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ABSTRACT 

 

 

 

 

The Duchenne Muscular Dystrophy (DMD) is an X-linked disease characterized by 

progressive and accumulative damage in the muscle due to the absence of the dystrophin protein. 

Fibrosis, the excessive accumulation of extracellular matrix (ECM) proteins, is also present in 

the muscle of DMD patients and several animal models (such as the mdx mice), due to 

continuous inflammation in the tissue produced by contraction-relaxation cycles. Among the 

factors that induce fibrosis are Transforming Growth Factor type β (TGF-β) and Connective 

Tissue Growth Factor (CTGF), the latter being a target of the TGF-β/Small Mothers Against 

Decapentaplegic (SMAD) signaling pathway and is the responsible for the profibrotic effects of 

TGF-β and are augmented in fibrosis tissues. Little is known about the regulation of the 

expression of CTGF mediated by TGF-β in muscle cells. In here, we described a novel SMAD 

Binding Element (SBE) located in the 5’ UTR region of the CTGF gene important for the TGF-

β mediated expression of CTGF in myoblasts. In addition, our results suggest that additional 

transcription factor binding sites (TFBS) present in the 5’ UTR of the CTGF gene are important 

for this expression. 

On the other hand, the Tumor Necrosis Factor (TNF) is a potent inflammatory cytokine that 

is present in DMD muscles and is responsible for muscle necrosis and inflammatory cell 
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infiltration in several tissues. In this study, we show that the increased expression of the soluble 

TNF Receptor I (smTNFRI) by electrotransfer (ET) in the tibialis anterior (TA) muscle 

attenuates inflammation, damage and fibrosis in the skeletal muscle of the mdx mice. In 

addition, we found an increase in isolated muscle strength in the mdx mice. Therefore, we 

propose that ET could be used as an efficient anti-TNF therapy for treating muscle dystrophies. 
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RESUMEN  

 

 

 

 

La Distrofia Muscualar de Duchenne (DMD) es una enfermedad ligada al X, que se 

caracteriza por daño progresivo y acumulativo en el músculo debido a la ausencia de la proteína 

distrofina. La fibrosis, que es la excesiva acumulación de proteínas de la matriz extracelular 

(ECM), también está presente en el músculo de pacientes de DMD y varios modelos animales 

(como el ratón mdx), debido a la inflamación continua en el tejido producida por repetidos ciclos 

de contracción y relajación. Entre los factores que indicen fibrosis se encuentran el Factor de 

Crecimiento Transformante tipo β (TGF-β) y el Factor de Crecimiento de Tejido Conectivo 

(CTGF), este último es blanco de la señalización mediada por TGF-β/Small Mothers Against 

Decapentaplegic (SMAD) y es responsable de los efectos profibróticos de TGF-β y está 

aumentado en tejidos fibróticos. Poco se sabe de la regulación de la expresión de CTGF mediada 

por TGF-β en células musculares. Es esta tesis, describimos un nuevo elemento de unión a 

SMAD (SBE) localizado en la región 5’ UTR del gen de CTGF, que es importante para la 

expresión de CTGF mediada por TGF-β en mioblastos. Adicionalmente, nuestros resultados 

sugieren que sitios de unión de factores de transcripción (TFBS) adicional, presentes en la región 

5’ UTR del gen de CTGF son importantes para su expresión. 
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Por otra parte, el Factor de Necrosis Tumoral (TNF) es una potente citoquina inflamatoria 

que está presente en músculos de pacientes con DMD y que es responsable de la necrosis en el 

músculo y de la infiltración de células inflamatorias en distintos tejidos. En esta tesis, 

encontramos que el aumento en la expresión del receptor soluble de TNFR I (smTNFRI) 

mediante la técnica de electrotransferencia (ET) en el músculo tibialis anterior (TA) atenúa la 

inflamación, el daño y la fibrosis en el músculo esquelético del ratón mdx. Adicionalmente, 

encontramos un aumento significativo en la fuerza isométrica en músculo aislado del ratón mdx. 

Por este motivo, proponemos que la ET, podría ser usada como una terapia eficiente contra TNF 

para el tratamiento de distrofias musculares. 
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RÉSUMÉ 

 

 

 

 

La dystrophie musculaire de Duchenne (DMD) est une maladie liée à l'X caractérisée par 

la détérioration progressive et cumulative des muscles en raison de l'absence de la protéine 

dystrophine. Le muscle des patients atteints de DMD ainsi que plusieurs modèles animaux de 

la maladie (comme le souris mdx), présentent également une fibrose, accumulation excessive 

de protéines de la matrice extracellulaire, à cause de l'inflammation continue dans le tissu 

produit par des cycles de contraction et de relaxation. Parmi les facteurs qui induisent la fibrose, 

il y a le Facteur de Croissance de Transformation de type β (TGF-β) et le Facteur de Croissance 

du Tissu Conjonctif (CTGF). Ce dernier est une cible de la voie de signalisation médiée par 

TGF-β/Small Mothers Against Decapentaplegic (SMAD) et est responsable des effets 

profibrotiques de TGF-β, d’où son augmentation dans les tissus de la fibrose. La régulation de 

l'expression de CTGF médiée par TGF-β dans les cellules musculaires est peu connue. Dans ce 

travail, nous avons décrit un nouvel élément de liaison SMAD (SBE) situé dans la région 5’UTR 

du gène de CTGF, important pour l'expression de CTGF médiée par le TGF-β dans des 

myoblastes. De plus, nos résultats suggèrent que les sites de liaison supplémentaires du facteur 

de transcription (TFBS) présents dans le 5’UTR du gène de CTGF sont importants pour cette 

expression. 
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Par ailleurs, le Facteur de Nécrose Tumorale (TNF) est une cytokine inflammatoire 

puissante qui est présente dans les muscles atteints de DMD et est responsable de la nécrose du 

muscle et de l'infiltration de cellules inflammatoires dans plusieurs tissus. Dans cette étude, nous 

montrons que l'augmentation de l’expression du récepteur soluble de TNF I (smTNFRI) par 

électrotransfert (ET) dans le muscle tibialis anterior (TA) de la souris atténue l'inflammation, 

les dommages et la fibrose dans le muscle squelettique des souris mdx. En outre, nous avons 

constaté une augmentation de la force musculaire dans le muscle isolé chez la souris mdx. Par 

conséquent, nous proposons l'ET comme thérapie efficace anti-TNF pour le traitement de 

dystrophies musculaires. 

 

 



 

 

1. INTRODUCTION 

 

 

 

 

The pathophysiological fibrosis is characterized by an excessive accumulation of 

extracellular matrix components (ECM), produced by a cascade of events occurring after a 

tissue injury and resulting in permanent scars formation.  

Fibrosis could alter tissue function and causes chronic diseases in several organs and tissues 

such as kidney, liver, lung, muscle, etc (Wynn, 2008). Despite the wide range of tissues 

susceptible to fibrosis, fibrotic tissues share common features, such as cell degeneration, 

inflammatory cell infiltration, chronic inflammation and proliferation of fibroblast-like cells 

(Serrano et al., 2011). This imbalance is also supported by the production of growth factors, 

proteolytic enzymes, angiogenic factors and fibrogenic cytokines, which together disturb the 

microenvironment of the damaged tissue and stimulate the deposition of connective tissue 

elements that progressively reshape, destroy and replace the normal tissue architecture. 

However, the identity of some cellular factors involved in the fibrogenic pathways is still 

unknown. Therefore, the improvement of our understanding of those factors as well as the 

mechanisms involved in the fibrogenic process is crucial for the development of new and more 

powerful strategies to the treatment of fibrosis-related diseases.  
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1.1 Duchenne muscular dystrophy  

 

The skeletal muscle fibrosis is frequently associated with a clinical and molecular 

heterogeneous group of diseases known as muscular dystrophies. Phenotypically, these diseases 

are characterized by inflammation and weakening of the muscle tissue, which compromises 

patient mobility (Durbeej and Campbell, 2002, Amato and Griggs, 2011). 

Muscular dystrophies are a diverse group of genetic muscular diseases, being Duchenne 

Muscular Distrophy (DMD) the most severe (Shieh, 2013). DMD is an X-linked disease that 

affects between one in 3600 to 6000 live male births (Bushby et al., 2010). Patients with this 

condition gradually show muscle weakness, they require the use of wheelchair in their teens and 

they present orthopedic and respiratory complications that lead to death between the second and 

third decade of life (Bushby et al., 2010). Cardiac involvement is also common, 25% of DMD 

patients show evidence of preclinical cardiomyopathies before their sixth year of age and by the 

time they reach age of 30, almost 100% of the patients have developed some kind of heart 

disease (McNally, 2007). 

At the molecular level, DMD is characterized by a severe reduction or the absence of the 

protein dystrophin (Koenig et al., 1987, Kunkel et al., 1987). The dystrophin gene is about 2500 

Mb, conformed by 86 exons and located in Xp21 (Muntoni et al., 2003). The dystrophin protein 

is 427 kDa in its complete form (there are also shorter isoforms) is expressed in skeletal, cardiac 

muscle and brain, predominantly. Specifically in the muscle, dystrophin is expressed under the 

plasma membrane of muscle fibers (sarcolemma) and it is anchored to the actin cytoskeleton 

and to several transmembrane glycoproteins (dystrophin glycoproteins-associated complex or 

DGAC) through β-dystroglycan (Blake et al., 2002).  Since DGAC also binds to ECM proteins, 
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dystrophin act as a bridge that anchors the muscle fiber cytoskeleton to the extracellular space, 

which brings stability to the muscles fiber during cycles of contraction and relaxation (Ervasti 

and Sonnemann, 2008). The absence of dystrophin, might cause the rupture of the sarcolemma 

of the muscle fiber during contraction (Allen and Whitehead, 2011). Even though dystrophin 

act as a scaffolding protein, it seems that this is not its only function, because it could play a 

role in intracellular signaling through its association with DGAC (Batchelor and Winder, 2006). 

At a cellular level, muscle tissue of DMD patients show evidence of degeneration, 

regeneration, myofiber atrophy, fatty accumulation and necrosis of muscle fibers, inflammation 

and fibrosis (Spencer and Tidball, 2001, Alvarez et al., 2002, Desguerre et al., 2009a, Desguerre 

et al., 2009b, Serrano and Munoz-Canoves, 2010, Zhou and Lu, 2010, Villalta et al., 2011). 

Even in the first biopsies performed by Duchenne and reported in 1868 was described a 

“hyperplasia of the interstitial connective tissue with production of fibrotic tissue, as the main 

anatomical lesion of the muscles in the pseudohypertrophic paralysis” (Tyler, 2003). At early 

stages of the disease, necrotic muscle fibers rise and therefore areas of muscle regeneration 

emerge. Later, after repeated cycles of degeneration a decreased ability of muscle regeneration 

take place together with a chronic inflammatory process and a significant increase of fibrosis 

(Emery, 2002). Excessive ECM proteins in fibrotic conditions also affects the interaction 

between the sarcolemma and the basal lamina (Ervasti, 2007). Several ECM molecules that are 

augmented in the dystrophic muscles of mice and humans have been identified as collagen I and 

III, and fibronectin (Morrison et al., 2000, Wynn, 2008).  

There are several animal models for DMD as the dog, GRMD (golden retriever muscular 

dystrophy), the cat, HFMD (hypertrophic feline muscular dystrophy), and the mouse, mdx (x-

linked muscular dystrophy). Neither of the aforementioned models express dystrophin, but the 
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dog is the model that resembles most to the disease in humans (Blake et al., 2002). However, 

the most studied animal model for DMD is the mdx mouse. This mouse is considered a valid 

genetic model of the disease, since it has a point mutation in exon 23 of dystrophin gene that 

produces a stop codon which cause the absence of the protein in the sarcolemma of muscle fibers 

(Sicinski et al., 1989). Although mdx mice are normal at birth, skeletal muscles undergo an 

extensive process of degeneration between 3-5 postnatal weeks. This acute degeneration phase 

results in an extensive regeneration process with a progressive fibrosis. However, for unknown 

reasons in older animals the muscle regeneration process fails and the mice become extremely 

weak and die earlier than the wild-type (wt) animals (Tanabe et al., 1986, Pastoret and Sebille, 

1995, Caceres et al., 2000).  

Interestingly, mdx mouse histopathology is similar to that observed in DMD patients. 

Moreover, these animals show a progressive atrophy and loss of muscle mass. Due to continuous 

cycles of muscle degeneration and regeneration, mdx mice exhibit an increased variability of 

muscle fiber size, nuclei located in a central position and an increased presence of 

myofibroblasts and inflammatory type of cells (Bulfield et al., 1984, Briguet et al., 2004). 

