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ABSTRACT

4d flow imaging is a Magnetic Resonance (MR) technique that enables the acquisition

of a three-dimensional velocity field. The amount of measurements needed renders the

technique sensitive to patient movement and precludes its wide adoption due to increased

examination times. To accelerate the acquisition process, parallel imaging techniques are

currently used and undersampled reconstruction techniques, inspired by Compressed Sens-

ing, have been recently proposed. For the latter, flow incompressibility has been suggested

as a method to find a sparsifying domain for the velocity. However, since the acquisition

process in 4d flow is non-linear in the variables of interest, magnitude and phase, some

questions remain open about how to effectively solve the resulting non-convex optimiza-

tion problem.

In this work, we address the second point by presenting a novel approach for recon-

structing flow images from undersampled phase contrast data that directly handles parallel

acquisitions. The approach is based on a Gauss-Newton trust region method that is able

to update the optimization variables simultaneously at each iteration and decreases the ob-

jective value at each iteration. In addition, we propose to use Total Variation (TV) as a

regularizer for the phase. We show this regularizer is able to control the size of the diver-

gence of the velocity and reduces the fluctuations on the recovered phase due to noise. Our

results show the proposed method has several advantages: it converges faster, allows for

simultaneous recovery and coil sensitivity estimation with minimal increase in computa-

tional burden, produces lower reconstruction errors, and is able to control the divergence

of the recovered velocity field.

Keywords: Magnetic Resonance Imaging, Phase Contrast, Compressed Sensing, Non-

Convex Optimization.
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RESUMEN

4d flow es una técnica de adquisición de imágenes por Resonancia Magnética que per-

mite obtener mapas tridimensionales de velocidades en el tiempo. Dada la cantidad de

datos requeridos en este tipo de adquisiciones y el movimiento natural de los pacientes

durante el examen, se generan distorsiones que reducen la calidad de los resultados. Esto

provoca a su vez que la tecnología no esté ampliamente adoptada en el ámbito clínico. Los

métodos más utilizados en la actualidad para acelerar los exámenes consisten en técnicas

de adquisiciones de imágenes paralelas. Métodos de adquisición submuestreada de Reso-

nancia Magnética han tomado relevancia en los últimos años, inspirados en la técnica de

Compressed Sensing. Para este último, la incompresibilidad del flujo escaneado ha sido

propuesto como una métrica de raleza de la velocidad, pero dado que el proceso de adquisi-

ción en 4d flow es no-lineal en las variables de interés (magnitud y fase compleja), no es

posible aplicar directamente los métodos de reconstrucción tradicionales.

En este trabajo, proponemos un método para reconstruir imágenes de flujo a partir de

datos submuestrados basado en un algoritmo de Gauss-Newton con región de confianza que

permite actualizar de forma conjunta todas las variables del problema en cada iteración.

Además, proponemos usar Variación Total como métrica de regularización para la fase.

Mostramos que este regularizador es capaz de controlar la magnitud de la divergencia del

campo de velocidad resultante, reduciendo además grandes cambios en la fase producto de

ruido. Los resultados muestran que el método propuesto presenta una mejor convergencia

que otros similares, con bajos errores de reconstrucción y controla la divergencia del campo

de velocidades reconstruido.

Palabras Claves: Resonancia Magnética, Contraste de Fase, Compressed Sensing, Opti-

mización No-Convexa.
x



1. INTRODUCTION

1.1. Magnetic Resonance Imaging

Magnetic Resonance (MR) Imaging is one of the most important biomedical exams

providing a high range and flexibility over the types of images it can generate while being

virtually risk-free when compared to other imaging technology such as X-rays or computed

tomography images.

Images generated by a MR scanner show the density of spins rotating at a specific

frequency known as the Larmor Frequency which depends on intrinsic parameters of the

scanner and the type of precessing atoms.

The image formation process has three distinct stages which will be briefly explained

in the following sections:

(i) Spin excitation

(ii) Signal generation

(iii) Image reconstruction

1.1.1. Spin Excitation and Signal Generation

The basic theory of MRI has its origins on the magnetic nature of moving charges

applied to the spinning nuclei of hydrogen atoms. While these usually rotate freely in

normal conditions, they become aligned when under a constant magnetic field, though out

of phase with respect to each other. Naturally, when a magnetic field is applied in the

transversal direction of the previous one, rotating at the angular frequency of the spinning

protons, their phase become synchronized. Thich is usually known as the in-phase state.

As moving charges induce a variable magnetic field, one can detect these variations

using receiver coils and recover the spin density of the system as this value is proportional

to the amplitude of these variations. This is the basis of the nuclear magnetic resonance
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phenomenon, discovered independently by Purcell and Bloch in the 1940s (Purcell, Tor-

rey, & Pound, 1946; Bloch, 1946) and was the precursor for image formation using the

technique.

This does not allow us yet to form an image of the spin density, as no spatial information

is being encoded on the received signal. A solution for this was proposed by Lauterbur in

1973 (Lauterbur, 1973) using linear magnetic field gradients, that can cause the spinning

particles to acquire a linear de-phase following the direction of such gradients. When

precisely calibrated, it can effectively encode spatial information from the excited spins and

therefore enable image formation from the acquired signal. For a more detailed explanation

see (Liang & Lauterbur, 1999).

