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Quantum kinematic theory of a point charge in a constant magnetic field
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A group-theoretic quantization method is applied to the “complete symmetry group” describing the motion
of a point charge in a constant magnetic field. Within the regular ray representation, theiSgermperator
is obtained as the Casimir operator of the extended Lie algebra. Configuration ray representations of the
complete group cast the Schiinger operator into the familiar space-time differential operator. Next, “group
guantization” yields the superselection rules, which produce irreducible configuration ray representations. In
this way, the Schidinger operator becomes diagonalized, together with the angular momentum. Finally, the
evaluation of an invariant integral, over the group manifold, gives rise to the Feynman propagation kernel
(t' X'|t,x) of the system. Everything stems from the assumed symmetry group. Neither canonical quantization
nor the path-integral method is used in the present ana\&1950-2947®6)04111-X

PACS numbds): 03.65—w, 02.20—-a

[. INTRODUCTION ducesall the familiar features of the Landau solution. How-
ever, some features of the model do not appear so clearly in
In this paper quantum mechanics appears as a theoihe canonical approach as in quantum kinematics. Indeed, in
founded exclusively on the symmetries of a system, and forthe usual treatment, there are some features that must be
mulated in the mathematical language of Lie groups. Ouintroduced “by hand,” since they stem from some intuitive
main purpose is to show that all one needs to know in ordequantum-mechanical ground and not from the canonical
to produce a satisfactory quantum modékesides some model itself. In our approach, they arise rather naturally, and
given empirical parameterss thecomplete symmetry group one can interpret them properly. In this sense, the method
characterizing a system; for then ogeantizesthe group leads to an understanding of the quantal structure and dy-
within the regular representation. These two notions, “com-namical behavior of the Landau model. Since our approach
pleteness” of the given symmetries and “quantization” of is not known to most physicists, we will explain this particu-
the corresponding group, constitute the main points of oufar example in some detail, so that the reader can gain an
approach. The concept of the “complete symmetry group ofhissessment for the possibilities contained in the
a system” has been introduced in the literature receifly  “quantization-through-the-symmetry” method.
and shall be briefly discussed below. On the other hand, by The organization of this paper follows tlieductivepro-
“quantization of a Lie group” we mean that one substitutescedure of quantum kinematic theofsis developed in Ref.
the parametersof the group by a set ajeneralized position [2]). Unfortunately, detailed examples of quantum kinemat-
operatorsof the group manifold2]. The generators of the ics are rather lengthy. For this reason, in Fig. 1 we provide
regular representation are, of course, Hermitian operators hiyne reader with a block diagram of the kinematic quantiza-
their own right, and may be interpreted gsneralized mo- tion argument. This leads to a synoptic setting, which can be
menta In this manner, generalized position and momentuncontrasted with the three known quantization procedures
operators satisfy well-defined commutation relatifsee, for  used in quantum mechani¢as discussed, for instance, in
instance, Egs(3.17), below]. So, if the group is physically [4]). We hope that for readers acquainted with the power and
relevant, suchgeneralized Heisenberg commutation rela- elegance of group theory in physics, the “quantization dia-
tions may be of potential value for physics, because theygram” shown in Fig. 1 will look clear and appealing.

yield new quantum kinematic foundatiorsf dynamics. In Sec. I, we identify theomplete Landau groy@and we
Thus, let us examine quantum mechanics from this particulaobtain the Casimir operator of the extended Lie algebra. In
standpoint. Sec. lll, configuration ray representations are examined, as

Here we illustrate the conceptual framework leading towell as the generalized momenta of the group, which lead to
such a group-theoretic formulation of quantum mechanicsthe Schralinger operatorin configuration space-time. We
by means of a concrete example. Specifically, this paper adhen introducegroup quantizationand obtaingeneralized
dresses thguantum kinematic theorgf the complete sym- Heisenberg commutation relations. Section IV is devoted to
metry groupof a charged particle confined to move in athe study of quantum dynamics, within theft kinematic
plane orthogonal to a constant magnetic field. The standarbrmalism of the Landau groujsuperselection ruleare in-
theory of our chosen example is well known and has beetroduced,which yield the irreducible configuration ray rep-
discussed for many years. It was first developed by Landatesentationscarrying the physical states of the model. We
[3]. Even today, this example is of interest in itself. How- then diagonalizgsimultaneously the Schrdinger and the
ever, here we shall concentrate our attention exclusively oangular-momentum operators, obtaining the expedegkn-
the complete Landau groufsee below, in order to obtain a eracyof their common eigenstates. Finally, we calculate the
guantum model of the system. propagation kerneglin terms of arinvariantintegral over the

As will be shown, the quantum kinematic treatment repro-group manifold. The physical interpretation of the model is
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FIG. 1. Block diagram of the deductive kinematic-quantization
argument (exhibiting the derived structures and main concepts,

which play a key role at each step
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component column vector. Considering an orthogonal matrix
R(wt) eSO2), with entries cospt) and *sin(wt), since
R(wt) =w&-R(wt), one obtains the general solution to these
equations of motion, which readsx(t)=R(wt)-a+b.
Here, the two-component vectoessand b denote the con-
stants of integration; their kinematic meaning in they(
plane is immediate. The system has fduasic constants of
motion [5]: a=-o &-RM(wt)-x(t) and b=x(t)
+w 1€-x(t). In this way, we settle our starting frame of
work.

