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A group-theoretic quantization method is applied to the ‘‘complete symmetry group’’ describing the motion
of a point charge in a constant magnetic field. Within the regular ray representation, the Schro¨dinger operator
is obtained as the Casimir operator of the extended Lie algebra. Configuration ray representations of the
complete group cast the Schro¨dinger operator into the familiar space-time differential operator. Next, ‘‘group
quantization’’ yields the superselection rules, which produce irreducible configuration ray representations. In
this way, the Schro¨dinger operator becomes diagonalized, together with the angular momentum. Finally, the
evaluation of an invariant integral, over the group manifold, gives rise to the Feynman propagation kernel
^t8,x8ut,x& of the system. Everything stems from the assumed symmetry group. Neither canonical quantization
nor the path-integral method is used in the present analysis.@S1050-2947~96!04111-X#

PACS number~s!: 03.65.2w, 02.20.2a

I. INTRODUCTION

In this paper quantum mechanics appears as a theory
founded exclusively on the symmetries of a system, and for-
mulated in the mathematical language of Lie groups. Our
main purpose is to show that all one needs to know in order
to produce a satisfactory quantum model~besides some
given empirical parameters! is thecomplete symmetry group
characterizing a system; for then onequantizesthe group
within the regular representation. These two notions, ‘‘com-
pleteness’’ of the given symmetries and ‘‘quantization’’ of
the corresponding group, constitute the main points of our
approach. The concept of the ‘‘complete symmetry group of
a system’’ has been introduced in the literature recently@1#,
and shall be briefly discussed below. On the other hand, by
‘‘quantization of a Lie group’’ we mean that one substitutes
theparametersof the group by a set ofgeneralized position
operatorsof the group manifold@2#. The generators of the
regular representation are, of course, Hermitian operators by
their own right, and may be interpreted asgeneralized mo-
menta. In this manner, generalized position and momentum
operators satisfy well-defined commutation relations@see, for
instance, Eqs.~3.17!, below#. So, if the group is physically
relevant, suchgeneralized Heisenberg commutation rela-
tions may be of potential value for physics, because they
yield new quantum kinematic foundationsof dynamics.
Thus, let us examine quantum mechanics from this particular
standpoint.

Here we illustrate the conceptual framework leading to
such a group-theoretic formulation of quantum mechanics,
by means of a concrete example. Specifically, this paper ad-
dresses thequantum kinematic theoryof the complete sym-
metry groupof a charged particle confined to move in a
plane orthogonal to a constant magnetic field. The standard
theory of our chosen example is well known and has been
discussed for many years. It was first developed by Landau
@3#. Even today, this example is of interest in itself. How-
ever, here we shall concentrate our attention exclusively on
thecomplete Landau group~see below!, in order to obtain a
quantum model of the system.

As will be shown, the quantum kinematic treatment repro-

ducesall the familiar features of the Landau solution. How-
ever, some features of the model do not appear so clearly in
the canonical approach as in quantum kinematics. Indeed, in
the usual treatment, there are some features that must be
introduced ‘‘by hand,’’ since they stem from some intuitive
quantum-mechanical ground and not from the canonical
model itself. In our approach, they arise rather naturally, and
one can interpret them properly. In this sense, the method
leads to an understanding of the quantal structure and dy-
namical behavior of the Landau model. Since our approach
is not known to most physicists, we will explain this particu-
lar example in some detail, so that the reader can gain an
assessment for the possibilities contained in the
‘‘quantization-through-the-symmetry’’ method.

The organization of this paper follows thedeductivepro-
cedure of quantum kinematic theory~as developed in Ref.
@2#!. Unfortunately, detailed examples of quantum kinemat-
ics are rather lengthy. For this reason, in Fig. 1 we provide
the reader with a block diagram of the kinematic quantiza-
tion argument. This leads to a synoptic setting, which can be
contrasted with the three known quantization procedures
used in quantum mechanics~as discussed, for instance, in
@4#!. We hope that for readers acquainted with the power and
elegance of group theory in physics, the ‘‘quantization dia-
gram’’ shown in Fig. 1 will look clear and appealing.

In Sec. II, we identify thecomplete Landau group, and we
obtain the Casimir operator of the extended Lie algebra. In
Sec. III, configuration ray representations are examined, as
well as the generalized momenta of the group, which lead to
the Schrödinger operator in configuration space-time. We
then introducegroup quantizationand obtaingeneralized
Heisenberg commutation relations. Section IV is devoted to
the study of quantum dynamics, within theleft kinematic
formalism of the Landau group.Superselection rulesare in-
troduced,which yield the irreducible configuration ray rep-
resentationscarrying the physical states of the model. We
then diagonalize~simultaneously! the Schro¨dinger and the
angular-momentum operators, obtaining the expecteddegen-
eracyof their common eigenstates. Finally, we calculate the
propagation kernel, in terms of aninvariant integral over the
group manifold. The physical interpretation of the model is
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discussed in Sec. V, once all the pieces of the puzzle have
been assembled. Appendixes A and B contain some basic
group-theoretic tools used in this paper.

II. LANDAU GROUP

A. The complete symmetry group of the equations of motion

Our first task will be to identify thecomplete symmetry
group characterizing the system. For the magnetic field we
setB5Bk̂, whereB is a constant andk̂ is a unit vector in the
direction of thez axis. We ignore the free motion of the
particle along thez axis. Thus, we write the equations of
motion in the (x,y) plane as follows: ẍ5vE•ẋ, wherev is
the cyclotron frequency, the 232 matrix E5@ejk# corre-
sponds to the antisymmetric symbol, andx5(x,y) is a two-

component column vector. Considering an orthogonal matrix
R(vt)PSO~2!, with entries cos(vt) and 6sin(vt), since
Ṙ(vt)5vE•R(vt), one obtains the general solution to these
equations of motion, which reads:x(t)5R(vt)•a1b.
Here, the two-component vectorsa and b denote the con-
stants of integration; their kinematic meaning in the (x,y)
plane is immediate. The system has fourbasicconstants of
motion @5#: a52v21E•RT(vt)•ẋ(t) and b5x(t)
1v21E•ẋ(t). In this way, we settle our starting frame of
work.