The MR signal equation (1.1) follows from solving the Bloch equation (Bloch, 1946)

that models the magnetization of particles under a magnetic field

S(t) =

∫
ρ(~x)e−iγ

∫ t
0 ~x· ~G(ξ)dξd~x (1.1)

where ρ(~x) is the magnetization field, ~G(t) is the time-dependant gradient field, and γ is

the gyromagnetic constant which depends only on the scanned medium.

One can also rewrite (1.1) with a spatio-temporal reparametrization of S into Ŝ with

the following change of variable

~k(t) =
γ

2π

∫ t

0

~G(ξ)dξ (1.2)

Which yields the standard k-space equation for MR signal generation:

Ŝ(~k) =

∫
ρ(~x)e−i2π~x~kd~x = F{ρ(~x)}(~k) (1.3)

Where F corresponds to the Fourier transform operator.
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It is worth noting that by changing the gradient shape and duration, different trajectories

are transversed in the k-space while performing the data acquisition, thus allowing a great

amount of versatility when trying to optimize for good reconstruction procedures.

1.1.2. Image Reconstruction

Eq. (1.3) lets us write the basic reconstruction scheme for magnetic resonance imaging

using the inverse Fourier transform:

ρ(~x) = F−1
{
Ŝ(~k)

}
(~x) (1.4)

As the Fourier transform is orthogonal, it can be easily shown that the solution of (1.4)

is equivalent to the solution of the following minimization problem:

ρ̂ = argmin
ρ

1

2
‖y −Fρ‖22 (1.5)

where y is the original k-space data. When y is assumed to have additive random noise

the reconstruction procedure could yield to suboptimal point. To avoid overfitting when

reconstructing the noisy image, the reconstruction procedure in (1.5) can be extended to a

regularized minimization:

ρ̂ = argmin
ρ

R(ρ) (1.6)

s.t.
1

2
‖y −Fρ‖22 ≤ ε (1.7)

where R is a regularizer for the signal ρ. One common choice is the `2 norm, which leads

into the well known Tikhonov regularized linear least squares for which a closed-form

solution exists. While it is a computationally efficient problem to solve, it is not directly

3



clear why one would like to minimize the `2 norm of an image, so several other regularizers

are usually used, that both enable a fast and efficient computation of the solution, and

enforce properties expected on reconstructed images.

One large family of such regularizers, are the ones that enforce sparsity of the recon-

structed signal in some known transformation space. This is closely related to the com-

pressibility of a signal, where highly compressible signals have a low dimensionality rep-

resentation (when compared to the dimensionality of the signal itself) and thus can be

expressed in a sparse way. A more detailed discussion can be found in (Donoho, 2006a;

Candès, 2014).

The wavelet transform (Jaffard, Meyer, & Ryan, 2001) is a frequently used space for

both signal compression and as a regularizer for several image processing algorithms. It is

a well known property that the wavelet transform of natural looking images1 have a fast de-

caying wavelet transform and a rather sparse one too. This leads to an image reconstruction

scheme using R(ρ) = ‖Ψρ‖`1 , where ψ is the wavelet transform operator, as the regular-

ization function, which penalizes non-zero components of Ψρ. Now, although the wavelet

transform is linear, and the `1 norm is convex, the reconstruction procedure is not as direct

as the Tikhonov regularized one (which is both convex and differentiable over the domain)

as it is not differentiable in the origin. However, several optimization algorithms exist to

efficiently solve this issue, such as the Fast Iterative Shrinkage-Thresholding Algorithm

(FISTA) (Beck & Teboulle, 2009).

1.2. Phase Contrast

Equation (1.1) makes several assumptions over both the scanned volume and the whole

acquision scheme regarding the magentic field homogeneity, noise level, motion induced

distortions, and several others. One relevant assumption that is often not met is the static

1Although there is no precise definition of what a natural looking image is, it could be argued that it is
not needed as it comes from collective common sense, and that medical images fall comfortably into this
category.
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nature of the magnetization field ρ(~x). Being the signal equation time-dependent, having

a moving object produces distortions that are not easily accounted for in the reconstruction

stage and is currently an area of high research interest. Nevertheless, the fact that moving

particles produce a known distortion can be used in favour of more refined data when

choosing specific acquisition sequences.

