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ABSTRACT

This thesis describes the development and implementation of a medium term power

portfolio optimization model for a power producer, considering generation and commer-

cial aspects. The methodology developed consists of three steps: 1) the modeling of the

multivariate stochastic evolution of locational electricity prices, 2) the construction of a

scenario tree that represents the locational electricity prices model, and 3) the formulation

of a stochastic optimization model that incorporates the above mentioned scenario tree.

With this methodology a power producer holding thermal generating units in more than

one location in a deregulated electricity market may maximize expected benefits in the

medium term while keeping a limited risk exposure. Central to the model is the possibility

of trading electricity forward contracts and contracts for difference in different locations.

The model also recommends amounts of electricity transactions in locational spot markets

and power production in generating units. The stochastic programming model developed

has a deterministic linear programming equivalent problem that is solved using available

commercial software. From the results obtained it can be concluded that the correlation be-

tween locational electricity prices in deregulated electricity markets is relevant for power

producers holding generating units in those locations since it affects the relation between

expected profit and risk.

Keywords: conditional value at risk, deregulated electricity markets, electricity price

models, integrated risk management, locational electricity prices, power

portfolio optimization, scenario tree construction methods, stochastic

programming.
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RESUMEN

Esta tesis describe el desarrollo e implementación de un modelo de optimización del

portafolio energético de un productor de electricidad en el mediano plazo, considerando

aspectos de generación y comerciales. La metodologı́a desarrollada consta de tres eta-

pas: 1) la modelación del comportamiento estocástico multivariado de precios locales de

electricidad, 2) la generación de un árbol de escenarios que representa al modelo de pre-

cios locales de electricidad, y 3) la formulación de un modelo de optimización estocástica

que incorpora el árbol de escenarios mencionado. Con esta metodologı́a, un productor

de electricidad que dispone de unidades generadoras térmicas en más de una localidad en

un mercado eléctrico desregulado puede maximizar su beneficio esperado en el mediano

plazo manteniendo una exposición al riesgo limitada. Central al modelo es la posibili-

dad de transar contratos futuros y contratos por diferencia sobre electricidad en distintas

localidades. Adicionalmente, el modelo recomienda cantidades a ser transadas en los mer-

cados spot locales de electricidad y niveles de generación de las unidades generadoras.

El problema de optimización estocástica desarrollado es expresado como un problema de

optimización lineal determinı́stico equivalente que se ha resuelto utilizando software com-

ercial disponible. De los resultados obtenidos se puede concluir que en mercados eléctricos

desregulados la correlación entre los precios de electricidad en distintas localidades es rel-

evante para productores de electricidad que disponen de unidades generadoras en dichas

localidades debido a que afecta la relación entre beneficio esperado y riesgo.

Palabras clave: gestión integrada del riesgo, mercados eléctricos desregulados,

métodos de generación de árboles de escenarios, modelos de pre-

cios de electricidad, optimización de portafolio energético, precios

locales de electricidad, programación estocástica, valor condicional

en riesgo.
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I. INTRODUCTION

The electric industry is extremely relevant in today’s world. In 2003 the financial vol-

ume of the world’s physical consumption of electricity was more than 1,000,000 [million

US$], equivalent to approximately 2 percent of the world’s gross domestic product in that

year. In 2007 the world generated 18.8 million GWh of electricity, and the US Energy In-

formation Administration has estimated that the world electricity generation will increase

by 87 percent from 2007 to 2035.

Many crucial industrial and home activities depend on electricity. This makes electric

systems fundamental drivers of the economy. Based on the nature of the activities, electric

power systems can be decomposed into generation, transmission and distribution systems.

Generation consists of the process of transforming some type of energy into electrical en-

ergy; the transmission system provides the medium for transportation of electricity; and the

distribution system is in charge of providing power from the transmission system to final

customers (including protection and control equipment) at an adequate voltage level.

With respect to the wholesale trading of electricity, in contrast to other commodity

markets electricity markets are characterized by the non-storability of electricity (in prac-

tical terms), which implies that an exact matching of supply and demand must occur at all

times. This leads to high volatility of electricity spot prices. Another particular property of

electricity markets derives from the necessity of the transmission network, which prevents

the development of a global market and frequently gives rise to locational characteristics.

Electricity markets can be divided into regulated and deregulated markets. In regu-

lated electricity markets energy generation of available units is scheduled in advance by a

central planner, generally according to the minimization of the total operation cost subject

to several technical and security constraints. In contrast, in deregulated electricity markets

(or competitive electricity markets) energy production of generating units is determined

through an auction process that involves supply bids by generators and demand bids by

consumers, matching, as a result, supply and demand. Bidding involves submitting supply
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and demand bids to the power exchange a day ahead of physical trading (or less in the intra-

day markets). This means that generating companies submit information about electricity

amounts they are willing to produce in a certain range of time (for instance a certain hour)

for a minimum payment. Market clearing prices are determined by the balance between

supply and demand.

Particular aspects of deregulated electricity markets vary from market to market, but

according to Burger et al. (2007) in general they can be decomposed into:

• Forward and futures market. This is the market where electricity products to

be delivered later than in the next day are traded.

• Day ahead market. In this market, electricity products to be delivered in the

next day are traded. These are the most common spot products and can be traded

through power exchanges (pools) or through bilateral contracts (particular agree-

ments).

• Intra-day market. Intra-day electricity products are delivered on the same day

and can also be traded through power exchanges or bilateral contracts.

• Balancing (or real-time) and reserve market. These markets serve the purpose

of balancing imbalances between supply and demand in real time.

Since the transmission of electricity is affected by power losses and, possibly, con-

gestion, electricity supply and demand conditions may be highly local. This means that

electricity prices depend on the location in which electricity is delivered and hence “spatial

risk” (related to unknown differences between locational electricity prices) is a relevant risk

for power producers holding generating units in more than one electricity price location.

Slight differences exist between markets that use locational electricity pricing methods.

However, in general terms the locational marginal price (LMP) of a particular node (or

location, or zone) is calculated, under locational marginal pricing, as a marginal price for

energy plus a marginal price for losses plus a marginal price for congestion. Decomposing

locational prices into these components has several advantages. One of the most impor-

tant is that the price of energy at a particular location gives a correct signal to investors
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in generation and transmission assets. For instance, if the price at a location is consis-

tently high, there may be several factors interacting such as lack of supply, congestion that

prevents bringing power from other locations, and power losses. This may drive the at-

tention of investors and after investing in increasing capacity, these conditions would be

improved and electricity consumers may benefit from lower electricity prices. Deregulated

electricity markets that use locational marginal pricing systems differ in their mechanisms.

For instance, the Nord Pool presents 6 different regions that differ in price only when

congestion occurs, but when congestion is not present the 6 regions have identic prices.

Another example is the New York system, where 11 zones exist with prices that are cor-

related but different. More information about locational marginal pricing can be found in

Shahidehpour et al. (2002), and the web sites of the New York Independent System Opera-

tor (http://www.nyiso.com/public/index.jsp, last visit 10 July 2010) and of

the New England Independent System Operator (http://www.iso-ne.com, last visit

10 July 2010).

In addition to “spatial risk”, power producers in deregulated electricity markets are

exposed to multiple risks associated with uncertain factors such as electricity spot prices,

fuel prices, water inflows and the failure of generating units. In order for some of these

risks to be managed many standardized energy derivatives are usually available. An energy

derivative is a contract that is derived from an underlying energy related commodity. Ac-

cording to Eydeland & Wolyniec (2003) the most frequently used risk management tools

are futures contracts, forward contracts, swaps, and options, which are typical derivatives

in financial markets, but that assume particular properties in electricity markets. Forward

contracts are agreements to buy or sell a commodity at a future time, with a price to be

paid at delivery specified at the moment of signing the contract. For example, a forward

contract on electricity may state that a certain power producer must provide another com-

pany with constant 50 [MW] power on the peak hours (for instance 6.00-22.00) of all the

weekdays of November 2011 and that the payment per unit of energy delivered will be 40.1

[US$/MWh]. Such a contract would alleviate the risk of low electricity prices: if the power

producer decided to try to sell that electricity through the spot market, then it would risk low
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spot price cases. Other relevant electricity derivatives are contracts for difference, which

are equivalent to electricity forward contracts on a locational price spread (or equivalently

on the price difference between two locations over a specified period).

For a power producer, deciding which contracts to sign is a complex decision making

problem that involves significant uncertainty. The fundamental problem is to balance risk

and profit appropriately. Accordingly, the development of risk management tools that can

effectively support this decision making process is essential for power producers.

The motivation for this thesis comes from the fact that medium term risk generated

by the stochastic fluctuations of locational electricity prices in deregulated electricity mar-

kets is highly relevant for power producers owning electricity generators in more than one

location of the same market. This thesis deals with the the management of such risk by de-

veloping a methodology for recommending contractual positions that maximize expected

profit while appropriately balancing risk exposure. The effects of the correlation between

different locational electricity prices is of particular interest since it is expected to affect

the relation between expected profit and risk.

This thesis describes the development, implementation and test of a medium term

power portfolio stochastic optimization problem (using techniques from stochastic pro-

gramming). Using the methodology presented, a power producer holding generating units

in more than one location within a deregulated electricity market, can effectively maximize

its expected profit while appropriately balancing risk exposure. The model is able to rec-

ommend contractual positions to be entered in, and its most relevant contribution is the

consideration of more than one locational electricity spot price process through an approx-

imating multivariate scenario tree that accounts for the correlation between these processes

and is generated solving a nonlinear programming problem. The model is centered in the

possibility of entering into electricity forwards and contracts for difference through the

development of a stochastic programming problem with recourse from which the deter-

ministic equivalent corresponds to a linear programming problem solved using commercial

software (CPLEX). From the results obtained it can be concluded that locational electricity
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price aspects are relevant for power producers holding generating units in more than one

location of a deregulated electricity market. Detailed results for a case study may be seen

in chapter 6 and the conclusions obtained may be seen in chapter 7.

As stated above, the methodology used in this work includes stochastic programming

techniques. Stochastic programming deals with optimization problems where part of the

data and/or parameters are uncertain. According to Ruszczyński & Shapiro (2003), in many

decision making problems, ignoring uncertainty may lead to inferior or wrong decisions.

Hence, stochastic programming models are particularly important in areas where uncer-

tainty is highly relevant such as finance, energy, transportation and logistics, production

and inventory management, water resources management, and telecommunications. Sto-

chastic programming methodologies allow to incorporate into the decision making process

information about probability distributions of events of interest. An adequate modeling of

uncertainty together with appropriate objectives and constraints are fundamental aspects

for a successful application of stochastic programming to actual problems.

Many stochastic programming problems are two stage decision making models, where

a decision must be made now and, after some uncertain event is revealed, another decision

must be made. Extending this idea to a multistage setting we have multistage stochastic

programming models, in which decision variables and constraints are divided into sets cor-

responding to stages t = 0, ..., T . If ξt represents the information that becomes known in

stage t, and xt represents the decisions to be taken in stage t, then we have the following se-

quence of actions: decision x0 (with initial information ξ0), observation of ξ1, decision x1,

observation of ξ2, decision x2, etc. The objective is to design the decision process in such a

way that, for instance, an expected total cost is minimized. An important condition in this

multistage process is that every vector of decisions xt may depend only on the information

available at time t (on (ξ0, ξ1, ..., ξt)), but not on future information (which gives rise to

“nonanticipativity constraints”). In order to represent the information process {ξ0, ξ1, ...},

a scenario tree may be used, in which case the stochastic program has an equivalent deter-

ministic problem that may be solved using standard optimization techniques.
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The main objective of this work is to model and solve a risk averse power portfolio op-

timization problem that incorporates the stochastic behavior of locational electricity prices.

In order to do this, the following specific objectives have been considered:

1. To jointly model the stochastic evolution through time of locational electricity

prices.

2. To develop a methodology for generating computationally tractable scenario trees

that approximate the locational electricity prices model.

3. To develop an appropriate optimization model (incorporating a scenario tree) and

to solve it for different risk aversion levels of the power producer.

The remainder of this document is organized as follows. Chapter 2 contains a literature

review of different methodologies that have been (could be) used by generating companies

in deregulated electricity markets for managing generation and contractual aspects. Chap-

ter 3 presents various electricity price models. Chapter 4 describes scenario tree construc-

tion methods, and describes its application to the specific context of this work. Chapter 5

presents the optimization model developed. Chapter 6 summarizes the data, implementa-

tion and results for a particular application of the optimization model, using an electricity

prices model presented in chapter 3 and a scenario tree construction method developed in

chapter 4. Chapter 7 draws some conclusions and presents future work perspectives.
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II. LITERATURE REVIEW

This chapter will begin presenting articles related to electricity generation scheduling,

then it will present articles concerned with contractual aspects, and finally it will present ar-

ticles that deal with the coordination of generation scheduling and contractual involvement

for generating companies in deregulated electricity markets.

An adequate scheduling of the operation of generating units is highly important for

generating companies in deregulated electricity markets. In this context, the unit com-

mitment problem consists of determining an hourly schedule of power generating units

and the generating level of each unit in order to minimize the system operation cost while

satisfying electricity demand, over a time horizon of typically 24 hours. This problem in-

volves operation constraints of generating units, an electricity demand constraint (balance

between supply and demand), and it may involve a nonlinear cost function of electricity

generation. The cost function and operation constraints depend on the type of generating

units. For thermal generating units the generation cost functions are generally assumed to

be quadratic (for instance Shiina & Birge (2004)) and may also incorporate start up and

shut down costs. Operation constraints (may) include power output limits, minimum up

time and minimum down time constraints, and ramp-up and ramp-down limits (maximum

output difference allowed for a unit in subsequent hours).

Carpentier et al. (1996) deal with the unit commitment problem for 50 thermal gen-

erating units in a time horizon of one day with hourly time periods. Electricity demand

and unit failures are assumed to be stochastic variables represented using a scenario tree.

Operational aspects considered include minimum off times and start-up costs of generating

units. The problem is solved using a price decomposition method in which at each itera-

tion a stochastic dynamic subproblem has to be solved for each unit. Simulation is used to

demonstrate the benefits of this approach compared to a classical deterministic alternative.

Takriti et al. (1996) deal with a very similar unit commitment problem, but in a hy-

drothermal context. Hourly time periods are used over a time horizon of one day. Elec-

tricity demand and unit failures are assumed to be stochastic variables represented using
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a scenario tree. Operation details include minimum on and off times and a quadratic cost

function of generating units. The problem is solved using Lagrangian Relaxation by re-

laxing nonanticipativity constraints typical of stochastic programming problems, and then

relaxing electricity demand satisfaction constraints, in order to obtain a sub problem for

every generating unit that is solved using dynamic programming.

Shiina & Birge (2004) deal with the unit commitment problem in a thermal context.

A time horizon of one day with hourly time periods is considered. Electricity demand is

assumed to be stochastic, represented through a scenario tree. Operational details include

minimum up and down times, start up costs and a quadratic cost function. The resulting

mixed integer quadratic programming problem is solved using a Dantzig-Wolfe decompo-

sition scheme. A test case with 20 units and 8 scenarios is presented.

An important extension of the unit commitment problem is what has been called price

based unit commitment (for instance by Shahidehpour et al. (2002) and Denton et al.

(2003)), which consists of finding an operation schedule that maximizes the revenues from

energy selling for a given set of generating units, taking into account electricity spot prices.

This is a highly complex decision making problem due to the economical and technical

constraints of generating units, outlined above, and due to the uncertainty present in elec-

tricity markets. An important uncertain component related to the classical unit commitment

problem is electricity demand, but the most important uncertain component related to the

price based unit commitment problem is precisely the electricity spot price process.

Arroyo & Conejo (2000) present a detailed formulation of a thermal unit scheduling

problem that considers a spot market in which energy and spinning reserve may be sold. A

time horizon of one day with hourly time periods is considered. The approach is completely

deterministic, but the main contribution of this work is to develop a highly rigorous mod-

eling of the operational aspects of the generating unit. The resulting problem is a mixed

integer linear programming problem solved using commercial software.

Ni & Luh (2000) deal with the price based unit commitment problem in a hydrother-

mal context. Hourly time periods are used over a time horizon of one day. Electricity
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spot and reserve spinning prices are modeled using a Markov chain. The model incorpo-

rates operational details and constraints over spot market transactions and reserve market

transactions. A component that enhances the selling of electricity when its price variance

is higher is considered in the objective function since according to the authors generating

companies prefer to sell more electricity when its price variance is high in order to benefit

from eventual spikes. The problem is solved using Lagrangian Relaxation, by relaxing the

spot and reserve markets transactions constraints in order to obtain one subproblem for each

generating unit. A test case consistent of 10 thermal generating units and a pumped-storage

system with 4 generating units is presented.

Takriti et al. (2000) deal with the price based unit commitment problem in a thermal

context, considering different fuels. A time horizon of one week separated into hourly time

periods is used. Electricity price and demand are assumed to be stochastic, represented

through a scenario tree. Operational constraints include minimum up and down times. The

main contribution is considering detailed fuel constraints by taking into account several

fuels with different prices, heat rates, and supplies. The problem is solved with Lagrangian

Relaxation by decomposing it into a first stage unit commitment problem and a second

stage fuel allocation linear program. A test case consistent of 33 thermal units is presented.

Shrestha et al. (2004) deal with the price based unit commitment problem in a thermal

context. A time horizon of one day with hourly time periods is used. Electricity price

is assumed to be stochastic, following a Markov chain with three possible values at each

time period. Operational constraints include minimum up and down times. The problem

is solved with Lagrangian Relaxation by relaxing demand constraints and separating the

problem into one subproblem for each generating unit. A test case is presented consistent of

11 generating units. The results show that the technique is particularly effective when price

uncertainty is high, in contrast with using a deterministic technique, and that participating

in an hour-ahead power market may enhance benefits significantly.

Conejo et al. (2004) present a mean-variance scheduling model for one thermal gener-

ating unit. A one day time horizon with hourly time periods is used. The objective function
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consists of expected profit plus profit variance multiplied by a risk aversion factor. The cor-

relation matrix of the different hourly electricity prices is used in order to determine profit

variance. Operational details include a quadratic cost function, minimum up and down

times, and ramp up and down limits. The resulting mixed integer quadratic programming

problem is solved using commercial software.

Fleten & Kristoffersen (2007) develop a model for optimizing the day-ahead bidding

strategies of a hydropower producer. A time horizon of one day with hourly time periods

is considered. Electricity price is assumed to be stochastic, represented through a scenario

tree. The problem is formulated as a mixed-integer linear program. A case study con-

sistent of a generation plant with two reservoirs is analyzed. The authors conclude that

the stochastic approach presented is more robust with respect to changes in the data than

deterministic approaches that only consider the expected value of electricity price.

An issue that has very important implications with respect to the generation planning

of a generating company is the management of contracts for the purpose of balancing risk

exposure and expected profit. Generating companies in deregulated electricity markets are

exposed to multiple risks related to the different aspects of the generation industry, such as

the procurement of fuel, water inflows, low electricity prices, high fuel prices, and forced

unit outages. In order for some of these risks to be managed many standardized energy

derivatives are usually available. An energy derivative is a contract that is derived from an

underlying energy related commodity. According to Eydeland & Wolyniec (2003) the most

frequently used risk management tools are futures contracts, forward contracts, swaps and

options.

Forward contracts are agreements to buy or sell a commodity at a future time, with a

price to be paid at delivery specified at the moment of signing the contracts. Kaye et al.

(1990), Tanlapco et al. (2002), Byström (2003) and Niu et al. (2005) show how important

forward and futures contracts are in electricity markets. Kaye et al. (1990) demonstrate us-

ing simulation that forward contracts offer participants an opportunity to reduce their risk
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exposure. Tanlapco et al. (2002) argument the hedging superiority of using futures con-

tracts on electricity over futures contracts on other related commodities such as crude oil,

for generating companies in a particular deregulated electricity market. Byström (2003)

show how electricity futures can be used for short term hedging in the Nordic Power Ex-

change. Niu et al. (2005) provide a model used to analyze the effect of different forward

contract levels of generating companies on real-time market prices.

Besides forwards and futures contracts many other contracts that can serve the purpose

of risk management are generally available for generating companies in deregulated elec-

tricity markets. Marckhoff & Wimschulte (2009) present an introduction to contracts for

difference, which are electricity forward contracts on a locational price spread, or equiva-

lently, on the price difference between two zones over a specified time period. Carmona &

Durrleman (2003) deal with spread options and remark the importance they have in energy

markets. Spread options are generalizations of the typical call and put options and also

depend on more than one underlying asset. For instance, a spread option may be an option

written on the difference between electricity spot price and natural gas spot price.

Liu & Wu (2006, 2007) face the problem of energy allocation between spot markets

and bilateral contracts for a generating company, by formulating and solving a portfo-

lio optimization problem that consists of maximizing an utility function dependent on the

expected value and the variance of the portfolio return (mean-variance approach). The

problem results in a quadratic programming problem. These papers focus on selecting the

appropriate portfolio of the involvement in different risky locational spot markets, and var-

ious bilateral contracts, taking into account the generating capacity of the company using a

quadratic cost curve and the correlation between the returns of these trading alternatives.

Vehviläinen & Keppo (2005) present a general framework for selecting power portfo-

lios composed of electricity derivatives. The problem formulated consists of optimizing

an utility function of the total wealth at the end of certain time horizon, where this wealth

function depends on the values of the electricity prices and the instruments considered, and
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the proportions held of each. The problem is solved by first approximating the utility func-

tion with a Taylor series around the initial portfolio, obtaining a quadratic programming

problem estimated using simulation. Weekly time periods are used, and a time horizon of

one year is considered.

Börger et al. (2007) deal with joint asset return distributions in energy markets and ana-

lyze how the class of multivariate generalized hyperbolic distributions perform in adjusting

the joint return distributions of electricity, oil, natural gas, coal and CO2 allowances. The

importance of this work relies on the accurate representation of the dependence structure

of the returns of these different commodities.

So far this chapter has presented references on generation planning and references on

contract management in a relatively independent manner, but the main concern of this thesis

is precisely the relation between these two problems for a generating company. According

to Fleten et al. (1997) the physical resources of a generation company must be coordinated

in concert with its financial resources in order to mitigate risk factors, and according to

Cabero et al. (2005) in addition to financial instruments specifically designed to manage

risk, production resources can be used for risk management to a certain extent. Some

authors have named this combined perspective as power portfolio optimization (for instance

Sen et al. (2006), Xu et al. (2006)) and others as integrated risk management (for instance

Mo et al. (2001), Cabero et al. (2005)), depending on the particular emphasis. Cabero

et al. (2010) categorize the different approaches for incorporating the risk management

perspective to the operation planning process of a generation company in the following

criteria:

• The planning horizon.

• The detail of generation aspects (operational constraints, aggregation of reser-

voirs, etc.).

• The richness of the electricity market model.

• The sources of uncertainty/risk.

• The risk measure used.
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• The risk management decisions considered.

• The technique used to obtain numerical results.

In particular, according to Xu et al. (2006) the different studies on medium term power

portfolio optimization and risk management can be categorized into the following ap-

proaches:

• Portfolio evaluation based on existing financial models.

• Markowitz mean-variance based methods.

• Multistage stochastic programming models.

Denton et al. (2003) present an overview of the market risks faced by generating com-

panies in deregulated electricity markets, and categorize them as i) short term (less than one

month), centered in operational risks; ii) medium term (one month to one year), centered

in trading risks; and iii) long term (more than one year), centered in asset valuation risks.

One of the contributions of their work is to develop a real options model for the valuation

of a thermal generator. This method roughly consists of maximizing the net profit from op-

erating the energy asset over a specified operating period, given a set of price scenarios for

fuel and electricity, and considering the physical constraints on the operation of the asset,

They use a variant of the price based unit commitment problem to obtain the value of the

asset over its operating period.

Blaesig & Haubrich (2005) present an overview of different risks related to generation

planning and contracts in deregulated electricity markets, focusing on the importance of

developing an integrated risk management process in which risks are considered simulta-

neously with generation and trading planning instead of separating generation and trading

planning from the management of risks.

Fleten et al. (1997) develop one of the first stochastic programming models for the

coordination of physical generation resources with contracts of financial nature. This

power portfolio optimization model is developed for a medium term hydropower gener-

ation scheduling problem in which forward contracts on electricity can be traded and must

be coordinated with generation. One reservoir is considered and the stochastic variables
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modeled are electricity prices, prices on forward contracts and water inflow to reservoirs,

represented in a scenario tree with four time periods of varying length and four outcomes

per time period, over a time horizon of 85 weeks. Risk is accounted for by penalizing low

financial performance in every time period. More recent publications present extensions of

this work (Fleten & Wallace (1998) and Fleten et al. (2002)), with results presented for a

case having 7 hydro plants with 11 reservoirs.

