
PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE
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junto a mi cuñado Mauricio han colocado en mi vida a esos dos mocosos adorables que

son mis sobrinos Gabriel y Julián, a quienes amo y por quienes luchamos dı́a a dı́a para

que sean aún más felices de lo que hemos sido nosotros. A Mauricio, que es un hermano,

que aporta sabidurı́a y mesura en la casa. Y a mi tı́a Sara, que fue una segunda madre, y

siempre estuvo a nuestro lado.

Del mismo modo, agradezco a mi Profesor Guı́a Juan Carlos Ferrer, por el constante

apoyo, por sus consejos y dedicación en este proceso académico, que duró este largo
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ABSTRACT

This doctoral thesis explores new aspects of the problem faced by a company that must

determine the optimal price and composition of a number of bundles involving products

and/or services that will be offered in one or more market segments. We first assume that

consumers’ decisions are driven toward utility maximization and that competing compa-

nies do not react to each other in the short term. We then incorporate the consumers’

maximum willingness to pay for a bundle as an additional factor in our analysis. Under

these considerations, we study three research problems involving multiple bundles: (1) a

single market segment and consumers that base their purchase decision only on the utility

that each alternative brings to them; (2) multiple market segments and consumers that base

their purchase decision only on the utility that each alternative brings to them; and (3) a

single market segment and consumers that base their purchase decision on their maximum

willingness to pay.

The three research problems were formulated as nonlinear mixed integer programs.

For each problem, we first tried to obtain a closed-form solution for the optimal price of

each bundle assuming known bundle compositions. However, this was only possible for

problem (1). This allowed us to solve this problem using a two-step approach. Problem (2)

was solved via a Taboo Search algorithm while problem (3) was solved through exhaustive

enumeration of all the possible solutions.

The main results obtained from the models developed as part of this thesis are: (i)

if the bundles are created considering multiple market segments simultaneously, then the

optimal bundle composition may not include the optimal bundle composition for each

individual market separately; (ii) if the consumers’ maximum willingness to pay is con-

sidered, then the expected benefit for the company decreases significantly with respect to

the case without this additional factor, and the resulting bundle composition is different.

Keywords: Pricing; Composition of bundles; Products Selection; Dynamic Programming;

Constrained Multinomial Logit.
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RESUMEN

Esta tesis doctoral explora nuevas aristas al problema que enfrenta una compañı́a cuan-

do debe determinar la composición y precio óptimo para un conjunto de paquetes de pro-

ductos y/o servicios (bundles) que ofertará en uno o más segmentos de mercado. Se asume

inicialmente que los consumidores basan su decisión en la maximización de su utilidad y

que las compañı́as competidorańı́as no reaccionan en el corto plazo. Posteriormente, se

incorpora el supuesto de que los consumidores tienen una disposición máxima a pagar

por un bundle. Bajo estas consideraciones, se definieron tres investigaciones considerando

siempre múltiples bundles y: (1) un único segmento de mercado y consumidores que basan

su decisión de compra solo en la utilidad que les produce cada alternativa, (2) múltiples

segmentos de mercado y consumidores que basan su decisión de compra solo en la utili-

dad que les produce cada alternativa, y (3) un único segmento de mercado y consumidores

que incluyen en su decisión de compra su máxima disposición a pagar.

Las tres investigaciones fueron formulados como modelos de programación no lineal

mixtos. En todos lo casos se vio si existı́a una expresión cerrada para determinar el pre-

cio óptimo de cada bundle cuando era conocida la composición de ’estos. Solamente en la

investigación (1) esto sucedió, pudiendo resolverse el problema en dos fases. Para la inves-

tigación (2) se desarrolló un algoritmo basado en búsqueda tab’u y para la investigación

(3) se resolvió por enumeración exhaustiva.

Los resultados más relevantes son: si los bundles son confeccionados considerando si-

multáneamente múltiples segmentos de mercado, la composición escogida para ellos pue-

de no incluir la composición óptima para cada segmento de mercado de manera individual

y al incluir la máxima disposición a pagar de los consumidores, el resultado obtenido dis-

minuye significativamente el beneficio esperado de la compañı́a respecto a no considerar

esta máxima disposición a pagar, dado que la composición escogida no es la misma.

Palabras Claves: Fijación de Precios; Composición de Paquetes de Productos; Selección

de Productos; Programación Dinámica; Logit Multinomial.
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1. INTRODUCTION

Companies, in the search for alternative ways to maximize their profit, have found in

the design of their products/services and in determining their optimal price a new way of

doing so. In its simplest form, the bundling strategy consists of grouping goods and/or

services into a bundle and selling them at an overall price that is generally more attractive

to the consumer than the prices the goods and services would sell at if they were sold

separately (Guiltinan and Gordon, 1988). Dukart (2000) and Swartz (2000) have suggested

that bundled services are of greater interest to business customers than private individuals

because the former require more services and prefer paying them on a single bill.

The practice of bundling product and services is growing in importance in many in-

dustries and some service sector firms now base their business strategies on this tool. Its

significance compared to other strategies has been studied empirically by Schoenherr and

Mabert (2011), while the impacts of different bundling strategies (single, pure and mixed)

for information products have been compared by Li et al. (2013).

An example of the application of bundling is a cable television provider that offers

a package of three movie channels (HBO, Cinemax and Cinecanal), two sports channels

(ESPN and FoxSport) and three cultural channels (NatGeo, Discovery and History). Alter-

natively, it could offer four movie channels (HBO, Cinemax, Sony and Warner), no sports

channels and two cultural channels (NatGeo and History). Some other cases of product

composition are holiday packages (return flight, hotel stay and car rental), restaurant me-

nus (entre, main dish and dessert) and telecommunications packages (local calling, long

distance calling, Internet access and cellular phone).

The mathematical structure of the problems that considering together the problem of

bundling and of pricing are of the non-linear type in integer variables, and therefore are

problems structurally difficult to solve (generally NP-Hard). The current literature shows

that the efforts to solve problems of this type have allowed to solve the case in which

it is desired to determine the composition and optimal price of a single bundle that will



2

be introduced to a single market segment, seminal problem studied by Bitran and Ferrer

(2007), where the price and attractiveness of each bundle allows to describe the buying

behavior of consumers through a multinomial logit model. However, the real problem

faced by companies is a variety of bundles to be offered in the market, considering that the

market is divided into several market segments that are homogeneous with each other.

For example, if a provider distributed 15 movie channels, 10 sports channels and 5

cultural channels, the number of different bundles it could design would be 230 > 1010.

Clearly, coming up with a design for a good group of, say, five bundles and deciding how

to price them for a set of given market segment is not an easy matter.

Generally speaking, firms that design more than one bundle do so because they intend

to supply them to different market segments. In this article, however, we present the case

of a business that seeks to market multiple product bundles even though it will supply

them to a single market segment. This is a significant problem that arises often when firms

face restrictions on production levels, supply of inputs or storage space that prevent them

from producing the quantity required for the optimal bundle.

1.1. Summary of Contributions/Original Contributions

The present doctoral research attempts to determine the optimal composition and pri-

ces of a set of b bundles a firm intends to supply to its markets. The proposed analysis is a

natural extension of the problem definition and methodology suggested by Bitran and Fe-

rrer (2007) and contributes to the state of the art in that it develops a model and a solution

approach for the multiple bundles and multiple segments case.

However, given the complex nature of this problem, it is convenient to progress gra-

dually in the compression, modeling and resolution techniques of the subproblems that

compose it. Consequently, this research proposes the resolution of three problems: (i) to

develop an approach that allows determining the composition and optimal price of mul-

tiple bundles that will be offered to a single market segment, (ii) to develop an approach
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that allows to determine the composition and optimal price of multiple bundles that will

be offered in multiple market segments and (iii) to develop an approach that allows to

determine the composition and optimal price of multiple bundles when they are offered to

a single segment of market and have explicit considerations Of the consumers’ maximum

willingness to pay in that market segment.

The first of these problems contributes to the state of the art by extending the scope of

the work developed by Bitran and Ferrer (2007), extending decisions to multiple bundles in

a non-forced manner, but motivated by the fact that many companies could present various

types of logistical problems –for example shipping limits from some of their suppliers,

restricted capacity in their warehouses or sales premises– and thus have limitations to

produce the amount required by the market for the optimal bundle

The extension of the scope from the first to the second of the problems implies unders-

tanding how the inclusion of multiple market segments affect the joint dynamics of the

decisions, verify if it is possible to maintain the solution approach developed in Bitran and

Ferrer (2007) for the case of a single bundle and a single market segment and whose scope

is extended to the realistic case in the development of the problem (i), and to determine if

there is an significant benefit in solving the problem of multiple bundles and multiple seg-

ments instead of solving the quantity from multiple bundles to a single market segment.

The definition of this second problem, the search for an adequate solution approach and

the answer to the previous questions have not been treated in the literature of pricing and

bundling, and therefore, to face this problem is a contribution to the state of the art of this

kind of problems.

The third of the problems allows explicitly including the maximum willingness to

pay a consumer for a bundle. This strongly modifies the assumption made by Bitran and

Ferrer (2007) –and that was maintained when defining and facing problems (i) and (ii)–

who assume that consumers make their choice of buying based exclusively on the utility

that that election produces them, and therefore, regardless of the willingness to pay that

consumers have. By including this provision to be paid as a probabilistic condition, and not
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as a condition that must be met if or for each consumer, the use of MNL models, which has

typically been used for this purpose, should be replaced by other discrete choice models.

The explicit inclusion of this maximum willingness to pay and the construction/choice

of an appropriate discrete choice model has not been addressed so far in the pricing and

bundling literature, and as such, are a contribution to the state of the art.

1.2. Thesis Outline

The remainder of this thesis document is organized as follows. Chapter 2 reviews the

state of the art in pricing and composition of bundles; Chapter 3 defines the problem

to be addressed and the research subproblems that were defined to be able to face it;

Chapter 4 solves each of the subproblems by breaking it down into two consecutively

solved subproblems consisting of setting optimal prices of the multiple bundles and then

determining their optimal composition, and also provides someone managerial insight;

and finally, Chapter 5 the conclusions obtained in this doctoral research are expressed and

possible extensions are proposed for future research.
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2. LITERARY REVIEW

The pricing and composition of bundles have been widely investigated in the contexts

of consumer behavior. Studies such as Yadav and Monroe (1993) and Yadav (1994) fo-

cus on the way consumers evaluate different product packages. (Suri and Monroe, 2001)

examine the effects of contextual factors on consumer intentions to buy product packages.

Their research shows that giving price discounts on individual products may significantly

reduce the attractiveness to consumers of bundles containing the same goods. Herrmann

et al. (1997) found that discounts and complementarity of package components are factors

that usually increase consumers’ purchase intentions.

Price discrimination is, perhaps, the most important phenomenon studied in the bund-

ling context; in fact, it was pointed out by the influential author Stigler (1963). Later,

Adams and Yellen (1976) introduced a graphical framework to analyze bundling. Schma-

lense (1981) included reservation prices for consumers whose demands follow Gaussian

functions, by means of numerical experimentation and with some assumptions, he shows

that pure bundling is more convenient for the firm than separate pricing. In the tie-in sa-

les case, Dansby and Conrad (1984) conclude that even non-dominant companies could

have incentives to bundle. Another approach is to use price discrimination in a bundling

framework as a tool for maximizing the profit of companies, which was introduced by

Hanson and Martin (1990), and followed by Venkatesh and Mahajan (1993), Bakos and

Brynjolfsson (1999), and Wu et al. (2008), among others.

From the point of view of markets, segmentation is one of the most useful strategies in

marketing, as mentioned Kumar et al. (2009) in the article in which they suggest that by

modeling the different needs and preferences of the clients, one can obtain a greater benefit

by treating them differently. The relevance of a segmentation procedure is to divide the

market into relatively homogeneous partitions in terms of its buying behavior (Blattberg

et al., 2010). This idea is then rebutted by Allenby et al. (1998), who propose a model

in which demand heterogeneity and uncertainty can be included within the same market
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components. In the context of pricing, it is important for a company to group its potential

clients with respect to its willingness to pay, in order to generate strategies for a group of

clients (Sedghi et al., 2017; Varella et al., 2017).

In the case of markets where customers have varying levels of knowledge of the bund-

le components, Basu and Vitharana (2009) demonstrate that those with more knowledge

exhibit greater variability of reservation price. The authors use an analytic model to deter-

mine the conditions for obtaining the maximum benefits on each of three sale strategies,

the first based on individual components (no bundling), the second using bundles only

(pure bundling) and the third a mixed approach. (Chakravarty et al., 2013) compares the

bundling set and bundling gain when the production and retail functions are integrated in

a single firm with the bundling set and bundling gain of three supply chain scenarios with

different levels of coordination. In the first-best scenario, bundle margins are determined

so as to optimize the profit of the whole supply chain.

The inclusion of the consumers’ behavior through the application of Multinomial Lo-

git (MNL) functions is a standard practice in the literature related to pricing. For instance,

in facility location and pricing problems is important to emphasize the papers of Lüer-

Villagra and Marianov (2013) and Zhang (2015), where besides of modeling the consu-

mers’ behavior with Logit discrete choice model, they also decide the opening of new

facilities. Given the non-linearity of the optimization models, in both cases metaheuris-

tics methods are applied in order to find solutions. On the other side, Aydin and Porteus

(2008) find by means of conditions of first order the optimal joint solution of prices and

levels of inventory, dealing with the decision assorted in an exogenous way regarding the

model. In a similar approach, Ghasemy Yaghin et al. (2014) consider the policies of pro-

ducts arrangement and pricing in a scheme of a supply chain of two levels. In order to

solve that formulation, an algorithm of Swarm Optimization Particles solution is used. In

Shao (2015), a product layout problem is considered with regard to vertical and horizontal

dimensions, where two processes of sequenced choice from the consumers are supposed.

Both theoretical as well as applied findings are presented over the optimal solution of
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the price given the problem layout dimensions. In another application area, in Chen et

al. (2014) is analyzed an evolutionary approach of genetic algorithms for the layout of a

range of products, and the changes connected to the mix of products and pricing based on

the market demand and manufacturing cost. For this purpose, a Logit mixed and a costing

model based on activities are used.

Other works in the literature attempt to develop and empirically test a general choice

model for bundles that takes into account the interdependencies among the items compo-

sing them (Chung and Rao, 2003). Various studies conclude that incorrect modeling of

reservation prices may result in large losses for the seller and that offering mid-season

packages may be more effective than individual product price reductions (Gürler et al.,

2009; Bulut et al., 2009). Martı́nez et al. (2009) leads to the constraints analysis on the

consumers’ problem through the Constrained Multinomial Logit (CMNL), which can pre-

sent, for instance, bounds for consumers’ maximum willingness to pay, that modify the

classical Multinomial Logit via cutoff functions. This is particularly interesting when ex-

plicitly considering the consumers’ maximum willingness to pay by means of application

of the CMNL with cutoff functions.

Hui et al. (2012) extends the previous literature on bundling, which usually assumes

consumer heterogeneity along a single consumer attribute, showing that an individual con-

sumer’s demand function can be expressed as the interaction of the demand function’s

intercept (indicating the consumer’s initial willingness to pay, that is, to pay for the first

unit of a product) and slope (representing the consumer’s appetite, that is, the quantity

consumed when the product is free). Using a combination of analytical and numerical

methods, they demonstrate that appetite heterogeneity favors mixed bundling while initial

willingness-to-pay heterogeneity may reduce its profitability relative to pure bundling.

