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We propose a quantum circuit implementation of the unambiguous quantum state discriminator. The circuit is
made entirely of standard logical quantum gates, and provides an optimal implementation of the Positive
Operator Valued Measurement (POVM) for the unambiguous discrimination of quantum states. We also
propose an actual experimental setup of this device using the vibrational degrees of freedom of one- or two-
dimensional ion traps. We compare this implementation to the one that has been used exclusively so far in
experiments, which is based on single-photon interferometry, and discuss their relative advantages.
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1. Introduction

The discrimination of quantum states is a basic task in

quantum information and quantum communication
systems as well as in quantum cryptography [1].

A particularly clear example for the role of state

discrimination in quantum cryptography is provided

by the B92 QKD protocol [2]. A recent review on state

discrimination can be found in [3]. Two popular
strategies for optimal results are: the minimum error

(ME) discrimination [4,5], where each measurement

outcome selects one of the possible states and the error

probability is minimized, and the unambiguous quan-

tum state discrimination (USD) for linearly indepen-

dent states [6], where we are not permitted to make an
erroneous identification of the state, but we can get

inconclusive results from the measurement. The goal is

to minimize the fraction of the inconclusive results.
For the case of two pure states, with equal a priori

probabilities, the optimum USD measurement was

found more than a decade ago by Ivanovic [7],
Dieks [8], and Peres [9]. The physical methods that

have been previously proposed to implement USD

include linear optical systems [10], ion trap architecture

[11] and nuclear magnetic resonance [12]. In this work

we shall deal with the unambiguous state discrimina-

tion, following the Peres model [9] and making use of
POVM’s for two known states. In particular, we pro-

pose a quantum circuit implementation of this device

with logical quantum gates, and an experimental setup,

employing trapped ions. We also investigate a different

physical implementation which is based on single-

photon optical interferometry and compare the relative

strengths of these two different approaches.
The paper is organized as follows. In Section 2, we

present the problem solved by Peres and the unitary

operator U that can correlate the system under

investigation to the probe. In Section 3, we show

how to implement this unitary operator by means of

CNOT and single-qubit unitary gates. In Section 4 we

discuss the feasibility of the circuit implementation

using trapped ions. In Section 5, we show an alterna-

tive implementation, in terms of optical interferometry

and, finally, in Section 6 we provide a brief discussion

and summary. Details of some of the calculations are

presented in the Appendices.

2. Quantum discriminator

We want to discriminate unambiguously between two

nonorthogonal states jC0i and jC1i that span a two-

dimensional subspace of the complex Hilbert space.

jC0i ¼ a1=2j0i þ ð1� aÞ1=2j1i, ð1Þ

jC1i ¼ a1=2j0i � ð1� aÞ1=2j1i, ð2Þ

where a4 1
2.
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We consider an additional ancilla qubit in the
state j0i. The bases are labeled by A for the system and
B for the ancilla. Our initial state is

jCii
in
AB ¼ jCiiA � j0iB

¼ a1=2j00iAB � ð1� aÞ1=2j10iAB, ð3Þ

where � signs correspond to initial states jC0iA and
jC1iA, the second qubit is the ancilla, and i¼ 0, 1.

Making use of the Peres choice, we define a unitary
operator U that yields the following final state, when
applied to jCii

in
AB

jCii
out
AB ¼ UABjCii

in
AB

¼ ð1� aÞ1=2ðj0iA � j1iAÞj0iB

þ ð2a� 1Þ1=2j1iAj1iB

¼ ½2ð1� aÞ�1=2j�iAj0iB

þ ð2a� 1Þ1=2j1iAj1iB, ð4Þ

where j�iA� (j0iA� j1iA)/2
1/2.

