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Casilla 306, Santiago 22, Chile

Ricardo Medina †

Instituto de F́ısica Teórica
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Abstract

In this paper we obtain the orthogonality relations for the super-
group U(m|n), which are remarkably different from the ones for the
U(N) case. We extend our results for ordinary representations, ob-
tained some time ago, to the case of complex conjugated and mixed
representations. Our results are expressed in terms of the Young
tableaux notation for irreducible representations. We use the super-
symmetric Harish-Chandra-Itzykson-Zuber integral and the character
expansion technique as mathematical tools for deriving these relations.
As a byproduct we also obtain closed expressions for the supercharac-
ters and dimensions of some particular irreducible U(m|n) representa-
tions. A new way of labeling the U(m|n) irreducible representations
in terms of m + n numbers is proposed. Finally, as a corollary of
our results, new identities among the dimensions of the irreducible
representations of the unitary group U(N) are presented.
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1 Introduction

In recent times there has been an enormous amount of work devoted to the

understanding of random surfaces and statistical systems on random surfaces.

The range of application of these ideas include non-critical string theory as

well as Quantum Chromodynamics (QCD) in the large N limit. Progress in

this area has been possible because the mathematical knowledge on random

matrices has increased dramatically in the last fifteen years [1].

An important mathematical concept that appears naturally in the dis-

cussion of random matrices is the integration over the unitary group, which

basis are well understood in the literature. A distinguished particular case

of such integrals, the Harish-Chandra-Itzykson-Zuber (HCIZ) integral [2, 3],

has been applied to the solution of the Two matrix model [3, 4] and, more

recently, to the Migdal-Kazakov model of ”induced QCD” [5]. In a different

context, it has also been applied to the study of phase transitions in nematic

liquids [6] . The HCIZ integral can also be considered a powerful alterna-

tive tool for deriving results regarding the representation theory of the group

U(N).

On the other hand, since its discovery, there has been considerable ex-

pectation that supersymmetry might play an important role in the physical

world . This hope has motivated, on one hand, the extension of many im-

portant physical ideas to the supersymmetric world [7]. A related example

of direct interest to us is the case of random supermatrices and supermatrix

models [8]. On the other hand, this expectation has also contributed to the

study and development of the associated mathematical tools: supermani-

folds, differential and integral calculus over a Grassmann algebra, differential

geometry over a supermanifold, superalgebras and Lie supergroups among

2



others [9, 10].

This paper deals with the integration properties of the unitary supergroup

U(m|n). For our purposes we will work in a representation of this supergroup

given by the set of all (m+n)× (m+n) supermatrices U = [UAB], such that

UU † = 1, endowed with the operation of supermatrix multiplication.

The issue of defining an invariant integral for supergroups has been dis-

cussed previously in [9], [11] and [12], among other references. In Ref.[11] the

problem is solved by defining the invariant integral over a Lie supergroup as

equal to that over its related Lie group and subsequently using the theory

of invariant (Haar) integrals for topological groups [13, 14]. References [9]

and [12] are on the line of a physicist approach, by keeping the grassmannian

character of the integration volume element. We adhere to the last point

of view and we introduce an integration measure [dU ] based on the Berezin

integration properties of the independent elements of the supermatrix. As

first noted by Berezin [9] and also in the paper by Yost in Ref. [8], the

unusual property
∫

[dU ] = 0 will hold, thus making the calculation of the

orthogonality relations a much more involved issue. Orthogonality relations

for U(m|n) have been previously obtained by Berezin [9] and formulated in

terms of the classification of the representations of the supergroup via the

Cartan approach . Instead, we use the Young tableaux method for classify-

ing the irreducible representations for U(m|n) [15]. We have not studied the

relation between Berezin’s result and our way of presenting the orthogonal-

ity relations, which are derived using a completely different approach. Our

method of calculation is based on the result obtained for the supersymmetric

extension of the HCIZ integral [16, 17], together with the use of character

expansion techniques.

The paper is organized as follows : Sections 2 and 3 are basically a
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brief review of supermatrices and supergroup representations, respectively,

designed to make the presentation self-contained and also to introduce our

notation and conventions.

Sections 4 and 5 deal with the orthogonality relations for the irreducible

representations of U(m|n). Besides the expected product of Kronecker deltas,

these relations include a representation dependent coefficient α{t} which cal-

culation, for all three types of representations of the supergroup (ordinary,

complex conjugated and mixed), is the main subject of this section. We show

that in the case of the mixed representations these coefficients can be writ-

ten in terms of those corresponding to the ordinary representations. Some

examples are presented in the Appendix 8.5 The unusual property of the

integration measure mentioned above has also the consequence that this co-

efficient is non-zero only for a class of representations which are completely

identified in our approach. Some preliminary results regarding this issue were

previously presented in Ref.[18]. Here we have completed the determination

of the coefficients α{t} for the cases that were missing in [18] and we also give

a more detailed version of our calculation. Closed formulas for the dimen-

sions and supercharacters of ordinary and complex conjugate representations

with α{t} 6= 0 are also presented.

The restriction U(m|n) → U(m) correctly reproduces the result α{t} →

1
d{t}

in the orthogonality relations, where d{t} is the dimension of the corre-

sponding representation. In this way, our expressions for the α{t} coefficients

of the mixed representation in terms of those of the ordinary representations,

turn into identities for the corresponding dimensions of the U(m) represen-

tations. Up to our knowledge, these identities were not known before and

they are presented in Section 6. Some specific examples can be read off in

the Appendix 8.5, after the replacement α → 1
d
is made.
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Section 7 contains a proposal to label the irreducible representations of

U(m|n), in terms of a finite array of m + n numbers, not all necessarily

independent, instead of giving an arbitrary large array of numbers ( that can

contain infinite numbers in principle) corresponding to the number of boxes

in the rows of the associated Young tableau. The possible advantages of this

relabelling are not further explored.

Appendix 8.1 contains a brief review of the supersymmetric HCIZ integral

which result is the basic tool used in our calculations. The remaining Ap-

pendices are the detailed calculations of some expressions in the main text,

together with the statement of useful relations which are also used along the

paper.

Finally, Tables I (II) in the Appendix 8.4 contain a list of characters and

dimensions of representations of the group GL(N) ( supercharacters and

dimensions of representations of the supergroup GL(m|n) ) which are an

extended version of those found in Ref. [3].

2 Introduction to supermatrices

Supergroups can be conveniently represented by matrices acting on a su-

perspace (supermatrices). To this end we briefly review some of the basic

properties of the linear algebra defined over a Grassmann algebra. This sets

the stage for the rest of the paper and also fixes our notation. For a more

detailed and complete discussion on these matters the reader is referred to

Refs.[9, 10].

Let us consider a superspace with coordinates zP = (qi, θα), i = 1, . . .m,

α = 1, . . . , n such that the qi’s (θα’s) are even (odd) elements of a Grass-

mann algebra. This means that zP zQ = (−1)ǫ(P )ǫ(Q)zQzP , where ǫ(P ) is
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the Grassmann parity of the index P defined by ǫ(i) = 0, mod(2); ǫ(α) =

1, mod(2).The above multiplication rule implies in particular that any odd

element of the Grassmann algebra has zero square, i.e. it is nilpotent. Also

we have that ǫ(zP1zP2 . . . zPk) =
∑

ǫ(Pi).

Supermatrices are arrays that act linearly on the supercoordinates leaving

invariant the partition among even and odd coordinates. To be more specific,

the supercoordinates can be thought as forming an (m+n)×1 column vector

with the first m entries (last n entries) being even (odd) elements of the

Grassmann algebra. In this way, an (m + n) × (m + n) supermatrix is an

array written in the partitioned block form

M =

(

Am×m Bm×n

Cn×m Dn×n

)

, (1)

where the constituent matrices have components Aij, Biα, Cαi and Dαβ .

Besides, Aij , Dαβ (Biα, Cαi) are even (odd) elements of the Grassmann

algebra in such a way that the parity array of the supercoordinate vector

columnn is preserved under supermatrix multiplication of that vector. The

parity of any supermatrix element is ǫ(MPQ) = ǫ(P ) + ǫ(Q). The addition

and multiplication of supermatrices according to the rules

(M1 +M2)PQ = (M1)PQ + (M2)PQ, (M1M2)PQ =
∑

R

(M1)PR(M2)RQ,

is such that it produces again a supermatrix. The inverse of a supermatrix

can be constructed in block form, in complete analogy with the classical case

and it is well defined provided A−1 and D−1 exist. The inverse of these even

matrices is calculated in the standard way.

The basic invariant of a supermatrix under similarity transformations is

the supertrace

Str(M) = Tr(A)− Tr(D) =
m+n∑

P=1

(−1)ǫ(P )MPP ,
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which is defined so that the cyclic property Str(M1M2) = Str(M2M1) is

fullfilled for arbitrary supermatrices M1,M2. The above definition of the

supertrace leads to the construction of the superdeterminant in the form

Sdet(M) = exp[Str(lnM)], which is explicitly given by the following two

equivalent forms [19]

Sdet(M) =
det(A− BD−1C)

det(D)
=

det(A)

det(D − CA−1B)
. (2)

The above expression is written only in terms of determinants of even matri-

ces in such a way that the determinant has its usual meaning. The superde-

terminat has the multiplicative property Sdet(M1M2) = Sdet(M1)Sdet(M2).

