3) indicates a lower affinity.

Table 6.12. Hospital Affinity with the DRGs

DRG 1 DRG 2 DRG 3 DRG 4 DRG 5 DRG 6 DRG 7 DRG 8

Hospital 1 1 3 2 3 1 3 2 3

Hospital 2 2 1 3 1 2 1 3 1

Hospital 3 3 2 1 2 3 2 1 2

The diversion costs must consider the average cost of resolution of a patient of each

DRG with a specific medical need at the service units of a hospital. This costs were

estimated as follows:

(i) In order to determine the average number of bed days consumed per care unit,

we conducted a simulation of the hospital journey for a significant number of

patients for each DRG. This estimation takes into consideration the possibility

that patients may experience a decline in their condition, resulting in multiple

visits to care units.

(ii) Using the average opportunity cost values in the network, we can calculate the

amount of money spent on resources for an average patient of each type in the

public healthcare system.
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(iii) According to Martinez et al. (2019), the costs of medical treatment in private

clinics are usually higher than in public clinics, ranging from 2 to 3 times more

expensive. For our calculations, we assumed the highest possible value (i.e., 3).

By multiplying the costs calculated in the previous step by 3, we obtained the

costs of diversion in the network, which are presented in Table 6.14.

Table 6.14. Diversion Cost in the System by DRG and Medical Need

DRG 1 DRG 2 DRG 3 DRG 4 DRG 5 DRG 6 DRG 7 DRG 8

OR 2.0054 2.4156 1.0084 1.8616 0.9125 0.6199 1.4876 1.2911

ICU 1.8641 2.2980 0.8395 1.7132 0.7977 0.5148 1.3445 1.1921

SDU/WARD 1.1074 1.2037 0.5002 1.0620 0.4910 0.2959 0.7964 0.7223

Finally, the transfer costs are displayed in the table below. For the purpose of simplic-

ity, we assume that the costs are the same for any pair of hospitals in the network.

Table 6.15. Transfer Cost in the Network by DRG and Medical Need

DRG 1 DRG 2 DRG 3 DRG 4 DRG 5 DRG 6 DRG 7 DRG 8

OR 0.0111 0.0133 0.0056 0.0103 0.0050 0.0034 0.0082 0.0071

ICU 0.0049 0.0061 0.0022 0.0045 0.0021 0.0014 0.0036 0.0032

SDU/WARD 0.0029 0.0031 0.0013 0.0028 0.0013 0.0008 0.0021 0.0019

In the previous model, it was shown that the costs of a problem depend on the DRG,

patient medical needs, and waiting times. The costs presented in the tables assume that

the patient waiting time is only one period. However, as the waiting time increases, the
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patient’s health deteriorates, leading to higher costs for the operator due to technical re-

quirements that ensure the integrity of a more complex patient. For instance, it is reaso-

nable that transporting a patient with a waiting time of two weeks would cost more than a

patient with a waiting time of a couple of hours.

To address this issue, we introduce a formula that can calculate the cost, C(t), given

any waiting time, t greater than 1 period, and any cost, C, from the tables: C(t) = C(1 +

r)t−1 (r > 0). For our research, we have utilized an appropriate value of r = 0.01.

6.2. Policies to be Compared

The following section presents the policies that were initially studied.

6.2.1. Myopic Policy: πM

The Myopic Policy πM assumes that every possible state’s expected future cost is 0.

This reactive policy (i.e., only optimizes the present value), can be formulated as follows:

C(s⃗1) = min
a⃗∈X(s⃗1)

{
c(s⃗1, a⃗) + λ����:0Q (s⃗2)

}
∀s⃗1 ∈ S1

Which ends up solving the following problem:

C(s⃗1) = min
a⃗∈X(s⃗1)

{c(s⃗1, a⃗)} ∀s⃗1 ∈ S1

6.2.2. Q-learning Policy: πQ

The Q-learning Policy πQ assumes that we can estimate the expected future cost using

a function Q. In our study, we use an XGBoost model to learn this function via reinforce-

ment learning. As demonstrated in section 5.3.3.4, given an XGBoost model with N trees,

we can mathematically formulate this policy as follows:
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C(s⃗1) = min
a⃗∈X(s⃗1)

{c(s⃗1, a⃗) + λQ (s⃗2)} ∀s⃗1 ∈ S1

Q (s⃗2) =
N∑

n=1

βnyn (6.1)

yn =
∑
i∈Ln

pni l
n
i ∀n ∈ {1, · · · , N} (6.2)

(An
j )

T s⃗2 −Mn(1− lni ) ≤ bnj ∀ i ∈ Ln, ∀ j ∈ S i
n, ∀n ∈ {1, · · · , N}

(6.3)∑
i∈Ln

lni = 1 ∀n ∈ {1, · · · , N} (6.4)

yn =
∑
i∈Ln

pni l
n
i ∀n ∈ {1, · · · , N} (6.5)

Constraint (6.1) calculates the Q (s⃗2), given the decision tree models. Constraints

(6.2), (6.3), (6.4) and (6.5) calculates the predicted value for each tree n ∈ {1, · · · , N}

from the XGBoost model. It is worth mentioning that to obtain a highly proactive policy,

we used λ = 0.99.