If we perform a measurement on the ancilla (system
B) and get the state j0iB, we can make a further
von Neumann measurement on system A and unam-
biguously determine the input state. If the final state is
the jþiA state, then jCii

in
A ¼ jC0i, and if the final state

is j�iA state, then jCii
in
A ¼ jC1i, and the probability of

the successful discrimination is 2(1� a)� 1� cos(2�).
If the measurement on the ancilla gives the state j1iB,
then the A qubit will always be in the state j1iA,
so we get an inconclusive result with probability
2a� 1� cos(2�), where we introduced a� cos2(�).

We can write the unitary operator UAB, in the basis
{j00iAB, j01iAB, j10iAB, j11iAB}, as

UAB ¼

1�a
a

� �1=2
0 0 � 2a�1

a

� �1=2
0 1 0 0

0 0 1 0
2a�1
a

� �1=2
0 0 1�a

a

� �1=2

0BBBB@
1CCCCA: ð5Þ

In the next section we shall find a quantum circuit
representation of this two-qubit unitary operator.

3. Implementation of UAB in a quantum circuit

One of the main tools for the development of quantum
computing is the construction of quantum circuits
capable of realizing the processing and manipulation of
the quantum information. In this context, it is neces-
sary to decompose any unitary transformation in a
sequence of quantum gates, resulting in a correspond-
ing quantum circuit.

In this section, we review an algorithm to decom-
pose an arbitrary unitary transformation U2SU(4)
[13] in order to express the unitary transformation by a

quantum circuit. Then we apply this procedure to the

particular case of the unambiguous discriminator of

known states (5).

3.1. Procedure to decompose a unitary matrix
U2SU(4)

The main decomposition is the Cartan decomposition

[14], in the ‘KAK’ form from the Lie theory. Several
cases have been studied, like the two-qubit magic

decomposition [13,15–18], the cosine-sine decomposition

[19–21], and the demultiplexing decomposition [21].
The first one is for two qubits, and the last two

decompositions hold for n-qubit operators.
For any operator U2SU(4) (Figure 1) there exist

local unitary operators UA, UB, VA, VB and a nonlocal

unitary operator Ud such that

U ¼ ðUA �UBÞUdðVA � VBÞ, ð6Þ

where

Ud ¼ exp �i �A
�!T

d �B
!

� �
¼ exp �ið�x�x � �x þ �y�y � �y þ �z�z � �zÞ

� �
¼ expð�iH Þ: ð7Þ

Here �!
T
is the transpose of Pauli operators denoted

by �!¼ ð�x, �y, �zÞ in the computational basis,
{j0i, j1i}, the subscripts specify on which system the

operator is acting, and d is a diagonal matrix whose

diagonal elements are denoted by �x, �y, �z. Due to the
periodicity and symmetry of the entanglement gener-

ated by Ud one has the following restriction [13]:

p
4
� �x � �y � j�zj: ð8Þ

It is easy to show that the operator Ud is diagonal in

the magic basis {jFki}, defined as

jF1i ¼
1

21=2
ðj00iþ j11iÞ, jF2i ¼

i

21=2
ðj00i� j11iÞ,

jF3i ¼
i

21=2
ðj01iþ j10iÞ, jF4i ¼

1

21=2
ðj01i� j10iÞ:

ð9Þ

Therefore, Ud in the magic basis can be written as

Ud ¼
X4
k¼1

expð�i�kÞjFkihFkj, ð10Þ

Figure 1. Decomposition of operator U2SU(4).
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where the �k’s are given by

�1 ¼ �x � �y þ �z,

�2 ¼ ��x þ �y þ �z,

�3 ¼ �x þ �y � �z,

�4 ¼ ��x � �y � �z: ð11Þ

In order to find the matrices UA, UB, VA, VB and

the phases �k in the decomposition (6), we follow the

procedure given in [13].
The procedure goes as follows:

(a) Calculate U in the magic basis, then obtain the

eigensystem of the product UTU, denoting the

eigenvalues and eigenstates by exp(2i�k)
and jCki, respectively.

