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We present a model to generate atomic entanglement with atoms located at distant cavities. It consists of two cavities connected by an optical
fiber, where each cavity interacts with a single two-level atom. For certain atom-cavity and cavity-fiber coupling parameters, we find a wide
time plateau for the concurrence between the atoms. An increase of the atom-cavity detuning, gives rise to a linear increase of the width
of the plateau, but at the same time, when losses are included in the model, it also decreases the value of the concurrence and increases the
response time to reach the maximum.
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Presentamos un modelo para generar entrelazamiento conátomos localizados en cavidades distantes. Consiste en dos cavidades conectadas
por una fibráoptica, donde cada cavidad interactua con un soloátomo de dos niveles. Para ciertos valores de los parámetros de acoplamiento
átomo–cavidad y cavidad–fibra, encontramos unplateau amplio en el tiempo para la concurrencia entre losátomos. El aumento del
desentonamientóatomo-cavidad da lugar a un aumento lı́neal en el ancho delplateau, pero al mismo tiempo, cuando las pérdidas son
tomadas en cuenta en el modelo, el valor de la concurrencia decrece y aumenta el tiempo de respuesta necesario para alcanzar el máximo.

Descriptores: Entrelazamiento; cavidades distantes; electrodinámica cúantica de cavidades; ecuación maestra microscópica.
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1. Introduction

Quantum entanglement has been understood as the ba-
sic and essential resource in quantum information and of
paramount importance in a number of applications such as
quantum cryptography and quantum teleportation. Also,
many groups [1–5] have used these relevant quantum states
to expose the limits and nature of quantum theory, for exam-
ple in the frame of locality, realism and theoretical complete-
ness [6].

The Jaynes-Cummings model (JCM) [7,8] in the rotating-
wave approximations (RWA), is the fundamental model for
the quantum description of matter-light interaction. It pro-
vides the general framework to describe the interaction of
a two-level system, such as an atom, with a quantized cav-
ity mode (normally termed cavity quantum electrodynamics
(CQED)). This model appears as one of the key ingredients
for applications in quantum information processing.

Using the JCM, many successful CQED experiments
have been implemented with microwave cavities and Ryd-
berg atoms in the strong coupling regime [9–13],i.e. when
the coupling rateg exceeds the dissipation ratesκ andγ of
both, cavity and atom, giving rise to coherent light-matter os-
cillations and superposition states.

At present time, an important improvement in the lifetime
of a photon in a microwave cavity [13] has been achieved,
as compared to experiments performed more than ten years
ago [11,12].

Recently, several groups have studied various schemes of
atomic entanglement, using for example, one atom in each
cavity or two atoms in the same cavity [14–16].

Also, Pellizzari [17] proposed a new system composed
of two remote cavities connected by an optical fiber. Some

recent publications based on Pellizari’s idea proposed exam-
ples such as: A scheme to generate multiparticle entangle-
ment [18], also, the generation of an EPR pair of atoms in-
teracting successively and simultaneously with the coupled
cavities system [19], and using distant cavities coupled to an
optical fiber and multiple two-level atoms trapped in the cavi-
ties, could be showed that there exist highly reliable quantum
swap, entangling, and controlled-Z gates [20]. Finally, some
recent papers studied steady state polariton entanglement in
a pumped cavity QED system [21,22].

The present work consists in two cavities connected by
an optical fiber, where each cavity interacts with a single
atom. We show that in the present system, we can gener-
ate a time plateau of entanglement, starting from a separa-
ble mixed state. Furthermore, this generated entanglement
is robust to any perturbation of the initial state. This is the
highest entanglement presented (with a concurrence between
0.99 and 1) during a long time plateau, spontaneously gener-
ated and without any pumps.

We study the dependence of the width of concurrence
plateau with the atom-cavity detuning, and with various cou-
pling constants and loss parameters. We also analyze the
maximum concurrence, versus the atom-cavity detuning. We
observe a linear increase of the width of the plateau with the
detuning, but also, when losses are included in the model, a
decrease in the maximum concurrence, as well as an increase
of the response time of our system.