Banciu and Ødegaard (2016) analyzes the problem that arises when the valuation of a

bundle’s components are dependant on each other. By modeling the combined density of

the reservation price, they are able to show under which circumstances it is more profitable

to supply just the bundle or the entire line of products (individual products and bundles).
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The impact of developing bundling strategies for retail products has also been analyzed

in the literature. McCardle et al. (2007) consider a company that sells two kinds of retail

products, basic and fashion, and develop models to calculate the optimal bundle prices,

order quantities, and profits obtained under bundling. As part of their analysis, the authors

establish the conditions under which a bundling strategy is profitable and confirm that

bundling profitability depends on the demand for individual products, bundling costs, and

the nature of the relationship between the demands of the products to be bundled. Gürler

et al. (2009) and Bulut et al. (2009) study the case of a company that sells two types of

perishable products in a single period. Products are sold individually and as a bundle.

The authors model the problem stochastically, assuming that the arrival rate of customers

follows a Poisson process with a price dependent rate. Customer reservation prices are

assumed to have a joint distribution. The authors study the impact of the reservation price

distributions, initial inventory levels, product prices, demand arrival rates and costs of

bundling on the expected profit for the company.

Hitt and Chen (2005) describe the concept of customized bundling in which customers

can choose a bundle composed of M out of a total of N products for a fixed price. They

show that this approach outperforms pure bundling and no bundling strategies when there

are positive marginal costs and consumer valuations are heterogeneous. More recently, Wu

et al. (2008) and Yang and Ng (2010) find that customized bundling increases benefits to

the firm compared to pure and no bundling approaches when consumers do not value all

of the component goods positively. On the other hand, Armstrong (2013) shows that when

consumer valuations of products in a bundle are non-additive and when the products are

supplied by separate sellers, a seller has a unilateral incentive to offer a discount for the

purchase of the bundle if its customers buy products from the competition.

Yet other studies suggest an optimization approach that simultaneously decides bundle

design and pricing. Hanson and Martin (1990) propose a mathematical programming for-

mula for determining the bundle configuration and price that maximize benefits without

explicitly considering the entire range of feasible solutions. In a later article, Venkatesh
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and Mahajan (1993) consider two dimensions of the consumer decision-making process

(time and money) in determining the optimal price for a given bundle under different bund-

ling strategies. A pair of publications by Green et al. (1991); Green and Krieger (1992)

present an algorithm that solves a stochastic mixed integer programming model to de-

termine a bundle’s price and configuration. In more recent works, Proano et al. (2012)

builds a mixed integer non-linear programming model to identify the number of vaccines

in bundles of antigens and the range of feasible prices that maximize the sum of producer

benefits and consumer surplus, and Ferrer et al. (2010) addresses the problem facing a

seller of bundles composed of a service and a related product offered for a monthly flat

rate plus a subscription fee to a customer base that changes over time. In the latter arti-

cle, pricing policy is determined via a dynamic programming approach that identifies the

long-run optimal number of customers for each bundle. Meyer and Shankar (2016) and

Ødegaard and Wilson (2016), on the other hand, tackle the problem of determining the

optimal price for a bundle composed of assets and services (hybrid bundle). They show

how the optimal price changes with variations in the quality of the services or the products

in the bundle.

Other studies in the literature discuss the algorithms used to define static and dynamic

pricing policies for products or services that are sold under bundling strategies (Xia and

Dube, 2007). Grigoriev et al. (2008)consider an auction involving a set of bidders and an

unlimited supply of items. The authors solve an optimization problem that seeks to ma-

ximize the total revenue collected from all the bidders considering that not all bids need

to be granted. Ferrer et al. (2010) study the pricing problem faced by a seller of bundles

composed of a service and an associated product. Bundles are offered to customers on a

subscription basis using a two-part tariff scheme (subscription plus a fixed monthly fee).

The authors assume that the customer base can change over time and obtain an optimal

pricing policy that maximizes the profit of a firm using a dynamic programming approach.

They also conclude that, in the long run, there is an optimal number of customers associa-

ted with each bundle.
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Finally, the problem of how to determine the composition and price of a single bundle

that maximize the total expected benefits to the firm in a competitive market is analyzed by

Bitran and Ferrer (2007), who study formulates a mixed integer non-linear programming

model and shows that an optimal policy for bundle composition and price determination

can be identified. The optimal pricing problem is first solved with a closed-expression that

depends on the composition. The bundle composition problem is then handled with an

algorithm that builds the bundle component by component considering the contribution

made by each possible component alternative to the objective function. Noteworthy in

this approach is that the algorithm solves to optimality in the same number of iterations

as there are components in the bundle. In this doctoral research work we will extend the

scope of this problem to multiple bundles and multiple segments, considering also for the

case of a single bundle and a single segment a modification in the model of choice used to

describe the buying behavior of the consumers, passing from the traditional MNL to the

CMNL.
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3. DEFINITION OF THE PROBLEM

Consider a hypothetical firm faced with the problem of determining the composition

and prices of a single or a set of bundles to be supplied to a single or multiple segments of

homogeneous customers. The company aims to define a set of bundles and find the optimal

price for each one so as to maximize its benefits. The individual bundles each consist of

a set of component products or services, and for each such set there is a group of known

choice alternatives. Certain components must always be selected for inclusion in a given

bundle while others may or may not be. The non-selection of a particular component in

a given case is considered to be a valid option and can therefore be treated in a similar

manner to the other alternatives.

The two main considerations that determine the composition of possible bundles are

technological and competitive feasibility. Technological feasibility refers to certain tech-

nical specifications and requirements that bundles must satisfy such as containing certain

components or containing them in certain quantities. Competitive feasibility denotes the

requirement that the bundles offered by a firm be competitive with those supplied by its

rivals. Though the firm’s decision makers obviously do not control the composition or

prices of competing bundles, they must take them into account.

A simpler version of this problem was posed and solved by Bitran and Ferrer (2007),

who devised a method of finding the optimal composition and price of a single bundle.

They showed that the optimal composition could be determined by building a space of all

feasible bundles and then finding the optimal one within it. In the following subsections

we will see three investigations that extend the development of this seminal problem.

3.1. Optimal Pricing and Composition of multiple bundles and single market seg-

ment

To specify our model we begin by assuming that the number of bundles to be supplied

by our hypothetical firm to a single market segment is exogenously defined as b, where b ≥
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1. As in Bitran and Ferrer (2007), a single consumer segment is considered. This means

that no coupling constraint will be specified, thus dispensing with the need to determine

the optimal bundle composition simultaneously over all market segments.

We also assume that a consumer’s willingness to pay, known as the reservation price,

varies from bundle to bundle given that the attractiveness of each bundle to the consumer

is different. Following Bitran and Ferrer (2007) we call such valuations the bundle attrac-

tion factor. Note that it does not include price, which is treated as a separate attribute.

This factor is measured by the weighted sum of the individual attraction factors of each

bundle component. As with Green and Krieger (1992), we assume further that there are

no interaction factors between the components.

The necessary notation for the model’s sets, indexes, parameters and variables is set

out below.

Sets:
N : The set of bundles offered on the market by the competition. By abuse of nota-

tion, we say that Card(N ) = N .

M : Set of components in a bundle. By abuse of notation, we say that Card(M) =

M.

Sj : Set of alternatives for component j of a bundle.

Indexes:
k, l, t : indexes for the bundles offered by the firm.

n : Index for the bundles offered by the competition.

j : Index for the set of components of a bundle.

u : Index for the possible choice alternatives of a component.

i : Index for all bundles offered on the market.

Parameters:
b : Number of bundles to be constructed.

p̂n : Price at which bundle n is offered by the competition.
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:
cuj : Cost of alternative u of the set of components j.

Iuj : Attractiveness of alternative u of the set of components j.

aj : Attractiveness weight of component j in the bundle composition.

γ : Utility of the bundles offered by the competition and of non-purchase.

g : Number of bundles offered by the competition.

β : Sensitivity of utility to bundle price.

Variables:
xujk : Binary variable indicating whether or not alternative u of the set of components

j is chosen for the composition of bundle k.

Xk : Binary matrix representing the composition of bundle k.

pk : Price of bundle k.

qk : Probability that a consumer chooses bundle k.

cXk : Binary matrix representing the cost to the firm of bundle k.

IXk : Binary matrix representing the attractiveness of bundle k.

Decisions that are under the firm’s control are the composition of the b bundles it

offers to its customer segment and the prices it sets for them so as to maximize profits

(recall that b is an integer greater than or equal to 1). Thus, these decisions are described

by the attractiveness of the bundle IXk =
∑

j∈M aj
∑

u∈Sj Iujxujk, parameter aj > 0

for all j ∈ M, the bundle’s cost to the firm cXk =
∑

j∈M
∑

u∈Sj cujxujk, parameter

cuj ≥ 0 for all u ∈ Sj, j ∈ M and the bundle’s price pk for k = 1, . . . , b. Bundles not

under the control of the firm are considered as given information and are characterized

by attractiveness IXn where n ∈ N and price p̂n where n ∈ N . Since we assume that

competitors do not react in the short run to the firm’s decisions, the model is static rather

than dynamic.

Consumers may choose any one of the bundles offered on the market, or decline to

choose any. They are considered to be rational and random utility maximizers, the latter

an increasingly common assumption in consumer choice models. This implies, first of all,
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that consumers will prefer the option giving them the greatest perceived utility. According

to McFadden et al. (1973) they choose over a set of attributes, making an overall evaluation

of every possible alternative on the basis of a random utility function and then picking the

one that confers the highest value.

The random utility maximizer assumption also implies that utility is divided into a de-

terministic component and a stochastic one. Early work on this component-based approach

in bundle choice models was developed by Hanson and Martin (1990) and then Venkatesh

and Mahajan (1993). In our formulation, the perceived utility conferred by bundle i on a

given consumer in the single consumer segment is specified as the sum of a deterministic

component denoted V (·) that depends on the price and composition of the bundle, and a

stochastic component expressed by an independent disturbance term εi that includes all

factors preventing the consumer from determining a good’s exact utility. The random uti-

lity model is Ui = V (pi, Xi)+εi for all i = 1, . . . ,N+b+1, where the deterministic utility

is V (pi, Xi) = IXi + βpi and parameter β < 0 is a scalar that expresses the sensitivity of

utility to price.

Ben-Akiva et al. (1985) and McFadden et al. (1973) show that the probability of choo-

sing a bundle from among a set of alternatives is given by the closed-form expression

q(pi, Xi) = eV (pi,Xi)

ξ+eV (pi,Xi)
, where ξ is the utility of all the bundles offered to the consumer

segment plus the non-purchase utility. Since the firm supplies b bundles to the market, the

probability that the firm’s bundle i is chosen is given by

qi(p1, . . . , pb, X1, . . . , Xb) =
eV (pi,Xi)

γ +
b∑

k=1

eV (pk,Xk)

(3.1)
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The probability of choosing a bundle is thus represented by a multinomial logit (MNL)

model (Ben-Akiva et al., 1985; Zhang, 2015). If we let V0 be the deterministic non-

purchase utility, then γ = eV0 +
∑
n∈N

eV (p̂n,Xn). Among the properties of (3.1), as ex-

plained in Bitran and Ferrer (2007), is that limpi→∞qi(p1, . . . , pb, X1, . . . , Xb) = 0, 0 ≤

qi(p1, . . . , pb, X1, . . . , Xb) ≤ 1 and 0 ≤
∑b

i=1 qi(p1, . . . , pb, X1, . . . , Xb) ≤ 1.

Given that we are using a logit model to simultaneously determine the composition of

multiple bundles which will all be different from, and perfect substitutes for, each other,

the solution must also satisfy the independence of irrelevant alternatives (IIA) property.

This condition is handled by Equation (3,8), which makes pairwise comparisons of all the

chosen bundles to check that there are no more than M− 1 identical components, thus

ensuring each of the b bundles differs from every other one in at least one component.

With the foregoing as our basis, we now set out our proposed mixed integer non-linear

programming model for solving the pricing and composition of multiple bundles problem

(MBP) model in order to determining the composition and pricing of the b bundles that

will be supplied to a single market segment.

(MBP) máx
p1,...,pb,X1,...,Xb

Π(p1, . . . , pb, X1, . . . , Xb) =
b∑

k=1

qk(p1, . . . , pb, X1, . . . , Xb)(pk−cXk)

(3.2)

s.t : qk(p1, . . . , pb, X1, . . . , Xb) =
eIXk+βpk

γ +
b∑
l=1

eIXl+βpl
∀ k = 1, . . . , b.

(3.3)

γ = eV0 +
∑
n∈N

eIXn+βp̂n (3.4)

cXk =
∑
j∈M

∑
u∈Sj

cujxujk ∀ k = 1, . . . , b.

(3.5)
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IXk =
∑
j∈M

aj
∑
u∈Sj

Iujxujk ∀ k = 1, . . . , b.

(3.6)∑
u∈Sj

xujk = 1 ∀ j ∈M; ∀ k = 1, . . . , b.

(3.7)∑
j∈M

∑
u∈Sj

xujkxujl ≤M− 1 ∀ k = 1, . . . , b; ∀ l = k + 1, . . . , b.

(3.8)

xujk ∈ {0, 1} ∀ j ∈M; ∀u ∈ Sj ; ∀ k = 1, . . . , b.

(3.9)

pk ≥ 0 ∀ k = 1, . . . , b.

(3.10)

The objective function in (3.2) seeks to maximize the expected value of the benefit

obtained by the company, building it as the sum of the individual benefits obtained for

the sale of each bundle. The various constraints in the model may be described briefly

as follows. Constraint (3.3) determines the probability an individual chooses one of the

firm’s bundles given its composition and price. Constraint (3.4) determines the consumer

utility of the bundles offered by the competition and of non-purchase. Constraints (3.5)

and (3.6) determine the cost and attractiveness of each bundle designed. Constraint (3.7)

imposes that in the design of each bundle a single alternative is chosen for each compo-

nent. Constraint (3.8), as already noted above, ensures that no two bundles have identical

compositions. Finally, constraints (3.9) and (3.10) define the nature of the variables.

As can be appreciated, the model as a whole is a non-linear programming formula-

tion with continuous and binary variables. Dobson and Kalish (1993) have shown that for

both product selection and pricing problems, such models are usually NP-hard given that

the product selection problem is a set covering problem. Nevertheless, Bitran and Ferrer
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(2007) were able to solve the problem for the case where b = 1. In the next chapter, we

develop an approach that solves the MBP to optimality in a reasonable amount of time.

3.2. Optimal Pricing and Composition of multiple bundles and multiple market seg-

ments

In this section we present the problem to be addressed is that of a firm which must de-

termine the composition and prices of multiple bundles it intends to sell in multiple com-

petitive market segments with the objective of maximizing profit. The number of bundles

to be offered is known and equal to b for every market segment. Each of the b bundles is

made up of a set of components, and for every component there is a group of alternative

choices. Certain components must always be present in a given bundle while others may

or may not be. Thus, not including certain components is a valid choice alternative.

A seminal version of this problem in which one bundle is supplied to a single market

segment was solved by Bitran and Ferrer (2007). The problem was then extended in the

case of multiple bundles but still for a single market segment. In the present paper we furt-

her extend these previous studies to the case of b bundles offered in W market segments,

where b > 1 and W > 1. The price of any particular bundle is assumed to be the same in

every segment.