(b) Following Lemma 1 of [13] (Appendix 1),

choose VA, VB and the phases �k, such that

VA � VB expði�kÞjCki ¼ jFki, ð12Þ

where jCki corresponds to our eigenstates

calculated in (a), and jFki is the magic basis (9).
(c) According to the eigenvalues and eigenstates

obtained in (a), calculate

eCk

			 E
¼ expð�i�kÞUjCki: ð13Þ

(d) Using Lemma 1 again, choose the UA, UB and

�k such that

U yA �U yB exp½ið�k þ �k þ �kÞ�
eCk

			 E
¼ jFki: ð14Þ

3.2. Decomposition of the unitary matrix UAB

Following the above procedure, for our particular

unitary matrix (5), we readily find the elements in the

decomposition UA, UB, VA, VB (see Appendix 2):

VA ¼
1 0

0 exp ip
4

� �
 �
, VB ¼

0 1

exp � ip
4

� �
0


 �
,

UA ¼
1 0

0 exp � ip
4

� �
 �
, UB ¼

0 exp ip
4

� �
1 0

 !
,

ð15Þ

and the diagonal elements of Ud :

expð�i�1Þ ¼ 1,

expð�i�2Þ ¼ 1,

expð�i�3Þ ¼
1� a

a


 �1=2

� i
2a� 1

a


 �1=2

,

expð�i�4Þ ¼
1� a

a


 �1=2

þ i
2a� 1

a


 �1=2

: ð16Þ

If we now compare Equations (11) and (16),

we readily find �z¼ 0, �x¼ �y��, and defining

cos�¼ (1� a)1/2/a1/2, we can write �¼��/2, and

exp(�i�3)¼ exp(2i�), exp(�i�4)¼ exp(�2i�).
We have all elements in decomposition (6), namely

UA, UB, VA, VB and Ud. But we still can decompose Ud.

Following [16], Ud can be further decomposed in terms

of C-NOT and single qubit gates, as shown in Figure 2.
In the figure w is defined by

w ¼
1þ i�x
21=2

¼ Rxðp=2Þ ¼
1

21=2
1 i

i 1


 �
, ð17Þ

and

expð�i�x�xÞ ¼ expð�i��xÞ ¼ exp i
�

2
�x


 �
¼ Rxð��Þ,

ð18Þ

expð�i�y�zÞ ¼ expð�i��zÞ ¼ exp �i
�

2
�z


 �
¼ Rzð�Þ:

ð19Þ

Finally, the complete circuit for the unambiguous

discriminator in terms of C-Not gates and single qubit

rotations is shown in Figure 3. In Figure 3, uA¼WVA

and vB¼UBW.
Usually VA is known as the 	/8 gate (denoted T )

[22]. Thus, VA¼T¼ exp(i	/8)Rz(	/4), and UA¼T y¼

exp(�i	/8)Rz(�	/4). On the other hand, UB and VB

can also be represented as rotations, VB¼ exp(�i	/8)�
(exp(i	/2)Rx(	))Rz(	/4), UB¼ exp(i	/8)(exp(i	/2)Rx(	))
Rz(	/4). Therefore, it is possible to write every single

qubit operation as a product of rotations:

uA ¼ exp i
p
8

� �
Rz

p
4

� �
Rx
�p
2

� �
,

vB ¼ exp i
p
8

� �
exp i

p
2

� �
RxðpÞRz

p
4

� �
Rx
�p
2

� �
:
ð20Þ

Figure 3. Complete quantum circuit for the unambiguous
discriminator in terms of C-NOT gates and single qubit
rotations.

Figure 2. Quantum circuit for Ud in terms of a C-NOT and
single qubit gates when �z¼ 0.
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4. Feasibility of the circuit implementation using

trapped ions

The circuit proposed in the previous section uses
several gates, namely, C-NOT gates and single qubit

rotations. These gates can be implemented using, for
example, trapped ions.