The paper is structured as follows. In Sec. 2 we give
a full description of our model, as well as our notation. In
Sec. 3 we present the microscopic master equation approach,
in order to model the losses of the system in contact with an
environment at zero temperature, using the Davies operators
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that correspond to the quantum jumps between the dressed-
states of the Hamiltonian of the system̂Hs. In Sec. 4 we
describe the dynamics of the entanglement by solving the mi-
croscopic master equation at zero temperature, including an
initial mixed state with zero concurrence. We show that, in
order to generate atomic entanglement, we need to measure
the vacuum state for cavities an the optical fiber. In Sec. 5,
we show the numerical results for the concurrence, and fi-
nally we present the conclusions in Sec. 6.

2. The model

We consider two two-level atoms interacting with two differ-
ent cavities coupled by an optical fiber (Fig. 1).

The Hamiltonian (~ = 1) of the system in the RWA is:

Ĥs = ωcâ
†
3â3 +

∑

j=1,2

[ωaŜj,z + ωcâ
†
j âj

+ gj(âjŜj,+ + â†jŜj,−) + ν(â3â
†
j + â†3âj)], (1)

whereâ3 is the boson operator for the fiber,âj are the cav-
ity operators, and̂Sj,z, Ŝ± are the atomic operators.ωc, ωa

are the fiber (cavity) and the atomic frequencies andgj , ν the
atom-cavity and cavity-fiber coupling constants.

In Eq. (1) we define the following operators,

Ŝj,z =
1
2

(
|e〉jj 〈e| − |g〉jj 〈g|

)
,

Ŝj,+ = |e〉jj 〈g| , Ŝj,− = |g〉jj 〈e| .

Also, we have considered the short fiber limit in Eq. (1),
i.e., only one mode (resonant) of the fibre will interact with
the cavity modes. We recall that the couplingν to the modes
of a fibre of finite length can be estimated asν '

√
4πν̄c/l,

wherel is the finite length of the optical fiber (for instance
l . 1m), c is the speed of light in vacuum, andν̄ corresponds
to the decay rate of the cavities’ fields into a continuum of
fibre modes. Furthermore, the finite length of the fibre im-
plies a quantization of the modes of the fibre with a frequency
spacing given by2πc/l. Finally, from an experimental point
of view, we can notice that the coupling strengthν can be
increased by decreasing the reflectivity of the cavity mirror
connected to the fibre [23].

FIGURE 1. Two atoms interact with two distant cavities coupled by
an optical fiber. In the figureγ1, γ2 andγ3 correspond to damping
constant for the cavities and optical fiber respectively.

In the present work we have used the following notation
for the basis of the system

|i〉= |A1〉 ⊗ |A2〉 ⊗ |C1〉 ⊗ |C2〉 ⊗ |F 〉= |A1A2C1C2F 〉 ,

whereAj=1,2 correspond to the atomic states, that can be
e(g) for excited(ground) state, whileCj=1,2 are the cavities
states, andF corresponds to the state of the optical fiber.
Both Cj=1,2 andF can correspond to a0 or 1 photon state.
Also, we denote by|φk〉 as the k-th dressed-state of the
HamiltonianĤs with eigenvalueλk, this eigenstate of̂Hs

has all the atom and field information. Therefore, in the gen-
eral case|φk〉will be a linear combination of the basis vectors
described above.

In addition, we assume the system at zero temperature
with a single excitation, with this assumptions we can con-
strain the Hilbert space only to five vectors with a single ex-
citation, plus the ground state of the system without excita-
tion. It is important indicate that, this restriction is valid only
in the case at zero temperature, because the system cannot
increases the number of excitations in the temporal evolu-
tion, and therefore at non-zero temperature the assumptions
of having only six vectors on the Hilbert space is no longer
valid.

Using the notation described previously, and considering
the system at zero temperature, we have the following basis:

|1〉 = |eg000〉 , |2〉 = |gg100〉 ,
|3〉 = |gg001〉 , |4〉 = |gg010〉 ,
|5〉 = |ge000〉 , |6〉 = |gg000〉 , (2)

where, the vectors of the system{|1〉 , . . . , |5〉} corresponds
for one excitation, and the state|6〉 = |gg000〉 has been in-
cluded due to the system losses.

Using the above basis in Eq. (2), it is straightforward to
show that we can write the Hamiltonian̂Hs in Eq. (1) in a
matrix representation, as

Ĥs =




0 g1 0 0 0 0
g1 ∆ ν 0 0 0
0 ν 0 ν 0 0
0 0 ν ∆ g2 0
0 0 0 g2 0 0
0 0 0 0 0 −ωa




, (3)

where∆ = ωc − ωa is the atom-cavity detuning.

