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The prevalence of food allergy has increased in recent years, especially among the pediatric population. Differences in the gut
microbiota composition between children with FA and healthy children have brought this topic into the spotlight as a possible
explanation for the increase in FA. The gut microbiota characteristics are acquired through environmental interactions starting
early in life, such as type of delivery during birth and breastfeeding. The microbiota features may be shaped by a plethora of
immunomodulatory mechanisms, including a predominant role of Tregs and the transcription factor FOXP3. Additionally, a
pivotal role has been given to vitamin A and butyrate, the main anti-inflammatory metabolite. These observations have led to
the study and development of therapies oriented to modifying the microbiota and metabolite profiles, such as the use of pre-
and probiotics and the determination of their capacity to induce tolerance to allergens that are relevant to FA. To date,
evidence supporting these approaches in humans is scarce and inconclusive. Larger cohorts and dose-titration studies are
mandatory to evaluate whether the observed changes in gut microbiota composition reflect medical recovery and increased
tolerance in pediatric patients with FA. In this article, we discuss the establishment of the microbiota, the immunological
mechanisms that regulate the microbiota of children with food allergies, and the evidence in research focused on its regulation

as a means to achieve tolerance to food allergens.

1. Introduction

Food allergy (FA) or food allergies are pathologies triggered
by exposure to food allergens [1]. The prevalence of immu-
noglobulin (Ig) E-mediated FA in children has increased in
recent years, with figures ranging from 1 to 2.53% in the
USA [2] and Canada [3] to 5.5% in Chile [4]. Higher pro-
portions are observed in self-report studies, reaching up to
25% in some regions [5]. The most common allergens
include peanuts, walnuts, eggs, milk, fish, and soy, varying
between countries and age groups [3, 6].

Risk factors for the development of FA include vitamin
D deficiency, delayed exposure to food allergens, reduced
exposure to microorganisms (as suggested by the hygiene
hypothesis), and changes in the microbiota [7]. The gut

microbiota corresponds to the group of microorganisms that
colonize the intestine [8]. The loss of the gut microbiota
homeostasis due to changes in their relative abundance
and diversity is known as dysbiosis [9]. This condition has
been observed in children with FA, whose gut microbiota
profiles differ from those without FA [10]. Food allergies
developed by mechanisms not mediated by IgE, present in
approximately one-third of the population, also present dif-
ferences in the intestinal microbiota, and a greater relative
abundance of Bacteroides and Alistipes has been observed,
in addition to presenting changes associated with probiotic
supplementation. Therefore, the alteration of the microbiota
would not be associated only with IgE [11].

Currently, the only available treatment for FA consists
of the strict exclusion of the allergen from the diet.
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Nevertheless, this approach may impact the nutritional
state of the patient depending on the type and number
of allergens involved and the age of the patient at the time
of the diagnosis [12]. Therefore, it is necessary to explore
novel therapies to induce food-specific immune tolerance
and decrease FA symptoms in these patients.

2. Differences between the Adult and Infant
Immune Systems

The immune system of infants is thought to be under active
development and training, making it inherently susceptible
to react to microbial agents and generate atopic reactions
[13]. Throughout neonatal life, the immune system of the
infant relies on the immunity of the mother transferred
through the placenta, the exposure during childbirth (the
birth canal), and breastfeeding [14]. Although hereditary
factors also influence the type of immune response that an
infant may develop [15], several studies have suggested that
nonhereditary factors are the most relevant for shaping the
immune system and developing immunity during the first
year of life [16]. For example, a recent study on twins char-
acterized 204 immunity-related parameters and showed that
77% of them were heavily influenced by nonhereditary fac-
tors [17]. Additionally, it has been reported that immune
cells from infants possess high intraindividual heterogeneity,
opposed to what has been described for adults [18]. This
observation highlights the relevance of environmental expo-
sure during neonatal life [19].