In modeling the demand for the bundles in each of the W segments we assume that

a consumer’s willingness to pay varies as a function of the segment they belong to and is

different for each bundle. This last point is justified on the grounds that the attractiveness to

consumers of each bundle will differ from segment to segment. The value consumers place

on a bundle is specified for present purposes by a “bundle attraction factor” as defined in

Bitran and Ferrer (2007). It is equal to the weighted sum of the individual attraction factors

of each bundle component. Following Green and Krieger (1992) we assume there is no

interaction between components. Note also that the factor excludes the price attribute,

which is treated separately.
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We begin the formulation of our proposed model with the necessary notation for the

various sets, indexes, parameters and variables.

The sets:
W : The set of market segments in which the firm intends to offer product bundles.

By abuse of notation we write Card(W) =W .

M : The set of components in a bundle. By abuse of notation we write Card(M) =

M.

N : The set of bundles offered by the firm’s competition. By abuse of notation we

write Card(N ) = N .

Sj : The set of choice alternatives for component j of a bundle.

The indexes:
i : The index of the market segments.

k, l, t : The indexes of the bundles offered by the firm.

n : The index of the bundles offered by the competition.

j : The index of the set of bundle components.

u : Index of the possible choice alternatives for a bundle component.

The parameters:

b : The number of bundles to be designed and offered by the firm.

p̂n : Price at which the competition offers bundle n.

cju : Cost to the firm of choosing alternative u for component j.

I iju : Attractiveness of component j if alternative u is chosen for sale in market seg-

ment i.

aij : Weight of component j in the attractiveness of a bundle for market segment i.

H i : Number of consumers in market segment i.

γi : Utility of a non-purchase and of the bundles offered by the competition in market

segment i.

βi : Sensitivity of utility to the price of a bundle in market segment i (does not de-

pend on the bundle observed by the individual consumer in the segment).
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The variables:
xjuk : Binary variable indicating whether or not is chosen for component j the alterna-

tive u in the composition of bundle k.

Xk : An h×m binary matrix representing the composition of bundle k.

pk : Price of bundle k

qik : The probability that a given consumer from market segment i chooses bundle k.

cXk : An h×m binary matrix that represents the cost to the firm of bundle k.

I iXk : An h×m binary matrix that represents the attractiveness of bundle k in market

segment i.

Information on the bundles not under the control of the firm (i.e., the competitors’

bundles) is considered in the proposed model to be given. This information consists of

the attractiveness of these bundles in each market segment (hereafter simply “segment”),

which is denoted as IXi
n

where n ∈ N and i ∈ W , and their respective prices p̂n where

n ∈ N (recall that the price of a given bundle is the same in all market segments). The

decisions under the control of the firm are the composition and price of each of the bundles

b it offers to theW segments. The information on these decisions therefore consists of the

attractiveness of the firm’s bundles in each market segment I iXk , the cost to the firm of the

bundles’ composition cXk and the bundles’ prices pk. As with Cataldo and Ferrer (2017)

we assume that the competition does not react in the short run to the firm’s decisions,

which implies that the proposed model is static.

The consumers in the model can purchase only one bundle among those offered in

their segment or none at all. They are considered to be utility maximizers, an assumption

shared by many other consumer choice models, and thus make their choices based on

their evaluation of a set of attributes (McFadden et al., 1973). More specifically, they

choose based on an overall evaluation of each possible choice as determined by their utility

functions, selecting the option that gives them the most utility.

We therefore model the utility of each bundle for a given consumer in a given segment

as the sum of a deterministic component and a stochastic component. The deterministic



20

part, denoted V (·), depends on the price and the composition of the bundle while the sto-

chastic part is an independent disturbance term εk that embraces all of the factors that

prevent a consumer from accurately determining a product’s utility. The utility perceived

by consumers in segment i of choosing bundle k is written as U i
k = V i(pk, Xk) + εi

for all i = 1, ...,W and k = 1, ...,N + b + 1, (i.e., the competition’s bundles, the

firm’s bundles to be designed and bundles not purchased) where the deterministic uti-

lity is given by V i(pk, Xk) = I iXk + βipk, the attractiveness of the composed bundle is

I iXk =
∑

j∈M aij
∑

u∈Sj I
i
juxjuk, the parameter aij > 0 for all j ∈M and i ∈ W , and para-

meter βi < 0 is a scalar that gives the sensitivity of utility to price for consumer segment

i ∈ W .

Thus, given that the firm will design b bundles, the probability a bundle b will be

chosen by a consumer in segment i is given by

qik := qik (p1, . . . , pb, X1, . . . , Xb) =
eV

i(pk,Xk)

γi +
b∑
l=1

eV i(pl,Xl)
, (3.11)

where, given that V i
0 is the deterministic utility of a consumer in segment iwho decides not

to purchase a bundle (whether of the firm or the competition), γi = eV
i
0 +

∑
n∈N

eV
i(p̂n,Xn).

As is explained in Bitran and Ferrer (2007), one of the properties of (3.1) is that:

limpk→∞q
i
k(p1, . . . , pb, X1, . . . , Xb) = 0, 0 ≤ qik(p1, . . . , pb, X1, . . . , Xb) ≤ 1

and 0 ≤
∑b

k=1 q
i
k(p1, . . . , pb, X1, . . . , Xb) ≤ 1.

Given all of the above, we now set out our proposed model for determining the optimal

price and composition of each of the b bundles to be offered simultaneously in each seg-

ment W . We denote this the multiple bundles and multiple segments problem (MBMSP).

(MBMSP) máx
p1,...,pb,X1,...,Xb

Π(p1, . . . , pK , X1, . . . , XK) =
W∑
i=1

b∑
k=1

H iqik(pk, Xk)(pk − cXk)

(3.12)
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s.t : qik =
e
IiXk

+βipk

γi +
b∑
l=1

e
IiXl

+βipl

∀ i = 1, . . . ,W ; k = 1, . . . , b. (3.13)

γi = eV
i
0 +

∑
n∈N

eI
i
Xn

+βip̂n ∀ i = 1, . . . ,W. (3.14)

cXk =
∑
j∈M

∑
u∈Sj

cjuxjuk ∀k = 1, . . . , b. (3.15)

IiXk =
∑
j∈M

aij
∑
u∈Sj

Ijuxjuk ∀ i = 1, . . . ,W ; k = 1, . . . , b. (3.16)

∑
u∈Sj

xjuk = 1 ∀ j ∈M; k = 1, . . . , b. (3.17)

∑
j∈M

∑
u∈Sj

xujkxujl ≤M− 1 ∀ k = 1, . . . , b; l = k + 1, . . . , b. (3.18)

xjuk ∈ {0, 1} ∀ j ∈M;u ∈ Sj ; k = 1, . . . , b. (3.19)

pk ≥ 0 ∀k = 1, . . . , b. (3.20)

The objective function in (3.12) seeks to maximize the expected value of the benefit

obtained by the company, building it as the sum of the individual benefits obtained in each

market segment (then the size of each market segment is included in the expression). The

various constraints in the model may be described briefly as follows. Constraint (3.13)

determines the probability an individual consumer in segment i chooses one of the firm’s

bundles given its composition and price. Constraint (3.14) determines the consumer utility

of the bundles offered by the competition and of non-purchase in each segment. Constraint

(3.15) determines the cost and constraint (3.16) the attractiveness of each designed bundle

in each segment. Constraint (3.17) imposes that in the design of each bundle a single

alternative is chosen for each component. Constraint (3.18) ensures that no two bundles

have identical compositions. Finally, constraints (3.19) and (3.20) define the nature of the

variables.
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As can be seen, this formulation is a non-linear programming model with both conti-

nuous and binary variables. We have already noted that in Bitran and Ferrer (2007) this

problem was solved for the single bundle, single segment case while in Cataldo and Ferrer

(2017) it was solved for the multiple bundle, single segment case.

3.3. Optimal Pricing and Composition of single bundle and single market segment

with Constrained Multinomial Logit

In this section, we extend the scope of the seminal problem studied by Bitran and

Ferrer (2007) and consider a company that must determine the price and optimal compo-

sition of a number of bundles that will be offered for sale in a single market segment. We

assume that customer buying behavior can be described using a discrete choice model that

considers a penalty associated with the consumers’ maximum willingness to pay.

The consumers maximum willingness to pay must be interpreted as an amount of

money that a consumer has budgeted to spend in the bundle, thus the customer adjusts his

decision according to this amount. The fact that a price is greater than consumersmaximum

willingness to pay does not imply that the customer will not buy the bundle, as it would

be a hard constraint, but it will only exist a lesser probability that he buys the bundle,

exceeding eventually the maximum willingness to pay.

The necessary notation for the model’s sets, indexes, parameters and variables is set

out below. Sets:
N : The set of bundles offered on the market by the competition. By abuse of nota-

tion, we say that Card(N ) = N .

M : Set of components in a bundle. By abuse of notation, we say that Card(M) =

M.

Sj : Set of alternatives for component j of a bundle.
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Indexes:
k, l : indexes for the bundles offered by the firm.

n : Index for the bundles offered by the competition.

j : Index for the set of components of a bundle.

u : Index for the possible choice alternatives of a component.

i : Index for all bundles offered on the market.

Parameters:
b : Number of bundles to be constructed.

p̂n : Price at which bundle n is offered by the competition.

cuj : Cost of alternative u of the set of components j.

Iuj : Attractiveness of alternative u of the set of components j.

aj : Attractiveness weight of component j in the bundle composition.

g : consumersmaximum willingness to pay.

γ : Utility of the bundles offered by the competition and of non-purchase.

g : Number of bundles offered by the competition.

β : Sensitivity of utility to bundle price.

Variables:
xujk : Binary variable indicating whether or not alternative u of the set of components

j is chosen for the composition of bundle k.

Xk : Binary matrix representing the composition of bundle k.

pk : Price of bundle k.

qk : Probability that a consumer chooses bundle k.

cXk : Binary matrix representing the cost to the firm of bundle k.

IXk : Binary matrix representing the attractiveness of bundle k.

The models of discrete choice are a tool utilized to predict and analyze the decision

that an agent makes (individual, home, firm, etc.) of a unique alternative based on the

assumption of rationality, which the option that provides with the highest utility is chosen
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Manski (1977). Mathematically speaking, we define Vri as the profit that an agent that

belongs to segment r obtains for the consumption of the goods i.

In the models of random utility (Block et al., 1960) the probability that r chooses the

alternative i is:

Pri = P (Uri ≥ Urj, ∀j ∈ Ar), (3.21)

where Ar is the set of feasible options or choices for r.

In these models we consider that Uri is known by the decisions maker, but not by the

modeler, then this one represents it as the sum of two components:

Uri = Vri + ξri, (3.22)

a deterministic or systematic Vri, known by the modeler being function of the charac-

teristics vector Zi of the alternative i, and a random component ξri. If we work on the

assumption that the errors ξri allow a Gumbel distribution with a scale parameter (µ) in-

dependent and identical (iid), then the probability of choice has a functional form Logit

multinomial (Chakravarty, 1999; Ortuzar and Willumsen, 2002; Kumar et al., 2009) is:

Pri =
eµVri∑

j∈Ar
eµVrj

. (3.23)

The scale parameter µ is not identifiable, therefore its value is mostly set in 1. An as-

sumption of equation (3.23) is that the decisions makers follow a compensatory behavior,

i.e., they use a decision strategy that establishes the possibility of an interchange between

attributes in order to keep a fixed utility level.

Then, because the compensatory assumption is not evident or true, it is necessary to

reduce the number of alternatives to accomplish those constraints or include them in the

profit of the agents. Then, we describe the Constrained Multinomial Logit model (CMNL)

Martı́nez et al. (2009); due to its inclusion in the formulation of the mathematical pricing

model. In order to analyze the constrained or semi-compensatory behavior by means of
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the constrained Logit bases on Swait (2001) and Cascetta and Papola (2001). That model

assumes that the profit of each agent and the alternative is split in a compensatory term

and the other non-compensatory part that points out the feasibility of that alternative for r:

Uri = Vri +
1

µ
ln(φri(zi)) + ξri, (3.24)

where ln(φri(zi)) is a function cutoff or penalization imposed for r to the alternative i

and µ is the scale parameter. That penalization with a logarithm function allows a smooth

or flexible transition between the compensatory and non-compensatory space, permitting

that the constraints can be subtly unfulfilled by the decisions maker.

Assuming that ξri of equation 3.24 it is distributed (iid) Gumbel, the probability of

choice of i is:

Pri =
φri(zi)e

µVri∑
j

φrj(zj)eµVrj
, (3.25)

The model CMNL considers lower constraints φLrik and greater than φUrik, depending on

the case. These constraints are defined by the binomial Logit obtaining that for each agent

r that encloses the alternative i based on the characteristic j is defined as:

φLrij =
1

1 + ewj(zij−grj+ρk)
(3.26)

φUrij =
1

1 + ewj(arj−zij+ρk)
(3.27)

where grj y arj are the greater and lower benchmarks respectively that constrain the choi-

ce, wj > 0 is the scale parameter of the binomial Logit, zij is the value of the attributes k

and ρj is a parameter set by the following equation:

ρj =
1

wj
ln

(
1− ηj
ηj

)
(3.28)

where ηj is the related value to the proportion of the population that violates the constraint

of the characteristic j.
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As in Martı́nez et al. (2009), the parameter wj is positive because the negative values

will simply switch upper constraints to lower and viceversa. Additionally, wj is inversely

proportional to the variance of the bounds. In order to incorporate several constraints, a

cut-off φri is defined as the multiplication of the cut-off functions enclosed to each one of

the characteristics assuming that the constraints are independent.

With the foregoing as our basis, we now set out our proposed mixed integer non-linear

programming model for solving the pricing and composition of multiple bundles with

constrained multinomial problem (CMBP) model in order to determining the composition

and pricing of the b bundles that will be supplied to a single market segment, making an

explicit inclusion of the consumersmaximum willingness to pay, and considering a single

market segment (i.e. W = 1).

(CMBP) máx
p1,...,pb,X1,...,Xb

Π(p1, . . . , pb, X1, . . . , Xb) =

b∑
k=1

qk(p1, . . . , pb, X1, . . . , Xb)(pk−cXk)

(3.29)

s.t : qk(p1, . . . , pb, X1, . . . , Xb) =
φ (pk) e

IXk+βpk

γ +
b∑
l=1

φ (pl) e
IXl+βpl

∀ k = 1, . . . , b.

(3.30)

φ (pk) =
1

1 + ew(pk−g+ρ)
(3.31)

γ = eV0 +
∑
n∈N

eIXn+βp̂n (3.32)

cXk =
∑
j∈M

∑
u∈Sj

cujxujk ∀ k = 1, . . . , b.

(3.33)

IXk =
∑
j∈M

aj
∑
u∈Sj

Iujxujk ∀ k = 1, . . . , b.

(3.34)
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∑
u∈Sj

xujk = 1 ∀ j ∈M; k = 1, . . . , b.

(3.35)∑
j∈M

∑
u∈Sj

xujkxujl ≤M− 1 ∀ k = 1, . . . , b; l = k + 1, . . . , b.

(3.36)

xujk ∈ {0, 1} ∀ j ∈M;u ∈ Sj ; k = 1, . . . , b.

(3.37)

pk ≥ 0 ∀ k = 1, . . . , b.