6.3. Q-learning and Reinforcement-Learning Process and Validation

The training process of the Q, as well as its validation, are detailed in this section. A

list of the computational resources used for these experiments is provided:

(i) CPU: 13th Gen Intel(R) Core(TM) i9-13980HX 2.20 GHz

(ii) GPU: NVIDIA GeForce RTX 4070 Laptop GPU GDDR6 (8GB - 140W)

(iii) RAM: 64 GB DDR5 - 4800 MHz
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6.3.1. Training Process and Convergence

Multiple experiments were performed to evaluate the efficiency of the proposed Q-

learning approach. Initially, each experiment began with 120 samples, each containing

1,000 experiences. These samples were fed into the Replay Buffer. After every training

step, three new samples were collected, replacing the older ones. Each experiment was

given a run-time of one day which was sufficient to obtain enough samples to update

the Replay Buffer completely. Figure 6.1 presents the results of the training process for

different trials.

Figure 6.1. Results of the Training Process for Different Trials

Based on the figure, it can be concluded that the solution approach can quickly con-

verge around a good solution (a good policy π, due to the Q function trained). Although

asymptotic results are not yet evident, we can provide evidence that the methodology con-

verges to a good Total Cost value. Further iterations will likely achieve asymptotic results,

based on (Van Hasselt et al., 2016). Finally, the results demonstrate that different attempts

can reach similar results of good quality, which indicates that the methodology is consis-

tent in obtaining good results.
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The XGBoost model was trained considering a maximum amount of 3,000 trees with

a depth of 3 (the tree regressor can achieve 4 levels). We used a learning rate of 0.025,

coupled with L1 and L2 regularization, with those parameters being calibrated using Op-

tuna, which was previously mentioned in section 5.3.3.4. The best model ended with an

optimal number of 2,348 trees from all the trials.

6.3.2. Validation of the Results

Validation of the trained model requires understanding its behavior, ensuring it accu-

rately represents the relationships between variables and produces sensible output. To

achieve this, we tested the Q-learning model on 30,000 post-decision states. These states

were sampled by running the πQ policy with the trained model in multiple independent

scenarios. The post-decision states were then averaged, giving us a mean post-decision

state ¯⃗s2.

Next, we analyzed two factors of the average post-decision state. We focused on a

particular patient type denoted as p ∈ P , with DRG 5, an OR medical requirement, and a

waiting time of 1 period. For this patient type, we examined the variable ωp
2 , which reflects

the number of patients of the same type as p on the WL. Additionally, we considered the

component αp3OR
2 , representing the number of patients of type p being treated at the OR

in Hospital 3. If we map in a range from 0 to 40 patients both variables, ceteris paribus

the rest of components from ¯⃗s2, and evaluate these cases, we obtain the following:
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Figure 6.2. Profile 1 of the Predictions of Q from the Trained Model
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Figure 6.3. Profile 2 of the Predictions of Q from the Trained Model

Based on Figures 6.2 and 6.3, we can conclude that the model correctly represents the

relationships between variables and the Q value. Specifically, as the number of patients

increases, the Q value also increases. This supports the notion that a system experiencing

congestion will have higher costs. Additionally, we observe that after 6 patients, the Q

value for αp3OR
2 does not increase, which is consistent with the OR capacity that has 6 beds.

It is worth mentioning that the model successfully incorporates a non-linear estimation of
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Q, which is a significant extension proposed by Marquinez et al. (2021) and González et

al. (2018).

6.4. Main Results

After testing and validating the trained model for the πQ policy, we can test it and

compare it to the results obtained from policy πM . Regarding optimization, the gap for

training and testing instances was set at 0.01%, although the solver achieved a gap of 0%.

The optimization model associated with each policy is briefly described in the table below:

Table 6.16. Summary of Optimization Models

Policy
Average

Execution Time [s]

Integer

Variables

Continuous

Variables
Constraints

πM 0.01 15,792 0 8,488

πQ 0.40
33,092

(17,300)
2,439 78,039

As the XGBoost model is embedded in the MDP, it increases the number of integer

variables to 17,300, all of which are binary. Additionally, it introduces 2,439 continuous

variables (one for each tree) and a variable that contains the final prediction from the

forest. It is important to note that this formulation significantly increases the number of

constraints, which ultimately explains the longer execution time.

6.4.1. Costs

To begin with, it is crucial to compare the costs associated with both policies. The

simulation results for 50 independent runs throughout 1,300 periods are presented in Fig-

ures 6.4 and 6.5. The first 300 periods are dedicated to initializing the system, ensuring

each run achieves a stationary result for the base scenario policy πM . The next 200 periods
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are used for transitioning between policies, if necessary. Finally, the last 800 periods of

each run are used to retrieve data, considering that a steady state regime is obtained.

Figure 6.4. Results for Policy πM

Figure 6.5. Results for Policy πQ
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From both figures, it can be concluded that transfer costs are negligible compared to

diversions and social costs. In terms of the base scenario with policy πM ; it is possible to

conclude that the system is extremely congested, thus resulting in those high costs, where

the diversions are being made because there is no more capacity.

