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1. Introduction

The coupling of scalars to gravity plays an important role in the study of the AdS/CFT

correspondence. The scalar fields in gravity are related to scalar operators in the CFT and

therefore test its detailed structure. Consider the general Lagrangian which admits an AdS

background solution coupling gravity to a scalar field Φ in D dimensions:

S =

∫
ddxdρ

√
G
[
R+ Λ−Gµν∂µΦ∂νΦ−m2Φ2 − V (Φ)

]
(1.1)

where we separated the D coordinates into d = D − 1 “boundary” coordinates and the

“radial” coordinate ρ. For simplicity we did not include higher order curvature terms in the

gravity part. The potential of the scalar is separated into a “mass term” and an interaction

term V (Φ) which will be specified later. Neglecting the scalar interaction term the possible

dimensions of the dual operators in the CFT are:

∆± =
d

2
± ν (1.2)

where

ν =

√
d2

4
+m2 .

We will be interested in this note in the situation when both ∆+ and ∆− represent normal-

izable modes in the gravity corresponding to operators which satisfy the unitarity bound

in the CFT. The condition for this to happen is:

0 ≤ ν < 1 (1.3)

where the lower limit is the “Breitenlohner-Freedman” [1] bound. As discussed in [2 – 8]

this situation corresponds to two possible CFT’s in which only one of the operators O±
with dimensions ∆±, respectively, exists. A flow produced by the relevant perturbation

– 1 –
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f
∫
O2
−d

dx takes the two theories into each other. Moreover, there is an interesting “dual-

ity” between the two theories, the generating functionals for correlators of the O± operators

in the two theories being Legendre transforms of each other.

Special, very interesting features appear when the scalars are “resonant” i.e. if

∆+

∆−
= n (1.4)

where n is an integer. In the gravity theory solutions with logarithmic dependence on

the radial coordinate appear. Some implications for the AdS/CFT correspondence of

the resonant scalars in the n = 1 case were discussed in [9, 2]. Recently an in depth

study of the gravity theory in this situation was undertaken in [10 – 12]. In particular the

existence of asymptotic charges of the conformal group was studied. In order that these

charges would be well defined, certain “integrability conditions” relating the coefficients of

the expansion near the boundary should be imposed1. In the present note we study the

general implications of “resonant scalars” for the AdS/CFT correspondence. When the

resonance condition (1.4) is fulfilled, if the operator O− exists in the theory, necessarily

also the operator O+ is present in the same theory since it appears in the OPE of n O−
operators.2 As a consequence of the presence of both operators, two features single out

this type CFT:

a) there is a “type B” conformal anomaly involving one energy-momentum tensor and

n+ 1 O+ operators;

b) there is a marginal deformation generated by the interaction 3 f
∫
On+1
− ddx.

The “running” of the interaction b) is related to the anomaly a). The gravity theory

faithfully reproduces these features. In particular the conditions for the existence of asymp-

totic conformal charges can be understood as a cancellation of the conformal anomaly a)

by a non-polynomial “Wess-Zumino-Green-Schwarz” term or, equivalently, b) by the exis-

tence of a marginal perturbation which could be made “truly marginal” by the addition of

a non-polynomial term.

The paper is organized as follows: In section 2 we discuss the structure of CFT having

resonant scalar operators. We analyze the general structure of the type B trace anomaly

and its implications. We study the marginal perturbation appearing, we calculate its lowest

order running and we relate it to the trace anomaly. In section 3 we study the gravity theory

in Fefferman-Graham gauge in dimensional regularization. We show the appearance of the

trace anomaly and we discuss in detail the relation between the existence of asymptotic

conformal charges and the trace anomaly and the running of multitrace deformations. In

section 4 we summarize our results and we discuss possible future applications.