(3.38)

The objective function in (3.29) seeks to maximize the expected value of the benefit

obtained by the company, building it as the sum of the individual benefits obtained for

the sale of each bundle in each market segment. The various constraints in the model may

be described briefly as follows. Constraint (3.30) determines the probability an indivi-

dual chooses one of the firm’s bundles given its composition and price. Constraint (3.31)

allows you to calculate the value of the penalty (cutoff) as a function of the price. Cons-

traint (3.32) determines the consumer utility of the bundles offered by the competition and

of non-purchase. Constraints (3.33) and (3.34) determine the cost and attractiveness of

each bundle designed. Constraint (3.35) imposes that in the design of each bundle a sin-

gle alternative is chosen for each component. Constraint (3.36), as already noted above,

ensures that no two bundles have identical compositions. Finally, constraints (3.37) and

(3.38) define the nature of the variables. As can be seen, the CMBP differs from the MBP

in the restriction (3.30), as it makes an explicit consideration of the consumers’maximum

willingness to pay. In the next chapter, we develop an approach that solves the CMBP to

optimality in a reasonable amount of time.
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4. SOLUTION APPROACH

The problems described in the previous chapters have been approached in such a way

as to take advantage of the structure of the specific situation being modeled in each case.

Thus, although all these problems have a common root –that corresponds to the problem

described and solved by Bitran and Ferrer (2007) regarding the composition of a single

bundle offered in a single market segment– each situation has been approached and solved

differently. The following subsections present the proposed solution approaches for each

of the three problems defined in Chapter 3.

4.1. Optimal Pricing and Composition of multiple bundles and single market seg-

ment

The structure of the MBP is designed so that the solution process can be divided into

two phases, each one solving a single subproblem. In the first phase, the optimal price

(pk) is determined for each of the b bundles on the assumption that their respective opti-

mal compositions (Xk) are already known. Then, in the second phase, the optimal prices

obtained in the first phase are used to generate the optimal compositions that maximize

the benefits to the firm.

4.1.1. Phase 1: Multiple bundle optimal price subproblem

Given our assumption for this phase that the optimal composition of each bundle is

already known, the decisions and constraints relating to composition are temporarily set

aside. Substituting (3.3) above into the objective function (3.2), the unconstrained price

optimization subproblem becomes

Π = máx
p1,...,pb≥0

b∑
k=1

eIXk+βpk

γ +
b∑
l=1

eIXl+βpl
(pk − cXk). (4.1)
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This leads to the following proposition:

PROPOSITION 4.1. The optimal price for bundle k is given by the closed form expres-

sion

p∗k = cXk −
1

β

(
1 +W

(
1

γ

b∑
l=1

eIXl+βcXl−1

))
∀k = 1, . . . , b, (4.2)

where W (·) is the Lambert W-function. Thus, the optimal price of bundle k depends

on the composition of all b bundles. This price will be greater than or equal to cXk , the

cost to the firm of bundle k, whenever β < 0 and W (·) ≥ 0, the latter being the case

if the W-function’s argument is positive. In (4.2) all of these conditions are satisfied. The

foregoing also implies that prices are always non-negative.

Proof: See Appendix 6.1.

Substituting the optimal price into the benefit function, we obtain the following coro-

llaries:

Corollary 4.1. The optimal expected benefit Π∗ is

Π∗ =
−1

β
W

(
1

γ

b∑
l=1

eIXl+βcXl−1

)
. (4.3)

Proof: See Appendix 6.2.

Corollary 4.2. The probability of choosing bundle k when optimal price is p∗k is

q∗k =

W

(
1
γ

b∑
l=1

eIXl+βcXl−1

)
(

1 +W

(
1
γ

b∑
l=1

eIXl+βcXl−1

))
 eIXk+βcXk−1

b∑
l=1

eIXl+βcXl−1

 , (4.4)

where the first factor is the probability a consumer chooses one of the b bundles offered by

the firm and the second factor is the probability the bundle chosen is k.

Proof: See Appendix 6.3.
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When b = 1, the expressions for price, probability of purchase and optimal benefit

reduce to those given in Bitran and Ferrer (2007).

4.1.2. Phase 2: Multiple bundle optimal composition subproblem

Having just obtained a closed-form expression for the optimal prices of the multiple

bundles we now address the second subproblem, which is the determination of the bundles’

optimal composition and thus the maximization of total benefits.

Consider the definition of Pareto bundles posited by Bitran and Ferrer (2007). For any

two bundles k and l, k is said to dominate l if IXk ≥ IXl and cXk ≤ cXl . This implies that

instead of having to check the entire feasible bundle space Ω, we can confine our search

for the solution to the Pareto-efficient bundle frontier Ω∗, which is constructed with the

non-dominated bundles.

Thus, to determine the composition of one of the b bundles we could explicitly cons-

truct Ω∗ and then search for the best bundle. However, Garey and Johnson (2002) have

shown that finding any point on a Pareto-efficient frontier is itself an NP-complete pro-

blem, and similar conclusions were drawn by Warburton (1987) and Beasley and Chris-

tofides (1989). It would appear, then, that the explicit construction of such a frontier is

not in fact the best approach. In light of this, Bitran and Ferrer (2007) propose, for the

single bundle case, an O(HM)-order pseudo-polynomial time algorithm, where H is the

cardinality of the largest Sj set. This algorithm, which we will call BF, does not require

explicit construction of the Pareto–efficient frontier.

But whereas the Pareto-efficient frontier for the single bundle problem is built of points

corresponding to individual bundles, for the multiple bundle problem the points are groups

of feasible bundles. It is possible, however, to identify the contribution of each of the-

se bundles to the total objective function. The following proposition states a key result

regarding this contribution:
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PROPOSITION 4.2. The partial derivatives of the objective function Π∗ with respect to

IXk and cXk are proportional to q∗k for any arbitrary points IXk and cXk . More precisely,

∇Π∗ =

(
∂Π∗

∂IXk
,
∂Π∗

∂cXk

)
=

(
−1

β
,−1

)
q∗k, (4.5)

where q∗k is the probability that bundle k is chosen when its price is p∗k.

Proof: See Appendix 6.4.

The results in Proposition 4.2 are of fundamental importance, for they show that an

increment in the objective function with respect to IXk is proportional to −1/β while an

increment with respect to cXk is proportional to -1. This implies that the point on the

Pareto-efficient frontier for the multiple bundles problem that maximizes utility is the

one whose bundles confer the largest utility increment. The determination of the optimal

composition of multiple bundles therefore reduces to identifying the composition of those

that maximize the contribution to the objective function. This conclusion is expressed as

follows:

máx
X1,X2,...,Xb∈Ω

b∑
k=1

−IXk
β
− cXk . (4.6)

One of the bases of our solution approach is the separation of (4.6) into b stages, in each

of which the optimal composition of only one bundle is determined. This means that in

each stage k we must also consider the optimal composition of the bundles constructed in

the previous stages (l = 1, . . . , k). For this purpose we will need the following definition:

Definition 4.1. (Inner adjacent frontier) Let Ω1 be the set of all feasible bundles and

Ω∗1 its Pareto-efficient frontier. Select a bundle b̄ belonging to Ω∗1 and eliminate it from the

set Ω1. The result is a new set Ω2 of all the feasible bundles, whose Pareto-efficient frontier

is denoted Ω∗2. This new construction is called the inner adjacent frontier of Ω∗1 under b̄.

The significance of Definition 4.1 is the linkage it specifies between successive pairs of

optimal bundle composition problems. Thus, if we want to obtain the optimal composition
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of any two bundles in a set of feasible bundles, we look for the first composition (X∗1 ) on

the Pareto-efficient frontier of the original problem and the second composition on that

frontier’s inner adjacent frontier under X∗1 .

With this definition we now describe the separation into stages, in each of which a

single optimal bundle is determined. In stage 1 we obtain the optimal composition of a

single bundle in the space Ω1 containing all feasible bundles and therefore also on the

Pareto-efficient frontier Ω∗1. Let us call this problem P (1). The solution of P (1) is denoted

X∗1 and indicates the composition of the first of the b optimal bundles. The information

on this optimal composition X∗1 is passed on from stage 1 to stage 2 so that the second

bundle is not given the same composition. This is ensured simply by eliminating X∗1 from

the feasible bundle space Ω1, thus obtaining a new Pareto-efficient frontier Ω∗2 which by

construction is the inner adjacent frontier of Ω∗1 under X∗1 .

Now let us call P (2) the problem of determining the optimal composition of a single

bundle located in the feasible bundle space Ω2, and therefore also on Ω∗2. The solution

to P (2) will give the optimal composition X∗2 , the composition of the second bundle.

This second bundle is then eliminated from the feasible bundle space Ω2, resulting in the

construction of a new Pareto-efficient frontier that will be the inner adjacent frontier of Ω∗2

under X∗2 . The optimal composition and the new Pareto-efficient frontier are then passed

on to the next stage and the third bundle is determined in the same fashion as the previous

two. Iterating this process b times will identify the optimal composition of all b bundles.

The solution approach just outlined can be considered an application of dynamic pro-

gramming given that it divides the original problem into b sequential subproblems and

uses the solution of each of them to obtain the solution of the next one. We can therefore

reformulate (4.6) as the following dynamic programming problem:
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máx
Xb∈Ω∗

b

−IXb
β
− cXb︸ ︷︷ ︸

stage b

+

 máx
Xb−1∈Ω∗

b−1

−IXb−1

β
− cXb−1︸ ︷︷ ︸

stage b− 1

+ . . .+

máx
X1∈Ω∗

1

−IX1

β
− cX1︸ ︷︷ ︸

stage 1

 . . .

 ,

(4.7)

where Ω∗k+1 is the inner adjacent frontier of Ω∗k under X∗k for k = 1, . . . , b−1. This in turn

can be rewritten as a formulation of the Bellman equation for each stage k:

F ∗k (Ω∗k) = máx
Xk∈Ω∗

k

{
−IXk
β
− cXk + F ∗k−1(Ω∗k−1)

}
, (4.8)

where F ∗0 (·) = 0.

Bellman’s optimality principle (Bellman, 2013) ensures that the optimal compositions

of the bundles, and thenX∗1 , X
∗
2 , . . . , X

∗
b , each one obtained as the solution of its respective

stage-level problem, constitute the optimal solution of the complete subproblem. To solve

equation (4.8), the Pareto-efficient frontiers must be constructed for each of the stages

k = 1, . . . , b. But as has already been observed, their construction is highly complex.

However, they can in fact be identified by making use of the inner adjacent dependency

existing between the frontiers of two successive stages (k and k + 1).

To understand this dependency notion, assume, recalling our example in Chapter 1,

that a cable TV company wants to build two bundles, each containing a movie channel

(component A), a sports channel (component B) and a cultural channel (component C).

The choice alternatives for each component and their attractiveness and cost levels are

as given in Table 4.1, with sensitivity of utility to price β equal to −0.007. The Pareto-

efficient frontier for stage 1 and the bundles not on it (together constituting the set of all

feasible bundles) are shown in Figure 4.1. The optimal composition of the first bundle, lo-

cated on Ω∗1, is X∗1 . The Pareto-efficient frontier for stage 2 includes two bundles that were

dominated by X∗1 in stage 1 but are now on the frontier because X∗1 no longer belongs to

the feasible bundle space and no other bundle still in the space dominates them. The other
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Figura 4.1. Efficient Pareto frontier Ω∗1.

Figura 4.2. Efficient Pareto frontier Ω∗2.

two of the four bundles that were dominated by X∗1 in stage 1 continue to be dominated in

stage 2 even though X∗1 has been eliminated, as is shown in Figure 4.2.
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Tabla 4.1. Data for cable TV example.

Component Alternative Attractiveness Cost Index BF

A: movie channels
1 (HBO) 2 110 175.71
2 (Cinemax) 5 240 474.29
3 (Cinacanal) 7 900 100.00

B: sport channels 1 (ESPN) 5 400 314.29
2 (FoxSport) 7 800 200.00

C: cultural channels
1 (NatGeo) 4 230 341.43
2 (Discovery) 5 500 214.29
3 (History) 6 560 297.14

With this example in mind, we present the next proposition.

PROPOSITION 4.3. Let Ω be the feasible bundle space. Also, let Ω∗1 be a Pareto-

efficient frontier containing d bundles whose optimal bundle has the composition X∗1 . Fi-

nally, let Ω∗2 be the inner adjacent frontier of Ω∗1 under bundle X∗1 . Then Ω∗2 will contain

the d− 1 bundles other than X∗1 that were on Ω∗1 as well as some of the bundles in Ω that

were not on Ω∗1 because they were dominated exclusively by X∗1 .

Proof: See Appendix 6.5.

Proposition 4.3 leads us to conclude that constructing inner adjacent frontiers is also

a complex task. Even though d − 1 bundles on the Pareto-efficient frontier are known, it

is not clear which bundles or how many of them will appear on it once the bundle that

dominated them has been eliminated from the feasible bundle space.

In view of the above, we set out in what follows an alternative procedure for solving

(4.7) without having to build either the Pareto-efficient or the inner adjacent frontier at

each stage. We start with two useful definitions:

Definition 4.2. (Ranked list of a component) If we calculate the contribution of each

component alternative to the gradient of the objective function using the expression f(I, c) =

−I
β
− c, a descending ordered list of the alternatives can be constructed as a function of

the value of f(I, c). This list is called the ranked list of a component.
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Definition 4.3. (Adjacent bundle) Let k and l be two bundles. Bundle l is said to

be adjacent to bundle k if they are the same for all components except one and their

respective chosen alternatives for that exception are in immediately adjacent places on

the ranked list. In the special case where bundle k’s chosen alternative is the last one on

the list, bundle l’s chosen alternative must be the first one on the list (boundary condition

to properly define the algorithm and its correctness).

It follows from Definition 4.3 that a bundle will have as many adjacent bundles as it

has components. This leads to the definition of what we call a candidate bundle set:

Definition 4.4. (Candidate bundle set) Let X∗1 , X∗2 ,. . . ,X∗k be the optimal composition

of the bundles obtained in stages 1 to k, respectively. Also, let L(X∗1 ) be the set of bundles

adjacent to X∗1 , L(X∗2 ) the set of bundles adjacent to X∗2 , and so on up to L(X∗k), the set

of bundles adjacent to X∗k . Now construct a new set T (Xk+1) as the union of the k sets

of adjacent bundles. All of its bundles should have an index value f(I, c) = −I
β
− c that

is less than or equal to the optimal composition X∗k obtained in the previous stage. Thus,

T (Xk+1) is the set of candidate bundles for solving stage k+1.

With Definitions 4.2, 4.3 and 4.4 we can now develop the following proposition:

PROPOSITION 4.4. Let Ωk be the feasible bundle space in stage k. Also, let Ω∗k be

the Pareto-efficient frontier of Ωk and X∗k the optimal composition of bundle k. Then the

optimal composition of bundle k+1 bundle with k = 1, . . . , b − 1, denoted X∗k+1, is the

bundle in T (Xk+1) that has the highest index as given by f(I, c) = −I
β
− c.

Proof: See Appendix 6.6.

The importance of Proposition 4.4 lies in the fact that when we want to solve stage k+1

of (4.7), we need only identify the optimal composition of bundle k+1 in the set T (Xk+1);

there is no need to determine the Pareto-efficient frontier Ω∗k+1. Note that since the number

of adjacent bundles for X∗k isM, the number of bundles in T (Xk+1) is bounded above by

k · M.
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Thus, Proposition 4.4 ensures that once we know the composition of the first bundle,

we can obtain the optimal composition of the remaining b−1 bundles iteratively using the

recurrence function (4.8). We therefore introduce the following proposition:

Tabla 4.2. All feasible bundles for cable TV example.