Notably, the policy πQ experiences a rough start during the initial phase of the tran-

sition. This phenomenon could be attributed to the system redistributing the demand to

attain a superior state in the long run. Ultimately, although there is an increase in the

diversions cost, the social cost is reduced at the point where the total cost is significantly

lower, compared to the policy πM . It can be concluded that the diversions improve the

system occupancy rates.

The following table summarizes the results and compares the different cost items sta-

tistically. Each policy result is presented as a mean, with coefficients of variation in paren-

theses.

Table 6.17. Summary of Policies Results

Total Cost Diversions Cost Transfers Cost Social Cost

πM 31.1043 (0.0504) 4.2535 (0.1012) 0.0806 (0.0422) 26.7708 (0.0438)

πQ 7.9148 (0.0606) 5.1354 (0.0334) 0.0571 (0.0455) 2.7225 (0.1314)

Difference [23.0733, 23.42 ] [-0.9504, -0.8222] [0.0228, 0.0241] [23.9768, 24.2429]

From the table, we can conclude that there is a significant statistical reduction (95%

Confidence) in total costs, with an average reduction of 74.55% . This is achieved by

increasing the diversions cost in 20.73%, which allows a reduction of the social cost of

89.83%. Notably, the dispersion of the diversion cost is significantly lower for πQ, indi-

cating that this policy has a more consistent set of actions over time. However, the social

cost has a higher dispersion, explained mainly by the lower magnitude of this cost for the

πQ.
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6.4.2. Policies Case-Mix Report

To better understand the results, a Case-Mix Report is proposed. We will consider as

the reference system the base scenario with policy πM , while the case study will consist

of the system with policy πQ.

Table 6.18. Case-Mix Report

A P a p a-A p-P ∆ LOS ∆ CM

DRG 1 16.54 0.1497 16.19 0.1516 -0.35 0.0019 -0.05 0.03

DRG 2 19.92 0.1434 19.60 0.1443 -0.32 0.0009 -0.05 0.02

DRG 3 7.98 0.0722 7.62 0.1382 -0.36 0.0660 -0.04 0.51

DRG 4 14.04 0.1244 13.82 0.1263 -0.22 0.0019 -0.03 0.03

DRG 5 17.11 0.1641 11.79 0.1395 -5.32 -0.0246 -0.81 -0.36

DRG 6 14.28 0.1305 8.68 0.0984 -5.60 -0.0321 -0.64 -0.37

DRG 7 23.94 0.1394 17.42 0.1244 -6.52 -0.015 -0.86 -0.31

DRG 8 20.96 0.0763 16.42 0.0773 -4.54 0.0010 -0.35 0.02

Total -2.47 -0.44

Based on the table provided, it can be concluded that we achieved an estimated average

of 2.47 days saved per patient in terms of operational efficiency. In column a − A, it can

be observed that all DRGs reduced their ALOS, which contributed to the ∆ LOS sum.

Regarding Case-Mix, column p − P shows a tendency for the system to increase the

proportion of emergency DRGs, while the elective ones decreased their proportion. These

results must be complimented with the difference in attended patients between policies of

0.23%, meaning that we are attending almost the same amount of patients for both policies.

As a result of this change in Case-Mix, we saved an average of 0.44 days. Combining the

changes in LOS and Case Mix, we achieved a total reduction of 2.91 service days on

average (an average reduction of 16.86%), per patient
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6.4.3. Understanding the Q-learning policy

Comprehending the decisions behind the model is essential. This helps the decision-

maker validate and understand the decisions behind the model. Furthermore, understan-

ding the general guidelines of the Q-learning policy can assist in developing an easily

interpretable and simplified policy. This simplification can increase the chances of real-

world applications due to its ease of understanding and low complexity. Although there

are multiple ways of approaching this policy, we will focus on analyzing the average pre-

decision state and post-decision state achieved, as well as the transition among them.

6.4.3.1. Occupation Levels

According to research by González et al. (2018) and Marquinez et al. (2021), imple-

menting proactive policies can help decongest the system and improve performance by

providing available resources to handle high-demand events. In the latter case, the opti-

mal utilization level is approximately 80%. Although not official, studies conducted by the

OECD (2023), as well as the National Guideline Centre - UK (2018), support this value,

being validated by renowned entities in the medical context.

For the post-decision state, we have the following rates for policies πM and πQ, respec-

tively.

76



Figure 6.6. Occupancy Rates in the average post-decision state for Policy
πM

Figure 6.7. Occupancy Rates in the average post-decision state for Policy
πQ
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From Figure 6.6 it is concluded that the system is, in fact, saturated. Given each service

unit occupancy rate, there is almost no space to make an efficient, impatient management,

generating the high social cost presented in table 6.21. This situation is worsened by

highly congested admission units, resulting in excessive waiting times.

On the other hand, from Figure 6.11, we can conclude that the system is effectively

operating at the recommended occupancy rates. Not only the GA unit is decongested,

but there are available resources to accommodate the incoming demand, avoiding a high

social cost due to waiting times and the misuse of beds in the network.