Mo et al. (2001) present a model similar to the model in Fleten et al. (1997), where hy-

dropower generation scheduling has to be coordinated with future contracts on electricity.

Water inflows and electricity prices are assumed to be random variables represented over

a time horizon of two years, with weekly time periods for decisions but three long periods

for water inflows. The resulting large stochastic dynamic optimization problem is solved

using a combination of stochastic dynamic programming and stochastic dual dynamic pro-

gramming. Kristiansen (2004) presents an application of this model to Norway’s second

largest generation company by the year 2004.

Yu (2003) presents a mean-variance approach to power portfolio optimization, con-

sidering thermal generating units and forward contracts, with the objective of minimizing

the variance of profit subject to a lower bound on expected profit. A time horizon of one

day or one week may be considered, separated into hourly time periods. Operation details

of generating units are considered. The main contribution is to incorporate geographically

separated markets into the analysis, focusing on the transactions of electricity products with

these different markets. The resulting problem is a mixed integer programming problem

solved using heuristics for a test case involving 2 generating units.

Paravan et al. (2004) develop a model similar to the one presented by Fleten et al.

(1997), but the main contribution lies in the incorporation of thermal generating units,

highlighting the need for the consideration of their technical constraints, and in providing

a general scheme of the power portfolio of a hydrothermal generation company. Water

inflows and electricity prices are assumed to be random, and the importance of their corre-

lation is stressed. Risk is accounted for by using the conditional value at risk measure and
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the contracts considered are forwards and futures on electricity. The model is solved using

Lagrangian Relaxation but only results for a very small test case are presented.

Shrestha et al. (2005) also present a similar model to the one presented by Fleten

et al. (1997), where hydropower generation and forward contracts are considered. Six time

periods are used within a time horizon of one year. Water inflows and electricity prices

are assumed to be completely uncorrelated variables, represented in a scenario tree with 3

outcomes in every time period. Two different objective functions are considered: first, in

one case, the maximization of revenue in a risk neutral setting is solved as a linear program;

then, the minimization of revenue variance is solved as a nonlinear program. A case study

is presented considering only one power plant.

Cabero et al. (2005) present an integrated risk management model for a hydrothermal

generation company in a time horizon of one year with monthly time periods. The main

contribution of this work is to consider fuel price, electricity demand, water inflows, and

electricity price as stochastic variables, obtaining electricity price and the company gener-

ation on every scenario by combining the other three stochastic factors through the use of a

market equilibrium model. Positions on electricity forward contracts are the main recom-

mendation of the model and risk exposure is considered by imposing a limit on conditional

value at risk. According to the authors the main drawbacks of this work are that a) the in-

teraction between the electricity forward market and the electricity spot market is not taken

into account (since generation decisions are obtained from the market equilibrium model),

and b) the equilibrium scenarios are obtained assuming perfect future information of the

generation companies instead of using a nonanticipativity approach. Another drawback is

that the scenario tree that represents the stochastic variables lacks accuracy due to the high

number of stochastic variables considered.

Xu et al. (2006) deal with a power portfolio optimization problem that considers ther-

mal, pumped storage and hydro units on the generation side, and forwards and options on

electricity on the contracts side. Electricity spot prices are assumed to be stochastic, and

time periods of 16 and 8 hours are considered over a time horizon of a month to a year. Risk
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aversion is incorporated by penalizing semi-variances of spot market transactions in the ob-

jective function. The problem is solved by a Lagrangian Relaxation method, relaxing the

load obligation constraints for decoupling the problem into financial market subproblems

and generation unit subproblems. Some drawbacks of this model are a) load obligation

constraints are considered in an expected form only and in order to obtain feasibility for

each simulated trajectory, heuristics must be used, and b) electricity prices are assumed to

be independent across time periods. Results for an example incorporating 3 thermal units,

1 pumped storage unit and 1 hydro unit with fixed scheduling are presented over a one year

horizon.

Sen et al. (2006) face a power portfolio optimization problem for thermal generating

companies that incorporates the possibility of signing forward contracts on electricity and

natural gas. Electricity demand and electricity spot prices are assumed to be stochastic, and

natural gas forward prices are assumed to be perfectly correlated with electricity forward

prices. In the model formulation, forward and spot market transactions are decided over

monthly time periods, with generation decisions for every month and scenario, having time

periods of 16 and 8 hours. A time horizon of one year is assumed and risk exposure is

considered in two different ways: a) from month to month by limiting the extent to which

the portfolio is allowed to change, and b) from day to day by setting a limit on the daily

loss within the generation side of the model. The resulting problem is a mixed integer

linear program solved using a nested column generation method by decomposing it into a

financial problem (the one with monthly time periods) and several generation subproblems

(the ones with shorter time periods). A test case is presented with about 50 generating

plants, aggregating them into groups based on fuel type.

Conejo et al. (2008) develop a power portfolio optimization model for a thermal gen-

erating company with focus on electricity futures decisions. Electricity spot prices are

considered as stochastic variables over a one year time horizon with 72 time periods com-

posed of 6 blocks of hours for each month, where each block consists of a particular set of

hours of every week (for instance one block may consist of Monday peak prices). Technical

aspects of generating units are only considered in a simplified way, by setting restrictions

16



for every generator on the amount of electricity produced in peak hours (high price hours)

with respect to the electricity produced in off-peak hours (low price hours). Conditional

value at risk is penalized in the objective function in order to account for risk aversion. The

problem is solved for a case study incorporating 6 generating units.

Pineda et al. (2008) present an analysis of the impact of forced outages of generating

units over forward contracting decisions, in a thermal context. A three month time horizon

is considered with time periods of approximately a week. One of the main contributions

of this work is to combine stochastic electricity prices with stochastic forced unit outages,

both represented within a scenario tree. Operational details of generating units are not

considered due to the medium term time horizon. Conditional value at risk is penalized

in the objective function in order to account for risk aversion. A case study of one unit

is presented. The authors conclude that high forced outage rates imply the convenience

of high levels of forward contracting in order to hedge the risk of buying electricity when

generating units are forced out.

Garcés & Conejo (2010) develop a model for the scheduling of thermal generating

units and forward contracts involvement. The time horizon considered is one week with 42

time periods of varying lengths. Electricity price is assumed to be stochastic, represented

through a scenario tree. Operation details of generating units are considered. Conditional

value at risk is penalized in the objective function in order to account for risk aversion.

A test case with 7 generating units is presented. The main contribution of this work is to

effectively provide a framework for coordinating short term forward contracting decisions

with detailed operational aspects of thermal generating units.

Cabero et al. (2010) present an extension to the model presented by Cabero et al.

(2005) to the case of a hydrothermal generation company in an oligopolistic electricity

market, taking the generation company as a price maker (instead of a price taker), with the

consideration of generation decisions and forward involvement on electricity and fuels. In

this model the generation and contract decisions of every generating company are obtained

by formulating an optimization problem and using a Benders decomposition approach for
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solving it. In particular, the decisions of the generation company of interest may be ob-

tained. In the case study presented, the model has been solved for an instance equivalent to

the size of the Spanish wholesale electricity market, over a time horizon of one year with

monthly time periods.

The model developed in this thesis is relatively similar to the ones developed by Conejo

et al. (2008), Sen et al. (2006), Xu et al. (2006) and Cabero et al. (2005), but in contrast

to their work, the main contribution of this work is to consider a generating company that

holds generators in more than one location of a deregulated electricity market, with each

location having a particular locational electricity price process. Using the methodology

presented in this thesis, a power producer holding generating units in more than one loca-

tion of a deregulated electricity market can be supported in the decision making process of

entering into appropriate contractual levels, in order to effectively maximize its expected

revenues while appropriately balancing risk exposure.

Yu (2003) and Liu & Wu (2006, 2007) also consider more than one location in their

models, but the model presented in this thesis is substantially different from theirs. This

thesis presents a multistage stochastic programming approach to power portfolio optimiza-

tion, where decisions are taken subsequently depending on the evolution of stochastic fac-

tors, whereas in their models only statistical properties (mean, variance, correlations) of

stochastic variables are considered instead of considering the dynamic behavior of stochas-

tic components. Furthermore, the model developed in this thesis uses the conditional value

at risk of profit for risk assessment whereas in their models only profit variance is used for

risk assessment.

The next chapter will present an essential topic for generation planning and the man-

agement of contracts in deregulated electricity markets: electricity price models.
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III. ELECTRICITY PRICE MODELS

In deregulated electricity markets energy is traded both on power exchanges (or power

pools) and through bilateral contracts. In a power exchange, buyers and sellers take part

in an auction by submitting their bids in terms of prices and quantities of energy for ev-

ery time period of the next operating day (or other time horizon) and the spot prices for

every time period are derived from the intersection between the aggregated supply and de-

mand curves. Market mechanisms like these (among others), the physical characteristics

of electricity, and the patterns and periodicities that characterize demand contribute to the

particular features present in electricity prices.

Electricity is a commodity with very limited storability, which restrict greatly the arbi-

trage possibilities on electricity and thus spot prices are highly dependent on temporal and

local supply and demand conditions (Lucia & Schwartz (2000)). On one hand, the non-

storability of electricity makes its price strongly dependent on its determinants in every

precise moment. And on the other hand, transportation constraints for electricity consist of

capacity limits and transportation losses over large distances, which lead to high relevance

of the particular local supply and demand conditions. Besides, demand of electricity is

weather and business cycle dependent, and completely price inelastic in the short term. All

these aspects contribute to making the operation of power systems a complicated task that

requires a constant balance between production and consumption.

According to Karakatsani & Bunn (2008), price formation in spot electricity markets

is a complex process with substantial modeling challenges, due to a convolution of factors

including: i) instantaneous nature, ii) the shape of the supply function, iii) the exercise

of market power (which results from oligopolistic structures, agent’s asymmetries and in-

elastic demand in the short term), iv) complex market designs due to real-time balancing,

and v) substantial agents learning through daily-repeated auctions but subject to frequent

regulatory interventions and market structure changes.

The main features of electricity prices in deregulated markets, according to Meyer-

Brandis & Tankov (2008), are described next.
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• Multiple seasonality. Multiple seasonalities exist in electricity prices: daily,

weekly and yearly periodicities exist. In addition, there is a “calendar effect”,

for instance, holidays usually have a special behavior.

• Mean reversion. Contrary to stock prices, electricity prices generally tend to

exhibit a stationary behavior (see Meyer-Brandis & Tankov (2008) on Nord Pool

prices). This means that the property of mean reversion is present (at least towards

a trend which may exhibit slow stochastic variations).

• Extreme volatility. The limited storability of electricity generates extreme price

volatility because supply and demand shocks cannot be smoothed by inventories

(Deng (2000)).

• Jumps and spikes. A noticeable property of electricity spot prices is the presence

of spikes, which are rapid upward price moves followed by a quick return to

about the same price level. Spikes can be caused by limited supply (for instance,

by outages), sudden demand increases, etc. Sometimes the series also present

normal jumps (without returning to about the same price level immediately), and

jumps can even be downward.

• Non-Normal distribution of returns. Electricity spot returns are generally non-

Normal (spot return equals spot price difference from one period to the next di-

vided by spot price in the first time period). This is revealed by positive skewness

and kurtosis significantly greater than 3 (Normal distribution kurtosis), and it is

mainly explained by the presence of spikes in the price series (Meyer-Brandis &

Tankov (2008)).

An appropriate modeling of electricity prices is highly important for several activities

such as management (portfolios, investment, risk), trading, and derivative pricing (with

electricity as underlying asset). Other important reasons for modeling electricity prices are

regulatory policy making and competition analysis in electricity markets (for instance, if

market power is applied).

How to know if a particular model is appropriate? Of course it depends on the objec-

tive: if a yearly production plan is to be determined, then the behavior of electricity from
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one hour to the next is not important and it may be more appropriate to consider a price

model of daily averages or even monthly averages (in such a case, simplifications can be

made on the hourly variations, if necessary, for instance, a common alternative is to assume

constant price in certain hour groups of the same time period). Hence, one important ques-

tion is: what features need to be taken into account? In this regard, besides the particular

objective that the model pursues, the history of the price and other relevant data, such as

historical electricity demand or fuels prices, need to be studied carefully so as to understand

what features are relevant for the particular purpose of the model, since it should capture

the features appropriately. This leads to the following question: how to verify that these

features are appropriately captured by a given model? According to Geman (2005) two

aspects are fundamental in commodity price modeling: a) the empirical statistical proper-

ties of the price data (mean, variance, etc.) should be consistent with the model, and b)

the “dynamics” of the price data should be consistent with the model: aspects such as the

similarities of the trajectories and the changes from one time period to another should be

verified. Finally, the model considered should be parsimonious and robust: an adequate

level of model complexity should be considered according to the available data, for in-

stance, if there is very few data a model with many parameters should be hardly trusted

(that would not be a parsimonious model), and the changes in the parameters induced by

changes in the data should be smooth (robust model).

The rest of this chapter contains a review of the main electricity price models found

in the literature for deregulated electricity markets (although the structure of many of these

models may be appropriate, sometimes with slight modifications, for fuel prices and other

commodities with an uncertain evolution over time). Section 3.1 contains a presentation of

the different electricity price modeling approaches, section 3.2 presents a review of specific

electricity price models developed by various authors, and section 3.3 presents extensions

to some of the models presented in 3.2.
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3.1 Modeling approaches

A diffusion is a continuous time stochastic process that corresponds to the solution of

a stochastic differential equation. Diffusion models are used in biology, stochastic control,

physics, finance, and many more areas.

Itô diffusions are the solutions {Xt}t of stochastic differential equations of the form:

dXt = b(t,Xt)dt+ σ(t,Xt)dWt,

where {Wt}t is a standard Brownian motion, the continuous time stochastic process on

which diffusions are generally based. This process has independent increments and for any

s < t, it satisfies that Wt − Ws is Normal with mean 0 and standard deviation
√
t− s.

Because Brownian motion is nowhere differentiable and integrals with respect to Brown-

ian motion differentials are not defined under Riemann or Lebesgue integration theory, the

rules of standard calculus are not applicable with diffusions. Yet, the necessary mathemat-

ics have been developed under the name of stochastic calculus. In particular, an integral

with respect to Brownian motion differences exists (which gives meaning to the expres-

sion “dXt”) and there is an analogue to the Fundamental Theorem of Calculus called Ito’s

Lemma.

One of the most important properties of diffusions is the Markov property. In simple

words it means that all the information relevant for the future behavior of the process is con-

tained in the present state. This property is essential for most of the theoretical properties

of diffusions.

A particular type of diffusions, important for electricity price modeling, are jump-

diffusions. They present sudden jumps in their trajectories, and in order to preserve the

Markovian property these processes must have a continuous time Markov chain as the

determinant of the jump instants. For an introduction to stochastic differential equations

see Oksendal (2005).
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Continuous time processes are obviously appropriate for variables that depend contin-

uously on time, but they can also be used to model discrete time variables by observing

their states at particular instants of interest. The main benefit of using continuous time

processes (when there is no need for continuous time) is making use of their theoretical

properties, but if a continuous time process does not capture the necessary aspects it might

be more appropriate to use a discrete time process.

Regarding discrete time models of electricity prices, the most used time series are the

ARMA (autoregressive moving average) processes. An ARMA(p,q) process {Yt}t is given

by:

Yt − φ1Yt−1 − φ2Yt−2 − ...− φpYt−p = c+ εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q.

In this model, Yt depends linearly on its last p values (autoregressive components), and on

εt and its last q values (moving average components). {εt}t is a “white noise”, with εt being

independent normal random variables with mean 0 and standard deviation σ. In particular,

a discretized mean reverting diffusion with fixed time steps is an ARMA(1, 0) model.

An ARIMA (autoregressive integrated moving average) model for a series {Xt}t cor-

responds to an ARMA model for the transformed series defined by Yt = (1−B)dXt, where

B is the “backshift operator” defined by BXt = Xt−1, which in turn means (1 − B)Xt =

Xt − Xt−1, and (1 − B)2Xt = (1 − B)(1 − B)Xt, etc. An ARIMA model for {Xt}t is

an ARMA model for the series {Xt}t differentiated d times. This model is one alternative

for dealing with trends, since with successive differentiation a stationary behavior may be

obtained.

A SARIMA (seasonal ARIMA) model for a series {Xt}t corresponds to a “special

ARIMA” model:

(1− Φ1(B
s)1 − ...− Φp(B

s)p)(1− φ1B
1 − ...− φpBp)(1−B)d(1−Bs)DXt

= (1 + Θ1(B
s)1 + ...+ Θq(B

s)q)(1 + θ1B
1 + ...+ θqB

q)εt,
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where BsXt = Xt−s. This model corresponds to an ARMA series with many zero-valued

parameters (forced to be zero before estimating their values), and it is specially adequate

for seasonal time series.

Other very important time series model in commodity price modeling is the GARCH

(generalized autoregressive conditional heteroskedasticity) model. For a detailed presenta-

tions of time series models, see Brockwell & Davis (1996) and Hamilton (1994).

A very important category of electricity price models correspond to structural models

(also named equilibrium or fundamental models), in which the price formation in electric-

ity markets is emulated by balancing supply and demand, by assuming a competitive equi-

librium model for the electricity market. According to Vehviläinen & Pyykkönen (2005)

statistical models work better for short time intervals as the static model structure and the

relatively small set of parameters are not able to capture the longer-term dynamic char-

acteristics of spot prices. In contrast, an important advantage of structural models is that

they can adapt to market changes. For example, statistical models will not be useful if a

new power plant that affects the market equilibrium is introduced, but structural models

can predict the new price behavior by considering the effects of the new power plant. Yet,

a disadvantage of structural models is that they typically require a comprehensive data set

that is difficult to collect and maintain. Burger et al. (2007) and Eydeland & Wolyniec

(2003) present a detailed review of the main fundamentals affecting electricity prices in

energy markets (demand, plant outages, fuel prices, water inflow, weather, etc.). Structural

models are based on the interactions between (some of) these factors.

In structural models one obtains a model for the joint behavior of electricity prices and

the factors that contribute to their formation, so they are one particular form of multivariate

models. Multivariate models are very important in risk management when there is more

than one risk factor that evolves in time. For instance, a hydro power generator should

be interested in the behavior of both water inflows and electricity prices. Furthermore,

multivariate models are important for modeling the joint behavior of locational electricity

prices present in deregulated electricity markets.
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3.2 Models reviewed

This section presents several models of the time evolution of electricity prices, devel-

oped by various authors.

3.2.1 Mean reverting diffusion

In Lucia & Schwartz (2000) the following model for the daily average spot electricity

price of the Nord Pool is presented:

logS(t) = f(t) +X(t),

f(t) = a+ bt+ c cos(
2πt

365
) + d sin(

2πt

365
),

dX(t) = −X(t)

λ
dt+ σdW (t).

Where S(t) is the average spot price of electricity on day t (for discrete t), f(t) is a de-

terministic trend function that includes a yearly seasonal component where a, b, c, d are

parameters, and X is an Ornstein-Uhlenbeck stochastic process, that accounts for the sto-

chastic behavior of electricity prices. X is a process based on a Brownian motion W with

volatility σ. X tends to revert to the value 0 with a “rate of mean reversion” given by 1/λ.

This model was fitted using data from Nord Pool and applied to the valuation of for-

ward and futures contracts on electricity. The main contribution of this work is explaining

the sinusoidal shape of the forward and futures curve on electricity.

A bivariate version of this model is presented in 3.3.1, and an N dimensional version

is presented in appendix A, including parameter estimation, statistical properties and how

to simulate trajectories of the process.

An interesting observation is that the model assumes continuous time but observations

only for discrete values of time have the “average spot price” interpretation. One could use

an equivalent discrete model directly, but it is common to use continuous time models so

as to make use of their theoretical properties.
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3.2.2 Mean reverting jump-diffusion

Consider the following extension to the model presented in subsection 3.2.1:

logS(t) = f(t) +X(t),

dX(t) = −X(t)

λ
dt+ σdW (t) + J(t)dq(t).

Where S(t) is the average spot price of electricity on day t, f(t) is a deterministic com-

ponent, and X is a mean reverting jump-diffusion. The jump intensity γ is determined by

the Poisson process q(t) that has independent increments and satisfies: P (dq(t) = 0) =

1−γdt, P (dq(t) = 1) = γdt. This is equivalent to approximating the increments (on dt) of

a Poisson process by a distribution with the outcomes 0 and 1 by matching its mean value,

which is justified by the “order property” that states that P (N(t+dt)−N(t) > 1) = o(dt)

for a Poisson process {N(t)}t≥0. On the other hand, J(t) determines the jump size, and

may have any appropriate distribution. Using a normal distribution may ease the param-

eter estimation procedure, but it may be unrealistic in most cases to have negative jumps

and hence reasonable alternatives are, for instance, lognormal and Pareto distributions. A

bivariate version of this model is presented in section 3.3.2.

This model has been widely used for electricity price modeling. Its importance relies

in the frequent appearance of jumps in electricity spot prices due to unpredictable events

such as forced generator outages or sudden increases in electricity demand. In particular,

Weron & Misiorek (2008) used it for modeling the California Power Exchange and the

Nord Pool electricity spot prices, using a Normal distribution for jumps.

3.2.3 Sum Ornstein-Uhlenbeck diffusion

Meyer-Brandis & Tankov (2008) present a model in which the logarithm of the price

is modeled as a sum of a deterministic component and two other factors. In this model the

first factor (Y (t)) corresponds to a “base signal” with a slow rate of mean reversion, and

the second factor (Z(t)) represents spikes, with a high rate of mean reversion. The model

is:

logS(t) = f(t) + Y (t) + Z(t),
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dY (t) = −Y (t)

λ
dt+ σdW (t),

dZ(t) = −Z(t)

µ
dt+ dL(t).

Where f(t) is a deterministic component, Y is a standard Ornstein-Uhlenbeck process

driven by a Brownian motion, and Z is the component responsible for spikes, a special

Ornstein-Uhlenbeck process driven by a Lévy process L that determines the time periods

in which spikes occur and their sizes. In fact, dL(t) = J(t)dq(t), similar to the jump

component shown in 3.2.2.

The importance of this model relies in the frequent appearance of spikes in electricity

spot prices, instead of simple jumps. Notice the difference with the pure jump model in

which, after jumps, prices only return to normal states by the property of mean reversion.

If “spiky paths” are to be represented in a jump diffusion, the rate of mean reversion must

be very big (and such a rate of mean reversion may be unappropriate in “normal levels”).

The essential difference between this model and typical jump-diffusion models is that the

component Z that generates jumps has a big enough rate of mean reversion such that the

process returns quickly to the normal values, therefore producing spiky paths.

The authors applied the model using data from various sources, including the European

Power Exchange and the Nord Pool, and the parameter estimation process developed by the

authors involves first filtering out the spiky component of the series. A bivariate version

of this model is presented in 3.3.2, and in 3.2.10 another approach to modeling spikes is

presented.

3.2.4 Mean reverting diffusion with two types of jumps and an external factor

The following model is presented in Deng (2000):

d

 X(t)

Y (t)

 =

 κ1(t)(θ1(t)−X(t))

κ2(t)(θ2(t)− Y (t))

 dt+

 σ1(t) 0

0 σ2(t)

 d

 W1(t)

W2(t)


+d
−→
Z 1(t) + d

−→
Z 2(t);

E[W1(t)W2(t)] = ρ dt.
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Where X(t) denotes the electricity price logarithm, Y (t) is other factor that may be the

electricity demand or the logarithm of the price of a relevant fuel (for instance natural gas),

the θi(t)’s are the mean reverting levels (similar to the deterministic components f(t) in

the models shown above), the κi(t)’s are the rates of mean reversion, the σi(t)’s are the

volatilities, the Wi(t)’s are correlated Brownian motions, and the
−→
Z i(t) processes are two-

dimensional jump components that determine the intensity, sizes and directions of each

type of jump. Note that in this model all the parameters are shown as time-dependent (yet

deterministic), which may account for seasonal components: for instance this may enhance

having higher volatilities in warm seasons.

The contribution of this model, compared to the models presented above, is to incor-

porate an external factor and to account for two types of jumps. The author applies this

model to the valuation of forwards and options on electricity at the Electricity Reliability

Council of Texas (ERCOT).

3.2.5 Mean reverting diffusion with two types of jumps, stochastic volatility and an

external factor

An important property used in commodity price modeling is stochastic volatility. Deng

(2000) also presents an extension to the model presented in 3.2.4, incorporating stochastic

volatility. The model is:

d


X(t)

V (t)

Y (t)

 =


κ1(t)(θ1(t)−X(t))

κV (t)(θV (t)− V (t))

κ2(t)(θ2(t)− Y (t))

 dt+


√
V (t) 0 0

0 σ2(t) 0

0 0 σ3(t)

 d


W1(t)

W2(t)

W3(t)


+d
−→
Z 1(t) + d

−→
Z 2(V (t), t);

E[Wi(t)Wj(t)] = ρij dt; i, j = 1, 2, 3.