Most of the components of the immune system of new-
borns are formed but immature in their function [20].
Regarding cell types, neutrophils appear increased in the
fetus but fall to levels that will prevail in adulthood a few
days after birth, cytotoxic T lymphocytes present low activity
compared to adults, and monocytes and macrophages also
appear immature [21]. Valiathan et al. measure the concen-
tration of immune cells in different age groups and observed
a predominance of lymphocytes, platelets, and B cells that
decrease significantly with age, neutrophils and CD8" T cells
increase in adulthood, and natural killer (NK) cells, which
are part of the innate immune response, increase mainly in
adolescence [22].

Compared to adults, mononuclear cells from children
display a reduced capacity to secrete IL-12p70, which plays
a pivotal role in the polarization of Thl cells [23]. Conse-
quently, children show a predominantly Th2 immune
response [24].

Functional B and T cells in the gastrointestinal tract are
newly expressed at 12 weeks of the newborn, not with the
maturity present in adults. However, the transforming
growth factor-f (TGF-f) favors the expression of Tregs [25].

Breast milk plays a fundamental role in the maturation
of the immune system since it supplies components that
may be absent or immature, such as IgA that is absent,
therefore the only source is breast milk, and others such as
IgG that has been identified that by being associated with
food allergens improves their tolerance, reinforcing that
the introduction of allergens together with breast milk would
be a protective factor against FA [26].
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Due to environmental stimulation, adults (previously
exposed to tobacco smoke, altered nutritional status, diabe-
tes, dyslipidemia, or insulin resistance) may display a pre-
dominantly proinflammatory immune profile [27].

The differences between the adult and the infant immune
system will determine the development of the immune
response. Of particular relevance is maternal immunity
during gestation and environmental exposure during the
neonatal and infant life [28].

3. Development of the Microbiota in Infants

Early gut microbiota marks the health of the individual in
later life, where it has been associated with pathological
conditions triggered later during old age [29] (Figure 1).
However, little is known on the specific time point at
which disease-generating dysbiosis is generated, the exact
composition of a “healthy” microbiota, and whether its alter-
ation is due to pathological conditions, such as food allergies
[30], irritable bowel syndrome [31], celiac disease [32], or
physiological status, including pregnancy, dietary changes,
or age (Figure 1) [33, 34].

3.1. Factors Associated with the Prenatal and Neonatal
Periods. The microbiota colonization begins during gesta-
tion, a period in which maternal nutrition and health status
influence the type of microorganisms present in the placenta
and umbilical cord [35-37]. These factors contribute to the
generation of a microbiota profile even before childbirth
[38]. Although it was previously thought that the gestational
period hosted a sterile environment [39], it is currently
known that the establishment of the gut microbiota in
infants initiates during pregnancy by the presence of mater-
nal microorganisms that translocate through the vagina,
maternal gut, placental tissue, and meconium, thus discard-
ing the concept of a sterile placenta [40, 41].

A report studied the composition of the microbiota of
the placenta, amniotic fluid, meconium, newborn stool
samples, and maternal stool samples from patients that
underwent optional C-sections, but there was no similarity
between the microbial populations of amniotic fluid and
placenta, where there were nondiverse populations of Pro-
teobacteria (Enterobacter and Escherichia/Shigella), also
present in colostrum and meconium but less abundantly
[42]. Contrary to this report, another study reported no
microbiota in the placenta or amniotic fluid in C-sections
[41]. However, 100% of the patients received prophylactic
antibiotic treatment that may have affected the results of this
study [41, 43]. It remains a matter of discussion whether the
presence of placental or amniotic microorganisms results
from the development of the fetus or is only detected follow-
ing microbial translocation from the mother to the fetus [42].