Single quantum bit operations for quantum infor-
mation processing with trapped ions have been shown

to be experimentally feasible, where individual addres-
sing of single ions in a linear string with a laser beam is
required [23]. Specifically, single-qubit rotations of

trapped ion qubits have been implemented by turning
laser beams on and off for a duration appropriate to

achieve a certain rotation angle on the Bloch sphere.
Arbitrary rotations on the Bloch sphere can be
implemented by also controlling the relative phase of

the laser beam, [24,25]. Cirac and Zoller were the first
to propose the use of trapped ions for quantum
computing in 1995, a two-qubit C-NOT gate, where a

selected mode of motion is cooled to the ground state
and the ground and first excited state of this mode are
used as ‘bus-qubit’. The spin qubit of an ion can be

mapped onto the bus-qubit using a laser sharply
focused onto that ion. In this way, a gate operation

can be performed between the motional qubit and a
second ion, thus effectively performing a C-NOT gate
operation between the first and second ion.

On the other hand, Mølmer and Sørensen [26] also

proposed a two-qubit gate, using two fields at different
frequencies, which are non-resonant with the atomic
transition, but when combined, produce a two-qubit

transition. This scheme has certain advantages over the
Cirac–Zoller scheme, namely, it consists of a one-step
process and most importantly, it does not require

individual ion–laser addressing, or in other words,
both ions are equally illuminated.

The experimental realization of the Cirac–Zoller
C-NOT gate was achieved by Schmidt-Kaler et al.

in 2003 [27]. In their experiment, two 40Caþ ions
are held in a linear Paul trap and are individually

addressed using focused laser beams; the qubits
are represented by superpositions of two long-lived
electronic states.

5. Linear optical implementation

We obtain a very different physical implementation of

the discriminator when we employ techniques from
linear optical quantum interferometry combined with a
generalization of the so-called dual-rail representation

of a qubit (see [28,29]). The generalized measurement
can then be realized by utilizing linear optical elements
and photodetectors, based on the proposal of [30].

In order to accommodate the three possible returns

from the optimal state discriminating measurement, we

need a Hilbert space with a minimum dimensionality of

three. We will span this Hilbert space by a single

photon entering one of the three input ports of the six-

port interferometer in Figure 4, so that the appropriate

interferometer could be implemented for any desired

discrimination problem.
The basis states of this interferometer, the so-called

rails, are given by

j0iAB ¼ j100i,

j1iAB ¼ j010i,

j2iAB ¼ j001i:

ð21Þ

Here a 1 in the first position refers to one photon

entering the first port, while zero in the second and

third position refers to vacuum entering the corre-

sponding port, and similarly for the other states. With

this representation the states to be discriminated, as

given in Equations (1) and (2), can be expressed in

terms of a single photon split between the first and

second input ports. Thus, the first two ports represent

the system, while the third port is always empty at the

input and it serves as the ancilla. The subscript AB

refers to the basis of the joint system–ancilla Hilbert

space which is three-dimensional.
For the purposes of optical interferometry,

we slightly modify the Peres choice to define a unitary

operator UAB, entangling the system with the ancilla.

Figure 4. A general six-port optical interferometer. Suitable
beamsplitters are placed at each crossing of two optical rails
and suitable phase shifters (denoted by short lines crossing
the corresponding rails) are placed at each internal arm
before the beamsplitters to realize any desired 3� 3 unitary
transformation on the input states. To realize the optimal
unambiguous discrimination of two known quantum states,
i.e. to realize UAB of Equation (23), only two beamsplitters
are needed, BS02 and BS01, with their parameters given in
Equations (24) and (25). A detection in rail 20 corresponds to
an inconclusive result and a detection in rails 00 (or 10)
corresponds to state j 0i (or j 1i).

184 M. Hernandez et al.

D
ow

nl
oa

de
d 

by
 [

Po
nt

if
ic

ia
 U

ni
ve

rs
id

ad
 C

at
ol

ic
a 

de
 C

hi
le

] 
at

 1
3:

04
 1

7 
M

ay
 2

01
6 



It yields the following final state, when applied

to jCii
in
AB (i¼ 0, 1),

j ii
out
AB ¼ UABj ii

in
AB

¼ ð2� 2aÞ1=2jiiAB þ ð2a� 1Þ1=2j2iAB,
ð22Þ

where jiiAB (i¼ 0, 1) were defined in Equation (21).
Any N�N-dimensional discrete unitary operation

can be implemented by an appropriate multi-path

optical interferometer, using beamsplitters and phase

shifters only, as was shown in general in [31] and [32].