The definition of the components is similar to the model shown in 3.2.4, but the difference

is that now the volatility of X(t) is
√
V (t), where V (t) is a stochastic process that fol-

lows a mean reverting diffusion itself, with its stochastic shocks correlated with the shocks

of X(t) and Y (t). Note that this time the second jump component
−→
Z 2(V (t), t) depends
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on time and also on V (t). This is because the intensity of type 2 jumps is intended to

depend on V (t) (this may represent that in more volatile periods the jump frequency is

higher). Electricity prices not only present high volatilities, but in many cases also present

an unpredictable time evolution of volatility. Therefore the main contribution of this work

is assuming volatility as a stochastic process itself. This model was also applied to the

valuation of forwards and options on electricity.

3.2.6 ARIMA model

In Contreras et al. (2003), an ARIMA model is presented for forecasting next-day

hourly electricity prices. The model presented is formulated as follows:

φ(B)pt = θ(B)εt.

Where pt is electricity price or its logarithm at hour t = 1, 2, ..., {εt}t is a “white noise”,

and φ(B) and θ(B) are polynomial functions of the backshift operator B that extend the

traditional ARIMA model by incorporating different factors that account for, for instance,

seasonalities by including generalized daily or weekly differentiations (instead of simple

differentiations such as (1 − B)d, for example, a daily differentiation is (1 − B24) and a

weekly differentiation is (1−B168)).

For example, one model presented is:

(1− φ1B
1 − φ2B

2 − φ3B
3 − φ4B

4 − φ5B
5)

×(1− φ23B
23 − φ24B

24 − φ47B
47 − φ48B

48 − φ72B
72 − φ96B

96 − φ120B
120 − φ144B

144)

×(1− φ168B
168 − φ336B

336 − φ504B
504) log pt

= c+ (1− θ1B1 − θ2B2)× (1− θ24B24)× (1− θ168B168 − θ336B336 − θ504B504)εt,

where, on the left side of the equal sign, the first factor accounts for information of the past

five hours, the second factor for information related to the past days, and the third factor

for the past weeks; and, on the right side, similarly but for the noise term (c is a constant).

This is a generalization of differentiating the data and then fitting an ARMA model.
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The contribution with respect to the approaches presented above is that a highly accu-

rate model is obtained due to the fact that the this model can successively take into account

many of the past prices. Test cases are presented fitting data from the Spanish and the Cali-

fornian electricity markets and the statistical methodology for selecting a model and fitting

the parameters is described.

3.2.7 External factor model

Zhou et al. (2009) use the information of electricity demand and scheduled generator

outages to model electricity prices. When a generator is scheduled for an outage, this has

a similar effect to an increase in electricity demand, and this motivates considering the

variable DO(t), defined as the sum of electricity demand and scheduled generator outages,

which has a strong correlation with electricity price.

In their work, an ARMA model is fitted to DO(t), and the electricity price model

presented is:

pt = α + βDO(t) + εt,

where pt is electricity price at time period t, εt is the error term, and α and β are parameters.

The main contribution is the construction of a simple model for the relation between

electricity spot price and an external variable, DO(t), and the use of a complex statistical

model (an ARMA model) for this external variable. The model is fitted with data from the

Midwest Independent System Operator (MISO).

3.2.8 Dynamic regression model and transfer function model

Nogales et al. (2002) present the following “dynamic regression model”:

log pt = c+ wd(B) log dt + wp(B) log pt + εt,

where pt is electricity price at hour t, c is a constant, dt is electricity demand at hour t,

wd(B) and wp(B) are polynomials on the backshift operator B (similar to φ(B) in 3.2.6),

and {εt}t is white noise.
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The authors also present the following transfer function model:

log pt = c+ wd(B) log dt +Nt,

with an analog definition of the components, and with a stochastic component Nt that

follows an ARMA model.

The contribution of these models is to incorporate an external factor in an ARMA based

model. Both models are fitted using data from the Spanish and the Californian electricity

markets. According to the authors both alternatives are highly accurate and efficient price

forecasting tools.

3.2.9 The SMaPS model

Burger et al. (2004) present a model called “SMaPS” (Spot Market Price Simulation

model) given by:

logSt = f(t,
Lt
vt

) +Xt + Yt,

where St is electricity price at hour t, Lt is the total system load, Xt accounts for short-

term price variations that are not explained by the load, Yt accounts for long-term price

variations, the deterministic function vt specifies the expected relative availability of gen-

erators in the system, and f is a deterministic function called the “merit order curve” that

establishes a relationship between electricity prices and load.

In this model, Lt, Xt and Yt are stochastic factors assumed to be independent, and Lt

is modeled as:

Lt = L̂t + lt,

where L̂t is a deterministic load forecast and lt follows a SARIMA model with a 24-hour

seasonality. The process Xt follows a SARIMA process as well, and Yt follows a (dis-

cretized) Brownian Motion.

The main contribution of this model with respect to the models presented above is to

use two stochastic processes to model the evolution of electricity prices, where one of this

components accounts for the long term behavior and the other for the short term variations,
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producing paths that may capture both aspects. The model is fitted using data from the

European Energy Exchange and is used for pricing electricity derivatives.

3.2.10 Regime switching model I

In Huisman & Mahieu (2003) a model that accounts for spikes in the price process is

presented. In this model, the price process follows a mean reverting diffusion, most of the

time, until a jump is generated, and then at the next time period (having daily time periods)

a jump in the opposite direction is generated so as to make the process return to the “normal

regime”. This is achieved using “regime switching” that basically consists of having a set

of different regimes, each of them represented by a particular behavior of the stochastic

process (that may be completely different from the behavior in the other regimes), and

there is a discrete time Markov chain that determines the regime at every particular time

period.

A simple version of the model is given by:

d[logS(t)] = µrtdt+ σrtdW (t).

Where {rt}t is a discrete time Markov chain with state space {−1, 0, 1} and transition

probabilities given by: 
0 1 0

0 p00 1− p00
1 0 0

 ,

with rt = 0 representing the normal regime, rt = 1 the initial jump regime (upward jump),

and rt = −1 the subsequent reversal to normal levels (downward jump). In the normal

regime, the logarithm of the price behaves like a diffusion with drift µ0. In the jump

regimes, having µ−1 = −µ1 and σ1 = σ−1 enhances the behavior of having an upward

jump immediately followed by a similar downward jump, returning the process to normal

levels, because once a lognormal upward jump is generated it is immediately followed by

a similar lognormal jump in the opposite direction. Since time periods are days, one-day
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price spikes are represented. Slight modifications could produce behaviors such as more

time in the “high price state”, different jump behaviors and/or mean reversion.

This model and some variants have been tested using data from electricity markets in

California, UK, Germany, and the Netherlands. The authors conclude that typical mean

reversion jump diffusions lead to a mistaken mean reverting behavior, whereas their model

leads to a better specification of electricity price dynamics. Higgs & Worthington (2008)

apply a very similar model to the Australian electricity market.

This is a particular case of a regime switching model. The next section presents another

regime switching approach for representing spikes. Readers interested in the theory of

regime switching models can find more details in Hamilton (1994).

3.2.11 Regime switching model II

Schindlmayr (2005) presents a model in which a daily 24-dimensional vector process

is used instead of using a 24-hour seasonality. The hourly prices are modeled as a decom-

position into a daily average and an hourly profile:

logSit = st + hit,

where Sit is the price on day t and hour i, i = 1, ..., 24, st = 1
24

∑24
i=1 logSit is the daily

average of the logarithm of electricity prices, and ht = (h1t , ..., h
24
t ) is the hourly profile,

that satisfies
∑24

i=1 h
i
t = 0.

The daily average price process st is modeled as the sum of a seasonal component and

an AR(1) model with regime switching. The seasonal component is determined using a

regression model, as follows:

st =

NDT∑
d=1

1JDTd (t)[βAd + βBd cos(
2πt

365
) + βCd sin(

2πt

365
) + βDd t] + yt,

where yt is a random component, 1JDTd (t) is an indicator function that takes the value 1 if

t ∈ JDTd , and 0 otherwise, and the sets JDTd define a partition into day types (for instance

business and non-business days), d = 1, ..., NDT . The random component yt is divided into
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business (JB) and non-business (JH) days:

yt = 1JB(t)yBt + 1JH (t)yHt ,

and each of the components yBt , yHt is modeled as an AR(1) model with regime switching

so as to account for spikes. Suppose that zt represents either yBt or yHt . The time-series

model is:

zt − µrt = φrt(zt−1 − µrt−1) + σrtεt,

where rt ∈ {1, 2} denotes the regime at time t and εt has a standard Normal distribution.

State 1 represents the normal behavior of electricity prices, and state 2 represents spiky

periods.

The hourly profile process is modeled as:

ht =


h1t

...

h24t

 = ĥt +4ht,

where ĥt is a (24-dimensional) deterministic seasonal component (obtained similarly to

the seasonal component of the daily process shown above), and4ht is a stochastic vector,

divided into business and non-business days (as it was the case for yt):

4ht = 1JB(t)4hBt + 1JH (t)4hHt .

Now, let xt represent either 4hBt or 4hHt . The vector process xt is decomposed into

independent factor loads by Principal Component Analysis. This decomposition process

consists of finding matrices W and P such that W = xP , where P = (p1, ..., p24) is

an orthogonal 24x24 matrix, with p1, ..., p24 the principal component factors of xt (after

column-wise normalization to standard deviation 1) and W is a matrix that contains the

independent factor loads. Let wit = Wti be the time series of the ith factor load. These

factor loads are modeled as independent ARMA processes. The model for x can then be

obtained as x = WP−1 = WP T .
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One of the contributions of this model is to present a highly detailed approach to mod-

eling the daily average deterministic component separating days into groups and then using

a different stochastic component for business and non-business days. Regime switching is

used for modeling the stochastic component of daily averages, in order to capture the spiky

behavior of electricity prices. Instead of having an upward and a downward jump, such as

the model presented in 3.2.10, only two regimes are used, one representing “normal levels”

and another representing “high price levels”. Another contribution is to model intra-day

variations using a stochastic vector process, in order to take into account the correlations

of electricity prices in different hours of a same day. The model has been tested using data

from the European Energy Exchange.

3.2.12 Regime switching model III

Haldrup & Nielsen (2006) analyze the zonal prices of the Nord Pool market. In this

market, when no bottlenecks or congestions exist in the physical interconnections between

zones, all zonal prices are identical, whereas different zonal prices appear in situations with

transmission capacity constraints (congestion). The model presented is a “regime switching

multiplicative seasonal autoregressive fractional integrated moving average” model:

Ast(B)(1− astB24)(1−B)dst (yt − µst) = εst,t.

Where yt is the log price at a given zone, after correcting it with a deterministic seasonality

component, st ∈ {0, 1} denotes the regime, determined by a Markov chain, with 0 being

the non-congestion state in which the different zonal prices are identical, and 1 being the

congestion state in which zonal prices are different. Ast(B) is an eight order polynomial in

the backshift operator B that accounts for intraday effects, (1 − astB24) is a “daily quasi-

difference filter” that accounts for daily seasonality, µst is a mean, and εst,t is the error term

with variance σ2
st . (1 − B)dst is the component that accounts for long memory by having

dst fractional. And the same model is used for the difference of the logarithm of prices

at the two different zones (which means that the same model is used for the price at any

location and for relating locational prices).
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Since in the non-congestion state (state 0) both prices are identical, if yt denotes the

difference of the logarithm of prices of the two different zones, then A0(B) = 1, a0 = 0,

d0 = 0, µ0 = 0 and σ2
0 = 0 (and hence ε0,t = 0), generating yt = 0 constantly in the

non-congestion state, and hence making zonal prices equal in that state.

The fundamental contribution of this model is that it captures a particular joint behavior

of the locational electricity spot prices of the Nord Pool: zonal prices are equal when there

is no congestion and depart from each other when there is congestion. Another important

contribution is to use a long memory model that takes into account the price variations at

distant past time periods, since this property was tested and found to be relevant in the

market analyzed. The model was fitted using data from various zones of the Nord Pool.

3.2.13 Supply-demand equilibrium model

In Kanamura & Ohashi (2007) the demand and supply curves are modeled indepen-

dently and an equilibrium price is obtained. On one hand, the inelastic demand in day t is

modeled as:

Dt = Dt +Xt,

where Dt is a deterministic component, and Xt is a mean reverting diffusion:

dXt = (µ− λXt)dt+ σdWt.

On the other hand, the supply curve is modeled with a “hockey stick function” that

corresponds to a line with a moderate slope, followed by a parabolic curve and then by a

highly sloped line. This relationship is given by:

Pt = f(St) = εt +


α1 + β1St if St < z − s

a+ bSt + cS2
t if z − s ≤ St ≤ z + s

α2 + β2St if St > z + s

Where St is supply, Pt is electricity price and εt is an error term. Electricity price is obtained

from the intersection of supply and demand, as the point where St = Dt, and hence,

Pt = f(Dt). The “hockey stick” shape of the supply curve function directly captures the
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relationship between electricity demand and price spikes because of the high price slope

for large supply values, more precisely for St > z + s.

The model was tested using data from the PJM market. This model corresponds to

the category of structural models: electricity price is obtained as a byproduct of modeling

the supply and demand curves, finding the intersection of supply and demand, instead of

using a statistical model for electricity prices directly as it was done in the other models

presented above. For the interested reader, a review of several alternatives for supply and

demand modeling and forecasting in deregulated electricity markets may be seen in Bunn

(2000).

3.2.14 Stochastic factor model

Another structural approach to electricity price modeling is presented in Vehviläinen

& Pyykkönen (2005), where the factors affecting the spot price of the Nordic Market are

modeled as stochastic factors that follow statistical processes and these are combined to

form the spot price by assuming a market equilibrium model. According to the authors, the

processes for fundamental factors are more stable in form and more accurately represented

by statistical models than the more complicated spot price process. Monthly time periods

are assumed and the model is best suited for medium term or long term analysis.

The model is built based on the features presented in the Nordic Market, in which

production is mostly hydroelectric. The spot price process is basically built taking into

account the most relevant stochastic climate factors, temperature and precipitation, since

the hydrological situation is the main determinant of market conditions. The climate factors

are assumed to follow the following relations:

xt+1
4Temp = cTempSerx

t
4Temp + σt4Tempε

t
4Temp,

xtTemp = ctTempAve + xt4Temp;

xt+1
4Precip = cPrecipSerx

t
4Precip + σt4Precipε

t
4Precip,

xt+1
Precip = ctPrecipAve + xt4Precip,
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where xtTemp is temperature at time t, xt4Temp is the deviation of temperature from its

average temperature at time t: ctTempAve. And the component εt4Temp follows a Normal

distribution with mean 0 and variance 1 (analogously for precipitation). εt4Temp is assumed

to be correlated with εt4Precip with correlation factor ρt4Temp4Precip. Parameters cTempSer

and cPrecipSer are the autocorrelation parameters of the processes xt4Temp and xt4Precip,

respectively. This temperature-precipitation model corresponds to a bivariate AR(1) model

of their deviations from their average values.

Once temperature and precipitation are modeled, a series of steps are developed for

obtaining the supply and demand curves for electricity. Hydro-power production depends

on the water levels in reservoirs, which are in turn filled by hydro-inflow, and hydro-inflow

results from precipitation and the melting of snow-pack. Generation of snow-pack is a

consequence of precipitation and temperature (at certain temperatures precipitation freezes,

incrementing the snow-pack). Electricity demand is assumed to be driven by temperature,

and its uncertain behavior is captured with an additional stochastic factor. Having modeled

the dynamics of the supply and demand curves for electricity, the electricity spot price is

obtained intersecting both curves.

The contribution of this approach is to incorporate climate factors into the modeling of

the electricity demand and supply dynamics, presenting a series of steps that provide the

relations between these and other relevant factors such as the characteristics of generating

units. Another important aspect to remark is that this model is intended to be used for

medium term or long term purposes, such as the valuation of contracts or a power plant.

The model is fitted using data from the Nord Pool and it is applied to the valuation of

an exotic derivative instrument that depends on the dynamics of temperature and electricity

prices, taking advantage of the joint modeling of several factors that this approach provides.

3.2.15 Hidden Markov model

A pair of stochastic processes (S, Y ) is a hidden Markov model if S (the state process)

is a Markov process and Y (the observable process) is a partial observation of S. Yu

& Sheblé (2006) propose a model of electricity markets as partially observable Markov

38



processes driven by underlying economic forces, which are combined assuming certain

relations in order to determine electricity spot price.

The article includes a model in which the state process corresponds to electricity de-

mand having electricity price modeled as:

Pt = f(t) +X(st, t).

Where Pt is electricity price at hour t, f(t) is a deterministic component, st = 1, 2, 3 is

the demand state, with certain transition probabilities (Markov chain), and X(st, t) is a

component that accounts for low, normal or high prices, with a distribution depending on

the demand state st. State 1 corresponds to low demand, 2 to medium demand, and 3 to

high demand, with X(st, t) having a different discrete distribution in each of the states

(similarly to a regime-switching model).

The authors also include a model of higher complexity in which the state process con-

sists of electricity demand, demand for ancillary services and the actual generation capacity.

Other factors could be considered as well, such as the congestion of transmission networks.

The contribution of this approach is that a Markov chain is used to model the factors

that contribute to the formation of electricity prices, being this Markov chain not neces-

sarily observable and presenting states with particular meanings. This approach combines

structural and regime switching models. The model has been tested with data from the New

York Independent System Operator.

3.2.16 Forward curve models

The modeling of forward electricity price curves may be useful for medium and long

term risk management applications of generating companies and other agents participating

in electricity markets. As a byproduct of modeling the evolution of the prices for forward

contracts, a spot price model is obtained. Denote f(t, T ) the forward price at time t for

delivery at T (or in the time period [T, T + dt]). Then, under certain assumptions, the spot

price is given by S(t) = f(t, t). Audet et al. (2004) present the following model for the
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electricity forward curve:

df(t, T ) = f(t, T )e−α(T−t)σ(T )dBT (t); t ∈ [0, T ], T ∈ [0, τ ].

Where BT (t) is a Brownian motion that has the following correlation structure:

E[dBT1(t), dBT2(t)] = e−ρ|T1−T2|dt,

and [0, τ ] is the time horizon in which the model is valid. This model has been applied

using data from the Nord Pool.

Similarly, in Clewlow & Strickland (1999) a multi-factor model is proposed for the

forward curve process of oil and natural gas:

df(t, T ) = f(t, T )
n∑
i=1

σi(t, T )dBi(t); t ∈ [0, T ], T ∈ [0, τ ].

In this model, the Bi(t) are independent Brownian motions. According to the authors, the

model can be integrated (using Ito’s lemma) to obtain:

f(t, T ) = f(0, T ) exp(
n∑
i=1

{−1/2

∫ t

0

σi(u, T )2du+

∫ t

0

σi(u, T )dBi(u)}),

and hence the associated spot price process corresponds to:

S(t) = f(t, t) = f(0, t) exp(
n∑
i=1

{−1/2

∫ t

0

σi(u, t)
2du+

∫ t

0

σi(u, t)dBi(u)}).

The model has been tested using data from the New York Mercantile Exchange.

If the reader is further interested in the modeling of electricity forward curve dynamics

another alternative may be seen in Borak & Weron (2008) where a semi-parametric factor

model is applied to the electricity forward curve dynamics of the Nord Pool.

Forward contracts on electricity are fundamental for risk management purposes in elec-

tricity markets, and the importance of these models relies in the necessity of understanding

the unpredictable behavior of electricity forward curve dynamics. The contribution of these
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models with respect to electricity spot price modeling is that spot prices are obtained as a

byproduct of modeling the dynamics of the forward curve.

3.2.17 Neural networks and more on electricity price forecasting

Neural networks are non-parametric methods that have gained popularity because of its

capability of approximating any non-linear function and because of its good performance in

forecasting. For the interested reader, an introduction to artificial neural networks applied

to electricity price and load forecasting is presented in Shahidehpour et al. (2002). Hong &

Hsiao (2001) present an application of recurrent neural networks to price forecasting.

Despite the proven good forecasting performance of these methods in electricity mar-

kets they are of low interest in this thesis because they do not model uncertainty explicitly

and because the models obtained for forecasting are generally hard or impossible to inter-

pret.

Further on electricity price forecasting, a comparison of 12 electricity price models

is given in Weron & Misiorek (2008) for the purpose of day-ahead electricity price fore-

casting. The models studied in this work include an AR model with electricity demand

as external factor, a simple version of a regime switching model, a mean reverting jump

diffusion, and some semi-parametric extensions of these models that do not assume spe-

cific distributions for the innovations. The models were applied and tested using data from

the California Power Exchange and Nord Pool. The main conclusions of this work are

that electricity demand is an important external factor to take into account for day-ahead

electricity price forecasting, and that semi-parametric models tend to perform better than

parametric models in the same task.

3.3 Model extensions

The models presented in this section are bivariate extensions of the models presented in

3.2.1, 3.2.2 and 3.2.3. These models are intended to represent the behavior of two locational

electricicty prices, which is central in this thesis.
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3.3.1 Bivariate mean reverting diffusion

The following model is a bivariate extension of the model presented in section 3.2.1:

logSi(t) = fi(t) +Xi(t); i = 1, 2;

dXi(t) = −Xi(t)

λi
dt+ σidWi(t); i = 1, 2;

E[dW1(t)dW2(t)] = ρ dt.

Where Si(t) accounts for the ith price at time t, fi accounts for a deterministic compo-

nent and X is a bivariate Ornstein-Uhlenbeck process (with mean reversion to 0 in each

component). The Wi(t) are correlated Brownian motions.

This model can be used to represent not only two correlated electricity price processes

but also an electricity price process together with a fuel price process, for instance. An N

dimensional version of this model is presented in appendix A, including parameter estima-

tion, statistical properties and how to simulate trajectories of the process.

3.3.2 Bivariate mean reverting jump-diffusion

Consider the following extension to the model presented in 3.2.2:

logSi(t) = fi(t) +Xi(t), i = 1, 2;

dXi(t) = −Xi(t)

λi
dt+ σidWi(t) + Ji(t)dqi(t), i = 1, 2;

E[dW1(t)dW2(t)] = ρ dt.

Where dqi(t) accounts for the jump times in the ith price component and Ji(t) for the jump

sizes. There are three jump intensities: γ1, γ2 and γ12, where P [dq1(t) = 1, dq2(t) =

0] = γ1dt, P [dq1(t) = 0, dq2(t) = 1] = γ2dt, P [dq1(t) = 1, dq2(t) = 1] = γ12dt, and

P [dq1(t) = 0, dq2(t) = 0] = 1− (γ1 + γ2 + γ12)dt.

The jump sizes J1(t) and J2(t) may follow any appropriate bivariate joint distribution

(if only one jump occurs at one time period, only one marginal distribution matters, but

if both jumps occur at the same time period then the joint distribution matters). Using
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a bivariate normal distribution may ease parameter estimation, but it may be unrealistic.

Other alternative is using a bivariate log normal distribution.

3.3.3 Bivariate sum Ornstein-Uhlenbeck diffusion

The model presented in 3.2.3 may be extended as:

logSi(t) = fi(t) + Yi(t) + Zi(t), i = 1, 2;

dYi(t) = −Yi(t)
λi

dt+ σidWi(t), i = 1, 2;

dZi(t) = −Zi(t)
µi

dt+ dLi(t), i = 1, 2;

E[dW1(t)dW2(t)] = ρ dt.

Where dLi(t) = Ji(t)dqi(t) as in the model shown in section 3.3.2. Notice that similarly

to the model presented in 3.2.3, having a separate mean reverting component for jumps

permits the modeling of price spikes (joint or separate as in 3.3.2).

The next chapter will present an introduction to scenario tree construction methods and

will also present two different applications for approximating the bivariate electricity price

model presented in 3.3.1, using scenario trees.
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IV. SCENARIO TREE CONSTRUCTION APPLICATIONS FOR A

BIVARIATE STOCHASTIC PROCESS
In decision making models it is often necessary to represent uncertainties in a form

suitable for computation, and in this context, scenario trees have proven to be important

means for representing time evolving uncertainties in stochastic programming.

