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We present a model to generate atomic entanglement with atoms located at distant cavities. It consists of two cavities connected by an optice
fiber, where each cavity interacts with a single two-level atom. For certain atom-cavity and cavity-fiber coupling parameters, we find a wide
time plateau for the concurrence between the atoms. An increase of the atom-cavity detuning, gives rise to a linear increase of the width
of the plateau, but at the same time, when losses are included in the model, it also decreases the value of the concurrence and increases t
response time to reach the maximum.
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Presentamos un modelo para generar entrelazamient@oomws localizados en cavidades distantes. Consiste en dos cavidades conectadas
por una fibrabptica, donde cada cavidad interactua con un &t@mo de dos niveles. Para ciertos valores de Idspetros de acoplamiento
atomo—cavidad y cavidad—fibra, encontramosplitecau amplio en el tiempo para la concurrencia entre &smos. El aumento del
desentonamientatomo-cavidad da lugar a un aumenitoebl en el ancho dellateau, pero al mismo tiempo, cuando lagrdidas son
tomadas en cuenta en el modelo, el valor de la concurrencia decrece y aumenta el tiempo de respuesta necesario para@aaozar el m

Descriptores: Entrelazamiento; cavidades distantes; electi@uliica cé@ntica de cavidades; ecuanimaestra micro$pica.

PACS: 03.65.-w; 03.65.Ud; 03.65.Yz

1. Introduction recent publications based on Pellizari’s idea proposed exam-
ples such as: A scheme to generate multiparticle entangle-
Quantum entanglement has been understood as the bgpent [18], also, the generation of an EPR pair of atoms in-
sic and essential resource in quantum information and ofgracting successively and simultaneously with the coupled
paramount importance in a number of applications such agayities system [19], and using distant cavities coupled to an
quantum cryptography and quantum teleportation. AlsOgptical fiber and multiple two-level atoms trapped in the cavi-
many groups [1-5] have used these relevant quantum stat@gs, could be showed that there exist highly reliable quantum
to expose the limits and nature of quantum theory, for examswap, entangling, and controlled-Z gates [20]. Finally, some
ple in the frame of locality, realism and theoretical complete-rgcent papers studied steady state polariton entanglement in
neS_IS_rEG]:] c _ del (3CM) (7 8linth ~apumped cavity QED system [21, 22].
wave pr?r)(/)r:(?riatiLcj)Tsr,n(lg%sAToisetrfe fun)d[a;m]elr?tgl ?nrgéaetllrf]gr The present work consists in two cavities connected by
’ an optical fiber, where each cavity interacts with a single

the quantum description of matter-light interaction. It pro-?tom. We show that in the present system, we can gener-

vides the general framework to describe the interaction o . :
ate a time plateau of entanglement, starting from a separa-

gtwo—level system, such as an atom, with a quantized “Ale mixed state. Furthermore, this generated entanglement
ity mode (normally termed cavity quantum electrodynamics.

(CQED)). This model appears as one of the key ingredient'ﬁs. robust to any perturbation of the.lnltlal state. This is the
0 . ; . ; ighest entanglement presented (with a concurrence between
for applications in quantum information processing.

Using the JCM, many successful CQED experimentso'gg and 1)_ during a long time plateau, spontaneously gener-

. . . . ated and without any pumps.
have been implemented with microwave cavities and Ryd- )
berg atoms in the strong coupling regime [9—13}, when We study the dependence of the width of concurrence
the coupling ratey exceeds the dissipation ratesand~ of ~ Plateau with the atom-cavity detuning, and with various cou-

both, cavity and atom, giving rise to coherent light-matter osling constants and loss parameters. We also analyze the
cillations and superposition states. maximum concurrence, versus the atom-cavity detuning. We

At present time, an important improvement in the lifetime Observe a linear increase of the width of the plateau with the

of a photon in a microwave cavity [13] has been achieveddetuning, but also, when losses are included in the model, a
as compared to experiments performed more than ten yeaf€crease in the maximum concurrence, as well as an increase
ago [11,12]. of the response time of our system.