We can extend (1.1) so that ρ is now a function of both space and time such that each

point in space has a given constant velocity. This can be defined as

ρ(~x, t) = ρ0(~x+ t~v(~x)) (1.8)

By directly replacing the temporal magnetization (1.8) into the signal equation (1.1) we get

something equivalent to

S(t) =

∫
ρ(~x) exp

{
−iγ

∫ t

0

~G(ξ) · (~x+ ~v(x)ξ)dξ

}
d~x (1.9)

=

∫
ρ(~x) exp

{
−iγ

(
~x ·

∫ t

0

~G(ξ)dξ + ~v(x) ·
∫ t

0

ξ ~G)dξ

)}
d~x (1.10)

Now, if ~G(t) is chosen such that its first moment is constant, (i.e.
∫
ξ ~G(ξ)dξ = ~C), for

example in bipolar gradients, then Eq. (1.9) can be further reduced to

S(t) =

∫
ρ(~x) exp

{
−iγ~v(x) · ~C

}
exp

{
−iγ~x ·

∫ t

0

~G(ξ)dξ

}
d~x

=

∫
ρ(~x) exp

{
−iγ~v(x) · ~C

}
exp

{
−i2π~x · ~k

}
d~x

= F
{
ρ(~x) exp{−iγ~v(x) · ~C}

}
(~k)

So it turns out that the velocity information of the scanned volume is encoded as a

complex phase shift of the reconstructed signal. It is worth noting that ~C is usually chosen

5



to be constant in all directions and equal to
π

2γvenc
for a constant venc, such that γ~v · ~C ∈

[−π/2, π/2] when v ∈ [−venc, venc]. If this constraint is not met, then aliasing artifacts

appear in the reconstructed velocity. The venc parameter is controlled by changing the

shape and duration of the bipolar gradients and trades off between high velocity to noise

ratio and velocity aliasing.

Because the magnetic field is not completely homogeneous, the magnetization ρ is

usually not real and has a complex phase component that would affect the reconstructed

velocity. To solve this, Moran developed the phase contrast technique (Moran, 1982) where

two acquisitions are made changing the sign of the bipolar gradient, which changes the sign

of the constant venc.

This produces two reconstructed complex signals z1 and z2 that encode the velocities

with opposing directions with an additive unknown field map φ0

z1 = ρei(φ0+
π
2

v
venc

)

z2 = ρei(φ0−π
2

v
venc

)

Therefore, the velocity can be reconstructed by subtracting the complex phase of the

reconstructed signals.

v =
venc
π

(∠z1 − ∠z2) (1.11)

For a more detailed explanation of the technique see (Markl, 2005).
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1.2.1. 4D Flow

The 4D flow technique (Markl, Frydrychowicz, Kozerke, Hope, & Wieben, 2012) con-

sists in acquiring a temporal three dimensional velocity field of a volume by performing a

phase contrast acquisition for every encoding direction. For this, four aquisitions are done

for each spatio-temporal point in order to reconstruct the velocities using Eq. (1.11).

1.3. Compressed Sensing

In the last decade, the magnetic resonance research area took interest in one specific

method of signal reconstruction based on the ideas of Donoho and Candès for undersam-

pled reconstruction techniques (Donoho, 2006a; Candès, Romberg, & Tao, 2006). In their

work they proved that arbitrary signals with certain degree of sparsity in a known projec-

tion space can be reconstructed with a subset of the original information provided some

properties over this subset. When applied to magnetic resonance acquisition, the theoreti-

cal undersampling factor that can achieve almost perfect reconstruction is well beyond the

Nyquist limit that classic signal analysis provides.

The technique gives a formal and precise analysis of the solution of problems where it

is known to belong to a sparse subset of the domain. As an intuitive example we present

the following canonical problem known as the Least Absolute Shrinkage and Selection

Operator (LASSO) (Tibshirani, 1996).

argmin
x

1

2
‖Ax− b‖2 + λ ‖x‖1 (1.12)

Notice that while sparsity should, in the most strict way, be penalized by the `0 norm,

it was proven in (Donoho, 2006b; Candes, Romberg, & Tao, 2005), that both solutions are

equivalent with high probability.
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Magnetic Resonance images are known to be sparse in a variety of spaces, the iden-

tity being a common one. Others include finite differences, the wavelet domain and total

variation.

As such, we can rewrite the reconstruction scheme in (1.4) to include a `1 penalization

as

ρ̂ := argmin
ρ

1

2
‖y −FΩρ‖2 + λ ‖Ψρ‖1 (1.13)

Notice that now the transform used in the data consistency operator is an undersampled

Fourier transform defined as FΩ = UΩF , where UΩ is a diagonal matrix with 1’s on the

indices of points that are sampled and 0’s otherwise.

It is worth noting several properties of (1.13) that allow for efficient and precise recon-

struction such as

Convexity: Having a convex objective function allows one to use several convex optimiza-

tion algorithms with known convergence rate and error estimates.

Undersampled Reconstruction: By having regularizers that enforce known properties of

the reconstructed signal, it is possible to used highly undersampled data, which

in turn would allow for faster acquisitions.

Sparse Representation: The `1 penalization allows one to use several sparsifying trans-

forms known to be well suited for magnetic resonance reconstruction. This can

effectively reduce the noise of the reconstructed image and improve the recon-

struction quality.

As stated in Section 1.1.2, several algorithms have been implemented to efficiently

solve such problems. While initially least-squared minimizing routines were used (such as

the conjugate gradient method (Hestenes & Stiefel, 1952)), better performance and con-

vergence can be achieved with specially crafted algorithms for convex optimization with

8



non-smooth prox-capable (Parikh & Boyd, 2014) terms (such as the `1 norm). These al-

gorithms include the well known Nesterov’s proximal point method (Nesterov, 1983) and

Beck and Teboulle’s fast version of Nesterov’s method FISTA (Beck & Teboulle, 2009).