A scenario tree represents a finite set of discrete outcomes over a certain time horizon,

with associated probabilities. The scenarios of the tree describe possible future trajectories

of the parameters considered as uncertain and the tree itself represents the unfolding of

information in time. As an example, a simple scenario tree may be seen in figure 4.1. This

tree has a time horizon of two time periods and three possible scenarios, corresponding to

the node sequences 0-1-3 for scenario s = 1, 0-1-4 for scenario s = 2 and 0-2-5 for scenario

s = 3. The zn, n = 0, ..., 5, are the (vector) values taken by the uncertain components at

every node with z0 deterministic, and the pmn are the transition probabilities from one node

at a certain time period to another node at the next time period (in this case: p01 + p02 =

1, p13+p14 = 1, p25 = 1). Another way to represent the information contained in a scenario

tree is to present the values taken by the uncertain components at each scenario and time

period, and probabilities of the whole scenarios. In this case, if yst represents the values

taken by the uncertain components in scenario s and time period t then y10 = y20 = y30 =

z0, y
1
1 = y21 = z1, y

3
1 = z2, y

1
2 = z3, y

2
2 = z4, y

3
2 = z5, and if qs represents the probability of

scenario s then q1 = p01p13, q2 = p01p14, q3 = p02p25.

Scenario trees should be complex enough in order to represent adequately the underly-

ing stochastic process, but small enough in order for the stochastic program to be computa-

tionally tractable. This is one of the main difficulties of scenario tree construction methods:

to build adequate scenario trees that are also small enough. At the same time, the stochastic

process to be approximated by a scenario tree cannot be too complex (in order for its main

characteristics to be represented using a reasonable scenario tree) but has to be a reasonable

representation of the actual process that it models.

The remainder of this chapter is organized as follows. In section 4.1 an overview

of scenario tree construction methods is presented. Section 4.2 deals with scenario tree
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FIGURE 4.1. Scenario tree example

evaluation. Section 4.3 presents a framework for the scenario tree construction methods

presented in sections 4.4 and 4.5. Finally, the scenario tree construction methods presented

in sections 4.4 and 4.5 are analyzed in section 4.6 and one of them is selected for the

application presented in chapter 6.

4.1 Overview of scenario tree construction methods and related meth-

ods

The main categories of scenario tree construction methods according to Kaut & Wal-

lace (2003) are described in what follows.
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• Sampling methods At every node of the scenario tree, several values are sampled

for the stochastic process that the tree is intended to represent, say {Xt}t. This is

done by sampling directly from the distribution of Xt (at time t), or by evolving

the process by an explicit formula Xt = f(X0, ..., Xt−1, ε), sampling from ε.

If a random vector is to be sampled, we generally have to sample every marginal

separately and combine them afterwards. One problem of doing so is that the size

of the tree grows exponentially with the dimension of the random vector. Another

problem is how to get correlated random vectors. An approach for this problem

is to find the principal components and sample those. Another approach is to use

sampling methods in which marginal distributions and a correlation matrix are

specified and multivariate vectors that satisfy these properties are sampled.

• Target/moment matching methods These methods have as a common element

the construction of discrete distributions that satisfy certain statistical proper-

ties. These statistical properties generally correspond to the main moments of the

marginals (mean, variance, skewness, kurtosis), auto-correlations of the marginals,

and correlations between the components of the random vector (other statistical

properties such as quantiles and minimum and maximum values can also be con-

sidered). An advantage of these methods is that the marginal distributions do

not have to be known: they may be described by the statistical properties under

consideration. The means for constructing the discrete distributions, and the tree

itself, involves numerical procedures that require solving equations or using non-

linear programming methodologies. Examples of such methods can be found in

Hoyland & Wallace (2001) and Hoyland et al. (2001). The method presented in

section 4.6 corresponds to this category.

• Path-based methods Independent scenarios are generated by evolving the sto-

chastic process under consideration, in order to obtain a set of paths, called a

fan. Once a fan is obtained, it is transformed into a scenario tree by clustering

the scenarios in all but the last period. The clustering process is usually based

on probability metric based approximations. Examples of such methods can be
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found in Dupacová et al. (2000), Eichhorn et al. (2009) and Gröwe-Kuska et al.

(2003). The method presented in section 4.5 corresponds to this category.

• Optimal discretization Pflug (2000) presents a method that tries to find an ade-

quate scenario tree by minimizing an error term in the objective function of the

optimization model from which stochastic parameters are approximated by the

scenario tree. This method works only for univariate processes and constructs the

whole multi-period scenario tree at once.

The following methods described are related to scenario tree construction methods.

• Scenario reduction These are methods for decreasing the size of a scenario tree.

Basically, this method finds a subset of scenarios, of given cardinality, such that

the probability distribution of the scenarios obtained is closest to the initial dis-

tribution in terms of some probability metric. Examples of such methods are

described in Eichhorn et al. (2009) and Gröwe-Kuska et al. (2003).

• Internal sampling methods These methods consist of solving stochastic pro-

gramming problems by sampling scenarios during the solution procedure, instead

of using a pre-generated scenario tree. An example of such methods is described

in Higle & Sen (1999).

• Iterative methods in stochastic programming These methods consist of solv-

ing the stochastic programming problem with a given scenario tree, then add or

remove some scenarios, then solving the problem again, and repeating these steps

iteratively. An example of such methods is described in Dempster & Thompson

(1999).

4.2 Testing a scenario tree construction method

According to Kaut & Wallace (2003), when using scenario trees within stochastic pro-

grams, a scenario tree should be judged by the quality of the decisions it generates. The

most important concern is not how well the distribution is approximated by the scenario tree

but how good a decision it allows to obtain (the solution of the optimization problem where
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the scenario tree is used). Yet, one would expect that as the quality of the approximation of

the distributions improves then the quality of the decisions also improves.

In order to evaluate the quality of the approximation of the corresponding distributions

a reasonable alternative is to compare the performance of the statistical properties of the

scenario trees obtained, which means comparing if they are similar to the statistical prop-

erties of the actual process that is approximated by the scenario trees. These statistical

properties should include the mean, the variance, etc. This is the criteria that will be used

to evaluate alternative scenario tree construction methods in section 4.6.4.

From another point of view, a very important requirement a scenario tree construction

method must satisfy is stability: if several instances of generated trees are used for solving

the optimization problem, approximately the same value of the objective function should

be obtained (Kaut & Wallace (2003)).

Let {Xt} be the stochastic process under consideration and let K be the number of

scenario trees generated. Let {Xk
t } be the stochastic process that corresponds to scenario

tree k = 1, ..., K (approximating {Xt}), let xkt be the optimal solution obtained for the

approximating stochastic program by using {Xk
t }, let F [xkt ; {Xk

t }] be the optimal value

(of the objective function) for the approximating stochastic program by using {Xk
t }, and

let F [xkt ; {Xt}] be the value of the objective function for the (original) stochastic program

and the solution xkt . Here it is assumed that F [xkt ; {Xt}] exists, but it may not exist in

some cases because the approximating stochastic program may change the structure of the

solutions. Additionally, even if F [xkt ; {Xt}] exists, it may be impossible to evaluate it, yet,

in some cases it may be evaluated (or approximated), for instance, using simulation.

An “in-sample stability” is defined as:

F [xkt ; {Xk
t }] ≈ F [xlt; {X l

t}];∀k, l;

and an “out-of-sample stability”, as:

F [xkt ; {Xt}] ≈ F [xlt; {Xt}];∀k, l.
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It is possible to see that in-sample stability means that the optimal value of the objective

function in each of theK approximating problems is similar, and an out-of-sample stability

means that the value of the objective function of the original problem evaluated at the

optimal solution of the approximating problems is similar. Since F [xkt ; {Xt}] may not

exist or may not be possible to calculate, it may not be possible to test for out-of-sample

stability, although, according to Kaut & Wallace (2003) in most practical applications either

both stabilities will be present or none. Section 6.3.5 presents some results related to in-

sample stability, for the application developed in this thesis.

4.3 Implementation framework

This section presents a framework for the scenario tree construction methods applied in

sections 4.4 and 4.5. The two methodologies implemented are a path-based method (based

on Gröwe-Kuska et al. (2003)) and a target/moment matching method (based on Hoy-

land & Wallace (2001)). These two methodologies have been chosen for several reasons.

First, both methods have been widely applied satisfactorily and widely analyzed theoreti-

cally. Second, these two methods are different in nature: the path-based method is based

in discrete algorithms for minimizing a metric for probability distributions, whereas the

target/moment matching method is based on minimizing, using nonlinear programming,

the difference between certain relevant statistical properties of the scenario tree and of the

underlying stochastic process to be approximated. Third, both methods are adequate for

the type of scenario tree needed as input for the model presented in chapter 5.

The methods implemented are used for building scenario trees approximating a dis-

crete version of the bivariate stochastic process presented in section 3.3.1, for a case con-

sistent of two locations, defined by:

logPi(t) = fi(t) +Xi(t), i = 1, 2;

dXi(t) = −Xi(t)

λi
dt+ σidWi(t), i = 1, 2;

E[dW1(t)dW2(t)] = ρdt.
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This is a continuous-time process, but a discrete-time version of it is used and only the

values at fixed time steps have an interpretation. Pi(t) represents electricity price at location

i = 1, 2 and month t = 1, ..., T ; fi(t) is a deterministic component; and the X(t) process

is a bivariate mean reverting diffusion (also called bivariate Ornstein-Uhlenbeck process),

with guiding correlated Brownian motions Wi(t), i = 1, 2.

The discrete-time version used of this model corresponds to a bivariate auto regressive

process. The reason for presenting the model in a continuous-time form is the possibility

of taking advantage of certain theoretical properties of the process. More details about this

model can be found in appendix A.

The data used for fitting the parameters of the model consists of historical locational

electricity spot prices obtained from the web site of the NYISO (http://www.nyiso.

com/public/index.jsp, last visit 10 July 2010), for two zones, from 1 May 2005

until 31 January 2009, from which monthly average prices are obtained. (The daily average

prices may be seen in figure 6.1.)

A scenario tree approximating this process in a time span {1, ..., T} is to be generated.

Assume that the approximating scenario tree to be constructed is {P s

i (t) : i = 1, 2; t =

1, ..., T ; s = 1, ..., S}, with corresponding probabilities {ps : s = 1, ..., S}, where S is

the number of scenarios of the tree. The number of time periods used is T = 6. The

number of bundles at each time period will be called N(t), where by “bundle” it is meant

one set of possible trajectories that are identical until the corresponding time period. Since

at time t = 0 the scenario tree has only one outcome (the initial condition) then N(0) = 1,

and N(T ) = S (the number of scenarios) since at time t = T all the possible trajectories

have unfolded, . For both methods implemented the next structure of bundles will be used:

N(1) = 4, N(2) = 8, N(3) = 16, N(4) = 32, N(5) = 64, N(6) = 128 (for example,

there could be 4 ramifications at time t = 1 and 2 ramifications for all the following time

periods). This could be chosen differently, but has been chosen as such so as to have

sufficiently detailed information at time t = 1 and to represent simply the unfolding of

information in the subsequent time periods.
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There are many alternatives for both methods implemented, some of them discussed in

section 4.6. The results shown are just one possibility for each.

4.4 Implementation of the path-based method

The method presented in this section is based in Gröwe-Kuska et al. (2003). This

method consists of successively bundling similar scenarios according to a probability met-

ric based approximation.

4.4.1 Description of the methodology

Let Y and Z be n-dimensional stochastic processes over a time horizon {1, ..., T} with

a finite set of outcomes (scenarios, trajectories) {Y i}Ni=1 with probabilities {pi}Ni=1, and

{Zj}Mj=1 with probabilities {qj}Mj=1, respectively. Let Y i(t) and Zj(t) be the outcomes

of scenario i of Y and of scenario j of Z at time t, respectively. Let PY and PZ be the

probability distributions of Y and Z, respectively. For probability distributions with finitely

many scenarios, the Kantorovich distanceDK between PY and PZ is defined as the optimal

value of a linear transportation problem given by:

DK(PY , PZ) = min{
N∑
i=1

M∑
j=1

ηijCT (Y i, Zj) : ηij ≥ 0,
N∑
i=1

ηij = qj,
M∑
j=1

ηij = pi,

∀i = 1, ..., N, j = 1, ...,M}

Where Ct(Y i, Zj) =
∑t

τ=1 |Y i(τ) − Zj(τ)|, t = 1, ..., T , and |.| denotes a norm in <n,

which means that CT (Y i, Zj) measures the distance between scenarios Y i and Zj over the

whole time horizon. The idea of the method is to find a scenario tree Z that satisfies certain

properties (such as being small enough) and that approximates scenario tree Y such that

DK(PY , PZ) is as minimal as possible.

A first necessary tool is scenario reduction, then scenario tree construction may be built

upon it.
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a) Scenario reduction

Assume now that PZ corresponds to a reduced probability distribution of Y , or equiva-

lently, that Z consists of a set of scenarios {Y i}i∈{1,...,N}\J where J denotes an index set of

deleted scenarios. If J is given explicitly, an important question is: what are the probabili-

ties of the remaining {1, ..., N} \ J scenarios that make the Kantorovich distance between

PY and PZ minimal? Fortunately the answer is known (Gröwe-Kuska et al. (2003)) and

these new probabilities are explicitly given by:

qj = pj +
∑
i∈J(j)

pi, j ∈ {1, ..., N} \ J,

where J(j) = {i ∈ J : j = j(i)}, with j(i) ∈ argminj 6∈J CT (Y i, Y j), ∀i ∈ J . This

redistribution rule is interpreted as follows: the probability of a preserved scenario j corre-

sponds to its former probability pj plus the probabilities of all the eliminated scenarios that

had scenario j as their closest scenario (from the set of preserved scenarios).

And now, a much more difficult question is: how to find an index set J with fixed

cardinality h that minimizes the Kantorovich distance between PY and PZ? It can be

shown that this problem is equivalent to the following combinatorial problem:

min{
∑
i∈J

pi min
j 6∈J

CT (Y i, Y j) : J ⊂ {1, ..., N},#J = h}.

This problem represents a set-covering problem that can be formulated as a binary integer

program and it is NP-hard. Because of the difficulty, the problem can be handled through

heuristics. One natural idea is to solve it by a “greedy” heuristic, reducing scenarios one by

one, and this is called “backward reduction” (Gröwe-Kuska et al. (2003)). The following

algorithm corresponds to a variant of “backward reduction” that, according to the authors,

has provided more accurate solutions. The scenario reduction algorithm is presented in

what follows.

• Step 0. Compute distances of scenario pairs: ckj = CT (Y k, Y j); k, j ∈ S.
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• Step 1. Compute c1ll = minj∈S,j 6=l clj , for l ∈ S, the shortest distance of one

scenario to l, and compute z1l = plc1ll, l ∈ S. Choose l1 ∈ argminl 6∈S z
1
l . Set

J1 = {l1}. l1 is the first scenario eliminated.

• Step i = 2, ..., h. Compute cikl = minj 6∈Ji−1,j 6=l ckj , for l 6∈ J i−1, k ∈ J i−1
⋃
{l};

and zil =
∑

k∈Ji−1
⋃
{l} p

kcikl, for l 6∈ J i−1. Choose li ∈ argminl 6∈Ji−1 zil . Set

J i = J i−1
⋃
{li}. li is the i-th scenario eliminated.

• Final step. J = JK is the set of deleted scenarios, I = S\J is the set of preserved

scenarios. Compute optimal probabilities {q(s)}s∈I according to the rule: qj =

pj +
∑
{i∈J(j)} p

i, for j ∈ I , where J(j) = {i ∈ J : j ∈ argmink∈I cik}.

b) Scenario tree construction

Once a scenario reduction algorithm is implemented, a recursive cluster analysis method

may be implemented to bundle similar scenarios at all stages. The algorithm presented here

falls under such category.

In Gröwe-Kuska et al. (2003), the authors present a scenario construction method based

on given tolerances of the Kantorovich distance between the resulting and the original

scenario tree, but here, a modification is presented by considering a fixed number of nodes

at each time step. This is chosen so as to build a tree with a known size of bundles at each

time period.

Take a fixed Nt, t = 1, ..., T , with Nt ≤ Nt+1, and N0 = 1, where Nt represents

the total number of nodes (bundles) that the approximating scenario tree must have at time

t. By having a fixed number of nodes at each time period, the degree of precision of the

unfolding of information from time to time is controlled, as well as the size of the resulting

scenario tree through time.

The scenario tree construction algorithm is presented in what follows.

• Step t = T .
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Using the scenario reduction algorithm presented, determine an index set of pre-

served scenarios IT ⊂ IT+1 := {1, .., N} and optimal probabilities qsT , for s ∈ IT ,

with #IT = NT . Set Y s
app = Y s for s ∈ IT .

• Steps t = T − 1, ..., 1.

Reduction of scenarios in {0, ..., t}. Consider for s ∈ It+1 thatZs,t = {Y s(τ)}tτ=0

is the trajectory of scenario s only considered from 0 to t. For the set of scenar-

ios {Zs,t}s∈It+1 with probabilities qst+1 (s ∈ It+1), determine, using the scenario

reduction algorithm, an index set of preserved scenarios It ⊂ It+1 and optimal

probabilities qst , for s ∈ It, such that #It = Nt.

Scenario bundling. For each j ∈ Jt := It+1−It select an index j∗ ∈ argmini∈It ct[Z
i,t, Zj,t],

add qjt to qj
∗

t (i.e. redefine qj
∗

t ← qj
∗

t + qjt ), and “bundle” scenario j with j∗ (in

0, ..., t), by redefining Y j∗(τ)← Y j
app(τ) for τ = 0, ..., t.

• Step t = 0.

Set I := IT . Set qs := qsT , for s ∈ I . The scenario tree obtained is Z = {Y s
app}s∈I ,

with probabilities given by qs, s ∈ I , respectively.

4.4.2 Implementation and results

The scenario tree Y to be approximated consists of a fan of 500 simulations of the

process presented in section 4.3, each with probability 1
500

. A fan is a scenario tree where

scenarios are only bundled together at t = 0 and in t = 1, ..., T each follows a particular

trajectory. The simulations may be seen in figure 4.2.

The norm used for scenario reduction is the l2 norm, or in other words, Euclidean dis-

tance (square root of the sum in both dimensions of the squared differences). The bivariate

trajectories of the scenario tree obtained may be seen in figure 4.3.

The performance of the scenario tree obtained may be seen in figures 4.4, 4.5, 4.6,

4.7, 4.8, where the theoretical statistical properties are plotted together with the statistical

properties computed from the tree. The equations for obtaining the theoretical statistical

properties are presented in appendix A.
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FIGURE 4.2. Simulations for the electricity prices process (500)
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FIGURE 4.3. Scenario tree obtained using the path-based method presented
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FIGURE 4.4. Mean performance for the scenario tree generated using the path-
based method
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FIGURE 4.5. Standard deviation performance for the scenario tree generated using
the path-based method
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FIGURE 4.6. Correlation performance for the scenario tree generated using the
path-based method
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FIGURE 4.7. Skewness performance for the scenario tree generated using the path-
based method
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FIGURE 4.8. Kurtosis performance for the scenario tree generated using the path-
based method

4.5 Implementation of the moment matching method

The methodology implemented is based in Hoyland & Wallace (2001). The fundamen-

tal idea presented in the paper is to match as closely as possible certain relevant statistical

properties (such as mean, standard deviation, etc.) of the approximating scenario tree with

the same properties of the actual original process.

This methodology will be applied to the Ornstein-Uhlenbeck component of the model

presented in section 4.3 (the “{X(t)} process”), and with a scenario tree for that component

it will be easy to obtain a reasonable price process scenario tree.

4.5.1 Description of the methodology

Because of the symmetry of the Ornstein-Uhlenbeck component (the “{X(t)} pro-

cess”), a scenario tree X = {Xs

i (t) : i = 1, 2; t = 1, ..., T ; s = 1, ..., S}, with probabilities

{qs : s = 1, ..., S}, approximating X is built, and then the scenario tree approximating P
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is obtained as:

P
s

i (t) = exp[fi(t) +X
s

i (t)], i = 1, 2; t = 1, ..., T ; s = 1, ..., S;

keeping the probability of every escenario: ps = qs, where {ps : s = 1, ..., S} are the

associated probabilities of P .

The scenario tree for X starts from X(0) = logS(0)− f(0) and selects 4 possible

outcomes for X(1) (each with a probability determined jointly), which means that all sce-

narios s = 1, ..., S are bundled into four groups at time t = 1. Then, from each of the

four outcomes at t = 1, two possible outcomes are considered for X(2) (each with a se-

lected probability) (there are 8 bundles at time t = 2), and subsequently, there are two

ramifications until t = T . This means that S = 4× 2T−1 = 2T+1.

At every time step, the possible outcomes (values for X) and their associated proba-

bilities are chosen so as to minimize a measure of distance between the relevant statistical

properties of X (for that time step) and the same properties of X . The statistical proper-

ties considered as relevant are: mean, standard deviation, covariance (between X1(t) and

X2(t)), auto-covariance (covariance between Xi(t − 1) and Xi(t)), skewness and kurto-

sis. All of these statistical properties are analitically known for the stochastic process X

as functions of both time and the parameters that define the process, and the formulas for

obtaining them are presented in appendix A.

The algorithm is presented in (a), (b), (c).

a) Step t = 1

Assume that a vector x = (x1, ..., x8) contains the four possible outcomes for X(1),

and the probabilities are contained in a vector p = (p1, ..., p4). With (x1, x2) as the first

outcome, with probability p1, being x1 the value in dimension i = 1, and x2 the value

in dimension i = 2; (x3, x4) the second outcome, with probability p2; (x5, x6) the third

outcome, with probability p3; and (x7, x8) the fourth outcome, with probability p4.
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With these vectors, the above mentioned relevant statistical properties at t = 1 can

be computed for the scenario tree. The mean in dimension 1 is: m1(1, x, p) = x1p1 +

x3p2 + x5p3 + x7p4 (for simplicity m1(1)). In dimension 2, the mean is: m2(1, x, p) =

x2p1+x4p2+x6p3+x8p4 (for simplicitym2(1)). The standard deviations can be calculated

as:

sd1(1, x, p) =
√

[x1 −m1(1)]2p1 + [x3 −m1(1)]2p2 + [x5 −m1(1)]2p3 + [x7 −m1(1)]2p4,

sd2(1, x, p) =
√

[x2 −m2(1)]2p1 + [x4 −m2(1)]2p2 + [x6 −m2(1)]2p3 + [x8 −m2(1)]2p4.

The covariance is:

c(1, x, p) = [x1 −m1(1)][x2 −m2(1)]p1 + [x3 −m1(1)][x4 −m2(1)]p2

+[x5 −m1(1)][x6 −m2(1)]p3 + [x7 −m1(1)][x8 −m2(1)]p4.

The auto-covariances are not necessary in this time step because they equal the re-

spective variances since Xi(0) is deterministic. The skewness and kurtosis in dimension 1

are:

sk1(1, x, p) = ([x1−m1(1)]3p1+[x3−m1(1)]3p2+[x5−m1(1)]3p3+[x7−m1(1)]3p4)/[sd1(1)]3,

k1(1, x, p) = ([x1−m1(1)]4p1+[x3−m1(1)]4p2+[x5−m1(1)]4p3+[x7−m1(1)]4p4)/[sd1(1)]4.

And analogously in dimension 2.

Let J(1) be the set of relevant statistical properties, αj(1), the theoretical values of

these statistical properties (that is, the actual values for the Ornstein-Uhlenbeck compo-

nent), and gj(1, x, p) the values of these properties for the outcomes represented by x and

p (as expressed above). Then, x and p are chosen as a solution (hopefully the optimal solu-

tion) of the following nonlinear optimization problem (with appropriately chosen weights
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wj(1)):

Min{x,p} G(1) =
∑

j∈J(1)wj(1)|gj(1, x, p)− αj(1)|2 (1)

s.t. p1 + p2 + p3 + p4 = 1; (2.1)

pk ≥ 0, k = 1, 2, 3, 4. (2.2)

The problem as stated above is sufficient. Yet, a variety of constraints can be added in

order to obtain better results and solution time (depending on the method used to solve the

problem). The constraints that can be added are the following ones:

p1 = p4; (3.1)

p2 = p3; (3.2)
x1+x7

2
= m1(1); (4.1)

x3+x5
2

= m1(1); (4.2)
x2+x8

2
= m2(1); (4.3)

x4+x6
2

= m2(1); (4.4)

xk ≤ xk ≤ xk, k = 1, ..., 8; (5)

gj(1, x, p) = αj(1), j ∈ J?(1). (6)

Where constraints (3) and (4) enforce that the tree built is symmetric with respect to its

mean, in both dimensions. With these constraints, it is unnecessary to have the mean and

the skewness as parts of the objective function’s relevant statistical properties. Besides,

instead of using them as constraints for the optimization problem, many variables could be

eliminated using these relations (having gj(1, x, p) reformulated accordingly), thus possi-

bly reducing computation time. This is the advantage of using this methodology for the

Ornstein-Uhlenbeck instead of using it directly for the price process.

Constraints (5) are upper and lower bounds for the xk that may help to obtain scenario

trees without extreme values.