In the present case, a simple glance at the equations of
motion yields the following group of point-symmetry trans-
formations:

t→t85t1q0, x→x85R~q5!•x1R~vt !•q~2!1q~1! ,
~2.1!

whereq0, q~1!5(q1,q2), andq~2!5(q3,q4) are Cartesian pa-
rameters of the group manifold, while2p<q5<1p. These
transformations define a realization of a six-dimensional Lie
groupGL , acting freely and transitively inX5$(t,x,y)%. We
call it the Landau group, for brief. The generators of the
infinitesimal transformations read:

Z05] t , Z~1!5“, Z~2!5RT~vt !•“, Z552xT•E•“,
~2.2!

whereZ~1!5(Z1 ,Z2) andZ~2!5(Z3 ,Z4). They satisfy the Lie
algebra ofGL , with the nonvanishing structure constants
f 25
1 5 f 51

2 5 f 45
3 5 f 53

4 51 and f 04
3 5 f 30

4 5v; all other struc-
ture constants vanish. The main properties of the Landau
group are examined in Appendix A.

It can be shown thatGL is indeedcomplete@1#. This
means that Eqs.~2.1! keep invariant the equations of motion
ẍ5v ẏ and ÿ52v ẋ; and, furthermore, these are theonly
second-order ordinary differential equations in the plane that
remain invariant under the point transformations defined in
Eqs.~2.1!. Hence,GL corresponds to the~dynamically com-
plete! special relativity theoryof the Landau system, and of
no othersystem evolving in the same space-time arena; i.e.,
GL is a faithful theoretical representative of the system.

B. Casimir operator of the extended Lie algebra

Unitary ray representations should be used in quantum
theory, in general. Let us here recall that the ‘‘extended Lie
algebra’’ of a Lie group is the algebra obeyed by the genera-
tors of a ray~i.e., projective! representation. We call ‘‘ray
constants’’ the multiples of the identity that figure in the
commutation relations defining the extended Lie algebra.
@See, for instance, Eq.~3.10d! below.# Bargmann empha-
sized the importance of ray constantskab giving rise to an
extended Lie algebra, which have to satisfy the following
constraints: kab1kba50 and f ab

d kdc1 f ca
d kdb1 f bc

d kda50,
as follows from the ray representation property@6#. These
constants are the starting point of two-cocycle calculus@7#.
Note thatgenuineray constants are necessarily of the form
kabÞ f ab

c kc . Only genuine ray constants~if any! can bear
some physical meaning, for they can be changed butnot
eliminatedby a gauge transformation of the ray representa-
tion. Trivial ray constants~i.e., kab5 f ab

c kc , with ka arbi-

FIG. 1. Block diagram of the deductive kinematic-quantization
argument ~exhibiting the derived structures and main concepts,
which play a key role at each step!.
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trary! generate two-cocycles that are justcoboundariesde-
void of any physical meaning.~Cf., reference given in@7#,
for these details.!

In this way, given the structure constants ofGL , it follows
that we can setk155k255k355k455k035k0450, while the
genuine constants are obtained by solving the Bargmann
constraints. This implies thatk12, k05, andk34 are the only
nontrivial Bargmann coefficients that can differ from zero.

With the aim of finding the Casimir operators of the ex-
tended Lie algebra, one uses the operators of theassociate-
adjoint representation@4#; i.e., one defines the following op-
erators D a

(k)(p)5( f ab
c pc1kab)(]/]pb), which act in an

auxiliary space$p%. It can be shown that these opera-
tors satisfy the ~nonextended! Lie algebra
[D a

(k)(p),D b
(k)(p)]5 f ab

c D c
(k)(p), even if kabÓ0. Neverthe-

less, in order to obtain theinvariant operators of the ex-
tended Lie algebraone solves the system of equations
D a

(k)(p)S(p)50. In this fashion, for the Landau group, one
has to solve the following system of coupled differential
equations:

~p1]52k12]1!S~p!50, ~p2]52k12]2!S~p!50,

@p3~v]02]5!1k34]3#S~p!50,

@p4~v]02]5!1k34]4#S~p!50,

@v~p3]42p4]3!1k05]5#S~p!50,

@~p2]12p1]2!1~p4]32p3]4!2k05]0#S~p!50, ~2.3!

where]a5]/]pa ~momentarily!. One notices that ifk05Þ0
there is no solution, besides the trivial one:S5const. Thus,
on physical ground, we setk0550. But then we get onlyone
solution to Eqs.~2.3!, which is given by

S0~p!5p02
v

2k12
~p1

21p2
2!2

v

k34
~p3

21p4
2!2vp5 . ~2.4!

This function yields the Casimir operator of the extended
group, if one substitutes for thep’s the generators of the
diverse ray representations considered in this paper. As we
shall see presently, this function leads to the Schro¨dinger
equation of the system, without recourse to a classical ca-
nonical analog.

III. QUANTUM KINEMATICS

A. Configuration ray representations

The regular representation of a Lie group is the para-
mount structure in our quantization method.~Appendix B
contains a sketchy review of the regular ray representation of
GL .! We now give up the usual quantization procedures@4#,
since here we follow a different path leading to quantum
dynamics~see Fig. 1!.

Once the regular representation has been introduced, the
first task is to obtain aconfiguration modelthat manifests the
complete action ofGL on X. To this end, one poses the
problem of finding ketsut,x,y& in the rigged Hilbert space
H̃(GL) ~cf., Appendix B!, which are in one-to-one corre-
spondence with the events (t,x,y)PX and which under the
action of theleft unitary operators ofGL @as defined in Eq.

~B2!# transform in a covariant manner with respect to Eqs.
~2.1!; that is, one requires

UL
~k!~q!ut,x&5e~ i /\!wk~ t,x;q!ut8,x8&, ~3.1!

where~t,x!→~t8,x8! is given in~2.1!, and where the exponent
wk~t,x;q! is a real-valued phase function. Such vectors carry
a configuration ray representationof the action ofGL onX.
Necessary and sufficient conditions for the existence of such
configuration representations have been discussed in our pre-
vious work~cf., Ref.@2#!. Henceforth, we adopt theleft regu-
lar representationas our exclusive working frame.