In the present case, a simple glance at the equations of
motion yields the following group of point-symmetry trans-
formations:

t—)tI:t+qo, X—)X,:R(qS)X"‘R((Dt)q(z)“l‘q(l),
(2.9

whereq?, qu,=(9",9%), andg=(q°,q*) are Cartesian pa-
rameters of the group manifold, whiler<qg°<-+. These
transformations define a realization of a six-dimensional Lie
groupG, , acting freely and transitively iX={(t,x,y)}. We

call it the Landau group for brief. The generators of the
infinitesimal transformations read:

Zo=0d, Z1=V, Z;p=R(wt)-V, Zs=-x-E-V,
2.2

whereZ,,=(Z,,Z,) andZ,=(Z3,Z,). They satisfy the Lie
algebra ofG, , with the nonvanishing structure constants
fle=f2 =f3=fe;=1 andf3,=f3,=w; all other struc-
ture constants vanish. The main properties of the Landau
group are examined in Appendix A.

It can be shown thaG, is indeedcomplete[1]. This
means that Eq42.1) keep invariant the equations of motion
Xx=wy and y=—wX; and, furthermore, these are toaly
second-order ordinary differential equations in the plane that
remain invariant under the point transformations defined in
Egs.(2.1). Hence,G, corresponds to thedynamically com-
plete special relativity theoryof the Landau system, and of
no othersystem evolving in the same space-time arena; i.e.,
G, is a faithful theoretical representative of the system.

B. Casimir operator of the extended Lie algebra

Unitary ray representations should be used in quantum
theory, in general. Let us here recall that the “extended Lie

discussed in Sec. V, once all the pieces of thg puzzle haV&Igebra” of a Lie group is the algebra obeyed by the genera-
been assembled. Appendixes A and B contain some basif s of 4 ray(i.e., projective representation. We call “ray

group-theoretic tools used in this paper.

1. LANDAU GROUP

A. The complete symmetry group of the equations of motion

constants” the multiples of the identity that figure in the
commutation relations defining the extended Lie algebra.
[See, for instance, Eq3.109 below] Bargmann empha-
sized the importance of ray constaikig, giving rise to an
extended Lie algebra, which have to satisfy the following

Our first task will be to identify theeomplete symmetry constraints: kyp+ky,=0 and f 3 kq.+ f S kgp+ f 8kga=0,
group characterizing the system. For the magnetic field weas follows from the ray representation prope§). These

setB=Bk, whereB is a constant anH is a unit vector in the

constants are the starting point of two-cocycle calclilis

direction of thez axis. We ignore the free motion of the Note thatgenuineray constants are necessarily of the form
particle along thez axis. Thus, we write the equations of k,,#fSk.. Only genuine ray constan{® any) can bear

motion in the &,y) plane as follows: X=w& X, wherew is
the cyclotron frequency, the>2 matrix £=[¢] corre-
sponds to the antisymmetric symbol, axd(x,y) is a two-

some physical meaning, for they can be changed rmit
eliminatedby a gauge transformation of the ray representa-
tion. Trivial ray constantdi.e., ky,=f Sk., with k, arbi-
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trary) generate two-cocycles that are justboundariesde-  (B2)] transform in a covariant manner with respect to Egs.
void of any physical meaningCf., reference given ii7],  (2.1); that is, one requires
for these detailg. 0 " ,

In this way, given the structure constants@f, it follows U (a)t,x)=el/Metxa]tr x'), 3.1
that we can sek;s=Kk,5=kzs=Ks5=Kp3=ko,=0, while the
genuine constants are obtained by solving the Bargmanwhere(t,x)—(t’,x) is given in(2.1), and where the exponent
constraints. This implies that;,, kos, andks, are the only  ¢(t,x;q) is a real-valued phase function. Such vectors carry
nontrivial Bargmann coefficients that can differ from zero. aconfiguration ray representatioof the action ofG, on X.

With the aim of finding the Casimir operators of the ex- Necessary and sufficient conditions for the existence of such
tended Lie algebra, one uses the operators ofaismciate- configuration representations have been discussed in our pre-
adjoint representatiof4]; i.e., one defines the following op- Vvious work(cf., Ref.[2]). Henceforth, we adopt tHeft regu-
erators D {9(p) = (f $ppe+ Kap) (9/pp), which act in an lar representationas our exclusive working frame.
auxiliary space{p}. It can be shown that these opera- We next summarize this procedure. Let us first briefly
tors satisfy the (nonextended Lie algebra examine the phase function. If one defines a sepludse
[DX(p), DX (P)=fS,DM(p), even ifk,,#0. Neverthe- generators
less, in order to obtain thenvariant operators of the ex-
tended Lie algebraone solves the system of equations agk)(t,x)=lim dao(1,X;9) (3.2
D {9(p)S(p)=0. In this fashion, for the Landau group, one g—c
has to solve the following system of coupled differential
equations: (a=0,1,....5, wheree? is the identity point, one proves

that they necessarilysatisfy the followinginhomogeneous
(P1d5—K1201)S(P) =0,  (P2d5—K1292)S(p) =0, non-Abelian curl equations:

[P3(wdo—ds) +kzad3]S(p) =0, Zao P (1,%) — Zoa M (t,x) — 15,00 (1,%) = — Kap, (3.3

[Pa(@do=d5) +ksada]S(P) =0, where theZ'’s are given in Eq.(2.2. One then solves the
_ _ following set of differential equations for obtaining the phase
[w(P3da—P4ds) +Kosds]S(P) =0, function ¢, (t,x;q):