We can conclude that Hospital 3 specializes in elective demand based on the GA oc-

cupancy rates (37.45%, compared to 13.69% and 27.03% from hospitals 1 and 2, respec-

tively). This means that the hospital deals with less uncertain demand, which is on the

waiting list, with several requests already known. Therefore, the hospital can reduce its

beds for safety stock purposes (i.e., beds available to attend high-demand events).

On the other hand, Hospital 1 has a higher emergency demand composition, as indi-

cated by the lower GA occupation levels, which are lower compared to Hospitals 2 and 3.

Due to the higher expected demand that it must attend, with a higher volatility Case-Mix,

it is reasonable to assume that the system operates with more beds for safety stock.

As the unit complexity increases, the safety stock of beds also increases. This is be-

cause a stockout of beds for complex medical requirements can result in diversions with

high costs. Also, this avoids costly waiting times for inpatients at other units that need a

higher complexity bed.

It is important to note that the policy πQ maintains the same occupancy levels after

admissions, diversions, and transfers. This highlights the significance of the safety stock

policy in terms of beds, as well as the fact that actions are being taken to maintain this

state. This contrasts the policy πM , where the system concludes at high occupancy levels,

indicating that diversions and transfers are made to satisfy the demand that cannot be

reactively accommodated within the system.
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6.4.3.2. Case-Mix

Given the insights, where there is evidence of hospital specialization, it is important

to study the Case-Mix at the network. Similarly to the occupation study, we will focus on

the average post-decision state.

Figure 6.8. Case-Mix in the average post-decision state for Policy πM
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Figure 6.9. Case-Mix in the average post-decision state for Policy πQ

After analyzing the results, it is determined that there is a significant change in the

Case-Mix. The policy πQ has effectively specialized the hospitals, as suggested in the

previous analysis. Based on the number of patients, Hospital 1 focuses on handling more

emergency cases, while Hospital 3 specializes in elective cases. Hospital 2 falls some-

where between the other two hospitals. The specialization on DRGs is so important that

there are situations where hospitals do not service certain DRGs. For instance, Hospital 1

does not attend to DRG 5, and even Hospital 2 rarely attends to them.

It is noteworthy that emergency DRGs, particularly DRG 3, are becoming more com-

mon in the network. Meanwhile, elective DRGs are experiencing a significant reduction

in the average number of active cases in the network, with DRG 8 being the least affected.

In terms of medical complexity, it is interesting to observe a shift towards more complex

cases in the network due to the increase in the average number of active emergency cases.

This specialization strategy is validated by Tiwari and Heese (2009), which determined
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that this phenomenon produces better management in terms of costs, as well as a higher

quality service, just as our results suggest.

In this scenario, there is not enough capacity to serve all the incoming demand, so it is

necessary to divert some patients. As the number of beds is a fixed resource that does not

cost us to maintain, it is essential to use them to attend the cases that are expensive to divert

and promote the diversion of cheap ones. The study by Marquinez et al. (2021) concluded

that this strategy is extremely effective. According to the data presented in Table 6.14, it is

advisable to divert elective DRGs. This strategy is being implemented by πQ, leading to a

significant reduction in active cases for DRG 5 by 40.70%, DRG 6 by 56.03%, and DRG

7 by 40.41%. Furthermore, this applies to the WL on its own, resulting in a reduction of

its size by 66.26%.

6.5. Learning a New Policy

Research has shown that even though algorithms can improve decision-making out-

comes, decision-makers tend to undervalue them. This phenomenon is known as ‘algo-

rithm aversion’ (Dietvorst et al., 2015) and has been observed across various domains,

including economics, finance, job hiring, medicine, and even moral decisions, for both

subjective and objective tasks, and assessments that are both familiar and unfamiliar. Hu-

man advice is often preferred over algorithmic advice.

Given that the πQ policy uses a Machine Learning model, it can be challenging to

interpret, especially outside the engineering field. It becomes more worrying if we con-

sider the ‘algorithm aversion’ phenomenon, where the actions recommended by the model

must influence a medical team. The situation prompts the idea of utilizing the knowledge

provided by the model, along with the medical guidelines discussed earlier, to create a

practical, resilient, and effective policy in real-world situations, thereby overcoming the

phenomenon of ‘algorithm aversion’.
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Although the model could be explored further, we will focus on the findings of occu-

pation and specialization in the network. We will call this policy ‘Knowledge Assembly’

(πK), since it unites the learning of the Q-learning proposal with expert knowledge of

literature in the health field. The guidelines consider the following set of rules:

(i) Guideline 1 - Occupation Levels: Each unit n ∈ N at every hospital h in the

network will have defined an ideal occupation level. If a unit has an occupation

level below this threshold, there will be no changes regarding the myopic policy.

However, if these levels are exceeded, it will be necessary to redirect the demand

through transfers and diversions to decongest the saturated unit. For the test

scenario, based on the πQ policy results, these values are:

Table 6.19. Ideal Occupation Level by Hospital and Unit

OR ICU SDU & WARD GA ED

H1 74.66% 87.98% 94.07% 13.69% 0.05%

H2 82.66% 82.64% 94.94% 27.03% 0.19%

H3 87.22% 85.14% 93.52% 37.45% 0%

To emulate this rule in the system, let us denote these values as θnh . We can math-

ematically model if any unit exists over these levels using a continuous variable,

un
h, to represent the amount of occupation above the desired level. Using the

notation from Section 4, we propose the following set of constraints:

α∗hn
2

Φn
h

≤ θnh + un
h ∀(h, n) ∈ {1, . . . , H} ×N

un
h ≥ 0 ∀(h, n) ∈ {1, . . . , H} ×N

Additionally, to incentivize the decongestion, we must add the term On
hu

n
h for

each unit in the system, where On
h is a calibrated parameter.