Constraints (6) assure that some of the properties of the tree are forced to be equal to

the theoretical statistical properties, with J?(1) ⊂ J(1).
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A critical issue is the starting solution for the nonlinear programming method used to

solve the problem. A good alternative is to solve the problem using many different initial

solutions (that can be simulated according to the distribution of X(1)), optimizing, and

then keeping the best solution found.

b) Steps t = 2, ..., T ?

The tree has been built in time periods {1, ..., t − 1}. There are 2t outcomes at time

t − 1, each with a corresponding probability. The number of outcomes to be determined

for time t are 2t+1. This is obtained analogously to Step t = 1, minimizing the sum of

the squares of the difference between the theoretical statistical properties of the stochastic

process X at time t and the resulting statistical properties of the tree at time t.

Again, vectors x and p for the outcomes and the associated conditional probabilities

are considered, the expressions gj(t, x, p) represent the resulting statistical properties of

the tree at time t, αj(t) their respective theoretical values, wj(t) are appropriately chosen

weights, and J(t) is the set of statistical properties considered.

The expression:

min
{x,p}

G(t) =
∑
j∈J(t)

wj(t)|gj(t, x, p)− αj(t)|2

is obtained with x and p subject to analogous constraints to the ones presented in step t = 1.

The presence of auto-covariance in the set of statistical properties considered ensures that

the values obtained for time period t − 1 (at Step t − 1) relate appropriately to the values

obtained at time period t (in this Step).

c) Steps t = T ? + 1, ..., T (if T > T ?)

At some point in time the number of variables in steps t = 2, ..., T ? becomes too big

for computational tractability. If this is the case it is necessary to go through the steps

presented here.

In these steps, instead of solving for all the outcomes at time t at once, the outcomes

are obtained by parts. This is similar to what has been called in Hoyland & Wallace (2001)
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“scenario tree aggregation”, which basically corresponds to constructing various scenario

trees and then combining them in order to have one big, more representative, scenario tree.

Instead of using all the information over time periods 0, 1, ..., t−1, of the scenario tree

already built, only the information of the scenario tree over time periods t − T ?, t − T ? +

1, ..., t − 2, t − 1 is used, and the outcomes at time t are obtained by solving a number of

problems that equals the number of outcomes of the tree at time t−T ?. For instance, if t = 6

and T ? = 5 then at step t = 6 instead of using the information of time periods 0, 1, ..., 5,

only the information over time periods 1, ..., 5 is used. In this example, the outcomes at

time t = 6 are obtained as four separate components (because there are four sub-trees that

begin at time t = 1, since there are four outcomes at t = 1). Following the example, if

t = 7, the information over 2, ..., 6 is used and the outcomes are obtained as eight separate

components (because there are eight outcomes at t = 2).

The means for obtaining the outcomes and the associated conditional probabilities for

each part of the outcomes at time t is exactly the same as the one used in steps t = 2, ..., T ?,

but using the appropriate information as mentioned in the above paragraph. Yet, note that

now the theoretical statistical properties αj(t) are determined based on the sub-tree that

relates to the outcomes to be obtained in the respective tree section.

4.5.2 Implementation and results

The methodology described was implemented and tested. The value of parameter T ?

used was 6, which means that T ? = T and the steps presented in 4.5.1 (c) were not used

(although they are important when limited computational time is available and T is rela-

tively big). The method was implemented in MATLAB, solving the non-linear optimization

problems with the “fmincon” function of the Optimization Toolbox, using an “active-set al-

gorithm”. The tree structure used is depicted in figure 4.9.

Symmetry constraints (of the type (4.1)-(4.4)) have been used in all steps, favoring

computational tractability and obtaining better results (this forces a perfect match for the

X scenario tree in all the odd moments). And also in all steps, the standard deviation (in

both dimensions), the covariance (between dimensions), and the auto-covariances of order
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FIGURE 4.9. Scenario tree structure

1 (in both dimensions), have been included as constraints. Finally, lower and upper limits

have been used for x and p in all steps.

Each optimization problem is solved starting from initial solutions sampled from the

conditional distributions at each time step (Normal distributions). They are solved as many

times as necessary (starting from different sampled initial conditions) until certain toler-

ances have been satisfied for all statistical properties. After a certain number of initial

solutions have been considered, if the tolerances have not been satisfied, the best solution

is kept.

A perfect match is obtained for the properties of the Ornstein-Uhlenbeck component

(the {Xt} process) with the scenario tree constructed. The scenario tree obtained for the

Ornstein-Uhlenbeck component may be seen in figure 4.10, and the scenario tree for the

price process (the {Pt} process) in figure 4.11.

The performance of the price scenario tree obtained (for the {Pt} process) may be seen

in figures 4.12, 4.13, 4.14, 4.15, 4.16, where the theoretical statistical properties are plotted

together with the statistical properties obtained by the tree. The equations for obtaining the

theoretical statistical properties are presented in appendix A.
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FIGURE 4.11. Scenario tree obtained using the moment matching method
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FIGURE 4.12. Mean performance for the scenario tree generated using the mo-
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FIGURE 4.13. Standard deviation performance for the scenario tree generated us-
ing the moment matching method
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FIGURE 4.15. Skewness performance for the scenario tree generated using the
moment matching method
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FIGURE 4.16. Kurtosis performance for the scenario tree generated using the mo-
ment matching method

4.6 Discussion

It must not be forgotten that the scenario trees obtained depend upon the simulations

for the path-based method implemented and the sampled initial solutions for the moment

matching method implemented. This means that the scenario trees are stochastic and dif-

ferent scenario trees are obtained every time each method is executed. For this reason it is

important to check the stability of the optimal values (and solutions) of stochastic programs

that use these methodologies.

4.6.1 Variants

The path-based method presented is directly implemented for the price process (the P

process) whereas the moment matching method presented is implemented for the Ornstein-

Uhlenbeck component (theX process) (and with the scenario tree for the Ornstein-Uhlenbeck

component a scenario tree for the price process is obtained). For both methods the imple-

mentation could have been different, however for the path-based method the results for the
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price process did not seem to improve by using the method of first building a scenario tree

for the Ornstein-Uhlenbeck component, whereas for the moment matching method the per-

formance of the statistical properties and the computing time improved considerably when

doing this.

Another aspect that could have been selected differently for both methods is the struc-

ture of bundles (or nodes) of the tree (the N(t) component). The number of bundles at

each time period was respectively given by 4-8-16-32-64-128, with the moment matching

method forced to have a number of ramifications at each time period given by 4-2-2-2-2-

2 and a similar structure of ramifications for the path-based method. This structure was

chosen with the objective of representing sufficiently well the distribution of the process

in the first time period (4 possible outcomes) and in the following time periods (with more

than 4 possible outcomes), hence successively representing the unfolding of information

appropriately. With more ramifications at each different time period the scenario tree may

become too big for the computational tractability of an optimization problem. And with

less ramifications, it may become too small for the process to be adequately represented by

the scenario tree.

Since the most time consuming part of the path-based method presented is the initial

scenario reduction (step t = T of the scenario tree construction algorithm), an alternative

for this method is to reduce scenarios by groups in that part (for instance, from 1000 sce-

narios to 900, then to 800, etc.), instead of reducing all scenarios at once. This may prove to

be useful when the initial fan to be used consists of too many scenarios. Another important

variant for this method is to use a different scenario reduction algorithm (such as “forward

selection”, discussed in Gröwe-Kuska et al. (2003)).

An important variant for the moment matching method is to obtain the whole scenario

tree by solving at once one big optimization problem that incorporates all time periods and

their respective statistical properties (instead of solving successively for the different time

periods). Yet, this alternative results intractable for the case implemented and unneces-

sary because a perfect match is generally obtained for the Ornstein-Uhlenbeck component
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with the method as shown. Another variant, useful for big T , is to use steps (c) (having

T ? < T ), which may decrease the computational burden of solving the problem, keeping

good results. Finally, the set of statistical properties considered in the optimization process

could also include quantiles, auto-covariances of order higher than 1, or other statistical

properties.

4.6.2 Advantages and disadvantages of the path-based method

The main advantage of the path-based method implemented is that it can be used for

transforming any scenario tree into a more simple scenario tree. This in turn implies that a

scenario tree can be obtained for any stochastic process that can be simulated, by approxi-

mating a fan generated with a representative number of simulated trajectories.

A disadvantage of the method is that taking too many initial simulated trajectories

may make the initial reduction of scenarios too slow (step t = T of the scenario tree

construction algorithm). Another disadvantage is that fundamental statistical properties of

the distribution of the process at different time periods may not be well replicated by the

scenario tree.

4.6.3 Advantages and disadvantages of the moment matching method

The fundamental advantage of the moment matching method is that the statistical prop-

erties considered as relevant will generally be well replicated in the scenario tree, or if it is

not the case, at least the statistical properties given more relevance through choosing bigger

weights in the objective function should be well replicated.

One very important advantage of the particular implementation presented is that the

symmetry of the Ornstein-Uhlenbeck component is exploited, which helps obtaining a per-

fect match for the statistical properties of the Ornstein-Uhlenbeck component. Another

advantage is that lower and upper limits for the conditional probabilities and the outcomes

may be forced using constraints.

An important disadvantage of the moment matching method as presented here is that

it may not be computationally feasible to construct scenario trees for big values of T . For

70



bigger T it is a good option to use steps (c) (having T ? < T ), but in such a case it is neces-

sary to know the theoretical conditional statistical properties of the process conditional on

certain past value. For the process approximated here they were known analitically, but it

might not be the case for other processes. In such a case it could also be a good option to

change the structure of bundles (N(t)).

4.6.4 Method selection

The performance of the statistical properties of the scenario tree generated using the

moment matching method is much better than the performance of the statistical properties

of the scenario tree generated using the path-based approach. Table 4.1 presents a com-

parison between the sums of the errors of the statistical properties of the scenario trees

obtained (with respect to the theoretical statistical properties of the original process). The

difference is quite significant, favoring the moment matching method, and therefore, the

moment matching method is chosen for building the scenario tree to be used as an input for

the stochastic programming model presented in chapter 5.

TABLE 4.1. Sums of errors of statistical properties from the scenario tree construc-
tion methods

Statistical property / Method Path-based Moment matching

Mean (loc. 1) 12.6130 0.00008

Mean (loc. 2) 9.9167 0.00004

Standard deviation (loc. 1) 16.4728 0.0132

Standard deviation (loc. 2) 17.3523 0.0083

Correlation 0.1227 0.0164

Skewness (loc. 1) 1.2208 0.0836

Skewness (loc. 2) 3.9436 0.0711

Kurtosis (loc. 1) 6.4916 1.4536

Kurtosis (loc. 2) 13.6621 1.3029
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The next chapter develops a power portfolio optimization model for a power producer,

assuming a multivariate locational electricity price process represented through a scenario

tree. Then, chapter 6 presents a particular application of the optimization model involving

the moment matching method implemented.
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V. POWER PORTFOLIO OPTIMIZATION MODEL

For power producers in deregulated electricity markets the scheduling of the operation

of generating units and the planning of contractual decisions are two fundamental aspects

that must be coordinated in order to maximize benefits, subject to several operational, tech-

nical, and financial constraints, while also taking into account the diverse operational and

financial risk factors present in the business, such as electricity and fuel prices, forced unit

outages, and water inflows.

This chapter presents a medium term power portfolio optimization model for a power

producer in a deregulated electricity market, considering generation and commercial as-

pects. A central aspect in this model is the possibility of trading electricity forward con-

tracts and contracts for difference (CfDs) in different locations. The model also recom-

mends electricity transactions in locational spot markets and power production of generat-

ing units. Locational electricity prices are modeled as stochastic variables using a scenario

tree and risk is measured explicitly through conditional value at risk (CVaR).

The model presented in this chapter is relatively similar to the ones developed by

Conejo et al. (2008), Sen et al. (2006), Xu et al. (2006) and Cabero et al. (2005), but in

contrast to their work, the main contribution of this model is to consider a generating com-

pany that holds generators in more than one location of a deregulated electricity market,

with each location having a locational electricity price process correlated to the other loca-

tional electricity price processes, and these processes explicitly modeled.

The model presented can be a valuable decision making tool for a power producer

holding generating units in more than one location of a deregulated electricity market that

has to decide appropriate contractual involvement levels in order to effectively maximize

its expected profit while appropriately balancing risk exposure.

The remaining of this chapter is organized as follows: 5.1 presents the notation nec-

essary for the mathematical formulation of the model, 5.2 presents a detailed description

of the problem and 5.3 presents the mathematical formulation of the optimization model.
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An application of the model using data from the New York Independent System Operator

(NYISO) is presented in the next chapter.

5.1 Notation

The notation used throughout this chapter is stated in this section.

5.1.1 Sets

• {1, ..., L}: set of locations.

• {1, ..., I}: set of generating units.

• {1, ..., S}: set of scenarios.

• {1, ..., T}: set of time periods.

• {1, ..., K}: set of hour groups.

• {1, ..., N f}: set of blocks in each buying or selling forward contract.

• {1, ..., NCfD}: set of blocks in each CfD contract.

• Bst: set of scenarios bundled to scenario s at time period t.

• µHigh: set of high-price hour groups.

5.1.2 Scenario dependent parameters

• PE
lst: average spot price [US$/MWh] of electricity at location l during time period

t under scenario s.

5.1.3 Scenario independent parameters

• α: confidence level of conditional value at risk.

• γ: risk aversion parameter.

• φtk: duration [hours] of hour group k in time period t.

• ps: probability of scenario s.

• βltk: electricity price aggregation factor for hour group k in time period t at loca-

tion l.

• Cit: variable production cost of unit i [US$/MWh] at time period t.

• ψi: location of unit i.
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• xit: minimum power output [MW] of unit i at time period t.

• xit: maximum power output [MW] of unit i at time period t.

• Hik: minimum percentage of electricity generated per hour during high-price hour

group k that must be generated per hour in its associated low-price hour group, in

every time period, for generating unit i.

• µk: low-price hour group associated to high-price hour group k.

• Dltk: electricity [MWh] commitment at location l during time period t and hour

group k, as a result of existent contractual positions at the beginning of the time

horizon. Positive if electricity is delivered, negative if electricity is received.

• PD
ltk: price of electricity [US$/MWh] for Dltk.

• fBltkb: maximum amount of energy [MWh] that can be bought at location l through

buying block b of forward contract spanning hour group k of time period t.

• fSltkb: maximum amount of energy [MWh] that can be sold at location l through

selling block b of forward contract spanning hour group k of time period t.

• CfB
ltkb: electricity price [US$/MWh] of buying block b of forward contract span-

ning hour group k of time period t at location l.

• CfS
ltkb: electricity price [US$/MWh] of selling block b of forward contract spanning

hour group k of time period t at location l.

• glmtkb: maximum amount of energy [MWh] that can be contracted through block

b of CfD contract spanning hour group k of time period t and equivalent to selling

electricity at location l and buying at location m.

• CCfD
lmtkb: electricity price [US$/MWh] for block b of CfD contract spanning hour

group k of time period t and equivalent to selling electricity at location l and

buying at location m.

5.1.4 Variables

• xistk: energy [MWh] generated by unit i during hour group k of time period t,

under scenario s.
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• elstk: energy [MWh] traded at the pool at location l during hour group k of time

period t, under scenario s. Positive if electricity is sold, negative if electricity is

bought.

• fBltkb: energy [MWh] bought at location l through buying block b of forward con-

tract with delivery in hour group k of time period t.

• fSltkb: energy [MWh] sold at location l through selling block b of forward contract

with delivery in hour group k of time period t.

• glmtkb: energy [MWh] sold at location l and bought at location m through block b

of CfD contract spanning hour group k of time period t.

• πs: profit [US$] obtained under scenario s.

• ξ: value at risk [US$].

• ηs: variable associated to scenario s, used to compute conditional value at risk.

5.2 Problem description

This section presents a detailed description of the different aspects of the model devel-

oped.

5.2.1 Decision framework

A time horizon of 6 to 12 months (or weeks) may be considered. Contractual decisions

are taken at the beginning of the horizon (as “here-and-now” decisions) affecting the whole

time horizon, and spot market trading as well as generation decisions are made through-

out the horizon (as “wait-and-see” decisions). It is assumed that day-ahead spot market

transactions are made with “perfect information”, which means that the spot price in every

time period is known in the moment of carrying out spot market transactions. Figure 5.1

presents a scheme of the decisions of the model.
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FIGURE 5.1. Model decisions scheme

5.2.2 Locational electricity prices

Because of energy losses on the electricity grid and transmission congestion, electricity

price differences over locations are highly relevant. In the model presented, locational elec-

tricity prices are incorporated explicitly. The model considers different locations, assuming

that in each of them there is a liquid spot market for electricity, and with each of them hav-

ing a different electricity spot price. Spot prices at different locations are correlated and

this is explicitly modeled.

5.2.3 Scenario tree and hour groups

Electricity spot prices at the different locations considered form a stochastic vector

process represented through a scenario tree that approximates it, containing the stochastic

behavior of electricity prices through time at all relevant locations. Each scenario of the

scenario tree is a plausible trajectory of the price vector over the whole time horizon.

The price considered in every time period is an aggregation of the price at all hours

of the corresponding time period (an average or similar). It is assumed that the electricity

price is constant over certain hour groups, which means that the price at a particular hour

of a particular time period (in a particular scenario and a particular location) is determined

as the aggregated price determined by the scenario tree (PE
lst) multiplied by a price aggre-

gation factor associated to the corresponding hour group (βltk). Electricity prices should be

relatively stable in each hour group (the hour groups considered may be related to the load

duration curve, since demand is highly correlated to price). For example, the hour groups
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considered could be peak and off-peak in a simple case with two hour groups, or working

day peak and off peak, Saturday, and Sunday, in a more complex case with 4 hour groups.

(The decomposition into hour groups used in the examples in the next chapter is explained

in 6.1.1.)

Note that the number of dimensions, scenarios, and time periods of the stochastic price

vector process should be moderate in order to capture the essential properties of this pro-

cess in a reasonably sized scenario tree so as to guarantee the computational tractability of

the problem. Yet, the number of scenarios cannot be so small in order to ensure that the

properties of the price process are satisfactorily represented, and the number of time periods

cannot be too small either because otherwise decisions could be too short sighted. Conse-

quently, there is a tradeoff between the computational ease of solving the problem and the

accurate representation of the stochastic price vector process and practical validation of the

model.

5.2.4 Generating units

It is assumed that the power producer holds a set of thermal generating units in each

of the locations considered. Each of these generating units is characterized by a variable

production cost, minimum and maximum power outputs, and restrictions on the electricity

produced during different hour groups of every specific time period, among other con-

straints.

The variable production cost depends on the time period, in order to represent fuel

price forecasts or fuel contracts held. Fuel price could also be represented as a stochastic

process within the scenario tree, but the difficulty of solving the problem would increase

considerably, and since electricity prices are much more volatile than fuel price in the

time horizon considered, it is more appropriate to capture electricity price randomness

stochastically. It is interesting to mention that there are also alternatives for hedging fuel

costs, which are not considered in this work.

The minimum and maximum power outputs also depend on time, in order to represent

possible scheduled unit outages. If a unit is to present an outage during a whole time period,
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then the minimum and maximum power outputs are both 0 in that time period. If it is to

present an outage only part of that time period, then the minimum and maximum power

outputs must be set appropriately, and if there is no outage in that time period, then the

minimum and maximum power outputs are the usual values. It is assumed that the outage

periods are known at the beginning of the horizon and therefore the model ignores forced

unit outages.

Restrictions on the electricity produced during different hour groups of every time

period are considered based on the fact that since electricity production is modeled in a

medium term manner, some short term operation restrictions, such as ramping limits, have

an influence over it. Short term ramping limits are associated to restrictions over power

output changes of generating units. It is assumed in this model that these limits result in

minimum levels of power outputs in low-price hour groups (non-peak hours of the week)

such that the electricity produced in these hour groups is at least a certain percentage of

the electricity generated during their associated high-price hour groups (peak hours of the

week). This restrictions are based on the model presented by Conejo et al. (2008).

It is also assumed that the power producer is a price taker, which means that its pro-

duction does not influence electricity spot price. This is a reasonable assumption if the

generating capacity of the power producer is small enough compared to the total produc-

tion of the electricity market under consideration.

5.2.5 Contracts

Power producers trade electricity through organized electricity pools (spot markets),

derivative markets, and through bilateral contracts. Some of the electricity derivatives that

exist in many electricity markets are forward and futures contracts, options, cap contracts,

and contracts for difference.

The contracts considered in this model are forwards and contracts for difference, which

are explained next. For an introduction to derivatives in energy markets see Eydeland &

Wolyniec (2003) and Burger et al. (2007).

79



a) Forwards

In traditional financial markets, a forward contract is an agreement in which a unit

of a good is to be bought by the holder of the contract, that has a “long position” on the

contract, at a given delivery date and price, both determined at the moment of entering the

contract. As typical examples of hedging applications with forward contracts, the producer

of a particular good may enter into short positions of forward contracts (selling the product)

in order to hedge the risk of low price of the good at the moment of delivery, and a buyer

of the good may enter into long positions (buying the product) in order to hedge the risk of

high price at delivery.

In electricity markets, a forward contract on electricity determines a price and a time

span in which electricity is delivered according to certain contract arrangements. For ex-

ample, a forward contract may state that a certain company must provide the holder of the

long position in the forward contract with constant 50 [MW] power on the peak hours (for

instance 6.00-22.00) of all the working days of November 2011 and that the payment per

unit of electricity delivered will be 40.1 [US$/MWh].

In the present model, following Conejo et al. (2008), it is assumed that forward selling

contracts (short positions) consist of blocks of electricity (with constant power) spanning

a specified period of time with associated decreasing prices, and that forward buying con-

tracts (long positions) consist of blocks of electricity (of constant power) spanning a spec-

ified period of time with associated increasing prices. Hence, if a producer buys electricity

through forward contracts, the electricity price increases with the amount of electricity

bought (in blocks), and if a producer sells electricity through forward contracts, the elec-

tricity price decreases with the amount of electricity sold (in blocks). This assumption is

intended to represent the limited market liquidity usually present in forward contract mar-

kets of electric energy, although in possible actual applications of the model the contracts

and blocks considered could represent the existent forward contract alternatives available

at the moment of applying the model.
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It is also assumed that forward contracts have time spans of exactly one time period,

with delivery periods matching the hours of one hour group, although it would be straight-

forward to consider forward contracts with longer time spans and delivery on hours associ-

ated to any set of hour groups.

The different blocks of forward contracts may also represent bilateral contracts. In

case the user of the model has the possibility of signing certain bilateral contracts of buy-

ing or selling electricity with clauses similar to forward contracts, these bilateral contracts

could be easily incorporated into the model through a forward contract with one block and

the particular specifications. Appendix E.1 presents a model variation of the model that

considers actual available contracts.

b) Contracts for difference

An important price risk in electricity markets is created by price variations over dif-

ferent locations, called “spatial risk” by Marckhoff & Wimschulte (2009). This risk can

be hedged through contracts for difference (CfDs) and other instruments (which may or

may not be present depending on the electricity market) such as financial transmission

rights (FTRs), physical transmission rights (PTRs) and transmission congestion contracts

(TCCs).

CfDs are electricity forward contracts on a locational price spread (or equivalently, on

the price difference between two zones over a specified period). Consider two locations “A”

and “B” and associated electricity prices SAt and SBt at time period t, respectively. Suppose

t1 is the initial time period of a CfD contract and t2 is the final time period (the contract

is signed before t1). Suppose the CfD contract is over the price spread between A and B.

Then, the payoff for the holder on a long position of the contract is given (in this thesis) by:

t2∑
t=t1

(SAt − SBt ).
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In this work it is assumed that the price or cost of the contract is “similar” to its ex-

pected payoff. The price or cost of these contracts are assumed to be slightly more inconve-

nient than expected payoffs in order to represent their lack of liquidity. If the price or cost

of the contract is equal to its expected payoff then risk neutral power producers would be

indifferent of wether to enter into contracts for difference or not. In the model presented,

CfDs are treated similarly to forward contracts: as the quantity of contracts to be bought

increases, the price to be paid increases by block. It is also assumed that contracts for

difference have time spans of exactly one time period, with delivery on exactly one hour

group.

Notice that CfD payoffs can be replicated with forward contracts on electricity at both

locations involved (short position on location A, long position on location B). Neverthe-

less, the low liquidity of CfDs and forwards encourages the incorporation of both types of

contracts in the same model. CfDs are widely used, for instance, in the Nord Pool but are

not present in all electricity markets. Anyway, in case of non-existence of these contracts,

they can be replicated through bilateral contracts, assuming there are market agents willing

to take the opposite positions.

For more information on CfDs, incorporating their applicability, pricing and usage in

the Nord Pool market, see Marckhoff & Wimschulte (2009).

5.2.6 Risk modeling

Conditional value at risk is used for risk measurement and is incorporated into the

objective function multiplied by a risk aversion parameter. This will allow to obtain a

tradeoff curve between expected profit and risk by varying the risk aversion parameter.