We next summarize this procedure. Let us first briefly
examine the phase function. If one defines a set ofphase
generators:

sa
~k!~ t,x!5 lim

q→c
]awk~ t,x;q! ~3.2!

~a50,1, . . . ,5!, whereea is the identity point, one proves
that theynecessarilysatisfy the following inhomogeneous
non-Abelian curl equations:

Zasb
~k!~ t,x!2Zbsa

~k!~ t,x!2 f ab
c sc

~k!~ t,x!52kab , ~3.3!

where theZ’s are given in Eq.~2.2!. One then solves the
following set of differential equations for obtaining the phase
functionwk~t,x;q!:

Xa~q!wk~ t,x;q!5sa
~k!~ t8,x8!2r a

~k!~q! ~3.4!

@whereq generates~t,x!→~t8,x8!#. Here,r a
(k)(q) denotes the

right exponent generatorsintroduced in Eq.~B6!. Using this
method, for the Landau group one finds that Eqs.~3.3! have
no solution, unless one takesk1252k345k; in which case, a
set of phase generators is given by

s~1!
~k!~x!5 1

2kE•x, s~2!
~k!~ t,x!52 1

2kE•RT~vt !•x, ~3.5!

and s 0
(k)5s 5

(k)50. Then, using this result and solving for
Eqs.~3.4! yields

wk~ t,x;q~1! ,q~2! ,q
5!

5 1
2k$q~1!

T
•E•R~vt !•q~2!

1@q~1!
T 2q~2!

T
•RT~vt !#•E•R~q5!•x%. ~3.6!

This phase function is consistent with them gauge @cf.,
~B5!#; i.e., it satisfies

wk~ t,x;q!1wk~ t8,x8;q!5mk~q!50, ~3.7!

where q produces the transformation~t,x!→~t8,x8!, and q
produces the inverse transformation~t8,x8!→~t,x!, according
to Eq. ~2.1!.

Furthermore, oncewk~t,x;q! has been found, one still has
much freedom in settling a configuration ray representation
within H̃(GL). In fact, one may considerany functionc~t,x!
defined inX, provided the vector given by
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ut,x&5m0E d6qc* @ t1q20,R~q25!•x

1R~vt !•q̄~2!1q̄~1!#e
~ i /h!wk~ t,x; q̄ !uq& ~3.8!

belongs to the rigged Hilbert spaceH̃(GL), whereq̄ denotes
the ‘‘inverse’’ parameters defined in Eqs.~A3!, and we as-
sume them gauge~3.7!. In fact, every vectorut,x&, as defined
in Eq. ~3.8!, transforms covariantly according to Eq.~3.1!.
So, in order to obtain dynamically meaningful configuration
ray representations one must choose agenerating wave func-
tion c~t,x! on some physical ground. To this end, we shall
use thesuperselection rulesdictated by the structure ofGL
itself ~cf. Sec. IV B!.

B. Generalized momentum operators
and the extended Lie algebra

We now consider the generatorsL a
(k) asgeneralized mo-

mentum operators. According to Eqs.~A6! and ~B6!, the
infinitesimal transformations corresponding to Eqs.~B2!
yield the following realizations of these operators, in the ‘‘Q
representation’’ of the formalism:

L0
~k!uq&5 i\]0uq&,

L5
~k!uq&52 i\@q~1!

T
•E•­~1!1q~2!

T
•E•­~2!2­5#uq&,

~3.9a!

L ~1!
~k! uq&5@ i\­~1!2

1
2kE•q~1!#uq&,

L ~2!
~k! uq&5RT~vq0!•@ i\­~2!1

1
2kE•q~2!#uq&. ~3.9b!

Thus we get theextended Lie algebraobeyed by the left
momenta; i.e.,

@L0
~k! ,L ~1!

~k! #50, @L ~1!
~k! ,L ~2!

~k! #5O, ~3.10a!

@L0
~k! ,L ~2!

~k! #5 i\vE•L ~2!
~k! , @L ~1!

~k! ,L5
~k!#5 i\E•L ~1!

~k! ,

~3.10b!

@L0
~k! ,L5

~k!#50, @L ~2!
~k! ,L5

~k!#5 i\E•L ~2!
~k! , ~3.10c!

@L1
~k! ,L2

~k!#52 i\k, @L3
~k! ,L4

~k!#5 i\k. ~3.10d!

The commutation relations~3.10d! are noteworthy, for they
contain the onlyphysically meaningfulray constantk of the
system. So, according to Eq.~2.4!, in terms of the general-
ized momenta the Casimir operator reads

S0
~k!5L0

~k!2
v

2k
~L ~1!

~k! !21
v

k
~L ~2!

~k! !22vL5
~k! . ~3.11!

In this way, a straightforward calculation yieldsS0
(k) in the

‘‘Q representation.’’

C. The Schrödinger operator

Following the same approach, let us now consider Eq.
~3.1! in a neighborhood of the identity. A typical group-
theoretic calculation yields the general formula@2#

La
~k!ut,x&5@ i\Za~ t,x!2sa

~k!~ t,x!#ut,x&, ~3.12!

where the phase generatorss a
(k) are given in Eq.~3.5!. Hence

the expressions for the left-momentum operators follow:

L0
~k!ut,x&5 i\] tut,x&, ~3.13a!

L ~1!
~k! ut,x&5S i\“2

k

2
E•xD ut,x&. ~3.13b!

L ~2!
~k! ut,x&5RT~vt ! •S i\“1

k

2
E•xD ut,x&, ~3.13c!

L5
~k!ut,x&52 i\xT•E•“ut,x&. ~3.13d!

These are purelykinematic realizations of the momentum
operators when acting on space-time vectors belonging to
any given configuration ray representation. As we see, in
quantum kinematics the exponent generators appear as
‘‘compensating gauge potentials,’’ although we are not using
a Lagrangian formulation at all.

In this fashion, by means of Eqs.~3.11! and ~3.13!, we
obtain the expression forS0

(k) within anygiven configuration
ray representation ofGL , which takes the particular form

^t,xuS0
~k!uc&5S 2 i\] t2

\2

2m
“

21
i\v

2
xT•E•“

1
mv2

8
x2Dc~ t,x!. ~3.14!

