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Abstract 

We discuss the geometry of the Lagrangian quantization scheme based on (generalized) Schwinger-Dyson BRST symme- 
tries. When a certain set of ghost fields are integrated out of the path integral, we recover the Batahn-Vdkovlsky formalism, 
now extended to arbitrary functional measures for the classical fields. Keeping the ghosts reveals the crucial role played by 
a natural connection on the space of fields. 

The Lagrangian quantization scheme of Batalin and 
Vilkovisky [ 1 ] has a direct relation to what we have 
called "Schwinger-Dyson BRST symmetry" - the 
BRST symmetry whose Ward identities provide the 
most general Schwinger-Dyson equations of any given 
quantum theory [2,3]. Imposing this Schwinger- 
Dyson symmetry on the theory leads immediately to 
a Lagrangian Master Equation [4], which reduces to 
the Batalin-Vilkovisky Master Equation [ 1 ] upon in- 
tegrating out a certain set of new ghost fields c A. T h e  

"antifields" of  the Batalin-Vilkovisky formalism are 
nothing but the usual antighosts of these new fields 
c A [4]. 

The easiest way to see the need for new ghost fields 
c A is to derive the Schwinger-Dyson BRST symmetry 
from a particular collective field formalism [ 3]. Since 
the BRST symmetry in question is related to arbitrary 
local shifts of all field variables, there is a one-to-one 
correspondence between all fundamental fields t~ A of 
a given theory and the required collective fields ~pA. 
The appearance of both the new ghosts c A and the 
collective fields ~D a is not fortuitous. For example, if 

one wishes to quantize a theory in such a manner that 
it is invariant under BRST and anti-BRST symmetry 
simultaneously [6], then both of these new fields can 
simply not be removed from the Master Equation [ 7 ]. 
The new ghosts c a also play an important r t le  when 
one derives the Lagrangian BRST quantization from 
the BFV theorem of the Hamiltonian formalism [ 8]. 

Gauge field theories can be dealt with at the same 
level as theories without internal gauge symmetries. 
The solution to the quantization problem is then en- 
tirely given by imposing the Schwinger-Dyson BRST 
symmetry, and demanding certain boundary condi- 
tions on the resulting differential equation. Informa- 
tion about the internal gauge symmetries enters only 
at the stage where boundary conditions are imposed. 
These boundary conditions can be chosen to equal 
those of Ref. [ 1 ], but more general procedures are 
also possible [4]. 

The Schwinger-Dyson BRST symmetry is in- 
timately related to the BRST symmetry of field 
redefinitions [5]. This is not surprising, because 
Schwinger-Dyson equations can be viewed as the 
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tool with which to describe the quantized theory in- 
dependently of a specific path integral representation. 
In fact, the Schwinger-Dyson BRST symmetry is 
precisely the gauge-fixed remnant of a hidden local 
gauge symmetry present in any quantum field theory: 
The gauge symmetry of local field reparametrizations 
[ 3 ]. Ordinarily one chooses from the outset a basis 
of  field variables with which to describe physics, 
but the field redefinition theorem ensures - at least 
under certain mild assumptions about the asymptotic 
states - that any other choice of variables should 
describe the same physics. Technically, this can be 
seen from the invariance of S-matrix elements under 
field redefinitions. Invariance of the S-matrix under 
such reparametrizations is precisely a reflection of 
the local gauge symmetry of field redefinitions [ 3 ], 
in just the same manner as invariance of S-matrix el- 
ements under internal gauge transformations reflects 
the ordinary gauge symmetry of gauge field theories. 

Since the Schwinger-Dyson BRST symmetry can 
be viewed as one particular facet of the general field 
reparametrization BRST symmetry, one would expect 
that a more general Lagrangian quantization scheme 
could be derived from the latter. This should provide 
a quantization principle independent of the field rep- 
resentation, "covariant" in the space of field variables. 
Such a generalized quantization procedure should by 
definition be closely related to the geometric formula- 
tion of the B atalin-Vilkovisky formalism, a subject that 
has recently received considerable attention [9,10]. 