3. Microscopic master equation

In cavity quantum electrodynamics the main source of dis-
sipation originates from the leakage of the cavity photons
due to imperfect reflectivity of the cavity mirrors. A second
source of dissipation corresponds to spontaneous emission of
photons by the atom, however is mostly suppressed by the
presence of the cavity, and therefore its effect is usually ne-
glected.
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In order to model the losses, we will use an approach
called the microscopic master equation presented by Scalaet
al. [24,25], which goes back to the original ideas of Davies on
how to describe the system-reservoir interactions in marko-
vian master equations [26, 27]. This description considers
jumps between eigenstates of the system Hamiltonian rather
than the eigenstates of the field-free subsystems, which is the
case in many approaches employed in quantum optics.

We assume that our system of interest,i.e., atoms, cavities
and the optical fiber, are part of a larger system, composed by
a collection of quantum harmonic oscillators in thermal equi-
librium at temperature T. This external environment is that
part of the total closed system other than the system of inter-
est. The evolution of the total closed system is governed by
the HamiltonianĤ given by,

Ĥ = Ĥs + Ĥr + Ĥint,

whereĤs corresponds to Eq. (1), and̂Hr is the Hamiltonian
of the reservoir at temperature T written as

Ĥr =
∞∑

j=1
i={1,2,3}

ωij r̂
†
ij r̂ij . (4)

In Eq. (4),ωij indicates the frequency related to the op-
eratorr̂†ij r̂ij corresponding to the harmonic oscillators of the
reservoirs. Both the frequencies and the harmonic oscillators
are in the j-th mode of the cavities (i=1,2) or the fiber (i=3),
finally, as we are interested in generate entanglement between
distant cavities, we can establish that the cavities and the op-
tical fiber have independent reservoirs.

The interaction Hamiltonian̂Hint is given by:

Ĥint =
∞∑

j=1
i={1,2,3}

Ωij

(
âi + â†i

)
⊗

(
r̂†ij + r̂ij

)
, (5)

whereΩij corresponds to the interaction frequency between
the cavities (and fiber) fields with the j-th mode of the reser-
voirs, also, we can note that the Eq. (5) has the following
form,

Ĥint = Â1 ⊗ R̂1 + Â2 ⊗ R̂2 + Â3 ⊗ R̂3,

Â1 = â1 + â†1,

Â2 = â2 + â†2,

Â3 = â3 + â†3, (6)

where theÂj andR̂j are operators acting on the system̂Hs

and on the environmental Hilbert spaces, respectively.
Following the standard procedures [28],i.e., writing

down the Liouville-von Neumann equation for the total

density operator in the interaction picture with respect to
Ĥs + Ĥr, performing the Born-Markov and RWA, tracing
out the environmental degrees of freedom and then going
back to the Schr̈odinger picture, one obtains the microscopic
master equation for the reduced density operatorρ̂(t) of the
system. In our case, we have considered the system at zero-
temperature, in this case the microscopic master equation at
zero temperature has the following form:

˙̂ρ(t) = −i[Ĥs, ρ̂(t)] +
∑
ω̄>0

n=1,2,3

γn(ω̄)[Ân(ω̄)ρ̂(t)Â†n(ω̄)

− 1
2
{Â†n(ω̄)Ân(ω̄), ρ̂(t)}], (7)

where in Eq. (7), the first part (commutator) corresponds to a
non-dissipative evolution, the second part includes the system
losses. As we have mentioned before,n = {1, 2}, andn = 3
corresponds to the channels of dissipations for the cavities
and the optical fiber (all independents) respectively. Further-
more, ω̄ corresponds to Bohr’s frequencies (transitions be-
tween the eigenstates|φm〉) related toĤs, andγn(ω̄) is the
damping parameter related to that transition. Also, these fre-
quencies are positive due to transitions only downward in the
energy ladder. Finally, the Davies operators [28]Ân(ω̄) are
quantum jumps between the dressed-states ofĤs, and corre-
spond to the following expression:

Ân(ω̄) =
∑

ω̄=λβ−λα

|φα〉 〈φα| Ân |φβ〉 〈φβ | ,

where, |φm〉 is the m-th dressed-state of̂Hs, this state has
the information about the fields of the cavities and optical
fiber, as well as the atomic information. As we can see,
ω̄ = λβ − λα are the Bohr’s frequencies between transitions
|φβ〉 −→ |φα〉, where in our case the eigenvalues related to
this transition are:λβ > λα, due to that our system is at zero
temperature and only are allowed transitions downward in the
energy ladder.