Herec~t,x!5^t,xuc& is any wave function, and we adjust the
ray constant to thephysicalvaluek5mv. This expression is
precisely thetime-dependent Schro¨dinger differential opera-
tor, as introduced in Hamiltonian quantum mechanics. We
shall callS0

(k) theSchrödinger operatorof the Landau prob-
lem.

This result is very reassuring for the present approach to
quantum mechanics. Note that one is able todeducethe cor-
rect form of the Hamiltonian H0

(k), which appears in
S0
(k)5 i\] t1H 0

(k), by means of a group-theoretic analysis of
the complete configuration symmetries of the system, with-
out recourse to theprequantizedcanonical analog. Moreover,
this is not the whole story, because in order to further ana-
lyze the physical contents of Eq.~3.14! ~and end up by solv-
ing it in terms ofa propagation kernel! we need to under-
stand thequantal structureof the symmetry group itself.

D. Group quantization

We now turn to the concept ofgeneralized position op-
eratorsof the group manifold; i.e., we shallquantize GL . Let
us define a set of Hermitian operatorsQa in H̃(GL) by
means of the following spectral integrals:

Qa5m0E d6quq&qa^qu, a50,1, . . . ,5, ~3.15!

which we borrow from standard quantum mechanics. These
operators are such thatQauq&5qauq& and [Qa,Qb]50 hold.
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Furthermore, it can be shown that theQ’s transform accord-
ing to the following covariant law under the group operators
@cf., Eq. ~B2!#:

UL
~k!†~q!QaUL

~k!~q!5ga~q;Q!, ~3.16!

where the operatorsga(q;Q) are defined by means of the
corresponding spectral integrals using Eqs.~A2!.

Therefore, the infinitesimal version of these unitary trans-
formations yieldsgeneralized Heisenberg commutation rela-
tions for the position operators with the non-Abelian mo-
menta of the group@2#. In general, these commutation
relations read: [Qb,L a

(k)]5 i\Ra
b(Q). In this manner, from

Eqs.~A4!, it follows that

@Qb,La
~k!#5 i\F I

0
0
0

0T

I
O

2Q~1!
T
•E

0T

O
RT~vQ0!

2Q~2!
T
•E

0
0
0
I
G , ~3.17!

from where one gets the desired commutator immediately.
~This structure has no classical canonical analog if the group
is non-Abelian.! A great deal of quantum kinematic descrip-
tions stem from this equation.

At this point, one needs to observe that the angleq5 is not
a faithful parameter of SO~2!,GL . Actually, we shall not
use the ‘‘angle-operator’’Q5, because [Q5,L 5

(k)]5 i\ would
follow, which leads to a well-known paradox@8#. Hence,
instead ofQ5 itself, it is better to define the following two
boundedoperators onM (GL): cosQ5 and sinQ5. These
obey the correct Heisenberg commutation relations for
SO~2!; i.e., @cosQ5,L5#52i\ sinQ5, and @sinQ5,L5#
5i\ cosQ5, which are consistent with the periodic eigenvec-
tors of the angular-momentum operatorL5 and satisfy the
constraint cos2Q51sin2Q55I @8#. We assume this scheme in
what follows.

The Heisenberg commutation relations~3.17! do not close
to form a finite algebra. However, one easily obtains a closed
algebra pertaining to the quantized group@9,10#. In fact,
given any regular functionF(q) defined inM (GL), one de-
fines operatorsF(Q), so that one obtains [F(Q),L a

(k)]
5 i\Xa(Q)F(Q), since Xa(q)F(q)5Ra

b(q)F ,b(q). There-
fore, Eq.~A8! immediately yields the followingclosedcom-
mutation relations:

@Ab
c~Q!,La

~k!#5 i\ f ab
d Ad

c~Q!. ~3.18!

Having now alarger closed algebra, we can look fornew
invariant operators, besides the Casimir operatorS0

(k) ~which
is all one gets if one doesnot quantize the group!. Indeed, it
can be shown that the operators given by the general formula
@10#

Ra
~k!~Q,L !5Aa

b~Q!@Lb
~k!1r b

~k!~Q!#2 l a
~k!~Q!2

i

2
\ f ab

b ,

~3.19!

are Hermitian and commute withall the generators of theleft

regular ray representation. Here,Ā a
b(q) is the matrix of the

antiadjoint representation~cf., Appendix A!; r a
(k)(q) and

l a
(k)(q) denote the right and left exponent generators of the
ray representation, respectively~cf., Appendix B!. Hence,

inverting the matrix~A8! of the adjoint representation, we
get the following sixbasic quantum-kinematic invariantsfor
the Landau group:

R0
~k!~Q,L !5L0

~k!2vQ~2!
T
•E•R~vQ0!•L ~2!

~k! ,
~3.20a!

R~1!
~k!~Q,L !5RT~Q5!•@L ~1!

~k!1kE•Q~1!#, ~3.20b!

R~2!
~k!~Q,L !5RT~Q5!•@R~vQ0!•L ~2!

~k!2kE•Q~2!#,
~3.20c!

R5
~k!~Q,L !5Q~1!

T
•E•L ~1!

~k!1Q~2!
T
•E•R~vQ0!•L ~2!

~k!1L5
~k!

2 1
2kQ~1!

T
•Q~1!1

1
2kQ~2!

T
•R~vQ02Q5!•Q~2! .

~3.20d!

These are, in fact, the generators of theright representation,
acting as invariant operators within the left representation
@10#. Hence, they satisfy theright extended Lie algebra,
which is obtained by substitutingL a

(k)→Ra
(k), f bc

a → f cb
a , and

kab→kba , in Eqs.~3.10!. In particular, let us note that

@R1
~k! ,R2

~k!#5 i\k, @R3
~k! ,R4

~k!#52 i\k. ~3.21!

One has alwaysS0
(k)[S0(L

(k))5S0(R
(k)) for a Casimir op-

erator @9#. Therefore, the Schro¨dinger operator can be also
written in terms of the kinematic invariants, as follows:

S0
~k!5R0

~k!2
v

2k
~R~1!

~k! !21
v

k
~R~2!

~k! !22vR5
~k! . ~3.22!