Based on this general result an all optical implemen-

tation was proposed in the particular context of state

discrimination in [30]. We start by reviewing this

proposal and address the actual determination and

implementation of the unitary operator UAB.
In the basis given by Equation (21) we have

UAB ¼

1�a
2a

� �1=2 1
2

� �1=2 2a�1
2a

� �1=2
1�a
2a

� �1=2
� 1

2

� �1=2 2a�1
2a

� �1=2
2a�1
a

� �1=2
0 � 1�a

a

� �1=2
0BB@

1CCA: ð23Þ

The key point in the implementation of this unitary is

the observation that it can be written as U01 U02, where

U02 ¼

1�a
a

� �1=2
0 2a�1

a

� �1=2
0 1 0

2a�1
a

� �1=2
0 � 1�a

a

� �1=2
0B@

1CA, ð24Þ

and

U01 ¼

1
2

� �1=2 1
2

� �1=2
0

1
2

� �1=2
� 1

2

� �1=2
0

0 0 1

0BB@
1CCA: ð25Þ

Both of these unitaries correspond to beamsplitters.

U02 is a beamsplitter placed at the intersection of

beams 0 and 2 (BS02 in Figure 4) with a transmission

coefficient of t¼ [(1� a)/a]1/2¼ tan � and reflection

coefficient of r¼ [(2a� 1)/a]1/2¼ (1� tan2 �)1/2. Thus,

BS02 is related to the parameters of the input states in a

very simple way. U01 is simply a 50 : 50 beamsplitter

placed at the intersection of beams 0 and 1 (BS01
in Figure 4) with transmission and reflection coeffi-

cients of t¼ r¼ 1/21/2. In fact, U02 is essentially

identical to the unitary given in Equation (5) (after

discarding the unused degree of freedom) and accom-

plishes the exact same task. The coefficient of the j0i

state in both input states is the same, a1/2.

By transmitting only a portion of [(1� a)/a]1/2 of the

j0i state, the components of the two inputs that remain

in the original system Hilbert space become orthogonal

and transform into the j�i states, so they can, in

principle be discriminated by standard von Neumann

measurements. The role of the second beamsplitter is
to transform the j�i states into the j0i and j1i states,
respectively, so they can be discriminated by projective
measurements in the computational basis. The third
beamsplitter, BS12, and the phase shifters are not
needed in this implementation.

Now that we have seen how one can implement the
above unitary with the six-port interferometer, we
discuss how this implementation works. We can place
single-photon detectors in each of the output ports of
the six-port interferometer. If the detector at output
port 00 clicks it unambiguously identifies the input as
jC0i, if the one at 1

0 clicks it identifies the input as jC1i.
The probability of the successful discrimination is
2(1� a)� 1� cos(2�), same as before. If the detector
at 20 clicks the result is inconclusive. The probability of
the inconclusive outcome is 2a� 1� cos(2�), again
same as before, so this is an implementation of the
optimal POVM.

After the explanation of how this implementation
performs, three remarks are in order here. First, there
is a remarkable simplicity inherent in this implemen-
tation as it requires only two beamsplitters. Second, the
implementation requires one extra dimension only, not
two as the previous implementation, so it works in 3D.
This could be an advantage (although it should be
mentioned that qubit ancillas are very cheap and
readily available on demand). The fact that this
particular implementation requires one extra dimen-
sion only originates in the fact that optical elements
can address individual degrees of freedom of the
ancilla, of which only one is used. The third advantage
of this particular implementation is that the final
measurement is carried out in the computational basis
and not in the j�i basis which is conceptually simpler
and, in our rail representation, it corresponds to the
detection of a single photon in the appropriate rail.