1This also applies to the non-resonant case [10].
2We limit ourselves to the discussion of this setup, though in principle one could have a theory where

starting with the O+ operator the O− operator is not present.
3The role of marginal deformations in the AdS/CFT correspondence in d=4 and d=3 examples were

studied by [2] and [13].
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2. Trace anomalies and marginal perturbations in CFT with resonant

scalars

Let us consider a CFT in which both operatorsO+ andO− are present with dimension given

by (1.2) with conditions (1.3) and (1.4) fulfilled. We start with presenting the mechanism

for a trace anomaly [14] which is “type B” following the classification of [15]; see also [16].

Consider the correlator G(x1, . . . , xn+1) of n+ 1 operators O+

G(x1, . . . , xn+1) = 〈0|T (O+(x1) . . .O+(xn+1))|0〉 . (2.1)

Since O+ appears in the OPE of n operators O− it can be written as:

O+(x) ≡ :On−(x) : (2.2)

where the normal ordering sign is used symbolically in order to indicate that inside (2.2)

there are no short distance singularities. The correlator G can now be evaluated using the

two point function of O−:

〈O−(x)O−(y)〉 =
c

|x− y|2∆−
. (2.3)

The expression obtained does not have a well defined Fourier transform: indeed, after

removing an overall δ-function for momentum conservation and taking into account that

(n + 1)∆− = d, the dimension is 0 indicating a logarithmic ultraviolet divergence. A

subtraction at a scale µ is needed and the correlator will contain a factor log(p2/µ2) where

p2 is the overall scale of the external momenta. Clearly, the presence of a scale shows

that dilation invariance is violated by the correlator (2.1) or that, equivalently, when an

energy-momentum tensor is inserted, the Ward identity following from the tracelessness of

the energy-momentum tensor is violated [14].

The same information can be summarized by looking at the generating functional when

the energy-momentum tensor of the theory is coupled to an external gravitational field gij
and the operator O+ to a source α of dimension ∆−:

exp[iW (g, α)] =

∫
DϕeiS0(g,ϕ)+i

R
ddx
√
gαO+ (2.4)

where ϕ represent the fields of the CFT, S0 is the action coupled to the external metric

and W is the generating functional. Now the diagram in figure 1 will contribute a term

∫
ddxαp log( 0/µ

2)αn+1−p (2.5)

to W before coupling to g. 0 is the Laplacian in flat space. Since general coordinate

invariance is preserved this term generates in the full W a term

∫
ddx
√
g αp log( /µ2)αn+1−p (2.6)

– 3 –
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. . . .
(2) (n)

n

α

(n+1)(1) α

α

α

Figure 1: Diagram contributing to eq. (2.5).

where this time is the full, covariant Laplacian and additional, higher order terms.4

Performing a Weyl transformation on W :

gij(x) → gij(x)e2σ(x)

α(x) → α(x)e−∆−σ(x) (2.7)

we obtain for the variation of W , δσW :

δσW = −2

∫
ddx
√
g σ(x)αn+1(x) (2.8)

due to the transformation of the covariant Laplacian.

The expression (2.8) represents the type B trace anomaly in this case. Though the

effective action contains a scale µ, indicating an explicit breaking of scale invariance, the

variation (2.8) itself is scale free and has the usual properties of an anomaly, i.e. it is a

local variation fulfilling the Wess-Zumino condition of a nonlocal effective action. The

Wess-Zumino condition is fulfilled in a way characteristic to all type B anomalies, i.e. the

variation δσW itself is Weyl invariant. We stress that the presence of this anomaly does

not spoil the conformal invariance of the theory: the energy-momentum tensor is traceless

as a consequence of the Heisenberg equations of motion and the Ward identity following

from the tracelessness of the energy-momentum tensor is obeyed in all correlators except

one class of anomalous ones whose coefficients are, however, related by the Wess-Zumino

condition. A special important feature of the type B anomaly is that due to the presence

of a scale in the effective action not only the Ward identity involving the dilation current is

violated but also the conservation of the dilation charge (unlike for type A trace anomalies,

or axial anomalies, for that matter).

4An explicit (fourth order) operator acting on scalars which transforms homogeneously in d = 4 was

given in [17]
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The anomaly (2.8) is the analogue of the type B trace anomaly involving only energy-

momentum tensors. An important difference is that (2.8) exists in any integer dimension

while the one involving only energy-momentum tensors exists only in even dimensions.