(ii) Guideline 2 - Waiting List Size: We have determined that each elective DRG

should have a maximum number of requests at the WL. The maximum requests
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allowed for each DRG are 18 for DRG 5, 15 for DRG 6, 12 for DRG 7, and 15

for DRG 8. These values are obtained from the average amount of patients by

DRG in the WL. For completitude, the emergency DRGs coefficient is 0. If we

have more patients than the maximum number of requests allowed, admissions

should be made only if the first guideline allows it. If that is not the case, we

need to take diversion actions. To emulate this rule in the system, let us denote

these values as ω̄g for g ∈ {1, . . . , G}. To emulate this rule in the system, using

the notation from Section 4, we propose the following set of constraints:

∑
u∈U(g)

ωu
2 ≤ ω̄g ∀g ∈ {1, . . . , G}

Where:

U(g) = {u ∈ P : g(u) = g} ∀g ∈ {1, . . . , G}

(iii) Guideline 3 - Case-Mix Specialization: Lastly, it is important to encourage

hospitals to specialize in DRGs (Fetter, 1991), which provide essential guide-

lines for admissions and transfers within the network. To achieve this, a pa-

rameter ξgh > 0 can be calibrated for each hospital h in the network and DRG

g ∈ {1, . . . , G}, based on the average number of active cases. The purpose

of ξgh is to penalize admission actions, thus promoting DRG specialization. A

higher value of ξgh means that hospital h is less likely to admit a patient of DRG

g ∈ {1, . . . , G}. Using the notation from Section 4, we must add these terms to

the objective function:

ξgh
∑

u∈U(g)

(
κh
u +

∑
n∈N2

xhEDn
u

)
∀(h, g) ∈ {1, . . . , H} × {1, . . . , G}

Where:

U(g) = {u ∈ P : g(u) = g} ∀g ∈ {1, . . . , G}
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The proposed term considers the sum of admissions from the WL, as well as

those from the ED.

Given the set of guidelines described previously, the policy πK can be formulated by

modifying the MDP proposition as follows:

C(s⃗1) = min
a⃗∈X(s⃗1)

c(s⃗1, a⃗) +O∗
∗u

∗
∗ +

H∑
h=1

G∑
g=1

ξgh ∑
u∈U(g)

(
κh
u +

∑
n∈N2

xhEDn
u

) ∀s⃗1 ∈ S1

α∗hn
2

Φn
h

≤ θnh + un
h ∀(h, n) ∈ {1, . . . , H} ×N

un
h ≥ 0 ∀(h, n) ∈ {1, . . . , H} ×N∑
u∈U(g)

ωu
2 ≤ ω̄g ∀g ∈ {1, . . . , G}

U(g) = {u ∈ P : g(u) = g} ∀g ∈ {1, . . . , G}

The first new term of the Objective Function is the penalization of congestion over the

ideal levels. In contrast, the second term is the penalization of the admissions to promote

DRG specialization. It is important to remark that, in this case, there is no Q(s⃗2) term.

6.5.1. New Policy Costs

The simulation results for 50 independent runs throughout 1,300 periods are presented

in Figure 6.10. The sampling is the same as that of the previous two policies studied. In

terms of model complexity, the changes are negligible compared to the myopic formula-

tion. They have the same characteristics in execution times.
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Figure 6.10. Results for Policy πK

From the figure, it can be concluded that transfer costs are negligible compared to di-

versions and social costs. Policy πK experiences a similar rough start during the initial

phase of the transition, compared to policy πQ. Although there is an increase in the diver-

sions cost, the social cost is reduced at the point where the total cost is significantly lower,

compared to the policy πM . However, results are not as good, when compared to policy

πQ.

The following table summarizes the results, as well as a statistical comparison between

the different cost items between πQ and πK . Each policy results are presented as means,

with coefficients of variation in parentheses.
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Table 6.20. Summary of Policies πQ and πK Results

Total Cost Diversions Cost Transfers Cost Social Cost

πQ 7.9148 (0.0606) 5.1354 (0.0334) 0.0571 (0.0455) 2.7225 (0.1314))

πK 8.8825 (0.045) 5.4064 (0.0462) 0.0767 (0.0222) 3.3994 (0.0584)

Difference [-1.0439, -0.9098 ] [-0.3225, -0.2198] [-0.0201, -0.0191] [-0.7256, -0.6464]

From the table, we can conclude that there is a statistical increase (95% Confidence)

in total costs, with an average variation of 12.22%. This is due to the increase in the

diversions cost of 20.73%, coupled with an increase in the social cost of 24.86%. In

general terms, the results are promising, considering that the new policy is extremely

simple, compared to the one with the Q-learning methodology.