IV. QUANTUM DYNAMICS

A. Invariant ladder operators

Already we have enough information to look at the con-
nection between group theory and quantum mechanics@12#.
Let us derive some consequences of the previous formalism.
First ~and most importantly!, from Eqs.~3.21! one obtains

@ak ,ak
†#5I , @bk ,bk

†#5I , @ak ,bk#50, @ak ,bk
†#50,

~4.1!

where one defines ak5(2\k)21/2(R1
(k)1 iR 2

(k)) and
bk5(2\k)21/2(R3

(k)2 iR 4
(k)), which areinvariant operators

indeed. Thus, we introduce the following Hermitian opera-
tors:

H1
~k!5 1

2\v~akak
†1ak

†ak!, H2
~k!5 1

2\v~bkbk
†1bk

†bk!,
~4.2!

where H 1
(k)5(1/2m)~R (1)

(k)!2 and H 2
(k)5(1/2m)~R (2)

(k)!2.
These operators commute, and have the form of two Hamil-
tonians describinguncoupledharmonic oscillators. Thus, the
Schrödinger operator reads@cf., Eq. ~3.22!#

S0
~k!5R0

~k!2vR5
~k!2H1

~k!12H2
~k! . ~4.3!

Hence, from the extended Lie algebra it follows that the
Schrödinger operatorS0

(k) can be decomposed as a linear
combination of four commuting ‘‘partial Hamiltonians’’:
R0

(k), vR5
(k), H 1

(k), andH 2
(k). ~Indeed, one obtains the re-

quired commutation relations ofR0
(k) andR5

(k) with the an-
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nihilation operatorsak andbk that imply this fact.! We also
observe that the ‘‘partial Hamiltonians’’ of Eq.~4.3! are lin-
early independent. Of course, if one diagonalizes simulta-
neously the commuting ‘‘partial Hamiltonians,’’ one solves
the complete eigenvalue problem ofS0

(k).

B. Superselection rules: Irreducible configuration
ray representations

Henceforth we consider the following set offour linearly
independent operators:

S~k!@GL#5$R0
~k! ,vR5

~k! ,H1
~k! ,H2

~k!%. ~4.4!

It can be proved that this is amaximal setof compatible
invariant operators. We shall use them assuperselection
rules. Now, with the aim of arriving at a reasonable physical
interpretation of the model, let us examine the heuristic pos-
tulate @2#:

The physical pure states of the system correspond to si-
multaneous eigenvectors of the invariant ‘‘partial Hamilto-
nians’’ contained inS(k)[GL].

In this way one solves the superselection rule associated
with the Schro¨dinger operatorS0

(k), which corresponds to the
law of conservation of total energyof an isolated system
consisting of four noninteracting parts, whose physical
meanings remain to be discussed.

Thus one ‘‘diagonalizes’’ the Hilbert space of the regular
representation, intoinvariant subspaces:H(E0 ,n5 ,n1 ,n2)

(GL)
~with n55•••, 21,0,1, . . . , andn1 ,n250,1,2, . . . !, each car-
rying an irreducible ray representationof the group, since
the superselection rules aremaximal. The invariant sub-
spaces are orthogonal and carry the physical states of the
model.

Here we shall attain a quantum-mechanical description of
the system by means of aconfiguration ray representation.
To this end, let us look for wave functionsc~t,x! generating
configuration-state vectorsut,x;c& that satisfy the four super-
selection rules. Namely, we require

R0
~k!ut,x;c&5E0ut,x;c&, R5

~k!ut,x;c&5n5\ut,x;c&,
~4.5a!

H1
~k!ut,x;c&5\v~n11

1
2 !ut,x;c&,

H2
~k!ut,x;c&5\v~n21

1
2 !ut,x;c&. ~4.5b!

Admissiblegenerating wave functionsfor the Landau system
are defined by means of the following limit at the identity
point ePM (GL) ~cf. Ref. @2#!:

cE0 ,n5 ,n1 ,n2
~ t,x!5 lim

q→e
^t,x;cuq&5^t,x;cue&. ~4.6!

For instance, in this manner one obtains

lim
q→e

^t,x;cuR0
~k!uq&52 i\] tc~ t,x!, ~4.7!

as expected. To get the realizations ofak , bk , andR5
(k) in X,

it is convenient to introduce the complex variablez5x1 iy ,
which yields

^t,x;cuakue&52 iA2\

k F S ]

]z* D2
k

4\
zGc~ t,x!, ~4.8a!

^t,x;cuak
†ue&52 iA2\

k F S ]

]zD1
k

4\
z* Gc~ t,x!, ~4.8b!

^t,x;cubkue&52 iA2\

k
e2 ivtF S ]

]zD2
k

4\
z* Gc~ t,x!,

~4.8c!

^t,x;cubk
†ue&52 iA2\

k
eivtF S ]

]z* D1
k

4\
zGc~ t,x!,

~4.8d!

^t,x;cuR5
~k!ue&5\Fz* S ]

]z* D2z~]/]z!Gc~ t,x!. ~4.9!

So we are ready to tackle the problem stated in Eqs.~4.5!.
One first looks for the ground state ofH 1

(k) andH 2
(k). The

generating wave function for this state reads

cE0,01,02
~ t,x!5exp@~ i /\!E0t2~mv/4\!uzu2#

~a normalization constant remains at our disposal!. Then one
sets

ut,x;E0 ,n1 ,n2&5~n1!n2! !
21/2~ak

†!n1~bk
†!n2ut,x;E0,01,02&.

The detailed analysis of this procedure is rather lengthy and
yields the final answer:

cE0 ,n1 ,n2
~ t,x!5^t,x;E0 ,n1 ,n2ue&

5~ iAmv/2\!n11n2An1!n2!

3e~ i /\!~E02n2\v!te2~mv/4\!uzu2zn1z* n2

3F $n1 ,n2%
@2~mv/2\!uzu2#, ~4.10!

where we define the function

F $n1 ,n2%
~x!5(

j50

n, x2 j

~n12 j !! ~n22 j !! j !
, ~4.11!

with n, denoting the smallest number in$n1 ,n2%.
In summary, since [z* (]/]z* )2z(]/]z)] uzu250 and

@z* (]/]z*2z(]/]z)#zn1z* n25(n22n1)z
n1z* n2, one finds

the physically admissiblepure statesof the Landau system,
which satisfy the superselection rules, with the following
proviso:

S0
~k!ut,x;E0 ,n1 ,n2&5@E01\v~n21

1
2 !#ut,x;E0 ,n1 ,n2&,

~4.12!