In dimensional regularization type B anomalies are signaled by the presence in the

effective action of terms having a factor 1
(d−p) with nonzero residue where p is an integer.

Though we will not use them in this note, we add for completeness a short discussion

of the generalizations of (2.8). As mentioned above the anomaly satisfies the Wess-Zumino

condition by being Weyl invariant. Therefore a complete list of trace anomalies can be

obtained by construction of Weyl invariant, local expressions involving a scalar source γ

with dimension Γ [18]. If d
Γ = n+ 1 where d is an integer dimension and n is an integer the

anomaly is given by (2.8) with α replaced by γ. Let us consider the situation (d−2)
Γ = p+ 1

with d and p integers, which would illustrate the general procedure. Consider a “composite”

metric ḡij defined by

ḡij ≡ gijγ
2(p+1)
(d−2) . (2.9)

By construction ḡij is invariant under a Weyl transformation and therefore any expression

constructed from it will be also Weyl invariant. Consider therefore as a candidate for the

anomaly ∫
ddxσ(x)

√
ḡR̄ (2.10)

where R̄ is the curvature scalar constructed from ḡij . Expressing R̄ as a function of R and

gij we obtain finally for the anomaly:

∫
ddxσ(x)

√
g

{
γp+1R+

2(p+ 1)(d − 1)

d− 2
γp γ +

(p2 − 1)(d − 1)

d− 2
γp−1∂jγ∂

jγ

}
. (2.11)

This particular anomaly is generated by the non-leading logarithmic divergence in the

quadratically divergent correlator of p + 1 operators whose source is γ. Similarly, by

considering quadratic expressions in the curvatures we can construct the anomalies when

the dimensions of the source fulfill Γ = d−4
p+1 etc.

We discuss now the other characteristic feature of CFT having resonant scalars. For

such a theory

Sint ≡
f

(n+ 1)!

∫
ddx :On+1

− : (2.12)

represents a marginal perturbation. Again the definition of the operator appearing is given

by the OPE of n+ 1 O− operators. Due to the associativity of the OPE the operator can

be given alternatively as

:O−O+ : . (2.13)

Generically the coupling constant will be renormalized. If n+1 is a prime number the lowest

contribution is again given by figure 1 with O− replacing the source α. The calculation is

identical with the one giving the trace anomaly and the renormalized coupling fR is

fR = f + cfn+1 log(Λ2/µ2) (2.14)

– 5 –
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where f is the bare coupling, producing a β function:

β(fR) = cfn+1
R . (2.15)

This relation between the trace anomaly and the renormalization of the coupling is a

manifestation of the well known Ward identity [19]

Tj
j = β(fR)On+1

− . (2.16)

A convenient way to define the renormalized coupling f̄ is through the effective potential

of O− [20], Veff(O−):

f̄ ≡ µ−dVeff(O−)
∣∣∣
O−=µ∆−

. (2.17)

Then following Coleman-Weinberg [20] the Callan-Symanzik equation for the effective po-

tential can be integrated. We use the β function given by (2.15) and we don’t include a

possible anomalous dimension for O− which would enter at higher order. The solution of

the Callan-Symanzik equation gives the form of the effective potential to the order we are

working:

Veff(O−) = f̄On+1
− +

cf̄n+1

∆−
On+1
− log

( O−
µ∆−

)
(2.18)

which we will use in the comparison with the gravity treatment.

3. Resonant scalars in the gravity theory

The results of the analysis described in this section agree with the ones described in [12].