The fibrotic phenotype in mdx mice is less severe than in DMD patients, mainly in the 

muscles of lower extremities as the tibialis anterior, an effect caused by captivity. However, 

pathological features of mdx diaphragm are more similar to that of DMD limb muscles due to 

the constant movement of this muscle in the breathing process (Stedman et al., 1991, Connolly 

et al., 2001). The muscle damage in the limbs of mdx mice can be accelerated through exercise 

protocols to emulate the DMD phenotype in humans (De Luca et al., 2005, Morales et al., 2013b, 

Cabrera et al., 2014). 
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The excess of ECM components produces muscle dysfunction and contributes to the lethal 

phenotype of this disease (Desguerre et al., 2009b). Although the use of cellular and gene 

therapies that restore dystrophin expression might deliver a cure for DMD, so far there are no 

effective therapies against this disease. Recent studies have shown that decreasing muscle 

fibrosis could represent an effective therapy for DMD (Morales et al., 2013b, Acuna et al., 2014, 

Cabrera et al., 2014). Reducing fibrosis not only improves muscle function but increases the 

process of muscle regeneration (Cohn et al., 2007, Turgeman et al., 2008) and improves cell 

transplant to restore potential dystrophin in the muscle fiber (Cordier et al., 2000, Gargioli et 

al., 2008, Morales et al., 2013b, Cabrera et al., 2014) suggesting that antifibrotic therapies 

combined with cell therapy would have a significant potential in the treating of this disease.  

Therefore understanding the cellular and molecular mechanisms involved in the 

development fibrosis associated with dystrophin deficiency is critical to the development of 

therapies antifibrotic for DMD. 

 

 

1.2 Muscle damage and repair  

 

Regenerative capacity of skeletal muscle depends on a population of cells located under the 

basal lamina of muscle fibers, called satellite cells. In normal conditions, satellite cells are 

mitotically inactive, but in response to stimuli such as stress induced by trauma, they become 

activated and start to proliferate and differentiate to form new fibers or merging to pre-existing 

fibers (Seale and Rudnicki, 2000, Hawke and Garry, 2001, Chen and Goldhamer, 2003). 
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After acute injury, normal muscle repair starts by removing damaged or dead fibers through 

inflammatory cells such as macrophages, and then replacing or repairing the injured tissue 

through satellite cells (Mauro, 1961). In chronic fibrosis cases, including DMD, newly produced 

muscle fibers are susceptible to degeneration because they carry a molecular defect that leads 

to repeated cycles of degeneration and regeneration of the muscle fibers and allows the 

establishment a chronic inflammatory process (Porter et al., 2002). In the muscle of DMD 

patients, this chronic injury leads not only to ECM deposition, but also to a decreased nutrition 

of the muscle fibers (Klingler et al., 2012) and a depletion of the muscle’s satellite cells (Charge 

and Rudnicki, 2004). Yet, cellular and molecular mechanisms that underlie the inflammatory 

process and lead to fibrosis onset and development are still unknown. Therefore, the 

identification of those factors that link both processes is key to the development of new 

therapeutic strategies. 

Macrophages are the main type of inflammatory cells found after muscle injury. In the 

dystrophic muscle, macrophages remove dead cells and also modulate the regeneration process 

(Tidball, 2005). Current evidence suggests that nature, duration and intensity of the 

inflammatory response in damaged muscle critically influences normal muscle repair, while in 

the dystrophy muscle, promotes the formation of fibrotic tissue, particularly during disease 

progression (Tidball, 2005). Interfering the transient inflammatory response induced by an acute 

injury can affect removal of cell debris and therefore the formation of new muscle fibers. 

However, interfering chronic inflammation in muscular dystrophies has a beneficial effect since 

it decreases degeneration and blocks fibrosis progression, thus improving regeneration (Tidball, 

2005). Indeed, several studies have demonstrated that anti-inflammatory agents, acting on 

cytokines (such as TNF and its cellular receptors) and proteins of the pro-inflammatory 
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pathways (such as NF-κB), slow the progression of dystrophy in mdx mice (Pelosi et al., 2007, 

Peterson and Guttridge, 2008, Radley et al., 2008, Cabrera et al., 2014).  

After muscle injury, a heterogeneous population of macrophages playing opposite roles 

have been identified (Arnold et al., 2007). At early stages after a muscle injury, a population of 

macrophages (M1, positive ED-1 (CD68)), producing high levels of pro-inflammatory 

cytokines such as TNF and IL-1β, are found in association to monocytes recruitment and 

removal of necrotic material (Arnold et al., 2007). Later, during advanced stages of the 

regeneration process, a population of anti-inflammatory macrophages (M2C, positive ED-2 

(CD163)) are found in abundance when tissue repair is carrying on (Arnold et al., 2007). Thus, 

pro-inflammatory macrophages might increase myogenic cell proliferation, whereas anti-

inflammatory macrophages could stimulate differentiation, in vitro (Arnold et al., 2007). There 

is an interesting work that uses a co-injection of macrophages and human myoblasts in 

immunodeficient mice. They show that injecting pro-inflammatory macrophages together with 

human myoblasts, enhances the proliferation state of the myoblasts as well as their migration 

and, more importantly, these pro-inflammatory macrophages can switch to an anti-inflammatory 

state in vivo, and then start to stimulate differentiation and muscle regeneration (Bencze et al., 

2012). 
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1.3 Pro-fibrotic and pro-inflammatory cytokines in DMD 

 

Most pro-fibrogenic factors are produced by inflammatory cells infiltrated into the tissue, 

mesenchymal cells, fibroblasts and also by specific cells in the tissue, facilitating the fibrogenic 

paracrine effects and, therefore, perpetuating an inflammation-driven fibrosis. The activation of 

fibroblasts and the expression of ECM components are stimulated by pro-fibrotic cytokines like 

Transforming Growth Factor type β (TGF-β) (Wynn, 2008). 

TGF-β is a potent pro-fibrotic cytokine that contributes to the pathogenesis of several 

fibrotic disorders (Branton and Kopp, 1999), including muscular dystrophies (Bernasconi et al., 

1999). To date, there are three isoforms described for TGF-β (TGF-β1, TGF-β2 and TGF-β3) 

and all of them are synthetized as precursor proteins (Zhou et al., 2006). The canonical TGF-β 

signaling pathway is the following: TGF-β binds to the TGF-β receptor type II (TGFBRII), 

which forms a complex with TGF-β receptor type I (TGFBRI) and causes the phosphorylation 

and activation of TGFBRI, this complex phosphorylates SMAD2/3, which, in turn binds 

SMAD4 (Massague, 1998). In the nucleus, the SMAD proteins recognize the sequence called 

SMAD Binding Element (SBE), first described as 5’-GTCTAGAC-3’ (Zawel et al., 1998). 

Later, it was shown that SMAD complex recognizes the sequence 5’-GTCT-3’ or its 

complement 5’-AGAC-3’, although the optimal binding sequence is thought to be 5-CAGAC-

3’ and, more importantly, the affinity observed of SMAD for this sequence was shown too low 

to be effective alone in vivo (Shi et al., 1998). The short length of the SBE (calculations show 

that it should be present once every 1024 bp in the genome), the low specifity (SMAD1, SMAD3 

and SMAD4 can bind to the SBE) and the low affinity binding of SMAD proteins, suggest that 

additional components should be required for a specific, high-affinity binding of SMAD-
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containing complexes to target genes (Massague and Wotton, 2000, Massague et al., 2005). On 

the other hand, it also has been shown that TGF-β can signal through several additional 

pathways, like the p38 mitogen-activated protein kinase (MAPK), activated ERK, c-abl, JNK, 

among others (Shi and Massague, 2003). These signaling pathways appear to be modifying the 

expression of genes in a selective manner. For example, FAK, JNK and TAK1 are required for 

the differentiation of fibroblasts to a fibrotic phenotype known as myofibroblasts, whose main 

characteristic is its high capacity to synthesize ECM proteins and have contractile activity due 

to expression of alpha smooth muscle actin (α-SMA) (Vaughan et al., 2000, Hinz, 2007). 

TGF-β is present in the muscles of patients with several congenital dystrophies, including 

DMD, and in the mdx diaphragm (Bernasconi et al., 1995, Bernasconi et al., 1999, Zhou et al., 

2006). Moreover, the direct in vivo injection of recombinant TGF-β in the muscle stimulates the 

expression of TGF-β in muscle cells in an autocrine fashion and induces the formation of 

connective tissue in the area of injection (Zhu et al., 2007, Brandan et al., 2008). Interestingly, 

it has been found that TGF-β induces the expression of Connective Tissue Growth Factor 

(CTGF/CCN2) in fibroblasts (Igarashi et al., 1993) and, more importantly, it has been shown 

that the pro-fibrotic effects of TGF-β are CTGF-dependent (Grotendorst, 1997, Leask and 

Abraham, 2004). 

CTGF is a cysteine-rich modular protein belonging to the Cyr61/CTGF/NOV (CCN) family 

of growth factors (Perbal, 2004). CTGF is involved in a number of biological processes 

including differentiation, proliferation (Yosimichi et al., 2001, Grotendorst et al., 2004), 

adhesion (Ball et al., 2003), migration (Gao and Brigstock, 2006), apoptosis (Hishikawa et al., 

1999a, Hishikawa et al., 1999b), ECM production (Frazier et al., 1996), chondrogenesis 

(Ivkovic et al., 2003) and angiogenesis (Babic et al., 1999). One of the main features of CTGF 
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is to be the main inducer of ECM production and therefore of the fibrotic process in a large 

variety of fibrotic diseases (Brigstock, 1999, Leask and Abraham, 2006). Based on studies of 

expression of CTGF during development, it has been suggested that this factor plays a role in 

the formation of cartilage, bone, teeth and maturation of nerve cells (Leask and Abraham, 2003). 

Consistent with this, mice deficient in CTGF die at birth due to alterations in specific production 

of bone matrix, chondrocyte proliferation and ossification of the ribs (Ivkovic et al., 2003). 

Although CTGF is not expressed under normal conditions in most adult tissues, expression of 

this protein can be induced by TGF-β, hepatocyte growth factor (HGF), vascular endothelial 

growth factor (VEGF), angiotensin II, glucocorticoid, endothelin-1 and hypoxia, among other 

stimuli (Leask and Abraham, 2006, Leask, 2009).  

To date, a specific high-affinity receptor for CTGF has not been identified, but it is known 

that some of its functions, such as adhesion and migration, requires the presence of integrins 

and heparan sulfate proteoglycans (Babic et al., 1999, Ball et al., 2003, Gao et al., 2004). CTGF 

also interacts with low density lipoproteins-related receptor (LRP-1) through which it would be 

internalized and degraded via endosomes (Segarini et al., 2001). We have also shown that 

Decorin interacts with CTGF and inhibits its pro-fibrotic activity (Vial et al., 2011, Brandan and 

Gutierrez, 2013). 

CTGF levels correlate with the degree and severity of fibrosis in many fibrotic tissues. 

Some of them include skin disorders such as systemic sclerosis and keloids (Igarashi et al., 

1993), atherosclerotic lesions (Oemar et al., 1997), pulmonary fibrosis (Lasky et al., 1998), renal 

fibrosis (Ito et al., 1998), chronic pancreatitis (di Mola et al., 1999) and liver fibrosis (Paradis 

et al., 1999). In addition, CTGF is increased in the muscle tissue of patients with different 

dystrophies, including DMD (Sun et al., 2008), and in the mdx mice (Cabello-Verrugio et al., 
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2012a, Morales et al., 2013b). Additionally, we found that the exogenous increase of CTGF in 

the muscle of wild type mice led to a decrease in muscle strength and an increase in the 

expression of ECM proteins (Morales et al., 2011). Also, we have previously shown that TGF-

β induces CTGF mRNA and protein expression, and also that CTGF itself reduces 

differentiation markers in myoblasts, like desmin and MyoD along with an increase in FN 

accumulation (Vial et al., 2008). Furthermore, in another previous work, we showed that 

reducing CTGF expression or blocking CTGF function in mdx mice, slowed down the 

progression of the dystrophic phenotype, seen as an increase in muscle strength, a reduction in 

the deposition of ECM proteins and, more important, led to a better response to muscle stem 

cell therapy in treated mdx mice (Morales et al., 2013b). These findings confirm that CTGF is 

an attractive target for antifibrotic therapy, so it is essential to understand how its expression is 

regulated, particularly in muscle cells. 

The first attempt to study the regulation of CTGF by TGF-β, was done by Grotendorst et 

al. where they identified a TGF-β response element, using a 900 bp fragment of the CTGF 

promoter controlling the expression of the luciferine gene in human skin fibroblasts 

(Grotendorst et al., 1996). When we tested this promoter in myoblasts cells in response to TGF-

β, we found a weak induction of luciferase, but that it was surprisingly low compared to our 

observation of the mRNA induction by Northern blot analysis (Vial et al., 2008). One 

explanation for this difference is that in myoblasts, there are additional transcription factor 

binding sites (TFBS) that are required for the induction of CTGF by TGF-β. A TGF-β response 

element was described to control the TGF-β mediated expression of CTGF in fibroblasts 

(Grotendorst et al., 1996) and a SBE (Holmes et al., 2001), however, the full 5’ UTR region was 

not included in these studies. Also, several other transcription factors have been described to 
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contribute to the TGF-β mediated expression of CTGF: SP1 in scleroderma fibroblasts (Holmes 

et al., 2003), MAPKs and PKC in mesangial cells (Chen et al., 2002) and fibroblasts (Leask et 

al., 2003); and AP-1 in keloid fibroblasts (Xia et al., 2007) and nucleus pulposus (Tran et al., 

2010). 