[(P201—P1d2) +(Pad3— P3da) —Kosdo]S(Pp) =0, (2.3

where d,= d/ dp, (momentarily. One notices that ikys#0

there is no solution, besides the trivial one8=const. Thus, [whereq generatest,x)—(t’ x")]. Here,r ¥(q) denotes the
on physical ground, we sé&ps=0. But then we get onlpne  right exponent generatoiistroduced in Eq(B6). Using this
solution to Egs(2.3), which is given by method, for the Landau group one finds that E§s3) have
no solution, unless one takés,= —k;,=k; in which case, a
set of phase generators is given by

Xa(@) @i(t,xq) =03 (t",x") = r{%(q) (3.4

w 2, .2 w2, 2
So(P)=Po— 57— (P1+P2) — 7— (P3+P3) — wPs. (2.9
2k12 I(34

(k) _1 (k) _ 1 T
o (X)=3KE-X, o051, x)=—3KE R (wt)-X, 3.
This function yields the Casimir operator of the extended (=2 @)(tX) : () 39

group, if one substitutes for thp's the generators of the _ 4 (o_ (0_0 Then using this result and solving for
diverse ray representations considered in this paper. As W@qs (3? 4 yieslds '
shall see presently, this function leads to the Sdimger o

equation of the system, without recourse to a classical ca- t x: 5)
nonical analog. eK(t.x0) . d2).d

= %k{q(Tl)'g' R(wt) 2
11l. QUANTUM KINEMATICS

A. Configuration ray representations +[q(Tl)—q(Tz)- RT(wt)]-&E-R(g%)-x}. (3.6

The regular representation of a Lie group is the para- o . .
mount structure in our quantization metha@ppendix B This phase function is consistent with the gauge|[cf.,
contains a sketchy review of the regular ray representation dBo)]; i.e., it satisfies
G, .) We now give up the usual quantization procedyrds
since here we follow a different path leading to quantum er(t,X9) + @i (t',x";0) = u(q) =0, 3.7
dynamics(see Fig. L

Once the regular representation has been introduced, tivehere q produces the transformatioft,x)—(t’x’), and g
first task is to obtain aonfiguration modethat manifests the produces the inverse transformati@nx’)—(t,x), according
complete action ofG, on X. To this end, one poses the to Eq.(2.1).
problem of finding ketdt,x,y) in the rigged Hilbert space Furthermore, once(t,x;q) has been found, one still has
H(G,) (cf., Appendix B, which are in one-to-one corre- much freedom in settling a configuration ray representation
spondence with the events,X,y) e X and which under the within H(G,). In fact, one may considemy function ¢(t,x)
action of theleft unitary operators of5, [as defined in Eq. defined inX, provided the vector given by
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It,x>=qu d®qy*[t+q °R(q™°) X

+R(wt) Qg+ qp)Je/Metxdq)y (3.9
belongs to the rigged Hilbert spa@é(GL), whereq denotes
the “inverse” parameters defined in EG#3), and we as-
sume theu gauge(3.7). In fact, every vectolt,x), as defined

in Eq. (3.8), transforms covariantly according to E.1).
So, in order to obtain dynamically meaningful configuration
ray representations one must chooggeaerating wave func-
tion ¢(t,x) on some physical ground. To this end, we shall
use thesuperselection ruledictated by the structure db,

itself (cf. Sec. IV B.

B. Generalized momentum operators
and the extended Lie algebra

We now consider the generatdr$® asgeneralized mo-
mentum operatorsAccording to Egs.(A6) and (B6), the
infinitesimal transformations corresponding to EdB2)
yield the following realizations of these operators, in th@ *
representation” of the formalism:

LSlay=i%dola),

L¥lay=—ihlaly, & )+ E Iz~ ds1la),
(3.99

LEE))|Q>:[M3(1)_ FKE- dlla),

LEIay=RT(w0q®)-[ih d o)+ tkE gz ]la). (3.9

Thus we get theextended Lie algebrabeyed by the left
momenta,; i.e.,

[Le” LE1=0, [LE)LEI=0, (3108

(L L I=ihoe L, [LE LE=ihe-LY),
(3.10H
[Lg.L&1=0, [L{5.LPI=irE L), (31200
(L0 LMY= —ik, [LY LP1=ikk. (3.100

The commutation relation&3.109 are noteworthy, for they
contain the onlyphysically meaningfutay constank of the
system. So, according to E(R.4), in terms of the general-
ized momenta the Casimir operator reads

(k)
(1)

w
SgL:LgL_EE(L )2+ (LQQZ L. (3.1

In this way, a straightforward calculation yiel@& in the
* Q representation.”

C. The Schradinger operator

J. KRAUSE
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LMt x)=[12Z4(t,x)— e®(t,0)]|t,x),  (3.12

where the phase generator) are given in Eq(3.5). Hence
the expressions for the left-momentum operators follow:

L3Ot X)=i%ayt,x), (3.133
L0 K
Lipltx)y= |ﬁV—§8~x |t,X). (3.13h
) k
(2)|t x)=RT(wt) -(|hV+§8-x [t,x), (3.130
Lt x)=—ifx"- E-V|t,x). (3.130

These are purelkinematicrealizations of the momentum
operators when acting on space-time vectors belonging to
any given configuration ray representation. As we see, in
quantum kinematics the exponent generators appear as
“compensating gauge potentials,” although we are not using
a Lagrangian formulation at all.