Thus, a single-photon representation of the input
and output states, a multirail optical network (in our
case a six-port) for performing the unitary transfor-
mation USA, Equation (23), and photodetectors at each
of the output ports, to carry out the required
nonunitary transformation, accomplish the required
optimal discrimination task. For the case of two
nonorthogonal states, {j 0i, j 1i}, living in a 2D
Hilbert space, a six-port optical interferometer can be
constructed to perform transformations in the 3D
system plus ancilla space. All beamsplitters in this
interferometer were designed to be optimal for given
input states. By using beamsplitters to send one photon
into some linear superposition of the first two rails,
we can generate arbitrary quantum states in this
two-dimensional Hilbert space, represented as
j iin ¼

P1
j¼0 cjj j i, where

P1
j¼0 jcjj

2 ¼ 1, and j j i is the
jth optical rail state. Note that the third rail, which acts
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as the ancilla, never contains a photon at the input.
The interferometer is designed to perform the unitary
operation UAB which optimizes state discrimination.
It maps the input states j ii into output states given by
Equation (22). A photon in mode 20 now indicates an
inconclusive result. On the other hand, a photon in rail
00 or 10 unambiguously indicates that the initial state
was j 0i or j 1i, respectively.

6. Discussion

Following Peres’ [9] proposal for an unambiguous
quantum discriminator of known states, we derived a
four-dimensional unitary transformation and describe
step by step an algorithm that converts the unitary into
a quantum circuit involving only standard one- and
two-qubit gates. We have shown how one can imple-
ment the discriminator in terms of trapped ions. Both
the required C-NOT and single qubit rotation gates
have been recently implemented, using ions in a linear
trap, with the qubits corresponding to the atomic sub-
levels and the bus, in the case of the two-qubit gate,
corresponding to a quantized vibrational motion state
of the ions [24,27]. Furthermore, we have also
discussed a linear optical implementation, using
techniques of single-photon interferometry, that gives
an alternative physical realization of the optimal
discriminator. The circuit implementation uses readily
available, off-the shelf elements only but the algorithm
required to convert a given unitary into a quantum
circuit can be quite involved and, even for a relatively
simple task, the number of necessary elements can be
quite large. The optical implementation, on the other
hand, is conceptually much simpler for simple tasks
and usually requires a few beamsplitters and phase
shifters only. In fact, until now all experiments in this
area have been based on some variant of the optical
implementation [33]. This simplicity, however, can be
quite misleading. The complexity of the multiport
interferometer increases exponentially with the size of
the problem and alignment of the beams as well as the
number of optical elements make this implementation
impractical for larger systems, whereas the complexity
of the circuit implementation, being based on standard
elements, will increase only polynomially with the size
of the problem and becomes preferable for larger
systems.
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Appendix 1. Proof of Lemma 1 in [13]

In order to understand the procedure used to choose

the elements in the decomposition of U (6), we use the

constructive proof of Lemma 1 in [13]. According to that

lemma, it is always possible to write

OA �OB expði
Þj’ki ¼ jFki, ð26Þ

where {j�ki} is any maximally entangled basis, 
k are some

appropriate phases and OA and OB local unitaries.

For the proof of (26) let us consider some properties of

the concurrence.

(i) A state j�i written in the magic basis, is maximally
entangled if and only if its coefficients are real,
except for a global phase.

(ii) A state j�i written in the magic basis, is completely
disentangled, i.e. a product state, if and only if the
sum of the squares of its expansion coefficients
is zero.

According to these two properties if j�i and j�?i are
real in the magic basis (and therefore they are maximally

entangled), then the state j�i� ij�?i is a product state.