Regarding inflammation, Tumor necrosis factor (TNF) is a potent inflammatory cytokine 

that increases when myofibers are damaged, it is expressed in myoblasts and myotubes (Collins 

and Grounds, 2001) and it is also increased in the plasma levels of DMD patients (Porreca et 

al., 1999). TNF is mainly produced by macrophages, and also by a variety of other tissues 

including lymphoid cells, mast cells, endothelial cells, fibroblasts and neuronal tissue (Wajant 

et al., 2003). TNF is produced mainly as a transmembrane proteins which is cleaved by the 

metalloprotease TNF-converting enzyme, then, TNF acts as a homotrimer that binds to the TNF 

Receptors to exert its effects (Grell, 1995, Wajant et al., 2003). The TNF receptor I (TNFRI), 

which is ubiquitously expressed, or the TNF receptor II, which is mostly inducible and present 

in endothelia and hematopoietic cells (Tracey et al., 2008). More importantly, TNFRI has been 

recognized as the main TNFR responsible for the initiation of the inflammatory response 

(Loetscher et al., 1993, van der Poll et al., 1996). In addition, soluble versions of the TNF 

receptors (sTNFR) occurs naturally and might have a role in the modulation of the TNF 

inflammatory response (Engelmann et al., 1990, Nophar et al., 1990, Seckinger et al., 1990). 

Also, the levels of sTNFRs in serum increase with several pathological conditions (Aderka et 

al., 1991, Cope et al., 1992, Diez-Ruiz et al., 1995, Torre-Amione et al., 1996, Thevenon et al., 

2010). 

We have previously shown that by expressing a chimeric protein composed of the sTNFRI 

receptor coupled with the Fc fragment of IgG1 by electrotransfer (ET) in skeletal muscle, is 
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effective for the treatment of rheumatoid arthritis in a mouse model (Bloquel et al., 2004) and 

uveitis in a rat model (Bloquel et al., 2006). Therefore, these data suggests that the expression 

of sTNFRI by ET might be used as an efficient anti-TNF therapy for treating muscle dystrophies. 

 

 

1.4 Muscle dystrophy therapies   

 

A study performed on twenty five DMD patients, showed that among several pathological 

features, including myofibrillar atrophy, necrosis and replacement by fatty tissue, only fibrosis 

observed in biopsies from early stages of disease correlates to poor muscle strength and results 

in age-related progressive muscle weakening (Emery, 2002). This finding supports the idea that 

fibrosis directly contributes to progressive muscle dysfunction that leads to dead in DMD 

patients.  

Treatment of DMD patients involves corticosteroids (prednisone) administration, which 

partially improves muscular strength and extends the ability to walk in the early years, but 

eventually produces undesirable side effects (Angelini, 2007). Until now, there are not effective 

treatments to combat fibrosis in DMD.  

Among the therapies assayed for DMD treatment, there are gene therapies including to 

reverse gene mutations that prevent the proper expression of dystrophin, the use of 

overexpression vectors, as well as attempts at exon-skipping (Lu et al., 2011, Adkin et al., 2012) 

to generate functional dystrophin protein isoforms. Furthermore, there have been cellular 

therapies using different cells with myogenic potential, several reports shows that cells derived 

from bone marrow have been used (Mafi et al., 2011), satellite cells (Cerletti et al., 2008, Sacco 
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et al., 2008), pericytes (Peault et al., 2007), muscle-derived stem cells (Qu-Petersen et al., 2002) 

and mesangioblasts (Sampaolesi et al., 2006). However, the effectiveness of these approaches 

is still a problem. Furthermore, the amount of target tissue for these interventions and an excess 

in connective tissue and ECM impose a physical barrier, which could impair the efficacies of 

these therapies (Muir and Chamberlain, 2009). In this context, several issues have been observed 

in cell therapies for DMD. First, the injected cells are distributed locally, which means that a 

patient must perform multiple injections to treat a complete muscle (Huard et al., 1992). Second, 

an immune response against injected satellite cells has been found even in the case of 

coincidence between the major histocompatibility complexes, therefore new therapies should 

consider an inhibition of the inflammatory response that eventually caused the death of most 

satellite cells during the first 72 hours after the injection (Fan et al., 1996, Guerette et al., 1997). 

On the other hand, the efficiency of transplanted cells can be increased by using cells with 

myogenic potential overexpressing metalloproteinase MMP-9 (Gargioli et al., 2008), belonging 

to a proteolytic family of enzymes that have multiple ECM components as substrates (Woessner, 

1991). This suggests that cells that have the capacity to degrade the ECM become more 

migratory and have better distribution in the dystrophic muscle. 

Antagonism to TGF-β signaling by a variety of strategies have been shown to inhibit 

fibrosis and enhance muscle regeneration in several experimental models. However, no agent 

has shown the ability to reduce fibrosis once formed. For example, direct immunomodulation 

of TGF-β inhibited the accumulation of connective tissue (Isaka et al., 2000, Denton et al., 2007) 

and progression of fibrosis in the diaphragm of mdx mice, but increased significantly 

inflammation (Andreetta et al., 2006). These data suggest a strong relationship between fibrosis 

and inflammation, so therapies that inhibits inflammation and decrease fibrosis could improve 
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cell-based therapies in DMD. We have shown before that decreasing fibrosis has a beneficial 

effect in cell based therapies (Morales et al., 2013b, Cabrera et al., 2014). 

Several anti-TNF therapies are in use for the treatment of rheumatoid arthritis using a 

recombinant versions of sTNFRII or blocking antibodies (Thalayasingam and Isaacs, 2011) and 

also, a pegylated form of sTNFRI has been used with good results reducing renal fibrosis 

(Therrien et al., 2012). Two of those therapies have been used in relation to muscle dystrophy. 

Enbrel® (etanercept), a chimeric protein of the STNFRII with the Fc fragment of human IgG, 

has been used to successfully protect dystrophic muscle from inflammatory damage in the mdx 

mice (Nemoto et al., 2011) and Remicade® (infliximab), an anti-TNF antibody, has also been 

used and shown to reduce muscle fiber necrosis in dystrophic mice (Grounds and Torrisi, 2004). 

In addition, a modification of the infliximab antibody, cV1q, has been used to reduce damage 

and necrosis in muscles of wt and mdx mice (Radley et al., 2008, Piers et al., 2011). All these 

therapies rely on the production of purified proteins, which can be expensive and the successful 

treatment require repetitive injections. Gene therapy offers many advantages compared to 

recombinant protein therapies, such as low cost, good quantity and long-term production of the 

required protein with a single procedure and little secondary effects. We have previously shown 

that by expressing a chimeric protein composed of the sTNFRI receptor coupled with the Fc 

fragment of IgG1 by electrotransfer (ET) in skeletal muscle, has been proven effective for the 

treatment of rheumatoid arthritis in a mouse model (Bloquel et al., 2004) and uveitis in a rat 

model (Bloquel et al., 2006). Therefore, these data shows that the expression of sTNFRI by ET 

might be used as an efficient anti-TNF therapy for treating muscle dystrophies. 

At this point, we have described a very complex scenario showing that pro-fibrotic and pro-

inflammatory cytokines are present in the muscles of DMD patients and in the mdx mice, which 



16 
 

can be inducing fibrosis. As CTGF has been shown as the growth factor responsible for many 

of the pro-fibrotic effects of TGF-β, it appear as an attractive target for therapy design in DMD 

and to study its expression in the skeletal muscle. On the other hand, by using the TA muscle as 

a biofactory for producing a blocking agent for TNF, might be a novel and efficient way to 

reduce inflammation and fibrosis in the skeletal muscle of the mdx mice and inflammation-

related pathologies. 

 

1.5 Hypothesis and Objectives.  

 

Hypothesis 1:  

Novel transcription factor binding sites control TGF-β mediated CTGF expression in C2C12 

myoblasts. 

General Objective 1:  

To study the transcriptional regulation of CTGF in C2C12 myoblasts. 

Specific Objectives 1:  

 To identify the regions of the CTGF promoter that are relevant for the TGF-β mediated 

expression of CTGF in C2C12 myoblasts by the use of deletion mutants of a vector carrying 

5kb of the murine CTGF promoter. 

 To analyze TFBS that participate in the transcriptional regulation of CTGF mediated by TGF-

β in C2C12 myoblasts by site-directed mutagenesis. 
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Hypothesis 2:  

Using the TA muscle for producing sTNFRI will block inflammation and reduce damage and 

fibrosis in the dystrophic muscle. 

General Objective 2:  

To evaluate the role of TNF in the onset and progression of fibrosis in the dystrophic muscle of 

the mdx mice. 

Specific Objective 2:  

 To evaluate the blockage of TNF by the expression of soluble TNF receptor I in the TA 

muscle of the mdx mice and its relationship with the onset and progression of fibrosis. 
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2. CHAPTER I 

 

 

 

 

The results presented in the next section were obtained to accomplish the Objective 1, 

previously described. 

The manuscript presented below, was submitted in August 2014 to Journal of Cellular 

Biochemistry (Manuscript ID: JCB-14-0445). 
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Abstract 

Fibrotic disorders are characterized by an increase in extracellular matrix protein expression and 

deposition, being Duchene Muscular Dystrophy one of them. Among the factors that induce 

fibrosis are Transforming Growth Factor type β (TGF-β) and Connective Tissue Growth Factor 

(CTGF), the latter being a target of the TGF-β/SMAD signaling pathway and is the responsible 

for the profibrotic effects of TGF-β. CTGF and TGF-both cytokines are increased in tissues 

affected by fibrosis but little is known about the regulation of the expression of CTGF mediated 

by TGF-β in muscle cells. In here, we described a novel SMAD Binding Element (SBE) located 

in the 5’ UTR region of the CTGF gene important for the TGF-β mediated expression of CTGF 

in myoblasts. In addition, our results suggest that additional transcription factor binding sites 

(TFBS) present in the 5’ UTR of the CTGF gene are important for this expression. 

 

Keywords: Fibrosis, CTGF/CCN2, skeletal muscle, Duchenne Muscular Dystrophy, TGF-beta, 

SMAD. 

 

Introduction 

The main feature of fibrotic disorders is the increased expression and accumulation of 

extracellular matrix (ECM) proteins, like fibronectin and collagen. These disorders are found in 

several tissues, like the kidney (Ito et al. 1998), liver (Paradis et al. 2002), lung (Lasky et al. 

1998) and heart (Lang et al. 2008). In Duchenne Muscular Dystrophy (DMD), an X-linked 

recessive disease, characterized by a severe and progressive muscle loss, fibrosis is also 

observed (Blake et al. 2002). Fibrosis is the result of chronic inflammatory reactions induced by 

tissue injury, among other factors (Wynn 2008). In the muscle of DMD patients, this chronic 
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injury leads not only to ECM deposition, but also to a decreased nutrition of the muscle fibers 

(Klingler et al. 2012) and a depletion of the muscle’s satellite cells (Charge et al. 2004). Fibrosis 

is also observed in DMD animal models including the mdx mice (Bulfield et al. 1984, Stedman 

et al. 1991, Caceres et al. 2000, Passerini et al. 2002). 

Among the factors that contribute to fibrosis, one of the most important is transforming growth 

factor type β (TGF-β), which augmented expression has been described in the muscles of 

patients with several congenital dystrophies, including DMD, and in the mdx diaphragm 

(Bernasconi et al. 1995, Bernasconi et al. 1999, Zhou et al. 2006). The canonical TGF-β 

signaling pathway is the following: TGF-β binds to the TGF-β receptor type II (TGFBRII), 

which forms a complex with TGF-β receptor type I (TGFBRI) and causes the phosphorylation 

and activation of TGFBRI, this complex phosphorylates SMAD2/3, which, in turn binds 

SMAD4 (Massague 1998). In the nucleus, the SMAD proteins recognize the sequence called 

SMAD Binding Element (SBE), first described as 5’-GTCTAGAC-3’ (Zawel et al. 1998). Later, 

it was shown that SMAD complex recognize the sequence 5’-GTCT-3’ or its complement 5’-

AGAC-3’, although the optimal binding sequence is thought to be 5-CAGAC-3’ and, more 

importantly, the affinity observed of SMAD for this sequence was shown too low to be effective 

in vivo (Shi et al. 1998). The short length of the SBE (calculations show that is should be present 

once every 1024 bp in the genome), the low specifity (SMAD1, SMAD3 and SMAD4 can bind 

to the SBE) and the low affinity binding of SMAD proteins, suggest that additional components 

should be required for a specific, high-affinity binding of SMAD-containing complexes to target 

genes (Massague et al. 2000, Massague et al. 2005). It has been found that TGF-β induces the 

expression of connective tissue growth factor (CTGF/CCN2) in fibroblasts (Igarashi et al. 1993) 
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and, more important, the pro-fibrotic effects of TGF-β are CTGF-dependent (Grotendorst 1997, 

Leask et al. 2004). 

CTGF is a member of the CCN family of proteins. CTGF is a secreted protein involved in many 

physiological processes, including adhesion, angiogenesis, migration, tissue repair and bone 

formation (reviewed in (Leask et al. 2006)). In pathological conditions, it has been described to 

participate in cancer progression (reviewed in (Chu et al. 2008, Dhar et al. 2010)), it’s been 

proposed to have a central role in fibrosis in several tissues (reviewed in (Lipson et al. 2012, 

Leask 2013)) and, importantly, to be required for the onset of fibrosis in vivo (Li et al. 2006, Liu 

et al. 2011). 