The definition of the adjoint supermatrix follows the usual steps by requir-

ing the identity (yP∗MPQz
Q)∗ = zP∗M †

PQy
Q, for an arbitrary bilinear form

in the complex supercoordinates yP , where ∗ denotes complex conjugation.

Since the usual definition of complex conjugation in a Grassmann algebra,

(yPyQ)∗ = yQ∗yP∗, reverses the order of the factors without introduccing any

sign factor , we have the result M †
PQ = MQP

∗ as in the standard case.

A hermitian (m+n)× (m+n) supermatrix M is such that M † = M and

it has (m + n)2 real independent components. The following properties are

also fullfilled: (i) (M †)† = M , (ii) (M1M2)
† = M2

†M1
† and (iii) Sdet(M †) =

Sdet(M)∗.

A unitary (m+n)× (m+n) supermatrix U is such that UU † = U †U = I

( where I is the identity supermatrix) and also has (m+n)2 real independent

components, which have the additional property that (SdetU)(SdetU)∗ = 1.

The set of all (m + n) × (m + n) unitary supermatrices, under the op-

eration of supermatrix multiplication, constitutes the supergroup U(m|n).

Under very general conditions [21], hermitian supermatrices can be diago-

nalized by superunitary transformations, thus introducing the correspond-
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ing eigenvalues. Our notation is such that the first m eigenvalues of an

(m+n)× (m+n) hermitian supermatrix M are denoted by λi, while the re-

maining n eigenvalues are denoted by λ̄α. Such partition is characterized by

the following parity assignment of the corresponding eigenvector components

VP , V̄P : ǫ(VP ) = ǫ(P ), ǫ(V̄P ) = ǫ(P ) + 1, which are called eigenvectors of the

first and second class respectively. Thus, a diagonalizable hermitian super-

matrix can be decomposed as M = UΛU †, where U is a unitary supermatrix

(which is built from the eigenvectors of M) and

Λ =

(

λm×m 0
0 λ̄n×n

)

, (3)

is a diagonal supermatrix, λm×m (λ̄n×n) being an m × m (n × n) diagonal

matrix with components λi (λ̄α).

3 Basic Properties of supergroup representa-

tions

Supergroups will be represented by linear operators D̃(g) acting on some

vector space with basis {ΦI}. Linearity is defined by D̃(g) (ΦIα + ΦJβ) =
(

D̃(g)ΦI

)

α+
(

D̃(g)ΦJ

)

β, where α and β are arbitrary Grassmann numbers.

An alternative choice is produced by having the factors to the left.

The action

D̃(g) (ΦI) =
∑

J

ΦJD
(t)
JI (g), (4)

defines a representation (t) of the supergroup.

In spite of the use of Grassmann variables in our definition of linearity,

the representation property D
(t)
JI (g1 ∗ g2) =

∑

K D
(t)
JK(g1)D

(t)
KI(g2) is verified,

thus showing that the representation of the supergroup elements in terms of

supermatrices respects the multiplication rule of supermatrices.
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The above linearity convention applies also to the action of group op-

erators acting upon vectors of the space. Let us consider the vector Ψ =
∑

K ΦKαK with components αK . Then we have

D̃(g) (Ψ) =
∑

K

D̃(g) (ΦK)αK =
∑

K,L

ΦLD
(t)
LK(g)αK, (5)

which is consistent with the representation of a vector as a column with

entries αK , together with the representation of the action of a group element

upon such vector as the multiplication of the corresponding supermatrix by

the respective columm.

Now, let us recall that there are two fundamental representations of

U(m|n) : The ordinary one (or undotted), Dij(U) = Uij , and the com-

plex conjugate one (or dotted), D·
ij(U) = Ūij = (−1)ǫi(ǫi+ǫj)U∗

ij [15]. It is

a direct calculation to show that Ū is a unitary supermatrix and also that

¯(UV ) = Ū V̄ for arbitrary U(m|n) supermatrices, thus showing that the bar

operation constitutes indeed a representation of the supergroup.

Using the fundamental representations, three types of irreducible rep-

resentations {t} are built : ordinary (undotted) {u}, complex conjugated

(dotted ) {v̇} and mixed {v̇}|{u}, which we do, in analogy to the U(N) case,

according to the conventions in Ref. [22]. In particular we have {u}={0̇}|{u}

and {v̇} = {v̇}|{0}.

Contrary to what happens in the SU(N) case, the dotted and undotted

representations cannot be related through an epsilon symbol [22], so they are

not equivalent.

We will label the irreducible representations by means of the Young

tableaux notation. Thus, an undotted irreducible representation {t} will

be characterized by the non negative integers (t1, t2, . . . , tk), where t1 ≥ t2 ≥

. . . ≥ tk are the number of boxes in the corresponding rows of the tableau.
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For the moment we assume that there is no restriction upon the number of

ti’s characterizing the tableau. Pictorically the tableau will look like

...
...

t2
t1

tk.

(6)

The supermatrix representation D{t}(g) will then be an (m{t}+n{t})×(m{t}+

n{t}) supermatrix written in the standard form (1), consisting of elements

D
{t}
JI (g).

So besides the undotted representations pictorically shown in (6) the dot-

ted and mixed ones will look like

{v̇} =
·
·
· ·

(7)

and

{v̇}|{u} = .·
·

· ·

(8)

Now, we observe that in the case of ordinary groups the determinant det(U)

provides a one dimensional representation which can be constructed as a
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completely antisymmetrized product of fundamental representations. In the

case of supergroups, the superdeterminant Sdet(U) provides also a one di-

mensional representation which, nevertheless, cannot be constructed in terms

of the fundamental representations. This is because the superdeterminant is

a non polynomial function of the eigenvalues.

When considering tensor products of the fundamental representations we

define

(D ⊗ . . .⊗D )
︸ ︷︷ ︸

p times

(U) = ⊕{t},|t|=p σ{t}D
{t}(U), (9)

where |t| represents the number of boxes of the representation {t} and σ{t}

is a Clebsch-Gordan coefficient which represents the number of times that

the irreducible representation {t} is contained in the above tensor product.

It may be calculated using the Young tableaux rules for the tensor product

of representations in (9) or alternatively using the formula (see Chapter 7,

formula (5.21) of Ref. [25])

σ{t} = |t|!
∆(t1 + k − 1, t2 + k − 2, . . . , tk)

∏k
p=1(tp + k − p)!

, (10)

in terms of the tableau labels given in (6), where

∆(l1, . . . , lk) =
k∏

i>j=1

(li − lj) (11)

is the Vandermonde determinant.

Some values of σ{t} are given in the tables in Appendix 8.4. In particular,

Eq.(9) implies that

(strU)p =
∑

{t},|t|=p

σ{t}sχ{t}(U), (12)
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where the supercharacter of representation {t} is

sχ{t}(U) = str(D{t}(U)), (13)

and where we have also used the property that the supercharacter of tensor

product of representations equals the product of the corresponding super-

characters. An explicit formula for sχ{t}(U) in terms of supermatrix U is

given in Appendix 8.4.

Let us emphasize that the Grassmannian character of the supermatrices

involved introduces further sign factors with respect to the classical case in

the case of tensor products. Let us illustrate this point with the direct prod-

uct of two fundamental undotted representations. The corresponding basis

vectors are ΨiΦj which are rotated to Ψ′
kΦ

′
l by the independent actions of

the supergroup Ψ′
k = ΨiUik and Φ′

l = ΦjUjl. Looking for the transformation

of the product we have

Ψ′
kΦ

′
l = (ΨiUik) (ΦjUjl) = ΨiΦj

(

(−1)ǫj(ǫk+ǫi)UikUjl

)

, (14)

which identifies

(

D ×D
)

ij,kl
(U) = (−1)ǫj(ǫk+ǫi)UikUjl. (15)

It is a direct calculation to verify that this assigment constitutes indeed

a representation of the supergroup.

The expression (15) can be generalized for an arbitrary tensor product

(D × . . .×D )IJ
︸ ︷︷ ︸

p times

(U) = (−1)ǫj1 (ǫi2+ǫj2+...+ǫip+ǫjp)+...

×(−1)ǫjp−1
(ǫip+ǫjp)Ui1j1Ui2j2 . . . Uipjp, (16)

with I = {i1, i2, . . . , ip}, J = {j1, j2, . . . , jp}.
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As we mentioned before, the construction of the irreducible tensor repre-

sentations symmetrized according to a specific Young tableau, to which we

referred in (6), (7) and (8), proceeds in complete analogy to the U(N) case,

as stated in Ref. [24]. In particular, the corresponding supercharacters are

exactly those of U(N) with the trace replaced by a supertrace (see appendix

8.4 for some examples).

4 Orthogonality relations for U(m|n)

4.1 Unitary supergroup measure

For finding the orthogonality relations we will make use of the Schur’s lemma,

extended to the case of continuous supergroups. We will have to deal with

supergroup integration and for this reason we briefly refer to the unitary

supergroup measure.