Recently, several groups have studied various schemes of The paper is structured as follows. In Sec. 2 we give
atomic entanglement, using for example, one atom in each full description of our model, as well as our notation. In
cavity or two atoms in the same cavity [14—-16]. Sec. 3 we present the microscopic master equation approach,

Also, Pellizzari [17] proposed a new system composedn order to model the losses of the system in contact with an
of two remote cavities connected by an optical fiber. Someenvironment at zero temperature, using the Davies operators
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that correspond to the quantum jumps between the dressed- In the present work we have used the following notation
states of the Hamiltonian of the systeffy. In Sec. 4 we for the basis of the system

describe the dynamics of the entanglement by solving the mi-

croscopic master equation at zero temperature, including ari) =[41) ® [A2) ® |C1) ® |C2) @ |F) = A1 A2C1C2F)
initial mixed state with zero concurrence. We show that, in )

order to generate atomic entanglement, we need to measufd1eré 4;j=1,2 correspond to the atomic states, that can be
the vacuum state for cavities an the optical fiber. In Sec. 5¢(9) for excited(ground) state, while;—, » are the cavities

we show the numerical results for the concurrence, and fistates, and” corresponds to the state of the optical fiber.
nally we present the conclusions in Sec. 6. Both C;=; » and F' can correspond to @or 1 photon state.

Also, we denote byl¢,) as the k-th dressed-state of the
Hamiltonian £, with eigenvalue);, this eigenstate off,
2. The model has all the atom and field information. Therefore, in the gen-
eral caséqy,) will be a linear combination of the basis vectors
described above.
In addition, we assume the system at zero temperature
with a single excitation, with this assumptions we can con-
f Lt N s strain the Hilbert space only to five vectors with a single ex-
Hy = weazas + Z [waiSjz + weaja, citation, plus the ground state of the system without excita-
j=1.2 tion. It is important indicate that, this restriction is valid only
+9;(a;8;. 4 + &;S-7_) + 1/(&3&} + &;t,dj)], (1) ?n the case at zero temperature, becguse the system cannot
increases the number of excitations in the temporal evolu-
whereags is the boson operator for the fibér; are the cav- tion, and therefore at non-zero temperature the assumptions
ity operators, and; ., S+ are the atomic operatorss, w,  Of having only six vectors on the Hilbert space is no longer
are the fiber (cavity) and the atomic frequencies gnd the  valid.

We consider two two-level atoms interacting with two differ-
ent cavities coupled by an optical fiber (Fig. 1).
The Hamiltonian § = 1) of the system in the RWA is:

atom-cavity and cavity-fiber coupling constants. Using the notation described previously, and considering
In Eqg. (1) we define the following operators, the system at zero temperature, we have the following basis:
5 1 1) = |eg000) , 2) = [gg100),
Sj2 = B} (|e>jj (el = ‘g>jj <g|) ) 1) = 1eg000) [2) = 199100}
- 3) = lgg001),  [4) = |gg010),

Sit=le)::(gl, Sj—=lg).. (e
G+ Jj J 73 |5) = |ge000) , |6) = |gg000) , 2

Also, we have considered the short fiber limit in Eq. (1),
i.e, only one mode (resonant) of the fibre will interact with Where, the vectors of the systeffi) ..., |5)} corresponds
the cavity modes. We recall that the couplingp the modes ~ for one excitation, and the stafg) = |gg000) has been in-
of a fibre of finite length can be estimatedias: \/4ric/i, ~ cluded due to the system losses.
wherel is the finite length of the optical fiber (for instance  Using the above basis in Eq. (2), it is straightforward to
1 < 1m), cis the speed of light in vacuum, anctorresponds ~ Show that we can write the Hamiltonidi, in Eq. (1) in a
to the decay rate of the cavities’ fields into a continuum ofMatrix representation, as
fibore modes. Furthermore, the finite length of the fibre im-

plies a quantization of the modes of the fibre with a frequency 0 g 2 8 8 8
spacing given bpxc/l. Finally, from an experimental point . 901 L0 v 0 0
of view, we can notice that the coupling strengtitan be H, = 0 0 v A 0 , 3)
increased by decreasing the reflectivity of the cavity mirror 92
connected to the fibre [23 0 0 0 g 0 0
[23]. 0 0 0 0 0 -—w,
§ §C whereA = w,. — w, is the atom-cavity detuning.
3. Microscopic master equation
5 - - - -
Atom | e Atom 2 In cavity quantum electrodynamics the main source of dis-
sipation originates from the leakage of the cavity photons
Cavity 1 Cavity 2 due to imperfect reflectivity of the cavity mirrors. A second
" source of dissipation corresponds to spontaneous emission of