The mode of delivery is known to impact the develop-
ment of the gut microbiota [44]. A sevenfold higher abun-
dance in Bifidobacterium, Proteobacteria, and the genus
Enterobacter-Escherichia-Klebsiella, Clostridium, and Entero-
coccus has been reported in newborns delivered by vaginal
birth compared to C-section, the latter being deprived of
exposure to the birth canal, thus presenting a greater
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FIGURE 1: Factors that determine the development of the microbiota in infants. The development of the microbiota begins during pregnancy
and continues after birth with exposure to environmental factors. To the left of the figure are factors associated with homeostasis. To the

right of the figure are factors related to dysbiosis.

abundance of Bacteroidetes and a reduced fraction of Strepto-
coccus [45]. A second study from Korea compared the micro-
biota of stool samples from infants born of vaginal birth and
C-section at 3, 7, and 14 days postpartum. Reduced bacterial
diversity was observed with time. Microbiota composition of
C-section infants varied from day 14, suggesting that this
mode of delivery is associated with the delayed establishment
of the gut microbiota, associated with obesity and asthma
later in life [46]. Newborns via vaginal birth displayed a
higher abundance of Bifidobacterium, Bacteroides, Lactoba-
cillus, and Lachnospiraceae at day 7 compared to C-section,
in which Enterococcaceae and Enterobacteriaceae were more
abundant [46].

3.2. Factors Associated with the Postnatal Period. Breastfeed-
ing also influences microbiota development because breast
milk contains bioactive compounds, such as oligosaccha-
rides that nourish intestinal bacteria, molding the gut micro-
biota [47]. A recent study of Chilean newborns compared
the intestinal microbiota of infants fed with breast milk to
that of infants fed with formula at months 1 and 3 and
showed that the microbiota of infants fed with breast milk
displayed a higher Bacteroidetes abundance [48]. In contrast,
those fed with formula showed a higher proportion of Firmi-
cutes. At the genus level, the Enterococcus, Streptococcus,
Enterobacter, Lactococcus, and Propionibacterium commu-
nities were enriched in the breast milk group at the first
month. These differences in bacterial diversity were no
longer present in the third month [48, 49]. Another study
evaluated the fecal microbiota composition at 40 days, 3
months, and 6 months postpartum; it reported that Bifido-
bacterium and Enterobacteriaceae were the most abundant
in breastfed infants at all time points and were more abun-
dant in this group than formula-fed infants; to differ the
formula group, Streptococcus and Enterococcus were the

most abundant [50]. In the same study, when evaluating
the introduction of complementary feeding, the abundance
of Bacteroides increased in the formula group, which did
not occur in breastfed infants, which was associated with
increased diversity of the microbiota in the formula
group [50].

4. Mechanisms of Microbiota Dysbiosis
Associated with Food Allergy

The association between microbiota and FA was first
reported in germ-free mice displaying elevated IgE levels in
the intestinal mucosa without additional alterations of the
other immunoglobulins [51]. Based on this observation, it
is believed that the microbiota may contribute to maintain-
ing the homeostasis of IgE and the control of allergic
responses triggered by these immunoglobulins [52]. Further,
the population of microorganisms in the intestine of mice
with FA would favor a Th2-type response, shifting the
balance from Thl to Th2 immune profile [53]. It was shown
that Citrobacter sp., abundant in FA models, induces the
expression of IL-33, promoting a Th2-type immune
response [54].

Short-chain fatty acids (SCFA) are fundamental to the
microbiota, as they provide metabolites that serve as nour-
ishment to bacterial communities. Of great importance are
butyrate, propionate, and acetate that result from the
fermentation of dietary carbohydrates by intestinal bacteria
[55, 56]. In infants younger than 6 months, dietary carbo-
hydrates correspond to breast milk oligosaccharides, which
are not physiologically digested by the infant but serve as
sustenance for the microbiota, mainly the genus Bifidobac-
terium and Bacteroides [57].

The most prevalent SCFA in 3-month-old infants is
acetate, where it can be found between 70 and 90% of



the total SCFA, followed by propionate and butyrate, with
an increase of up to 4 times with the start of feeding,
complementary at 6 months [58, 59]. Although it is not
the metabolite present in the greatest quantity, butyrate
has been more studied and associated with the production
of regulating microorganisms of the microbiota and with a
lower probability of developing asthma and food allergies
in infants [60, 61].