CTGF is increased in the muscle tissue of patients with different dystrophies, including DMD 

(Sun et al. 2008), and mdx (Cabello-Verrugio et al. 2012, Morales et al. 2013). Additionally, we 

found that the exogenous increase of CTGF in the muscle of wild type mice led to a decrease in 

muscle strength and an increase in the expression of ECM proteins (Morales et al. 2011). We 

have previously shown that TGF-β induces CTGF mRNA and protein expression, and also that 

CTGF itself reduces differentiation markers in myoblasts, like desmin and MyoD along with an 

increase in fibronectin accumulation (Vial et al. 2008). Furthermore, in another previous work 

we showed that reducing CTGF expression or blocking CTGF function in mdx mice, slowed 

down the progression of the dystrophic phenotype, seen as an increase on muscle strength, a 

reduction in the deposition of ECM proteins and, more important, led to a better response to 

muscle stem cell therapy in treated mdx mice (Morales et al. 2013). These findings confirm that 

CTGF is a very interesting target for antifibrotic therapy, so it is essential to understand how its 

expression is regulated, particularly in muscle cells. 
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A TGF-β response element was described to control the TGF-β mediated expression of CTGF 

in fibroblasts (Grotendorst et al. 1996) and a SBE (Holmes et al. 2001), however, the full 5’ 

UTR region was not included in these studies. Also, several other transcription factors have 

been described to contribute to the TGF-β mediated expression of CTGF: SP1 in scleroderma 

fibroblasts (Holmes et al. 2003), MAPKs and PKC in mesangial cells (Chen et al. 2002) and 

fibroblasts (Leask et al. 2003); and AP-1 in keloid fibroblasts (Xia et al. 2007) and nucleus 

pulposus (Tran et al. 2010). 

In this work, we describe a novel SBE located in the 5’ UTR region of the murine CTGF gene 

that regulates the expression of CTGF induced by TGF-β in C2C12 myoblast cell line. 

 

Materials and Methods 

Cell culture 

C2C12 mouse myoblast cells were acquired from the American Type Culture Collection and 

were grown in DMEM culture medium (Life Technologies) with 10% Fetal Bovine Serum 

(FBS, HyClone) and Penicillin-Streptomycin (Life technologies) in a culture chamber at 37°C, 

5% CO2 and controlled humidity. This cell line correspond to a subcloning made by Blau et al 

(Blau et al. 1985) from the myoblast cell line produced by Yaffe et al (Yaffe et al. 1977). These 

myoblasts have the capability of differentiate and fuse, forming contractile myotubes in 

differentiation conditions as described (Larrain et al. 1997). 

Animals 

C57BL/6JRj animals (Charles River) were kept in temperature and humidity controlled facility, 

and had free access to water and food until they were used for study at 8 weeks of age. All 

protocols were conducted in strict accordance and with the formal approval of the Animal Ethics 
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Committee of the Pontificia Universidad Católica de Chile and following the Paris Descartes 

Ethics Committee recommendations. 

Transfections and luciferase reporter assay 

C2C12 cells were plated on 24-well plates 24 hours prior to the transfection procedure, until 60-

70% confluence was reached. Plates were rinsed with PBS and medium was replaced with Opti-

MEM (Life Technologies). Later, cells were incubated with the different plasmid constructions, 

Lipofectamine and PLUS Reagent in Opti-MEM according to the manufacturer protocol (Life 

Technologies) for 4 hours. At that point, FBS was added to reach a final concentration of 10% 

and cells were cultured for 3 hours. The cells were then serum-starved for 12-14 hours and 10 

ng/mL TGF-β (R&D systems) or vehicle was then added to the culture and incubated for further 

24 hours and cells were lysed and assayed with Dual-Luciferase Reporter Assay System 

according to manufacturer instructions (Promega). pRL-SV40 (Promega) plasmid was used as 

internal transfection control and pBluescript II (Agilent) plasmid was used to normalized the 

amount of DNA transfected in each well. Light emission of luciferase and renilla was measured 

with Mithras LB 940 Multimode Microplate Reader (Berthold). 

CTGF promoter cloning and plasmid construction 

To clone the promoter of CTGF, we used was the BAC RP24-346F6 (Access number 

BH044826, from Children's Hospital Oakland Research Institute, CHORI) as template, which 

is part of a genomic library constructed from the spleen and brain of C57BL6/J mice. Using Pfu 

polymerase (Fermentas) and a standard PCR protocol, we cloned a 5091 bp fragment (ranging 

from -4872 to +219 of the CTGF gene) into the pGL3 vector (Promega) that includes the full 5’ 

UTR region of the CTGF gene and it was fully sequenced in both strands with primer walking 

procedure, Genbank accession number KF905227. In addition, all the deletion mutants were 
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constructed using PCR in the same way as the full plasmid and sequenced. The pCTGF-0.9 

vector was kindly donated by A. Leask (Abraham et al. 2000). 

Site-directed mutagenesis 

Site-directed mutagenesis was performed with QuikChange II Site-Directed Mutagenesis Kit 

(Stratagene) according to manufacturer protocol. Primer used for mutations were designed with 

QuikChange Primer Design online software (Stratagene). For SBE mutation, 5'-CCG CCT GGA 

GCG TCC AAA AAC CAA CCT CCG C-3' and 5'-GCG GAG GTT GGT TTT TGG ACG 

CTC CAG GCG G-3' primers were used, bases used for mutations are underlined and correct 

mutations were confirmed by sequencing. 

Electrotransfer procedure and in vivo luciferase activity 

C57BL6/J animals of 8 weeks of age were anesthetized by intraperitoneal injection of 0.3 ml of 

a mix of ketamine (100 mg/kg, Chlorkétam, Vétoquinol, Paris, France) and xylazine (10 mg/kg, 

Rompun, Bayer Santé, Puteaux, France) in 0.9% NaCl sterile solution. Hind legs were shaved 

and 30 µg of plasmid diluted in 40 µL of saline, or saline alone, were injected into tibialis 

anterior muscle of both legs. Then, the muscle was coated with conductive gel (Eko-gel,  

Eurocamina, Italy) to ensure electrical contact and two homemade stainless steel external plate 

electrodes were placed about 5mm apart at each side of the leg. Eight transcutaneous pulses of 

200 V/cm and 20 ms were then applied at a frequency of 4 Hz with a square pulse electroporator 

(Sphergen, Evry, France). To measure luciferase activity in vivo after electrotransfer, mice were 

anesthetized and 10 mg/mL luciferine solution (Synchem) in sterile saline was injected 

intraperitonealy. Optical imaging was performed as described elsewere (Bloquel et al. 2006). 

Briefly, luminescence was detected using a cooled GaAs intensified charge-coupled device 

(ICCD) camera (Photon-Imager; Biospace, Paris, France). Distance from the lens to the mouse 
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was of 30 cm. Operating temperature was set at -25°C. Duration of luminescence acquisition 

was 120s and was initiated 3 minutes after injection of the substrate. 

In silico analysis of the CTGF promoter 

The promoter sequence of CTGF was analyzed using the MatInspector tool (Quandt et al. 1995, 

Cartharius et al. 2005) and Transfac® vertebrate database version 7.0. 

 

Results 

CTGF promoter expression and analysis in myoblasts and skeletal muscle 

The first attempt to study the regulation of CTGF by TGF-β, was done by Grotendorst et al. 

where they identified a TGF-β response element, using a 900 bp fragment of the CTGF promoter 

controlling the expression of the luciferase gene in human skin fibroblasts (Grotendorst et al. 

1996). When we tested this promoter (in here called pCTGF-0.9) in myoblasts cells in response 

to TGF-β, we found a weak induction of luciferase, this induction was surprisingly low 

compared to our observation of the important TGF-β mediated induction of CTGF mRNA seen 

in the same cell line by Northern blot analysis (Vial et al. 2008). One explanation for this 

difference is that in myoblasts, there are additional transcription factor binding sites (TFBS) that 

are required for the induction of CTGF by TGF-β present in more distal regions of the CTGF 

promoter or in the 5’ UTR of the CTGF gene. To test this hypothesis, we cloned a 5091 bp 

fragment of the murine CTGF promoter, ranging from -4972 to +219 of the CTGF gene, in the 

pGL3 vector and we conducted luciferase assays in myoblasts to test its response to TGF-β. We 

found that the vector carrying the larger fragment of the CTGF promoter (pmCTGF-5.1) shows 

an increased response to TGF-β than the vector carrying the shorter fragment (pCTGF-0.9) 
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(Figure 1). This result suggests that there are other TFBS that might have a role in the TGFβ-

mediated expression of CTGF in myoblast cell line. 

Next, we wanted to know if the pmCTGF-5.1 construct could be expressed in skeletal muscle. 

For that purpose, we electroporated the pmCTGF-5.1 plasmid in tibialis anterior muscle of 

C57BL/6JRj mice and we measured the expression of luciferase in vivo. We found that the 

pmCTGF-5.1 plasmid shows an increased expression in the muscle than the empty vector 

(pGL3) from day 1 to day 7 post electrotransfer (ET) (Figure 2A and 2B). The control situations, 

saline injection and injection of plasmids without electrical pulses, showed no detectable 

luminescence (data not shown). These results suggest that the CTGF gene could be 

transcriptionally activated in mature muscle fibers. 

 

CTGF promoter in silico analysis 

In order to elucidate which TFBS could be responsible for the TGF-β mediated expression of 

CTGF in myoblasts, we used the MatInspector tool in order to identify the TFBS present in the 

CTGF promoter with special focus on those related to TGFβ. The analysis, showed 1250 

putative TFBS, including several sites related to TGF-β. The TFBS of importance for TGF-

β/SMAD are summarized in Table 1: eight AP-1 sites were found, together with ten SP1 sites 

and four SBEs. A TATA-box (-38 to -32) was also recognized in the CTGF gene. 

 

The 5’ UTR region of the CTGF gene bears elements of transcriptional regulation in 

response to TGF-β 

To analyze which TFBS are responsible for the expression of CTGF in response to TGF-β, we 

constructed deletion mutants by PCR as shown in Figure 3 and we conducted reporter assays on 
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myoblasts. As shown in Figure 4, all the deletion mutants showed a significant decrease in the 

activation mediated by TGF-β and no additional decrease was found between the deletion 

mutants, suggesting that the region comprised between -4872 and -4578 of the CTGF promoter 

region carries regulatory elements that could be controlling the TGF-β mediated expression of 

CTGF in myoblasts. This region has several putative TFBS that could account for the decrease 

in transcriptional activation of the CTGF promoter when deleted and we chose to test the AP-1 

site (tctgAATCatg) located in -4834 to -4824 (Table 1), because it has been shown that AP-1 

transcription factors could act synergically with SMAD3 to promote gene expression 

(Verrecchia et al. 2001, Sundqvist et al. 2013, Bai et al. 2014). The mutation of the AP-1 site 

showed no decrease of the reporter gene expression (Supplementary Figure 1A and 1B) 

suggesting that the AP-1 site is not involved in the TGF-β mediated expression of CTGF. 

Further analyses are required in order to comprehend how this region regulates the expression 

of the CTGF gene in myoblasts. 

The bioinformatical analysis also showed the presence of a SBE in the 5’ UTR region of the 

CTGF promoter (Table 1). Therefore, we first decided to construct a deletion mutant of 

pmCTGF-5.1 that lacks most of the 5’ UTR region of the CTGF gene (Figure 5A). The deletion 

of the 5’ UTR region of the CTGF gene showed a significant reduction on the TGF-β mediated 

CTGF expression (Figure 5B), suggesting that there are relevant TFBS that are responsible for 

the induction of the CTGF gene expression by TGF-β. 

 

A SBE in the 5’UTR of the CTGF gene is important for the induction of CTGF by TGF-β 

In the 5’ UTR of the CTGF gene, there is a SBE (Table 1, 121 to 129) that could be important 

for the induction of CTGF by TGF-β in myoblasts. To test this hypothesis, we mutated the SBE 
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changing the important nucleotides in the sequence (Figure 6A) and performed reporter assays 

of the constructs. As seen in Figure 6B, there is a significant reduction in the expression of the 

reporter gene when the SBE is mutated, suggesting that this sequence is important for the 

transcriptional control of CTGF expression by TGF-β in myoblasts. It is important to notice that 

the mutation on the SBE reduced the expression of the reporter gene expression by 32% (Figure 

6B), whereas the deletion of the 5’ UTR reduced the expression by 67% (Figure 5B). This 

suggests that there are additional TFBS that are important in the TGF-β mediated expression of 

CTGF. Further experiments will be required in order to fully understand the mechanisms 

involved in this process in myoblasts. 

 

Discussion 

CTGF plays a central role in the onset and maintenance of fibrosis in the skeletal muscle. 

Exogenous increase of CTGF in the muscle of wild type mice can induce augmented 

extracellular matrix components and decrease isometric force in the muscle, all features of 

dystrophic pathologies (Morales et al. 2011). Interestingly, returning of CTGF expression to 

normal levels, led to a reversion of the fibrotic phenotype (Morales et al. 2011), showing that 

therapies against fibrotic pathologies could be successful even when the disease is already 

present. Also, reducing CTGF levels slowed down the progression of muscular dystrophy in the 

mdx mice and led to an increase in cell therapy (Morales et al. 2013).  