The following table summarizes the results, as well as a statistical comparison between

the different cost items between πM and πK . The results of each policy are presented as

means, along with their corresponding coefficients of variation shown in parentheses.

Table 6.21. Summary of Policies πM and πK Results

Total Cost Diversions Cost Transfers Cost Social Cost

πM 31.1043 (0.0504) 4.2535 (0.1012) 0.0806 (0.0422) 26.7708 (0.0438)

πK 8.8825 (0.045) 5.4064 (0.0462) 0.0767 (0.0222) 3.3994 (0.0584)

Difference [22.096, 22.4436] ] [-1.2267, -1.088] [0.0032, 0.0044] [23.2914, 23.5562]

From the table, we can conclude that, effectively, there is a significant statistical re-

duction (95% Confidence) in total costs, with an average reduction of 71.44%. This is

achieved by increasing the diversions cost by 27.10%, which allows a reduction of the

social cost of 87.30%. It is worth noting that the benefits of policy πk are almost the same

as the benefits of policy πQ when compared to the base scenario. This means simplifying

the policy does not significantly impact system benefits.
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6.5.2. New Policy Case-Mix Report

To better understand the results, a Case-Mix Report is proposed. We will consider the

reference system the base scenario with policy πM , while the case study will consist of the

system with policy πK .

Table 6.22. Case-Mix Report

A P a p a-A p-P ∆ LOS ∆ CM

DRG 1 16.54 0.1497 16.31 0.1587 -0.23 0.009 -0.04 0.15

DRG 2 19.92 0.1434 19.69 0.1508 -0.23 0.0074 -0.03 0.15

DRG 3 7.98 0.0722 7.63 0.1409 -0.35 0.0687 -0.04 0.54

DRG 4 14.04 0.1244 13.93 0.1353 -0.11 0.0109 -0.01 0.15

DRG 5 17.11 0.1641 13.54 0.1149 -3.57 -0.0492 -0.50 -0.75

DRG 6 14.28 0.1305 12.1 0.0747 -2.18 -0.0558 -0.22 -0.74

DRG 7 23.94 0.1394 17.74 0.1451 -6.2 0.0057 -0.88 0.12

DRG 8 20.96 0.0763 17.59 0.0796 -3.37 0.0033 -0.26 0.06

Total -1.99 -0.32

Based on the table provided, it can be concluded that we achieved an estimated aver-

age of 1.99 days saved per patient in terms of operational efficiency, which is 0.48 days

lower when compared to policy πQ. In column a − A, it can be observed that all DRGs

reduced their ALOS, which contributed to the ∆ LOS sum. Regarding Case Mix, column

p − P shows a tendency for the system to increase the proportion of emergency DRGs.

Compared to policies πM and πQ, the new policy diverts, on average, 1 extra patient per

period, thus explaining the increase in operational expenses. As a result of this change in

Case Mix, we saved an average of 0.32 days, pretty similar to policy πQ. Combining the

changes in LOS and Case Mix, we achieved a total reduction of 2.31 service days with

the new policy on average (an average reduction of 13.38%) per patient, which is 20.61%

lower, compared to the 2.91 saved by policy πQ. This could be explained by the fact
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that policy πK guidelines do not explicitly consider patient waiting time and in-hospital

management improvements.

In terms of the occupation levels, as well as the active cases, the following figures

present that information:

Figure 6.11. Occupancy Rates in the average post-decision state for Policy
πK
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Figure 6.12. Case-Mix in the average post-decision state for Policy πK

In summary, it can be concluded that the new policy is effectively achieving the de-

sired bed safety stock as recommended by the Q-learning policy. Although there are some

differences in occupancy rates, it is still observed that higher-complexity units have lower

occupancy rates. On the other hand, regarding the Case-Mix, the specialization of hospi-

tals becomes more evident, and there are some changes in the average number of cases.

However, the phenomenon where Hospital 3 specializes in elective DRGs and Hospital 1

specializes in emergency DRGs remains unchanged.

6.5.3. Validating the New Policy

One question regarding the new policy is whether it inherits proactiveness from the

Q-learning policy despite being simplified. Although the cost results, occupation levels,

and DRG specialization suggest that we have a proactive policy πK , it is necessary to take

a closer look at this issue.
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Given a sample of pre-decision states s⃗1, retrieved from the simulation process, we

will analyze how certain KPIs behave. The first one is the Q of the post-decision state s⃗2

that is achieved, given s⃗1. Figure 6.13 presents the results.

Figure 6.13. Q(s⃗2) Values Achieved from a Sample of Pre-Decision States
s⃗1

Based on the figure, it is clear that the policy with the highest congestion is πM . How-

ever, policies πQ and πK have a similar distribution of occupation, with πK having a lower

dispersion. This can be explained by the flexibility that policy πQ provides due to the so-

phistication of the model. Upon analyzing the Q predicted by the trained XGBoost model,

we can observe that the states from the myopic policy have the highest values. Although

the situation for policy πK suggests worse values as compared to policy πQ, we can still
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see that both policies are closer in terms of values when we compare them with πM , even

for pre-decision states with the same occupation level in the system.