Thus, we can always write j’ki ¼ expð�kÞj’ki, where j’ki
is real in the magic basis. Likewise we can consider two

different states j ’ki and j ’li, then the combination

2�1=2ðj’ki þ ij ’liÞ ¼ je, f i and 2�1=2ðj’ki � ij’liÞ ¼ je
?, f ?i

are product states. Thus, we write

j’1i ¼
1

21=2
ðje, f i þ je?, f ?iÞ,

j’2i ¼
�i

21=2
ðje, f i � je?, f ?iÞ:

ð27Þ

Following the above arguments, j’3,4i can be written as

j’3i ¼
�i

21=2
ðexpði�Þje, f ?i þ expð�i�Þje?, f iÞ,

j’4i ¼ �
1

21=2
ðexpði�Þje, f ?i � expð�i�Þje?, f iÞ,

ð28Þ

for some �. Finally, by choosing

OA ¼ j0ihej þ j1ihe
?jei�, ð29Þ

OB ¼ j0ih f j þ j1ih f
?je�i�, ð30Þ

and the phases 
k appropriately, we obtain Equation (26)

Appendix 2. The decomposition of U

In this appendix, we show the derivation of the results

following the procedure described in Section 3.

(i) In the first step we obtain UTU in the magic basis

UTU¼
1

a

2� 3a 2ið2a� 1Þ1=2ð1� aÞ1=2 0 0

2ið2a� 1Þ1=2ð1� aÞ1=2 2� 3a 0 0

0 0 a 0

0 0 0 a

0BBB@
1CCCA,
ð31Þ

and its eigensystem. The eigenvalues, exp(2i�k),
are given by

expð2i�kÞ ¼ 1, 1,
ð1� aÞ1=2 � ið2a� 1Þ1=2

a1=2


 �2
( )

: ð32Þ

The eigenstates {jCki} are

jC1i ¼ jF3i ¼
i

21=2
ðj01i þ j10iÞ,

jC2i ¼ jF4i ¼
1

21=2
ðj01i � j10iÞ,

jC3i ¼
1

21=2
ðjF1i þ jF2iÞ

¼
1

21=2
1þ i

21=2
j00i þ

1� i

21=2
j11i


 �
,

jC4i ¼
1

21=2
ðjF1i � jF2iÞ

¼
�i

21=2
1þ i

21=2
j00i �

1� i

21=2
j11i


 �
: ð33Þ

This set of states is a maximally entangled basis.
(ii) Then, we choose VA, VB and the phases �k by

Lemma 1. Since jCki is real in the magic basis,
we can find by comparison of (27) and (28) with

(33): exp(i�)¼ exp[i(	/4)]¼ (1þ i)/21/2, and jei¼ j0i,
j f i¼ j1i, therefore

VA ¼ j0ih0j þ exp i
p
4

� �
j1ih1j, ð34Þ

VB ¼ j0ih1j þ exp �i
p
4

� �
j1ih0j, ð35Þ

and the phases �k are easily found to be {exp(i�1)¼
�i, exp(i�2)¼ i, exp(i�3)¼ i, exp(i�4)¼�i}.

(iii) In the next step we calculate a second maximally
entangled basis fjeCig. It is easy to show that in our

case jeCki ¼ jCki.
(iv) We apply the operator U given by Equation (6) to
jCki, getting

UjCi ¼ ðUA �UBÞUd ðVA � VBÞjCki,

expði�kÞjeCki ¼ ðUA �UBÞðexpð�i�kÞjFkihFkjÞðVA � VBÞjCki,

expði�kÞjCi ¼ ðUA �UBÞ expð�i�kÞjFkihFkj expð�i�kÞjFki,

expði�kÞjCi ¼ ðUA �UBÞ expð�i�kÞ expð�i�kÞjFki, ð36Þ

where in the last three steps we used Equations (10),
(12) and (13). The above equation can also be
written as

ðUyA �UyBÞ expði�kÞ expði�kÞ expði�kÞjCi ¼ jFki: ð37Þ

Now, similarly to step two, we can choose the
operators UA, UB, and the phases �k, getting

UA ¼ j0ih0j þ exp �i
p
4

� �
j1ih1j, ð38Þ

UB ¼ exp i
p
4

� �
j0ih1j þ j1ih0j, ð39Þ

and the phases �k, which are given in Equations (16).
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