4. Dynamics of entanglement

4.1. Formal solution of the microscopic master equation
at zero temperature

In the most general case, we will have different coupling con-
stants, small atom-cavity detuning, and dissipative factors. In
this general case, there is not an analytic solution using the
matrix representation showed in Eq. (3). For that reason, we
have adopted a formal solution and at the end, we will make
use of numerical analysis.

We assume that, for each eigenvalueλi, there will be a
normalized dressed-state|φi〉 acting onĤs (see Eq. (3)), of
the following form:

Rev. Mex. F́ıs. S57 (3) (2011) 91–98
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


|φ1〉
|φ2〉
|φ3〉
|φ4〉
|φ5〉
|φ6〉




︸ ︷︷ ︸
|Φ〉

=




c1 c2 c3 c4 c5 0
c6 c7 c8 c9 c10 0
c11 c12 c13 c14 c15 0
c16 c17 c18 c19 c20 0
c21 c22 c23 c24 c25 0
0 0 0 0 0 1




︸ ︷︷ ︸
C




|1〉
|2〉
|3〉
|4〉
|5〉
|6〉




︸ ︷︷ ︸
|J〉

(8)

where, in Eq. (8), we have defined the vector of dressed-
states by|Φ〉, the vector of basis-states by|J〉, and finally,
the matrixC that relates both.

On the other hand,{|φ1〉 , . . . , |φ5〉}, is the subspace in
absence of losses. The single state|φ6〉 = |6〉 = |gg000〉,
corresponds to the ground state of the full system.

With the formalism showed above, and according to the
definition in Eq. (6), we can calculate the operatorsÂn(ω̄),
as follows:

Ân(ω̄αβ) = |φα〉 〈φα|
(
ân + â†n

) |φβ〉 〈φβ | , (9)

where, we have defined̄ωαβ = λβ − λα. However,
we are interested in the case of zero temperature, thus we
use the fact that̂a†n applied to any state corresponding to
{|φ1〉 , . . . , |φ5〉} is zero, because the number of excitations
cannot increase in time. This assumption implies a conve-
nient constraint on the Hilbert space. Indeed, at zero temper-
ature the system can make transitions only downward on the
energy ladder.

For that reason, the operators in Eq. (9), are reduced to:

Ân(ω̄αβ) = |φα〉 〈φα| ân |φβ〉 〈φβ | . (10)

Once we have the operatorŝAn(ω̄αβ), it is straightfor-
ward to find the matrix elements of̂ρ(t) in Eq. (7). Also,
we need to define the initial conditions (which we address in
the next section), to solve the full set of first-order differential
equations.

4.2. Initial condition to solve Microscopic Master Equa-
tion at zero temperature

We assume an initial state with a single atomic excitation and
introduce a parameterα that varies the mixedness of the ini-
tial state. The initial condition can be written easily in the
vector basis, however, the evolution of the system is written
in the dressed-state basis. Therefore, we need to perform a
change of basis

ρ̂(0) =
∑

i,j

〈i| ρ̂(0) |j〉 |i〉 〈j| =
∑

i,j

〈φi| ρ̂(0) |φj〉 |φi〉 〈φj | .

In order to carry out the above conversion, we adopt a
formal solution that will be computed numerically at the end.

Inverting Eq. (8), we get:




|1〉
|2〉
|3〉
|4〉
|5〉
|6〉




︸ ︷︷ ︸
|J〉

=




c̃1 c̃2 c̃3 c̃4 c̃5 0
c̃6 c̃7 c̃8 c̃9 c̃10 0
c̃11 c̃12 c̃13 c̃14 c̃15 0
c̃16 c̃17 c̃18 c̃19 c̃20 0
c̃21 c̃22 c̃23 c̃24 c̃25 0
0 0 0 0 0 1




︸ ︷︷ ︸
C−1=C̃




|φ1〉
|φ2〉
|φ3〉
|φ4〉
|φ5〉
|φ6〉




︸ ︷︷ ︸
|Φ〉

. (11)

In general, we consider the following initial condition:

ρ̂(0) = α |eg000〉 〈eg000|+ (α− 1) |ge000〉 〈ge000| , (12)

where, the parameter0 ≤ α ≤ 1, indicates how mixed our
initial state is.