In general, the supergroup measure must be left and right-invariant under

the supergroup action. In the case of U(m|n) it is defined by

[dU ] = µ
m+n∏

P,Q=1

dUPQdU
∗
PQ δ(UU † − I), (17)

where the δ-function really means the product of (m + n)2 unidimensional

δ-functions corresponding to the independent constraints set by the condi-

tion UU † = I. The integration over each Grassmann valued element dUPQ

is defined according to the standard Berezin’s rules. The arbitrary non null

constant µ will be fixed from the convention adopted for our normaliza-

tion of the supersymmetric HCIZ integral. It is important to observe that

although the above measure contains odd differentials and odd variables, it

has 0 Grasmann parity and therefore behaves as an even Grassmann variable

(commutes with everything).
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4.2 General Form of the Orthogonality relations

In order to derive the general form of the orthogonality relations we apply

Schur’s lemma to the quantity X
{s},{t}
IL =

∫

[dU ]D
{s}
IJ (U)XJKD

{t}
KL(U

−1), where

XJK is an arbitrary supermatrix. We are assuming sum over repeated indices.

Multiplying this expression to the left by the arbitrary element D
{s}
RI (S) and

using the composition property of the representation we obtain

D
{s}
RI (S)X

{s},{t}
IL =

∫

[dU ]D
{s}
RJ (SU)XJKD

{t}
KL(U

−1). (18)

Here we used the fact that [dU ] behaves like an even Grassmann variable.

Next we rewrite D
{t}
KL(U

−1) = D
{t}
KM((SU)−1)D

{t}
ML(S) and substitute this ex-

pression in the previous equation, obtaining

D
{s}
RI (S)X

{s},{t}
IL =

(∫

[dU ]D
{s})
RJ (SU)XJKD

{t}
KM((SU)−1)

)

D
{t}
ML(S). (19)

From the invariance of the measure under left multiplications we realize that

the quantity in brackets is precisely X
{s},{t}
RM and therefore we obtain that

D{s}(S)X {s},{t} = X {s},{t}D{t}(S). Then, in analogy with the ordinary case,

we have that : (i) if {s} 6= {t} then X {s},{t} = 0, and (ii) if {s} = {t} then

X {s},{s} is a multiple of the sd{s}-dimensional identity supermatrix (where

sd{s} is the dimension of the {s} representation). Thus,

X
{s},{t}
IL (X) =

∫

[dU ]D
{s}
IJ (U)XJKD

{t}
KL(U

−1) = α{s}(X)δ{s},{t}δ
{s}
IL , (20)

where the coefficient α depends upon the arbitrary supermatrix X . We

can prove that the above equation is invariant under the rotation X ′ =

D{s}XD{s}−1
, for a given representation {s}, in virtue of the composition

properties of a representation together with the invariance of the measure

with respect to right multiplication. This means that α{s}(X) must be an
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invariant under similarity transformations, which is linear in X . The only

possibility is that α{s}(X) = α{s}strX , where α{s} is now a numerical coeffi-

cient. So, in (20) we have obtained an equality between two linear expressions

of the XIK ’s. Taking care of the Grasmannian character of the indices in-

volved, the comparison of the coefficients of the fully independent variables

XIK leads to the general form of the orthogonality relations

∫

[dU ]D
{s}
IJ (U)D

{t}∗
KL (U) = (−1)ǫ

{s}
J α{t}δ

{s},{t}δ
{s}
IK δ

{t}
JL , (21)

where (U †)ij = (U−1)ij = (U∗)ji. Our notation is such that the fundamen-

tal representation is labeled with lower case indices i1, i2, . . . , iq and capital

letter indices denote a family of lower case indices, i.e I = {i1, i2, . . . , ip}, for

example.

In equation (21) we have restricted ourselves to the supergroup U(m|n).

Except for the (−1)ǫ
{s}
J factor that appears as a consequence of dealing with

Grassmann numbers, the general form of the orthogonality relations (21)

does not apparently differ from that of the U(N) case. However, as we will

see in the sequel, the determination of the α{t} coefficients will be crucial in

stating their difference.

4.3 Null integral over the U(m|n) measure

As opposed to what happens in the U(N) case, the determination of the

coefficients α{t}’s will be much more involved in our case. The reason for this

is the unexpected normalization condition which is used for the determination

of these coefficients. In the U(N) case this normalization is
∫

[dU ] = 1, while

in our case it turns out to be

∫

[dU ] = 0, U ∈ U(m|n). (22)
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Although this result was known before [9] it emerges naturally when we

deal with the SUSY HCIZ integral (see Appendix 8.1 ). On one hand, by set-

ting β = 0 on its definition, we directly obtain the integral over the measure

of the supergroup. On the other hand, using its explicit result we have to

calculate limβ→0[β
mnI(λ1, λ2, β)I(λ̄1, λ̄2,−β)], where I(λ1, λ2, β) is the stan-

dard HCIZ for U(m). Since I(λ1, λ2, β = 0) = 1, we obtain the desired

result.

An important application in this work will be the characterization of the

undotted and dotted representations {s} of U(m|n) for which α{s} 6= 0. But

before going ahead with the determination of the α{t}’s we briefly show two

immediate consequences of (22).

(i) Choosing a fixed representation {s} and summing with respect to

J = L in equation (21) we are left with the constraint

∫

[dU ] = 0 = α{s}strI(m{s}+n{s})×(m{s}+n{s}). (23)

In particular, this means that all representations with α{s} 6= 0 will neces-

sarilly have a null supertrace for the unit supermatrix in the representation

{s}.

(ii) From equations (21) and (23) we obtain

∫

[dU ]sχ{s}(U)sχ∗
{t}(U) = 0, (24)

even if {s} = {t}, because this relation involves again the supertrace of the

corresponding unit supermatrix.
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4.4 Determination of the α{t} coefficient for ordinary
representations

If we introduce only one supercharacter in the integration of Eq.(21), we are

left with
∫

[dU ]sχ{s}(U)D
{t}∗
KL (U) = α{t}δ

{s},{t}δ
{t}
KL, (25)

which plays the role of the standard orthogonality condition of the characters

in the classical case.

The condition (25) implies de following useful

Lemma: The supercharacters sχ{t}(U) ≡
∑

I(−1)ǫ
{t}
I D

{t}
II (U) of the rep-

resentations D{t}(U) for which α{t} 6= 0 constitute a linearly independent

set.

The proof goes as follows: let us consider a null linear combination of su-

percharacters of representations with α{s} 6= 0:
∑

{s} a{s}sχ{s}(U) = 0. Mul-

tiplying this equation by D
{t}∗
KL (U), integrating over [dU ] and using Eq.(25) we

have a{t}α{t}δ
{t}
kl = 0 for each representation {t}, which shows that a{t} = 0

provided α{t} 6= 0 .

The starting point that leads to the determination of the undotted rep-

resentations {t} which have non-zero values for α{t} in (21) is the supersym-

metric extension of the HCIZ integral given in Refs.[16, 17].

A convenient way of rewriting the standard HCIZ integral (defined in

equation (98), Appendix 8.1) is in terms of its expansion in characters of the

corresponding irreducible representations of the unitary group [3]

I(λ1, λ2; β) =
∑

{n}

β |n|

|n|!

σ{n}

d{n}
χ{n}(λ1)χ{n}(λ2), (26)

where d{n} is the dimension of the representation {n} and σ{n} and |n| were

already defined in (9) and (10).
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It will prove convenient for our purposes, to obtain the analogous su-

percharacter expansion of the expression given in (97) for the SUSY HCIZ

integral. This we do by using the orthogonality relations (21). The construc-

tion goes as follows: starting from the SUSY HCIZ integral

Ĩ(M1,M2; β) =
∫

[dU ]eβstr(M1UM2U†) =
∫

[dU ]
∞∑

p=0

βp

p!
(str(M1UM2U

†))p, (27)

and using the result in (12) we get

Ĩ(M1,M2; β) =
∞∑

p=0

βp

p!

∑

{t}

′

σ{t}

∫

[dU ]sχ{t}(M1UM2U
†), (28)

where the representations that contribute to the above primed sum are the

ones for which |t| = p, for a given p.

Let us now calculate the integral

I{t}(M1,M2) =
∫

[dU ]sχ{t}(M1UM2U
†). (29)

Using the definition of the supercharacter together with the properties of a

representation we have

I{t}(M1,M2) =
∫

[dU ]

sd{t}
∑

a=1

(−1)ǫaD{t}
aa (M1UM2U

†)

=
∫

dU

sd{t}
∑

a,b,c,d=1

(−1)ǫaD
{t}
ab (M1)D

{t}
bc (U)D

{t}
cd (M2)D

{t}
da (U

†)

=
∫

[dU ]

sd{t}
∑

a,b,c,d=1

(−1)ǫa(−1)(ǫb+ǫc)(ǫc+ǫd)D
{t}
ab (M1)D

{t}
cd (M2)D

{t}
bc (U)D

{t}
da (U

†)

=

sd{t}
∑

a,b,c,d=1

(−1)ǫa(−1)(ǫb+ǫc)(ǫc+ǫd)D
{t}
ab (M1)D

{t}
cd (M2)

∫

dUD
{t}
bc (U)D

{t}
da (U

†)
︸ ︷︷ ︸

(−1)ǫcδbaδcdα{t}

(30)
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Finally we obtain

I{t}(M1,M2) = α{t}

sd{t}
∑

a,c=1

(−1)ǫa(−1)ǫcD{t}
aa D

{t}
cc

⇒ I{t}(M1,M2) = α{t}sχ{t}(M1)sχ{t}(M2) (31)

Substituting this last result in equation (28) we get the expansion in super-

characters for the SUSY HCIZ integral

Ĩ(M1,M2; β) =
∑

{t}

β |t|

|t|!
σ{t}α{t}sχ{t}(M1)sχ{t}(M2), (32)

which contains only undotted representations.