1.4. Numerical Optimization

While most of equations and problems presented in this document and in the literature

are proposed with continuous signals and transforms, they are usually implemented in a

discretized way resulting in numerical algorithms that require specific data manipulation

and fine tuning to make use of the desired properties of the problems.

For this specific formulation, several optimization techniques and algorithms are used,

which are presented in the following sections.

1.4.1. Convex Optimization

A function f : RN → R is said to be convex if the following property holds for every

x, y ∈ RN and every 0 ≤ t ≤ 1

f(tx+ (1− t)y) < tf(x) + (1− t)f(y)

It can be easily proven that if f is continuous over a compact setΩ ∈ RN then f reaches

a minimum x? ∈ Ω and, if f is strictly convex, that minimum is unique. Furthermore, if f

is differentiable, then x? is the limit of a sequence xk that only uses local information of f

in xk.

For example xk := xk−1 − δ∇f(xk−1) corresponds to the well known steepest de-

scent algorithm, which if f is convex and differentiable, can get arbitrarily close to x?, i.e

limk→∞ xk = x?.

Several other algorithms have similar properties and are able to use different assump-

tions over the objective function to further improve convergence and overall performance.

9



Proximal algorithms (Parikh & Boyd, 2014), for example, assume functions of the form

f(x) = g(x) + h(x) where g, h are convex functions, g has continuous derivative over its

domain, and h is non-differentiable function for which its prox proxh(x, λ) defined by

proxh(x, λ) = argmin
y

h(y) +
1

2λ
‖x− y‖22

can be efficiently calculated. These functions include the `1 norm, for which its prox op-

erator corresponds to a soft threshold around λ and indicator functions where their prox

correspond to orthogonal projections over the respective set (Parikh & Boyd, 2014).

One family of such algorithms, and perhaps the most well known, is the FISTA (Beck

& Teboulle, 2009) that allows a prox-capable term to be included in the objective function,

thus functions such as `1 can be effectively used in minimization problems.

1.4.2. Trust Region Problem

A known approach to non-convex optimization that uses the better understood struc-

ture of convex functions consists on building approximate convex local models around a

sequence of iterates, which are found by finding minimums of these local models.

Many decisions are to be made when designing a trust-region algorithm, as the local

model construction, size and shape of the trust-region and point acceptance criteria. All of

these, while crucial to the performance of the algorithm, are very well documented in the

literature (Conn, Gould, & Toint, 2000) and several known algorithms exist to find such

parameters (Nocedal & Wright, 2006).

If F is a non-convex function, the trust-region procedure can be defined as

xk+1 := argmin
x

T (xk,x)≤ρk

F̂xk
(x) (1.14)
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where F̂x is some convex local approximation of F around xk and T (xk, x), ρk define

the trust-region shape and size around xk. For example, a common implementation is to

use a first order approximation of F , i.e.

F̂xk
(x) = F (xk) + 〈∇F (xk), (x− xk)〉 (1.15)

and the `2 norm as the trust-region shape, i.e.

Txk
(x) = ‖x− xk‖2 . (1.16)

The size of the trust-region can be updated at each iteration to ensure both a sufficiently

good approximation of the true objective function, and a step size that allows a good con-

vergence rate.
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2. GAUSS-NEWTON TRUST REGION ALGORITHM FOR UNDERSAMPLED

MR FLOW IMAGES
2.1. Introduction

4d flow imaging (Markl et al., 2012; Uribe et al., 2009) is a Magnetic Resonance (MR)

technique that enables the acquisition of a three-dimensional velocity field. This is achieved

by encoding the components of the velocity along three orthogonal directions in the com-

plex phase of the obtained image. Unfortunately, the amount of measurements needed to

recover the velocity field is substantial, increasing the data acquisition time. This renders

the technique sensitive to patient movement and precludes its wide adoption. Consequently,

the problem of accelerating 4d flow data acquisition has garnered significant attention in

recent years.

One important breakthrough in the area of accelerated acquisition was the development

of parallel imaging (Sodickson & Manning, 1997; Pruessmann, Weiger, Scheidegger, &

Boesiger, 1999). In this technique, multiple reception coils with known sensitivities are

used, increasing the effective measurements from separate overlapping spatial volumes,

allowing a reduction in acquisition times. Since its introduction, several methods have

been proposed to increase image quality in parallel imaging (Griswold et al., 2002; Lustig

& Pauly, 2010) and today it is a widely used strategy to accelerate the acquisition of 4d

flow data.

Another acceleration technique developed in the past decade relies on exact recovery

from undersampled data. By enforcing known structural properties over the reconstructed

image, it can be hypothesized that only a fraction of data is necessary to recover the whole

image. This idea is rigorously formulated by the theory of Compressed Sensing (Candès

et al., 2006; Donoho, 2006a) which was used for the first time for undersampled MR data

reconstruction in the work of Lustig et al (Lustig, Donoho, & Pauly, 2007). They show

that reconstruction from highly undersampled data—far below the Nyquist rate—can be

achieved without compromising image quality. Compressed Sensing relies on the fact that

12



the data acquisition process is linear and one of its features is that the reconstruction in-

volves solving a convex optimization problem.