We consider a gravity theory which admits an AdS solution coupled to a scalar Φ with

the action (1.1). We will analyze the solutions of (1.1) in the Fefferman-Graham gauge

where the metric has the form:

ds2 =
(dρ)2

4ρ2
+

1

ρ
gij(x, ρ)dxidxj . (3.1)

This gauge is suited for the studies of anomalies signaled in dimensional regularization by

the appearance of poles in d−N where N is an integer, in the solutions for various fields

and the action evaluated on solutions [21 – 23]. Since the integration measure contains

ρ−1−d/2, the integration can produce poles if the power ρN/2 appears in the expansion of

the action. This condition will be guiding us in setting up the regularization. By requiring

that we are in the resonant scalar situation (i.e. equations (1.2), (1.3) and (1.4) are fulfilled)

the expansion of the fields will have the general form:

gij(x, ρ) =
(0)
gij (x) + . . .+

(N/2)
gij (x)ρN/2 + . . .

Φ(x, ρ) = α(x)ρ∆ + . . . + β(x)ρn∆ + . . . (3.2)

where the dots include additional terms which should be present due to the coupled equa-

tions of motion (like ρ2∆, possibly half-integer powers, etc.) which do not play, however, a

role in the anomaly structure we are studying. In (3.2) and from now on we denote:

∆ ≡ ∆−
2
. (3.3)

– 6 –
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In order that the critical ρ dependence appears we require:

(n+ 1)∆ =
N

2
. (3.4)

The regularization choice (3.4) violates (1.4) by a term of order d −N and therefore it is

recovered only in the limit.

The linear part in the Φ equation of motion fixes then m through eq. (1.2) to be:

m2 =
N2

(n+ 1)2

[
1− (n+ 1)d

N

]
. (3.5)

Finally we choose V (Φ) in eq. (1.1) such that the second term in the expansion of Φ in (3.2)

appears in leading order in the nonlinearity:

V (Φ) =
h

n+ 1
Φn+1 . (3.6)

Generically the potential may have additional terms which do not change the anomaly

structure.

The procedure is now straightforward: We study the coupled equations of motion

following from the action (1.1) with the choice (3.5) for the expansions (3.2); once the

solutions are known we use them in the action isolating the terms which have poles in

d−N . We defer a more general discussion for arbitrary actions involving gij and Φ based

on diffeomorphisms in d+ 1 dimensions to another publication.

The case n = 1 when O+ and O− coincide requires a special treatment which will be

given after the general discussion.

Now, the Φ equation of motion is:

Φ = m2Φ +
h

2
Φn . (3.7)

The linear term determines the relation between m and ∆ which, due to our condition (3.4),

gives (3.5). From the leading nonlinear matching we obtain:

β(x) =
h(n+ 1)

2N(n− 1)

α(x)n

N − d + β0(x) . (3.8)

The appearance of the pole in d − N signals the existence of the logarithmic branch.

The function β0 is undetermined by the expansion and it is the analogue of the so called

“Fefferman-Graham ambiguity” in this context.

The gravitational equation of motion is:

Rµν −
1

2
GµνR−

Λ

2
Gµν − ∂µΦ∂νΦ +

1

2
Gµν

(
∂αΦ∂αΦ +m2Φ2 +

h

n+ 1
Φn+1

)
= 0 . (3.9)

Instead of using it directly we will concentrate on the terms of the action which get contri-

butions from the scalar field. First, using the trace of eq. (3.9) we can express R through

the other terms and the action becomes:

S =

∫
ddxdρ ρ−1−d/2√g

[
d+

1

d− 1

(
m2Φ2 +

h

n+ 1
Φn+1

)]
(3.10)

– 7 –
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where we used the relation between Λ and the AdS radius in the parametrization (3.1):

Λ = −d(d− 1) . (3.11)

Now, in (3.10) there are two contributions depending on the scalar field: the one appearing

explicitly and the other in back-reaction to
√
g. The interesting term in the back-reaction

after expanding
√
g around g(0) is contributed by

1

2

(0)
g ij

(N/2)
g ij and can be calculated through

its relation to R where δR is the part of the coefficient of ρN/2 in the expansion of R

depending on Φ:
1

2
tr (

(N/2)
g ) =

δR

2N(N − d− 1)
. (3.12)

Putting the two contributions together we have to isolate the coefficient of ρN/2 in the

expression

d

2N(N − d− 1)
∂αΦ∂αΦ +

1

d− 1

[
1 +

d(d+ 1)