The aim of the present paper is to derive this more 
general covariant Lagrangian quantization prescrip- 
tion starting from the generalized Schwinger-Dyson 
BRST symmetry - the BRST symmetry of field redef- 
initions. In the process we hope to add some physical 
insight to the more abstract algebraic considerations 
of Refs. [9,10]. Our manipulations will throughout 
be "formal" in the sense that we shall employ stan- 
dard manipulations in the path integral, assuming the 
existence of a suitable symmetry-preserving regulator. 
Some of the subtleties involved in this process, espe- 
cially at the two-loop level, are discussed in Ref. [ 3 ]. 

To set the stage for the generalizations that are to 
follow, let us first briefly consider the simplest case, 
that of  an action free of internal gauge symmetries. 
Fields of the classical action S are denoted by ~ba; 
they can be of arbitrary Grassmann parity e ( ~  A) ~- 

CA. 1 The  index A labels collectively all internal quan- 
tum numbers and space-time variables. A quantum 
action Sext that incorporates the correct Schwinger- 
Dyson BRST symmetry can in this case be taken to be 
simply [2,3]: ext[~b,~b ,c] S[~b] dp*a cA, witha  
new ghost-antighost pair c A, (b* a of Grassmann parities 
e ( c  A) = e(~b~) = ea + 1. Their ghost number assign- 
ments are g h ( c  A) = -gh(fb*A) = 1. With this set of 
fields, the Schwinger-Dyson BRST symmetry reads 

~ts 
t~(~ a -~ C A , ~ C  a -~ 0 , t~ l )  * A = t~(b A . ( 1 )  

In this simple case, it is obviously possible to substi- 
tute Sext for S in the transformation law for ~b~, but in 
general care is required in such a substitution. By cor- 
rect Schwinger-Dyson equations, we shall always re- 
fer to those that formally follow for the classical fields 
of the classical action, independently of whether the 
path integral has been given a precise meaning through 
an appropriate gauge fixing, when needed. 

The above choice incorporates the Schwinger- 
Dyson BRST symmetry ( I )  in the particular field 
variables ~b a. To find a more covariant formulation, 
let us perform a field redefinition of all the classical 
fields ~b a. At this stage we restrict ourselves to redefi- 
nitions that do not mix in the new ghost fields c A, qb* a . 
We follow to a large extent the formulation presented 
in Ref. [5]. Denote the new field variables by ep A, 
and the transformation by F. Introduce left (L) and 
right (R) vielbeins e~L,R)S and their inverses, EA(L,R)B, 
through the definition 

~l,r F a ( dp ) 
e~L,R)B ( ~p ) -- ~ B  ' 

A C C A ---- ~ C  ( 2 )  e(L)BE(L)A = e(R)AE(R)B 

We next choose to let the ghost-antighost pair trans- 
form oppositely under F, i.e., in total: 

* * B ~ a  = FA(dp) , cA  = E : R ) B  c B  ' f~a = qbBe~R)a , 

(3) 

where C A and @~ are the new transformed ghost 
fields. This has the advantage that the ghost-antighost 

I Our conventions are described in detail in the appendix of 
Ref [4] 
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measure formally, or with a suitable symmetry- 
respecting regulator, remains invariant under the trans- 
formation. Of course, the ~ba-measure will in general 
not  remain invariant, but acquire a Jacobian factor 
v/~, where g is the superdeterminant of the metric 

gAB(O)  = ~'IcOe~L ) A ( O ) eI~R) B ( ~ ) • (4) 

Consider now the action Sext. Since it must trans- 
form as a scalar under F, we immediately have, using 
(3) ,  

• A 
Sext---- S [ F ( ~ ) ]  - ~ A  C . (5) 
This transformed action is invariant under the trans- 
formed Schwinger-Dyson BRST symmetry 

t~O A = C A , (~C A = 0 , 

8Is  
~(I)~ = ( I~eM+llI'M g"Kda* 

~,--*1 * A K  ~-" "i'M ~ 0  A • (6) 

from the invariance of the measure [dO ] under arbi- 
trary local shifts, i.e., from 

/ ,  
0 = Z -1  / [ a o ]  C g ( O )  

x [ ( ~ ) - I ~ A  { e - S ' ~ ] x / g ( O ) G ( O ) } ]  . 