In this fashion, by means of Eg§3.11) and (3.13), we
obtain the expression f@$" within any given configuration
ray representation db, , which takes the particular form

K ) 2 FX0)
(tX|SP| )=\ —ihd— V2+Tx E-V
Mw? 2
+TX P(t,x). (3.149

is any wave function, and we adjust the
ray constant to thehysicalvaluek=mw. This expression is
precisely theime-dependent Schadinger differential opera-
tor, as introduced in Hamiltonian quantum mechanics. We
shall callS{¥ the Schralinger operatorof the Landau prob-
lem.

This result is very reassuring for the present approach to
quantum mechanics. Note that one is abléeducethe cor-
rect form of the Hamiltonian H{’, which appears in
S{P=inag,+H, by means of a group-theoretic analysis of
the complete configuration symmetries of the system, with-
out recourse to thprequantizedtanonical analog. Moreover,
this is not the whole story, because in order to further ana-
lyze the physical contents of E(B.14) (and end up by solv-
ing it in terms ofa propagation kernglwe need to under-
stand thequantal structureof the symmetry group itself.

D. Group quantization

We now turn to the concept afeneralized position op-
eratorsof the group manifold; i.e., we shajuantize G . Let
us define a set of Hermitian operato@ in H(G,) by
means of the following spectral integrals:

Qa=qud6q|q>q""<q|, a=01,...,5, (315

Following the same approach, let us now consider Eq.

(3.1) in a neighborhood of the identity. A typical group-
theoretic calculation yields the general formiigd

which we borrow from standard quantum mechanics. These
operators are such th@?q)=g?q) and [Q% Q"] =0 hold.
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Furthermore, it can be shown that tQeés transform accord- inverting the matrix(A8) of the adjoint representation, we
ing to the following covariant law under the group operatorsget the following sixbasic quantum-kinematic invariantsr

[cf., Eq.(B2)]: the Landau group:

U (@) QU (@) =g%(a;Q), (3.16 RE(Q,L) =L~ wQf- £ R(0Q°)-L{5), 2208

3.20
where the operatorg?(g;Q) are defined by means of the
corresponding spectral integrals using E@s2). RE%(Q:L):RT(QS)'[L%‘L k€ Qul, (3.20n
Therefore, the infinitesimal version of these unitary trans-

fprmauons yleldsggneral|zed Helse_nberg commutation rela- RE';;(Q,L):RT(QS).[R(Q,QO) ) Lf‘g))—kEQ(z)],
tions for the position operators with the non-Abelian mo- (3.200

menta of the gr%up[g]. In gebneral, these commutation

relations read: Q"L {’]=iAR(Q). In this manner, from  RX(Q,L)=Q[},- £ L)+ Qf- £ R(wQ?) L)+ LY
Egs.(A4), it follows that LT LT 0 s
_EkQ(l)'Q(1)+§kQ(2)'R(wQ -Q )'Q(z)-

| o’ o’ 0
b LM1=ip 0 I o 0 3.1 (3:200
[Q%La" =i 0 @] R(0Q% o (3.19 These are, in fact, the generators of tight representation,
0 _Q(Tl).g _Q<Tz>'5 I acting as invariant operators within the left representation

[10]. Hence, they satisfy theight extended Lie algebra,
from where one gets the desired commutator immediatelywhich is obtained by substituting{®—R{, f3.—f23,, and
(This structure has no classical canonical analog if the groug,,— Kpa, in EQs.(3.10. In particular, let us note that
is non-Abelian) A great deal of quantum kinematic descrip- 0 ooy 0 oo )
tions stem from this equation. [Ry”.Ry7]=ink, [R3”,R,"]=—ifk.  (3.21)

At this point, one needs to observe that the anglés not One has alway§{0=S,(L%) = 5,(R™®) for a Casimir op-

a faithful parameter of S@)CG, . Actually, we shall not .
use the “:ngIe-operatorQ?)bec;use(DS L)fk)] —i% would erator[9]. Therefore, the Schdinger operator can be also
' s written in terms of the kinematic invariants, as follows:

follow, which leads to a well-known paradd®8]. Hence,

instead ofQ?® itself, it is better to define the following two © ®

boundedoperators onM(G,): coxQ® and siQ®. These SP=R}— — (Rg'f))zjt—(

obey the correct Heisenberg commutation relations for 2k k

S02); ie., [coR° L]=—i%sinQ® and [sinQ>L:]

=i% coxQ®, which are consistent with the periodic eigenvec- IV. QUANTUM DYNAMICS

tors of the angular-momentum operatog and satisfy the

constraint co¥°+sirfQ°=1 [8]. We assume this scheme in

what follows. Already we have enough information to look at the con-
The Heisenberg commutation relatiof8s17) do not close  nection between group theory and quantum mechdiizk

to form a finite algebra. However, one easily obtains a closediet us derive some consequences of the previous formalism.

algebra pertaining to the quantized grof10]. In fact,  First (and most importantly from Egs.(3.21) one obtains

given any regular functiofr (q) defined inM(G,), one de- t + T

fines operatorsF(Q), so that one obtains F(Q),L (9] [a.a]=1. [be.be]=1, [ab]=0, [acb]=0,

=17 Xa(Q)F(Q), since X4(q)F(q)=RA(a)F p(q). There- “.D

fore, Eq.(A8) immediately yields the followinglosedcom- | \vore one  defines a.=(2ik) "YARP+IRYM)  and

mutation refations: b= (2hk) YA R —iR ), which areinvariant operators
. indeed. Thus, we introduce the following Hermitian opera-
[AL(Q).LI=iAfSAL(Q). (3.18 g P

tors:
Having now alarger closed algebra, we can look forew 0 _1 t, .t K _1 t, ot
invariant operators, besides the Casimir oper&ff (which Hi'=zho(@actaay), Hy =zho(bd+ bkbkz’4 2
is all one gets if one doamot quantize the group Indeed, it '
can be shown that the operators given by the general formulghere H{¥= (1/2m)(REli)))2 and H¥= (1/2m)(R§'§)))2.