Using the Eqs. (11) and (12), we can write explicitly the
initial condition in the dressed-states basis.

4.3. Generation of atomic entanglement: Measuring the
vacuum state for the cavities and the optical fiber

At this point, we have the complete evolution of our system.
However, in order to generate atomic entanglement, we need

to perform a measurement on the cavities and fiber states.
To accomplish the measurement, we begin with the state:

ρ̂(t) =
6∑

i,j=1

〈φi| ρ̂(t) |φj〉 |φi〉 〈φj | , (13)

where Eq. (13), represents the full evolution of our system
with the elements〈φi| ρ̂(t) |φj〉.

Next, we project our solution onto the state

|000〉 = |0〉C1 ⊗ |0〉C2 ⊗ |0〉F ,
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and readily get:

ˆ̄ρ(t) = 〈000| ρ̂(t) |000〉

=
6∑

i,j=1

〈φi| ρ̂(t) |φj〉 〈000 |φi〉 〈φj | 000〉, (14)

where, in Eq. (14) we define the non-normalized stateˆ̄ρ(t),
that represents the state of the system after the measurement.

Using the Eqs. (2), (8) and (14), we observe that the
elements ofˆ̄ρ(t) form a X-matrix. In the standard two-
qubit product basis{|ee〉 , |eg〉 , |ge〉 , |gg〉}, a X-matrix can
be written as follows:

%̂(t) =




ρee,ee 0 0 ρee,gg

0 ρeg,eg ρeg,ge 0
0 ρge,eg ρge,ge 0

ρgg,ee 0 0 ρgg,gg


 ,

where we have used the notationρab,cd = 〈ab| ρ̂(t) |cd〉 for
the matrix elements, and

ρee,ee + ρeg,eg + ρge,ge + ρgg,gg = 1.

Furthermore, in our case, due to the election of the initial con-
dition, and the constrain of the Hilbert space for a single ex-
citation, the elements with two excitationsρee,ee, ρee,gg and
ρgg,ee are not present in our description. Therefore, due to
the statistical mixture and the presence of losses in the system
we get a X-matrix only with the following non-zero elements
ρeg,eg, ρeg,ge, ρge,eg, ρgg,gg andρge,ge, where we can easily
compute the concurrence [29,30] as follows:

C(t) = 2
∣∣∣∣

ρeg,ge

ρeg,eg + ρge,ge + ρgg,gg

∣∣∣∣ .

5. Numerical results

As we have described in the previous sections, in order to
model the leakage of cavity photons, and also the losses in the
optical fiber, we need to specify the decay parameterγn(ω̄).
These coefficients are given by the Fourier transform of the
correlation functions of the environment [25,28].

γ(ω̄) =

∞∫

−∞
dτeiω̄τ 〈Ê†(τ)Ê(0)〉, (15)

where the environment operatorsÊ are in the interaction pic-
ture.

However, in our analysis, the damping parameters corre-
spond toγn(ωa + λi), whereωa is the transition frequency
of the atom, andλi are the Bohr frequencies relative tôHs.
Furthermore, since in our caseωa À λi, we can approximate
γn(ωa + λi) ≈ γn(ωa) = γn. Therefore, in principle we do
not need to perform the calculation shown in Eq. (15). From
an experimental point of view we have chosen the relaxation
time equal toτcav = τfib = 0.1 µs, orγ1=γ2=γ3=10 MHz.

FIGURE 2. Concurrence in the absence of atom-cavity detun-
ing and losses. The coupling constants areg1 = g2 = ν
= 2π × 30 GHz. The figure shows central peaks with maximum
concurrence, and intermediate oscillations with smaller amplitudes.