There are compiling evidence showing that the muscle fiber might be an important source for 

CTGF production in the dystrophic context. Usually, CTGF is not expressed in the normal state 

of the muscle but CTGF levels increase importantly when damage and inflammation are present, 

and under pathological conditions (Cabello-Verrugio et al. 2012). TGF-β is increased in the 
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muscles of DMD patients (Bernasconi et al. 1995) and those of several dystrophic mice (Onofre-

Oliveira et al. 2012). Moreover, CTGF also contributes to an increase in TGF-β binding to its 

receptors and an increase in TGF-β signaling (Abreu et al. 2002). It has also been shown that 

CTGF and TGF-β act cooperatively to elicit a fibrotic tissue response (Wang et al. 2011). In the 

mdx mice, TGF-β expression seems to be originated in areas populated by inflammatory cells 

and regenerating fibers (Zhou et al. 2006). This correlates with the fact that CTGF is expressed 

in the endomysium and regenerating fibers of human dystrophic patients (Sun et al. 2008) and, 

as we showed in here, that CTGF promoter can be activated in the skeletal muscle of mice.  

However, the induction of CTGF mediated by TGF-β in muscle cells has not been extensively 

studied. We have previously shown that TGF-β can induce the expression of CTGF in myoblast 

and C2C12-derived myotubes (Vial et al. 2008), this has been also found in rat L6-derived 

myotubes (Maeda et al. 2005), so it is of particular interest to characterize the regulation of the 

expression of CTGF in myoblasts, myotubes and skeletal muscle. Further analyses will be 

required in order to fully comprehend how CTGF expression is regulated in muscle cells. 

In this paper, we found a novel SMAD Binding Element in the 5’ UTR of the CTGF gene that 

is important for the TGF-β mediated expression of CTGF in myoblasts. In addition, we showed 

that the 5’ UTR might have additional TFBS important for CTGF expression in myoblasts. The 

full 5’ UTR region was not included in previous studies regarding TGF-β mediated CTGF 

expression (Chen et al. 2002, Holmes et al. 2003, Leask et al. 2003, Xia et al. 2007, Tran et al. 

2010) and our bioinformatical analysis shows the presence of several TFBS that could be acting 

together with the SBE described in this paper for the TGF-β mediated CTGF expression in 

myoblasts. It is known that SBEs alone are not strong enough to confer TGF-β inducibility, due 

to SMADs low binding affinity to this site (Massague et al. 2005), this might be the reason why 
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we couldn’t immunoprecipitate SMAD3 in the CTGF promoter when we analyzed the novel 

SBE located in the 5’ UTR (data not shown). Due to the possible interaction of SMAD3 with 

other factors and the formation of a bigger transcriptional complex, the SMAD3 protein might 

have not been exposed within the complex to allow the recognition by the antibody during the 

ChIP procedure. Within the 5’ UTR region that confers TGF-β induction to the reporter gene, 

we found several TFBS that could be acting together with the SBE in the 5’ UTR of CTGF gene. 

Among these TFBSs, a SP1 site which is located in very close proximity to the SBE (131 to 

145) and could be evaluated for the TGF-β induction of CTGF, as the SP1 factors are reported 

to be acting together with SMADs proteins to enhance transcription (Botella et al. 2009, Lu et 

al. 2010, Fausther et al. 2012). 

Our data also indicates that an upstream region (-4872 and -4578) of the CTGF promoter is 

involved in TGF-β mediated expression of CTGF and that the AP-1 site located in this region 

would not be involved with this induction. Between the TFBSs found in this region, there are 

two TCF/LEF (-4810 to -4794 and -4721 to -4705) sites that could be implicated in the 

expression of CTGF. Interestingly, several experimental evidences show a cross-talk between 

Wnt and TGF-β signaling, and Wnt pathway has been proposed as a novel therapeutical target 

for fibrotic disorders (reviewed in (Cisternas et al. 2014)). 

The GTGTCAAGGGGTC element described first as a TGF-β response element (Grotendorst 

et al. 1996) and later named BCE-1 (Chen et al. 2002), was recognized as a RXR heterodimer 

and Nuclear receptor subfamily 2 factors binding site in our bioinformatical analysis (-160 to -

148). This site was recognized by Retinoic Acid Receptor/Retinoid X Receptor (RAR/RXR) 

heterodimers and was important for All-trans retinoic acid (ATRA) mediated expression of 

CTGF in fibroblasts (Fadloun et al. 2008). In addition, ATRA therapy Induces myositis in 
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leukemia patients (van Der Vliet et al. 2000, Pecker et al. 2014), suggesting that ATRA might 

have a role in inflammation in the muscle. On the other hand, in activated and hence, fibrogenic 

hepatic stellate cells that participates in hepatic fibrosis, the levels of RAR and RXR were 

diminished, together with lower concentration of RXR/RAR activators (Ohata et al. 1997) and, 

in another study, several agonists of RAR and RXR produced a decrease in the expression of 

fibrotic proteins (Hellemans et al. 2004). ATRA was also found to reduce the expression of 

TGF-β and CTGF in scleroderma fibroblasts (Xiao et al. 2011). Moreover, ATRA has been 

reported to reduce TGF-β expression and signaling in lung fibrosis (Song et al. 2013) and 

mesangial cells (Han et al. 2014). Taken together, this evidence shows that the effect of retinoic 

acid in fibrosis is not yet clear (reviewed in (Zhou et al. 2012)) but it could be an interesting 

approach to explore its effect in CTGF and TGF-β  expression and signaling in muscular 

fibrosis. 

Recently, it has been shown a fibrotic effect of CTGF in the absence of TGF-β signaling in liver 

fibrosis (Sakai et al. 2014). This evidence shows the relevance of CTGF in fibrotic disorders 

and that, other signaling pathways, besides TGF-β/SMAD signaling, are involved in CTGF 

expression. Therefore, the study of the precise regulation of CTGF expression can be helpful to 

understand the mechanisms of the onset and progression of fibrosis in different tissues. 
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Figure 1 

 

Figure 1: Induction of pmCTGF-5.1 vector in myoblasts. C2C12 cells were transfected with 

pCTGF-0.9 and pmCTGF-5.1 vectors in 24-well plates in triplicate. The graph shows fold 

induction of TGF-β versus control (Ctrl, vehicle), mean with SEM (n=3). ***P<0.0001 Mann-

Whitney t test. 
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Figure 2 

 

Figure 2: Induction of pmCTGF-5.1 in Tibialis anterior muscle in mice. A. Representative 

photograph of luciferine luminescence in mice muscle electroporated with pGL3 and pmCTGF-

5.1. B. Quantification of luminescence in the muscle of mice electroporated with pGL3 and 

pmCTGF-5.1, each muscle electroporated with the respective plasmids was measured for 120 

s. The graph shows mean with SEM (n=6). *P<0.05, **P<0.01 and ***P<0.001 2way ANOVA 

test. 
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Figure 3 

 

Figure 3: Deletion mutants of CTGF promoter region. Schematic representation of the 

deletion mutants cloned in pGL3 vector to conduct reporter assays. The promoter region is 

shown in blue whereas the 5’UTR of the CTGF gene is shown in red. The numbers indicate the 

position of the bases related to transcription start. 
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Figure 4 

 

Figure 4: Reporter assay of the deletion mutants of CTGF promoter region. The level of 

expression of each reporter plasmid is related to the level of expression of the full length plasmid 

(pmCTGF-5.1). The grapsh shows mean with SEM (n=3). ***P<0.0001 Mann-Whitney t test. 
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Figure 5 

 

Figure 5: Deletion mutant of the 5’ UTR of CTGF promoter. A. Schematic representation 

of the deletion mutants cloned in pGL3 vector to conduct reporter assays. The promoter region 

is shown in blue whereas the 5’UTR of the CTGF gene is shown in red. The numbers indicate 

the position of the bases related to transcription start. B. The level of expression of the deletion 

mutant is related to the level of expression of the full length plasmid (pmCTGF-5.1). The graph 

shows mean with SEM (n=4). *P<0.05 Mann-Whitney t test. 
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Figure 6 

 

Figure 6: Mutation on the SBE of the 5’UTR of pmCTGF-5.1. A. The sequence of the wild 

type (AP-1) and mutated AP-1 element (mut AP-1). Mutated nucleotides are shown in red. B. 

The level of expression of the mutated reporter plasmid is related to the level of expression of 

the full length plasmid (pmCTGF-5.1). The graph shows mean with SEM (n=4). *P<0.05 Mann-

Whitney t test. 
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Table 1: Putative Transcription Factor Binding Sites related to TGF-β in the CTGF 

promoter.  

Detailed Family Information 
Position 

Strand Sequence 
from to 

AP1, Activating protein 1 -4834 -4824 (+) tctgAATCatg 

GC-Box factors SP1/GC -4469 -4455 (+) ctGGGGtgtgttcat 

GC-Box factors SP1/GC -4362 -4348 (-) ctttggagGGACtaa 

GC-Box factors SP1/GC -3735 -3721 (-) gcgGGGCagggggcg

AP1, Activating protein 1 -3532 -3522 (+) tttgAGTCacg 

Vertebrate SMAD family of transcription factors -3380 -3372 (+) aGTCTggtc 

AP1, Activating protein 1 -2998 -2988 (+) gctGAGTcatt 

GC-Box factors SP1/GC -2847 -2833 (-) gaAGGGtgtgtgaca 

Vertebrate SMAD family of transcription factors -2816 -2808 (+) tGTCTgtat 

AP1, Activating protein 1 -2292 -2282 (-) attGAGTaact 

GC-Box factors SP1/GC -2251 -2237 (-) aggGGGCaggctcag 

AP1, Activating protein 1 -2080 -2070 (-) aatGAGTgagg 

GC-Box factors SP1/GC -1665 -1651 (-) ggtgGGAGggggtaa 

Vertebrate SMAD family of transcription factors -1307 -1299 (-) tGTCTgtct 

GC-Box factors SP1/GC -954 -940 (-) ttGGGGtttgttctg 

GC-Box factors SP1/GC -27 -13 (-) ggcGGGCggcgctgg

Vertebrate SMAD family of transcription factors 121 129 (-) tGTCTggac 

GC-Box factors SP1/GC 131 145 (-) cagGGGCggaggttg 

 

5091 pb of the CTGF promoter was analyzed using MatInspector tool. The TFBS present in this 

region related to TGF-β are shown. Capital letters corresponds to the core sequence and red 

letters have a conservation value (ci-Value) in the matrix higher than 60. Position is relative to 

the initiation of transcription. 
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Supplementary Figure 1 

 

Supplementary Figure 1: Mutation on the AP-1 site of pmCTGF-5.1. A. The sequence of 

the wild type (AP-1) and mutated AP-1 element (mut AP-1). Mutated nucleotides are shown in 

red. B. The level of expression of the mutated reporter plasmid is related to the level of 

expression of the full length plasmid (pmCTGF-5.1). The graph shows mean with SEM (n=3). 

Mann-Whitney t test was used. For AP-1 mutation, 5'-GAG TAT TCT AGT TAC GTT GAT 

CAA ATA AAA TCA GCA CCA TGT GTT TGA ATA ACA AAA GAA ACA AAG CAC-3' 

and 5'-GTG CTT TGT TTC TTT TGT TAT TCA AAC ACA TGG TGC TGA TTT TAT TTG 

ATC AAC GTA ACT AGA ATA CTC-3' primers were used, bases used for mutations are 

underlined. Mutations were confirmed by sequencing.  
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3. CHAPTER II 

 

 

 

 

The results presented in the next section were obtained to accomplish the Objective 2, 

previously described. 

The manuscript presented below, will be submitted to Clinical Science.  
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Abstract 

The Duchenne Muscular Dystrophy (DMD) is an X-linked disease characterized by progressive 

and accumulative damage in the muscle due to the absence of the dystrophin protein. Fibrosis 

is also present in the muscle of DMD patients and several animal models, due to continuous 

inflammation in the tissue produced by contraction-relaxation cycles. TNF is a potent 

inflammatory cytokine that is present in DMD muscles and is responsible for muscle necrosis 

and inflammatory cell infiltration in several tissues. In this study, we show that the increased 

expression of sTNFRI in dystrophic mice by electrotransfer (ET) in mouse tibialis anterior (TA) 

attenuates inflammation, damage and fibrosis in the skeletal muscle of the mdx mice. In 

addition, we found an increase in isolated muscle strength in the mdx mice. Therefore, we 

propose that ET could be used as an efficient anti-TNF therapy for treating muscle dystrophies. 

 

Keywords: TNF, TNF receptor, Muscular Dystrophy, Fibrosis, Muscle Strength, Muscle 

Therapy 

  

Introduction 

Muscular dystrophies are a diverse group of genetic muscular diseases, being Duchenne 

Muscular Distrophy (DMD) the most severe (Shieh, 2013). DMD is an X-linked disease that 

affects between one in 3600 to 6000 live male births (Bushby et al., 2010). It is characterized 

by the absence of the protein dystrophin (Koenig et al., 1987; Kunkel et al., 1987), that acts as 

an anchor between the actin cytoskeleton and the basal lamina of the muscle fiber (Ervasti and 

Sonnemann, 2008). This absence might cause the rupture of the sarcolemma of the muscle fiber 

during contraction (Allen and Whitehead, 2011). Thus, children with this condition will 
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gradually show muscle weakness, they will require the use of wheelchair in their teens and they 

will present cardiac, orthopedic and respiratory complications that will lead to death between 

the second and third decade of life (Bushby et al., 2010). At the moment, there is no cure or 

efficient therapy for this disease. 