In virtue of the Lemma proved at the begining of this section, we see that

the representations which contribute to Eq.(32) have supercharacters that

form a linearly independent set.

Up to now, the α{t}’s are still unknowns. Next we identify the repre-

sentations with non-zero α{t}. The basic expression we use is the character

expansion in both sides of Eq.(101), which is

∑

{t}

β |t|

|t|!
σ{t}α{t}sχ{t}(M1)sχ{t}(M2) =

∑

{p}

∑

{q}

β |p|+|q|+mn

|p|!|q|!

σ{p}σ{q}

d{p}d{q}
(−1)|q| ×

×Σ(λ1, λ̄1)χ{p}(λ1)χ{q}(λ̄1)Σ(λ2, λ̄2)χ{p}(λ2)χ{q}(λ̄2), (33)

where

Σ(λ, λ̄) =
m∏

i=1

n∏

α=1

(λi − λ̄α). (34)

Now we analize this equation by considering the following cases:

4.4.1 Case of |t| < mn

Before making any further analysis, from (33) we can immediately conclude

that

α{t} = 0, for |t| = 0, 1, . . . , (mn− 1). (35)
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This is because in both sides of that equation we have a power series in β,

and the right hand side (RHS) of it starts with βmn while the left hand side

(LHS) starts with β0. The proof goes by assuming that some coefficients α{t}

are non-zero. The linear independence of the sχ{t}(M)’s associated to those

representations imply that α{t} must be zero.

4.4.2 Case of |t| ≥ mn

As we just said before, Eq.(33) is a power series in β , so for a given power

|t| of β we obtain

1

|t|!

∑

{t}

′

σ{t}α{t}sχ{t}(M1)sχ{t}(M2) =
∑

{p}

∑

{q}

(−1)|q|

|p|!|q|!

σ{p}σ{q}

d{p}d{q}
×

×Σ(λ1, λ̄1)χ{p}(λ1)χ{q}(λ̄1) Σ(λ2, λ̄2)χ{p}(λ2)χ{q}(λ̄2), (36)

where the sum in the LHS is made for all tableaux having a fixed number of

boxes |t|, while the sum over {p} and {q} in the RHS is restricted to

|p|+ |q| = |t| −mn. (37)

We now want to prove that Eq.(36) necessarily implies that

sχ{t}(M) = c
{t}
{p},{q}Σ(λ, λ̄)χ{p}(λ)χ{q}(λ̄), (38)

for some {p} and {q} satisfying (37) and for a certain representation {t} that

we will determine.

In order to extract more information from Eq.(36) let us consider an

arbitrary supermatrix M2, while we restrict the supermatrix M1 = M̃ in

such a way that one of its λ-eigenvalues be equal to one of its λ̄- eigenvalues.

Namely, let λj = λ̄β, for example. Then, in Eq.(36) we are left with

1

|t|!

∑

{t}

σ{t}α{t}sχ{t}(M̃)sχ{t}(M2) = 0, (39)
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because Σ(λ1, λ̄1) becomes zero. If we look at this relation as a null linear

combination of the supercharacters sχ{t}(M2) with coefficients

γ{t} =
1

|t|!
σ{t}α{t}sχ{t}(M̃), (40)

we conclude that the coefficients γ{t} are all zero, because the supercharacters

appearing in (39) constitute a linearly independent set. But σ{t} and α{t}

are different from zero, so that we are left with sχ{t}(M̃) = 0. Recalling that

sχ{t}(M) is a polynomial function of the λi’s and the λ̄α’s, we conclude from

this relation that sχ{t}(M) must be divisible by (λj − λ̄β). That is to say

sχ{t}(M) = (λj − λ̄β)Fjβ(λ, λ̄), (41)

where Fjβ(λ, λ̄) is another polynomial function of the eigenvalues. The same

reasoning can be extended to every λi (i = 1, ..., m) and λ̄α (α = 1, ..., n),

and this implies that sχ{t}(M) must have the form

sχ{t}(M) =
m∏

i=1

n∏

α=1

(λi − λ̄α) P (λ, λ̄) = Σ(λ, λ̄) P (λ, λ̄). (42)

In Eq.(42), P (λ, λ̄) must be an homogeneous polynomial function of all the

eigenvalues, because sχ{t}(M̃) and Σ(λ, λ̄) are so. The degree of homogene-

ity of sχ{t}(M̃) and Σ(λ, λ̄) is |t| and mn, respectively. This means that

the degree of homogeneity of P (λ, λ̄) must be |t| − mn. Also, we know

that sχ{t}(M̃) and Σ(λ, λ̄) are symmetric functions in the eigenvalues λi, λ̄α,

separately, and so should be P (λ, λ̄). Summing up then, P (λ, λ̄) is: (i) an

homogeneous polynomial function of degree |t| − mn in all the eigenvalues

and (ii) a symmetric function of the λi’s and the λ̄α’s, separately. Since the

characters χ{a}(λ)
(

χ{b}(λ̄)
)

are polynomial homogeneous functions of de-

gree |a| (|b|), which are symmetric in the eigenvalues λi (λ̄α) and constitute
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a complete linearly independent set, P (λ, λ̄) can be written as

P (λ, λ̄) =
∑

{a},{b}

c
{t}
{a},{b}χ{a}(λ)χ{b}(λ̄), (43)

where the sum in {a} and {b} is rectricted by |a|+ |b| = |t|−mn. Substituing

this last relation in (42) we have

sχ{t}(M) = Σ(λ, λ̄)
∑

{a},{b}

c
{t}
{a},{b}χ{a}(λ)χ{b}(λ̄). (44)

Using the above expression in the LHS of (36) and comparing both sides of

this equation, we conclude that the RHS of (44) should be saturated only

with one coefficient, for a certain tableaux {t}, which precise form is yet to

be determined. That is

sχ{t}(M) = c
{t}
{p},{q}Σ(λ, λ̄)χ{p}(λ)χ{q}(λ̄),

where {p} and {q} satisfy (37). Thus, we have proved our result in (38).

In order to identify the Young tableau corresponding to the representation

{t} we will make use of the fact that the tableaux structure is independent

of whether we are dealing with a group or supergroup. Of course, the spe-

cific symmetrization ( antisimmetrization) properties will be different in each

case. In this way we will identify the tableaux by looking only at the known

characters of the U(m), U(n) subgroups of U(m|n), in Eq.(38).

4.4.2.1 The case of {p} = {q} = 0

Here we have |t| = mn and

sχ{t}(M) = c
{t}
{0},{0}Σ(λ, λ̄). (45)

In order to proceed with the required identifications, let us consider the

particular case where the only non-zero block of the supermatrix M is the
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m×m block, i.e.

M =

(

M ′ 0
0 0

)

. (46)

Then Eq.(45) reduces to

χ{t}(M
′) = c

{t}
{0},{0}(

m∏

i=1

λi)
n. (47)

Using Weyl’s formula for the character of the representations of the unitary

group [23]

χ{r}(λ) =
det(λi

rj+n−j)

det(λi
n−j)

(48)

we conclude that the product of eigenvalues in (47) corresponds to the char-

acter of the representation {r} = (r1, r2, . . . , rm) with ri = n of U(m), which

we denote by {r} = {mn}. So, pictorically, {r} will look like

{r} = {mn} = m

n

(49)

In this way we have that χ{t}(M
′) = c

{t}
{0},{0}χ(n,n,...,n)(M

′), which allows the

identification of the representation {t} as the one given by the tableau corre-

sponding to t1 = t2 = . . . = tm = n, pictorically shown in (49), together with

c
{t}
{0},{0} = 1. We will denote by {mn} the representation just found. Besides,
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we identify Σ(λ, λ̄) as the supercharacter of the representation referred to

above:

sχ (M) = Σ(λ, λ̄), (50)

where Σ(λ, λ̄) is given in (34).

4.4.2.2 The case of {p} 6= 0, {q} = 0

Here we have |t| = |p|+mn and sχ{t}(M) = c
{t}
{p},{0}Σ(λ, λ̄)χ{p}(λ). Consid-

ering in this expression the same choice of M as in (46), we have χ{t}(M
′) =

c
{t}
{p},{0}(

∏m
i=1 λi)

nχ{p}(λ). Using again Weyl’s formula we are able to make

the identification (
∏m

i=1 λi)
nχ{p}(λ) = χ{n+p}(λ), where by {n+ p} we mean

the representation with Young tableau (n+ p1, n + p2, . . . , n+ pm):

{r} = {mn}{p} =m

n

(51)

where we have generically drawn

{p} =

(52)

24



This leads to χ{t}(M
′) = c

{t}
{p},{0}χ(n+p1,n+p2,...,n+pm)(λ) for this case and

we conclude that c
{t}
{p},{0} = 1 with {t} being the representation (n + p1, n +

p2, . . . , n+ pm) of U(m|n). Besides, we identify

sχ{t}(M) = Σ(λ, λ̄)χ{p}(λ) (53)

4.4.2.3 The case of arbitrary {p} and {q}

Now we discuss the main result of this section which states that the undotted

representations of U(m|n) with α{t} 6= 0 are characterized by the following

Young tableaux:

{t̃} = {mn}{p} =

{q}T
m

n

(54)

where {p} is the same as in (52) and {q} is pictorically identified with

{q} =

(55)

which, after interchanging its rows and columns, giving {q}T , is put in the

bottom left of {mn}{p} , producing (54). The representation {q}T is called

the conjugate representation of {q}.
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Besides identifying the particular representations involved, we are also

able to calculate the corresponding non-zero normalization coefficient ap-

pearing in the orthogonality relations (21) for the representation {t̃}. It is

given by

α{t̃} = (−1)|q|
|t̃|!

|p|!|q|!