N A B C Attractiveness Cost N A B C Attractiveness Cost
1 1 1 1 11 740 10 2 2 1 16 1,270
2 1 1 2 12 1,010 11 2 2 2 17 1,540
3 1 1 3 13 1,070 12 2 2 3 18 1,600
4 1 2 1 13 1,140 13 3 1 1 16 1,530
5 1 2 2 14 1,410 14 3 1 2 17 1,800
6 1 2 3 15 1,470 15 3 1 3 18 1,860
7 2 1 1 14 870 16 3 2 1 18 1,930
8 2 1 2 15 1,140 17 3 2 2 19 2,200
9 2 1 3 16 1,200 18 3 2 3 20 2,260

PROPOSITION 4.5. The optimal composition of the stage 1 bundle is found by applying

the BF algorithm to the optimal composition problem for a single bundle in a single market

segment.

Proof: See Appendix 6.7.

We are now able to set out our proposed solution approach, for which we will again

use our cable TV case as an example (see Table 4.1) and add the following data: first, the

utility of the bundles offered by the competition is γ = 12,000, and second, the number of

cable TV bundles is b = 3.

To find the optimal composition of these 3 bundles, the first step is to build the ranked

list for all of the components. The first bundle’s composition is obtained by solving the

stage 1 problem of (4.7) to get X∗1 . This solution is generated using the BF algorithm.

In our example, X∗1 is the composition of bundle 7 (see Table 4.2), which consists of the

alternatives 2 (Cinecanal), 1 (ESPN) and 1 (NatGeo) for components A, B and C, respec-

tively. To determine the optimal composition of the second bundle X∗2 , we obtain the list

of bundles adjacent to bundle 7 and build the candidate bundle set T (X2). According to
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Table 4.2 these bundles could be 1, 8, 9, 10 and 13, but by using Definition 4.3 we find

that they in fact are 1, 9 and 10, and since we are in the first stage, these three are the only

ones containing T (X2) (see Figure 4.3). By Proposition 4.4, the optimal composition of

the stage 2 bundle is the bundle in T (X2) with the highest index value for f(I, c) = −I
β
−c.

The optimal composition X∗2 in our example is alternatives 2 (Cinecanal), 1 (ESPN) and

3 (History) for components A, B and C, respectively, which is bundle 9. Finally, to de-

termine the optimal composition of the third bundle X∗3 we build the candidate bundle set

for stage 3, obtaining bundle 10 which consists of alternatives 2 (Cinecanal), 2 (FoxSport)

and 1 (NatGeo) for components A, B and C, respectively.

Figura 4.3. Results for stage 1 and sets for stage 2.

The change in the candidate bundle set between stage 2 and stage 3 is shown in Figure

4.4, which also indicates the optimal bundle for the latter stage. Note that the set T (X3)

contains the T (X2) and L(X∗2 ) bundles.

The above-described procedure is captured in the following solution algorithm for the

multiple bundle composition problem.
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Figura 4.4. Results for stage 2 and sets for stage 3.

Multiple Bundle Composition Algorithm

Begin

Do Rank[j, u] := 0 for all j ∈M and u ∈ Sj ; (Ranked list building)

k := 1;

While k ≤ b do

If k = 1 then

Solve stage 1 with algorithm BF 7→ X∗1

End If

If k > 1 then

Determine L(X∗k−1)

Build T (Xk)

Solve stage k:

X∗k := arg máx
Xk∈T (Xk)

f(IXk , cXk) =
−IXk
β − cXk

End If

k = k + 1

While End

End
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The iterated application of this algorithm ensures that the b bundles will be obtained

in exactly b stages. This procedure has the notable advantage of obviating the need to ex-

plicitly construct Pareto-efficient frontiers in each stage. Thus, on the basis of equations

(4.2), (4.3) and (4.4) associated respectively with Proposition 4.1, Corollary 4.1 and Co-

rollary 4.2, all developed in Phase 1, the algorithm built in Phase 2 ensures the optimal

composition and price will be obtained for the three bundles supplied by a firm to a single

market segment. The results generated by the algorithm for the cable TV example are dis-

played in Table 4.3. As can be seen, the expected utility was 22.27 and the market share

attained was 13.09 %.

Tabla 4.3. Cable TV example results (b = 3).

N A B C Attractiveness Cost Price qi [ %] Πi

7 2 1 1 14 870 1,035.1 6.18 10.20
9 2 1 3 16 1,200 1,365.1 4.53 7.48
10 2 2 1 16 1,270 1,435.1 2.78 4.59

The proposed algorithm will function correctly as long as all of the component sets

Sj are well-defined in the sense that all of the components have non-negative cost and

attractiveness factor values. The computational complexity of the algorithm is of order

O(HM+(b−1)M), where b is the number of bundles to be composed,H is the cardinality

of the largest set Sj andM is the number of components in a bundle.

4.1.3. Evaluation of algorithm performance: comparison with an optimization soft-

ware

To evaluate the proposed algorithm we compared its performance to that of an opti-

mization software. For this purpose we constructed six test cases, each with three compo-

nents, based on the cable TV data in Table 4.1. The only change was the number of bundles

to be designed. Two more complex cases having many more possible solutions were also

tested. For these two, the values for cost and attractiveness were chosen randomly, the

former ranging between 1 and 1,000 and the latter between 10 and 100. The first one had
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four components with 5, 4, 3, and 5 choices, respectively while the second one had five

components with 4, 4, 5, 6, and 4 choices, respectively. For all eight test cases, γ = 12.000

and β = −0,007.

The eight cases were then solved by both the algorithm and the GAMS IDE version

23.8.1 optimization software with the Bonmin solver, which is designed for integer non-

linear programming problems. The results are given in Table 4.4. The software solutions

are the best ones found within 90 minutes of running time.

Tabla 4.4. Results of proposed algorithm and optimization software for 8
test cases.

Components Bundles Possible Algorithm Algorithm Software Software
to compose solutions utility time [sec] utility time [sec]

3 2 153 18.21 0.00 18.21 0.51
3 3 816 22.27 0.00 22.27 1.53
3 4 3,060 25.82 0.00 25.82 7.03
3 5 8,568 28.56 0.00 25.56 22.21
3 6 18,564 30.04 0.03 30.04 2,042.20
3 7 31,824 31.03 0.04 31.03 1,913.02
4 3 4,455,100 46,055.43 42.90 44,679.20 5,400
5 2 1,842,240 58,693.40 12.90 58,656.41 5,400

As can be seen, the more possible solutions there were, the greater was the algorithm’s

advantage in processing time over the optimization software. In the most complex case,

set out in the second-to-bottom row of the table, the algorithm took only 42 seconds to find

the solution whereas the software needed 5,400 seconds. Also, the utility of the algorithm

solution was always greater than that of the software. Specifically, in the most complex

case 3 % higher (46,055.43 versus 44,679.20).

4.1.4. Relationship between optimal solution for b y b+ 1 bundles

Based on the analysis of Phase 2, we are able to establish the following proposition:
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PROPOSITION 4.6. In the absence of administration costs, the optimal composition

for b+ 1 bundles contains the optimal solution for b bundles.

Proof: The demonstration is straightforward, following directly from equations (4.7)

and (4.8). Clearly, when solving the problem of b + 1 bundles the same b first stages are

consecutively solved as for the problem of b bundles (equation (4.7)). Only the solution of

stage b+ 1 will be different, and it is found by solving over the set Ω∗b+1 as shown in (4.8).

Consequently, the bundles that comprise the solution of the b bundles case must neces-

sarily include all those in the solution of any b̃ bundles case where 1 ≤ b̃ < b. However,

enlarging the problem from b bundles to b + 1 may change the b bundles’ optimal prices

given that the optimal price of each bundle is dependent on the composition of all the

others (Proposition 4.1).

4.1.5. Optimal number of bundles

From our analysis so far we are now in a position to answer the question whether there

exists an optimal number of bundles to be marketed. Assuming there are no administration

costs, we propose the following:

PROPOSITION 4.7. The expected utility is increasing with respect to the number of

bundles to be marketed when there are no administration costs depending on the number

of bundles to be designed.

Proof: See Appendix 6.8.

The variation in utility as the number of bundles to be supplied increases from 1 to all

18 that can possibly be composed in our cable TV example (see Table 4.1) is shown as a

continuous line in Figure 4.5. The dashed line in the figure is the trend in the marginal uti-

lity of adding a new bundle. The two curves are consistent with Proposition 4.5 according

to which utility (Π) grows as the number of bundles (b) to be composed increases but at a

decreasing marginal rate.
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Figura 4.5. Variation in utility as the number of bundles to be marketed varies.

If we include bundle administration costs, the optimal number of bundles to be put on

the market will be determined by the interaction of the marginal cost function with the

marginal utility function. For example, if the cost function is linear –say, 5 per bundle– the

optimal number will be 2 given that the marginal utility of marketing the second bundle is

5.21 whereas that of the third is only 4.06.

4.2. Optimal Pricing and Composition of multiple bundles and multiple market seg-

ments

Next, we show that the structure of the MBMSP does not allow us to solve the problem

in two phases as in the case of a single market segment discussed in the previous subsec-

tion. Consequently, we propose a heuristic approach to determine the price and bundle

compositions under the conditions described for the MBMSP.
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4.2.1. Bundle price optimization problem

If we assume that we know the composition of each of the b bundles, the decision va-

riables and constraints associated with their composition (i.e., constraints (3.14) through

(3.19)) drop out, leaving only constraints (3.13) and (3.20). Then, if we substitute cons-

traint (3.13) into objective function (3.12), we obtain the following optimization problem

in which the decision variables are the prices of the b bundles and the only remaining

condition is the non-negativity of the bundle prices. If we further assume that the price

non-negativity condition is always satisfied for values strictly greater than zero, this pro-

blem can be said to be unconstrained. We then have

Π = máx
p1,...,pK

b∑
k=1

W∑
i=1

H i e
IiXk

+βipk

γi +
b∑
l=1

e
IiXl

+βipl

(pk − cXk). (4.9)

Applying the first-order optimization conditions to (4.9) we obtain the following pro-

position:

PROPOSITION 4.8. The optimal price of the kth bundle cannot be obtained in closed

form and is given by the following expression:

p∗k = cXk +

(
W∑
i=1

b∑
t=1:t6=k

H iβiqitq
i
k (p∗t − cXt)

)
−
(
W∑
i=1

H iqik

)
W∑
i=1

H iβiqik (1− qik)
(4.10)

where all qik depend on pk.

Proof: See Appendix 6.9.

As may be observed, in order for the optimal price pk to be greater than or equal to

the cost (cXk), it must be the case that pt − cXt ≥ 0 for every designed bundle given that

H i > 0, qit, q
i
k ≥ 0, βi < 0, and (1− qik) ≥ 0 for every segment. It can be shown by (4.10)
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that price is always greater than cost. If the price of any bundle – say, bundle k – is less

than its cost, the term pk − cXk < 0, and the bundle’s contribution to expected utility will

be negative or zero if the remaining terms are non-negative. If this is so, it will be the case

that H i > 0 for all segments and qik ≥ 0 for every bundle and segment.

Further analysis of (4.9) brings us to Proposition 4.9:

PROPOSITION 4.9. The objective function (4.9) is quasi-concave for prices such that

pk ≥ cXk for all k = 1, . . . , b.

Proof: See Appendix 6.10.

The implication of 4.9 is that if we know the composition of the b bundles, then every

local optimum is also a global optimum as long as the search space is a convex set. This

being the case, the optimization problem (4.9) must satisfy the single condition pk ≥

cXk , ∀k = 1, . . . , b that defines a convex space. Recall that we assume the composition

of the bundles to be known, so cXk ∀k = 1, . . . , b is a known parameter for this problem.

It follows from the foregoing that given the composition of each of the b bundles, we

can determine the optimal price for each one using any of the existing numerical methods

for finding the maximum of a non-linear function with linear constraints, and any local

optimum so found will also be a global optimum.

4.2.2. Solution approach for MBMSP

We have already seen in the previous subsection that it is not possible to obtain a

closed expression for the determination of the optimal price of the b bundles when the

composition of these bundles is known. This prevents facing the composition problem as

it was done in Bitran and Ferrer (2007) and in the Chapter 4.1.

We therefore propose a solution metaheuristic that proceeds in three stages as shown

in Figure 4.6: (0) initial composition, (1) optimal prices, and (2) final composition.



46

Figura 4.6. Flow diagram of proposed solution approach.

In the following subsections the three stages are described in turn.

4.2.2.1. Composicin Inicial

To determine the initial composition of the b bundles we use an algorithm based on the

Multiple Bundle Composition Algorithm developed in Cataldo and Ferrer (2017), which

identifies the price and optimal composition for multiple bundles offered in a single seg-

ment. The steps in the algorithm are as follows:

One of the steps calls the Multiple Bundle Composition Algorithm to determine the

optimal composition of the b bundles for each segment separately. The indicator Y (k, i)

is used to signal whether the composition of bundle k in segment i already appeared

in a previously visited segment. We define the index CFI as the weighted attractive-

ness level of a bundle across all segments, which is a function of the number of con-

sumers in each segment (H i), and that is constructed with the following expression:∑W
i=1 H

i

(
−I

X̂i
k

βi
− cX̂i

k

)
.
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Initial Composition Algorithm

Begin

i := 1;

While i ≤W do

Use Multiple Bundle Composition Algorithm 7→ X̂i
k ∀k = 1, . . . , b

Set indicator of valid combination 7→ Y (k, i) = 0 ∀k = 1, . . . , b

i = i+ 1

While End

i:=1

While i ≤W do

k:=1

While k ≤ b do

Procedure to indicate if combination (bundle,segment) already appeared 7→ Y (k, i) = 1

k = k + 1;

While End

i = i+ 1;

While End

While k ≤ b do

Calculate CFI index for each bundle such that Y (k, i) = 0 as
W∑
i=1

H i

(
−I

X̂i
k

βi
− cX̂i

k

)
k = k + 1

While End

Select b bundles with the highest CFI index where Y (k, i) = 0 7→ X0
k ∀k = 1, . . . , b

End

Thus, the Initial Composition Algorithm specifies the composition of the b bundles that

will be used as the initial composition (X0
k) for the metaheuristic. Note that the b bundles

created by this algorithm all differ from each other by construction because the Multiple

Bundle Composition Algorithm ensures this is so separately for each segment.
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4.2.2.2. Optimal prices

Proposition 4.2 states that for a given composition there exists a global optimum for

problem (4.1), which generates the optimal prices associated with the expected maximum

utility for the problem. It further says that this global optimum is obtained at any local

optimum.

We therefore use the conjugate gradient method to determine the combination of pri-

ces that maximizes the value of the objective function in (4.1) for b bundles of known

composition.

4.2.2.3. Final composition

To determine the final composition for the bundles to be designed, we use a Tabu

search in three phases as shown in Figure 4.7.

Figura 4.7. Tabu search algorithm framework.

The local ascent phase determines the best solution within the neighborhood of the

current solution. If no neighboring solutions better than the current one are found, the

phase terminates and the algorithm switches to the Tabu phase. In this phase there are

movements that do not improve the current solution. A Tabu list maintains a recent search
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history to prevent the algorithm from cycling between a set of solutions. If a solution

better than the current one is found, the Tabu phase terminates and the algorithm returns

to the local ascent phase. If, on the other hand, a better solution is not found before a

predetermined number of iterations has been reached, the algorithm goes from the Tabu

phase to the diversification phase. A previously unexplored portion of the solution space

is then explored over a set number of iterations. If a better solution is found, the algorithm

goes back to the local ascent phase, otherwise it returns to the Tabu phase with the best

solution found up to that point.

For our problem in which b bundles must be designed, we define a neighboring solution

as one that is identical to the current one in the design of b− 1 bundles, that is, a solution

in which only one bundle is different, and is so only in one component.

Figura 4.8. Example of the definition of a neighborhood.