R(5)2-wR{. (3.22

A. Invariant ladder operators

[10] These operators commute, and have the form of two Hamil-
i toniqns describingincoupledharmonic oscillators. Thus, the
ng)(Q,L)=A2(Q)[L§,k)+r{)k)(Q)]—ng)(Q)— 5 ﬁfgb! Schralinger operator readsf., Eq.(3.22)]
(3.19 SY=RF - wRF—H¥+2HY . (4.3

are Hermitian and commute witill the generators of theft  Hence, from the extended Lie algebra it follows that the
regular ray representation. Her2(q) is the matrix of the  Schralinger operatorS{® can be decomposed as a linear
antiadjoint representatioficf., Appendix A; r{9(q) and combination of fourcommuting “partial Hamiltonians:

1 {9(q) denote the right and left exponent generators of theR{, wRY¥, H{, andH ). (Indeed, one obtains the re-

ray representation, respectivelgf., Appendix B. Hence, quired commutation relations &{° andR{ with the an-
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nihilation operators, andb, that imply this factl We also
observe that the “partial Hamiltonians” of E¢.3) are lin-

J. KRAUSE
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as expected. To get the realizationsapf b, , andR¥ in X,
it is convenient to introduce the complex varialztle x+iy,

early independent. Of course, if one diagonalizes simultawhich yields

neously the commuting “partial Hamiltonians,” one solves
the complete eigenvalue problem 8.

B. Superselection rules: Irreducible configuration
ray representations

Henceforth we consider the following set fofur linearly
independent operators:

SHIG]={R,wREY HY HY}. (4.4

It can be proved that this is maximal setof compatible

invariant operators. We shall use them sgerselection
rules Now, with the aim of arriving at a reasonable physical

interpretation of the model, let us examine the heuristic pos-

tulate[2]:

The physical pure states of the system correspond to si-

multaneous eigenvectors of the invariant “partial Hamilto-
nians” contained inS®W[G,].

_ 2R d k
(txylade)=—i\ -~ (F)_EZ P(t,x), (4.83
. N 2h " b
. o 2h —iwt J *
(t,x,¢|bk|e>——| V?e &)_EZ Y(t,x),
(4.80

t.x: bT — i [Zh ot J

( 4
z E)—z(a/az)

k
taz Z} P(t,x),
(4.80

P(t,x). (4.9

(tx; IR |e)=4

So we are ready to tackle the problem stated in E4%S).

. . . i (k) (k)
In this way one solves the superselection rule associate@Nn€ first looks for the ground state bf;” andH3”. The

with the Schrdlinger operatoB{", which corresponds to the
law of conservation of total energgf an isolated system
consisting of four noninteracting parts whose physical
meanings remain to be discussed.

Thus one “diagonalizes” the Hilbert space of the regular
representation, inténvariant subspaces’H(EO,nsynl,nz)(GL)
(with ng=---, —1,0,1, ..., andn,,n,=0,1,2 .. .), each car-
rying anirreducible ray representatiomf the group, since
the superselection rules amaximal The invariant sub-

generating wave function for this state reads
Wi, 0,0,(t.X) =exf (i/11)Eot — (Mw/4h)|2|?]

(a normalization constant remains at our disppsetien one
sets

|t.X:Eq.N1,n2) = (ny! o) " Y2(@)"(b)"™]t,x; Eg,01,05).

The detailed analysis of this procedure is rather lengthy and

spaces are orthogonal and carry the physical states of théelds the final answer:

model.

Here we shall attain a quantum-mechanical description of

the system by means of @nfiguration ray representation
To this end, let us look for wave functiongt,x) generating

configuration-state vectotgx;y) that satisfy the four super-
selection rules. Namely, we require

REt,%; ) = nsh|t,x; 4,
(4.53

RG‘|t,%; ) = Eqlt, X; ),

Hgk)|tyX; ¢>=hw(nl+%)|t,X;‘//>v

HY % ) =hw(ny+ 3)[t,x; ¥). (4.5H

Admissiblegenerating wave functiorfer the Landau system
are defined by means of the following limit at the identity
pointee M(G,) (cf. Ref.[2]):

Yy ingny (LX) =Mt X pla) =(t,x; (€).  (4.6)
gq—e
For instance, in this manner one obtains
lim (t,5; R a) = —ih dup(t,x), 4.7

q—e

Yy ny (LX) =(t,X;Eq,Ny,Nyl€)

=(iVmw/24) " "2\/n I n,!

x e(i/h)(EO—nzﬁw)te—(mw/4ﬁ)\z|zznlz* n,

X Fn, [ — (Mw/2h)|2]?], (4.10
where we define the function
ne o
P =2, i 449

with n_ denoting the smallest number {n;,n,}.