Pathological features of DMD includes myofiber atrophy, fatty accumulation, degeneration and 

necrosis of muscle fibers, elevated creatine kinase levels, inflammation and fibrosis (Alvarez et 

al., 2002; Desguerre et al., 2009a; Desguerre et al., 2009b; Serrano and Munoz-Canoves, 2010; 

Spencer and Tidball, 2001; Villalta et al., 2011; Zhou and Lu, 2010). Fibrosis is the increased 

expression and accumulation of Extracellular Matrix (ECM) proteins, like collagen and 

fibronectin; and it is the results of chronic inflammation induced by repetitive injury in a tissue, 

among other factors (Wynn, 2008). Fibrosis is also observed in DMD animal models including 

the mdx mice (Bulfield et al., 1984; Caceres et al., 2000; Passerini et al., 2002; Stedman et al., 

1991). In addition, we have previously showed that decreasing fibrosis leads to a better response 

to muscle stem cell therapy in treated mdx mice, a murine model for DMD (Morales et al., 

2013b). These data suggests that interfering with fibrosis onset by reducing inflammation, might 

be useful for stem cell based therapies in DMD. 

Tumor necrosis factor (TNF) is a potent inflammatory cytokine that increases when myofibers 

are damaged, it is expressed in myoblasts and myotubes (Collins and Grounds, 2001) and it is 

increased in the plasma levels of DMD patients (Porreca et al., 1999). TNF acts as a homotrimer 

that binds to the TNF Receptors to exert its effects. The TNF receptor I (TNFRI), which is 

ubiquitously expressed, or the TNF receptor II, which is mostly inducible and present in 

endothelia and hematopoietic cells (Tracey et al., 2008). More importantly, TNFRI has been 

recognized as the main TNFR responsible for the initiation of the inflammatory response 
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(Loetscher et al., 1993; van der Poll et al., 1996). Unlike TNFRII, TNFRI bears an intracellular 

Death Domain (DD) close to the C-terminal end of the protein (Tartaglia et al., 1993). The 

binding of TNF to TNFRI can trigger the formation of two different TNFRI signaling 

complexes, while Complex I leads to anti-apoptotic effects and pro-inflammatory events, the 

formation of Complex II leads to apoptosis signaling (Ihnatko and Kubes, 2007; Micheau and 

Tschopp, 2003). After TNFRI activation, the TRADD adaptor protein interacts with the TNFRI 

DD and, subsequently, allows the interactions with several adaptor proteins such as TRAF2, 

cIAP1, cIAP2 and RIP1 forming the Complex I, which, in turn, activates several signaling 

pathways that will lead to NF-κB and AP-1 transcription factors activation (Aggarwal et al., 

1996; Chen et al., 2008; Hsu et al., 1996; Mahoney et al., 2008; Micheau and Tschopp, 2003). 

On the other hand, the formation of complex II or death inducing signaling complex (DISC), 

requires the internalization of the TNFRI after complex I is formed transiently and then TNFRI 

interacts with FADD and caspase 8/10 to initiate apoptosis (Micheau and Tschopp, 2003). In 

addition, soluble versions of the TNF receptors (sTNFR) occurs naturally and might have a role 

in the modulation of the TNF response (Engelmann et al., 1990; Nophar et al., 1990; Seckinger 

et al., 1990). Also, the levels of sTNFRs in serum increase with several pathological conditions 

(Aderka et al., 1991; Cope et al., 1992; Diez-Ruiz et al., 1995; Thevenon et al., 2010; Torre-

Amione et al., 1996). 

There are reports that shows that TNF might have an anti-fibrotic effect: reduces the expression 

of collagen I (Verrecchia and Mauviel, 2004), suppresses transforming growth factor type β 

(TGF-β) signaling, and important pro-fibrotic cytokine (Yu et al., 2009) and reduces the 

expression of connective tissue growth factor (CTGF), a fibrotic effector of TGF-β (Laug et al., 

2012). But, on the other hand, there are also numerous reports that support the notion that 
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reducing inflammation by the inhibition of TNF signaling, has a largely beneficial effect that 

results in less damage and, therefore, less fibrosis. TNF and its receptors are required for fibrosis 

onset in lung (Liu et al., 1998; Piguet et al., 1990a), TNF increases fibroblast proliferation 

necrosis in the dermis (Piguet et al., 1990b), also enhances the activation of pro-fibrotic 

fibroblasts (Camara and Jarai, 2010) and can lead to an induction of TGF-β (Sullivan et al., 

2005). 

Several anti-TNF therapies are in use for the treatment of rheumatoid arthritis using a 

recombinant version of sTNFRII or blocking antibodies (Thalayasingam and Isaacs, 2011) and 

also, a pegylated form of sTNFRI has been used with good results reducing renal fibrosis 

(Therrien et al., 2012), but they all rely on the production of purified proteins, which can be 

expensive and require repetitive injections. Gene therapy offers many advantages compared to 

recombinant protein therapies, such as low cost, good quantity and long-term production of the 

required protein with a single procedure and little secondary effects. We have previously shown 

that by expressing a chimeric protein composed of the sTNFRI receptor coupled with the Fc 

fragment of IgG1 by electrotransfer (ET) in skeletal muscle, has been proven effective for the 

treatment of rheumatoid arthritis in a mouse model (Bloquel et al., 2004) and uveitis in a rat 

model (Bloquel et al., 2006). 

In this study, we show that the increased expression of sNTFRI in the mdx mice, the murine 

model of DMD by the ET in mouse tibialis anterior (TA) of mouse sTNFRI-IgG1 chimera 

encoding plasmid attenuates inflammation, damage and fibrosis in the skeletal muscle of the 

mdx mice. In addition, we found an increase in isolated muscle strength in the mdx mice. 

Therefore, showing that ET might be used as an efficient anti-TNF therapy for treating muscle 

dystrophies and other inflammation related pathologies. 
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Materials and Methods 

Animal handling, electrotransfer and experimental exercise 

C57BL/10ScSnJ and C57BL/10ScSn-Dmdmdx/J strain mice (The Jackson Laboratory, USA) 

were kept in a facility with controlled temperature and humidity and had free access to water 

and food until they were used for study at 8 weeks of age. For ET, animals were anesthetized 

using isofluorane gas, hind legs were shaved, and 30 µg of empty plasmid or soluble TNF 

Receptor I plasmid diluted in 40 µL of saline, were injected into TA muscle of the left leg. Then, 

the muscle was coated with conductive gel to ensure electrical contact and two platinum external 

plate electrodes (7mm Tweezertrodes, BTX, Harvard Apparatus, USA) were placed about 5mm 

apart at each side of the leg. Eight transcutaneous pulses of 180 V/cm and 20 ms were then 

applied at a frequency of 4 Hz with an ECM 830 square pulse electroporator (BTX Harvard 

Apparatus, USA). Serum was collected by retro orbital blood extraction in anesthetized mice 

and used for measuring soluble TNF Receptor I expression with Mouse TNF RI/TNFRSF1A 

DuoSet ELISA kit (R&D Systems, USA). Ten session of forced experimental exercise was 

made by using a treadmill three times per week for 30 minutes; each session was carried at a 

velocity of 12 m/min and started at day 7 post-ET. The animals were euthanatized and 

contralateral TA or diaphragm muscles were removed for analysis. All protocols were 

conducted in strict accordance and with the formal approval of the Animal Ethics Committee of 

the Pontificia Universidad Católica de Chile and following the Paris Descartes Ethics 

Committee recommendations. 

Skeletal muscle histology 

Muscle architecture and histology were analyzed by hematoxylin-eosin staining (H&E) of 

transverse sections of muscle as described elsewhere (Cabello-Verrugio et al., 2012). 
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Immunoblot analysis 

Muscles were homogenized in 10 volumes of Tris-EDTA buffer with 1 mM PMSF as described 

previously (Morales et al., 2011). Briefly, protein concentration of muscle extract was 

determined using the BCA protein assay kit (Pierce, USA) and 50µg of the samples were 

subjected to SDS-PAGE 10% polyacrylamide gels, transferred onto PVDF membranes 

(Schleicher & Schuell, USA), and probed with specific antibodies against fibronectin (Sigma, 

USA) and tubulin (Sigma, USA) as described previously (Morales et al., 2013b). All 

immunoreactions were visualized using an enhanced chemiluminescence kit (Pierce, USA). 

Densitometric analysis and quantification were performed using ImageJ software (NIH, USA). 

Immunofluorescence microscopy 

Cryosections of 7 µm were fixed in 4% paraformaldehyde and blocked for 1 hour in 10% BSA 

and incubated for 1 hour at room temperature with specific antibodies against fibronectin 

(Sigma, USA) and F4/80 (Abcam, USA). FITC-conjugated goat anti rabbit IgG and rabbit anti 

mouse IgG (Invitrogen, USA) were used as secondary antibodies. Nuclear staining was achieved 

by incubating the muscle sections with 1 μg/ml Hoechst 33258 in PBS for 10 min (Morales et 

al., 2013b). The coverslips were mounted using Fluoromount (Dako, USA) and observed under 

a Nikon Diaphot inverted microscope equipped for epifluorescence. Area of fluorescence was 

measured in the photographs of randomly found loci of degeneration/regeneration in the 

cryosections of muscles treated with anti-F4/80 antibodies and then measuring the area 

corresponding to positive fluorescence using ImageJ software (NIH, USA). 

Contractile Properties of Isolated Muscle 

The isometric force of isolated muscles was measured as described previously (Morales et al., 

2013b). Briefly, optimum muscle length (Lo) and stimulation voltage were determined from 
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micromanipulation of muscle length to produce maximum isometric twitch force. Maximum 

isometric tetanic force (Po) was determined from the plateau of the frequency-force relationship 

after successive stimulations at 1 to 200 Hz for 450 ms, with 2-minute rests between stimuli. 

After functional testing, muscles were removed from the bath, trimmed of their tendons and any 

adhering non-muscle tissue, blotted once on filter paper and weighed. Muscle mass and Lo were 

used to calculate specific net force (force normalized per total muscle fiber cross-sectional area 

(CSA), mN/mm2)(Morales et al., 2013b). 

  

Results 

Expression of smTNFRI improves histological features of tibialis anterior muscle in the 

mdx mice 

We wanted to use the TA muscle as a biofactory to produce the chimeric protein made from the 

murine soluble TNF receptor I (smTNFRI) and the Fc fragment of the murine IgG1 in order to 

get a systemic anti-TNF therapy. Our first goal was to assay the expression of the smTNFRI 

chimeric protein in sedentary mdx mice or in mdx mice subjected to forced exercise using a 

treadmill to induce muscle damage and inflammation. For this, we ET the plasmids containing 

the smTNFRI-IgG1 chimera and an empty vector as a control in the tibialis anterior (TA) 

muscles of mdx mice and we determined the concentration of smTNFRI in the serum at different 

days post-ET. We found a strong expression of the smTNFRI in animals electroporated with the 

coding plasmid (smTNFRI) as compared with the animals electrotransfered with empty vector 

(Ctrl) which show a basal expression of the endogenous soluble receptor (Figure 1). 

Next we wanted to know whether the expression of smTNFRI improved the histological features 

of the mdx muscle. We wanted to evaluate the systemic effects of smTNFRI, for that reason, 
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we ET the left muscle of mice and used the contralateral muscle for the analyses. The mdx 

muscle shows the typical features of the dystrophy phenotype (Figure 2): the heterogeneous size 

of muscle fibers, the central nuclei and the foci of degeneration and regeneration with the 

infiltration of inflammatory cells (arrows). The number and size of these foci are increased by 

the damage induced by exercise (Sedentary vs Exercised, Figure 2) and are greatly reduced by 

the expression of smTNFRI (Control vs smTNFRI). These could be caused by a decreased in 

the necrosis of muscle fibers and the inhibition of inflammatory cell infiltration caused by the 

blockage of TNF by smTNFRI. 

 

Blockage of TNF with smTNFRI expression changes muscle architecture and reduces 

inflammatory cell infiltration in the tibialis anterior muscle of exercised mdx mice 

Given that we found the largest histological differences between exercised mdx mice treated 

with smTNFRI vs Control mice, we wanted to evaluate the difference in the accumulation of 

fibronectin (FN) and the presence of macrophages in muscle cryosections of these groups. For 

that purpose, we performed an indirect immunofluorescence to visualize FN as a marker of 

fibrosis and F4/80 as a marker of macrophages. We found that the production of smTNFRI 

reduces the fluorescence of fibronectin in the TA muscle of mdx mice (Figure 3A), but it does 

not decrease the amount of FN protein (Figure 3B and 3C). On the other hand, we found lesser 

amounts of macrophage infiltration in the muscle sections (Figure 4A and 4B). These results 

shows that blocking TNF action by ET improves muscle architecture and reduces infiltration of 

inflammatory cells in the TA muscle of the mdx mice. 
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Expression of smTNFRI increased muscle strength in tibialis anterior muscle of the mdx 

mice 

Next, we wanted to know if the amelioration of the histological features of the mdx muscle has 

an effect in muscle strength. For this, we measured isometric force in isolated TA muscles of 

mdx mice. We found that muscles from mice treated with smTNFRI showed a significant 

increase in isometric force compared to control mice (Figure 5A), reaching the strength level of 

the wt mice (Figure 5A and 5B). These results show that the amelioration of the histological 

features of the TA muscle is associated with an increase in muscle performance. 