In contrast with parallel imaging, Compressed Sensing is not readily applicable to ac-

celerate 4d flow as the data acquisition process is non-linear—the velocity is encoded in the

complex phase, and the resulting reconstruction problem is non-convex. In addition, it is

not a priori evident which structure should be enforced in the complex phase. To overcome

this, several approaches have been proposed in the literature.

One of them uses Compressed Sensing separately for the undersampled data acquired

for each encoding direction, a method we call frame-by-frame Compressed Sensing. Then,

the magnitude and complex phase can be obtained from the reconstructed complex images

associated to each encoding direction (Kwak et al., 2013). The drawback of this approach

is that it does not exploit the fact that the magnitude should be the same across encoding

directions. This information can be enforced in order to improve reconstruction accuracy

or increase undersampling rates.

Another approach consists in reconstructing the magnitude and phase data (Zhao, Noll,

Nielsen, & Fessler, 2012) by explicitly considering them as variables in a non-convex opti-

mization problem. Along this line, it has also been proposed to enforce structure separately

for the the magnitude and phase data, such as sparsity in the wavelet domain and flow in-

compressibility (Santelli et al., 2016) respectively—enforcing flow incompressibility can

be thought as applying a sparsifying transform: the divergence must be zero. Although the

techniques show promising results, the approach to solve the resulting non-convex problem

commonly uses (block) coordinate descent—that is, to perform alternating minimization

on one variable, magnitude or phase, while leaving the other fixed. However, this algorithm

has some drawbacks, as it does not exploit the effect that both the magnitude and phase in-

formation have on data consistency, potentially slowing down convergence and leading

to undesirable local minima. These drawbacks become more noticeable when attempt-

ing to simultaneously recover the magnitude, phase, and coil sensitivities. In addition,

the methods proposed to control the divergence of the recovered field, for instance using
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divergence-free wavelets (Deriaz & Perrier, 2006) or finite element methods (Mura et al.,

2016), increase the computational burden of solving the optimization problem.

In this work we focus on a different strategy to solve the non-convex optimization prob-

lem that results from 4d flow acquisition using a trust-region method (Nocedal & Wright,

2006; Conn et al., 2000). In particular, magnitude data, complex phase data, and coil sen-

sitivities are treated as variables, and they are jointly optimized by the solver. Our results

show our method converges faster than coordinate descent methods, and incurs in sig-

nificantly smaller errors than recovering each encoding direction separately. In addition,

instead of using divergence-based regularizers, we show that using a Total Variation (TV)

regularizer has a similar effect without the computational burden associated to divergence-

based regularizers.

2.2. Theory

In this section we discuss the theoretical framework underlying our method. Although

our methods are readily applicable both to 2D or 3D applications, we will focus on pre-

senting the 2D case to simplify the exposition; nevertheless we show results for 2D and

3D cases. Before proceeding we introduce the notation that will be used throughout. We

will use standard typeface to denote scalars, boldface to denote vectors or matrices, and

italics to denote operators. The symbol F denotes the (unitary) Fourier transform, and

FΩ denotes the restriction of the Fourier transform to those frequencies belonging to Ω; in

each case, the domain of the transform will be implied by the context. The symbol � will

denote the Hadamard product of vectors or matrices, i.e., x�y is the vector resulting from

computing the entry-wise products of the components of x and y. We denote as exp{ix}

the vector with k-th entry given by eixk , and as |x| the vector with k-th entry given by

|xk|. All these operations are defined analogously for matrices. In some cases, we will use

functional notation to indicate the value of a matrix at any given pixel or voxel. Therefore,

Z(x) represents the entry of the array Z associated to the position x, and v(x) represents

the vector of the array v associated to the position x.
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2.2.1. Phase contrast

In a phase contrast acquisition one measures the number of spins that were excited by

a bipolar gradient and moved out of a voxel along a prescribed direction—the so called

encoding direction. The motion of the spins induce a complex phase shift proportional to

their speed along the encoding direction.

When a full acquisition is performed for each encoding direction, we recover np com-

plex images. If the acquisition process is assumed to be instantaneous, distortionless, and

has infinite precision, the np magnitude images are the same for any encoding direction,

and the information about the velocity field is encoded in the changes across the np com-

plex phase images. In particular, the velocity field can be typically recovered by taking

linear combinations of the phase images (Pelc, Bernstein, Shimakawa, & Glover, 1991).

This leads to the following mathematical model. Let m and Φp be the nx × ny real

matrices representing the magnitude image and the phase image for the p-th acquisition

respectively. The corresponding complex image is then given by zp = m � exp{iΦp} .

If parallel acquisition is performed with nc coils, we let Sc be the nx × ny real matrix

representing the sensitivity of the c-th coil—the justification for assuming real-valued sen-

sitivities will be discussed below. In this case, the c-th coil acquires data corresponding

to the complex image Zp,c = Sc �m � exp{iΦp} for the p-th encoding direction. This

clearly reduces to a single-coil acquisition if nc = 1 and S1 is a matrix with all its entries

equal to one. The model becomes

Zp,c = Sc �m� exp{iΦp} . (2.1)

To simplify notation, throughout our work we will denote Z the collection {Zp,c}, and let

Φ and S be defined similarly.