(9) 

In contrast, in the present formulation these equations 
are automatically incorporated into the action princi- 
ple. 

The Master Equation for the action Sext in trans- 
formed coordinates is derived in as trivial a manner 
as in the original variables; it is simply the statement 
that Sext is invariant under the BRST symmetry (6). 
Thus 0 = t3S~xt immediately gives 

t~r S e x t - A  t~r Sext t~lS 

C -- t~O~ t ~ O  A = - - - -  
t~r Sext t~/Sext (to) 

It is also straightforward to check that the functional 
measure is formally invariant. The "connection" Fsac 
is the (superspace) Christoffel symbol of second kind 
[11], 

1 [ r a  c _ ~ (_ l ) ,Ae  c ( _ 1 ) , c , o 6  r O) 

+ ( - 1 ) ,a +ec +~B ,c +e~ ~o 6rg cD ( 0 )  
3 0  o 

~3r g sc  ( 0 )  ] 
8 0  ° j gOA . (7) 

In the new set of coordinates, the Schwinger-Dyson 
equations are Ward identities 0 = (810~G(~) ] ) .  In 
detail, with F~M = ( - 1 ) 'u  (v/-~) -16t (x/g) / BOA, 

i _ l ) , ~ + I ( 8 1 0 ~ G ( O ) ] )  0=~( 
= ((_I),Mr,M(O)G(¢)+ (~)~ts  8--~-xc(o) 

t~l G \ + ~-~-x/, (8) 

where in the last bracket we have integrated out the 
ghost-antighost pair in order to compare with the con- 
ventional formulation of field-covariant Schwinger- 
Dyson equations. Such equations are normally derived 

The extra term in the transformation law for O~t in 
Eq. (6),  which is proportional to the connection FAc, 
does not contribute to the Master Equation due to the 
symmetry properties of FAc and the ghosts C A. The  
Master Equation (10) is of precisely the same form 
as that of the original Sext [4], except that it is now 
expressed in the new coordinates. 

To extend this construction to field theories in 
all generality, including those of arbitrarily compli- 
cated gauge-symmetry structure, one can proceed 
by demanding that the above coordinate-covariant 
Schwinger-Dyson equations for the classical fields 
are satisfied at the formal level throughout, and even 
before any gauge fixings. A sufficient, but perhaps 
not necessary, condition is that the ghosts C A enter 
only linearly, and only in the c o m b i n a t i o n  f~*A CA , 
as in Eq. (5). This ensures that the crucial integral 
over C A and O,~ is diagonal, and in particular that 
(cAo*s)  = - - i ~  A, an ingredient needed in Eq. (8) 
to recover the correct Schwinger-Dyson equations. In 
general, on should not expect to be able to split the 
extended action Sext into the form Sext[O,~*, C] = 
S[~]  - O*A CA, as in Eq. (5). But the above require- 
ment is equivalent to demanding that Sext is of the 
f o r m  Sext [O,  typ*, C ]  = S BV [typ, dp* ] - O*A C A ,  where 
Sav is simply everything left over after the term linear 
in C A has been taken out. 
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Correct Schwinger-Dyson equations are obtained 
even if the extended action Sext is not invariant un- 
der the Schwinger-Dyson BRST symmetry, but only 
transforms in precisely such a manner as to cancel a 
perhaps non-trivial Jacobian factor from the functional 
measure. In the old coordinates, an arbitrary action 
Sext [t~, t~*, c] -- S BV [t~, t~* ] - t~C a which satisfies 
the full quantum Master Equation [4] 

l (Sext ,  Sext t~r Sext A ~ - ~  c + i h A S e x t ,  (11) 

gives rise to the Batalin-Vilkovisky Master Equation 
[ 1] for sBV: 

1 sBv, sB v)  ( = / h a s  Bv (12)  

Here ( . , . )  is the antibracket, and 

~a 8~ 

is the correction term from the measure [ 1 ]. Both 
can straightforwardly be derived from the Schwinger- 
Dyson BRST symmetry [4]. 