σ{p}σ{q}

σ{t̃}

1

d{p}d{q}
. (56)

Let us also remark that our expression (56) correctly reproduces the result

α{t} =
1

d{t}
(57)

for U(N) (by making m = N and n = 0). Note that in the U(m|n) case,

the α{t} coefficient not only depends on the dimension of the representa-

tions involved, but also on the Clebsch-Gordan coefficients σ{t} and on the

characteristic number |t|.

An important result that leads to the above conclusions is that

sχ{t̃}(M) = (−1)|q|Σ(λ, λ̄)χ{p}(λ)χ{q}(λ̄). (58)

This relation is proved in Appendix 8.2, and after substituting it in equa-

tion (33), the result in (56) is obtained.

None of the results (50), (53) and (58) seem to be easily proved by stan-

dard methods like the supercharacter general formula (134) of Appendix 8.4

or the determinant formulas of Ref. [24]. This last formula consists in calcu-

lating the determinant of a matrix which components are supercharacters of

completely symmetric representations. These supercharacters are expressed

in terms of sums which, apparently, cannot be cast in closed form. Thus,

our method provides an alternative derivation of the compact results already

mentioned.
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An immediate consequence of our relation (58) is that we can obtain the

dimension sd{t} for the representations in U(m|n) that arise in the superchar-

acter expansion, in terms of the dimension d{p} (d{q}) of the U(m) ( U(n))

representations. Taking

M0 =

(

Im×m 0
0 −In×n

)

(59)

in (58) and observing that [24]

sχ{t}(M0) → sd{t}

χ{p}(λ) → d{p}

χ{q}(−λ̄) → (−1)|q|d{q}

Σ(λ, λ̄) → 2mn,

we obtain the closed expression

sd{t̃} = 2mnd{p}d{q}, (60)

for the dimensions of the representations of U(m|n) characterized by the

tableaux in (54).

Again, it should be possible to derive the general expression (60) for the

dimension of the general tableaux (54) by using the formula developped by

Balantekin and Bars [24] as a determinant of the supercharacters of com-

pletely symmetric representations. Nevertheless, we have not been able to

reproduce the general result (60) in this way.

Before closing this section, let us illustrate the formula (58). Consider

the representation

{t̃} = ,
(61)
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whose supercharacter can be obtained with the aid of the character table of

the symmetric group S5 and the general expression (134), giving

sχ{t̃}(M) =
1

24
[(strM)5 + 2(strM)3strM2 − 4(strM)2strM3

−6strMstrM4 + 3strM(strM2)2 + 4strM2strM3]. (62)

Let us consider the tableau (61) as labeling a U(1|2) representation. So

according our notation (54) we have that

{p} =

{q} =
.

Substituting the supermatrix M in its diagonal form,

M =






λ1 0 0
0 λ̄1 0
0 0 λ̄2




 , (63)

in the supercharacter expression (62) and after some algebra, we obtain

sχ{t̃}(M) = [(λ1 − λ̄1)(λ1 − λ̄2)] (λ1) (λ̄1λ̄2), (64)

which, for U(1|2), can be equivalently written as

sχ{t̃}(M) = (−1)2Σ(λ, λ̄)χ (λ)χ (λ̄). (65)

Here χ (λ) and χ (λ̄) are the U(1) and the U(2) characters of the cor-

responding representations, which can be taken from the character table in

Appendix 8.4 and Σ(λ, λ̄) = (λ1− λ̄1)(λ1 − λ̄2). We see, then, that (65) is in

accordance with our general result (58).
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5 Determination of α{t} for complex conju-

gate and mixed representations

5.1 The case of complex conjugated (dotted) represen-
tations

We will need the following properties of Ū

(

strŪ
)p

= ((strU)∗)p, str
(

Ūp
)

= (strUp)∗ , (66)

which are just a consequence of the definition of Ū together with the group

property of the ¯operation. Since the supercharacter corresponding to the

representation {ṗ} has the same expression as the one corresponding to the

representation {p} except that U is replaced by Ū , the properties (66) imply

sχ{ṗ}(U) = sχ∗
{p}(U) = sχ{p}(U

†), (67)

where the Young tableau of the representation {ṗ} is the same as that of the

representation {p} except that all boxes are dotted.

We will prove that

α{ṫ} = α{t}. (68)

For this purpose we will look for two equivalent expressions for the integral

I{n}(M1,M2) =
∫

[dU ]sχ{n}(M1UM2U
†)), (69)

which we already presented in (29) and where M1 and M2 are hermitian

supermatrices.

The first expression is equation (31), namely,

I{n}(M1,M2) = α{n}sχ{n}(M1)sχ{n}(M2).
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Before going to our second way of calculating (69) we observe that

sχ{n}((M1UM2U
†)†) = sχ{n}(UM2U

†M1) = sχ{n}(M1UM2U
†),

which implies that for B = M1UM2U
† we have sχ{n}(B

†) = sχ{n}(B).

So, using (67) we have that sχ{n}(M1UM2U
†) = sχ{ṅ}(M1UM2U

†) and

therefore

I{n}(M1,M2) = I{ṅ}(M1,M2) = α{ṅ}sχ{ṅ}(M1)sχ{ṅ}(M2). (70)

But for a hermitian supermatrix M we have that sχ{ṅ}(M) = sχ{n}(M), and

therefore

I{n}(M1,M2) = α{ṅ}sχ{n}(M1)sχ{n}(M2). (71)

Comparisson of (71) and (31) leads to our desired result in (68).

5.2 The case of mixed representations

We now prove the following expression for the α-coefficients for the mixed

representations in the orthogonality relations:

α{ṗ}|{q} =

[

|p|! |q|!

(|p|+ |q|)!

]2 [
1

σ{p}σ{q}

]2
∑

{t}

′ ρ
{p},{q}
{t} σ2

{t}α{t}. (72)

Here the ρ
{p},{q}
{t} ’s are the Clebsch-Gordan coefficients which appear in the

decomposition of the tensor product of representations {p} and {q}

{p} ⊗ {q} = ⊕{t}
′ ρ

{p},{q}
{t} {t}. (73)

They are obtained by applying the Young tableaux rules for multiplying

irreducible representations [25]. Our notation,
∑ ′

{t} and ⊕{t}
′, means that

the sums are carried only over the representations satisfying |t| = |p|+ |q|.
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Let us emphasize that all ingredients in our formula (72) are known : the

α{t}’s are either null or given by (56), the ρ
{p},{q}
{t} ’s are given by (73) and the

σ{p}’s are given by (10). Some examples of the relations (72) are given in

Appendix 8.5.

Now, to prove (72) let us consider

I{p},{q}(M1,M2) =
∫

[dU ]sχ{ṗ}|{q}(M1UM2U
†) (74)

and, following the idea of the previous cases, we are going to calculate this

expression in two different ways. The method that will be subsequently

used consists basically in comparing these two expressions as polynomial

expansions in (strMk1
1 )l1(strMk2

2 )l2 . For our purposes it will be enough only

to consider the highest power term

(str M1)
|p|+|q|(str M2)

|p|+|q|.

Since our argument is based only in the comparison of the highest power

term (str A)|p|+|q| in the corresponding expressions, we next present the rele-

vant approximations that will produce such terms. To begin with we consider

the expansion

sχ{ȧ}|{b}(A) = sχ{ȧ}(A)sχ{b}(A) + . . . , (75)

which complete expression can be found in the Appendix 8.3. This is a

function of supercharacters sχ{ṙ}(A) and sχ{s}(A) (with |r| ≤ |a|, |s| ≤ |b|).

For our purposes it is enough only to consider the term written in (75). The

remaining terms will contain the factor (str(AA†)i)ri , thus lowering the power

of (strA). The next step is to express the corresponding supercharacters in

terms of powers of supertraces. Again, what we need is to consider the
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highest power term

sχ{n}(A) =
σ{n}

|n|!
(str A)|n| + . . . . (76)

of the full polynomial expresion (134).

In this way, using (75) and (76) for the case of a hermitian supermatrix

M, we have that

sχ{ȧ}|{b}(M) =
σ{a}σ{b}

|a|! |b|!
(str M)|a|+|b| + . . . , (77)

where we have displayed only the highest power term in (strM). We em-

phasize that the coefficient of (str M)|a|+|b| written in this last relation is

exact.

With the above considerations we now proceed with the calculation. The

direct integration over the supergroup in Eq.(74) gives

I{p},{q}(M1,M2) = α{ṗ}|{q} sχ{ṗ}|{q}(M1) sχ{ṗ}|{q}(M2), (78)

in analogy with (31). So, the first way of calculating (78) leads to

I{p},{q}(M1,M2) =

[

σ{p}σ{q}

|p|! |q|!

]2

α{ṗ}|{q}(str M1)
|p|+|q|(str M2)

|p|+|q| + . . . (79)

where only the term containing the highest power in (str M1)(str M2) has

been written.