The following figures aim to analyze how the transfers and diversions are being made,

considering the expenditure in these actions.

Figure 6.14. Diversions Cost Incurred from a Sample of Pre-Decision
States s⃗1
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Figure 6.15. Transfer Cost Incurred from a Sample of Pre-Decision States
s⃗1

From both figures, we can determine that the expenditure for both policies πQ and πK

follow a similar behavior. Obviously, given the simplicity of policy πK , it tends to expend

more to manage the system. On the other hand, the myopic policy avoids spending on

these actions until there is now space left to accommodate the demand, evidencing an

abrupt curve at higher occupation levels.

It is correct to conclude that policy πK has inherited a great amount from policy πQ

proactiveness, as evidenced by their similarities presented in the results section, as well as

the analysis in this one.
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6.6. Some Extensions to the Obtained Policy

After testing and concluding that πK is a great policy, considering the proactiveness

behind it, as well as the results we obtain with it, two major questions arise in terms of

resilience, which are going to be briefly analyzed and discussed in this section.

6.6.1. Policy Resilience Over Time

Our first question is: ¿How does the policy πK behave over time? To test it, we

considered a scenario with increasing demand, where the expected arrivals increase 5%

annually. At the transition period, t = 0, the initial values are taken from the stationary

execution of the policy. The results are as follows:

Figure 6.16. Evolution of Cost Over Time for Policy πM
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Table 6.23. Evolution of Cost Over Time for Policy πM

t = 0 t = 200 t = 400 t = 600 t = 800 t = 1000 t = 1200 t = 1400 t = 1500

Diversions 4.25 4.71 5.12 5.51 6.13 6.95 7.14 8.14 8.33

Transfers 0.08 0.08 0.08 0.09 0.09 0.10 0.10 0.11 0.11

Social 26.77 28.11 29 30.05 30.91 32.13 32.07 33.75 34.06

Total 31.10 32.90 34.20 35.65 37.13 39.18 39.31 42 42.5

Figure 6.17. Evolution of Cost Over Time for Policy πK

Table 6.24. Evolution of Cost Over Time for Policy πK

t = 0 t = 200 t = 400 t = 600 t = 800 t = 1000 t = 1200 t = 1400 t = 1500

Diversions 5.41 5.67 5.75 6.11 6.23 6.56 6.93 7.25 7.46

Transfers 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08

Social 3.39 3.41 3.34 3.52 3.59 3.97 3.84 3.84 4.05

Total 8.88 9.16 9.17 9.71 9.90 10.61 10.85 11.17 11.59
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It is determined that the increase in demand affects both policies. Interestingly, al-

though πK starts with a higher diversion cost, after 1,000 periods (500 days), policy πM

starts spending more on these actions.

If we study the variation (with respect to t = 0), we obtain the following tables:

Table 6.25. Evolution of Cost Variation Over Time for Policy πM

t = 0 t = 200 t = 400 t = 600 t = 800 t = 1000 t = 1200 t = 1400 t = 1500

Diversions 100% 111% 120% 130% 144% 164% 168% 192% 196%

Transfers 100% 100% 100% 113% 113% 125% 125% 138% 138%

Social 100% 105% 108% 112% 115% 120% 120% 126% 127%

Total 100% 106% 110% 115% 119% 126% 126% 135% 137%

Table 6.26. Evolution of Cost Variation Over Time for Policy πK

t = 0 t = 200 t = 400 t = 600 t = 800 t = 1000 t = 1200 t = 1400 t = 1500

Diversions 100% 105% 106% 113% 115% 121% 128% 134% 138%

Transfers 100% 100% 100% 100% 100% 100% 100% 100% 100%

Social 100% 101% 99% 104% 106% 117% 113% 113% 119%

Total 100% 103% 103% 109% 111% 119% 122% 126% 131%

From these tables, we determine that the policy πK can persist over time in an ex-

tremely saturated environment. This gives us the intuition that, for this problem, it is not

crucial to be constantly updating the policy if we have a steadily increasing demand. This

is important, considering that updating the new policy could take more than a couple of

days.
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6.6.2. Policy Resilience Over Sub-Optimal Actions

Another question is: ¿How does the policy πK behave over time? To test it, we consi-

dered different simulation scenarios, where each one had a probability of failing to imple-

ment the πK policy and ended up implementing πM at each period. The following figure

presents the results obtained:

Figure 6.18. Difference in Costs Compared to the Perfect Implementation
of the Policy πK

Firstly, the volatility of the results is dependent on the proportion of times we im-

plement actions from policy πK . A higher proportion of correct implementation leads to

lower volatility.

In terms of social cost, is interesting the effect that some incipient implementation of

the guidelines from πK could have in the network. There is an opportunity to understand,
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in further research, how we could balance these policies in order to minimize the opportu-

nity cost, which is better than the strictly πK policy in the range from [0.1, 1), presented

in the negative values.

On the other hand, the operational cost (i.e., transfers plus diversions) shows us an

undesirable situation where the πK is trying to reconfigure the system, but the policy πM

does not allow it. A higher proportion of correct implementation of policy πK leads to

lower differences with respect to the perfect implementation.