To find the generalized Master Equation in the new 
coordinates, we must be careful when expressing the 
BRST transformation laws of all fields, ghosts and 
antighosts in terms of the new variables only. In partic- 
ular, since ~* in general will enter non-trivially apart 
from the term ~ C  a, and since these antighosts arise 
from a ~-dependent transformation, a new implicit ~-  
dependence enters through ~*: 

~t~ A = C A 

8 C  a = 0  

8q~ = ( - 1  x'M+lrM ,-.K,~. 
: ~-AK ~... -v M 

~'S Bv F M ~* ~IsBV 
+ (--I)~A~M+I 8¢D~ Ka M 8¢DA (13) 

With these transformation rules it is easy to get the 
following master equation: 

8rs  Bv 8 t s  Bv 1 8 [ 8S Bv "~ 

801 8 .  ~ =i/~(--I)~A~ScD~ ~V~B-ff~-a) • 

(14) 

The operator 

Ap ~. ( - 1 )  "A+l V/~ t~qbA v/g , (15) 

associated with the measure density p = v:g, is the 
covariant generalization of the Batalin-Vilkovisky op- 
erator A of Eq. (12). Its form can also be inferred 
from general covariance arguments [9,10]. Here, it 
arises straightforwardly from the non-trivial Jacobian 
factor associated with the BRST transformation (13). 
Since we have so far restricted ourselves to field trans- 
formations among the ~b's only, the resulting measure 
density p does not depend on qb*. 

In the case of flat coordinates, there is an interesting 
direct relation between the Schwinger-Dyson BRST 
operator (1) and the operator A [4]. Namely, if one 
integrates out the ghosts c a but keeps the antighosts 
~b~ in the path integral, the operator A appears as 
a "quantum deformation" (proportional to h) of the 
BRST operator 6 left over when integrating out the 
ca-fields. The quantum deformation of the BRST op- 
erator in the conventional Batalin-Vilkovisky formal- 
ism has been discussed in Ref. [ 12]. It must be em- 
phasized that the appearance of this quantum defor- 
mation in the BRST operator is completely unrelated 
to the appearance of possible quantum corrections in 
the Lagrangian Master Equation (12). The quantum 
correction in the Schwinger-Dyson BRST operator in 
the unusual form in which the ghosts c a (but not their 
antighosts ~b~ ) have been integrated out of the func- 
tional integral is always present. The quantum cor- 
rection to the Master Equation (12) is non-vanishing 
only in those particular cases where the functional 
measure is not invariant under the Schwinger-Dyson 
BRST symmetry (independently of whether the ghosts 
c a have been integrated out or not). 

In the covariant case we have seen that A in the 
Master Equation is replaced by the covariant Ap. Let 
us now consider integrating out the new ghosts C a 
from the path integral, and trace what happens to the 
Schwinger-Dyson BRST operator in this process. As 
in the flat case [4], the simple identity 

f [dC]F(cn) exp [-~*A CA] 

= F ( ih~)  f [dC[ exp [-~'~*AC A] (16) 

is useful here. Consider, inside the path integral, the 
BRST variation of an arbitrary functional G [~ ,  ~*] .  
Using (16) above, we get 
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r r 
8 G A a G ( l~*~+lrM r, Km* 

aG[ , ,®*1  = +8---<A't(---, 
6r sBV at sBV 

wM ~ *  _ _ _  
+ ( - -1 )~aE~+l  adP~ "KA'~M af~ a ) 

arG als  BV arG als  BV [" ar 
aft) A af~)*A af~).A ate) A ~- ( ih )  k(--1Jeaaf~)  

eaea+e~t M I ar + ( - 1 )  rAM_ ~ a  G , (17) 

where the arrow indicates that partial integrations are 
required inside the functional integral. Since 

AoG 

8q~A + ( -- 1 ) ~°+~M+IF 

8r 
x 8----~-A G , (18) 

the equivalent of the Schwinger-Dyson BRST operator 
after having integrated out the ghosts C A is indeed, as 
expected, given by 

a = ( .  , s  Bv)  - ihAp (19) 

in the covariant formulation. 2 This form of the 
"quantum BRST operator" in the covariant Batalin- 
Vilkovisky formulation was first considered by Hata 
and Zwiebach [9]. Here we see that it can be derived 
straightforwardly from the Schwinger-Dyson BRST 
operator by integrating out the ghosts C A . It is only 
because one chooses such an asymmetric procedure 
as that of integrating out the ghosts, while keeping 
the antighosts in the path integral, that one has to face 
the unusual situation of having a quantum correction 
to the BRST operator. The ful l  Schwinger-Dyson 
operator (13), with the ghosts C A kept, automati- 
cally includes both classical and quantum parts, as is 
customary in quantum field theory. 