As an example, consider the case shown in Figure 4.8. Two bundles must be desig-

ned with three components each and there are four choice alternatives for component 1,

three for alternative 2 and four for alternative 3. The current and neighboring solutions for

the two bundles are each illustrated by an ordered set of squares, each one representing a

choice alternative for one of the bundle components as marked. A square containing a 1 in,
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say, the third square from left to right for a given component indicates that in the solution

in question, the component is the third alternative; a 0 indicates it is not. In the current so-

lution, shown by the top set of squares, the three alternatives for the bundle 1 components

in numerical order are 1, 2 and 4, respectively, while for bundle 2 the corresponding al-

ternatives are 3, 2 and 2. In the three neighboring solutions, the differences between them

and the current solution are marked in grey, indicating which components in which bundle

have changed. For instance, in neighboring solution (a), bundle 1 differs from the current

solution in that component 1 is the second alternative rather than the first. In neighboring

solution (b) it is bundle 2 that has changed, component 2 being the first alternative instead

of the second.

4.2.3. Case Study

Our case study is the cable TV example previously used in (Cataldo and Ferrer, 2017),

in which a cable television company designs two bundles, each one containing a movie

channel (component A), a sports channel (component B) and a cultural channel (compo-

nent C). This time, however, the two bundles are to be offered in two market segments ins-

tead of just one. Three different scenarios will be considered. In the first scenario, although

both bundles are sold in both segments, the cable TV company optimizes the composition

and price of each bundle for only one (different) segment. Thus, two independent problems

are solved. In the second scenario, the same bundle compositions are used but the com-

pany optimizes the bundle prices over both segments. The prices are therefore obtained

solving a joint problem in which the two segments are mutually dependent. Finally, the

third scenario is our proposed problem in which the company optimizes both composition

and price jointly over the two segments, which are thus fully mutually dependent.

4.2.4. Scenario data and results

For all three scenarios, the choice alternatives for each component and their respective

attractiveness and cost levels in each segment are given in Table 4.5. All 18 feasible bundle
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Tabla 4.5. Component alternatives and their attractiveness and cost for case
study.

Component Alternative Attractiveness Attractiveness Cost
Segment 1 Segment 2

A: movie channel
1 (HBO) 2 3 110
2 (Cinemax) 5 4 240
3 (Cinacanal) 7 9 900

B: sport channel 1 (ESPN) 5 4 400
2 (FoxSport) 7 8 800

C: cultural channel
1 (NatGeo) 4 2 230
2 (Discovery) 5 5 500
3 (History) 6 7 560

Tabla 4.6. All feasible bundles and their attractiveness and cost for case study.

N A B C Attr. Attr. Cost N A B C Attr. Attr. Cost
Seg. 1 Seg. 2 Seg. 1 Seg. 2

1 1 1 1 11 9 740 10 2 2 1 16 14 1,270
2 1 1 2 12 12 1,010 11 2 2 2 17 17 1,540
3 1 1 3 13 14 1,070 12 2 2 3 18 19 1,600
4 1 2 1 13 13 1,140 13 3 1 1 16 15 1,530
5 1 2 2 14 16 1,410 14 3 1 2 17 18 1,800
6 1 2 3 15 18 1,470 15 3 1 3 18 20 1,860
7 2 1 1 14 10 870 16 3 2 1 18 19 1,930
8 2 1 2 15 13 1,140 17 3 2 2 19 22 2,200
9 2 1 3 16 15 1,200 18 3 2 3 20 24 2,260

designs and their individual attractiveness and cost levels in each segment are shown in

Table 4.6. The parameters are H1 = 20, 000; H2 = 35, 000; γ1 = 6, 520; γ2 = 8, 730;

β1 = −0.0064 and β2 = −0.0071.

The solution method for the first scenario, in which each bundle is optimized indepen-

dently for a single different segment, follows the approach presented in Bitran and Ferrer

(2007). The results are summarized in Table 4.7.

As can be seen, the optimal composition for a single bundle to be sold in segment 1

is alternatives 2, 1 and 1 for components A, B and C, respectively. This corresponds to

bundle 7 in Table 4.6. The optimal composition for the same components in segment 2 is
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Tabla 4.7. Summary of results for first scenario, optimizing for each seg-
ment independently.

Bundle A B C Price Cost q1
1 q2

1 q1
2 q2

2 Utility
7 2 1 1 1,060.2 870 17.0 % 0.1 % - - 656,696
18 3 2 3 2,415.9 2,260 - - 1.2 % 9.7 % 566,930

alternatives 3, 2 and 3, corresponding to bundle 18 in Table 4.6. The optimal prices deter-

mined specifically for each segment are 1,060.2 for segment 1 and 2,415.9 for segment.

Note that although the probability that bundle 7 is bought by a segment 1 consumer is

17.0 % while the probability it is bought by a segment 2 consumer is only 0.1 %, the latter

figure is nevertheless greater than zero. In the case of bundle 18, the situation is similar:

the probability it is bought by a segment 2 consumer, for whom it was designed, is 9.7 %

whereas the probability a segment 1 consumer buys it is 1.2 %, that is, much lower than

segment 2 but still a positive number. The expected utility in the two segments is 656,696

for bundle 7 and 566,930 for bundle 18, totaling 1,223,626 for the two bundles combined.

Taken separately, segment 1 utility is 685,123 while segment 2 utility is 538,503.

The solution for the second scenario, in which the two bundles maintain their respecti-

ve first scenario compositions but price policy is optimized jointly over the two segments,

is determined using equation (4.1). The results are set forth in Table 4.8.

Tabla 4.8. Summary of results for second scenario, optimizing price jointly
over both segments.

Bundle A B C Price Cost q1
1 q2

1 q1
2 q2

2 Utility
7 2 1 1 1,060.1 870 17.1 % 0.1 % - - 656,825
18 3 2 3 2,418.2 2,260 - - 1.2 % 9.6 % 566,871

As the table shows, total expected utility is 1,223,696, an increase of only 70 (0.006 %)

over the total figure for the two segments when solved separately.

Finally, the third scenario representing our proposed problem is solved using the ap-

proach proposed in Subsection 4.2.2 in which both composition and price are optimized

jointly over the two segments. The results are given in Table 4.9.
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Tabla 4.9. Summary of results for third scenario, optimizing composition
and price jointly over both segments.

Bundle A B C Price Cost q1
1 q2

1 q1
2 q2

2 Utility
9 2 1 3 1,390.6 1,200 14.3 % 1.8 % - - 661,667
12 2 2 3 1,773.8 1,600 - - 9.1 % 6.4 % 702,711

The optimal composition in this case is alternatives 2, 1 and 3 respectively for compo-

nents A, B and C in segment 1, corresponding to bundle 9 in Table 4.6, and alternatives 2,

2 and 3 for the same components in segment 2, which is bundle 12 in Table 4.6. The res-

pective optimal prices for the two bundles are 1,390.6 and 1,773.8. The expected market

share for segment 1 falls from 17.2 % to 16.1 % while for segment 2 it rises from 10.8 %

to 15.5 %. The net effect of these changes is that total expected utility for the two bundles

increases from 1,223,696 to 1,364,378, or 11.5 %.

In light of the foregoing results, the following observations are in order. First, the op-

timal compositions of the bundles are not necessarily the compositions obtained when

each segment is considered independently. Second, when the two segments are considered

jointly, the optimal compositions of the bundles are not necessarily those that are opti-

mal for either one of the segments considered independently. And third, optimizing price

jointly over both segments with predetermined (i.e., not jointly optimized) bundle designs

increases the expected profits, but not to the same extent as jointly optimizing both price

and bundle composition over the two segments.

4.2.4.1. Sensitivity Analysis

We now turn to the analysis of how the solution of the problem changes in price and

composition when structural aspects of the market are modified. Two such modifications

are considered: market size (H i) and level of competition (γi). The analysis maintains the

case study characteristics set out in Table 4.5.
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4.2.4.2. Relative size of market segments

We assume that there are 55,000 consumers and that the structure of the segments

remains the same except for their size, which is modified by varying the ratio of their

respective numbers of consumersH1 andH2 from 0 to 1 in equal increments of δ = 0,001.

The results are summarized in Table 4.10, which displays only those pairs of bundles that

are optimal, namely, 12-18, 9-12 and 7-9. Note that none of the pairs is 7-18, the bundles

that were optimal for segments 1 and 2 considered independently.

Tabla 4.10. Results when relative segment size (H1/H2) is varied.

Bundle 1 Price Bundle 1 Bundle 2 Price Bundle 2 Utility H1/H2

12 1,768.5 18 2,425.7 1,301,857 0.2
9 1,389.6 12 1,772.4 1,399,581 0.4
7 1,079.8 9 1,401.7 1,593,399 0.5
7 1,080.0 9 1,404.4 1,870,678 0.6
7 1,080.2 9 1,408.0 2,425,659 0.8
7 1,080.4 9 1,410.5 2,980,958 1.0

Also, when the ratio is varied from one instance to the next (for example, from 0.2

to 0.2+δ), one of two things occur: (i) the optimal pair of bundles remains the same but

the optimal prices change, or (ii) just one of the bundles changes and the optimal prices

change accordingly.

4.2.4.3. Relative level of competition

We now modify the level of competition in segment 2 while maintaining all other

characteristics of the segments’ structure. This is done by increasing the value of γ2) from

652 to 16,300, which in turn increases the ratio γ2/γ1. These variations are made in equal

increments of δ = 1. The principal results are shown in Table 4.11.

In the case where the ratio is low, competition in segment 2 is weak and its attracti-

veness is therefore high relative to segment 1, but as the ratio increases, competition in

segment 2 intensifies and the relationship reverses. Thus, in the case where the ratio is
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high, segment 1 is more attractive relative to segment 2. The effect is evident in the bund-

les found to be optimal. In the first case the optimal bundles are 12 and 18, which are

focused on segment 2 (recall from Table 4.7 that in segment 2 it was bundle 18 that had

the optimal composition) whereas in the second case, the optimal bundles are 7 and 9,

which are focused on segment 2 (recall from Table 4.9 that in segment 1 it was bundle 7

that had the optimal composition).

Tabla 4.11. Results when relative competition level (γ2/γ1) is varied.

Bundle 1 Price Bundle 1 Bundle 2 Price Bundle 2 Utility γ2 γ2/γ1

12 1,870.1 18 2,542.0 1,350,876 652 0.1
12 1,795.5 18 2,461.6 1,301,857 2,608 0.4
12 1,777.6 18 2,438.3 1,399,581 5,216 0.8
9 1,389.6 12 1,774.0 1,593,399 6,520 1.0
9 1,390.5 12 1,773.8 1,870,678 8,476 1.3
9 1,391.1 12 1,784.2 2,425,659 9,780 1.5
7 1,079.8 9 1,401.9 2,980,958 16,300 2.5

Note also that the optimal bundles in Table 4.11 are the same ones found in the market

size sensitivity analysis. Bundles 7 and 18 never appear as a pair, being the bundles that

were optimal for segments 1 and 2, respectively, when the latter were solved for indepen-

dently.

Once again, as the sensitivity analysis proceeds through the various instances, one of

two things occur: (i) the optimal pair of bundles remains the same but the optimal prices

change, or (ii) just one of the bundles changes and the optimal prices change accordingly.

4.2.5. Evaluation of the proposed approach

To test the performance of the proposed approach, 1,000 experimental problems were

run using the heuristic. The problems involved 2 or 3 market segments and the design of 2

to 4 bundles. The bundles were composed of either 4 or 5 components, each with at least 3

and at most 6 choice alternatives. With these characteristics the largest problem involved

7,776 different possible bundle designs and more than 30 million solutions. To limit the
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possibilities to a more manageable number, the problems were set up in such a way that

there could be no more than 100,000 solutions. The parameter values set for H i ranged

from 2 to 90, for βi from -0.006 to -0.009 and for γi from 100,000 to 500,000. Computer

runs that did not terminate on one of the heuristic stopping criteria were cut off at 5 minu-

tes. In each case, the problem was first solved to optimality (exhaustive enumeration) and

the solution found was used as the benchmark for comparison with the solution obtained

using the proposed approach.

Tabla 4.12. Summary of results for 1,000 experiments.

Indicator Tabu Search
Percentage of cases where optimal solution found ( %) 96.10
Average GAP ( %) 0.19
Average GAP without cases where optimal solution found ( %) 1.71
Maximum GAP ( %) 5.35
Standard Deviation GAP ( %) 0.71

The main results obtained are summarized in Table 4.12. The indicator “percentage of

cases where the optimal solution was found” refers to the proportion of problems solved

for which the heuristic found the optimal solution(for both composition and price). “Ave-

rage GAP” indicates the average percentage by which the heuristic solution fell short of

the optimal one, and was calculated including the 0 % gaps where the heuristic identified

the optimum. “Average GAP” without cases where an optimal solution was found is the

average percentage by which the heuristic solution fell short of the optimal one for ca-

ses where the heuristic did not find an optimal solution. “Maximum GAP” is the largest

percentage difference between the heuristic and optimal solutions for any case. Finally,

“standard deviation GAP” is the standard deviation for all of the gap values.

As these results indicate, our proposed approach found the optimal composition and

price in 96.1 % of cases, falling short of the optimum in the remaining cases by an average

of only 1.71 %. In the worst case, the solution found by our approach was only 5.35 %

below the optimum.
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4.3. Optimal Pricing and Composition of single bundle and single market segment

with Constrained Multinomial Logit

As in Bitran and Ferrer (2007), the non-linear mixed integer programming problem is

solved in two phases. The first one is aimed at pricing for a generic composition. In the

second stage, we solve the problem of defining the optimal composition, given the price

defined in the first step.

4.3.1. Phase 1: Multiple bundle optimal price subproblem

Given our assumption for this phase that the optimal composition of each bundle is

already known, the decisions and constraints relating to composition are temporarily set

aside. Substituting (3.30) above into the objective function (3.29), the unconstrained price

optimization subproblem becomes:

Π = máx
p1,...,pb≥0

b∑
k=1

φ (pk) e
IXk+βpk

γ +
b∑
l=1

φ (pl) e
IXl+βpl

(pk − cXk). (4.11)

This leads to the following proposition:

PROPOSITION 4.10. The optimal price of the bundle k can not be obtained in a closed

form, and is determined by the following expression, which corresponds to an expression

for a fixed-point system:

p∗k = cXk +
γk + φ (p∗k) e

IXk+βp∗k

γk (w (1− φ (p∗k))− β)︸ ︷︷ ︸
b=1 term

+

b∑
l=1:l 6=k

φ (p∗l ) e
IXl+βp

∗
l (p∗l − cXl)

γk︸ ︷︷ ︸
b>1 term

∀k = 1, . . . , b,

(4.12)

where γk = γ +
∑b

l=1:l 6=k φ (p∗l ) e
IXl+βp

∗
l . Thus, the optimal price of bundle k depends on

the composition of all b bundles. This price will be greater than or equal to cXk , the cost
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to the firm of bundle k, whenever β < 0, φ (pk) ≥ 0 and γ ≥ 0. In (4.12) all of these

conditions are satisfied. The foregoing also implies that prices are always non-negative.

Proof: See Appendix 6.11.

It is important to notice that when the maximum willingness to pay is not modelled,

i.e., the customers’ decision is independent of g, then φ (p) = 1 and the same result by

Bitran and Ferrer (2007) is reproduced for the case in which a price and a composition

for a given unique customers’ segment is analyzed. Both in Bitran and Ferrer (2007) and

in the problem of the Chapter 4.1 was derived a closed expression for the price, which

corresponds to a Lambert function. For the current case, in which we include the cutoff

functions regarding the maximum willingness to pay, we have proceeded in numerical way

to establish the solution of the fixed point equation.