Nilsen et al. observed correlations between bacterial
species and relative amount of SCFA, for example, the
presence of the E. rectocele and F. prausnitzii network with
a higher relative abundance of butyrate measured at 12
months of the infant. These networks have been identified
as prominent producers of butyrate in adults. The authors
suggest that eating habits between 6 and 12 months are
crucial for establishing the adult microbiota [58]. Butyrate
fulfills regulatory functions in the immune system as an
inhibitor of histone deacetylase, reducing the release of
proinflammatory cytosines through G protein-coupled
receptors, among other pathways. In addition, this molecule
also contributes to regulating the function of T cells. There-
fore, factors such as incorporated foods and lifestyles during
the early stages could affect immune mechanisms in later
stages [60].

4.1. Effect of the Microbiota on the Innate Immune System.
Although the epithelial barrier prevents the contact of aller-
gens with the immune system, in some cases, the antigens
can cross this barrier and cause sensitivity to food allergens
[62]. During the innate immune response, at the skin level,
exposure to the allergen in a defective epithelial barrier
causes keratinocytes to synthesize alarmins such as IL-33,
thymic stromal lymphopoietin (TSLP), and IL-25, cytokines
with the function of sending an “alarm signal” and activating
type 2 innate lymphoid cells (ILC-2) [63-65]. ILC-2 will
stimulate the production of Th2 cytokines, especially IL-5,
IL-14, IL-4, and IL-9, which are characteristic of food aller-
gies [66, 67]. A study carried out in mouse models for FA
showed that mice deficient in the IL-33 receptor (IL-33R)
do not develop FA because they cannot generate ILC-2
differentiation, and IL-4 is capable of suppressing Treg
differentiation through increased mast cell activation [68].
Therefore, differentiation to ILC2 contributes to the devel-
opment of FA by promoting the bias of the immune
response towards a Th2 and proinflammatory phenotype.

The intestinal microbiota is capable of inducing the
innate immune response [69, 70]. A recent study evaluating
the effect of SCFA on the innate lymphoid cell (ILC)
response in mice found that SCFA administration sup-
pressed the IL-33-induced ILC2 response in WT mice and
Ffar2-/- mice [71].

4.2. Butyrate as the Main Metabolite in Microbiota
Regulation. Butyrate has been identified as the metabolite
with the most significant effect on immunity due to the
capacity of this molecule to promote anti-inflammatory
pathways by inducing CD4" T cell differentiation into the
Treg cells (with a fundamental role in allergen tolerance)
mediated by the inhibition of histone deacetylases (HDAC)
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through the GPR109A receptor expressed on the surface of
these cells, which among all metabolites is activated only
by butyrate and also by niacin (Figure 2) [66]. This receptor
acts on CD103" cells capable of promoting the proliferation
of Treg cells [68, 69].

In addition, butyrate can induce the activity of retina
dehydrogenase (RALDH2), an enzyme responsible for the
conversion of vitamin A into retinoic acid (RA) and that is
expressed by CD103" DCs. It has been suggested that
RALDH2 would promote Treg cell differentiation, which
favors oral tolerance (Figure 2) [70].

It has been observed that during intestinal pathologies, the
presence of a proinflammatory cytokine in conjunction with
retinoic acid leads to the loss of tolerance, such as IL-15; there
is a lower abundance of butyrate-producing bacteria and
therefore a lower concentration of the total levels of the metab-
olite in the epithelium, promoting microbiota dysbiosis and
decreasing Treg differentiation [67, 71]. Finally, butyrate could
inhibit the high-affinity IgE receptor- (FceRI-) triggered
degranulation of mast cells, which leads to a decrease in the
release of inflammatory mediators and histamine, reducing
the development of allergic reactions [72].