So far everything has been derived from the fiat case 
using a general coordinate transformation. In effect, 
all this amounts to is a formulation of the Lagrangian 
BRST quantization scheme in arbitrary curvilinear co- 
ordinates. It is worthwhile to first look at the quanti- 
zation problem from the point of view of having been 

2 Note that the operator Ap is mlpotent for any x/~ that depends 
only on ~b a 
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given a "space of fields" on which the path integral is 
to be defined. What is the effect of  curvature in such 
a space of fields? To see a possible consequence, we 
need to go back and determine the Schwinger-Dyson 
equations on such spaces. As we have seen, once we 
have the correct Schwinger-Dyson BRST algebra, the 
quantization prescription follows immediately. 

The correct Schwinger-Dyson equations for field 
theories defined on field spaces with a non-vanishing 
Riemann tensor (but with zero torsion, see below) 
can be derived as soon as the functional integral on 
such spaces is decided upon. Taking it to be of  the 
form of a scalar density function p(~b) = x/g(~b), it 
is obvious that the Schwinger-Dyson equations (and 
the Schwinger-Dyson BRST algebra (13) that repro- 
duces them) are of exactly the same kind as in Eq. 
(8). This means that the whole quantization proce- 
dure, the Lagrangian Master Equation (14) and the 
form of the BRST operator (13), carry over directly 
to this case without modifications. 3 Whereas the case 
of curvature in the space of fields can thus be treated 
straightforwardly, a non-trivial aspect enters if we con- 
sider field spaces with torsion. We shall return to a 
discussion of this point elsewhere. 

We shall now approach the quantization problem 
from a different point of view. Suppose we are given 
a measure density p(~b), and the set of transforma- 
tions that leave the functional measure d~bp(~b), but 
not the action S[~b], invariant. We denote these trans- 
formations by 

qb A (X) = gA((bt ( x ) ,  a ( x )  ) , (20) 

where a ' ( x )  is a local field parametrizing the transfor- 
mations. We choose coordinates such that ga reduces 
to the identity at a ' (x)  = 0. Invariance of the func- 
tional measure implies a set of identities, generalized 
Schwinger-Dyson equations: 

<Big A [ alE i als  t ~ ] ] / =  0 

a=O L a (~ A "~- -~ ~ F [ 
(21) 

3 The only non-trivial aspect hes m the choice of appropnate 
boundary conditions for the Master Equataon In contrast to the 
simple curvilinear case, we may not simply take the standard 
Batahn-Vilkovisky boundary conditions for Cartesian coordinates 
and then perform the required field redefinition to obtain the 
corresponding boundary conditions in new coordinates 
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These Schwinger-Dyson equations are different in 
form from those obtained by exploring invariance of 
the measure d~b under local shifts. But under the con- 
ditions stipulated below they have the same content, 
and can, in fact, be mapped onto one another. To re- 
gain the usual Schwinger-Dyson equations from the 
generalized equations, we must require that v A ___ 
61ga/&aBla= 0 locally has an inverse. When this v - l  ex- 
ists, the generalized Schwinger-Dyson equations are 
in a one-to-one correspondence with those obtained 
from exploring invariance of the d&measure (with- 
out the factor of p(~b) ) under local shifts. We will as- 
sume that the space of fields forms a manifold. If the 
dimension of the space is N (i.e., A = 1 . . . . .  N), we 
need precisely those symmetry transformations that 
locally correspond to shifts. These transformations are 
parametrized by N fields aa(x) .  