For known complex coil sensitivities, we can reduce the problem to the above by writing

Sc = |Sc| � exp{iΘc} and observing that

Zp,c = |Sc| �m� exp{i(Φp +Θc)} .
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Therefore, the effect is a coil-dependent translation of the phase Φp which, as we will see,

can easily handled by the method we will develop for (2.1). If the sensitivities are un-

known, even under the simplifying assumptions we have made, the model defined by (2.1)

is invariant to some transformations of S, m and Φ and, as a consequence, it is not identi-

fiable. In other words, it is not possible to uniquely characterize (S,Φ,m) from Z. This

can be readily seen from the trivial case np = nc = nx = ny = 1 for which

z = sm e{iφ} = sm e{i(φ+ 2kπ)} = (−s)m e{i(φ+ kπ)} = s(−m) e{i(φ+ kπ)}

for any integer k. The list above is not exhaustive. Nevertheless, it illustrates the degrees

of freedom we have to account for when attempting to find the tuple (S,m,Φ) from Z. In

addition, this trivial example helps us illustrate the effect of assuming unknown complex

sensitivities. In this case there is a degree of freedom in the solution corresponding to

an exchange between the phase in the coil sensitivity with the phase in the image and

vice versa, implying that changes in the phase of the coil sensitivity can be misinterpreted

as changes in velocity and vice versa. Accounting for these effects is fundamental when

assessing the source of potential artifacts in the recovered tuple (S,m,Φ).

To mitigate this problem, we can remove the degrees of freedom by explicitly imposing

that S,m ≥ 0. In this work, we will not impose this restriction, but we will assume

throughout that the tuple (S,m,Φ) is real.

2.2.2. Data acquisition

In a full acquisition we obtain the entries of the nx × ny complex matrix

Y 0
p,c = F(Zp,c) = F(Sc �m� exp{iΦp} ),

for each one of the nc coils, and for each one of the np encoding directions. Let Ω(p) be the

undersampling pattern for the p-th encoding direction, and let mp the number of samples

acquired for the p-th encoding direction, i.e., mp = |Ω(p)|. Then the data acquired at the
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c-th coil for the p-th encoding direction corresponds to the entries of the mp × 1 vector

Y 0
p,c = FΩ(p)(Zp,c) = FΩ(p)(Sc �m� exp{iΦp} ). (2.2)

In general, the acquired measurements will be corrupted by noise which can be assumed

to be additive and Gaussian. The measured data becomes

Yp,c ∼ N (Y 0
p,c, σ

2Imp) (2.3)

where σ2 is the noise variance, assumed to be known and independent for each coil and

encoding direction. This leads us to define the non-linear map T by the identities

Y = T (S,m,Φ) ⇐⇒

Yp,c = Tp,c(S,m,Φ)

:= FΩ(p)(Sc �m� exp{iΦp} ).

where Y is defined analogously as Z. This map is smooth, and although the map is non-

linear, it is linear on its first and second variables, but not jointly. This fact will play a key

role in the implementation of our recovery procedure. For future reference, we write the

explicit expressions for its differential. The proof can be found in Appendix A.

Proposition 2.2.1. The differential of T at (S,m,Φ) is characterized by the expres-

sions

dTp,c|(S,m,Φ)(δS, δm, δΦ) =

FΩ(p)(δSc �m� exp{iΦp} )+

FΩ(p)(Sc � δm� exp{iΦp} )+

iFΩ(p)(Sc �m� exp{iΦp} � δΦp)
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for p = 1, . . . , np and c = 1, . . . , nc. Similarly, its adjoint is given by

dT ∗
p,c|(S,m,Φ)(y) =


exp{−iΦp} �m�F∗

Ω(p)(y)

Sc � exp{−iΦp} � F∗
Ω(p)(y)

−iSc �m� exp{−iΦp} � F∗
Ω(p)(y)


for p = 1, . . . , np and c = 1, . . . , nc.

2.2.3. Existing reconstruction methods

To avoid dealing with (2.1), one of the first approaches proposed in the literature was

to consider Zp,c = Sc � Xp where Xp is now a nx × ny complex array. Typically Zp,c

has a sparse representation if Xp does, as the coil sensitivities are smooth functions of the

spatial variable. Inspired by Compressed Sensing (Candès et al., 2006), one might recover

each Zp,c by solving the convex problem

min
Z

1

2σ2
‖Yp,c −FΩ(p)(Z)‖22 + λ ‖Ψ(Z)‖1 , (2.4)

i.e., the Least Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996),

where Ψ is a suitable sparsifying transform and λ is a user-selected regularization param-

eter. If we let Z?
p,c be the optimal solution to the above, we can attempt to recover S, m

and Φ from the relations

|Z?
p,c| = |Sc| �m and Z?

p,c = |Z?
p,c| � exp{i(Φp +Θc)} . (2.5)