In summary, since 4*(d/9z*)—z(d/3z)]|z|>=0 and
[z* (8l 0z* — z(d9l 9Z) ] 2"1z* 2= (n,—n;)Z"1z* "2, one finds
the physically admissiblpure statesf the Landau system,
which satisfy the superselection rules, with the following
proviso:

Sgk)lt’X;EO!nl!n2>:[E0+ﬁw(n2+ %)]lt!X;EO!nl!n2>:

(4.12

(4.13

R, x;Eq,Nny.,Np) = (np—np)[t,%;Eg,Ny,Ng),
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(i.e., ng=n,—n,). The degeneracyshown in these eigen- =(tg.Xg). Since q produces the inverse transformation

value equations raises an interesting questidn Sec. V. (tg.xg)— (t,x) = (tg-xg), we obtain the following expres-
So far we have completed the group-theoretic discussiogion for the ground-state vector:

leading to the structure of pure-state vectors carryingr

ducible configuration ray representatioin$ the model. We i

note that the fundamental wave functig o o,(t,X) that It,x; E0'01-02>:,U~0f d®q eXF{— = Eo(t+q°)

generates all these states is the familiar ground-state wave

function of two uncoupled harmonic oscillators, moving in

an “environment” that has basic enerdg. mo o
_ |z—}2 e(i/ﬁ)<pk(t,x;q)| )
4% 1% @

C. Quantum-kinematic propagation kernel (4.16

Finally, let us study the Feynman propagation kernel of
the Landau system from the standpoint of quantum kinemat- here
ics. Perhaps, this is the most interesting achievement of thel

present group-theoretic formulation of quantum mechanics.

With this aim, let us recall the well-known formula |zq 224 q(21)+q(22)_2XT.q(1)
(¢ in1,nggrng,ny)= §nin15nén2<(//,;01102|'r//;01102>’ —2(x—q1) " Rlo(t—09)]-qz),
(4.19

which holds for the “excited” states of two uncoupled har- as well as
monic oscillators. Hence, for our purpose, it is enough to
consider the ground state. To find the ground-state vector T~ T o
[t x;E(,0.,0,), we shall proceed as follows. One has e XQ)=(mo/2){x"-€-qq

VL\J,E;;(?:)Aguiitci]gna;icélt(?serefore, using E¢3.1), a straightfor- —(x=q1) " E-Rlw(t—%)] g}

Wéo,ol,oz(t-x):e_(”ﬁ)Eote_(mMﬁ)lz‘z can be calc;‘ulated easily. Of course, applying the creation
operatorsa and b/ yields the desired general states
=<q|t(’1 X4 {E,01,0.)eMentxa) (415 [t X;Eq,Ny,N5). We thennor_malizethe_ground state. To this
end, one considers transition amplitudes with-t. Thus,

where g produces the change of variablesxj—(t',x") one gets

(t,x";E0,01,00]t,X;E,01,02)

. ’ 12,2 . ' 0 Mw
:Moe(llﬁ)(EO—Eo)te—(mm/Ah)(x +Xx )f dGq e—(l/ﬁ)(EO—Eo)q ex;{ o ﬁ {q(21)+q(22)_(x/+X)T.q<l)

imw
+[2q)— (X' +x) ] Rla(t—q°)]- Q(z)}) eXP{ T {(X'+x)7-Eqqy— (X' =x)T- & Rlo(t—q°)]-q)}
=8(Ey—Eq) 6@ (x' —x), (4.17)

where one defines the appropriate normalizing constamg=(mw)3[27(27%)] . This result assures one that, in general,
one has

<taxl ; E(l) :ni vné|taxy E01n11n2>: §nin15nén25(E(I)_ EO) 5(2)()(, _X) (418)

Let us now calculate thigansition amplitudebetween two normalized irreducible configuration ground states, defined at the
events(t,x) and(t’,x"). According to Eq.(4.16), after some substitutions, one obtains the following integral:
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<tr7X/;E6,01702|t,x;E0,01102>:M0277(277ﬁ)5(E6—Eo)ei(i/ﬁ)Eo(t’7t)e7(mwl4ﬁ)(x'2+x2)J J qu(l)
Mo o
><exp‘—ﬁ[q(l)z—(X'JrX)T'Q(l)—'(X _X)T'g'Q(l)]}f f dzq(2>
Mw 2 INT ’ T
X ex —ﬁ{q(z) +[(9)—x") - R(wt")+(q1)—X) " R(wt)]-qz)}

|m(1) NT , T

In this way, one arrives at the desirpdopagation kerngl  freedom. The conjugate operators are the corresponding gen-

which can be finally written in the closed form erators of G, either L{ or R{). The spectrum is
—oo<Ey<+o0, which is just an arbitrary constant. We inter-
(' x";E{,ng,nslt,x;Eq,Nny,Ny) pret these generators as pur&ipematic‘‘partial Hamilto-

nians” devoid of any dynamical meaning. The whole dy-
= 8(EL—Eg) /n. Onrn e(i/h)EOAt< . ) namic of the system is contained 8. Indeed, thetotal
11171l 2mih energy of the system given by the spectrum of the Schro
_ dinger operator, which is physically defined only up to an
eiwAt/ZeXp{ 'mo [cotl wAt/2)(x — )2 arbitrary additive constant. So, in quantum kinematics, one
af solves the vexed problem of a “time operator” in a very
peculiar(albeit naturgl way. It must be emphasized that, in
—2ix’T~8~x]], (4.20  the present theory, thetal energy operator & appears as
the dynamicalconjugate momentum of the initial time op-

, ] ] eratorQ®, in a “canonical” sense. In fact, one has
where At=t"—t. This result corresponds exactly with the

propagation kernel of the two-dimensional Landau system
[in the (x,y) pland, as obtained in thepath integral ap-

proach[11]. However, we emphasize the fact that the inte-
gral one evaluates in E¢4.19 is a Hurwitz invariant inte-  ascan be provedather easily.