The condition that the measure dd~p(cb) be invari- 
ant under the transformation (20) is equivalent to 

~rp 
t3d?----- U - ( - 1  )eA+eCGAAp -~ 0 , (22) 

with 

8 r 
GAA ~ - - ( U - - I )  B ~ (U A) • (23) 

How do we now find the modified Schwinger-Dyson 
BRST symmetry whose Ward identities are the Eqs. 
(21) ? As in Ref. [4], we can again follow the collec- 
twe field approach. We do this by promoting a a ( x )  

to a genuine field in the path integral, which we inte- 
grate over by using a fiat measure. The relevant BRST 
symmetry reads [ 3 ] : 

8r g B 
t~)  IA _~ -- ( M - t )  A ~ a c  C c 

t~a A = C A 

6c' = 0 

t~Ba ---- 0 ,  (24 )  

where M a = tSrga /t~q~ tB. Nilpotency of the transfor- 
mations (24) is not immediately evident, but can be 
checked to hold: &z = 0. This is also obvious from its 
construction in Ref. [3]. Next, we choose to gauge- 
fix on the trivial surface a A = 0. We do this by adding 

--t~[ (b *A aA ] = ( - -1)  "~+ l n A a A -- q~*A cA to the act ion S. 
At this point we can integrate out B a and a A, modify- 
ing the BRST transformations accordingly. The result 
is, for the BRST algebra: 

t~(~ A -~ - - ( - - I  )eB('A+I)uAcB 

t~C A -~ 0 

&~b~ = ( - 1 )  ""('A+I) t3tS 
t~b e VA 8 , (25) 

where we have used the boundary condition gA ( (bt, a = 
0) ---- ¢~'A. 

One can readily check that the BRST Ward iden- 
tities 0 = (6{~b~F[~b]}) precisely coincide with the 
Schwinger-Dyson equations (21). Eq. (25) thus 
gives us the required Schwinger-Dyson BRST alge- 
bra. However, nilpotency of the BRST operator is 
lost in the process of integrating out BA and a a. In 
contrast to the usual case of p = 1 [4], nilpotency 
does not even hold in general on the space of fields ~b 
only. This makes this form of the Schwinger-Dyson 
BRST algebra slightly awkward for the quantization 
programme. But the version of the collective field 
formalism we have adhered to until now corresponds 
to the "Abelianization" of the constraints. As it turns 
out, the problem of nilpotency of the operator & is 
instantly solved if we instead use the non-Abelian 
formalism (see appendix A of Ref. [3] ). We shall 
now describe this in some detail.4 The non-Abelian 
Schwinger-Dyson BRST transformations can be cho- 
sen in the form 

t~q~tA -~ U A ( ~ t )  C B 

aa  A = - - v  A ( a ) c  B 

1 1)eoCAcCCC B 6C A = -- ~ ( - -  

= BA 

6BA = 0 , (26) 

where 

~rgA(dp t ' a )  a---O 
U a (qb') =_ 6at~ . (27) 

4 The notation follows Appendix A of Ref [ 3 ] 
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The supernumbers cAc are the structure coefficients of 
the supergroup of transformations (20). They satisfy 

CaBc = --(--1)'" 'CcAB . (28) 

A boundary condition is u A ( a = O )  = 6 A, and we 
also have aa (a ) l ,~ (a )  = 6 A [13]. We integrate the 
collective field over the left- or right-invariant mea- 
sure of the supergroup of transformations ga. The 
full functional measure is then formally (i.e. with a 
symmetry-preserving regulator) invariant under the 
BRST transformation (26) if we take, for [de] and 
[de* ], the usual (flat) measures, and if we assume 
that the group of transformations is compact (and in 
particular ( - 1 ) ,a can = 0). We now gauge-fix the col- 
lective field a A to zero by adding a term - 6 [ ¢ ]  a a ] = 
(--1)~"+lBAa A + ¢*aua(a)c B to the action S. Inte- 
grating over BA and aA, we find the modified BRST 
transformations by substituting for BA the equation of 
motion for a A (at a A = 0). It is important to take into 
account the contribution from the measure as well. If 
we define 

~r/:BA a--0 FA c = ~ , (29) 