The definition of CVaR that will be adopted in this work is:

CV aRα = E[π|π ≤ V aRα],
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where π is profit, α is the confidence level (usually between 0.9 and 0.99) and VaR (value

at risk) is defined as the α quantile of π:

V aRα = max{x : P (π ≤ x) ≤ 1− α}.

For instance, if α = 0.9 then CVaR is the expected value of profit given that profit is

below its 10% quantile, or in other words that CVaR is the average of profit over its left

10% distribution tail. The concept is depicted in figure 5.2. Several advantages of using

CVaR as risk measure for power portfolio optimization problems have been described in

Denton et al. (2003).

See appendix C for a thorough explanation of how CVaR is incorporated into the opti-

mization model (because of its length this is presented in an appendix).
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FIGURE 5.2. CVaR concept

5.2.7 Model usage

The model presented in this chapter is intended to be used on a weekly or monthly

basis. At the beginning of each time period decisions pertaining to the rest of the time

horizon (for instance the following 6 months) and involving the contracts mentioned above

can be made using the recommendations of the model. Decisions regarding spot market

transactions and generation planning should be made using shorter time models, based on

the contractual involvement recommended by the model, and at the beginning of the next

83



time period contractual decisions spanning the next upcoming periods (for instance the

next 6 months) could be made again with assistance of the model, incorporating the new

information. As a result of the process, contractual positions are updated at the beginning

of every time period.

5.3 Mathematical formulation

The problem described above is formulated as a stochastic programming problem with

recourse (see Birge & Louveaux (1997)), and given a particular scenario tree this problem

is formulated as an equivalent linear program. The optimization problem is:

max{xistk,elstk,fBltkb,fSltkb,glmtkb,πs,ξ,ηs}
∑S

s=1 psπs + γ(ξ − 1
1−α

∑S
s=1 psηs) (1)

s.t. πs =
∑L

l=1

∑T
t=1

∑K
k=1 elstkβltkP

E
lst −

∑I
i=1

∑T
t=1

∑K
k=1 xistkCit

+
∑L

l=1

∑T
t=1

∑K
k=1

∑Nf

b=1(C
fS
ltkbf

S
ltkb − C

fB
ltkbf

B
ltkb)

+
∑L

l=1

∑
{m=1,...,L:m 6=l}

∑T
t=1

∑K
k=1

∑NCfD

b=1 CCfD
lmtkbglmtkb

+
∑L

l=1

∑T
t=1

∑K
k=1DltkP

D
ltk,∀s = 1, ..., S; (2)

φtkxit ≤ xistk ≤ φtkxit, ∀i = 1, ..., I,∀s = 1, ..., S, ∀t = 1, ..., T,∀k = 1, ..., K; (3.1)

0 ≤ fBltkb ≤ f
B

ltkb, ∀l = 1, ..., L, ∀t = 1, ..., T,∀k = 1, ..., K,∀b = 1, ..., N f ; (3.2)

0 ≤ fSltkb ≤ f
S

ltkb, ∀l = 1, ..., L, ∀t = 1, ..., T,∀k = 1, ..., K,∀b = 1, ..., N f ; (3.3)

0 ≤ glmtkb ≤ glmtkb,∀l = 1, ..., L, ∀m = 1, ..., L : m 6= l,∀t = 1, ..., T

∀k = 1, ..., K,∀b = 1, ..., NCfD; (3.4)∑
{i=1,...,I:ψi=l} xistk +

∑Nf

b=1 f
B
ltkb +

∑
{m=1,...,L:m 6=l}

∑NCfD

b=1 gmltkb

= elstk +Dltk +
∑Nf

b=1 f
S
ltkb +

∑
{m=1,...,L:m 6=l}

∑NCfD

b=1 glmtkb,

∀l = 1, ..., L, ∀s = 1, ..., S, ∀t = 1, ..., T,∀k = 1, ..., K; (4)

Hik
xistk
φtk
≤ xistµk

φtµk
,∀i = 1, ..., I,∀s = 1, ..., S, ∀t = 1, ..., T,∀k ∈ µHigh; (5)

ηs ≥ ξ − πs,∀s = 1, ..., S; (6.1)

ηs ≥ 0,∀s = 1, ..., S; (6.2)

xis1tk = xis2tk,∀i = 1, ..., I,∀s1 = 1, ..., S, ∀t = 1, ..., T,∀s2 ∈ Bs1t,
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∀k = 1, ..., K; (7.1)

els1tk = els2tk,∀l = 1, ..., L, ∀s1 = 1, ..., S, ∀t = 1, ..., T,∀s2 ∈ Bs1t,

∀k = 1, ..., K. (7.2)

Problem (1)-(7.2) is described below.

5.3.1 Objective function

The objective function corresponds to the expected total profit of the power producer

plus an approximation of CVaR multiplied by the risk aversion parameter γ. A detailed

explanation of the CVaR expression is given in appendix C.

5.3.2 Constraints

Constraints (2) express that πs is the total profit of the power producer under scenario

s. This is composed by the revenues obtained from trading in electricity spot markets,

the costs of producing electricity, the revenues of selling electricity through forwards con-

tracts, the costs of buying electricity through forward contracts, the revenues obtained from

transactions in contracts for difference, and the revenues obtained from existent contractual

positions.

Constraints (3.1) state the minimum and maximum electricity production possible for

each unit during each hour group of each time period. (3.2)-(3.4) enforce bounds on for-

wards and contracts for difference positions for each block.

Constraints (4) represent electricity balance in each location for every hour group and

time period: the electricity produced plus the electricity bought through forwards and CfDs

equals the electricity traded in the spot market (positive when selling, negative when buy-

ing) plus the electricity traded through existent contractual positions, plus the electricity

sold through forwards and CfDs.

Constraints (5) enforce electricity production relations between low-price hour groups

and high-price hour groups.

Constraints (6.1)-(6.2) are necessary for CVaR definition (see appendix C).
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Constraints (7.1)-(7.2) are the non-anticipativity constraints for the variables that de-

pend on scenarios: electricity production and electricity spot market trading. These con-

straints state that if in {1, ..., t} two scenarios s1 and s2 have the same history (they are

indistinguishable in that time span), then the same decisions must be taken in t under both

scenarios.

5.3.3 Results

For a particular value of this risk aversion parameter the model obtains a set of contrac-

tual involvement decisions in the beginning of the time horizon (“here and now” decisions),

and a set of generation and spot market trading decisions in future time periods that depend

on the evolution of locational electricity prices (“wait and see” decisions). Solving the

model for different values of the risk aversion parameter, γ, provides the efficient frontier

between expected profit and risk for the power producer.

5.3.4 Problem size

The number of continuous variables of the linear program presented equals:

ISTK + LSTK + 2LTKN f + 2
L(L− 1)

2
TKNCfD + 2S + 1.

The number of constraints equals:

S + ISTK + 2LTKN f + 2
L(L− 1)

2
TKNCfD + LSTK

+IST#µHigh + 2S + (I + L)K
T∑
t=1

S∑
s1=1

#Bs1,t.

The next chapter presents an application of the model using data from the NYISO.
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VI. APPLICATION

This chapter presents an application of the power portfolio optimization model pre-

sented in chapter 5. The case studied consists of a power producer that holds two thermal

generating units, each of them in a different location of a deregulated electricity market

and under a different locational electricity price process. The power producer’s problem is

to optimize its contractual, spot market and generation decisions in order to maximize its

expected benefit given a degree of risk aversion, over a time horizon of six months. The

tradeoff curve between profit and risk is obtained by solving the model for several values

of the risk aversion parameter.

In order to implement the model, three steps can be mentioned. In a first step, a sto-

chastic vector process is used to model the two locational electricity prices jointly (using

one of the models from chapter 3). In a second step, a scenario tree that represents this

process is generated (using one of the methods presented in chapter 4). In the third step,

the model presented in chapter 5 is solved using the scenario tree generated.

The remaining of this chapter is organized as follows: 6.1 presents the data set used,

6.2 presents the details of the implementation, and 6.3 presents the results obtained. The

notation used in this chapter is the same given in section 5.1.

6.1 Data and model parameters

6.1.1 Electricity prices and hour groups

Historical data of locational electricity spot prices is obtained from the NYISO web site

(http://www.nyiso.com/public/index.jsp, last visit 10 July 2010). Hourly

electricity prices for two zones, from 1 May 2005 until 31 January 2009, are used. It

is assumed that the power producer holds one generator in each location and wants to

optimize its contractual decisions concerning the six next months, from February 2009

until July 2009. The historical daily average prices for the two zones may be seen in figure

6.1.
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FIGURE 6.1. Daily average electricity prices

Using the daily average electricity prices, “adjusted” monthly average prices are ob-

tained by first calculating the average prices of each type of day (Monday, Tuesday...) and

then averaging these 7 values, for each month. The adjusted average electricity prices may

be seen in figure 6.2. The idea of using these adjusted averages instead of usual averages is

to eliminate the effects of having more days of a certain type in a given month.

These adjusted monthly average electricity prices are used for fitting the parameters of

a stochastic model with which a scenario tree is generated with the methodology described

in section 4.5, thus obtaining the adjusted monthly average electricity price at location l,

scenario s, and month t, PE
lst, and the respective probability ps of each scenario s.

A number of K = 6 different hour groups are used to represent price variations within

each month. Each of this groups consists of a set of hours of every week, since intra weekly

seasonalities are evident for electricity prices. This means that the model assumes the same

price in every hour of a given time period and hour group. The hour groups selected are

shown in table 6.2, and explained next: hour group 1 represents off-peak (low price) week

day hours, consisting of hour 23 (from 23.00 until 24.00) of Sunday, hours 0-6 of Monday
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FIGURE 6.2. Adjusted monthly average electricity prices

through Friday and hour 23 of Monday through Thursday; hour group 2 represents on-peak

(high price) week day hours, consisting of hours 7-22 of Monday through Friday; hour

group 3 represents off-peak Saturday prices, consisting of hour 23 of Friday and hours 0-8

of Saturday; hour group 4 represents on-peak Saturday prices, consisting of hours 10-22 of

Saturday; group 5 represents off-peak Sunday prices, consisting of hour 23 of Saturday and

hours 0-8 of Sunday; and group 6 represents on-peak Sunday prices, consisting of hours

7-22 of Sunday.

The distribution of hour groups is chosen so as to represent intra month variations such

that βltkPE
lst is a good representative of electricity price in hour group k of month t, at

location l, under scenario s, where βltk is the price aggregation factor for location l, month

t and hour group k. If these factors were not dependent on time, and hence constant for

the whole year (so that βltk = βlk) then they would take the values presented in table 6.2,

and intra-week price variations would be approximated as presented in figure 6.3. Yet,

intra week price relations generally depend on the month because electricity consumption
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TABLE 6.1. Hour groups distribution

Day k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

Monday 0-6, 23 07-22

Tuesday 0-6, 23 07-22

Wednesday 0-6, 23 07-22

Thursday 0-6, 23 07-22

Friday 0-6 7-22 23

Saturday 0-8 10-22 23

Sunday 23 0-8 7-22

Total hours 40 80 10 14 10 14

at different moments of the week depends on normal life cycles, weather, etc., and hence,

price aggregation factors βltk are determined dependent on the particular month t.

TABLE 6.2. Electricity price aggregation factors (βltk), using 6 groups with fixed
factors for the whole year

Location k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

l = 1 0.7704 1.1499 0.7860 1.0843 0.7537 1.0441

l = 2 0.7743 1.1623 0.7746 1.0517 0.7380 1.0139

With these hour groups, high-price hour groups correspond to groups 2, 4 and 6, and

the low-price hour group associated to each of them are groups 1, 3 and 5, respectively.

Hence: µHigh = {2, 4, 6} and µ2 = 1, µ4 = 3, µ6 = 5.

Finally, the duration φtk of each hour group k in each of the next 6 months t, is sum-

marized in table 6.3.
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FIGURE 6.3. Electricity prices aggregation into 6 hour groups with fixed factors
for the whole year

TABLE 6.3. Duration [hours] of hour groups at each month (φtk)

Month k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

February (t = 1) 160 320 40 56 40 56

March (t = 2) 177 352 40 56 49 70

April (t = 3) 176 352 40 56 40 56

May (t = 4) 168 336 50 70 50 70

June (t = 5) 176 352 40 56 40 56

July (t = 6) 183 368 41 56 40 56

6.1.2 Generating units

One unit is considered at each of the two locations considered, with both units having

the exact same properties. The location, generating cost, minimum and maximum generat-

ing outputs, and the relation factor between per-hour generation at high-price hour groups

and their respective low-price hour groups are shown in table 6.4.
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TABLE 6.4. Generating units parameters

Unit ψi (location) Cit[US$/MWh] xit[MWh/h] xit[MWh/h] Hik

i = 1 1 60 0 300 0.3

i = 2 2 60 0 300 0.3

6.1.3 Contracts

There is a number N f = 3 of different blocks of buying and selling contracts. The

upper bound of the quantity of electricity that can be bought or sold through forward con-

tracts at location l, month t and hour group k, through block b, are given by f
B

ltkb = f liqφtk

(buying) and f
S

ltkb = f liqφtk (selling), where f liq = 100[MWh/h] is a “forwards liquidity

parameter”. The prices per unit of electricity contracted through buying or selling block b

forward contracts at location l, for delivery in hour group k of month t, are given, respec-

tively, by:

CfB
ltkb = (1 + bC)

S∑
s=1

psβltkP
E
lst,

CfS
ltkb = (1− bC)

S∑
s=1

psβltkP
E
lst,

where C = 0.5% = 0.005. These expressions are close to the expected value of electricity

price in the corresponding time span, but for buying contracts the price is a little higher (and

increasing through blocks 1, 2, 3) and for selling contracts a little lower (and decreasing

through blocks 1, 2, 3). Hence, with these prices, for a power producer that only wishes to

maximize its expected profit (risk neutral case), forward contracts are not convenient.

The basic assumption behind this price-liquidity selection is that the power producer

does not have enough market power with respect to entities that may want to hold the

opposite forward contract positions. Also, having block 2 more inconvenient than block

1, and block 3 more inconvenient than block 2, represents the limited market liquidity

that may exist. (In appendix E.1 a model that considers actual available forward contracts
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is presented, which may be more appropriate for real applications, instead of using an

approach that is only intended to provide an approximation to real markets.)

With contracts for difference liquidity conditions and prices are chosen in a similar

manner. There is a number NCfD = 3 of different blocks for selling in location 1 and

buying at 2, and for the opposite contracts (selling in location 2 and buying at location 1)

the same. The upper bound for selling at location l and buying at location m, at hour group

k of month t, through CfD block b, is given by glmtkb = gliqφtk, where gliq = 100[MWh/h]

is a “CfDs liquidity parameter”. The price per unit of electricity contracted through such a

contract is given by:

CCfD
lmtkb =

 (1 + bC)
∑S

s=1 ps[βltkP
E
lst − βmtkPE

mst] if
∑S

s=1 ps[βltkP
E
lst − βmtkPE

mst] ≥ 0

(1− bC)
∑S

s=1 ps[βltkP
E
lst − βmtkPE

mst] if
∑S

s=1 ps[βltkP
E
lst − βmtkPE

mst] < 0

where C = 0.5% = 0.005 (as in the forwards case). These expressions are close to the

difference of the expected values of electricity price in the corresponding time span, but

making the contracts slightly more inconvenient (with increasing inconvenience through

blocks 1, 2, 3) for pure expected profit maximizers (risk neutral power producers), similarly

to what was adopted in the forwards case.

6.1.4 Existent contractual positions

Existent contractual positions at location l and hour group k of time period t are as-

sumed to be given byDltk = Dperhourφtk, withDperhour = 150[MWh/h]. This may repre-

sent bilateral contracts already assumed, forward contracts already assumed, CfD contracts

already assumed, etc. The payoff to be received per unit of electricity of existent con-

tractual positions is assumed to be given by the expected electricity price at the particular

location, time period, and hour group: PD
ltk =

∑S
s=1 psβltkP

E
lst.

6.1.5 Confidence level of CVaR

The confidence level of conditional value at risk (CVaR) is assumed to be α = 0.9,

which is a generally adopted value. This means that the profit’s distribution tail considered

in CVaR weights 10% of the total probability.

93



6.2 Implementation

This section summarizes the three steps developed for solving the problem. In a first

step a stochastic model is fitted to the adjusted monthly average electricity prices presented

in section 6.1.1. In a second step a scenario tree that represents that stochastic model is

generated. In a third step, the optimization model is solved.

6.2.1 Electricity prices model

The following model is used to represent the stochastic evolution of the adjusted

monthly average electricity prices for the two locations over time:

logPi(t) = fi(t) +Xi(t); i = 1, 2;

dXi(t) = −Xi(t)

λi
dt+ σidWi(t); i = 1, 2;

E[dW1(t)dW2(t)] = ρdt.

This model is a bivariate mean reverting diffusion and has been presented in chapter 3. This

is a continuous-time process, but only the values at fixed time steps have an interpretation.

Pi(t) represents the adjusted monthly average of electricity price at location i = 1, 2 and

month t = 1, ..., 6; fi(t) is a deterministic component; and the X(t) process is a bivariate

mean reverting diffusion, also called bivariate Ornstein-Uhlenbeck process, with guiding

correlated Brownian motions Wi(t), i = 1, 2.

This model is complex enough so as to capture the fundamental properties of the two

locational monthly average prices: autocorrelation (correlation between price at different

time periods), mean reversion, higher volatility at higher prices, and very importantly in

this thesis, correlation between the price variations of the two locations. This model is also

simple enough in order to be well represented in a reasonably sized scenario tree.

Using the data shown in section 6.1.1, the parameters obtained for this model are shown

in table 6.5. The parameters for the deterministic component have been obtained using a

standard linear regression, and the parameters for the Ornstein-Uhlenbeck component have

been obtained using a maximum likelihood based method. Parameter estimation for this
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model is thoroughly explained in appendix A. Fixed values are chosen for the deterministic

component: fi(t) = ai, because of the data set used (in general cases it is more accurate

to at least use annual seasonalities, but the data was so noisy that no reasonable annual

seasonalities could be captured).

TABLE 6.5. Bivariate log mean reverting diffusion parameters fitted to the adjusted
monthly average electricity prices and initial price conditions

Location Pi(0) fi(t) = ai λi σi ρ

i = 1 71.1323 4.2741 2.8582 0.1782 0.8382

i = 2 63.5603 4.1303 2.0150 0.1919

The data used for the adjusted monthly average electricity prices together with a sim-

ulated future trajectory may be seen in figure 6.4.
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FIGURE 6.4. Data and one simulation for the adjusted monthly average electricity prices
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6.2.2 Scenario tree generation

The detailed methodology for generating the scenario tree is presented in section 4.5.

Summarizing, the method consists of generating a scenario tree for the Ornstein-Uhlenbeck

component (the “X” process), since this process has a symmetric distribution at each loca-

tion and month. If X
s

i (t) is the value of the approximating scenario tree of the Ornstein-

Uhlenbeck component (theX process) at location i and time period t under scenario s, with

associated probability p(s) of scenario s, then its associated value in the approximating sce-

nario tree of the price process is P
s

i (t) = exp(fi(t) + X
s

i (t)), with associated probability

p(s) of scenario s. An example of a scenario tree generated for the Ornstein-Uhlenbeck

component may be seen in figure 6.5, and its associated price scenario tree in figure 6.6.
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FIGURE 6.5. One Ornstein-Uhlenbeck component (“X process”) scenario tree

The methodology for generating the Ornstein-Uhlenbeck component (the “X process”)

scenario tree consists in solving a nonlinear optimization problem consistent of minimizing

a weighted sum of the squares of the distances between the relevant statistical properties

of the scenario tree and the theoretical statistical properties of the process. The adjusted
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FIGURE 6.6. One adjusted monthly average electricity prices scenario tree

average electricity price scenario tree obtained has S = 128 scenarios. The details and

result evaluation of the method and its application is presented in section 4.5.

6.2.3 Optimization

The linear programming problem presented in chapter 5, using the scenario tree pre-

sented in subsection 6.2.2 and the parameters shown in section 6.1, has been implemented

in MATLAB and solved using CPLEX 12 with the help of YALMIP (that has been used

to facilitate the communication between MATLAB and CPLEX) (if the reader is interested

in YALMIP refer to the web site http://users.isy.liu.se/johanl/yalmip/,

last visit 10 July 2010). The linear programming problem solved has approximately 105

variables.

6.3 Results

This section presents various results obtained from the application of the optimization

model.
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6.3.1 Basic results

Solving the problem for different values of the risk aversion parameter γ allows to ob-

tain the efficient frontier relating optimal expected profit and risk. The values used for γ are

0 (risk neutral case), 0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64 and 1.28. Figure 6.7 presents

the change in expected profit, profit standard deviation and CVaR as the risk aversion pa-

rameter changes.
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FIGURE 6.7. Expected profit, profit standard deviation and CVaR as functions of
the risk aversion parameter

The efficient frontier between expected profit and risk is shown in figure 6.8 using

negative CVaR as risk metric. Notice that CVaR as defined in this thesis is the average

profit given that profit is below its α quantile, therefore as CVaR increases, risk decreases,

and that is the reason for plotting negative CVaR vs expected profit. Another important

property of profit is standard deviation. The relation obtained between expected profit and

profit standard deviation is shown in figure 6.9.
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FIGURE 6.8. Negative CVaR vs expected profit
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FIGURE 6.9. Profit standard deviation vs expected profit

Histograms for profit distribution in the risk neutral case and in a risk averse case are

shown in figure 6.10. In this figure it can be seen how higher risk aversion concentrates

profit distribution, thus reducing risk exposure.
99



20 25 30 35 40 45 50 55 60 65 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Profit [US$ millions]

P
ro

ba
bi

lit
y

Risk aversion parameter:
Expected profit:
CVaR:
Profit standard deviation:

0
29.578
21.9873
7.89232

(a) Risk aversion parameter: 0.

20 25 30 35 40 45 50 55 60 65 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Profit [US$ millions]

P
ro

ba
bi

lit
y

Risk aversion parameter:
Expected profit:
CVaR:
Profit standard deviation:

0.64
29.3338
26.3364
4.21364

(b) Risk aversion parameter: 0.64.

FIGURE 6.10. Profit histogram in a risk neutral case and in a risk averse case.

6.3.2 Value of using stochastic programming

Modeling a problem using stochastic programming increases the complexity of the

model and the computational difficulty of solving the problem, compared to using a deter-

ministic approach, but since it can lead to better solutions, for instance with higher expected

profit and/or lower risk, its use is justified. In this subsection a measure that will be called

the value of using stochastic programming (VSP) will be calculated, and it measures how

much better is the objective function in the risk neutral case using stochastic programming

compared to solving the problem ignoring the stochastic components of the problem by

replacing them with their expected values. The expected profit, CVaR, and profit stan-

dard deviation of the expected value solution (solution of the problem considering average
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values) and of the stochastic programming solution (solution considering probability dis-

tributions) are presented in table 6.6. Expected profit, CVaR, and profit standard deviation

of the expected value solution are evaluated with respect to the scenario tree of the stochas-

tic programming problem, after calculating profit under every scenario with the expected

value solution.

TABLE 6.6. Stochastic programming solution compared to expected value solution
(values in [million US$])

Solution Expected profit CVaR Profit std. deviation

Stochastic prog. 29.5780 21.9873 7.8923

Expected value 25.4380 -7.6508 19.827

The VSP obtained is:

V SP = (29.578− 25.438) [million US$] = 4.14 [million US$],

V SP (%) =
29.578− 25.438

25.438
= 16.28%.

This means that it is convenient to face the problem using stochastic programming

instead of ignoring the uncertainty of electricity prices, since the decisions recommended

by the stochastic programming approach are better than those recommended by assuming

the expected values of uncertain parameters. Also notice that the CVaR of the stochastic

programming solution is much bigger than the CVaR of the expected value solution and

the profit standard deviation of the stochastic programming solution is much smaller than

the profit standard deviation of the expected value solution, which means that ignoring

uncertainty in this case also leads to riskier solutions, highlighting the convenience of the

stochastic programming approach.

For the interested reader, Birge & Louveaux (1997) present a similar measure to the

one presented here, called the value of the stochastic solution (VSS). The measure used

here (VSP) is a simplification of the VSS.
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6.3.3 Value of the multi-location analysis

One alternative for facing the power portfolio problem is to simply solve one opti-

mization problem for each location, instead of solving for both locations in an integrated

manner. Let the solution obtained by solving for each location separately be called the sin-

gle -location solution, that depends on the risk aversion parameters used at both locations

and that does not account for CfDs (because they need information on both locations in

order to be considered).