 

Electrotransfer of smTNFRI also reduces fibrotic features in diaphragm muscle of the 

mdx mice 

We were also interested in studying the effect of the expression of the smTNFRI in the TA has 

an effect on other muscles. The diaphragm muscle is in constant cycles of contraction and 

relaxation and the contractile force continuously damages it during respiration. For this reason, 

the histology of the diaphragm muscle shows more damage than any other muscle in the body 

(Figure 6, control) but it still shows a slightly better histology when the mice has been 

electrotransferred with smTNFRI (Figure 6,  smTNFRI) and shows a decrease in the deposition 

of fibronectin (Figure 7). This improvement in the histology and reductions of fibronectin in the 

muscle is accompanied with a minor, non-significative, increase in strength (Figure 8). These 

data suggest that the treatment with smTNFRI improves diaphragm histology and reduces 

fibronectin, a marker of fibrosis. 
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Discussion 

There are many different approaches directed to develop effective therapies to treat DMD. We 

have worked mainly in aiming our efforts in dimishing fibrosis, because this is one of the main 

sources of the failure of cell based therapies (Morales et al., 2013b). We have demonstrated that 

diverse targets can reduce fibrosis and ameliorate muscle function, such as reducing the amount 

of CTGF (Morales et al., 2013b), targeting some members of the Renin-Angiotensin system 

(Acuna et al., 2014; Morales et al., 2013a) and by using andrographolide, a botanic drug, to 

inhibit NF-κB (Cabrera et al., 2014) with very good results in mice. In here, we have shown that 

electroporation of the soluble TNF receptor I Improves several features of the distrophic 

muscles. Another group used a similar approach with very good results preventing injury in 

radiation-Induced lung fibrosis, using a two injections protocol of a plasmid coding for 

smTNFRI and transfected skeletal muscle of mice with polyetylenimine (Przybyszewska et al., 

2011). Comparing both methods, ET seems to be more effective, since ET can achieve 50 times 

higher serum levels of smTNFRI using only one injection, probably due to a higher efficiency 

of plasmid transfer to muscle fibers. 

First, we showed that the systemic production of smtNFRI chimera produces a beneficial effect 

in the TA muscle, improving muscle architecture and reducing inflammation and, more 

importantly, increasing the strength of the TA mdx muscle to levels indistinguishable from wt 

TA muscle. In the TA muscle, the treatment with smTNFRI was able to prevent the onset of 

fibrosis, since, at the time of the beginning of the treatment, the TA muscle only shows minor 

damage. This might be the reason why we did not find a decrease in FN levels. As the muscle 

is not fibrotic yet, we were able to improve muscle architecture, seen as a decrease in the space 

between the muscle fibers. 
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A different scenario occurs in the diaphragm muscle, as this muscle shows an advance degree 

of damage and fibrosis. Even though we are able to ameliorate muscle histology and fibrosis in 

the diaphragm of mdx muscle, we only found a small increase tendency in muscle strength but 

it was significantly lower than that of wt diaphragm. This could be explained by the constant 

contraction/relaxation cycles that the diaphragm muscle has to endure during the mice life. We 

believe that better results could be achieved by starting the treatment in younger animals or with 

longer periods of treatment, in order to be able to rescue the damage induced by the continuous 

use of the diaphragm muscle for respiration. At least, we were able to stop the progression of 

fibrosis and muscle damage in the diaphragm muscle of mdx mice. 

There are five anti-TNF therapies approved for the treatment of rheumatoid arthritis 

(Thalayasingam and Isaacs, 2011), two of them has been used to protect inflammatory damage 

in the muscle. Enbrel® (etanercept), a chimeric protein of the soluble TNF receptor II with the 

Fc fragment of human IgG, has been used to successfully to protect dystrophic muscle from 

inflammatory damage in the mdx mice (Nemoto et al., 2011) and Remicade® (infliximab), an 

anti-TNF antibody, has also been used and shown to reduce muscle fiber necrosis in dystrophic 

mice (Grounds and Torrisi, 2004). In addition, a modification of the infliximab antibody, cV1q, 

has been used to reduce damage and necrosis in muscles of wt and mdx mice (Piers et al., 2011; 

Radley et al., 2008). Although successful, these systemic anti-TNF therapies have risen some 

concerns regarding the apparition of side effects in human patients (Desai and Furst, 2006; Jain 

and Singh, 2013; Rosenblum and Amital, 2011), like malignancies (Cohen and Dittrich, 2001), 

lupus (Williams et al., 2009), dermatological adverse reactions (Mocci et al., 2013), instertitial 

lung disease (Perez-Alvarez et al., 2011) and infections (Besada, 2011; Komano et al., 2011). 

Also, there is a recent study showing that infliximab (cV1q) therapy on mdx mice shows 
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negative effects on cardiac function (Ermolova et al., 2014). Taken together, this evidence 

suggests that anti-TNF systemic treatments should be taken with extreme caution in order to 

avoid secondary effects.  

Even though the ET therapy we use in this study is systemic, titration of the amount of plasmid 

used for ET could be used in order to minimize the quantity of smTNFRI released to the serum 

while maintaining a higher local dose in the muscle. In a model of uveitis, we have previously 

shown that a therapeutic effect can be achieved locally without any detection of sTNFRI in 

serum, reducing the possibility of systemic secondary effects (Bloquel et al., 2006). Therefore, 

more studies should be carried out in order to achieve the local and systemic effect of sTNFRI 

without the dangers of secondary effect due to high sTNFRI levels in the serum. Another 

advantage of ET therapy is that it avoids repeated injections needed with the purified protein or 

antibody treatments. 

There are several studies that show that ET therapies could be used to treat numerous 

pathologies with low risk of secondary effects (Rochard et al., 2011; Trollet et al., 2006). Also, 

inducible promoters can be used in order to achieve the desired concentration of the protein 

produced, locally and/or systemically. In addition, there are more than 80 clinical trials in 

different stages using ET, which shows an increased interest in using ET to treat different 

diseases like keloids, cancer, HIV, among others (clinicaltrials.org). 

In conclusion, in this study we show that ET of smTNFRI in the muscle could be used as an 

effective therapy for the treatment of DMD and other inflammatory diseases. Although more 

studies are needed in order to evaluate the desired levels of smTNFRI in the serum, in order to 

avoid secondary effects that could be produced by sistemic anti-TNF therapy. 
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Figure 1 

 

Figure 1: Expression of soluble TNF Receptor I in the serum of mdx mice. Tibialis anterior 

muscle of mdx mice was electrotransferred with empty vector (ctrl) of one coding for smTNFRI-

IgG1 (smTNFRI). Each group was separated in two groups, one group was subjected to 

voluntary exercise (Exer) and one was sedentary (Sed). Every few days serum was collected 

and TNFRI concentration was measured, for a minimum of 3 animals for each day to a 

maximum of 5 animals. Grapf shows mean plus SEM. 2way ANOVA with Bonferroni post test 

was used (*, p<0.05). 
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Figure 2 

 

Figure 2: Expression of smTNFRI improves histological features in tibialis anterior 

muscles of mdx mice. Cryosections of contralateral tibialis anterior muscles of each group of 

mdx mice were treated for H&E staining and photographed (Bar=50µm). A representative 

photograph for each condition are shown (n=6). 
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Figure 3 

 

Figure 3: Expression of smTNFRI ameliorates TA muscle architecture. A. Cryosections of 

muscles from animals exercised and electrotransferred with empty vector (Ctrl) or smTNFRI-

IgG1 encoding plasmid were stained for fibronectin and Hoechst 33258 and photographed. 

Photographs are representative of n=6 animals. Bar 100µm. B. Control (lanes 1-4) and 

smTNFRI treated (lanes 5-9) muscle extracts were analyzed by western blotting to detect 

fibronectin (FN) and tubulin (loading control). B. Relative expression of fibronectin in muscle 

extracts. C. Graph shown mean plus SEM, t test analysis was used. 
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Figure 4 

 

Figure 4:  Expression of smTNFRI decreases macrophage infiltration in TA mdx muscle. 

A. Cryosections of muscles from animals exercised and electrotransferred with empty vector 

(Ctrl) or smTNFRI-IgG1 encoding plasmid were stained for F4/80 and Hoechst 33258 and 

photographed. Photograph are representative of n=6 animals. Bar 50µm. B. Two or three 

photographs were taken randomly in the muscle cryosections of control and treated animals, and 

area (AU=Arbitrary Units) positive for immunofluorescence was measured with ImageJ 

software. Graph shows mean plus SEM, t test was used (*** p<0.0001). 
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Figure 5 

 

Figure 5: TNF blockage by the expression of smTNFRI augments the strength in the 

tibialis anterior muscle of the mdx mice. A. Isolated tibialis anterior muscles isolated from 

wilt type mice (WT), sedentary mdx mice (Sed), exercised mdx mice (Exer), electrotransferred 

with empty vector (Ctrl) and electrotransferred with smTNFRI-IgG1 coding plasmid 

(smTNFRI) were subjected to different frequency stimuli to assay isometric force. Graphic 

shows mean plus SEM (WT, n=3; Sed Ctrl, n=4; Sed smTNFRI, n=3; Exer Ctrl, n=3 and Exer 

smTNFRI, n=5). B. An example of the strength of the different groups of mdx mice stimulated 

at 50 Hz. Graph shows mean plus SEM, 2way ANOVA with Bonferroni post test (*** p<0.001). 
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Figure 6 

 

Figure 6: Amelioration of diaphragm histology in the mdx mice. Cryosections of Diaphragm 

muscles of each group of mdx mice were treated for H&E staining and photographed (Bar 

100µm). A representative photograph for each condition are shown (control, n=4; smTNFRI, 

n=5). 
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Figure 7 

 

Figure 7: Reduction of fibronectin accumulation in diaphragm of mdx mice. A. Control 

(lanes 1-4) and smTNFRI treated (lanes 5-9) muscle extracts were analyzed by western blotting 

to detect fibronectin (FN) and tubulin (loading control). B. Relative expression of fibronectin in 

muscle extracts. Graph shown mean plus SEM, t test analysis was used (*** p<0.001). 
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Figure 8 

 

Figure 8: Diaphragm strength of wt, control and smTNFRI treated mdx mice. Isolated 

diaphragm muscles isolated from wilt type mice (WT), sedentary mdx mice (Sed), exercised 

mdx mice (Exer), electrotransferred with empty vector (Ctrl) and electrotransferred with 

smTNFRI-IgG1 coding plasmid (smTNFRI) were subjected to different frequency stimuli to 

assay isometric force. Graphic shows mean plus SEM (WT, n=6, Ctrl, n=4 and smTNFRI, n=4). 
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4. DISCUSSION 

 

 

 

 

In this thesis, we have shown a vast, complex and interlaced scenario between several 

important pro-fibrotic and pro-inflammatory cytokines that play major roles in the onset and 

progression of fibrosis in DMD and that could participate in many other fibrotic or 

inflammatory-related pathologies. 

There are many different approaches directed to develop effective therapies to treat DMD. 

Despite the strong relationship between TGF-β and the development of fibrosis, therapies 

targeted to block the activity of this factor are ineffective due to the adverse effects of the 

inhibition of TGF-β. Mice lacking TGF-β show a severe autoimmune and inflammatory 

phenotype (Crowe et al., 2000) and an increase in tumorigenesis (Tang et al., 1999). 

Our lab has worked mainly in directing our efforts to diminishing fibrosis, because this is 

one of the main sources for failure of cell based therapies (Morales et al., 2013b). We have 

demonstrated that diverse targets can reduce fibrosis and ameliorate muscle function, such as 

reducing the amount of connective tissue growth factor (CTGF/CCN2) (Morales et al., 2013b), 

targeting some members of the Renin-Angiotensin system (Morales et al., 2013a, Acuna et al., 

2014) and by using andrographolide, a botanical drug, to inhibit NF-κB (Cabrera et al., 2014) 

with very good results in mdx mice. 
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4.1 CTGF expression and transcriptional regulation 

 

CTGF plays a central role in the onset and maintenance of fibrosis in the skeletal muscle. 

Exogenous increase of CTGF in the muscle of wild type mice can induce augmented 

extracellular matrix components and decreased isometric force in the muscle, all features of 

dystrophic pathologies (Morales et al., 2011). Interestingly, returning of CTGF expression to 

normal levels, led to a reversion of the fibrotic phenotype (Morales et al., 2011), showing that 

therapies against fibrotic pathologies could be successful even when fibrotic features are already 

present. Also, reducing CTGF levels slowed down the progression of muscular dystrophy in the 

mdx mice and led to an increase in cell therapy (Morales et al., 2013b).  