FIGURE 3. The graph compares the generation of atomic entan-
glement for two different sets of parameters. First, we consider
g1 = g2 = ν = 2π × 30 GHz (solid line) (see Fig. 2). In the sec-
ond case, we haveg1 = g2 = 2π× 3 GHz, andν = 2π× 30 GHz
(dashed line). In both cases, we did not consider losses nor atom-
cavity detuning. We notice that, in the dashed line the intermediate
oscillations have been reduced and the width of the central peaks
are enhanced.

Note that this values and the regime used in our model is
within the reach of current technology [23].

On the other hand, the atoms have a long radiative life-
time, which makes atomic relaxations negligible during the
interactions of the atoms with the cavities.

We begin the analysis considering a wavelength of
852 nm for the transition of our two-level atoms [31], and
equal coupling constantsg1 = g2 = ν = 2π × 30 GHz.
Without atom-cavity detuning, and in the absence of losses.

In this first case, we can observe strong oscillations in the
concurrence, between 0 and 1, as well as intermediate oscil-
lations with smaller amplitudes (see Fig. 2). These oscilla-
tions have been observed also in other models [16] when two
distant atoms are located inside a single-mode optical cavity,
even though in Ref. 16 there is only one cavity, the dynam-
ics is similar,i.e., identical atoms interacting with one cavity
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FIGURE 4. Concurrence is generated in the shape of several time-
plateau. In solid line corresponds to unequal coupling constants
g1 = 2π × 3 GHz, g2 = 2π × 6 GHz, andν = 2π × 30 GHz.
The dashed line, corresponds tog1 = g2 = 2π × 3 GHz, and
ν = 2π × 30 GHz (see Fig. 3). There is no dissipation nor detun-
ing.

mode, the atoms are distant and the coupling strength with
the mode are sensitive to the position of the atom inside the
cavity, therefore, it produces a feedback of the interactions
between the atom and fields, however in our case we can gen-
erate entanglement between distant atoms and also between
distant cavities.

We can reduce the intermediate oscillations taking
g1, g2 < ν, and also increase the width of the central peaks
(see Fig. 2), as we can see in Fig. 3. A similar dynamic has
been observed by Ogdenet al. [32], even though they do not
consider the quantized fibre mode nor losses. In that case,
they have two identical cavities, each contains a two-level
atom, and the photons are able to hop between the cavities.
We also observed that in the regime given byg1, g2 > ν, no
improvement was achieved.

If we considered unequal coupling constants for the atom-
cavity and cavity-fiber interaction,i.e., g1 = 2π × 3 GHz,
g2 = 2π × 6 GHz, andν = 2π × 30 GHz, a small plateau is
generated in the time domain, as we see in Fig. 4.

FIGURE 5. Both curves haveg1 = 2π×3 GHz,g2 = 2π×6 GHz,
andν = 2π×30 GHz (without losses). However, we have included
an atom-cavity detuning of∆ = 2π × 100 GHz (dashed line), and
∆ = 2π × 200 GHz (solid line). In the last case, there is a plateau
approximately of 4ns wide.

FIGURE 6. The graph shows the dependence of the plateau in the
concurrence, versus the atom-cavity detuning (∆). We observe a
linear increase in the range of 100 GHz≤ ∆/2π ≤ 500 GHz.
The parameters areg1 = 2π × 3 GHz, g2 = 2π × 6 GHz, and
ν = 2π × 30 GHz,γ1 = γ2 = γ3 = 10 MHz.

FIGURE 7. The graph shows the dependence of the maximum con-
currence, versus atom-cavity detuning (Left axis(∗)). Also, we
show the response time of the system to reach this maximum (Right
axis (•)). We have setg1 = 2π × 3 GHz, g2 = 2π × 6 GHz,
ν = 2π × 30 GHz, and the relaxation frequenciesγ1 = γ2

= γ3 = 10 MHz.

In order to improve the width of the plateau generated
above, we have included a small atom-cavity detuning (as
compared with the transition frequency of the atom), taking
the value∆ = ωc − ωa = 100 GHz. We observe an impres-
sive increase of the width of the plateau (see Fig. 5).

In order to study a more complex and realistic case, we
now include the decay parameters described in the beginning
of this section.i.e., γ1 = γ2 = 1/τcav =, andγ3 = 1/τfib.

Next, we study the dependence of the width of concur-
rence plateau with the atom-cavity detuning. We observe a
linear dependence of the width of the plateau with the detun-
ing, as we see in Fig. 6.