375 

then the BRST transformations can be written 

¢~¢A = u A (  ¢ ) C  B 

1 ( _ 1 ) 'B cAc C c C B ¢~C A = --  "~ 

6 i S  u B . . .  
6¢* = (-1)'aS-~-- ff A(~) "-}-ih(--1)eA+e"['BA 

( 1-~eAen,.k* ]=,M ,,.B 
- } -  k - -  l t W M I B A ~  . ( 3 0 )  

A related BRST construction for field theories 
with vanishing equations of motion, ~ S / ~ ¢  a = 0 
has been considered by Okubo [14]. One has 
F~L -- ( - 1 )"eL rLGK = C~L. 

Due to the "quantum correction" to the transforma- 
tion law for ¢~'t, the action S itself is not invariant under 
the transformations (30). However, the measure trans- 
forms in just such a manner as to cancel the remaining 
term. So the combination of action and measure is in- 
variant under (30), as it should be. The last two terms 
in the transformation law for ¢~ cancel when we con- 
sider the Ward identity 0 = ( ~ [ ¢ ~ F ( ¢ ) ]  ), leaving us 
with the correct Schwinger-Dyson equations. 

We now perform the change of variables 

C A = u A ( ¢ ) C  B , (I)~ = ¢ ~  (U--1)A B . ( 3 1 )  

The result is: 

(~¢A = C A 

6C a = 0 

8~s = "~eM+lpM g-,Bt~* ~¢*A ~ + (--1, --BA'~ "~C 

+ ih( ,~,a+,c~C )B a (32) - - x :  JtCB (U -1 , 

where Fac is defined to be 

= cAc 

_ ,  c 
+ ( - ' ,  " S ' C B  (u ) r '  (33) 

and where we have introduced the connection 5 

( u - ' ) A  D O (34) 
= 8" 

6¢ c 

The action S is again not invariant under the BRST 
transformation, but the full partition function is, pro- 
vided that p is covariantly conserved with respect to 

G~c: 

8p (-1)'~+"p(~)G~B =0.  (35) 
84: 

But this is just the condition (22) that the measure 
d ¢ p ( ¢ )  is invariant under the group of transformation 
gA. So we again find that the combination of action and 
measure is invariant under this (now non-Abelian) 
Schwinger-Dyson BRST transformation. 

The advantage of this non-Abelian formulation is 
that nilpotency of B when acting on the space of fields 
cA is not lost in the process of integrating out the col- 
lective field a A and the Nakanishi-Lautrup field BA. 
This means that the BRST operator 8 can be used to 
gauge-fix internal gauge symmetries as well, and it 
is therefore meaningful to formulate the quantization 
prescription in terms of a Lagrangian Master Equa- 
tion. This equation follows again from the simple re- 
quirement that the combination of action and measure 
remain invariant under the Schwinger-Dyson BRST 

5 This definition is consistent with the one given m Eq. (23). 
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Since S Bv now depends on ~*, we find again that the 
transformation law for q~  has to be modified slightly. 
The resulting transformation is 

~lsBV 
_ -  I ' ~M+IF 'M t~Kdh* 

~f~*A - -  ~ ) A  -~- ( - - l  j X AK"" "i'M 

~ r s B V  U m th* 
+ ( - - 1 )  eaeM ~BA.~.M 

+ (U-1)A , (36) 

with the transformations for ¢ and C left untouched. 
Note that only S By enters in the transformation law 
for dp*. The condition that the path integral remains 
Schwinger-Dyson BRST-invariant leads precisely to 
the standard Master Equation for SaY: 

6r sBV ~IsBV 
- -  - i h A p S  Bv . (37) 

~(I)~ t~t~ A 

We wish to emphasize that in the present formulation 
this is a highly non-trivial result of delicate cancella- 
tions between action and measure, as well as of the 
continuity Eq. (35). 

Boundary conditions need to be imposed on Sav. 
A first requirement is that Scl [ t~] = S BV [ t~, (I)* = 

0], where Scl is the classical action. This is needed 
to ensure that Schwinger-Dyson equations for Sext = 
Sav [~b, q~* ] + ~*A CA formally agree with those of Sol 
before any of the possible internal gauge symmetries 
have been fixed. 6 One further boundary condition is 
needed to ensure regularity of S By, i.e., invertibility 
of the propagator matrix. 