4.3. Effect of Treg Cells on Microbiota. Treg cells have an
anti-inflammatory effect that contributes to immune toler-
ance, counteracting the function of follicular T helper
(THF) cells, which are needed for IgE synthesis. Therefore,
Treg cells can downmodulate IgE synthesis and reduce aller-
gic reactions [73].

In addition, it has been observed in mouse models that
the synthesis of colonic Treg cells increases in mice colo-
nized with benign microbiota compared to germ-free mice,
which is why they would be highly related to the gut
microbiota [74]. Following this observation, other
researchers identified a lower frequency of Treg cells in mice
treated with vancomycin, an antibiotic targeting Gram-
positive bacteria, compared to mice that were administered
polymyxin, associated with Gram-negative bacteria, suggest-
ing a predominant role of Gram (+) in the accumulation of
Treg, such as Clostridium [75].

A factor that has been identified as an important inducer
of allergen tolerance is forkhead box P3 (FOXP3), a tran-
scription factor expressed by FOXP3+Treg cells together
with CD25 (IL-2 high-affinity receptor), and according to
research, a greater inflammatory response associated with
allergies has been observed in knockout FOXP3 mice [76,
77]. Furthermore, significant inflammatory responses have
already been observed in FOXP3 KO mice [78], while chil-
dren with IgE-mediated FA have also shown a lower expres-
sion of FOXP3 as compared to healthy controls [79].

Tregs can also modulate the immune response by means
of the production of IL-10 and TGF-p, which are cytokines
that in general suppress immune responses [76]. In addition,
a mechanism associated with IL-2 has been identified,
through the supplementation of IL-2 to mice with peanut
allergy, where the supplemented mice presented increased
function and number of Treg cells, therefore prevention of
food allergy for a period of 7 months [80].
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4.4. Modulation of the Mastocyte Function by the Microbiota.
Th2 lymphocytes activate mast cells after exposure to an
allergen, which in turn are responsible for releasing hista-
mine and other mediators of inflammation, such as cytokine
tumor necrosis factor alpha (TNF-«), and for generating the
characteristic symptoms of IgE-mediated FA [81].

The intestinal microbiota also appears to regulate mast
cell expression and functionality, as observed in a study with
mice free of minor germs and low mast cell functionality;
however, the mechanism is not yet clear [82]. Another pro-
posed mechanism is that acetate produced by Bifidobacter-
ium spp induces mast cell apoptosis in mouse mast cells,
reducing allergic symptoms [83].

Finally, evaluating therapeutic options, an investigation
administered Bifidobacterium longum KACC91563 to Balb/
¢ mice with induction of FA and observed an increase in
mast cell apoptosis with consequent reduction of allergy
symptoms, providing additional evidence for the role of
these cells in the regulation of FA [84].

5. Future Treatments for FA with a Focus
on Microbiota

Currently, available evidence addressing the impact of the
microbiota on FA regulation encouraged researchers to
formulate interventions with compounds that can correct
the dysbiosis state, favoring the improvement of symptoms
and resulting in tolerance to allergens [85].

Probiotics and prebiotics with different fiber types are
some of the current approaches to improve microbiota com-
position and reduce dysbiosis (Table 1).

The focus on the microbiota has been present for several
years, starting with interventions carried out using yogurt to
reduce gastrointestinal symptoms, which, however, had low
therapeutic action [86, 87]. Nonetheless, latter experiences
were performed with the first uses of probiotic strains, while
today, other microorganisms that can regulate the intestinal
environment have been evaluated [88].

Research performed on animals has successfully used
various probiotics and prebiotics at different times during
childhood, yielding promising results in modifying the
microbiota towards a healthy profile and decreasing IgE
levels, proinflammatory cytokines, and anaphylaxis symp-
toms [89-92]. However, in humans, the type and dose of
probiotic or prebiotic and the proper time for their prescrip-
tion have yet to be defined.

5.1. Prebiotics. Prebiotics are defined as a substrate for host
microorganisms to which health benefits are attributed
[93]. In animal models, a study performed in fiber-
supplemented mice showed a reduction in anaphylaxis
symptoms and greater tolerance to allergens with the inter-
vention [70].