Finally, based on the total cost πK , we can determine that the policy is robust against

undesirable and incorrect actions, where errors up to 10% (i.e., an implementation of the

actions from πK 90% of the time) do not have significant impacts in the objective function.
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7. CONCLUSIONS

7.1. Contributions

This thesis proposes a new approach to address the Approximate Dynamic Problem

that arises in the context of a complex hospital network, using reinforcement learning.

The problem is formulated mathematically as a Markov Decision Process (MDP), which

enables handling transfers, diversions, and admissions across the network as well as in-

patient management at each hospital. By implementing this methodology, we were able

to move from a reactive policy, where actions are taken only when there is no room left,

to a proactive policy. This transition helped to reduce both operational and social costs,

improving patient experience.

Furthermore, based on expert knowledge and the results from the proactive policy

learned, a simplified policy proposal was made based on 3 principal guidelines: (i) Rec-

ommended Occupation Levels, (ii) Waiting List Size Management, and (iii) Case-Mix

Specialization by Hospital. The results from this new policy are pretty similar, compared

to the reinforcement learning one. Also, the simplified policy was tested and evaluated in

terms of resilience, concluding it has satisfactory characteristics. Although designed for

the Chilean reality, this model and related methodology can be applied to other situations

where the healthcare system aims to operate similarly.

In conclusion, this thesis contributes in the following aspects:

(i) A model of a hospital network is presented, taking into account interactions

between a Waiting List, a public hospital network with different types of units,

and private clinics.

(ii) A novel solution approach for Approximate Dynamic Programming, which can

handle the non-linear relations among variables and the future expected costs.
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(iii) Validation of hospital management guidelines, as well as an opportunity to cou-

ple algorithms techniques with expert knowledge to achieve simple but effective

policies to manage the healthcare system.

7.2. Limitations

The most significant limitation regarding this work is the assumption that all the system

information is available. This situation challenges the CCMU labor, requiring a central-

ized effort among the hospital network to share and maintain updated information and the

disposition to collaborate as a network. In the Chilean context, not only is this required,

but a major overhaul of technology is needed to quickly and reliably determine crucial

patient information, such as the patient DRG.

Another limitation is the availability and correctness of the information. As presented

in this research, specific parameters require expert knowledge. This situation raises the

question of how particular parameters, if incorrectly estimated, could alter the results. For

instance, regarding the danger curve due to waiting times, we could promote hazardous

situations for certain types of patients if poorly estimated.

Based on the previous point, it is essential to collaborate with medical staff. Some of

the guidelines that can be obtained could have moral implications because the decisions

being made impact people’s integrity. Just consider the case where the policy determines

that a person in a risky situation must wait for the benefit of the whole system. In this

situation, interdisciplinary collaboration with healthcare professionals is essential from

the beginning of the model conceptualization and data gathering to the evaluation and

judicious examination of the policy obtained.

Finally, the proposed workflow requires vast computational resources to train and test

the results effectively. The computational implementation of this research did not con-

sider parallelization in the simulation and optimization runs, giving up space to important

reductions in time, if implemented. Additionally, we tested the model considering only 8
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DRG groups, whereas there are more than 300 different groups. Although execution times

are promising, working with aggregation levels, such as the Major Diagnostic Categories

(Fetter, 1991), could be an option to address this issue.

7.3. Further Research

Based on the results and challenges, new development opportunities are:

• In this model, we are only considering transfers between EDs. It is possible

to consider transfer between other units, even considering that certain types of

patients must return to their original hospital.

• In terms of transfers, we have considered an infinite number of resources (i.e.,

ambulances) to make transfers and diversions in the network. We may wonder

how the policy changes if we add this type of constraint to the model.

• In terms of patient welfare, there is the possibility to consider patient preferences

or complications that affect the decision criteria for diversions and transfers.

• In this problem, we are not considering demand seasonality. An extension to the

model could be done in terms of states, or one policy could be developed for

each season.

• The model does not consider changes in the demand preferences. As a hospital

becomes efficient in certain DRGs, it is reasonable to consider that the demand

from the network would try to be treated at that hospital as a result of the best

service it provides, generating changes in the probability distribution of demand

generation.

• The model considers that the beds from the system are always available. It

raises the challenge of considering the variation in bed availability over time for

various reasons (staffing, resource increase, resource failures, among others).

• The proposed model could be extended to evaluate capacity increases, either

in the number of beds for a hospital or the incorporation/construction of a new

facility in the network.
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• In this model, we are optimizing the considering the expected discounted value.

New developments have explored the possibility of achieving a distributional

approach, in which the distribution over returns is modeled explicitly (Dabney

et al., 2018). This could enable robust optimization, as well as optimization with

risk aversion.

7.4. Final Remarks

Universal health coverage is crucial for the world, and we must optimize healthcare

resources to achieve this by 2030. Chile’s healthcare system faces significant systemic

issues, as reflected in appalling statistics on bed availability and patient waiting times. Al-

though the CCMU is a step in the right direction, much work remains to be done. We must

act innovatively and prioritize people’s well-being by forging partnerships and embracing

cutting-edge research. Success is not just about efficient operations but also about tangible

impacts on people’s lives. We cannot leave anyone behind in their hour of need.
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