FIGURE 1. Two atoms interact with two distant cavities coupled by Photons by the atom, however is m0§t|y suppressed by the
an optical fiber. In the figure,, 4= and~s; correspond to damping ~ presence of the cavity, and therefore its effect is usually ne-
constant for the cavities and optical fiber respectively. glected.
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In order to model the losses, we will use an approactdensity operator in the interaction picture with respect to
called the microscopic master equation presented by ®tala A, + H,, performing the Born-Markov and RWA, tracing
al.[24,25], which goes back to the original ideas of Davies onout the environmental degrees of freedom and then going
how to describe the system-reservoir interactions in markoback to the Sclirdinger picture, one obtains the microscopic
vian master equations [26, 27]. This description considersnaster equation for the reduced density operatoy of the
jumps between eigenstates of the system Hamiltonian rathesystem. In our case, we have considered the system at zero-
than the eigenstates of the field-free subsystems, which is themperature, in this case the microscopic master equation at
case in many approaches employed in quantum optics. zero temperature has the following form:

We assume that our system of interést, atoms, cavities . . A .
and the optical fiber, are part of a larger system, composed by A(t) = —i[H,, p(t)] + Z Yo (@) [Ar (@) (1) Al (@)

a collection of qguantum harmonic oscillators in thermal equi-

librium at temperature T. This external environment is that

part of the total closed system other than the system of inter- {AT (@) A (@), p(O)}], )

est. The evolution of the total closed system is governed by

the Hamiltonian# given by, where in Eq. (7), the first part (commutator) corresponds to a
. N N . non-dissipative evolution, the second partincludes the system
H=Hs+ Hy + Hine, losses. As we have mentioned befotes {1,2}, andn = 3

corresponds to the channels of dissipations for the cavities

and the optical fiber (all independents) respectively. Further-

more, @ corresponds to Bohr’s frequencies (transitions be-

. o0 tween the eigenstatés,,)) related toH,, and~, () is the

H, = Z wijrgjfij- (4)  damping parameter related to that transition. Also, these fre-

guencies are positive due to transitions only downward in the

energy ladder. Finally, the Davies operators [ﬁ&J(‘) are

In Eq. (4),w;; indicates the frequency related to the op- quantum jumps between the dressed- staté$,0fnd corre-
eratori'].7;; corresponding to the harmonic oscillators of the SPond to the following expression:
reserv0|rs Both the frequencies and the harmonic oscillators .
are in the j-th mode of the cavities (i=1,2) or the fiber (i=3), An(0) = Z |@a) (dal An|5) (05l
finally, as we are interested in generate entanglement between
distant cavities, we can establish that the cavities and the op-
tical fiber have independent reservoirs.

The interaction Hamiltoniatiy, is given by:

whereH, corresponds to Eq. (1), add, is the Hamiltonian
of the reservoir at temperature T written as

(:J:/\/f —Aa

where,|¢,,,) is the m-th dressed-state &f,, this state has
the information about the fields of the cavities and optical
fiber, as well as the atomic information. As we can see,
w = Ag — A, are the Bohr’s frequencies between transitions
Hige = Z Qij (az +a; ) ® (TL + Tza) . (B |¢p) — |¢a), where in our case the eigenvalues related to
this transition areAg > A, due to that our system is at zero
temperature and only are allowed transitions downward in the
whereQ;; corresponds to the interaction frequency betweerenergy ladder.

the cavities (and fiber) fields with the j-th mode of the reser-

voirs, also, we can note that the Eq. (5) has the followmg4 Dynamics of entanglement
form,

i= {123}

A . . . . . . 4.1. Formal solution of the microscopic master equation
Hint = A1 ® Ry + A2 @ Ry + A3 ® Ry, at zero temperature