2N(N − d− 1)

](
m2Φ2 +

h

n+ 1
Φn+1

)
. (3.13)

The result is:

(N − d)

(N − d− 1)(d− 1)(n+ 1)2

[
d2(n+ 1) + 2N(N − 1)− d(n+ 1)(2N − 1)

]
αβ

+
d(d+ 1− 2N) + 2N(N − 1)

2N(N − d− 1)(d− 1)

h

n+ 1
αn+1 . (3.14)

We remark the (d−N) factor in the αβ term which shows that even though there is a pole

term in the expression (3.8) of β in terms of α the integrand of S finally does not have any

explicit pole terms. The pole term is the result of the integration over ρ. Keeping the pole

and finite term the structure of the result is:

S[
(0)
g ij, α, β0] =

∫ √
g(0)ddx

[
c1

d−N hαn+1 + c2αβ0

]
(3.15)

where c1,2 are numerical coefficients.

We discuss now briefly the exceptional case n = 1 when ∆ = N/4. In this case the

expansion (3.2) is replaced by

Φ(x, ρ) =

[
α(x)

d−N + β0(x)

]
ρN/4 (3.16)

and it is easy to verify, following the steps outlined above, that again (3.15) is obtained

with n = 1 [9].

Now the meaning of (3.15) is obvious [21, 22]: the presence of the pole requires a

subtraction before the limit d→ N is taken and as a consequence the subtracted action is

nonlocal and it is no longer Weyl invariant. The Weyl variation can be calculated before

taking the limit and it is finite and nonvanishing:

δσS[
(0)
g , α, β0] = −c1h

∫
ddx

√
g(0)σαn+1 = δσ

{
c1
2
h

∫
ddx

√
g(0)αn+1−p log( /µ2)αp

}
.

(3.17)

– 8 –
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The structure of the basic result (3.15) agrees completely with the structure of the CFT

discussed in section 2 where α in the gravity theory should be identified with the source of

the O+ operator in the CFT. In particular the trace anomaly (2.8) is reproduced by (3.17).

Therefore we conclude that also in the case of resonant scalars there is a relation between

two theories: a CFT with operators O− and O+ and a gravity theory with action (1.1)

and mass parameter such that the conditions (1.2), (1.3) and (1.4) are satisfied. The

exact duality between the two theories requires a matching of the numerical coefficients in

the above formulae which would depend on the exact formulation of the CFT and more

specification of the gravity background including the additional compactified dimensions,

etc. We stress that both theories are well defined and conformal, the logarithmic branches

signaling, as we discussed in detail above, the matched conformal anomalies.

We discuss now the interesting observation made in [10 – 12] that in the gravity theory

the asymptotic conformal charges are well defined only if a certain integrability condition

is obeyed expressing the function β0 appearing in (3.15) in terms of α. The integrability

condition in our notation is the condition that the total Weyl variation of (3.15) vanishes:

δσS =

∫
ddx

√
g(0)
{
σ(x)c1hα

n+1 + αc2δσβ0 + αn∆−c2σ(x)β0

}
= 0 (3.18)

or, more explicitly:

c2δσβ0 = −c1σ(x)hαn(x)− n∆−c2σ(x)β0 . (3.19)

A particular solution of (3.19) proposed in [10 – 12] is

β0 =
c1

c2∆−
hαn(x) log

(
α(x)

µ∆−

)
(3.20)

where the choice of the scale µ includes the ambiguity of adding to (3.20) a term αn

with an arbitrary coefficient. From the point of view of the gravity this condition is quite

natural: the existence of well defined asymptotic charges implies that on the solutions

which satisfy the requirement the action is invariant under the full conformal group. Of

course, once (3.19) is satisfied the two terms in (3.15), after the subtraction, combine, the

scale µ disappears from the expression and S becomes:

S =

∫
ddx

√
g(0)

{
c1hα

n+1−p log

(

α2/∆−

)
αp + c̄1α

n+1

}
(3.21)

which is Weyl invariant. In (3.21) we made explicit the freedom of adding a conformally

invariant term as a consequence of the ambiguity in (3.20).