From these relations there are several ways in which one could estimate the magnitudes

and phases—applying linear least-squares being the most common (Bydder, Larkman, &

Hajnal, 2002). We call this approach frame-by-frame Compressed Sensing. Observe (2.5)

implies |Z?
p,c| = |Z?

p′,c| for p 6= p′. This condition can be checked directly, and we have

found it does hold for real data (see Fig. 2.1). This suggests it is reasonable to exploit this

redundancy in the data, by considering S, m and Φ independently in order to improve

recovery of the velocity field or increase undersampling rates.
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(a) |Z1,c| (b) |Z2,c| (c) |Z3,c| (d) |Z4,c|

(e) Average image
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Figure 2.1. Magnitude images for different encoding directions of one of
the in-vivo data sets, which are noticeably similar and are assumed to be
constant in the reconstruction procedure. A low valued noise-like standard
deviation of the normalized magnitudes can be also appreciated which fur-
ther confirms the constant magnitude assumption.

2.2.4. Divergence-free velocity fields

Aside from exploiting the conditions in (2.5) it has also been proposed to exploit the

physical constraints on the velocity field. In particular, it has been proposed that blood can

be modeled as an incompressible fluid, from where it follows its divergence should be zero.

Let x denote the position of a pixel in the image, e.g., a pair (i, j) of indices, and let

Φ(x) =
[
Φ1(x) . . . Φnp(x)

]t
be the vector field that associates to x the vector of np phases. The velocity at x is charac-

terized by

v(x) = BΦ(x)
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where B is a 2×np velocity encoding matrix. The divergence of the velocity field is given

by

divv = trace(BDΦ)

where DΦ is the differential of the field. For a given w we can write

〈w, divv〉 =
∑

x
w(x) divv(x)

=
∑

x
trace(w(x)BDΦ(x))

=:
∑

x
〈w(x)Bt, DΦ(x)〉

=: 〈wBt, DΦ〉,

where wBt is the field that associates to each pixel x the np × 2 matrix w(x)Bt. For such

fields we can define the `p/`q-norm for 1 ≤ p, q <∞ as

‖A‖p,q =
∑

x

(∑
i

(∑
j
Aij(x)

p
)q/p

)1/q

,

for 1 ≤ p <∞ and q = ∞ as

‖A‖p,∞ =
∑

x
maxi

(∑
j
Aij(x)

p
)1/p

.

Using Hölder’s inequality and by the definition of the Total Variation seminorm we see that

〈w, divv〉 ≤ ‖wBt‖∗2,1‖DΦ‖2,1

= ‖wBt‖∗2,1
∑

p
‖Φp‖TV,

where ‖ · ‖∗2,1 denotes the dual norm. In this case, it is well-known that ‖ · ‖∗2,1 = ‖ ·

‖2,∞ (Hardy, Littlewood, & Pólya, 1952). The above indicates that any norm on the di-

vergence is essentially controlled by the TV seminorm of the phases. To be concrete, to

control the `p-norm of the divergence, it suffices to consider

‖ divv‖p ≤ sup
‖w‖q≤1

‖wBt‖2,∞︸ ︷︷ ︸
:=Cp(B)

∑
p
‖Φp‖TV (2.6)
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where 1/p + 1/q = 1. The constant involved can be easily computed for popular choices

of values for p. In fact, for the simple 4-point encoding scheme (Pelc et al., 1991), the

encoding matrix becomes

B =


−1 1 0 0

−1 0 1 0

−1 0 0 1


and Cp(B) =

√
2(nxny)

1/p whereas for balanced 4-point encoding we have

B =
1

2


−1 −1 1 1

−1 1 −1 1

−1 1 1 −1


and Cp(B) = (

√
3/2)(nxny)

1/p. It follows that the smallest constant is obtained for simple

4-point encoding and p = ∞. In this case

‖ divv‖∞ ≤
√
2
∑

p
‖Φp‖TV.

2.2.5. Recovery procedure

One of the main tools to address the recovery problem is to use variational methods,

i.e., to find a minimizer of

min
(S,m,Φ)

F (Y ,S,m,Φ) (2.7)

for some suitable objective function F . Typically, the objective can be decomposed as the

sum of a data consistency function, and a regularizer, which promotes structural properties

in the solution. This is clearly the case in (2.4). Given the noise model (2.3) we use the so

called loss function

L(Y ,S,m,Φ) =
1

2σ2
‖Y − T (S,m,Φ)‖22

:=
1

2σ2

∑
p,c

‖Yp,c − Tp,c(Sc,m,Φp)‖22 . (2.8)

to enforce data consistency.
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To motivate our choice of regularizer, we consider the following structural properties

we promote in the solution:

– Sparse representation of m: There is extensive literature providing empirical evidence

for the sparsity of medical images in the wavelet domain (Lustig et al., 2007). For this

reason, we consider the regularizer

Rm(m) = ‖Ψ(m)‖1 (2.9)

where Ψ is the Daubechies-4 wavelet transform of m.