Now, the second way of calculating I{p},{q}(M1,M2) consists in using the

expansion (75) for the integrand in (74)

I{p},{q}(M1,M2) =
∫

[dU ] sχ{p}((M1UM2U
†)†)

︸ ︷︷ ︸

sχ{p}(M1UM2U†)

sχ{q}(M1UM2U
†) + . . . . (80)

32



and keeping only the highest power term. Next we combine the representa-

tions in the RHS of this relation

∫

[dU ] sχ{p}(M1UM2U
†) sχ{q}(M1UM2U

†)

=
∫

[dU ] sχ{p}⊗{q}(M1UM2U
†) (81)

and subsequently we use the following Clebsh-Gordan expansion arising from

(73)

sχ{p}⊗{q}(A) =
∑

{t}

′ ρ
{p},{q}
{t} sχ{t}(A). (82)

So we have that

∫

[dU ] sχ{p}((M1UM2U
†) sχ{q}(M1UM2U

†)

=
∑

{t}

′ ρ
{p},{q}
{t}

∫

[dU ]sχ{t}(M1UM2U
†)

=
∑

{t}

′ ρ
{p},{q}
{t} α{t} sχ{t}(M1) sχ{t}(M2). (83)

Therefore, substituting (83) in (80), we obtain

I{p},{q}(M1,M2) =
∑

{t}

′ρ
{p},{q}
{t} α{t} sχ{t}(M1) sχ{t}(M2) + . . . , (84)

and using (76) we are left with

I{p},{q}(M1,M2) =
1

[(|p|+ |q|)!]2
∑

{t}

′ρ
{p},{q}
{t} α{t} σ2

{t}(str M1)
|p|+|q|

×(str M2)
|p|+|q| + . . . . (85)

This is the result obtained by following the second method of calculation.
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Finally we see that comparing the coefficient of the term (str M1)
|p|+|q|

×(str M2)
|p|+|q| of the two expressions for I{p},{q}(M1,M2), given in (79) and

(85), we obtain the desired result stated in (72) for the α coefficients of the

mixed representations.

As a consequence of our results (72) and (35) we derive the result

α{ṗ}|{q} = 0, for |p|+ |q| < mn, (86)

which is similar to the one in (35).

Before closing this section we also observe that

α{ṗ}|{q} = α{q̇}|{p}. (87)

This property can be obtained from the relation (72) together with the fact

that the tensor product of representations commutes.

6 Identities for the dimensions of the U(N)

representations

The complete procedure already followed for the determination of the α{ṗ}|{q}

coefficients may be repeated step by step for the case of U(N), obtaining ex-

actly the same relation (72), but with the substitution α{t} →
1

d{t}
everywhere

(see Eq. (57)) and also with the replacement str → tr. In this way we obtain

the remarkable result

1

d{ṗ}|{q}
=

[

|p|! |q|!

(|p|+ |q|)!

]2 [
1

σ{p}σ{q}

]2
∑

{t}

′ ρ
{p},{q}
{t}

σ2
{t}

d{t}
. (88)

for the dimensions of the irreducible representations of U(N). In fact, since

these dimensions are all well known from an independent calculation (d{t} =

χ{t}(IN×N)), Eq.(88) provides an identity relating the dimensions of mixed
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and undotted representations of this group. Many examples of the identity

(88) are shown explicitly, mutatis mutandis, in the Appendix 8.5. Let us

illustrate this, for example, in the case of the representation · . According

to Appendix 8.5 (second row) we have that

1

d ·
=

1

9

1

d
+

4

9

1

d
, (89)

where

d · = 1
2
N(N + 2)(N − 1), d = 1

6
N(N + 1)(N + 2),

d = 1
3
N(N + 1)(N − 1),

(90)

according to the formulas in Table I of the Appendix 8.4. The reader may

verify that the identity in (89) is indeed fulfilled by expressions (90).

7 Relabeling of the U(m|n) representations

The irreducible representations of SU(m|n) have been characterized by Bars

and Balantekin in terms of the Young tableaux notation [22]. We referred

to this classification in section 3, when applying it to the U(m|n) case. In

this notation, to completely specify each representation, a set of numbers

(t1, . . . , tk) is required, counting the number of boxes in the corresponding

rows of the {t} tableau. Contrary to what happens in the U(N) (SU(N))

case, where the number of rows of the undotted tableau should not exceed

N ((N − 1)), in the U(m|n) (SU(m|n)) case there is no restriction for this

number which, in principle, may be as large as wanted [22]. So, using the

number of boxes on each row as a labelling of the U(m|n) representations

requires a non definite number of parameters.
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Using our formula (58) we will show that it is possible to choose, at most,

(m+n) parameters in order to completly specify the undotted representations

of U(m|n). This is because representations of the type

{t}E = {mn}{p} =

{q}T{r}

m

n

(91)

do not exist, whenever representation {r} is allowed to be placed there, that

is, when ({q}T )i = n for every ri 6= 0 and r1 ≤ pm.

To understand this property from our point of view, let us observe that

formula (58) can be extended for representations {q}T → {q}T{r}. In fact,

in Appendix 8.2 we deal with this formula and validate it for a {q}T tableau

having any number of rows and columns, as long as the Young tableaux

rules are kept obeyed. Then for the representation {t}E (for which we mean

‘Extended’ {t}) we have that

sχ{t}E (M) = (−1)|q|+|r| Σ(λ, λ̄) χ{p}(λ) χ {q}
{r}T

(λ̄). (92)

But any U(n) tableau having more than n rows is forbidden, i.e.

χ
{q}
{r}T

(λ̄) = 0,

so that

sχ{t}E(M) = 0. (93)
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Given that the dimension of a supergroup representation can be calculated as

sd{t} = sχ{t}(M0), where M0 is given in (59), we have that the dimension for

U(m|n) representations of the type {t}E is 0 and therefore they do not exist.

This fact was already known in the literature [26], but it appears naturally

in our calculations.

The above observation leads us to propose that any legal U(m|n) repre-

sentation can be completely characterized by

{t‖s} ≡ (t1, . . . , tm‖s1, . . . , sn), (94)

in such a way that

tm · · ·

...
...

...
...

...

sns1
t1 · · ·

· · ·
· · ·

(95)

where (t1, . . . , tm) is a U(m) tableau denoting the number of boxes in the first

m rows of {t‖s}, while (s1, . . . , sn) is a U(n) tableau denoting the number

of boxes of the first n columns of {t‖s}. These set of numbers completely

specifies the existing undotted representations of U(m|n).

If the ti’s and the sj’s in (95) satisfy respectively

ti ≥ n, sj ≥ m, (i = 1, . . . , m; j = 1, . . . , n), (96)

then these numbers are completly independent. In this case {t‖s} is a tableau

of the type {t̃} in (54). But if the ti’s and the sj’s do not all obey (96) then

they will not be all independent. In fact, if {t‖s} is such that every box of
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the tableaux is contained in the {mn} tableau, then knowing all the ti’s is

completely equivalent to knowing all the sj ’s. Anyway, it is still true that

knowing the m+n numbers (t1, . . . , tm) and (s1, . . . , sn) (assumed to be given

unambiguously and consistently) is enough to specify any U(m|n) undotted

representation.

Now, the analogue happens when considering purely dotted representa-

tions. Equation (58) is also valid for dotted representations since the cor-

responding derivation can be completely repeated for this case (the char-

acter and supercharacter expansions of the ordinary and supersymmetric

HCIZ integral may be directly obtained for purely dotted representations).

So following exactly the same arguments we are led to state that every

U(m|n) dotted representation can be completely specified by the notation

{ṫ‖ṡ} ≡ (ṫ1, . . . , ṫm‖ṡ1, . . . , ṡn). The pictorical tableau would be the same as

in (95) but with all boxes dotted.

In the case of mixed representations, the undotted and the dotted parts

will follow separately the previously established rules and the tableau will be

abbreviated as {ṗ‖q̇}|{u‖v}.
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8 Appendices

8.1 The supersymmetric HCIZ integral

The basic tool we have used to determine the integration properties of the su-

pergroup U(m|n) in this work is the supersymmetric extension of the Harish-

Chandra-Itzykson-Zuber ( SUSY HCIZ) integral defined by [16, 17]

Ĩ(M1,M2; β) =
∫

[dU ]eβstr(M1UM2U†), (97)

where M1 andM2 are hermitian (m+n)×(m+n) supermatrices, the integra-

tion is carried over the supergroup U(m|n) and ‘str’ means the supertrace

operation. This extension is made in complete analogy with the ordinary

HCIZ integral which is [3]

I(N1, N2; β) =
∫

[dU ]eβtr(N1UN2U†), (98)

where N1 and N2 are N×N hermitian matrices, and the integration is carried

over the group U(N).

The calculation of the SUSY HCIZ integral has been made by following

analogous steps to those taken by Itzykson and Zuber in the ordinary U(N)

case [16, 17]. In this approach, the integral is not calculated directly, but it

is found as the solution of a differential equation. In the ordinary case this

procedure is known as ‘the difussion equation method’, but in our case it was

transformed to ‘the Schrödinger equation method’, in which, for convergence

reasons we incorporated an imaginary factor ‘i’ to the difussion equation [16].