From the equation (4.12), it is possible to see that for a given composition the optimal

price found for the case with CMNL on the consumers’ maximum willingness to pay is

greater than or equal to the cost cXk , and less than or equal to the price found according to

Bitran and Ferrer (2007). Namely, cXk ≤ p∗k ≤ p∗BF , which is possible to see graphically

in the Figures 4.9 and 4.10.

In Figure 4.9, it is also possible to see that the effect of the maximum willingness to

pay variations on the optimal price p∗k. We can observe that as much as the willingness

g grows, then p∗k tends to a p∗BF ; whereas when the g decreases p∗k tends to a cXk . The

above has merits with reality by extending Bitran and Ferrer work; in which was assumed

implicitly that the consumers’ maximum willingness to pay was not bounded. On the other

hand, if the maximum willingness to pay is less than the cost, then the firm will not charge

less than the cost for it would incur in losses.

In Figure 4.10 it is possible to see the effect of the variations of value w on the opti-

mal price p∗k. The parameter w has a relation to the dispersion of g in terms of the cutoff

function φ. The gradient of the dependent function of the price in the fixed point system
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Figura 4.9. Numerical examples of optimal prices with CMNL with respect to g

Figura 4.10. Numerical examples of optimal price with CMNL with res-
pect to w (for two different g)
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will change, and with this change into account, the optimal price will do so. In this envi-

ronment, it is possible to see that when g ≤ cXl and w increases, then p∗k decreases. On

the other hand, when g ≥ p∗BF and w increases, then p∗k does the same.

4.3.2. Phase 2: Multiple bundle optimal composition subproblem

Thus, having analyzed the fixed point equation that permits to calculate the optimal

price for the bundle k, i.e. p∗k, for a given bundle composition, it is possible to identify

this one through, for instance, the enumeration of all possible bundles. Then, it is possible

to define the profit obtained for each composition evaluating in the optimal price, and we

can set which is the price and the optimal composition for every possible bundle. We must

notice that the optimal solution found with this methodology is a global optimal of the

problem (BP), since we have proceeded by enumeration. Given that p∗k ≤ p∗BF , then the

composition X neither it is necessarily equal to the one of Bitran and Ferrer (2007).

Let us take the numerical example set out in Chapter 4.1, taking into account the

information given in the Tables 4.1 and 4.2, which correspond to information on cost and

attractiveness per component and the enumeration of all bundles feasible to compose for

this example.

Let us consider as an example (see Table 4.13) a case in which, on the one hand,

maximum willingness to pay is not considered, Bitran and Ferrer type, and on the other,

cutoff functions on the maximum willingness to pay such that w = 0,0015, g = 850 y

ρ = 0,1.

In Table 4.13, it is possible to see that, when the consumers’ maximal willingness

to pay is taken into account, the optimal composition is the bundle 1, whilst when the

consumers’ maximal willingness to pay is not considered (Bitran and Ferrer base case),

then the optimal composition is the bundle 7. The above proves the fact that not only

the price is different when considering the consumers’ maximum willingness to pay, but

also the composition of the bundle is different with respect to the Bitran and Ferrer base
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Tabla 4.13. p∗ and objective function, Bitrn y Ferrer case versus CMNL

Bundle p∗BF Π (p∗BF ) p∗ Π (p∗)

1 883.168 0.311 869.006 0.1526
2 1,152.985 0.128 1,136.492 0.0501
3 1,213.085 0.228 1,196.022 0.0845
4 1,282.997 0.140 1,265.418 0.0484
5 1,552.915 0.057 1,533.411 0.0150
6 1,612.960 0.103 1,593.034 0.0251
7 1,013.197 0.340 997.818 0.1505
8 1,282.997 0.140 1,265.418 0.0484
9 1,343.107 0.250 1,324.981 0.0815

10 1,413.010 0.153 1,394.420 0.0465
11 1,682.920 0.063 1,662.596 0.0142
12 1,742.969 0.112 1,722.260 0.0236
13 1,672.882 0.025 1,652.647 0.0057
14 1,942.867 0.010 1,921.221 0.0017
15 2,002.875 0.018 1,980.956 0.0028
16 2,072.868 0.011 2,050.666 0.0016
17 2,342.862 0.005 2,319.746 0.0004
18 2,402.865 0.008 2,379.580 0.0007

case. This sets forth explicitly the contribution of this research, since it is concrete that

by means of inclusion of the consumers’ maximum willingness to pay, the original model

result changes completely, in both price and composition. The latter not only makes a

theoretical finding in terms of modelling, but it also has applied implications in terms of

the decision makers (managerial insights).

Additionally, in Table 4.14, we analyze the optimal composition and profit when con-

sidering multiple values for the maximum willingness to pay b for w, noting that for some

combinations of g and w the bundle composition is the same as in Bitran and Ferrer’s case,

whereas for other combinations they are not.

Particularly in Table 4.14 is appreciated that for most of proposed scenarios, the profit

function value varies considerably with respect to w and g. It is observed that when the

value of w is 0.0015 and the maximum willingness to pay goes from 500 to 1500; here is
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Tabla 4.14. Optimal price, profit and composition varying g y w

g
500 700 900 1,100 1,300 1,500

w = 0.001
Π∗ 0.128 0.144 0.161 0.178 0.195 0.211
X 7 7 7 7 7 7
p 1,001,314 1,002,158 1,003,038 1,003,939 1,004,843 1,005,732

w=0.0015
Π∗ 0.113 0.135 0.158 0.182 0.207 0.23
X 1 1 1 7 7 7
p 865.886 867.624 869.476 1.000.154 1.002.043 1.003.863

w=0.002
Π∗ 0.1 0.129 0.16 0.19 0.219 0.248
X 1 1 1 1 7 7
p 859,929 862,658 865,696 868,841 999,942 1,002,870

w=0.003
Π∗ 0.078 0.117 0.163 0.206 0.243 0.277
X 1 1 1 1 1 7
p 848,538 853,251 859,093 865,317 870,975 1,002,709

w=0.004
Π∗ 0.06 0.107 0.166 0.222 0.263 0.298
X 1 1 1 1 1 7
p 838,303 844,672 853,604 863,394 871,650 1,003,924

w=0.005
Π∗ 0.046 0.098 0.169 0.236 0.277 0.313
X 1 1 1 1 1 7
p 829,389 836,954 849,055 862,640 873,094 1,005,641

w=0.09
Π∗ 0 0.001 0.299 0.34 0.34 0.34
X 1 1 1 1 1 1
p 750,309 750,411 855,751 1,012,497 1,013,197 1,013,197

possible to see that the optimal composition is the bundle 1 for g ∈ {500, 700, 900}, and

for g ∈ {1100, 1300, 1500} the optimal composition is bundle 7.

In the analyze the optimal profit value for a particular composition, in this case bundle

1, regarding the change of value for the maximum willingness to pay g, and for different

values of w. In Figure 4.11, the optimal profit behavior for a given composition follows a

similar pattern to that observed regarding the optimal price, i.e., for low willingness to pay,

when the price is similar to the cost, have to obtain that the profit is inclined to zero; on the

other hand, when the willingness to pay increases, then the price is similar to Bitran and

Ferrer’s one, and the same goes for the profit. The parameter w standardizes the gradient

with which this change is produced, whereas w is smaller, then the approach to Bitran and

Ferrer values is given in values of higher g.
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Figura 4.11. Optimal profit for bundle composition 1
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5. CONCLUSION AND FUTURE RESEARCH

5.1. Review of the Results and General Remarks

This doctoral research addresses the problem of simultaneously determining the opti-

mal composition and pricing of a set b of bundles marketed by a firm whose objective is

to ensure its composition and pricing decisions maximize total benefits, extending in this

way the scope of the previous research carried out by Bitran and Ferrer (2007), in which

it was considered a single bundle and a single market segment.

In the first problem (3.1), a single market segment and a set of b bundles were consi-

dered to be designed and priced. In the second problem 3.2 extends the reach to multiple

market segments, considering that the b bundles are offered in all market segments. In

both problems the focus of the research was on developing ways to solve them, and th-

rough the solution obtained mention some managerial insight. In the third problem 3.3,

a single market segment was once again incorporated, incorporating the consumers’ ma-

ximum willingness to pay. The focus on this problem was to prove that, using the model

and approach proposed by Bitran and Ferrer, a non-optimal bundle (or a combination of

bundles) could be designed.

For the first and second problem faced in this work of doctoral thesis, these consumer

preferences are assumed to maximize consumer utility as defined by a random utility mo-

del. It is also assumed that demand can be described in terms of the price and attributes

of all of the firm’s bundles. The random utility model is a multinomial logit formulation.

For the third problem, a constraint multinomial logit formulation is used to model the

consumers’ behavior when included their maximum willingness to pay. In this sense, this

consumers’ maximum willingness to pay does not represent a fixed threshold, and then

under that threshold buys and on that threshold buys the bundle if it reports the maximum

benefit among the alternatives evaluated, but represents a smooth curve described proba-

bilistically through the cutoff functions. In this sense, this maximum willingness to pay

by the consumer does not represent a fixed threshold (and therefore does not indicate that
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below that threshold the consumer buys the bundle and over that threshold the consumer

does not buy the bundle, even if that bundle gives him the maximum benefit among the

evaluated alternatives), but represents a smooth curve described probabilistically through

the cutoff functions.

The three problems described were formulated using non–linear optimization models

in mixed variables. Though such models are normally difficult to solve, in all cases studied

the problem’s mathematical structure is such that it can be addressed in two phases. In the

first phase it is assumed the optimal composition of the b bundles offered by the firm is

known, and an expression is obtained that determines the optimal price for each bundle.

In the second phase, the composition of all b bundles is obtained.

In the first problem, a closed expression is obtained to determine the optimal price for

each bundle (first phase), and the optimal composition of all b bundles is derived by subs-

tituting the closed price expression into the original problem formulation, thus obtaining

a new optimization model that is pre-optimized for price (second phase). This new model

is rewritten as a dynamic programming problem that in each stage (or subproblem) deter-

mines the optimal composition of one of the b bundles. The optimal solution of the global

problem is generated by an algorithm constructed around the idea of a Pareto-efficient

frontier, first described by Bitran y Ferrer, in combination with the novel concepts of inner

adjacent frontier, ranked list of a component, adjacent bundle and candidate bundle set.

The algorithm is a pseudo-polynomial of order O(HM+ (b− 1)M). It requires an initial

bundle, designed following the approach also developed by Bitran and Ferrer for the sin-

gle bundle composition problem in a single market segment. It is demonstrated that this

bundle will always be one of the b bundles chosen.

Two aspects of the solution are particularly worthy of note. First, the optimal price of

each bundle designed by a firm depends on the composition of all of its other bundles, but

not on their prices; and second, the bundles designed are very similar in their composition.

The fact that any one bundle’s price does not depend directly on the prices of the others
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–though it does indirectly through its composition– ensures that there exists a closed ex-

pression to calculate it. The similarity of the bundles’ composition is due to the fact that

an multinomial logit consumer choice model was used.

In the second and third problem, was possible to determine the optimal price as a

function of a given composition, obtaining a fixed point type function which could have

more than one solution, and consequently, was developed a different solution approach

than the proposed to face the first problem.

In the second problem, the structure of the objective function is quasi-concave in fun-

ction of the prices, if it is known the composition of the bundles and the search space

is convex, which guarantees that any local minimum of the problem is global minimum.

This allows us, by numerical techniques, to determine the optimal price for a given bundle

composition. Then, a solution approach corresponding to a three-stage heuristic algorithm

was developed: Initial Composition; Optimal Price, and Composition. In the Initial Com-

position stage, the Multiple Bundle Composition Algorithm described in 4.1.2 is used.

The other two stages are based on a Tabu Search heuristic that uses a conjugate gradient

method to determine the utility and optimal price for each solution analyzed. We have

tested the performance of the proposed approach for 1,000 cases, and we have reached

the optimum in 96.1 % of them, being interesting to note that the average gap reached in

cases where the optimum is not reached is only 1.71 %, being Of 5.35 % the greatest gap

obtained.

Given the focus on the third problem, it was sufficient to make an explicit enumeration

of all bundles (or groups of bundles that can be formed) and to use numerical techniques

to determine their optimal price.

In the light of the results obtained, we have the following managerial insights: (i) com-

position of the optimal bundles does not need to correspond to the composition which is
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obtained when the design decision is made in each segment independently; (ii) when bund-

les are designed considering both market segments simultaneously, the optimal composi-

tion may not include the composition of the optimal bundles for any of the specific market

segments; (iii) a pricing policy considering both market segments over a pre-established

bundle design increases the expected profit, but not to the level that is achieved with an

optimal design of these bundles, and (iv) by including the maximum willingness to pay by

consumers, the bundle obtained is not always the one obtained when not considering it, in

such a case, the bundle obtained not considering consumers willingness to pay does not

only is not optimal with respect the expected profit of the company, but also overestimates

this expected profit.

5.2. Future Research Topics

The natural extension of the research is to include the consumers’ maximum willin-

gness to pay for the problem of multiple bundles and multiple market segments. In this

case, it is very likely that there is no closed expression to determine the price of bundles

based on a given composition for them. A possible way to deal with this variant of the pro-

blem would be to see how to adapt the proposed methodology to face the second problem

presented in this doctoral thesis.

Another line of research is to explicitly incorporate a benefit by diversifying the design

chosen for bundles. For example, in the case of two bundles, the benefit could be linear

or non-linear depending on the number of components in which a different alternative has

been chosen. Other avenues for further research including competitors’ possible reactions

to the firm’s choices of bundle compositions and prices.



6. PROOFS

6.1. Proof of Proposition 4.1

Recalling (4.1) in the main text, we differentiate Π with respect to the price of bundle

k and set the derivative to 0 to obtain the first-order conditions. Thus, for all k = 1, . . . , b,

∂Π

∂pk
=

eIXk+βpk

[
(1 + βpk − βcXk)

(
γ +

b∑
l=1

eIXl+βpl
)
− β

b∑
l=1

(pl − cXl)eIXl+βpl
]

(
γ +

b∑
l=1

eIXl+βpl

)2 = 0

(6.1)

Since
(
γ +

b∑
l=1

eIXl+βpl

)
> 0 and eIXk+βpk > 0, then

(1 + βpk − βcXk)

(
γ +

b∑
l=1

eIXl+βpl

)
− β

b∑
l=1

(pl − cXl)eIXl+βpl = 0 (6.2)

If we rewrite (6.2) in terms of bundle w, subtract it from (6.2) and then divide by β, we

are left with

(pk − cXk − (pw − cXw))

(
γ +

b∑
l=1

eIXl+βpl

)
= 0 (6.3)

Since γ +
b∑
l=1

eIXl+βpl > 0, then pk − cXk = pw − cXw . Now define r = pk − cXk

for all k = 1, . . . , b. Equation (6.2) then becomes (1 + βr)

(
γ +

b∑
l=1

eIXl+βr+βcXl

)
−

β
b∑
l=1

reIXl+βr+βcXl = 0. Grouping terms, this reduces to (1 + βr) γ+
b∑
l=1

eIXl+βr+βcXl = 0,

and if we let Q =
b∑
l=1

eIXl+βcXl , which is constant for a given set of bundles, we obtain

(1 + βr) γ + eβrQ = 0. Collecting terms, we have (−1− βr) e(−1−βr) = Qe−1

γ
. If we

then apply the Lambert W-function and define W (z) = (−1 − βr) and z = Qe−1

γ
, we

get (−1− βr) = W
(

1
γ
Qe−1

)
, where r = −1

β

(
1 +W

(
1
γ
Qe−1

))
. Finally, since Q =
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b∑
l=1

eIXl+βcXl we arrive at the following closed-form expression for the optimal price:

p∗k = cXk −
1

β

(
1 +W

(
1

γ

b∑
l=1

eIXl+βcXl−1

))
∀k = 1, . . . , b.