From the point of view of the CFT dual to the gravity theory the interpretation is

obvious: if the generating functional W is identified with S as given by (3.21) a term

was added to the anomalous, one loop term (2.5). This term which originates in the αβ0

expression with the choice (3.20) for β0 is classical and it is tuned such as to cancel the

anomaly. Therefore it is the conformal version of a Green-Schwarz-Wess-Zumino term. Of

course the term added, though local, is non-polynomial so in a usual QFT situation we

would not consider it legal.

– 9 –
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An alternative, closely related interpretation of the integrability condition is offered

by looking at the solution (3.2), (3.8), (3.20) as representing a perturbation of the original

CFT by a “multiple trace deformation” [2 – 4, 24 – 31]. The deformation is given by the

integral of the defining relation of β0:

Spert =

∫
ddx

{
hc1
c2∆−

[
On+1
−

n+ 1
log
O−
µ∆−

− On+1
−

(n+ 1)2

]
+

f

(n+ 1)!
On+1
−

}
(3.22)

This deformation has two pieces: a marginal perturbation with arbitrary strength which

has a running as we discussed in section 2 and the term containing the logarithm of O−
which violates conformal invariance. The first term will produce an effective potential

at lowest order of the form (2.18). Treating the second term of (3.22) as classical and

choosing appropriately the bare coupling and the scale the two logarithmic terms could

cancel exactly making the perturbation truly marginal at lowest order. Therefore, at

least at lowest order, we defined a new CFT which is a deformation of the original one.

To this new CFT corresponds the same conformally invariant action (3.21) possibly with

a new interpretation. Indeed, we expect that due to the perturbation the dimensions

of the operators O+ and O− will change such that they will not be anymore resonant

and as a consequence the trace anomaly will no longer be present. Correspondingly the

interpretation of (3.21) will change which now represents the full generating functional of

the theory. The exact correspondence between the operators in the perturbed CFT and α

in (3.21) is an unsolved problem.

Summarizing, we offer two possible holographic interpretations of the requirement of

well defined conformal charges in the gravity theory: a) the original CFT with a Green-

Schwarz-Wess-Zumino term added to the partition function in order to cancel the trace

anomaly and b) a perturbation of the original CFT by a marginal operator made truly

marginal by canceling the one loop running of the perturbation by a fine tuned term

treated classically. Given the connection between the trace anomaly and the running of

the marginal perturbation discussed in section 2 the two interpretation are closely related.

4. Discussion

The presence of resonant scalars shows new features of the AdS/CFT correspondence. If

in the CFT both scalar operators, O+ and O−, are present5 it has a type B trace anomaly

and related to it a marginal perturbation. The gravity theory accommodates naturally this

structure: the trace anomaly is reproduced and the boundary conditions allow the presence

of the marginal perturbation through the “multiple trace” mechanism. The action of the

gravity theory corresponding to the situation when the asymptotic conformal charges are

well defined and conserved corresponds to two possible CFT: one with the addition of a

classical term tuned to compensate the trace anomaly, the other a perturbation of the

first by a marginal operator made truly marginal by the addition of another term treated

classically.

5In principle one could have a CFT in which only O+ is present.
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The purpose of this note was to discuss the general structure of the AdS/CFT cor-

respondence in the above set up. We intend to study further this set up in concrete

realizations. At the level of the general structure several problems remain open which

require further study:

a) the calculation of correlators for both operators on the gravity side and their consis-

tency;

b) the validity of building truly marginal perturbations of CFT through cancellation

with terms treated classically beyond one loop and the general consistency of such

an approach;

c) the detailed relation between the observables of a CFT built along the lines mentioned

in b) and the gravity action;

d) the general structure of theories with scalars and higher order curvature terms fol-

lowing form their D dimensional diffeomorphism invariance;

e) the appearance of scalar operators which obey the Breitenlohner-Freedman bound

and produce higher trace anomalies of the type discussed in section 2.
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