In humans, prebiotics used to modulate the microbiota
are short-chain galactooligosaccharides (GOS) and short-
chain fructooligosaccharides (FOS), and their use as supple-
ments in milk formula has been evaluated for food allergy
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TaBLE 1: Evidence regarding microbiota interventions in children with FA.
Type of L L Form of .
FA Age n Prebiotic/probiotic administration Doses Main result Reference
Extensively
10-25 hydrolyzed Enriched fecal microbiota
CMA months 12 Lactobacillus rhamnosus GG~ commercial N/A with LGG formula [110]
milk formula consumption
supplement
ot g
- 7 ]
CMA 4-6 330  Lactobacillus rhamnosus GG hydrolyz§d LGG 2'58 X 107 to 5% and functional abdominal ~ [111]
years commercial 10° CFU/g in in chil ith
formula pain in children wit
probiotics
Extensively Less allergy-associated
CMA 1-12 220  Lactobacillus rhamnosus GG hydrolyze?d N/A symptoms an.d.fe.ister [112]
months commercial tolerance acquisition at
formula 12, 24, and 36 months
. Higher production of
112 Elez)il‘;eelg 4.5%107-8.5 x 107 butyrate and related to
CMA 39 Lactobacillus rhamnosus GG yeroyze CFU by gram of higher production of [113]
months commercial X
formula powder butyrate in tolerant
patients
Coadmlnlstratlon of 2% 10'° CFU once a Reduced peanut
Lactobacillus rhamnosus 1 . L
Peanut  1-10 62 Lyophilized day together with sensitization in
. CGMCC 1.3724 (NCC4007) . . [106]
allergy  years children : powder peanut OIT for 18 combination with
and oral immunotherapy .
. months immunotherapy
with peanuts
< Lactobacillus casei CRL431 ﬁxffrr(ﬁ“;eelg I(\)Il())si‘f,f:ée?ece;r(\i\;ire
CMA 119 and Bifidobacterium lactis yarolyze N/A . garcing [114]
months commercial severity of atopic
Bb-12 .\
formula dermatitis
Exzfrr(ljlvzjé’ Earlier acquisition of
CMA <lyear 260  Lactobacillus rhamnosus GG yarofyze N/A tolerance in [103]
commercial .
supplemented children
formula
Extensivel Bifidobacterium lactis
312 Bifidobacterium lactis BB-12 hvdrol VzeZl’ BB-12 (1 x 10° CFU) Reduced clinical
CMA 60 and Streptococcus yarotyze and Streptococcus symptoms with [115]
months . commercial . .
thermophilus TH-4 formula thermophilus TH-4 supplementation
(1x 108 CFU)
Higher decrease of
Extensively calprotectin and
) 7 8 ;
CMA 0-12 26 Lactobacillus rhamnosus GG hydrolyze.:d 2.50 x 107 to 5% 10 reduction of .feFal [116]
months commercial CFU/g hematochezia in
formula supplemented
participants
Lactobacillus casei CRL431 . 1x 107 colony- No difference was
: . Extensively . . .
<6 (Lactobacillus paracasei forming units/g observed in the age of
CMA 111 . ! hydrolyzed L [104]
months subspecies paracasei) and formula formula for each of the  acquisition of allergen

Bifidobacterium lactis Bb-12

probiotic bacteria used tolerance

prevention in susceptible infants [94] and in pregnant
women to prevent infant allergy [95].

Milk formula supplementation with prebiotics has been
evaluated from birth in children with high risk of atopy,
where the appearance of symptoms such as atopic dermatitis
and infectious episodes were evaluated in a prospective
cohort, where infants were supplemented fewer infectious
episodes and cumulative incidence of atopic dermatitis [96].

In addition, in infants with a low risk of atopy in follow-
up up to 12 months, supplementation with GOS/FOS
resulted in a lower incidence of atopic dermatitis compared
to infants without prebiotics and a tendency for the clinical
presentation to be less severe [97].