6.2. Proof of Corollary 4.1

If (4.1) is expressed as a function of p∗k, we have

Π∗ =
b∑

k=1

eIXk+βp∗k

γ +
b∑
l=1

eIXl+βp
∗
l

(p∗k − cXk) (6.4)

Substituting the result of (4.2) into (6.4), Π∗ =
b∑

k=1

e
IXk

+βGk

γ+
b∑
l=1

e
IXl

+βGl

(Gk − cXk), where Gk =

cXk − 1
β

(
1 +W

(
1
γ

b∑
l=1

eIXl+βcXl−1

))
. Again letting Q =

b∑
l=1

eIXl+βcXl−1 and z = Q
γ

(all

of which are constants), we have

Π∗ =
−1

β
(W (z) + 1)

b∑
k=1

eIXk+βcXk−1−W (z)(
γ +

b∑
l=1

eIXl+βcXl−1−W (z)

) (6.5)

Since
(
γ +

b∑
l=1

eIXl+βcXl−1−W (z)

)
is independent of k,

Π∗ =
−1

β
(W (z) + 1)

b∑
k=1

eIXk+βcXk−1−W (z)(
γ +

b∑
l=1

eIXl+βcXl−1−W (z)

)

Recalling that Q =
b∑
l=1

eIXl+βcXl−1, we have Π∗ = −1
β

(W (z) + 1)
(

Qe−W (z)

γ+Qe−W (z)

)
, and since

z = Q
γ

, then Π∗ = −1
β

(W (z) + 1)
(

ze−W (z)

1+ze−W (z)

)
.
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Finally, by definition of the Lambert W-function we know that
(

ze−W (z)

1+ze−W (z)

)
= W (z)

W (z)+1
,

which leaves

Π∗ =
−1

β
(W (z) + 1)

W (z)

W (z) + 1
(6.6)

thus proving Corollary 4.1

Π∗ =
−1

β
W

(
1

γ

b∑
l=1

eIXl+βcXl−1

)

6.3. Proof of Corollary 4.2

By virtue of (6.5) and (6.6) we have W (z)
W (z)+1

= q, where q is the probability that one of

the b bundles offered by the firm will be chosen. We therefore have

q =
W (z)

W (z) + 1


b∑
l=1

eIXl+βcXl−1

b∑
l=1

eIXl+βcXl−1

 =
W (z)

W (z) + 1

 eIX1
+βcX1

−1

b∑
l=1

eIXl+βcXl−1

+ . . .+
eIXb+βcXb−1

b∑
l=1

eIXl+βcXl−1


where e

IXk
+βcXk

−1

b∑
l=1

e
IXl

+βcXl
−1

is defined as the proportion of q contributed by bundle k. Finally,

again letting Q =
b∑
l=1

eIXl+βcXl−1 and z = Q
γ

, we have the proof of Corollary 4.2.

q∗k =

W

(
1
γ

b∑
l=1

eIXl+βcXl−1

)
(

1 +W

(
1
γ

b∑
l=1

eIXl+βcXl−1

))
 eIXk+βcXk−1

b∑
l=1

eIXl+βcXl−1


6.4. Proof of Proposition 4.2

The derivative of Π∗ with respect to the composition of bundle k is given by

∂Π∗

∂IXk
=
−1

β

(
∂W (z)

∂IXk

)
=
−1

β

(
∂W (z)

∂z

∂z

∂IXk

)
=
−1

β

W (z)

z (1 +W (z))

1

γ
eIXk+βcXk−1
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Recalling that Q =
b∑
l=1

eIXl+βcXl−1 and z = Q
γ

, we have

∂Π∗

∂IXk
=
−1

β

W

(
1
γ

b∑
l=1

eIXl+βcXl−1

)
(

1 +W

(
1
γ

b∑
l=1

eIXl+βcXl−1

))
 eIXk+βcXk−1

b∑
l=1

eIXl+βcXl−1


The derivative of Π∗ with respect to the cost cXk of bundle k is

∂Π∗

∂cXk
=
−1

β

(
∂W (z)

∂cXk

)
=
−1

β

(
∂W (z)

∂z

∂z

∂cXk

)
=
−1

β

W (z)

z (1 +W (z))

β

γ
eIXk+βcXk−1

since Q =
b∑
l=1

eIXl+βcXl−1 and z = Q
γ

, we have

∂Π∗

∂cXk
= −

W

(
1
γ

b∑
l=1

eIXl+βcXl−1

)
(

1 +W

(
1
γ

b∑
l=1

eIXl+βcXl−1

))
 eIXk+βcXk−1

b∑
l=1

eIXl+βcXl−1


Finally, using the expression for q∗k from Corollary 4.2, we obtain

∇Π∗ =

(
∂Π∗

∂IXk
,
∂Π∗

∂cXk

)
=

(
−1

β
,−1

)
q∗k

6.5. Proof of Proposition 4.3

We may state without loss of generality that the feasible bundle space Ω contains the

following f+1 bundles:Xb1 ,Xb2 ,. . .,Xbd ,. . .,Xbf andX∗1 . We also assume that the Pareto-

efficient frontier Ω∗1 is composed of the d bundles Xb1 , Xb2 ,. . ., Xbd−1
and X∗1 . Then for

all j = bd, . . . , bf , it must be the case that IXj ≤ IXi and cXj ≥ cXi for at least one i in

{b1, . . . , bd−1, X
∗
1}.

The construction Ω∗2, which is the inner adjacent frontier of Ω∗1 under X∗1 , will contain

the d-1 bundles b1,. . . ,bd−1 since the latter are not dominated by any bundle and will not be

in any way affected by the extraction of bundle X∗1 . In addition, a bundle j in {bd, . . . , bf}
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will be incorporated into Ω∗2 provided IXj ≤ IXi and cXj ≥ cXi are not satisfied for all i

in {b1, . . . , bd−1}. This ensures that any bundle that was originally dominated only by X∗1
will be on the new Pareto-efficient frontier when the latter is eliminated from the feasible

bundle set. Therefore, Ω∗2 will contain the d-1 bundles inherited from the previous frontier

Ω∗1 and the bundles in {b1, . . . , bd−1} to be incorporated.

Proposition 4.3 is therefore proved.

6.6. Proof of Proposition 4.4

Proposition 4.2 states that the contribution of any given bundle to the objective function

is independent of the contribution of every other bundle. Therefore, the optimal composi-

tion of the stage k+1 bundle is independent of the term F ∗k (Ω∗k) given by (4.8), which is

the contribution made by all of the already formed bundles to optimal utility.

It follows from the above that determining the composition of the optimal bundle in

subproblem k+1 requires only the state information of the candidate bundle set T (Xk+1)

for that stage. As was explained in Definition 4.4, building the set T (Xk+1) only requires

information on the optimal bundles of the previous stages, that is, X∗1 , X∗2 ,. . . , X∗k , which

is always present by virtue of the method used.

Therefore, to determine the optimal composition of the stage k+1 bundle we must

solve

F ∗k+1(Ω∗k+1) = máx
Xk+1∈T (Xk+1)

{−IXk+1

β
− cXk+1

}
(6.7)

thus proving Proposition 4.4.

6.7. Proof of Proposition 4.5

We define C as the total number of bundles that can be formed. Thus, C = Card(Ω).

Rewriting (4.6) so as to choose the best b bundles, we obtain the following knapsack
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problem:

máx
Y1,Y2,...,YC

C∑
k=1

(
−Ik
β
− ck

)
Yk

s.t :
C∑
k=1

Yk ≤ b

Y1, Y2, . . . , YC ∈ {0, 1}

where Yk is a binary variable that indicates whether the kth bundle should be chosen and

(−Ik/β) − ck = dk is the benefit obtained by choosing bundle k. The number of bundles

to be chosen is limited by the budget constraint, the cost ak in resources of choosing any

given bundle being set at 1 ∀k. We then construct the quotient vk = dk/ak and order the C

bundles so that v1 ≥ v2 ≥ v3 ≥ . . . ≥ vC . Given this ordering and the fact that all ak = 1,

the bundle designed by the BF algorithm Bitran and Ferrer (2007) will be the one that

is associated with v1. The second turnpike theorem, described in detail by Garfinkel and

Nemhauser (1972), states that if v1 > v2 and there exists an h = (a1−1)·máxk≥2{ak} such

that b > h (where b is the knapsack-type constrained resource), then the article associated

with v1 is the optimal choice among all the choosable articles. In our case, h = 0 given

that a1 = 1, and b ≥ 1 is the number of bundles to be formed. The conditions set by the

theorem are thus satisfied and the first bundle to be chosen must be the one constructed by

the BF algorithm for the single-bundle optimal composition problem.

6.8. Proof of Proposition 4.7

By (4.3) we have that: Π∗ = −1
β
W

(
1
γ

b∑
l=1

eIXl+βcXl−1

)
. If an additional bundle is

composed, the benefit can be written as

Π∗ =
−1

β
W

(
1

γ

b+1∑
l=1

eIXl+βcXl−1

)
=
−1

β
W

(
1

γ

(
eIXb+1

+βcXb+1
−1 +

b∑
l=1

eIXl+βcXl−1

))
,

where IXb+1
+ βcXb+1

− 1 > −1 given that IXb+1
+ βcXb+1

> 0 for every case. Then

eIXb+1
+βcXb+1

−1 > e−1 > 0, implying in turn that eIXb+1
+βcXb+1

−1 +
b∑
l=1

eIXl+βcXl−1 >
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b∑
l=1

eIXl+βcXl−1. Since the Lambert W function is strictly increasing, the utility of b bundles

is always less than the utility of b+ 1 bundles provided there are no administration costs.

6.9. Proof of Proposition 4.8

Rewrite (4.9) as follows:

Π =


W∑
i=1

K∑
t=1:t6=k

H i eI
i
Xt

+βipt

γi +
K∑
l=1

e
IiXl

+βipl

(pt − cXt)

+


W∑
i=1

H i e
IiXk

+βipk

γi +
K∑
l=1

e
IiXl

+βipl

(pk − cXk)

 .

Denote the two terms on the right-hand side A and B, respectively.

Taking the partial derivatives of A and B with respect to the price of bundle k, we

obtain

∂A

∂pk
= −


W∑
i=1

K∑
t=1:t6=k

H i e
IiXt

+βipt(
γi +

K∑
l=1

e
IiXl

+βipl

)2 (pt − cXt)βie
IiXk

+βipk



and

∂B

∂pk
=

W∑
i=1

H i e
IiXk

+βipk

γi +
K∑
l=1

e
IiXl

+βipl

+
W∑
i=1

H i (pk − cXk)

βie
IiXk

+βipk

(
γi +

K∑
l=1

e
IiXl

+βipl − eI
i
Xk

+βipk

)
(
γi +

K∑
l=1

e
IiXl

+βipl

)2 .
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The first-order conditions are then

∂Π

∂pk
= −


W∑
i=1

K∑
t=1:t6=k

H i e
IiXt

+βipt(
γi +

K∑
l=1

e
IiXl

+βipl

)2 (pt − cXt)βie
IiXk

+βipk

mmmmmmmmmmm


W∑
i=1

H i e
IiXk

+βipk

γi +
K∑
l=1

e
IiXl

+βipl

+


W∑
i=1

H iβi (pk − cXk) e
IiXk

+βipk

γi +
K∑
l=1

e
IiXl

+βipl − eI
i
Xk

+βipk

(
γi +

K∑
l=1

e
IiXl

+βipl

)2

 = 0.

By equation (3.13) we can rewrite this last expression as

∂Π

∂pk
= −

 W∑
i=1

K∑
t=1:t6=k

H iβiqitq
i
k (pt − cXt)

+

(
W∑
i=1

H iqik

)
+

(
W∑
i=1

H iβiqik
(
1− qik

)
(pk − cXk)

)
= 0

Rearranging terms, we have

pk = cXk +

(
W∑
i=1

K∑
t=1:t6=k

H iβiqitq
i
k (pt − cXt)

)
−
(
W∑
i=1

H iqik

)
W∑
i=1

H iβiqik
(
1− qik

) .

6.10. Proof of Proposition 4.9

We know from Caplin and Nalebuff (1991) that if marginal costs are constant, then as

long as D(pk > 0), a sufficient condition for Πk = D(pk)(pk − ck) to be quasiconcave

in pk is that 1/D(pk) 1/D(pk) be convex pk. This has been proven for logit functions by

Torrents (2013).
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6.11. Proof of Proposition 4.10

If the composition in set in Xl, then the optimal price for it can be defined solving the

problema is:

máx
p1,...,pb≥0

b∑
k=1

φ (pk) e
IXk+βpk

γ +
b∑
l=1

φ (pl) e
IXl+βpl

(pk − cXk)

We proceed by deriving the expression of profit of the firm regarding the price, and

applying the optimal condition of first order:

∂ΠXk

∂pk
= 0 ∀k = 1, . . . , b.

We find the fixed point equations system that allows us to set the optimal prices pk

with k = 1, . . . , b, which is:

p∗k = cXk +
γk + φ (p∗k) e

IXk+βp∗k

γk (w (1− φ (p∗k))− β)︸ ︷︷ ︸
b=1 term

+

b∑
l=1:l 6=k

φ (p∗l ) e
IXl+βp

∗
l (p∗l − cXl)

γk︸ ︷︷ ︸
b>1 term

∀k = 1, . . . , b.

76



REFERENCES

Adams, W. J., and Yellen, J. L. (1976). Commodity bundling and the burden of monopoly.

The quarterly journal of economics, 475–498.

Allenby, G. M., Arora, N., and Ginter, J. L. (1998). On the heterogeneity of demand.

Journal of Marketing Research, 35(3), 384–389.

Armstrong, M. (2013). A more general theory of commodity bundling. Journal of Eco-

nomic Theory, 148(2), 448–472.

Aydin, G., and Porteus, E. L. (2008). Joint inventory and pricing decisions for an assort-

ment. Operations Research, 56(5), 1247–1255.

Bakos, Y., and Brynjolfsson, E. (1999). Bundling information goods: Pricing, profits, and

efficiency. Management science, 45(12), 1613–1630.

Banciu, M., and Ødegaard, F. (2016). Optimal product bundling with dependent valua-

tions: The price of independence. European Journal of Operational Research, 255(2),

481–495.

Basu, A., and Vitharana, P. (2009). Research noteimpact of customer knowledge hetero-

geneity on bundling strategy. Marketing Science, 28(4), 792–801.

Beasley, J. E., and Christofides, N. (1989). An algorithm for the resource constrained

shortest path problem. Networks, 19(4), 379–394.

Bellman, R. (2013). Dynamic programming. Courier Corporation.

Ben-Akiva, M. E., Lerman, S. R., and Lerman, S. R. (1985). Discrete choice analysis:

theory and application to travel demand (Vol. 9). MIT press.

Bitran, G. R., and Ferrer, J.-C. (2007). On pricing and composition of bundles. Production

and Operations Management, 16(1), 93–108.

Blattberg, R., Buesing, T., Peacock, P., and Sen, S. (2010). Identifying the deal prone

segment. , 79–87.

Block, H. D., Marschak, J., y cols. (1960). Random orderings and stochastic theories of

responses. Contributions to probability and statistics, 2, 97–132.

77
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