gral, defined over the Landau group manif¢®. One quantizes the other parameters of the group in the
same manner, and for the same reasons. These parameters

are related with mechanical symmetry operations that can be
performed on the system. If we look back at E2}1) we see
that the complete symmetry transformatiorx’ consists in

In conclusion, we briefly turn our attention to the physical a rotation of the system with respect to the Cartesian axes,
interpretation of the attained model. Notwithstanding thethrough an angle® about the originO, plus the addition of
heuristic character of all interpretations, this task is unavoidageneral motiorof the system, parametrized by, andq,,.
able in theoretical physics, even when, as in the present case, Let us first conside,,. Classically, the effect of the
one faces the assessment of a reformulation of an old, wetlonstant magnetic field on the moving point charge is to pull
established, theoryAnother important subject would be to it towards a(fixed) guiding centetb, with a constant centri-
use themodelwith the aim of making somphysical predic- petal force. On an intuitive ground, one sees that one has to
tions Lack of space prevents us to dwell on this issue now.quantize the fixed center of motidm somehow, since this

Many variabledi.e., g number$ appear in quantum kine- degree of freedom suffers a kind pitterbewegungdue to
matics, which play no role in the canonical approach tothe quantum fluctuations of the particle, which “jumps”
guantum mechanics. ThH@'s are thequantized parameters from one world line to another in a permanent and random
of that very special group, whose action on the configurafashion. Hence, the quantization rdde=q;)—Q;, seems to
tions of the system is indeecbmplete As ¢ numbers, the be in order. In this manner, one interprets the corresponding
parameters of the group command the specific symmetrpartial Hamiltonian H{® = (1/2m) (R {})* as a dynamical ob-
transformations of the allowed world lines, andraf other ~ servable, which describes quantal harmonic oscillatiors
class of motions evolving in the same configuration spacezitterbewegungof frequencyw, suffered by the mechanical
time. They must bequantized for they play an essential variableb. No wonder,n,; makes no contribution to thietal
mechanical role and are endowed with a clear physicagénergy of the particlesince this quantity is independent of
meaning. the position of the fixed orbit center in the,) plane.

For instanceg® corresponds to the fact that for bditlas- ~ Therefore the degeneracy exhibited in E412) follows. Let
sical and quantaldescriptions of the system it does not mat- us also remark that in the current approach to this problem
ter when we fix the initial state. Therefore, one introduces ane quantizes the orbit center in a rather bizadéocman-
initial time operatorQ® related to this physical degree of ner, sinceb is not a canonical variable.

wAt/2
x sin wAt/2

[Q°,Sy]1=il, (5.0

V. CONCLUDING REMARKS:
PHYSICAL INTERPRETATION
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Similar considerations apply Q. Within the classical G, ~[719(2)& SO%(2)]e{RO&[T?(2)&«ST®(2)]},
theory, initially one hasx(0)=a+b and x(0)"-a=0; there- (A1)
fore, one expects the quantization rakeq;—Q,). Indeed,
it would be contrary to the concepts of quantum mechanicsvhere each factof(2)& SO(2) denotes the Euclidean group
to think of a as a static vector connecting two randomly £(2) in the plane, eacll(2) is the group of rigid translations
fluctuating points. In this way, one interprets the associateth two dimensionsR . is the additive group of real numbers,
partial Hamiltonian H$=(1/2m)(R{})? dynamically, as and we write& for the semidirect product. Hence, the group
describing the simple harmonic oscillations, of frequeagy spaceM(G,) is a noncompact connected manifold, which is
due to thezitterbewegungf a's degrees of freedom. From not simply connected. Thegroup-multiplication law
what we know about the classical analog of the system, thg"®=g%(q’;q) is given by the following combinations of the
total energyof the particle in the field must be given by parameters:
fhw(n,+1/2), within an arbitrary additive constar; i.e.,

Eq. (4.12) appears, as expected. q"°=g°%q’":q)=q'°+q", (A2.1)
In the same spirit, let us comment on the rotational sym-

metry of the systemabout the origin O The classical dy=91)(a;9) =0T R(@"%)-qq), (A2.2)

angular momentum ?] of the particle about O is

given by Jo=mx(t)'-E-x(t), which vyields Jo=Js di2=92(d";0)=R(wq°)-0/»+R(q'°)-qq), (A2.3)

—mwa'-R"(wt)-b, whereJy denotes the angular momen-

tum about the orbit center. According to this elementary rule, q"°=9(a";0)=(9"°+9°)2,, (A2.4)

the kinematic projectiora’-R"(wt)-b describes the simple . 3 o e o _
harmonic oscillator(of frequencyw) corresponding to the With dw=(97,0%) andq=(q",q"). Since the identity point
uniform circular motionR™(wt) b relative toa. From this €€ M(Gy) is at the origin, thenversion lawfor the param-
intuitive picture, we understand immediately the meaning oftt€rs follows:
the degeneracyns=n,—n,; found in Eg. (4.13 (i.e,, T=—q% qu=—R(q%)-
Jo=Jg—J,), as an unavoidable feature of the model, since q @ Ao AR OF
R is an angular-momentum opera@iout the origin

N = Tn5 0 N5— 5.