R5
~k!ut,x;E0 ,n1 ,n2&5~n22n1!\ut,x;E0 ,n1 ,n2&, ~4.13!
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~i.e., n55n22n1!. The degeneracyshown in these eigen-
value equations raises an interesting question~cf., Sec. V!.

So far we have completed the group-theoretic discussion
leading to the structure of pure-state vectors carryingirre-
ducible configuration ray representationsof the model. We
note that the fundamental wave functioncE0,01,02

(t,x) that
generates all these states is the familiar ground-state wave
function of two uncoupled harmonic oscillators, moving in
an ‘‘environment’’ that has basic energyE0.

C. Quantum-kinematic propagation kernel

Finally, let us study the Feynman propagation kernel of
the Landau system from the standpoint of quantum kinemat-
ics. Perhaps, this is the most interesting achievement of the
present group-theoretic formulation of quantum mechanics.

With this aim, let us recall the well-known formula

^c8;n18 ,n28uc;n1 ,n2&5dn
18n1

dn
28n2

^c8;01,02uc;01,02&,
~4.14!

which holds for the ‘‘excited’’ states of two uncoupled har-
monic oscillators. Hence, for our purpose, it is enough to
consider the ground state. To find the ground-state vector
ut,x;E0,01,02&, we shall proceed as follows. One has
U L

(k)(q)ue&5uq& and therefore, using Eq.~3.1!, a straightfor-
ward calculation yields

cE0,01,02
* ~ t,x!5e2~ i /\!E0te2~mv/4\!uzu2

5^qutq8 ,xq8 ;E0,01,02&e
~ i /\!wk~ t,x;q!, ~4.15!

where q produces the change of variables (t,x)→(t8,x8)

5(tq8 ,xq8). Since q̄ produces the inverse transformation
(tq8 ,xq8)→(t,x)5(t q̄8 ,xq̄8 ), we obtain the following expres-
sion for the ground-state vector:

ut,x;E0,01,02&5m0E d6q expF2
i

\
E0~ t1q̄0!

2
mv

4\
uzq̄u2Ge~ i /\!wk~ t,x; q̄ !uq&,

~4.16!

where

uzq̄u25x21q~1!
2 1q~2!

2 22xT•q~1!

22~x2q~1!!
T
•R@v~ t2q0!#•q~2! ,

as well as

wk~ t,x;q̄!5~mv/2!$xT•E•q~1!

2~x2q~1!!
T
•E•R@v~ t2q0!#•q~2!%

can be calculated easily. Of course, applying the creation
operators ak

† and bk
† yields the desired general states

ut,x;E0 ,n1 ,n2&. We thennormalizethe ground state. To this
end, one considers transition amplitudes witht85t. Thus,
one gets

^t,x8;E08,01,02ut,x;E0,01,02&

5m0e
~ i /\!~E082E0!te2~mv/4\!~x821x2!E d6q e2~ i /\!~E082E0!q0 expS 2

mv

2\
$q~1!

2 1q~2!
2 2~x81x!T•q~1!

1@2q~1!2~x81x!#T•R@v~ t2q0!#•q~2!% DexpH 2
imv

2\
$~x81x!T•E•q~1!2~x82x!T•E•R@v~ t2q0!#•q~2!%J

5d~E082E0!d
~2!~x82x!, ~4.17!

where one defines the appropriate normalizing constant:m05(mv)3[2p(2p\)]24. This result assures one that, in general,
one has

^t,x8;E08 ,n18 ,n28ut,x;E0 ,n1 ,n2&5dn
18n1

dn
28n2

d~E082E0!d
~2!~x82x!. ~4.18!

Let us now calculate thetransition amplitudebetween two normalized irreducible configuration ground states, defined at the
events~t,x! and ~t8,x8!. According to Eq.~4.16!, after some substitutions, one obtains the following integral:
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^t8,x8;E08,01,02ut,x;E0,01,02&5m02p~2p\!d~E082E0!e
2~ i /\!E0~ t82t !e2~mv/4\!~x821x2!E E d2q~1!

3expH 2
mv

2\
@q~1!

22~x81x!T•q~1!2 i ~x82x!T•E•q~1!#J E E d2q~2!

3expS 2
mv

2\
$q~2!

21@~q~1!2x8!T•R~vt8!1~q~1!2x!T•R~vt !#•q~2!% D
3expH 2

imv

2\
@~q~1!2x8!T•R~vt8!2~q~1!2x!T•R~vt !#•E•q~2!J . ~4.19!

In this way, one arrives at the desiredpropagation kernel,
which can be finally written in the closed form

^t8,x8;E08 ,n18 ,n28ut,x;E0 ,n1 ,n2&

5d~E082E0!dn
18n1

dn
28n2
e2~ i /\!E0DtS m

2p i\ D
3S vDt/2

sin vDt/2DeivDt/2expH imv

4\
@cot~vDt/2!~x82x!2

22ix8T•E•x#J , ~4.20!

whereDt5t82t. This result corresponds exactly with the
propagation kernel of the two-dimensional Landau system
@in the (x,y) plane#, as obtained in thepath integral ap-
proach@11#. However, we emphasize the fact that the inte-
gral one evaluates in Eq.~4.19! is aHurwitz invariant inte-
gral, defined over the Landau group manifold@2#.

V. CONCLUDING REMARKS:
PHYSICAL INTERPRETATION

In conclusion, we briefly turn our attention to the physical
interpretation of the attained model. Notwithstanding the
heuristic character of all interpretations, this task is unavoid-
able in theoretical physics, even when, as in the present case,
one faces the assessment of a reformulation of an old, well
established, theory.~Another important subject would be to
use themodelwith the aim of making somephysical predic-
tions. Lack of space prevents us to dwell on this issue now.!