The result for the calculation of the SUSY HCIZ integral is

Ĩ(M1,M2; β) = Σ(λ1, λ̄1)Σ(λ2, λ̄2) β
mn × (β)−

m(m−1)
2 (−β)−

n(n−1)
2 ×

×
m−1∏

p=1

p!
n−1∏

q=1

q!
det(eβλ1iλ2j )

∆(λ1)∆(λ2)

det(e−βλ̄1αλ̄2β)

∆(λ̄1)∆(λ̄2)
, (99)
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where the diagonal supermatrices Λi (i = 1, 2) contain the eigenvalues of the

respective (m+ n)× (m+ n) hermitian supermatrices Mi (i = 1, 2) (see (3)

for the conventions).

Here, ∆ is the usual Vandermonde determinant

∆(λ) =
∏

i>j

(λi − λj), ∆(λ̄) =
∏

α>β

(λ̄α − λ̄β) (100)

and the new function that appears is

Σ(λ, λ̄) =
m∏

i=1

n∏

α=1

(λi − λ̄α).

We observe that the polynomial Σ(λ, λ̄) is completely symmetric under in-

dependent permutations of the λi’s and the λ̄α’s.

The expression (99) is completely determined up to a normalization factor

related to that of the measure [dU ] of the supergroup. This situation is

analogous to the standard IZ case where the required factor can be fixed

directly from the corresponding expression by taking the limit Λ1,Λ2 → 0 in

a convenient way and demanding
∫

[dU ] = 1, for example. This procedure

leads to the correct factors in Eq.(3.4) of Ref.[3]. In our case, a similar

limiting procedure leads to the conclusion that
∫

[dU ] ≡ 0, precisely due to

the appearance of the Σ(λ, λ̄) functions in the numerator. This is not an

unexpected result since we are dealing with odd Grassmann numbers. For

this reason we have chosen the normalization factor in such a way that

Ĩ(M1,M2; β) = Σ(λ1, λ̄1)Σ(λ2, λ̄2)β
mnI(λ1, λ2; β)I(λ̄1, λ̄2;−β), (101)

where

Ĩ(Λ1,Λ2; β) : HCIZ integral over U(m|n)

I(λ1, λ2; β) : HCIZ integral over U(m)

I(λ̄1, λ̄2;−β) : HCIZ integral over U(n),
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and the HCIZ integral in (98) is given by

I(N1, N2; β) =
∫

[dU ]eβtr(N1UN2U†) = β−N(N−1)/2
N−1∏

p=1

p!
det(eβλ1iλ2,j )

∆(λ1)∆(λ2)
. (102)

We comment that the derivation of the expression (99) has been per-

formed for purely imaginary β in order to guarantee the convergence of the

method. Since both sides of Eq.(99) exist for every complex β we have made

an analytic continuation of the result to all the β complex plane.

8.2 Expression for sχ{t̃}(M)

Here we show that the supercharacter of the particular representation

{t̃} =
{mn}{p}
{q}T

, (103)

which is pictorically shown in (54), has the compact expression

sχ{t̃}(M) = (−1)|q|Σ(λ, λ̄)χ{p}(λ)χ{q}(λ̄). (104)

This formula was previously stated in Ref.[18] and we now present the com-

plete proof of it.

The basic idea of the proof is to start from Eq.(53)

sχ{mn}{p}(M) = Σ(λ, λ̄)χ{p}(λ), (105)

valid for every representation {p} ∈ U(m), and subsequently to perform an

induction process in the number of boxes of the representation {q} ∈ U(n).

We will work with the simplified notation (103) instead of the one in (54).

Let {q}T = {v} = (v1, . . . , va) be the tableau which is placed in the

bottom left of {mn}{p} in (103). Our proof will go in two steps. The first

one consists in making induction in the number of boxes of the last row of
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{v}, that is, va. The second step consists in assuming (104) to be valid for

{v} and showing that is also valid for {v}′, which is constructed from {v} by

adding an extra row consisting in only one box, that is, {v}′ = (v1, . . . , va, 1).

Thus, both proofs imply that the {q}T = {v} tableau may be as wide and as

long as the Young tableaux rules allow.

(i) Here we perform the induction process in the number of boxes of the last

row of {va}. We assume that (104) is valid for a tableau {q}T = {v}, with

vi ≤ n (i = 1, . . . , a− 1)

and for va = 0, . . . , Va < va−1. (106)

Our task consists in showing that it is also valid for va = Va + 1. Let

{vo} = (v1, . . . , va−1). We start by multiplying

sχ
{mn}{p}
{v0}

(M) = (−1)|v0|Σ(λ, λ̄)χ{p}(λ)χ{v0}T (λ̄), (107)

by the expression [24],

sχ(Va+1)(M) =
Va+1∑

k=0

(−1)kχ(Va+1−k)(λ)χ(k)T (λ̄), (108)

where (s) and (s)T denote the completely symmetric and the completely

antisymmetric tableau, respectively, both with s boxes. Using the Young

tableaux rules for multiplying representations we have

sχ(
{mn}{p}
{v0}

)

⊗(Va+1)

(M) = (−1)|v0|Σ(λ, λ̄)×

×
Va+1∑

k=0

(−1)kχ{p}⊗(Va+1−k)(λ)χ{v0}T⊗(k)T (λ̄) (109)
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⇒
Va+1∑

k=0

sχ
{mn}({p} ⊗ (Va + 1− k))
({v0} ⊗ (k))

(M) = (−1)|v0|Σ(λ, λ̄)×

×
Va+1∑

k=0

(−1)kχ{p}⊗(Va+1−k)(λ)χ{v0}T⊗(k)T (λ̄). (110)

Now, we separate the (Va + 1)th term in both sides

Va∑

k=0

sχ
{mn}({p} ⊗ (Va + 1− k))
({v0} ⊗ (k))

(M) + sχ
{mn}{p}
({v0} ⊗ (Va + 1))

(M) =

(−1)|v0|Σ(λ, λ̄)
Va∑

k=0

(−1)kχ{p}⊗(Va+1−k)(λ)χ{v0}T⊗(k)T (λ̄)

+(−1)|v0|+Va+1Σ(λ, λ̄)χ{p}(λ)χ{v0}T⊗(Va+1)T (λ̄).

(111)

Using the property ({a} ⊗ {b})T = {a}T ⊗ {b}T and the fact that the rep-

resentations ({v0} ⊗ (k)) are all of the type {v} (for which the hypothesis

of induction (106) is valid), the sums in both sides of (111) are cancelled,

leading to

sχ
{mn}({p})
({v0} ⊗ (Va + 1))

(M) = (−1)|v0|+Va+1 Σ(λ, λ̄)×

×χ{p}(λ)χ({v0}⊗(Va+1))T (λ̄). (112)

Using the Young tableaux rules we have that

{v0} ⊗ (Va + 1) =
{v0}
(Va + 1)

⊕
∑

l1,...,la

′
(v1 + l1, . . . , va−1 + la−1, la), (113)

where
{v0}
(Va + 1)

≡ (v1, . . . , va−1, Va + 1) and the prime means that the sum

is restricted to i) l1 + . . . + la = Va + 1, where all the li’s are non negative

integers; ii) la ≤ Va and iii) vi ≥ vi+1 + li+1, for i = 1, . . . a− 1.
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Therefore, using (113) in (112) we have that

∑

l1,...,la

′′

sχ {mn}{p}
(v1 + l1, . . . , va−1 + la−1, la)

(M) + sχ {mn}{p}
{v0}
(Va + 1)

(M) =

∑

l1,...,la

′′

(−1)|v0|+Va+1Σ(λ, λ̄)χ{p}(λ)χ(v1+l1,...,va−1+la−1,la)T (λ̄)

+(−1)|v0|+Va+1Σ(λ, λ̄)χ{p}(λ)χ(
{v0}
(Va + 1)

)T (λ̄) .

(114)

Here the double prime means that the summation is further restricted to

la < Va + 1. In virtue of the hipothesis of induction the sums that appear in

both sides of this equation are equal and we are left with

sχ
{mn}{p}
(

{v0}
(Va + 1)

)

(M) = (−1)|v0|+Va+1Σ(λ, λ̄)χ{p}(λ)χ(
{v0}
(Va + 1)

)T (λ̄),

(115)

which ends this part of the proof.