We see that knowing the group of transformations 
that leave the measure d fbp ( fb )  invariant naturally 
leads to an object ( G A c )  that transforms as a con- 
nection on the space of fields. This connection itself 
has only indirect physical significance, since just 
the traced-over object (--1)~aGAA appears in the 
Schwinger-Dyson equations. Note that the Schwinger- 
Dyson BRST transformations (32) are ambiguous 
as far as the connection is concerned. We can re- 
place any suitable connection G ac  with Gac  + GA c 

as long as GA c has the correct symmetry properties 

6 For the special case of no internal gauge symmetries, 
sBv[~b ,~  *] = Scl[~b], and it is then straightforward to see that 
the Ward 1dentines of the symmetry (32) and (36) yield the cor- 
rect Schwmger-Dyson equations for Scl [ ff ] 

under exchange of the lower indices, and as long as 
( - 1 ) "~ GA a -- 0. Such a replacement is void of physi- 
cal content. It is conceivable that the redundancy in the 
choice of connection is a reflection of the large group 
of symmetries of the covariant Master Equation. If  
so, this could permit a geometric interpretation of the 
group of invariances directly on the space of fields. 

We end this paper with some general comments. We 
have throughout restricted ourselves to either trans- 
formations of the fields ~b A that do not depend on the 
ghosts c A or antighosts ("antifields" in tbe language 
of Batalin and Vilkovisky) ~b~, or, in the last part, on 
symmetries of functional measures of the fields t~ A 
only. We have done this on the assumption that even- 
tually only symmetry properties related to the original 
classical fields (part of ~b A) are of physical impor- 
tance. This means that we have really only been in- 
terested in the subset of transformations involving (~a 
that refer to the classical fields, and not to the usual 
ghosts, antighosts, auxiliary fields, ghosts-for-ghosts, 
etc., which may be required to complete the quanti- 
zation programme, and which form another part of 
~b a. Such a point of view may be too restrictive, and 
there is indeed nothing preventing a more general set- 
ting in which all fields ~b A are mixed with each other 
and with ghosts c a and antighosts ~b~. These more 
general transformations must of course obey the quite 
restrictive condition of preserving Grassmann parities 
and ghost numbers. The discussion in Refs. [9,10] 
goes along such lines (for the case where the ghosts 
c A have been integrated out, and where the remaining 
fields t~ a and antighosts ~b~ thus are canonical vari- 
ables under the antibracket). One may in that case 
phrase the canonical framework in terms of a super- 
symplectic formalism that resembles the usual sym- 
plectic formulation of classical Hamiltonian mechan- 
ics. The different ghost number and Grassmann parity 
assignments between "coordinates" (t~ A) and "mo- 
menta" (~b~) does, however, make the analogy with 
classical mechanics somewhat limited. It is difficult 
and rather tedious to formulate correct boundary con- 
ditions to be imposed on the Master Equations in any 
other frame than that of (the analogue of) Darboux 
coordinates on the supersymplectic manifold. 

As we have shown in this letter, the analogue of 
Batalin-Vilkovisky quantization on spaces with non- 
trivial measure densities can be derived straightfor- 
wardly from the underlying Schwinger-Dyson BRST 
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algebra. It is not coincidental that upon integrating 
out the ghosts c A , the Master Equation for theories 
with non-trivial p (~b)-measures formally matches the 
one of Schwarz [ 10], although we have not made 
use of the fact that a Darboux frame exists in which 
p = 1. This is because the existence of such a frame 
is a sufficient but not necessary condition for having 
nilpotency of the operator A v. As we have seen, the 
existence of a coordinate frame with, in the language 
of Ref. [10], p(~b,~b*) = p(~b), also ensures that 
A2p = 0. It is only when leaving this density p(~b) in 
the measure (instead of exponentiating it into a "one- 
loop correction" of the extended action) that the full 
geometric picture discussed in this paper emerges. 
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