Ay =an+ ai’ In the most general case, we will have different coupling con-
stants, small atom-cavity detuning, and dissipative factors. In
this general case, there is not an analytic solution using the
As = as + dg, (6)  matrix representation showed in Eq. (3). For that reason, we
have adopted a formal solution and at the end, we will make
where thed; and R; are operators acting on the systéfn  use of numerical analysis.
and on the environmental Hilbert spaces, respectively. We assume that, for each eigenvaluye there will be a
Following the standard procedures [28]e., writing normalized dressed-stai#;) acting onH, (see Eq. (3)), of
down the Liouville-von Neumann equation for the total the following form:

—-

A2 = a2+a2,
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|f1) cp ¢ ¢33 ¢4 c5 0 1)

|¢2> cg c7 cg ¢cg cig O ‘2)

sy | | 11 2 cs cu s O 3) ®)

|pa) | | ci6 a7 s ci9 c0 O |4)

|¢5) Ca1 Co2 €23 Ca4 Co25 O |5)

|b6) 0 0 0 0 0 1 16)

—_———

|®) c [T)
where, in Eg. (8), we have defined the vector of dressed-
states by|®), the vector of basis-states by), and finally, Once we have the operatoﬁsb(@aﬁ), it is straightfor-
the matrixC that relates both. ward to find the matrix elements @f{t) in Eq. (7). Also,

On the other hand{|¢1) ,...,|¢s)}, is the subspace in we need to define the initial conditions (which we address in

absence of losses. The single statg) = |6) = |gg000),  the next section), to solve the full set of first-order differential

corresponds to the ground state of the full system. equations.

With the formalism showed above, and according to the
definition in Eq. (6), we can calculate the operatdrg(w), 4.2
as follows:

i (o) — Y

An(@ag) = |ga) (Pl (a" * a") 198) (Pal., ®) We assume an initial state with a single atomic excitation and
where, we have defined.s = As — Ao. However, introduce a parameter that varies the mixedness of the ini-
we are interested in the case of zero temperature, thus Wgy| state. The initial condition can be written easily in the
use the fact thati, applied to any state corresponding to vector basis, however, the evolution of the system is written

{l¢1),....1¢5)} is zero, because the number of excitationsin the dressed-state basis. Therefore, we need to perform a
cannot increase in time. This assumption implies a convechange of basis

nient constraint on the Hilbert space. Indeed, at zero temper-
ature the system can make transitions only downward on the; o) — Z (] p(0) |5) |4 (j] = Z (o] p(0) |5) | i) (5] -
energy ladder.
For that reason, the operators in Eq. (9), are reduced to:
. R In order to carry out the above conversion, we adopt a
An(@ap) = [Pa) (Pal an [d8) (@8] - (10)  formal solution that will be computed numerically at the end.
| Inverting Eq. (8), we get:

Initial condition to solve Microscopic Master Equa-
tion at zero temperature

i,J 2

1) ¢1 G ¢3 ¢4 G5 O |p1)
|2) ¢ € g Co Cio O |¢2)
3) [ _| ¢ G2 s G G5 O |¢3) (11)
|4) ¢1g C17 Cis C19 C0 O |pa)
|5) Ca1 Co2 C23 Coa Co5 O |¢5)
|6) o 0 0 0 0 1 |b6)
——
|.7) c-1=¢ |)

In general, we consider the following initial condition:
to perform a measurement on the cavities and fiber states.

p(0) = a|eg000) {eg000] + (o — 1) |9e000) {ge000], (12) To accomplish the measurement, we begin with the state:

where, the parametér < o < 1, indicates how mixed our 6
initial state is. N R
t) = | p(t) |d:) | s i, 13
Using the Egs. (11) and (12), we can write explicitly the A ijzzl (01l P(0) 165 94 (&1 (13)
initial condition in the dressed-states basis. ’

] ] ] where Eqg. (13), represents the full evolution of our system
4.3.  Generation of atomic entanglement: Measuring the  yith the elementse;| 5(t) ).

vacuum state for the cavities and the optical fiber Next, we project our solution onto the state