Using other prebiotics, children with atopic dermatitis
were supplemented using Kestosa, a FOS capable of stimu-
lating the activity of Bifidobacteria, and observed a decrease
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in clinical symptoms [98], and a clinical trial used a mixture
of polydextrose (a prebiotic present in breast milk) and GOS
in infants at high risk of atopy; however, no differences were
observed in the development of atopic dermatitis between
the groups at 2 years of age [99]. Although reviews have
been published on the effect of prebiotics on the develop-
ment of immunological diseases in infants, so far, no inter-
ventions have been carried out where the use of prebiotics
is considered a scientifically proven treatment for food
allergy [94, 100].

5.2. Probiotics. Probiotics are defined as living microorgan-
isms that, in suitable doses, provide benefits for their host
[101]. Unlike prebiotics, the use of probiotics in research
has been more extensive, and the most commonly studied
strain is Lactobacillus GG (LGG), a component of dairy for-
mulas for the pediatric population. Although research has
evaluated changes in the gut microbiota profile in infants
after probiotic use, not all have followed up to assess changes
in clinical symptoms [102].

A prospective clinical trial in 329 children with cow’s
milk allergy (CMA) evaluated the acquisition of tolerance
in children with ingestion of a formula extensively hydro-
lyzed with LGG probiotics, and 80% of the children treated
with this formula had acquired tolerance at 12 months, with
significant differences at 12 months as compared to the other
types of formula without probiotics [103].

However, opposite results have been observed for some
studies, in which no acquisition of early immune tolerance
has been observed [104]. A systematic review that sought
to evaluate the efficacy of probiotic supplementation in
CMA in children under 5 years of age observed a higher pro-
portion of children who reached tolerance after 36 months
with a RR 1.47, with no significant difference at 6 and 12
months [105].

In addition, the effect on tolerance of oral immunother-
apy (ITO) in coadministration with probiotics has been
studied in children with peanut allergy, where a sustained
lack of response was observed in 82% of children operated
after 2-5 weeks; however, this study does not evaluate
whether the effect is maintained when probiotics are with-
drawn [106]. For that purpose, a protocol for a randomized
controlled trial in phase 2 was recently published to inter-
vene with OTI and probiotics in children with peanut allergy
and to be able to evaluate the contribution that probiotics
have in this therapy [107].

Other studies have shown similar results in modifying
intestinal microbiota profiles; however, they differ in the
probiotics used and the dosage, and some are performed in
a small number of patients (Table 1). Due to these limita-
tions, it is not yet possible to make clinical recommendations
regarding the use and effectiveness of probiotics as a treat-
ment for food allergy.

6. Concluding Remarks

Human research on the use of prebiotics or probiotics to
modify the intestinal microbiota and therefore induce FA
tolerance is limited for probiotics or absent in the case of

prebiotics and with a low number of participants. The latter
does not allow making clinically applicable recommenda-
tions. Although there is a trend leaning towards research
on LGG 74-77, other populations should be identified that
may significantly impact the microbiota and have a more
clinically evident benefit.

The lack of research on exclusively breastfed children
under 6 months is striking, while the main recommenda-
tion is of this being a protective factor and an immune
mediator [108], in addition to providing FOS/GOS as a
part of its nutritional composition [109]. Although the
studies carried out have not evidenced adverse effects or
tolerance to supplementation, more robust evidence is
needed to support the use of prebiotics and probiotics as
a general recommendation.

7. Conclusion

The impact of the intestinal microbiota on the development
of FA is well known. However, the mechanisms involved are
not yet clear. The modification of intestinal microbiota has
shown promise in animal models regarding both immuno-
logical and clinical parameters. However, human research
is still scarce and should be carried out with a more signifi-
cant number of participants. Probiotics and prebiotics are
proposed as innovative, safe, and economical therapy once
the most effective agents and their appropriate doses are pre-
cisely identified.
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