Table 6.7 presents expected profit and CVaR for the single-location solution varying

both risk aversion parameters. Figures 6.11 and 6.12 show efficient frontier curves between

CVaR and expected profit obtained by the single-location solution by fixing the risk aver-

sion parameter at one location and varying it at the other location, and obtained for the

multi-location solution in the base case and in a case without allowing the use of CfD con-

tracts. Notice that for the multi-location solution, in the risk neutral case, expected profit is

29.5780 [million US$] with a CVaR of 21.9873 [million US$] (for both the base case and

the case without allowing the use of CfD contracts).

TABLE 6.7. Expected profit [million US$] (CVaR [million US$]) for the single-
location solution varying the risk aversion parameters at both locations

Loc. 1 / Loc. 2 0 0.04 0.08 0.64

0 29.58 (21.99) 29.57 (22.17) 29.52 (23.07) 29.48 (23.71)

0.04 29.51 (23.85) 29.51 (24.03) 29.46 (24.77) 29.42 (25.28)

0.08 29.44 (25.06) 29.43 (25.25) 29.38 (25.99) 29.35 (26.20)

0.64 29.42 (25.35) 29.41 (25.52) 29.36 (26.18) 29.32 (26.27)

From these results it can be inferred that it is relevant to consider a multi-location

analysis instead of a separate analysis for each location, since higher total expected profits

can be obtained when keeping the risk level fixed (and lower levels of risk may be obtained

for fixed levels of total expected profit).

102



−26.5 −26 −25.5 −25 −24.5 −24 −23.5 −23 −22.5 −22 −21.5
29.25

29.3

29.35

29.4

29.45

29.5

29.55

29.6

29.65

−CVaR [US$ Millions]

E
xp

ec
te

d 
pr

of
it 

[U
S

$ 
M

ill
io

ns
]

 

 

Joint (Base case)
Joint (No CfDs)
Not joint (Risk av. param. 1 = 0)
Not joint (Risk av. param. 1 = 0.04)
Not joint (Risk av. param. 1 = 0.08)
Not joint (Risk av. param. 1 = 0.64)

FIGURE 6.11. Negative CVaR vs expected profit curves for the single-location
problem using various fixed risk aversion parameters at location 1 and varying the
risk aversion parameter at location 2, together with multi-location solution curves
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FIGURE 6.12. Negative CVaR vs expected profit curves for the single-location
problem using various fixed risk aversion parameters at location 2 and varying the
risk aversion parameter at location 1, together with multi-location solution curves
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6.3.4 Allowing contracts to be taken at any time period

The model presented considers contractual decisions (forwards and CfDs) as “here-

and-now” decisions because these are the recommendations of the model for the initial time

period (time period “0”), whereas the generation and spot market decisions are subject to

the unfolding of information and taken throughout the time horizon, as “wait-and-see” de-

cisions. Yet, besides having contractual decisions as “here-and-now” decisions, one could

also consider in the model contractual decisions taken over time, thus having variables such

as fSlstukb: the electricity sold through a block b forward contract at location l and month

t (decision taken at time period t), under scenario s, for delivery in hour group k of time

period u (with u > t). Hence, in such a case contractual decisions would be taken at a

certain time period, under a certain scenario, for delivery in a future time period. Notice

that the number of variables and constraints of such an optimization problem largely in-

creases (non-anticipativity constraints must also be considered for these decisions). The

model extension allowing contracts to be taken at any time period is shown in appendix

E.2.

Figures 6.13 and 6.14 compare the base case solution (contractual decisions only as

“here-and-now” decisions) and the case allowing contracts to be taken at any time period

(as both “here-and-now” and “wait-and-see’ decisions). As it can be expected, the solution

allowing contracts to be taken at any time period is better in terms of the efficient frontier

between expected profit and CVaR, since for a fixed level of CVaR higher expected profits

may be obtained in that case, but an unexpected result is obtained for the comparison of the

relation between profit standard deviation and expected profit, which is not contradictory

since minimizing CVaR is not equivalent to minimizing profit standard deviation.

6.3.5 Stability and average results

The results shown in subsections 6.3.1 through 6.3.4 have been obtained using one par-

ticular scenario tree generated. Yet, scenario trees are stochastic, as the solutions obtained

when building a scenario tree is a realization of a method in which stochastically gener-

ated initial solutions are used. Therefore, there is an inherent instability in the scenario
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FIGURE 6.13. Negative CVaR vs expected profit for the base case and for the case
allowing contracts to be taken at any time period
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FIGURE 6.14. Profit standard deviation vs expected profit for the base case and for
the case allowing contracts to be taken at any time period
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trees generated. The efficient frontier between expected profit and negative CVaR may be

seen in figure 6.15 and the relation between expected profit and profit standard deviation

in figure 6.16, for 30 scenario tree instances, together with their average curves. Figure

6.17 shows the change in the aggregated profit distribution (for the 30 tree instances) as

the risk aversion parameter changes. The justification for averaging results may be seen in

appendix D.
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FIGURE 6.15. Negative CVaR vs expected profit (for 30 scenario tree instances
and average curve)

6.3.6 Changing the correlation parameter

One of the main objectives of this thesis is to characterize the effects of the correlation

parameter over the relationship between expected profit and risk. In this subsection, the

sensibility of the relation between expected profit and risk with respect to changes in the

correlation parameter is analyzed. (The results for other parameters being changed are

shown in appendix C.)

Since the results obtained depend on the particular scenario tree generated, and hence

may be unstable, as it has been seen in 6.3.5, characterizing the change in the results with
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FIGURE 6.16. Profit standard deviation vs expected profit (for 30 scenario tree
instances and average curve)

respect to changes in the correlation parameter ρ is not as simple as generating one sce-

nario tree for each of several values of ρ and then obtaining for each of them the relation

between expected profit and risk. When this is done, not much is seen. Instead, for each

ρ = 0, 0.2, 0.4, 0.6, 0.8, 0.9999 a number of 30 scenario trees have been generated indepen-

dently and for each of these values of ρ average curves have been obtained.

Appendix D justifies that in the actual original problem (considering the original price

process instead of a scenario tree that approximates it), the expected profit in the risk neutral

case does not depend on ρ. Based on this fact, the average curves obtained for each value

of ρ are shifted so as to obtain their risk neutral points equal to their average over the 180

scenario trees generated. These adjusted average efficient frontier curves between expected

profit and risk may be seen in figures 6.18 and 6.19 for the six correlation values mentioned.

In this figures it may be seen how much more inconvenient it is to have high values of the

correlation parameter, since for a fixed level of CVaR the expected profit obtained for high

values of the correlation parameter is lower than the expected profit obtained for low values

of the correlation parameter.
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(a) Risk aversion parameter: 0.
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(b) Risk aversion parameter: 0.04.
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(c) Risk aversion parameter: 0.08.
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FIGURE 6.17. Aggregated profit histogram for different risk aversion parameters.
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FIGURE 6.18. Adjusted average negative CVaR vs adjusted average expected
profit for different values of the correlation parameter ρ
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FIGURE 6.19. Adjusted average profit standard deviation vs adjusted average ex-
pected profit for different values of the correlation parameter ρ
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VII. CONCLUSION

In this thesis, a medium term power portfolio optimization problem considering loca-

tional electricity prices and risk aversion for a power producer in a deregulated electric-

ity market has been modeled and solved using stochastic programming techniques. The

methodology consisted of three steps: 1) modeling the evolution of locational electricity

prices, 2) generating a scenario tree representative of the evolution of locational electricity

prices, and 3) developing, solving and testing a stochastic optimization problem. The main

contribution is to consider a generating company that holds generators in more than one lo-

cation of a deregulated electricity market, with each location having a particular locational

electricity price process. The model is centered in the possibility of transacting electricity

forward contracts and contracts for difference in the different locations, and also recom-

mends electricity transactions in locational spot markets and power production in generat-

ing units. Using the methodology presented, a power producer holding thermal generating

units in more than one location of a deregulated electricity market may maximize expected

profit in the medium term while keeping a regulated risk exposure.

The current work has extended the knowledge of methodologies that support decision

making for power producers considering contracts management and generation planning

in an integrated manner. It is important to remark that ignoring uncertainty in these deci-

sion making problems, and others that present such remarkable risks, may lead to highly

inconvenient solutions. The consideration of uncertainty within optimization models is of

upmost importance in many problems and stochastic programming has proven to be an

effective approach in this matter. Furthermore, one fundamental benefit of incorporating

uncertainty within optimization models is the possibility of assessing risk, from which this

thesis is only a particular example.

From the results obtained it can be concluded that the relation between locational elec-

tricity prices is relevant for power producers holding thermal generating units in more than

one location of a deregulated electricity market. Changing the correlation parameter of the

model presented for locational electricity prices significantly affected the efficient frontier

between expected profit and risk. As the correlation parameter decreases, so does risk, for
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fixed values of expected profit, as is intuitively expected from the reduction of risk asso-

ciated to the diversification of a portfolio known from financial theory. In the particular

application presented, changing the correlation parameter from 0 to 1 increased the profit

coefficient of variation (profit standard deviation divided by expected profit) in about 50%

when keeping expected profit constant: for the risk neutral case, with an expected profit of

29.64 [million US$], changing the correlation parameter from 0 to 1 increased the profit

coefficient of variation from 17.54% to 26.32%, and for a highly risk averse case with an

expected profit of 29.38 [million US$], changing the correlation parameter from 0 to 1 in-

creased the profit coefficient of variation from 8.51% to 13.27% (figure 6.19 depicts these

relations).

The current work could be extended in several directions. One future work perspective

is to increase the size of the problem: fundamentally to consider a longer time horizon. In

order to do this the scenario tree construction method developed has to be modified to ob-

tain a tractable nonlinear programming problem (it may be sufficient to change the bundle

structure of the tree), and specific optimization algorithms may have to be implemented so

as to solve the resulting equivalent deterministic optimization problem.

Another future work possibility is to incorporate details from technical generation as-

pects, in order to obtain a similar model in a shorter time horizon (for instance one month)

and with shorter time periods (for instance days). In such a case it would also be convenient

to use another locational electricity prices model and to appropriately modify the scenario

tree construction method implemented. Doing this would be useful for better understand-

ing the effects of the relation between locational electricity prices over the efficient frontier

between expected profit and risk, and over the decisions regarding electricity generation

and contracts planning.

Additionally, several extensions and variants of the power portfolio optimization model

presented could be developed. One alternative is to incorporate fuel prices as stochastic

variables correlated to locational electricity prices. In that case fuel derivatives and con-

tracts could be included into the decisions addressed by the model (such as take-or-pay
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contracts on natural gas or swing options). For instance, it is straightforward to implement

a case with one electricity price process (one location) and a related fuel price (such as nat-

ural gas), using the same stochastic process and the same scenario tree construction method

presented in the application of this thesis. Other related extension is to incorporate more

electricity derivatives (besides forwards and contracts for difference) such as options on

electricity and spread options on electricity and fuel prices.

As a final comment, this work has presented a particular application of operations

research in the electric industry. The high complexity of the decision making problems

present in this industry makes the discipline well suited for supporting those decisions, and

the high relevance of this industry for society makes the discipline not only important, but

essential, for making better decisions within it.
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A. MULTIVARIATE MEAN REVERTING DIFFUSION

This appendix presents the technical details of the electricity price model used in the

application of this thesis.

Consider the model:

logPi(t) = fi(t) +Xi(t),∀i = 1, ..., N ;

dXi(t) = −Xi(t)

λi
dt+ σidWi(t),∀i = 1, ..., N ;

E[dWi(t)dWj(t)] = ρijdt,∀i, j = 1, ..., N,

where Pi(t) represents (electricity) price (or any other component) at time t, fi(t) is a

deterministic component, and the X(t) process is a multivariate mean reverting diffusion

(or multivariate Ornstein-Uhlenbeck process), with guiding correlated Brownian motions

Wi(t), i = 1, ..., N . This model has been presented with N = 1 (section 3.2.1) and N = 2

(sections 3.3.1 and 6.2.1).

A.1 Statistical properties

The solution of the stochastic differential equation for Xi(t) is given by (see Oksendal

(2005), Meyer-Brandis & Tankov (2008)):

Xi(t) = Xi(s) exp (−t− s
λi

) + σi exp (− t

λi
)

∫ t

s

exp (
r

λi
)dWi(r), s < t,

where: ∫ t

s

exp (
r

λi
)dWi(r) ∼ N{0;

√∫ t

s

[exp (
r

λi
)]2dr},

with
√∫ t

s
[exp ( r

λi
)]2dr =

√
λi[exp ( 2t

λi
)−exp ( 2s

λi
)]

2
, and:

corr[

∫ t

s

exp (
r

λi
)dWi(r);

∫ t

s

exp (
r

λj
)dWj(r)] =

E[
∫ t
s

exp ( r
λi

)dWi(r)
∫ t
s

exp ( r
λj

)dWj(r)]√∫ t
s
[exp ( r

λi
)]2dr

√∫ t
s
[exp ( r

λj
)]2dr
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= ρij

∫ t
s

exp ( r
λi

) exp ( r
λj

)dr√∫ t
s
[exp ( r

λi
)]2dr

√∫ t
s
[exp ( r

λj
)]2dr

= ρij

λiλj
λi+λj

[1− exp (− (t−s)(λi+λj)
λiλj

)]√
λi
2

[1− exp (−2(t−s)
λi

)]
√

λj
2

[1− exp (−2(t−s)
λj

)]
.

Therefore, for s < t:

Xi(t)|Xi(s) ∼ N{Xi(s) exp−(
t− s
λi

);σi

√
λi
2

[1− exp (−2(t− s)
λi

)]},

with:

corr[Xi(t)|Xi(s);Xj(t)|Xj(s)] = ρij

λiλj
λi+λj

[1− exp (− (t−s)(λi+λj)
λiλj

)]√
λi
2

[1− exp (−2(t−s)
λi

)]
√

λj
2

[1− exp (−2(t−s)
λj

)]
.

and:

Cov[Xi(s);Xi(t)] = Cov[Xi(s);Xi(s) exp (−t− s
λi

) + σi exp (− t

λi
)

∫ t

s

exp (
r

λi
)dWi(r)]

= exp (−t− s
λi

)V ar[Xi(s)] + σi exp (− t

λi
)Cov[Xi(s);

∫ t

s

exp (
r

λi
)dWi(r)]

= exp (−t− s
λi

)V ar[Xi(s)].

Since logPi(t) = fi(t) +Xi(t):

Pi(t)|Pi(s) ∼ logN{fi(t)[logPi(s)−fi(s)] exp−(
t− s
λi

);σi

√
λi
2

[1− exp (−2(t− s)
λi

)]},

with:

corr[logPi(t)|P (s); logPj(t)|P (s)] = ρij

λiλj
λi+λj

[1− exp (− (t−s)(λi+λj)
λiλj

)]√
λi
2

[1− exp (−2(t−s)
λi

)]
√

λj
2

[1− exp (−2(t−s)
λj

)]
.

And because of the log-normal distribution properties, in particular, for t > 0:

E[Pi(t)] = exp [µi(t) +
σ2
i (t)

2
],
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√
V ar[Pi(t)] = exp [µi(t) +

σ2
i (t)

2
]
√

expσ2
i (t)− 1,

Skewness[Pi(t)] =
E[(Pi(t)− E[Pi(t)])

3]√
V ar[Pi(t)]

3 = [expσ2
i (t) + 2]

√
expσ2

i (t)− 1,

Kurtosis[Pi(t)] =
E[(Pi(t)− E[Pi(t)])

4]√
V ar[Pi(t)]

4 = exp 4σ2
i (t)+2 exp 3σ2

i (t)+3 exp 2σ2
i (t)−3,

Cov[Pi(t);Pj(t)] = exp [µi(t) + µj(t) +
σ2
i (t) + σ2

j (t)

2
][exp (ρij(t)σi(t)σj(t))− 1].

Assuming Pi(0) known and with:

µi(t) = fi(t) + [logPi(0)− fi(0)] exp (− t

λi
),

σi(t) = σi

√
λi
2

[1− exp (−2t

λi
)],

ρij(t) = ρij

λiλj
λi+λj

[1− exp (− t(λi+λj)

λiλj
)]√

λi
2

[1− exp (− 2t
λi

)]
√

λj
2

[1− exp (− 2t
λj

)]
.

A.2 Simulating trajectories

From the solution for X shown above, if time is discretized into {tk}nk=0 and 4tk =

tk − tk−1, then, with Xi(t0) = logPi(t0)− fi(t0) known:

Xi(tk) = Xi(tk−1) exp (−4tk
λi

) + σi

√
λi
2

[1− exp (−24tk
λi

)]εik, i = 1, ..., N ; k = 1, ..., n.

Where εik ∼ N{0; 1} with εik independent from εjl for k 6= l and:

corr[εik; ε
j
k] = ρij

λiλj
λi+λj

[1− exp (−4tk(λi+λj)
λiλj

)]√
λi
2

[1− exp (−24tk
λi

)]
√

λj
2

[1− exp (−24tk
λj

)]
.

With simulated trajectories for X , simulated trajectories for P can be obtained as:

Pi(tk) = exp[fi(tk) +Xi(tk)].

122



A.3 Parameter estimation for the deterministic component

A particular form must be chosen for the fi(t) component. For instance, fi(t) =

ai + bit + ci cos ( 2πt
365

) + di sin ( 2πt
365

) in order to contain a drift and an annual seasonality

(if time is measured in days). The parameters can then be obtained by means of a linear

regression using the data for logPi(t).

A.4 Parameter estimation for the Ornstein-Uhlenbeck component

Once fi(t) has been estimated, historical data for Xi(t) may be obtained from the

historical data of Pi(t) as Xi(t) = logPi(t) − fi(t). Assume the instants of the historical

data are given by {tk}nk=1, with 4tk = tk − tk−1 = 4t (constant) (historical data equally

spaced). Now notice that the model for X in a discrete-time approximation is:

Xi(tk) = φiXi(tk−1) + σ̃iε
i
k,

with

φi = exp (−4t
λi

),

σ̃i = σi

√
λi
2

[1− exp (−24t
λi

)],

and εik ∼ N{0; 1}, with εik independent from εjl for k 6= l, and

corr[εik; ε
j
k] = ρij

λiλj
λi+λj

[1− exp (−4tk(λi+λj)
λiλj

)]√
λi
2

[1− exp (−24tk
λi

)]
√

λj
2

[1− exp (−24tk
λj

)]
.

This corresponds to a multivariate AR(1) model (multivariate autoregressive model of order

1) (see Brockwell & Davis (1996)), from which φi can be estimated as:

φi = corr[Xi(tk);Xi(tk−1)] =

∑n
k=2[Xi(tk−1)− µi][Xi(tk)− µi]

w2
i

,

with:

µi =

∑n
k=1Xi(tk)

n
,wi =

√∑n
k=1[Xi(tk)− µi]2

n− 1
.
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And then:

λi = − 4t
log φi

.

Now, as the model may be written as: Xi(tk)− φiXi(tk−1) = σ̃iε
i
k, then σ̃i and ρij can

be estimated as:

σ̃i =

√∑n
k=2[Zi(tk)− δi]2

n− 1
,

ρij =

√
λi
2

[1− exp (−24t
λi

)]
√

λj
2

[1− exp (−24t
λj

)]

λiλj
λi+λj

[1− exp (−4t(λi+λj)
λiλj

)]
corr(Zi(tk);Zj(tk)),

with:

Zi(tk) = Xi(tk)− φiXi(tk−1),

δi =

∑n
k=2 Zi(tk)

n− 1
,

corr(Zi(tk);Zj(tk)) =

∑n
k=2[Zi(tk)− δi][Zj(tk)− δj]√∑n
k=2[Zi(tk)−δi]2

n−2

√∑n
k=2[Zj(tk)−δj ]2

n−2

.

Finally:

σi =
σ̃i√

λi
2

[1− exp (−24t
λi

)]
.

Observation: if the historical data are not equally spaced (i.e. 4tk is not constant)

then the parameters of the Ornstein-Uhlenbeck component may be estimated by maximum

likelihood through numerical optimization.
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B. CONDITIONAL VALUE AT RISK

This appendix is intended to explain conditional value at risk (CVaR) as a risk measure

and to explain how to model it within an optimization problem.

A very common risk measure is value at risk (VaR). If π is the profit distribution, then

VaR at a confidence level α, V aRα, is defined in this thesis as:

V aRα = max {x : P [π ≤ x] ≤ 1− α}

(i.e., V aRα is the α quantile of the profit distribution).

Because of VaR’s inability to distinguish between a possible loss that is slightly or far

greater than VaR, and because it violates the financial idea of diversification (it lacks sub-

additivity), CVaR is a risk metric widely used instead that over passes these drawbacks.

CVaR at a confidence level α, CV aRα, is defined in this thesis as:

CV aRα = E[π|π ≤ V aRα].

Which means that CV aRα is the expected value of profit given that profit is below V aRα.

Sections B.1 and B.2 present two different formulations of CVaR that may be used

within optimization models. The formulation used in the power portfolio optimization

model developed in chapter 5 is the one presented in section B.1.

B.1 Formulation 1

Assume there is a finite number of scenarios, 1, ..., S, each with a fixed associated

probability ps and a fixed profit πs. An approximation of CVaR can be computed as the

solution to the following optimization problem (Conejo et al. (2008)):

Max{ξ,ηs} ξ − 1
1−α

∑S
s=1 psηs (1)

s.t. ηs ≥ ξ − πs; ∀s = 1, ..., S. (2)

ηs ≥ 0;∀s = 1, ..., S. (3)
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This is explained in what follows. Consider π(s) such that the π(s) variables are an increas-

ing ordering of the πs variables, i.e., π(1) = min{πs}Ss=1, ..., π(S) = max{πs}Ss=1. And,

with p(s) and η(s) the respective ones according to π(s), i.e., if π(s) = πu then p(s) = pu and

η(s) = ηu. Now note that for every fixed ξ then ηs necessarily takes the value max(0, ξ−ηs),

because there is a maximization over a negative pondering of the ηs variables, and therefore

it can be assumed that ηs = max(0, ξ − πs), for every s, in order to maximize hereafter

only over ξ.

Now, if ξ < π(1), then ξ− 1
1−α

∑S
s=1 psηs = ξ− 1

1−α
∑S

s=1 ps×0 = ξ, that is increasing

in ξ, hence in the optimal solution ξ ≥ π(1); and if ξ > π(S), then ξ − 1
1−α

∑S
s=1 psηs =

ξ − 1
1−αξ + 1

1−α
∑S

s=1 psπs, which is decreasing in ξ because 1
1−α > 1, and hence in the

optimal solution ξ ≤ π(S).

Take n such that p(1) + ...+ p(n) ≤ 1− α < p(1) + ...+ p(n+1). Suppose that ξ = π(j)

for certain j. Then:

Ωj := ξ − 1

1− α

S∑
s=1

psηs = π(j) −
1

1− α

j∑
s=1

p(s)(π(j) − π(s))

= π(j)(1−
1

1− α

j∑
s=1

p(s)) +
1

1− α

j∑
s=1

p(s)π(s),

which implies that:

Ωj+1 − Ωj = (π(j+1) − π(j))(1−
1

1− α

j∑
s=1

p(s)).

Notice that in this last expression π(j+1) − π(j) ≥ 0 for every j, 1 − 1
1−α

∑j
s=1 p(s) ≥ 0

when j < n and 1− 1
1−α

∑j
s=1 p(s) ≤ 0 when j ≤ n+ 1. This means that Ωj is increasing

in j for j < n and decreasing in j for j > n. Therefore, ξ = π(n), which is exactly V aRα,

is an optimal solution.

All of these steps mean that the optimal value is: Ωn = π(n)(1 − 1
1−α

∑n
s=1 p(s)) +

1
1−α

∑n
s=1 p(s)π(s). This is an approximation of CVaR because

∑n
s=1 p(s) is approximately
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1 − α, and hence, πn(1 − 1
1−α

∑n
s=1 p(s)) is approximately 0 and 1

1−α
∑n

s=1 p(s)π(s) is ap-

proximately E[π|π ≤ V aRα] (because π(s) ≤ ξ = π(n) = V aRα,∀s = 1, ..., n, in the

optimal solution).

Observation: for using this formulation within an utility maximization optimization

problem, an objective function that is composed of the expected profit plus a risk aversion

parameter multiplied by CVaR is used. By solving the problem for different values of the

risk aversion parameter, a tradeoff curve between expected profit and CVaR is obtained.

Another way of incorporating the CVaR metric into the optimization problem is maximiz-

ing expected profit subject to a lower bound on CVaR.

B.2 Formulation 2

An alternative formulation, developed by the author, is shown in what follows. It is

an exact formulation of CVaR but it uses S binary variables and S + 1 linear variables,

and has much more computationally complicated constraints. In this case, CVaR will be

presented within a set of constraints, with CVaR explicitly constrained using a lower bound.

By changing the lower bound on CVaR a tradeoff curve between expected profit and CVaR

is obtained.