There are compiling evidence showing that the muscle fiber might be an important source 

for CTGF production in the dystrophic context. Usually, CTGF is not expressed in the normal 

state of the muscle but CTGF levels increase importantly when damage and inflammation are 

present, and under pathological conditions (Cabello-Verrugio et al., 2012b). TGF-β is increased 

in the muscles of DMD patients (Bernasconi et al., 1995) and those of several dystrophic mice 

(Onofre-Oliveira et al., 2012). Moreover, CTGF contributes to an increase in TGF-β binding to 

its receptors and to increase TGF-β signaling (Abreu et al., 2002). It has also been shown that 

CTGF and TGF-β act cooperatively to elicit a fibrotic tissue response (Wang et al., 2011). In 

the mdx mice, TGF-β expression seems to be originated in areas populated by inflammatory 

cells and regenerating fibers (Zhou et al., 2006). This correlates with the fact that CTGF is 

expressed in the endomysium and regenerating fibers of human dystrophic patients (Sun et al., 

2008) and, as we showed in this thesis, the CTGF promoter can be activated in the skeletal 

muscle of mice.  However, the induction of CTGF mediated by TGF-β in muscle cells has not 
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been extensively studied. We have previously shown that TGF-β can induce the expression of 

CTGF in myoblasts and C2C12-derived myotubes (Vial et al., 2008). This has been also found 

in rat L6-derived myotubes (Maeda et al., 2005), so it is of particular interest to characterize the 

regulation of CTGF expression in myoblasts, myotubes and skeletal muscle. In addition, in 

muscle derived stem cells TGF-β increased the expression of CTGF and collagen I and III, and, 

interestingly, this increase in collagen by TGF-β was partially inhibited by the use of a CTGF 

blocking antibody (Chen et al., 2013). Also, in a mouse model of HIV infection, TGF-β, CTGF 

and collagen I levels were increased in the muscle (Kusko et al., 2012). Exercise also has been 

shown to induce CTGF expression in the muscle (Kivela et al., 2007) and Lysophosphatidic 

Acid (LPA) increases CTGF expression in C2C12 myoblasts, requiring the activation of JNK 

signaling (Cabello-Verrugio et al., 2011). Also, the inhibition of Angiotensin-converting 

enzyme, decreases fibrosis and CTGF expression in the mdx mice (Acuna et al., 2014). Further 

studies are required in order to understand how CTGF expression is regulated in muscle cells. 

In this thesis, we found a novel SMAD Binding Element in the 5’ UTR of the CTGF gene 

that is important for the TGF-β mediated expression of CTGF in myoblasts. In addition, we 

showed that the 5’ UTR might have additional TFBS important for CTGF expression in 

myoblasts. The full 5’ UTR region was not included in previous studies regarding TGF-β 

mediated CTGF expression (Chen et al., 2002, Holmes et al., 2003, Leask et al., 2003, Xia et 

al., 2007, Tran et al., 2010) and our bioinformatical analysis shows the presence of several TFBS 

that could be acting together with the SBE described in this paper for the TGF-β mediated CTGF 

expression in myoblasts. It is known that SBEs alone are not strong enough to confer TGF-β 

inducibility, due to SMADs low binding affinity to this site (Massague et al., 2005). This might 

be the reason why we could not immunoprecipitate SMAD3 in the CTGF promoter when we 
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analyzed the novel SBE located in the 5’ UTR (data not shown). Due to the possible interaction 

of SMAD3 with other factors and the formation of a bigger transcriptional complex, the SMAD3 

protein might have not been exposed within the complex to allow the recognition by the anti-

SMAD3 antibody during the ChIP procedure. Within the 5’ UTR region that confers TGF-β 

induction to the reporter gene, we found several TFBS that could be acting together with the 

SBE in the 5’ UTR of CTGF gene. Among these TFBSs, a SP1 site which is located in very 

close proximity to the SBE (131 to 145) and whichcould be evaluated for the TGF-β induction 

of CTGF, as the SP1 factors are reported to be acting together with SMADs proteins to enhance 

transcription (Botella et al., 2009, Lu et al., 2010, Fausther et al., 2012). 

Our data also indicates that an upstream region (-4872 to -4578) of the CTGF promoter is 

involved in TGF-β mediated expression of CTGF and that the AP-1 site located in this region 

would not be involved with this induction. Between the TFBSs found in this region, there are 

two TCF/LEF (-4810 to -4794 and -4721 to -4705) sites that could be implicated in the 

expression of CTGF. Interestingly, several experimental evidences show a cross-talk between 

Wnt and TGF-β signaling, and Wnt pathway has been proposed as a novel therapeutical target 

for fibrotic disorders (reviewed in (Cisternas et al., 2014)). 

Besides TGF-β, several other factors have been shown to induce CTGF expression in 

various tissues/cell lines. CTGF expression can be induced VEGF in endothelial cells (Suzuma 

et al., 2000), BMP-2 in an osteoblastic cell line (Nishida et al., 2000), high glucose in human 

mesangial cells (Murphy et al., 1999), LPA in human mesangial cells (Goppelt-Struebe et al., 

2001) and H2O2 in Human lens epithelial cells (Park et al., 2001). 

The GTGTCAAGGGGTC element described first as a TGF-β response element 

(Grotendorst et al., 1996) and later named BCE-1 (Chen et al., 2002), was recognized as a RXR 
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heterodimer and Nuclear receptor subfamily 2 factors binding site in our bioinformatical 

analysis (-160 to -148). This site was recognized by Retinoic Acid Receptor/Retinoid X 

Receptor (RAR/RXR) heterodimers and was important for All-trans retinoic acid (ATRA) 

mediated expression of CTGF in fibroblasts (Fadloun et al., 2008). In addition, ATRA therapy 

induces myositis in leukemia patients (van Der Vliet et al., 2000, Pecker et al., 2014), suggesting 

that ATRA might have a role in inflammation in the muscle. On the other hand, in activated and 

hence, fibrogenic hepatic stellate cells that participate in hepatic fibrosis, the levels of RAR and 

RXR were diminished, together with lower concentration of RXR/RAR activators (Ohata et al., 

1997) and, in another study, several agonists of RAR and RXR produced a decrease in the 

expression of fibrotic proteins (Hellemans et al., 2004). ATRA was also found to reduce the 

expression of TGF-β and CTGF in scleroderma fibroblasts (Xiao et al., 2011). Moreover, ATRA 

has been reported to reduce TGF-β expression and signaling in lung fibrosis (Song et al., 2013) 

and mesangial cells (Han et al., 2014). Taken together, this evidence shows that the effect of 

retinoic acid in fibrosis is not yet understood (reviewed in (Zhou et al., 2012)), but it could be 

an interesting approach to explore its effect in CTGF and TGF-β  expression and signaling in 

muscular fibrosis. 

Recently, it has been shown a fibrotic effect of CTGF in the absence of TGF-β signaling in 

liver fibrosis (Sakai et al., 2014). This evidence shows the relevance of CTGF in fibrotic 

disorders and that, other signaling pathways, besides TGF-β/SMAD signaling, are involved in 

CTGF expression. Therefore, the study of the precise regulation of CTGF expression can be 

helpful to further understand the mechanisms of the onset and progression of fibrosis in different 

tissues. 
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4.2 Tumor Necrosis Factor 

 

Here, we have shown that electroporation of the soluble murine TNF receptor I improves 

several features of the dystrophic muscles. 

First, we showed that the systemic production of smTNFRI chimera produces a beneficial 

effect in the TA muscle, improving muscle architecture and reducing inflammation and, more 

importantly, increasing the strength of the TA mdx muscle to levels indistinguishable from wt 

TA muscle. In the TA muscle, the treatment with smTNFRI was able to prevent the onset of 

fibrosis, since, at the time of the beginning of the treatment, the TA muscle only shows minor 

damage and low level of inflammation. This might be the reason why we did not find a decrease 

in FN levels. As the muscle is not fibrotic yet, we were able to improve muscle architecture, 

seen as a decrease in the space between the muscle fibers, showing that the TA muscle of the 

mdx mice is a good model for studying the initial steps of fibrosis. 

A different scenario occurs in the diaphragm muscle, as this muscle shows an advance 

degree of damage and fibrosis. Even though we are able to ameliorate muscle histology and 

fibrosis in the diaphragm mdx muscle, we only found a small increase tendency in muscle 

strength but it was significantly lower than that of wt diaphragm. This could be explained by 

the constant contraction/relaxation cycles that the diaphragm muscle has to endure during the 

mice life, producing degeneration and regeneration of muscle fibers. We believe that better 

results could be achieved by starting the treatment in younger animals or with longer periods of 

treatment, in order to be able to rescue the damage induced by the continuous use of the 

diaphragm muscle for respiration. At least, we were able to stop the progression of fibrosis and 
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muscle damage in the diaphragm muscle of mdx mice. It will be interesting also, to study if 

longer periods of treatment with smTNFRI will decrease CTGF expression in the dystrophic 

muscles of mdx mice. 

There are five anti-TNF therapies approved for the treatment of rheumatoid arthritis 

(Thalayasingam and Isaacs, 2011), two of them have been used to protect inflammatory damage 

in the muscle. Enbrel® (etanercept), a chimeric protein of the soluble TNF receptor II with the 

Fc fragment of human IgG, has been used to successfully protect dystrophic muscle from 

inflammatory damage in the mdx mice (Nemoto et al., 2011) and Remicade® (infliximab), an 

anti-TNF antibody, has also been used and shown to reduce muscle fiber necrosis in dystrophic 

mice (Grounds and Torrisi, 2004). In addition, a modification of the infliximab antibody, cV1q, 

has been used to reduce damage and necrosis in muscles of wt and mdx mice (Piers et al., 2011). 

Although successful, these systemic anti-TNF therapies have risen some concerns regarding the 

apparition of side effects in human patients (Desai and Furst, 2006, Rosenblum and Amital, 

2011, Jain and Singh, 2013), like malignancies (Cohen and Dittrich, 2001), lupus (Williams et 

al., 2009), dermatological adverse reactions (Mocci et al., 2013), instertitial lung disease (Perez-

Alvarez et al., 2011) and infections (Besada, 2011, Komano et al., 2011). Also, there is a recent 

study showing that infliximab (cV1q) therapy on mdx mice shows negative effects on cardiac 

function (Ermolova et al., 2014). Taken together, this evidence suggests that anti-TNF systemic 

treatments should be taken with extreme caution in order to avoid secondary effects.  

Even though the ET therapy we use in this study is systemic, titration of the amount of 

plasmid could be considered in order to minimize the quantity of smTNFRI released to the 

serum. In a model of uveitis, we have previously shown that a therapeutic effect can be achieved 

locally without any detection of sTNFRI in serum, reducing the possibility of systemic 



84 
 

secondary effects (Bloquel et al., 2006). Therefore, more studies should be carried out in order 

to achieve the local and systemic effect of sTNFRI without the dangers of secondary effect due 

to high sTNFRI levels in the serum. Another advantage of ET therapy is that it avoids repeated 

injections needed with the purified protein or antibody treatments. 

There are several studies showing that ET therapies could be used to treat numerous 

pathologies with low risk of secondary effects (Trollet et al., 2006, Rochard et al., 2011). Also, 

inducible promoters can be used in order to achieve the desired concentration of the protein 

produced, locally and/or systemically. In addition, there are more than 80 clinical trials in 

different stages using ET, which shows an increased interest in using ET to treat different 

diseases like keloids, cancer, HIV, among others (clinicaltrials.org). 

In conclusion, in this thesis we show that ET of smTNFRI in the muscle could be used as 

an effective therapy for the treatment of DMD and other inflammatory diseases. However, more 

studies are needed in order to evaluate the desired levels of sTNFRI in the serum, avoiding 

secondary effects that could be produced by an anti-TNF therapy. 

 

 

4.3 Combined therapies for the treatment of DMD 

 

The main goal for a successful DMD therapy will be to set-up a proper environment for an 

effective stem cell therapy. This proper environment should have the following status: First, it 

should promote muscle stem cell migration and proliferation; and second, it has to be capable 

to induce stem cell differentiation and muscle fiber formation. 
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Our lab has shown that reducing fibrosis is an important step for successful stem cell 

therapies. Migration can be achieved by blocking CTGF (Morales et al., 2013b) and by blocking 

NF-κB (Cabrera et al., 2014) and, other group, by using stem cells expressing MMP-9 (Gargioli 

et al., 2008). In addition, other therapies focused in reducing fibrosis, such as angiotensin-1-7 

treatment (Acuna et al., 2014) and smTNFRI expression, could be tested for the success of stem 

cells-based therapies. Regarding the proliferation step, Sonic hedgehog treatment have shown 

good results increasing the proliferation of stem cells and muscle regeneration in the mdx mice 

(Piccioni et al., 2014). 

Together, this data shows that several promising lines of investigation are in course to 

develop better strategies to treat DMD and combined therapies between the factors discussed 

above could be used in order to achieve better understanding on fibrosis onset and development, 

and to restore normal function of the dystrophic muscle with stem cells therapies. 
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5. CONCLUSIONS 

 

 

 

 

 In here, we describe a novel SBE that controls the expression of CTGF mediated by TGF-β 

in C2C12 myoblasts, located in the 5’UTR region of the CTGF gene. 

 

 We find that additional TFBS are present in the 5’UTR region of the CTGF that may be 

implicated in TGF-β mediated CTGF expression. 

 

 We describe that blocking TNF actions by the expression of soluble TNF Receptor I using 

the TA muscle as a bioreactor in the mdx mice, ameliorates the architecture and strength in 

the dystrophic muscle as well as it decreases fibrosis. 

 

 The electrotransfer of sTNFRI in the muscle could be used as an effective therapy for the 

treatment of DMD. 
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