The fact thatR{?, RY, H{, andH { are allinvariant o= -RI{@*T0q) -Gz, 9°=-0% (A3
observableof the system is also worth noting. This meansj e one hag?®(q;q)=g%q;q) =0, fora=0,1, . .. ,5, and for
that pure statesare indeedobjective Although these states gj| qe M(G,).
describe onlypotentialitiesof the systermHeisenbery they We next consider theight transport matrixfor contra-

are always the same for the whaltass of equivalent pre- yariant vectors in the group manifold. This matrix is defined
ferred observersOtherwise, it would be absurd to think that ;¢ R2(q)=limy_ed,g°(q’;q). Therefore, from Eqs(A2),

the same, equally prepared, systéeven in an ensemble 5.a opt

ains
could be found in thground statdoy one observer and in an

excited stateby another, if both observers are physically 1 o' o' 0
equivalent. 0 | 0] 0
The last point we would like to make is that by a system- Rg(q)= 0 0 R (wq® 0] (A4)
atic application of general quantum-kinematic tools we have T T
0 —qu'€ —qp¢€ 1

beenable to deduce¢he Schrdinger equation, as well as to
calculate the corresponding propagation kernel of the sys-

. g wherea labels the rows andt labels the columns. This ma-
tem, without recourse to the.tra(.jltlonal approaches to quary yields theleft Lie vector fields acting irM(G,); i.e.
tum mechanicsGroup-quantizationanalysis of the corre- X (q)—Rb(q)a Thus one has the operators L/ ’
a — Ra b-

sponding complete symmetry group has been enough to this

end. Xo=d9, X=0 X=RT(wq®)-d
This paper presents but just another successful application 070 =7 @ a @
of a group-theoretic formalism of quantum mechariitg]. Xo= _Q(T1>' £. 3<1>—Q<Tz)'5' d(2)+ s (A5)

In light of these results, one cannot avoid wondering whether

a sounder formulation of quantum mechanics is possible, another useful feature concerns thaeljoint representa-

stemmingdirectly from the symmetries of a system. If this is tjon of the group. ForG, , the matrix of the adjoint repre-
really so, it should be uncovered as completely as possiblesentation reads

T T o 5
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APPENDIX A: STRUCTURE OF THE LANDAU GROUP . b T
wherefrom the inverse matri& ;(q) of the antiadjoint rep-

It is our purpose here to provide a brief survey of the mainresentation follows. The usual defining property of this rep-
properties of the Landau group. First, let us note fBatis  resentation [that is, Ab(e+59)=68+89°F2,] can be
isomorphic to the following group structure: checked directly from the following basic formula:
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Xa(Q)AS() = F3AG(Q). (A7) Ul(q)|q’)y=e" 1M g7y = elifm deaa)

The Landau group is unimodular i.e., A(Q)
=det[A2(q)] =1. The features summarized in this appendix

are not just minutiae, since they are fundamental tools i
quantum kinematicqFor details, se¢l10].)

9(a;q")).
(B2

for the left regular ray representation, with generatbrg),

™ind where the exponent functiafi(q;q’) is atwo-cocycle
obtained from the set of genuine ray constdats{k;,,Ksa}.

In fact, these operators are unitary and satisfy the ray repre-

APPENDIX B: REGULAR RAY REPRESENTATION sentation property
OF THE LANDAU GROUP
As we have seen in Sec. Il B, the Landau group admits U (g U (q)=el™Ma@ayg(q;q)]. (B3
only two physically meaningful ray extensions, generated by
the ray constant&;, and k;,. In this appendix we briefly In this paper we use the following two-cocycle of the

consider theregular ray representatiorof G, associated Landau group:
with these constants.

SinceG, is unimodular, the Hurwitz invariant measure is o (q';q)= %klzq(’lT)~8~ R(q’5)~q(1)
given simply bydu(q) = ud®q=uedq’dqt . . .dg®, where LT s o1 o
Mo IS an arbitrary normalization constant. In consequence, +32Ks40(2)  €-R(A"°)-R(«0) - q2) -
the Hilbert spacé1(G,) that carries theegular representa- (B4)

tion [13] is defined as the sef?(G,) of square-integrable

wave functionsy(q)=(q°q0@,d° on M(GL), which  This exponent has been calculated by means of non-Abelian
areperiodic on the unit circleS;CM(G,); i.e., one defines  analytic techniquegas developed by Kraud&]). This is a

(Ylh)=nofd°aly(a)|?<e if, and only if, [#)eH(GL). In  completely gauge reduced two-cocyated belongs to the:
quantum kinematics, one also needs to consideritfged  gauge[7]; that is, one has

Hilbert spaceH(G, ), attached witi(G,), for this permits
the definition of wave functiong{q) onM(G,) in the usual )= (q;9)= ‘q)=0, (B5)
manner: ¢(q)=(ql¥), for all |pHeH(G) and all @)=l 0:0) = Sl i
geM(G,) [14]. So we introduce a complete continuous or-
thogonal basig|a)=|q°, g, (2, 9°)} on the rigged Hilbert
spaceH:

which vyields URT(q)=U®(q). Next, we need to recall
that theright exponent generatorare defined as follows:
rgl'()(q):Iimq,He d,¢k(a’;0). Therefore, the corresponding
exponent generators of the Landau group are given by
(ala")=uo *6'¥(a-q"), Mof d®qla)(al=1, (BD)
rEI?)(Q) =3k1E- A1) » rEE))(q) = 1ka€ RN (0q°)- di2)
wsherel denotes the identity operator, afg is periodic in (B6)

Thus we consider thenitary operatorsthat carry the while r §0(q)=r ¥(q)=0. Finally, we need to recall also
regularray representations of, within . Since thelg)’s  that in the# gauge theeft exponent generatoig(q) are
form a complete basis, the group ray operators may be dagiven byl {(q)=r {?(q). We have omitted the lengthy cal-

fined as follows: culations leading to these resul|.
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