The variables necessary for the formulation are the binary variables us, s = 1, ..., S,

and the linear variables ξ and ds, s = 1, ..., S. The set of constraints that determine CVaR

correspond to: ∑S
s=1 us ≥ 1; (1)

1− α−max{s=1,...,S} ps ≤
∑S

s=1 psus ≤ 1− α; (2)

m1us ≤ πs − ξ ≤M1(1− us);∀s = 1, ..., S; (3)

m2us ≤ ds ≤M2us;∀s = 1, ..., S; (4)

m2(1− us) ≤ ds − πs ≤M2(1− us);∀s = 1, ..., S; (5)∑S
s=1 psds ≥ Ω

∑S
s=1 psus. (6)
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The variable ξ is VaR, and the variable us takes the value 1 if πs < ξ and the value 0

otherwise. This is enforced by constraints (3), with m1 sufficiently low (or negatively

high) and M1 sufficiently high.

The variable ds takes the value πs if us = 1 and 0 otherwise. This is enforced by

constraints (4) and (5), with m2 sufficiently low (or negatively high) and M2 sufficiently

high.

Constraints (2) ensure that the sum of the probabilities of the scenarios below ξ is close

to 1−α. This in turn forces ξ to be VaR. Constraint (1) is necessary to ensure that the sum

of those probabilities remains positive.

Finally, constraint (6) is equivalent to having Ω as a lower bound to CVaR.

B.3 Discussion

Formulation 1 is a linear formulation consisting of S+1 variables whereas formulation

2 is a mixed integer-linear formulation with S binary variables and S + 1 linear variables

that may be much harder computationally. Another drawback of Formulation 2 is that an

appropriate selection of the parameters M1,M2,m1,m2 may be difficult (in order to have a

reasonable timing for solving the resulting problem). The drawback of formulation 1 is that

only an approximation of CVaR is obtained, but if the number of scenarios is big enough

and max{ps}Ss=1 is a small number, then it is assured that the approximation is close (in the

application of this thesis the approximation is extremely close).

Finally, Formulation 1 allows incorporating CVaR into the objective function using a

risk aversion parameter, which seems more convenient to the author than incorporating a

constraint on CVaR using a lower bound, because taking any value of the risk aversion

parameter assures feasibility of the problem, whereas a lower bound on CVaR makes the

problem feasible only within certain ranges.
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C. CHANGING PARAMETERS

This appendix presents the results obtained for the application developed in chapter 6

when using different values of certain parameters.

C.1 Changing CVaR confidence (α)
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FIGURE C.1. Negative CVaR vs expected profit for different CVaR confidence values
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FIGURE C.2. Profit standard deviation vs expected profit for different CVaR con-
fidence values
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C.2 Changing the price of forward and CfD contracts (C)
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FIGURE C.3. Negative CVaR vs expected profit for different contracts cost param-
eter values
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Contracts cost parameter = 0.1%
Contracts cost parameter = 0.25%
Contracts cost parameter = 0.5%
Contracts cost parameter = 0.75%
Contracts cost parameter = 1%

FIGURE C.4. Profit standard deviation vs expected profit for different contracts
cost parameter values
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C.3 Changing the liquidity of forward contracts (f liq)
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Forwards liquidity parameter = 0 [MWh/h]
Forwards liquidity parameter = 5 [MWh/h]
Forwards liquidity parameter = 10 [MWh/h]
Forwards liquidity parameter = 15 [MWh/h]
Forwards liquidity parameter = 20 [MWh/h]
Forwards liquidity parameter = 25 [MWh/h]
Forwards liquidity parameter = 50 [MWh/h]
Forwards liquidity parameter = 100 [MWh/h]

FIGURE C.5. Negative CVaR vs expected profit for different forwards liquidity
parameter values and value 0 [US$/MWh] for the CfDs liquidity parameter

4 4.5 5 5.5 6 6.5 7 7.5 8
29.15

29.2

29.25

29.3

29.35

29.4

29.45

29.5

29.55

29.6

Profit standard deviation [US$ millions]

E
xp

ec
te

d 
pr

of
it 

[U
S

$ 
m

ill
io

ns
]

 

 

Forwards liquidity parameter = 0 [MWh/h]
Forwards liquidity parameter = 5 [MWh/h]
Forwards liquidity parameter = 10 [MWh/h]
Forwards liquidity parameter = 15 [MWh/h]
Forwards liquidity parameter = 20 [MWh/h]
Forwards liquidity parameter = 25 [MWh/h]
Forwards liquidity parameter = 50 [MWh/h]
Forwards liquidity parameter = 100 [MWh/h]

FIGURE C.6. Profit standard deviation vs expected profit for different forwards
liquidity parameter values and value 0 [US$/MWh] for the CfDs liquidity parame-
ter
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Forwards liquidity parameter = 0 [MWh/h]
Forwards liquidity parameter = 5 [MWh/h]
Forwards liquidity parameter = 10 [MWh/h]
Forwards liquidity parameter = 15 [MWh/h]
Forwards liquidity parameter = 20 [MWh/h]
Forwards liquidity parameter = 25 [MWh/h]
Forwards liquidity parameter = 50 [MWh/h]
Forwards liquidity parameter = 100 [MWh/h]

FIGURE C.7. Negative CVaR vs expected profit for different forwards liquidity
parameter values and value 100 [US$/MWh] for the CfDs liquidity parameter
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Forwards liquidity parameter = 0 [MWh/h]
Forwards liquidity parameter = 5 [MWh/h]
Forwards liquidity parameter = 10 [MWh/h]
Forwards liquidity parameter = 15 [MWh/h]
Forwards liquidity parameter = 20 [MWh/h]
Forwards liquidity parameter = 25 [MWh/h]
Forwards liquidity parameter = 50 [MWh/h]
Forwards liquidity parameter = 100 [MWh/h]

FIGURE C.8. Profit standard deviation vs expected profit for different forwards
liquidity parameter values and value 100 [US$/MWh] for the CfDs liquidity pa-
rameter
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C.4 Changing the liquidity of CfD contracts (gliq)
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CfDs liquidity parameter = 0 [MWh/h]
CfDs liquidity parameter = 5 [MWh/h]
CfDs liquidity parameter = 10 [MWh/h]
CfDs liquidity parameter = 15 [MWh/h]
CfDs liquidity parameter = 20 [MWh/h]
CfDs liquidity parameter = 25 [MWh/h]
CfDs liquidity parameter = 50 [MWh/h]
CfDs liquidity parameter = 100 [MWh/h]

FIGURE C.9. Negative CVaR vs expected profit for different CfDs liquidity pa-
rameter values and value 0 [US$/MWh] for the forwards liquidity parameter
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CfDs liquidity parameter = 0 [MWh/h]
CfDs liquidity parameter = 5 [MWh/h]
CfDs liquidity parameter = 10 [MWh/h]
CfDs liquidity parameter = 15 [MWh/h]
CfDs liquidity parameter = 20 [MWh/h]
CfDs liquidity parameter = 25 [MWh/h]
CfDs liquidity parameter = 50 [MWh/h]
CfDs liquidity parameter = 100 [MWh/h]

FIGURE C.10. Profit standard deviation vs expected profit for different CfDs liq-
uidity parameter values and value 0 [US$/MWh] for the forwards liquidity param-
eter

133



−26.5 −26 −25.5 −25 −24.5 −24 −23.5 −23 −22.5 −22 −21.5
29.25

29.3

29.35

29.4

29.45

29.5

29.55

29.6

29.65

−CVaR [US$ millions]

E
xp

ec
te

d 
pr

of
it 

[U
S

$ 
m

ill
io

ns
]

 

 

CfDs liquidity parameter = 0 [MWh/h]
CfDs liquidity parameter = 5 [MWh/h]
CfDs liquidity parameter = 10 [MWh/h]
CfDs liquidity parameter = 15 [MWh/h]
CfDs liquidity parameter = 20 [MWh/h]
CfDs liquidity parameter = 25 [MWh/h]
CfDs liquidity parameter = 50 [MWh/h]
CfDs liquidity parameter = 100 [MWh/h]

FIGURE C.11. Negative CVaR vs expected profit for different CfDs liquidity pa-
rameter values and value 100 [US$/MWh] for the forwards liquidity parameter
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CfDs liquidity parameter = 0 [MWh/h]
CfDs liquidity parameter = 5 [MWh/h]
CfDs liquidity parameter = 10 [MWh/h]
CfDs liquidity parameter = 15 [MWh/h]
CfDs liquidity parameter = 20 [MWh/h]
CfDs liquidity parameter = 25 [MWh/h]
CfDs liquidity parameter = 50 [MWh/h]
CfDs liquidity parameter = 100 [MWh/h]

FIGURE C.12. Profit standard deviation vs expected profit for different CfDs liq-
uidity parameter values and value 100 [US$/MWh] for the forwards liquidity pa-
rameter
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C.5 Changing existent contractual positions (Dperhour)
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Parameter = 0 [MWh/h]
Parameter = 50 [MWh/h]
Parameter = 100 [MWh/h]
Parameter = 150 [MWh/h]
Parameter = 200 [MWh/h]
Parameter = 250 [MWh/h]

FIGURE C.13. Negative CVaR vs expected profit for different values of Dperhour

(the existent contractual positions parameter)
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Parameter = 0 [MWh/h]
Parameter = 50 [MWh/h]
Parameter = 100 [MWh/h]
Parameter = 150 [MWh/h]
Parameter = 200 [MWh/h]
Parameter = 250 [MWh/h]

FIGURE C.14. Profit standard deviation vs expected profit for different values of
Dperhour (the existent contractual positions parameter)
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C.6 Changing the maximum possible output of generators (xit)
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Parameter = 100 [MW]
Parameter = 150 [MW]
Parameter = 200 [MW]
Parameter = 250 [MW]
Parameter = 300 [MW]
Parameter = 350 [MW]

FIGURE C.15. Negative CVaR vs expected profit for different maximum generat-
ing capacities of generators
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Parameter = 100 [MW]
Parameter = 150 [MW]
Parameter = 200 [MW]
Parameter = 250 [MW]
Parameter = 300 [MW]
Parameter = 350 [MW]

FIGURE C.16. Profit standard deviation vs expected profit for different maximum
generating capacities of generators
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C.7 Changing the cost of generation (Cit)
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Cost = 40 [US$/MWh]
Cost = 50 [US$/MWh]
Cost = 60 [US$/MWh]
Cost = 70 [US$/MWh]
Cost = 80 [US$/MWh]

FIGURE C.17. Negative CVaR vs expected profit for different generation costs
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Cost = 40 [US$/MWh]
Cost = 50 [US$/MWh]
Cost = 60 [US$/MWh]
Cost = 70 [US$/MWh]
Cost = 80 [US$/MWh]

FIGURE C.18. Profit standard deviation vs expected profit for different generation costs
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C.8 Changing the relationship between on-peak and off-peak genera-

tion (Hik)
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Parameter = 0%
Parameter = 10%
Parameter = 20%
Parameter = 30%
Parameter = 40%
Parameter = 50%

FIGURE C.19. Negative CVaR vs expected profit for different values of Hik
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Parameter = 0%
Parameter = 10%
Parameter = 20%
Parameter = 30%
Parameter = 40%
Parameter = 50%

FIGURE C.20. Profit standard deviation vs expected profit for different values of Hik
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D. AVERAGING RESULTS

The scenario trees generated with the methodology presented in section 4.5 (and sub-

section 6.2.2) are stochastic, since they depend upon sampled initial solutions. Averaging

any type of observable (such as expected profit or a decision variable) from the results

obtained from many trees approximates the expected value of such observable on the prob-

ability space from which the scenario trees are obtained by the method. This means that

the average of an observable from many generated scenario trees can be seen as an ap-

proximate expected value of such observable given the particular method being used, or an

approximate expected value of such observable on the probability space that corresponds

to the particular scenario tree generation method used.

Section D.1 presents a result used in subsection 6.3.5 as aid for the analysis of the

effects of the correlation parameter ρ.

D.1 In the risk neutral case there is no dependency on the correlation

parameter

Assume γ = 0 and for simplicity that there are no contractual decisions involved (not

even existent contractual positions). Also assume that there are two locations and there is

one generating unit in every location. The actual original problem (considering the original

price process instead of a scenario tree that approximates it) corresponds (for this particular

case) to:

max{xltk(ω)}E[
∑L

l=1

∑T
t=1

∑K
k=1 xltk(ω)(βltkP

E
lt (ω)− Clt)] (1)

s.t. φtkxlt ≤ xltk(ω) ≤ φtkxlt, ∀l = 1, ..., L, ∀ω ∈ Ω,∀t = 1, ..., T,∀k = 1, ..., K; (2.1)

Hlk
xltk(ω
φtk
≤ xltµk (ω)

φtµk
,∀l = 1, ..., L, ∀ω ∈ Ω,∀t = 1, ..., T,∀k ∈ µHigh. (2.2)

Where ω represents one particular trajectory of the bivariate electricity price process (pro-

cess with a respective probability space that gives meaning to E in the objective function),
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PE
lt (ω) represents the adjusted monthly average electricity price at location l and time pe-

riod t under trajectory ω, and xltk(ω) is the decision variable that corresponds to the gen-

eration in the unit located in location l, in hour group k of time period t, under trajectory

ω.

Since the marginal distribution of electricity price at a certain location does not depend

on ρ, and the above problem only depends on these marginal distributions, then it can

be separated into L problems, each one for a specific location, because: i) E is a linear

functional, ii) the objective function components related to xltk(ω) only depend on the

marginal distribution of PE
lt (ω) (with l fixed), and iii) the set of constraints for xltk(ω) does

not depend on ω. Therefore, the optimal value (optimal expected profit) does not depend

on ρ.

This demonstration can be extended to the general problem so as to assume that in the

risk neutral case the expected profit in the actual original problem does not depend on ρ.
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E. POWER PORTFOLIO OPTIMIZATION MODEL VARIATIONS

This appendix presents two variations of the power portfolio optimization model shown

in chapter 5.

E.1 Model with specific available contracts

The model presented in chapter 5 assumes certain liquidity conditions and a particular

cost curve of forward contracts and contracts for difference (that intend to approximate

contractual availability conditions), and it is assumed that the delivery of these contracts

occurs in one particular hour group for each. In practice, however, a power producer may

know exactly what forward contracts, contracts for difference, and bilateral contracts are

available, and their respective time spans for delivery. In this section, a variation of the

model using the set of specific available contracts that exist is presented.

Besides the notation of chapter 5 (section 5.1), consider (replacing some components):

• N fB: number of available buying forward contracts.

• N fS: number of available selling forward contracts.

• NCfD: number of available contracts for difference.

• FB,deliveryb : set of time period-hour group pairs (t, k) corresponding to the deliv-

ery time span of buying forward contract b.

• FS,deliveryb : set of time period-hour group pairs (t, k) corresponding to the delivery

time span of selling forward contract b.

• Gdeliveryb : set of time period-hour group pairs (t, k) corresponding to the delivery

time span of contract for difference b.

• lfBb : location of buying forward contract b.

• lfSb : location of selling forward contract b.

• lCfD,1b : location in which electricity is delivered (sold) for contract for difference

b.

• lCfD,2b : location in which electricity is received (bought) for contract for differ-

ence b.
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• fBtkb: electricity [MWh] level of buying forward contract b at hour group k of time

period t.

• fStkb: electricity [MWh] level of selling forward contract b at hour group k of time

period t.

• gtkb: electricity [MWh] level of contract for difference b at hour group k of time

period t.

• CfB
b : electricity price [US$/MWh] for buying forward contract b.

• CfS
b : electricity price [US$/MWh] for buying forward contract b.

• CCfD
b : electricity price [US$/MWh] for contract for difference b.

• fBb : binary variable, 1 if buying forward contract b is signed, 0 if not.

• fSb : binary variable, 1 if selling forward contract b is signed, 0 if not.

• gb: binary variable, 1 if buying contract for difference b is signed, 0 if not.

The mathematical formulation of this problem is the following mixed-integer program:

max{xistk,elstk,fBb ,fSb ,gb,πs,ξ,ηs}
∑S

s=1 psπs + γ(ξ − 1
1−α

∑S
s=1 psηs) (1)

s.t. πs =
∑L

l=1

∑
t = 1T

∑K
k=1 elstkβltkP

E
lst −

∑I
i=1

∑T
t=1

∑K
k=1 xistkCit

+
∑NfS

b=1

∑
{(t,k)∈FS,deliveryb }C

fS
b f

S

tkbf
S
b −

∑NfB

b=1

∑
{(t,k)∈FB,deliveryb }C

fB
b f

B

tkbf
B
b

+
∑NCfD

b=1

∑
{(t,k)∈Gdeliveryb }C

CfD
b gtkbgb

+
∑L

l=1

∑T
t=1

∑K
k=1DltkP

D
ltk,∀s = 1, ..., S; (2)

φtkxit ≤ xistk ≤ φtkxit, ∀i = 1, ..., I,∀s = 1, ..., S, ∀t = 1, ..., T,∀k = 1, ..., K; (3.1)

fBb ∈ {0, 1},∀b = 1, ..., N fB; (3.2)

fSb ∈ {0, 1},∀b = 1, ..., N fS; (3.3)

gb ∈ {0, 1},∀b = 1, ..., NCfD; (3.4)∑
{i=1,...,I:ψi=l} xistk +

∑
{b=1,...,NfB :lfBb =l,(t,k)∈FB,deliveryb } f

B

tkbf
B
b

+
∑
{b=1,...,NCfD:lCfD,2b =l,(t,k)∈Gdeliveryb } gtkbgb

= elstk +Dltk +
∑
{b=1,...,NfS :lfSb =l,(t,k)∈FS,deliveryb } f

S

tkbf
B
b

+
∑
{b=1,...,NCfD:lCfD,1b =l,(t,k)∈Gdeliveryb } gtkbgb,
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∀l = 1, ..., L, ∀s = 1, ..., S, ∀t = 1, ..., T,∀k = 1, ..., K. (4)

Hik
xistk
φtk
≤ xistµk

φtµk
,∀i = 1, ..., I,∀s = 1, ..., S, ∀t = 1, ..., T,∀k ∈ µHigh; (5)

ηs ≥ ξ − πs,∀s = 1, ..., S; (6.1)

ηs ≥ 0,∀s = 1, ..., S; (6.2)

xis1tk = xis2tk,∀i = 1, ..., I,∀s1 = 1, ..., S, ∀t = 1, ..., T,∀s2 ∈ Bs1t,

∀k = 1, ..., K; (7.1)

els1tk = els2tk,∀l = 1, ..., L, ∀s1 = 1, ..., S, ∀t = 1, ..., T,∀s2 ∈ Bs1t,

∀k = 1, ..., K. (7.2)

E.2 Model allowing contracts to be taken at any time period

In the model presented in chapter 5 forward and CfD contracts can only be signed

previously to the initial time period (in time period “0”). In this section, an extension of

the model incorporating the possibility of signing forward and CfD contracts at later time

periods is presented. This variant has been implemented and the results are compared to

the model of chapter 5 in subsection 6.3.4. The computational time used for solving this

problem is about 20 times the computational time used for solving the original problem

(using the data presented in chapter 6).

Besides the notation of chapter 5 (section 5.1), consider (replacing some components):

• fBlukb: maximum electricity [MWh] that can be bought at location l through buying

block b of forward contracts spanning hour group k of time period u.

• fSlukb: maximum electricity [MWh] that can be sold at location l through selling

block b of forward contracts spanning hour group k of time period u.

• CfB
lstukb: electricity price [US$/MWh] under scenario s at time period t and lo-

cation l, for buying block b of forward contract spanning hour group k of time

period u.

• CfS
lstukb: electricity price [US$/MWh] under scenario s at time period t and loca-

tion l, for selling block b of forward contract spanning hour group k of time period

u.
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• glmukb: maximum electricity [MWh] that can be contracted through block b of

CfD contracts spanning hour group k of time period u and equivalent to selling

electricity at location l and buying at location m.

• CCfD
lmstukb: electricity price [US$/MWh] under scenario s at time period t, for block

b of CfD contract spanning hour group k of time period u and equivalent to selling

electricity at location l and buying at location m.

• fBlstukb: electricity [MWh] bought under scenario s at time period t and location l

through buying block b of forward contract with delivery in hour group k of time

period u.

• fSlstukb: electricity [MWh] sold under scenario s at time period t and location l

through selling block b of forward contract with delivery in hour group k of time

period u.

• glmstukb: electricity [MWh] contracted under scenario s at time period t, through

block b of CfD contract spanning hour group k of time period u and equivalent to

selling electricity at location l and buying at location m.

The mathematical formulation of this problem is:

max{xistk,elstk,fBltkb,fSltkb,glmtkb,πs,ξ,ηs}
∑S

s=1 psπs + γ(ξ − 1
1−α

∑S
s=1 psηs) (1)

s.t. πs =
∑L

l=1

∑
t = 1T

∑K
k=1 elstkβltkP

E
lst −

∑I
i=1

∑T
t=1

∑K
k=1 xistkCit

+
∑L

l=1

∑T−1
t=0

∑T
u=t+1

∑K
k=1

∑Nf

b=1(C
fS
lstukbf

S
lstukb − C

fB
lstukbf

B
lstukb)

+
∑L

l=1

∑
{m=1,...,L:m6=l}

∑T−1
t=0

∑T
u=t+1

∑K
k=1

∑NCfD

b=1 CCfD
lmstukbglmstukb

+
∑L

l=1

∑T
t=1

∑K
k=1DltkP

D
ltk,∀s = 1, ..., S; (2)

φtkxit ≤ xistk ≤ φtkxit, ∀i = 1, ..., I,∀s = 1, ..., S, ∀t = 1, ..., T,∀k = 1, ..., K; (3.1)

0 ≤ fBlstukb ≤ f
B

lukb,∀l = 1, ..., L, ∀s = 1, ..., S, ∀t = 0, ..., T − 1,

∀u = t+ 1, ..., T,∀k = 1, ..., K,∀b = 1, ..., N f ; (3.2)

0 ≤ fSlstukb ≤ f
S

lukb,∀l = 1, ..., L, ∀s = 1, ..., S, ∀t = 0, ..., T − 1,

∀u = t+ 1, ..., T,∀k = 1, ..., K,∀b = 1, ..., N f ; (3.3)
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0 ≤ glmstukb ≤ glmukb, ∀l = 1, ..., L, ∀m = 1, ..., L : m 6= l,∀s = 1, ..., S,

∀t = 0, ..., T − 1,∀u = t+ 1, ..., T,∀k = 1, ..., K,∀b = 1, ..., NCfD; (3.4)∑
{i=1,...,I:ψi=l} xistk +

∑t−1
r=0

∑Nf

b=1 f
B
lsrtkb

+
∑S

v=1

∑t−1
r=0

∑
{m=1,...,L:m 6=l}

∑NCfD

b=1 gmlvrtkb

= elstk +Dltk +
∑Nf

b=1 f
S
ltkb +

∑
{m=1,...,L:m 6=l}

∑NCfD

b=1 glmstukb,

∀l = 1, ..., L, ∀s = 1, ..., S, ∀t = 1, ..., T,∀k = 1, ..., K. (4)

Hik
xistk
φtk
≤ xistµk

φtµk
,∀i = 1, ..., I,∀s = 1, ..., S, ∀t = 1, ..., T,∀k ∈ µHigh; (5)

ηs ≥ ξ − πs,∀s = 1, ..., S; (6.1)

ηs ≥ 0,∀s = 1, ..., S; (6.2)

xis1tk = xis2tk,∀i = 1, ..., I,∀s1 = 1, ..., S, ∀t = 1, ..., T,∀s2 ∈ Bs1t,

∀k = 1, ..., K; (7.1)

els1tk = els2tk,∀l = 1, ..., L, ∀s1 = 1, ..., S, ∀t = 1, ..., T,∀s2 ∈ Bs1t,

∀k = 1, ..., K. (7.2)

fBlstukb = fBlvtukb, ∀l = 1, ..., L, ∀s = 1, ..., S, ∀t = 0, ..., T − 1,∀v ∈ Bst,

∀u = t+ 1, ..., T,∀k = 1, ..., K,∀b = 1, ..., N f ; (7.3)

fSlstukb = fSlvtukb, ∀l = 1, ..., L, ∀s = 1, ..., S, ∀t = 0, ..., T − 1,∀v ∈ Bst,

∀u = t+ 1, ..., T,∀k = 1, ..., K,∀b = 1, ..., N f ; (7.4)

gBlmstukb = gBlmvtukb,∀l = 1, ..., L, ∀m = 1, ..., L : m 6= l,∀s = 1, ..., S,

∀t = 0, ..., T − 1,∀v ∈ Bst,∀u = t+ 1, ..., T,∀k = 1, ..., K,∀b = 1, ..., N f . (7.5)
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