When losses are included in the model, the maximum
concurrence decreases and the response time of the system
(time required to reach the maximum) increases with the de-
tuning (Fig. 7).
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FIGURE 8. Concurrence as function of time for different ini-
tial conditions. We consider̂ρ(0) = α |eg000〉 〈eg000| + (1
−α) |ge000〉 〈ge000|. We took the following parameters,γ1 = γ2

= γ3 = 10 MHz, g1 = 2π × 3 GHz, g2 = 2π × 6 GHz,
ν = 2π × 30 GHz, and∆ = 2π × 300 GHz. As we decrease
α, we observe the same behaviour of the system, with a slightly
reduced concurrence.

Finally, we show that our system is robust to small vari-
ations of the initial state (i.e., the concurrence remained with
the same shape, with a small decrease).

As we have seen in Sec. 4-b, we have defined the initial
state as:

ρ̂(0) = α |eg000〉 〈eg000|+ (1− α) |ge000〉 〈ge000| ,
with the variable parameterα. For example, forα = 1,
we have a separable pure initial state. On the other hand,
for 0 ≤ α ≤ 1, we have initial separable mixed states (see
Fig. 8).

6. Conclusions

We have generated atomic entanglement using two two-level
atoms, each one inside (trapped) in an optical cavity, the two
cavities being coupled by an optical fiber.

We considered the short-fiber limit (It is the only assump-
tion made in the optical fiber), this approximation considers
essentially only one (resonant) mode of the fiber interacting
with the cavity modes. An open problem not addressed here,
might be to consider a long fiber with a phase propagation
factor. Also, we neglected the losses due to spontaneous
emission of the atoms. However, we considered the cavity
losses and the dissipation in the optical fiber. We model the
losses using the microscopic master equation at zero temper-
ature. This approach considers quantum jumps between the
dressed-states of the full Hamiltonian of the systemĤs.

In the general case, we have tookγ1=γ2=γ3=10 MHz,
corresponding to the relaxation time for cavities, and optical
fiber, respectively.

We generated a major time-plateau in the concurrence,
using different coupling constantsg1 = 2π × 3 GHz,
g2 = 2π × 6 GHz, ν = 2π × 30 GHz, getting further im-
provement when a small atom-cavity detuning was present.

FIGURE 9. The graph shows the probability of have simultaneously
the vacuum state for cavities and the optical fiber, forα = 0.9
(dashed line), andα = 1.0 (solid line),γ1 = γ2 = γ3 = 10 MHz,
g1 = 2π × 3 GHz, g2 = 2π × 6 GHz, ν = 2π × 30 GHz, and
∆ = 2π × 300 GHz. As we can see, there is a high probability of
obtaining the simultaneous vacuum states.

In presence of losses, the system shows a linear increase
in the plateau, versus the atom-cavity detuning.

On the other hand, the system shows a linear decrease of
the concurrence, as well as, an increase in the response time
of the system versus detuning.

Furthermore, the system is robust to small variations of
the initial state.

From an experimental point of view, in our particular sit-
uation, we need distinguish a single-photon state from zero-,
and one-photon states. In order to accomplish the measure-
ment, we pass an atom (or a flux of atoms) in its ground state
through the cavities. If the cavity was initially in zero-photon
state, nothing will happen to the atom, however, if we mea-
sure the auxiliary atom in the excited state, we can conclude
that the cavity must have been in a single photon state [14].

On the other hand, to show the efficiency of such simulta-
neous measurement, we can calculate the probability of this
happening as follows:

ρ̂fields(t) =
∑

i,j

〈φi| ρ̂(t) |φj〉 (〈eg|φi〉〈φj |eg〉

+ 〈ge|φi〉〈φj |ge〉+ 〈gg|φi〉〈φj |gg〉), (16)

where we have traced the Eq. (13) in the atomic base
{|eg〉 , |ge〉 , |gg〉}. In the Eq. (16), the density matrix
ρ̂fields(t) is written in the base{|000〉 , |001〉 , |010〉 , |100〉}.
Therefore, the probability of measuring simultaneously the
vacuum state corresponds to the normalized matrix element
〈000| ρ̂fields(t) |000〉.

As we can see in the Fig. 9, there is a high probability of
that our system is in the simultaneous vacuum state for both
cavities and the optical fiber.
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