At this point, we have the complete evolution of our system.
However, in order to generate atomic entanglement, we need 000) =10}y ©10)cp @ |0)
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and readily get: Lof
p(t) = (000] 4(t) |000) 03]
6 L H n “
= 3 (0 A0 165) (000[6) {5 000),  (14) 0] ”
ij=1 S
R 0.4
where, in Eq. (14) we define the non-normalized stte, [
that represents the state of the system after the measuremer I
Using the Egs. (2), (8) and (14), we observe that the
elements ofp(¢) form a X-matrix. In the standard two- 1! LY Wl 1]
qubit product basig|ee) , |eg) , |ge) ,|gg)}, a X-matrix can 0.0 0.1 02 0.3 04 0.5

| t/ns
be written as follows: _ _
FIGURE 2. Concurrence in the absence of atom-cavity detun-

Pee,ce 0 0 Pee,gg ing and losses. The coupling constants gre = ¢g» = v
o(t) = 0 Peg,eg  Peg,ge 0 = 27 x 30 GHz. '_I'he figur_e shows_ ce_ntral peaks with maximum
0 Pge.eqg  Pge.ge 0 ’ concurrence, and intermediate oscillations with smaller amplitudes.
Pgg,ee 0 0 Pgg.99
where we have used the notatip, . = (ab| p(t) |cd) for 1.0F = ~ 7S
the matrix elements, and [ ; ) A4
1
ostl | [ ik i 01 Al
Pee,ce + Pegeg + Pge.ge + Pgg.99 = 1. - ” ‘ ﬂ i b
Furthermore, in our case, due to the election of the initial con- _ 0.6[; n ! ” n ”
dition, and the constrain of the Hilbert space for a single ex- & N .’m
. . . . . - 1 ] il
citation, the elements with two excitatiops. cc, pee,gg and 0.4 Y ]
Pgg.ce @re not present in our description. Therefore, due to
the statistical mixture and the presence of losses in the systen |l ! i /
we get a X-matrix only with the following non-zero elements [ J W w
, . Doe-cos and ., where we can easil i RS IATA RV AR AR AR L I
Peg.eg: Peg.ger Pgeieq: Pagiag =0 Ifgeige Y o 0.1 02 03 0.4 0.5

compute the concurrence [29, 30] as follows: ¢/ s

C’(t) —9 Peg,ge FIGURE 3. The graph compares the generation of atomic entan-
Peg,eq + Pge.ge + Pgg.gq | glement for two different sets of parameters. First, we consider
g1 = g2 = v = 27 x 30 GHz (solid line) (see Fig. 2). In the sec-
ond case, we hawp = g2 = 27 x 3 GHz, andv = 27 x 30 GHz
(dashed line). In both cases, we did not consider losses nor atom-

As we have described in the previous sections, in order t(():awty detuning. We notice that, in the dashed line the intermediate

. . oscillations have been reduced and the width of the central peaks
model the leakage of cavity photons, and also the losses inthe . . hanced P
optical fiber, we need to specify the decay parameiéf).

These coefficients are given by the Fourier transform of theyote that this values and the regime used in our model is
correlation functions of the environment [25, 28]. within the reach of current technology [23].

5. Numerical results

oo On the other hand, the atoms have a long radiative life-
(@) = / dTeiDT<ET(7)E(O)>7 (15) f[ime, w_hich makes atomic _relaxation_s_ negligible during the
interactions of the atoms with the cavities.
= We begin the analysis considering a wavelength of
where the environment operatdtsare in the interaction pic- 852 nm for the transition of our two-level atoms [31], and
ture. equal coupling constanty = ¢go = v = 27 x 30 GHz.
However, in our analysis, the damping parameters correWithout atom-cavity detuning, and in the absence of losses.
spond toy, (w, + A;), wherew, is the transition frequency In this first case, we can observe strong oscillations in the
of the atom, and\; are the Bohr frequencies relative £f,. concurrence, between 0 and 1, as well as intermediate oscil-
Furthermore, since in our casg > \;, we can approximate lations with smaller amplitudes (see Fig. 2). These oscilla-
Yn(we + Ai) = vn(wa) = vn- Therefore, in principle we do tions have been observed also in other models [16] when two
not need to perform the calculation shown in Eq. (15). Fromdistant atoms are located inside a single-mode optical cavity,
an experimental point of view we have chosen the relaxatiomven though in Ref. 16 there is only one cavity, the dynam-
time equal tor.q, = 7¢ip = 0.1 uS, Ory;=72="vy3=10 MHz. ics is similar,i.e., identical atoms interacting with one cavity
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FIGURE 4. Concurrence is generated in the shape of several time-
plateau. In solid line corresponds to unequal coupling constantsFIGURE 6. The graph shows the dependence of the plateau in the
g1 = 27 x 3 GHz, g2 = 27w x 6 GHz, andv = 27 x 30 GHz. concurrence, versus the atom-cavity detunidg. (We observe a
The dashed line, correspondsg¢o = g2 = 27 x 3 GHz, and linear increase in the range of 100 GHz A/27 < 500 GHz.
v = 27 x 30 GHz (see Fig. 3). There is no dissipation nor detun- The parameters ar@ = 27 x 3 GHz, go = 27 x 6 GHz, and
i v =27 X 30 GHz,v1 = 72 = 3 = 10 MHz.