Many variables~i.e.,q numbers! appear in quantum kine-
matics, which play no role in the canonical approach to
quantum mechanics. TheQ’s are thequantized parameters
of that very special group, whose action on the configura-
tions of the system is indeedcomplete. As c numbers, the
parameters of the group command the specific symmetry
transformations of the allowed world lines, and ofno other
class of motions evolving in the same configuration space-
time. They must bequantized, for they play an essential
mechanical role and are endowed with a clear physical
meaning.

For instance,q0 corresponds to the fact that for both~clas-
sical and quantal! descriptions of the system it does not mat-
ter when we fix the initial state. Therefore, one introduces an
initial time operatorQ0 related to this physical degree of

freedom. The conjugate operators are the corresponding gen-
erators of GL , either L 0

(k) or R0
(k). The spectrum is

2`,E0,1`, which is just an arbitrary constant. We inter-
pret these generators as purelykinematic‘‘partial Hamilto-
nians’’ devoid of any dynamical meaning. The whole dy-
namic of the system is contained inS0

(k). Indeed, thetotal
energy of the systemis given by the spectrum of the Schro¨-
dinger operator, which is physically defined only up to an
arbitrary additive constant. So, in quantum kinematics, one
solves the vexed problem of a ‘‘time operator’’ in a very
peculiar~albeit natural! way. It must be emphasized that, in
the present theory, thetotal energy operator S0

(k) appears as
the dynamicalconjugate momentum of the initial time op-
eratorQ0, in a ‘‘canonical’’ sense. In fact, one has

@Q0,S0
~k!#5 i\I , ~5.1!

ascan be provedrather easily.
One quantizes the other parameters of the group in the

same manner, and for the same reasons. These parameters
are related with mechanical symmetry operations that can be
performed on the system. If we look back at Eq.~2.1! we see
that the complete symmetry transformationx→x8 consists in
a rotation of the system with respect to the Cartesian axes,
through an angleq5 about the originO, plus the addition of
ageneral motionof the system, parametrized byq~1! andq~2!.

Let us first considerQ~1!. Classically, the effect of the
constant magnetic field on the moving point charge is to pull
it towards a~fixed! guiding centerb, with a constant centri-
petal force. On an intuitive ground, one sees that one has to
quantize the fixed center of motionb somehow, since this
degree of freedom suffers a kind ofzitterbewegung, due to
the quantum fluctuations of the particle, which ‘‘jumps’’
from one world line to another in a permanent and random
fashion. Hence, the quantization ruleb[q~1!→Q~1! seems to
be in order. In this manner, one interprets the corresponding
partial Hamiltonian H1

(k)5(1/2m)~R (1)
(k)!2 as a dynamical ob-

servable, which describes quantal harmonic oscillations~i.e.,
zitterbewegung! of frequencyv, suffered by the mechanical
variableb. No wonder,n1 makes no contribution to thetotal
energy of the particle, since this quantity is independent of
the position of the fixed orbit center in the (x,y) plane.
Therefore the degeneracy exhibited in Eq.~4.12! follows. Let
us also remark that in the current approach to this problem
one quantizes the orbit center in a rather bizarread hocman-
ner, sinceb is not a canonical variable.
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Similar considerations apply toQ~2!. Within the classical
theory, initially one hasx~0!5a1b and ẋ~0!T•a50; there-
fore, one expects the quantization rulea[q~2!→Q~2!. Indeed,
it would be contrary to the concepts of quantum mechanics
to think of a as a static vector connecting two randomly
fluctuating points. In this way, one interprets the associated
partial Hamiltonian H2

(k)5(1/2m)~R (2)
(k)!2 dynamically, as

describing the simple harmonic oscillations, of frequencyv,
due to thezitterbewegungof a’s degrees of freedom. From
what we know about the classical analog of the system, the
total energyof the particle in the field must be given by
\v~n211/2!, within an arbitrary additive constantE0; i.e.,
Eq. ~4.12! appears, as expected.

In the same spirit, let us comment on the rotational sym-
metry of the systemabout the origin O. The classical
angular momentum JO of the particle about O is
given by JO5mx(t)T•E•x(t), which yields JO5JB
2mvaT•RT(vt)•b, whereJB denotes the angular momen-
tum about the orbit center. According to this elementary rule,
the kinematic projectionaT•RT(vt)•b describes the simple
harmonic oscillator~of frequencyv! corresponding to the
uniform circular motionRT(vt)•b relative to a. From this
intuitive picture, we understand immediately the meaning of
the degeneracyn55n22n1 found in Eq. ~4.13! ~i.e.,
JO5JB2JA!, as an unavoidable feature of the model, since
R5

(k) is an angular-momentum operatorabout the origin.
The fact thatR0

(k), R5
(k), H 1

(k), andH 2
(k) are all invariant

observablesof the system is also worth noting. This means
that pure statesare indeedobjective. Although these states
describe onlypotentialitiesof the system~Heisenberg!, they
are always the same for the wholeclass of equivalent pre-
ferred observers. Otherwise, it would be absurd to think that
the same, equally prepared, system~even in an ensemble!
could be found in theground stateby one observer and in an
excited stateby another, if both observers are physically
equivalent.

The last point we would like to make is that by a system-
atic application of general quantum-kinematic tools we have
beenable to deducethe Schro¨dinger equation, as well as to
calculate the corresponding propagation kernel of the sys-
tem, without recourse to the traditional approaches to quan-
tum mechanics.Group-quantizationanalysis of the corre-
sponding complete symmetry group has been enough to this
end.