(ii) We will now prove that if (104) is valid for vi ≤ n (i = 1, . . . a), then it

is also true that

sχ
{mn}{p}
{v}
✷

(M) = (−1)|v|+1Σ(λ, λ̄)χ{p}(λ)χ(
{r}
✷

)T (λ̄). (116)

We will follow very similar steps to those in (i). We multiply (104) by

sχ✷(M) = χ✷(λ)− χ✷(λ̄), obtaining

sχ(
{mn}{p}
{v}

)

⊗✷

(M) = (−1)|v|Σ(λ, λ̄)χ{p}⊗✷(λ)χ{v}T (λ̄) +
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+(−1)|v|+1Σ(λ, λ̄)χ{p}(λ)χ{v}T⊗✷(λ̄) (117)

⇒ sχ
{mn}({p} ⊗ ✷)
{v}

(M) + sχ
{mn}{p}
({v} ⊗✷)

(M) =

(−1)|v|Σ(λ, λ̄)χ{p}⊗✷(λ)χ{v}T (λ̄) + (−1)|v|+1Σ(λ, λ̄)χ{p}(λ)χ({v}⊗✷)T (λ̄)

(118)

Considering (104) for the case {p} → {p}⊗✷, the first term in both sides is

the same and after cancelling it we have

sχ
{mn}{p}
({v} ⊗✷)

(M) = (−1)|v|+1Σ(λ, λ̄)χ{p}(λ)χ({v}⊗✷)T (λ̄). (119)

Next we use the analogue formula to (113) which is

{v} ⊗✷ =
{v}
✷

⊕
∑

j1,...,ja

′′′

(v1 + j1, . . . , va + ja), (120)

where the triple prime indicates the restrictions that the ji’s are non negative

integers satisfying j1 + . . . + ja = 1 together with vi ≥ vi+1 + ji+1, (i =

1, . . . , a− 1). Using (120) in (119) we have that

∑

j1,...,ja

′′′

sχ
{mn}{p}
(v1 + j1, . . . , va + ja)

(M) + sχ
{mn}{p}
{v}
✷

(M) =

∑

j1,...,ja

′′′

(−1)|v|+1Σ(λ, λ̄)χ{p}(λ)χ(v1+j1,...,va+ja)T (λ̄) +

+(−1)|v|+1Σ(λ, λ̄)χ{p}(λ)χ(
{v}
✷

)T (λ̄). (121)

In virtue of the hipothesis of induction the sums in both sides are the same

and we are left with the desired result.
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8.3 Supercharacter of mixed representations

The general expression for the supercharacter of a mixed representation of

the supergroup GL(m|n) is the complicated expression given by

sχ{ȧ}|{b}(A) =

k{a},{b}
∑

l=0

∑

{m}

′′∑

{n}

′′
δ(r1 + 2r2 + . . .+ lrl − l)

×
∑

r1,...,rl

φ
{a},{b}
l,{m},{n},{r}

l∏

i=1

[(str(AA†)i]ri sχ{ṁ}(A)sχ{n}(A), (122)

where A is an arbitrary (m+n)×(m+n) supermatrix, |m| = |a|−l, |n| = |b|−l

and k{a},{b} = min{|a|, |b|}. The coefficients φ
{a},{b}
l,{m},{n},{r} are known for all

representations {a} and {b} of GL(m) and GL(n), respectively. Again, the

double prime on each summation is to remind the reader of the constraints

over which the sumations are performed.

In particular

φ
{a},{b}
0,{a},{b},{0} = 1, (123)

which corresponds to the terms in (122) which do not contain any factor

[str (AA†)j ]rj . This term is precisely the one that we consider in Eq.(75).

The formula (122) is a generalization of the expression appearing in Ref.

[15], which correspond to the superunitary case where AA† = 1

Simple examples of the formula (122) are

sχ · (A) = sχ · (A)sχ (A)−
1

m− n
str(AA†), (124)

sχ · (A) = sχ · (A)sχ (A)−
1

m− n
str(AA†)sχ (A), (125)

sχ · (A) = sχ · (A)sχ (A)−
1

m− n
str(AA†)sχ (A).

(126)
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The reader may verify that these expressions coincide with the ones of

Ref. [15] when A is a unitary supermatrix.

We are not going to perfom here the derivation of (122). Instead, we will

present a simple example which illuminates the general procedure. Let us

take the case {ȧ}|{b} = · . In order to construct the result for sχ · (A)

given in (124) we consider

D·
ac,bd(A) = D·×

ac,bd(A)−
1

m− n
δbd(−1)ǫeD·×

ac,ee(A). (127)

The above expression is obtained starting from the fundamental representa-

tions

Dij(A) = Aij D·
ij(A) = (−1)ǫi(ǫi+ǫj)A∗

ij , (128)

and imposing the representation · to be irreducible. The representation

· × is given by

D·×
ac,bd(A) = (−1)(ǫa+ǫc)(ǫa+ǫb)A

†
baAcd, (129)

according to the general rule described in section 3.

The construction of (127) leads to

D·
ac,bd(A) = (−1)ǫa+ǫc)(ǫa+ǫb)A

†
baAcd −

1

m− n
δbd(−1)ǫe(AA†)ca. (130)

Calculating the supercharacter sχ · (A) =
∑
(−1)ǫa+ǫcD·

ac,ac(A),we obtain

(124).

Let us observe that in order to get (124) we have begun from (127), which

is the product of the representations · and to which we have substracted

a similar term with a repeated index e. This index contraction produces the

term AA† in (130) and subsequently it becomes str(AA†), after calculating

the supercharacter.
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When the same procedure is applied to more complicated cases like that

of the representation · · · , we will obtain an expression of the type

sχ
· · ·

(A) = sχ · · · (A)sχ (A) + a str(AA†)sχ · · (A)sχ (A) +

+(b[str(AA†)]2 + c str(AA†)2) sχ · (A), (131)

where the coefficients a, b y c take known numerical values. When the same

procedure is extended to the general case, one obtains the formula (122).

8.4 Character and Supercharacter tables of GL(N) and

GL(m|n)

The character of any U(N) representation may be written in terms of traces

of powers of the fundamental ordinary and complex representations, U and

Ū .

A general formula for the character of an undotted representation {t} is

[27]

χ{t}(U) =
1

|t|!

|t|
∑

a1,...,a|t|=0

δ(a1 + 2a2 + . . .+ |t|a|t| − |t|)h(a)χ
{t}
(a)

|t|
∏

i=1

(trU i)ai ,

(132)

where the χ
{t}
(a) coefficients are the characters of the symmetric group of degree

|t|, S|t|, and

h(a) =
|t|!

1a1a1! 2a2a2! . . . |t|
a|t|a|t|!

(133)

is the order of class {a} of S|t|.

The character of a dotted representation has exactly the same expression

(132), but replacing U → U †.
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For the character of a mixed representation see Ref. [15] and our Ap-

pendix 8.3, replacing supertrace for trace, whenever it is necessary. Table I

is constructed with these ingredients.

Replacing trace by supertrace [24], we obtain the analogue of formula

(132) for the supercharacter of the representation {t} of GL(m|n):

sχ{t}(U) =
1

|t|!

|t|
∑

a1,...,a|t|=0

δ(a1 + 2a2 + . . .+ |t|a|t| − |t|)h(a)χ
{t}
(a)

|t|
∏

i=1

(strU i)ai .

(134)

Some examples of this formula appear in Table II.
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Table I. Characters and dimensions for some representations

of the linear group GL(N)

(modified from [3])

Young
Tableau

σ{n} χ{n}(A) d{n}

1 trA N

1 1
2
[(trA)2 + trA2] 1

2
N(N + 1)

1 1
2
[(trA)2 − trA2] 1

2
N(N − 1)

1 1
6
[(trA)3 + 2trA3 + 3trA trA2] 1

6
N(N + 1)(N + 2)

2 1
3
[(trA)3 − trA3] 1

3
N(N + 1)(N − 1)

1 1
6
[(trA)3 + 2trA3 − 3trA trA2] 1

6
N(N − 1)(N − 2)

· 1 trA† N

· - trA† trA− 1
N
trA A† (N + 1)(N − 1)

· - 1
2
trA† [(trA)2 + trA2]− 1

N
trA tr(AA†) 1

2
N(N + 2)(N − 1)

·
- 1

2
trA† [(trA)2 − trA2]− 1

N
trA tr(AA†) 1

2
N(N + 1)(N − 2)
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Table II. Supercharacters for some representations of

the linear supergroup GL(m|n) (constructed from [3] and [24])

Young
Tableau

σ{n} sχ{n}(B) sd{n}

1 strB m+ n

1 1
2
[(strB)2 + strB2] 1

2
((m+ n)2 + (m− n))

1 1
2
[(strB)2 − strB2] 1

2
((m+ n)2 − (m− n))

1
1
6
[(strB)3 + 2strB3+

+3strB strB2]
1
6
(m+ n)((m+ n)2 + 3(m− n) + 2)

2 1
3
[(strB)3 − strB3] 1

3
(m+ n)(m+ n + 1)(m+ n− 1)

1
1
6
[(strB)3 + 2strB3−

−3strB strB2]
1
6
(m+ n)((m+ n)2 − 3(m− n) + 2)

· 1 strB† m+ n

· - strB† strB − 1
m−n

str(B B†) (m+ n+ 1)(m+ n− 1)

· -
1
2
strB†[(strB)2 + strB2]−

− 1
m−n

strB str(BB†)
1
2
(m+ n)((m+ n)2 + (m− n)− 2)

·
-

1
2
strB†[(strB)2 − strB2]−

− 1
m−n

strB str(BB†)
1
2
(m+ n)((m+ n)2 − (m− n)− 2)
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8.5 α{ṗ}|{q} coefficient table

Some examples of the formula (72) are given in the following table

α{ṗ}|{q} =

[
|p|! |q|!
(|p|+|q|)!

]2
[

1
σ{p}σ{q}

]2
∑

{t} ρ
{p},{q}
{t} σ2

{t}α{t}

with |t| = |p|+ |q|
α ·

1
4
α + 1

4
α

α · = α · ·
1
9
α + 4

9
α

α
·

= α
·
·

4
9
α + 1

9
α

α · · · = α ·
1
16
α + 9

16
α

α · ··
= α ·

9
64
α + 1

16
α + 9

64
α

α

·
·
·

= α
·

9
16
α + 1

16
α

α · · = α
·
·

1
4
α + 1

4
α

α
·
·

1
9
α + 1

4
α + 1

36
α

α · ·
1
9
α + 1

4
α + 1

36
α

Acknowledgements

LFU acknowledges the hospitality of J.Alfaro at Universidad Católica de
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