ing.
mode, the atoms are distant and the coupling strength with
the mode are sensitive to the position of the atom inside the 1.00
cavity, therefore, it produces a feedback of the interactions
between the atom and fields, however in our case we can gen
erate entanglement between distant atoms and also betwee
distant cavities. -
We can reduce the intermediate oscillations taking &
g1, 92 < v, and also increase the width of the central peaks
(see Fig. 2), as we can see in Fig. 3. A similar dynamic has
been observed by Ogdet al. [32], even though they do not
consider the quantized fibre mode nor losses. In that case
they have two identical cavities, each contains a two-level 9% . - ‘
atom, and the photons are able to hop between the cavities 190 200 A /éﬁfz
We also observed that in the regime givengaygs > v, no
FIGURE 7. The graph shows the dependence of the maximum con-

improvement was achieved.
If we considered unequal coupling constants for the atomeurrence, versus atom-cavity detuning (Left afg). Also, we
show the response time of the system to reach this maximum (Right

cavity and cavity-fiber interaction,e., g1 = 27 x 3 GHz, (
ga = 2 x 6 GHz, andv = 27 x 30 GHz, a small plateau is @Xis (¢)). We have sey = 2 x 3 GHz, g» = 27 x 6 GHz,
v = 27 x 30 GHz, and the relaxation frequencies = -2

ST / owrg asuodsay

generated in the time domain, as we see in Fig. 4.
=3 = 10 MHz.
1.0F FaniS ~ 2R 21N s . -
YN T J In order to improve the width of the plateau generated
0.8 / & i y / above, we have included a small atom-cavity detuning (as
T 5 / \ / compared with the transition frequency of the atom), taking
I ! 1 the valueA = w. — w, = 100 GHz. We observe an impres-

sive increase of the width of the plateau (see Fig. 5).

0.6 ,
e L l, I‘ ,’ \\ 'l
© 1 1 Lo L In order to study a more complex and realistic case, we
04 | L (O . . . -
L Vo ;| now include the decay parameters described in the beginning
02',’ ! ! \ ) of this sectioni.e, v1 = v2 = 1/7¢q0 =, andys = 1/744.
2 \ .
' 1 i Next, we study the dependence of the width of concur-

¥
| rence plateau with the atom-cavity detuning. We observe a

[

1 |

00 2 ' t/'ns‘ B S— T linear dependence of the width of the plateau with the detun-
ing, as we see in Fig. 6.

FIGURE 5. Both curves havg; = 27 x 3 GHz, g2 = 27 x 6 GHz, ) ) .

andv = 2 x 30 GHz (without losses). However, we have included ~ When losses are included in the model, the maximum

an atom-cavity detuning ak = 27 x 100 GHz (dashed line), and ~ concurrence decreases and the response time of the system

A = 27 x 200 GHz (solid line). In the last case, there is a plateau (time required to reach the maximum) increases with the de-

tuning (Fig. 7).

~F

approximately of 4ns wide.