This paper presents but just another successful application
of a group-theoretic formalism of quantum mechanics@12#.
In light of these results, one cannot avoid wondering whether
a sounder formulation of quantum mechanics is possible,
stemmingdirectly from the symmetries of a system. If this is
really so, it should be uncovered as completely as possible.
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APPENDIX A: STRUCTURE OF THE LANDAU GROUP

It is our purpose here to provide a brief survey of the main
properties of the Landau group. First, let us note thatGL is
isomorphic to the following group structure:

GL;@T ~1!~2!+SO~5!~2!# ^ $R1
~0!+@T ~2!~2!+SO~5!~2!#%,

~A1!

where each factorT~2!+SO~2! denotes the Euclidean group
E~2! in the plane, eachT~2! is the group of rigid translations
in two dimensions,R1 is the additive group of real numbers,
and we write+ for the semidirect product. Hence, the group
spaceM (GL) is a noncompact connected manifold, which is
not simply connected. Thegroup-multiplication law
q9a5ga(q8;q) is given by the following combinations of the
parameters:

qn05g0~q8:q!5q801q0, ~A2.1!

q~1!9 5g~1!~q8;q!5q~1!8 1R~q85!•q~1! , ~A2.2!

q~2!9 5g~2!~q8;q!5R~vq0!•q~2!8 1R~q85!•q~2! , ~A2.3!

q955g5~q8;q!5~q851q5!2p , ~A2.4!

with q~1!5(q1,q2) andq~2!5(q3,q4). Since the identity point
ePM (GL) is at the origin, theinversion lawfor the param-
eters follows:

q̄052q0, q̄~1!52RT~q5!•q~1! ,

q̄~2!52RT~q51vq0!•q~2! , q̄ 552q5; ~A3!

i.e., one hasga(q;q̄)5ga(q̄;q)50, fora50,1, . . . ,5, and for
all qPM (GL).

We next consider theright transport matrix for contra-
variant vectors in the group manifold. This matrix is defined
asRa

b(q)5 limq8→e]a8g
b(q8;q). Therefore, from Eqs.~A2!,

one obtains

Ra
b~q!5F 100

0

0T

I
O

2q~1!
T
•E

0T

O
RT~vq0!
2q~2!

T
•E

0
0
0
1
G , ~A4!

wherea labels the rows andb labels the columns. This ma-
trix yields the left Lie vector fields acting inM (GL); i.e.,
Xa(q)5Ra

b(q)]b . Thus one has the operators

X05]0 , X~1!5]~1! , X~2!5RT~vq0!•]~2! ,

X552q~1!
T
•E•]~1!2q~2!

T
•E•]~2!1]5 . ~A5!

Another useful feature concerns theadjoint representa-
tion of the group. ForGL , the matrix of the adjoint repre-
sentation reads

Aa
b~q!5F 100

0

0T

R~q5!
O

2q~1!
T
•E•R~q5!

vq~2!
T
•E•R~q5!
O

R~q52vq0!
2q~2!

T
•E•R~q5!

0
0
0
1
G ,
~A6!

wherefrom the inverse matrixĀ a
b(q) of the antiadjoint rep-

resentation follows. The usual defining property of this rep-
resentation @that is, Aa

b(e1dq)5d a
b1dqcf ca

b # can be
checked directly from the following basic formula:
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Xa~q!Ab
c~q!5 f ab

d Ad
c~q!. ~A7!

The Landau group is unimodular; i.e., A(q)
5det[Aa

b(q)]51. The features summarized in this appendix
are not just minutiae, since they are fundamental tools in
quantum kinematics.~For details, see@10#.!

APPENDIX B: REGULAR RAY REPRESENTATION
OF THE LANDAU GROUP

As we have seen in Sec. II B, the Landau group admits
only two physically meaningful ray extensions, generated by
the ray constantsk12 and k34. In this appendix we briefly
consider theregular ray representationof GL associated
with these constants.

SinceGL is unimodular, the Hurwitz invariant measure is
given simply bydm(q)5m0d

6q5m0dq
0dq1 . . .dq5, where

m0 is an arbitrary normalization constant. In consequence,
the Hilbert spaceH(GL) that carries theregular representa-
tion @13# is defined as the setL2(GL) of square-integrable
wave functionsc(q)5c~q0,q~1!,q~2!,q

5! on M (GL), which
areperiodic on the unit circleS1,M (GL); i.e., one defines
^cuc&5m0*d

6quc(q)u2,` if, and only if, uc&PH(GL). In
quantum kinematics, one also needs to consider therigged
Hilbert spaceH̃(GL), attached withH(GL), for this permits
the definition of wave functionsc(q) onM (GL) in the usual
manner: c(q)5^quc&, for all uc&PH(GL) and all
qPM (GL) @14#. So we introduce a complete continuous or-
thogonal basis$uq&5uq0, q~1!, q~2!, q

5&% on the rigged Hilbert
spaceH̃:

^quq8&5m0
21d~6!~q2q8!, m0E d6quq&^qu5I , ~B1!

whereI denotes the identity operator, anduq& is periodic in
q5.

Thus we consider theunitary operatorsthat carry the
regularray representations ofGL within H̃. Since theuq&’s
form a complete basis, the group ray operators may be de-
fined as follows:

UL
~k!~q!uq8&5e2~ i /\!qaLa

~k!
uq8&5e~ i /\!fk~q;q8!ug~q;q8!&.

~B2!

for the left regular ray representation, with generatorsL a
(k),

and where the exponent functionfk(q;q8) is a two-cocycle
obtained from the set of genuine ray constantsk5$k12,k34%.
In fact, these operators are unitary and satisfy the ray repre-
sentation property

UL
~k!~q8!UL

~k!~q!5e~ i /\!fk~q8;q!UL
~k!@g~q8;q!#. ~B3!

In this paper we use the following two-cocycle of the
Landau group:

fk~q8;q!5 1
2k12q~1!8T •E•R~q85!•q~1!

1 1
2k34q~2!8T •E•R~q85!•RT~vq0!•q~2! .

~B4!

This exponent has been calculated by means of non-Abelian
analytic techniques~as developed by Krause@7#!. This is a
completely gauge reduced two-cocycleand belongs to them
gauge@7#; that is, one has

mk~q!5fk~ q̄;q!5fk~q;q̄!50, ~B5!

which yields UL
(k)†(q)5UL

(k)(q̄). Next, we need to recall
that the right exponent generatorsare defined as follows:
r a
(k)(q)5 limq8→e ]a8fk(q8;q). Therefore, the corresponding
exponent generators of the Landau group are given by

r ~1!
~k!~q!5 1

2k12E•q~1! , r ~2!
~k!~q!5 1

2k34E•RT~vq0!•q~2! ,
~B6!

while r 0
(k)(q)5r 5

(k)(q)50. Finally, we need to recall also
that in them gauge theleft exponent generatorsl a

(k)(q) are
given by l a

(k)(q)5r a
(k)(q̄). We have omitted the lengthy cal-

culations leading to these results@7#.
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