Rev. Mex. . S57(3) (2011) 91-98



GENERATION OF ENTANGLEMENT IN CAVITY QED 97

1.0F 1.000
I . N0
-~ e ‘\ - ~~
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l -3 ZREEE e 0.996
0.6 g 0.994
s Y
& T 0.992
04t
t 0.990
02l 0.988
T S T N E E T P . N S T N T Y T A S S N S '
0.0 S 10 15 20 25 30
t/ns FIGURE 9. The graph shows the probability of have simultaneously

FIGURE 8. Concurrence as function of time for different ini- the vacuum state for cavities and the optical fiber, dor= 0.9
tial conditions. We considep(0) = a |eg000) (eg000| + (1 (dashed line), and: = 1.0 (solid line),y1 = v2 = v3 = 10 MHz,
—a) |ge000) {ge000|. We took the following parameters; = o g1 = 27 x 3 GHz, g2 = 27 x 6 GHz,v = 27 x 30 GHz, and
=3 = 10 MHz, g1 = 27 x 3 GHz, g = 27 x 6 GHz, A = 27w x 300 GHz. As we can see, there is a high probability of

v = 27 x 30 GHz, andA = 27 x 300 GHz. As we decrease obtaining the simultaneous vacuum states.

«, we observe the same behaviour of the system, with a slightly ) )
reduced concurrence. In presence of losses, the system shows a linear increase

in the plateau, versus the atom-cavity detuning.
Finally, we show that our system is robust to small vari-  On the other hand, the system shows a linear decrease of
ations of the initial statei.€., the concurrence remained with the concurrence, as well as, an increase in the response time

the same shape, with a small decrease). of the system versus detuning.

As we have seen in Sec. 4-b, we have defined the initial  Furthermore, the system is robust to small variations of
state as: the initial state.

5(0) = a |eg000) (eg000] + (1 — @) [ge000) (ge000] , From an experimental point of view, in our particular sit-

. ] uation, we need distinguish a single-photon state from zero-,
with the variable parameter. For example, fore = 1, gnq gne-photon states. In order to accomplish the measure-
we have a separable pure initial state. On the other hanghent we pass an atom (or a flux of atoms) in its ground state
for 0 < a <1, we have initial separable mixed states (Se€rqugh the cavities. If the cavity was initially in zero-photon
Fig. 8). state, nothing will happen to the atom, however, if we mea-

sure the auxiliary atom in the excited state, we can conclude
6. Conclusions that the cavity must have been in a single photon state [14].
On the other hand, to show the efficiency of such simulta-

We have generated atomic entanglement using two two-leveleous measurement, we can calculate the probability of this
atoms, each one inside (trapped) in an optical cavity, the tW@appening as follows:
cavities being coupled by an optical fiber.

We considered the short-fiber limit (Itis the only assump- 5, 4. (t) = Z (o] p(t) |9) ({eg|p:i)(pileg)
tion made in the optical fiber), this approximation considers '
essentially only one (resonant) mode of the fiber interacting 16
with the cavity modes. An open problem not addressed here, +(geldi)(d5lge) +(ggldi)(¢sl9g)),  (16)
might be to consider a long fiber with a phase propt:xgatiorQNhere we have traced the Eq. (13) in the atomic base
factor. Also, we neglected the losses due to spontaneo . : .

o . - {leg),lge) ,lgg)}. In the Eqg. (16), the density matrix
emission of the atoms. However, we considered the cavity: LT :

S : : rields(t) IS written in the bas€|000) , |001) , |010) , |100)}.
losses and the dissipation in the optical fiber. We model th o ; .
) : . : herefore, the probability of measuring simultaneously the

losses using the microscopic master equation at zero temper-

. . . vacuum state corresponds to the normalized matrix element
ature. This approach considers quantum jumps between t%00| 5 () |000)
fields .

dressed-states of the full Hamiltonian of the systé As we can see in the Fig. 9, there is a high probability of

In th neral we have togk=~,=73=10 MHz . .
the general case, we na e.t V2=73 0 " fhat our system is in the simultaneous vacuum state for both
corresponding to the relaxation time for cavities, and optical__ . . : ,
cavities and the optical fiber.

fiber, respectively.
We generated a major time-plateau in the concurrence,

using different coupling constant; = 27 x 3 GHz,  Acknowledgments

go = 27 x 6 GHz, v = 27 x 30 GHz, getting further im-

provement when a small atom-cavity detuning was present.M.O was supported by Fondecyt # 1100039.
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