– Smoothness of the coil sensitivities: As coil sensitivity maps are an approximation of the

receptive field of an antenna that follows the Biot-Savart law with a quadratic decay over an

homogenous field, we assume them to have a certain degree of smoothness. We promote

this by the following regularizer

Rs(S) =
1

2

∑
c
‖∇Sc‖22,2 , (2.10)

i.e., the sum of the `2-norm squared of the gradient of the coil sensitivities at each point.

– Phase: As mentioned before, we will consider using the TV seminorm to regularize the

phase for each encoding direction. Consequently,

Rφ(Φ) =
∑

p
‖Φp‖TV. (2.11)

Therefore, we propose the regularizer

R(S,m,Φ) = λmRm(m) + λφRφ(Φ) + λsRs(S), (2.12)

where the parameters λm, λs, λφ ≥ 0 are selected by the user (see the discussion in Sec-

tion 2.3.2). The objective function then becomes

F (Y ,S,m,Φ) = L(Y ,S,m,Φ) +R(S,m,Φ), (2.13)
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where only the data consistency term is non-convex, as the regularizers are convex func-

tions. Consequently, we propose the following recovery procedure

(S?,m?,Φ?) ∈ argmin
(S,m,Φ)

F (Y ,S,m,Φ)

where we have used the inclusion symbol instead of an equality sign to emphasize the po-

tential existence of multiple minimizers (see the discussion in Section 2.2.1). Furthermore,

since the objective (2.13) is non-convex, it is not clear whether we can find any global min-

imizer in practice, although this is not a necessary condition for an effective reconstruction.

We defer the discussion of these issues to Section 2.3.3 below.

2.3. Methods

2.3.1. Optimization algorithm

A popular approach to solve the non-convex optimization problem (2.7) is to use a

method akin to coordinate descent (Sun et al., 2017; Santelli et al., 2016). In this approach,

one generates iterates by optimizing over one of the variables S, m or Φ while leaving the

remaining two fixed. This technique is particularly attractive when minimizing over S or

m as the resulting problem is convex. Unfortunately, this approach can be inefficient, as

we only change one variable at the time and it is unclear with how much precision one

should optimize over S and m. As a consequence, convergence can be slow.

Although non-convex, the objective in (2.13) has structural properties that can be ex-

ploited to solve (2.7) efficiently. Concretely, the objective is the sum of convex functions

composed with smooth non-linear operators; the regularizer in (2.13) is convex whereas

the data consistency term is the composition of a strongly convex function with a non-linear

smooth map. Solving optimization problems with non-convex objectives of this form has

attracted significant attention in recent years.

We propose to use a Gauss-Newton trust region method (Lewis & Wright, 2016; Burke

& Ferris, 1995) to solve (2.7). In this method, we generate a sequence of iterates {(S(n),
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m(n),Φ(n))} and radii {ρ(n)} as follows: at each iterate (S(n),m(n),Φ(n)) we consider the

convex model (2.15) and we let the candidate for next iterate be the optimal solution to the

convex optimization problem

minimize
(δS,δm,δΦ)

Mn(δS, δm, δΦ)

subject to ‖(δS, δm, δΦ)‖2 ≤ ρ(n).

(2.14)

Strategies for accepting or rejecting this new iterate and finding the next trust-region ra-

dius ρ(n+1) are well-documented in the literature on trust-region solvers (Nocedal & Wright,

2006). In addition, the iterate obtained by solving (2.14) can be used to obtain a descent

direction for the objective in (2.13) and linesearch (Nocedal & Wright, 2006) can be per-

formed to improve the convergence of the method.

The advantage of this approach is that we can use accelerated proximal methods to

solve the trust-region problem (2.14), ensuring it can be done efficiently. Furthermore, in

using (2.15) one expects to capture curvature information about the objective, from where

it follows that the iterates generated by this method should outperform those generated by

coordinate descent (see Fig. 2.2)

2.3.2. Implementation

Although the convex functions do not need to be smooth, to simplify the implemen-

tation we used the Moreau (or Moreau-Yosida) envelope (Moreau, 1965) of the `1-norm

in (2.9) and the `1/`2-norm in (2.11) with smoothing parameter 10−3 instead of the ex-

plicit non-smooth functions. This allowed the trust region problem (2.14) to be solved

Mn(δS, δm, δΦ) :=
1

2σ2

∥∥∥Y − T (S(n),m(n),Φ(n))− dT |(S(n),m(n),Φ(n))(δS, δm, δΦ)
∥∥∥2

2

+R(δS + S(n), δm+m(n), δΦ+Φ(n)) (2.15)
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Figure 2.2. Comparison between reconstructed aortas using a coordinate
descent algorithm (2.2b) and the proposed algorithm (2.2c) after the same
number of iterations for each one. Notice that the number of iterations of
the proposed algorithms accounts for both the convex sub problems iteration
and the major trust region problems iterations (70 and 60 in this case). All
images were normalized and share the color scale.

using FISTA (Beck & Teboulle, 2009). The maximum number of iterations for this algo-

rithm was 100, and the Lipschitz constant for the trust region problem was estimated using

the backtracking method outlined in (Beck & Teboulle, 2009).

The strategy for choosing the radii and accepting or rejecting the solution to the trust

region problem (2.14) can be found in Algorithm 4.1 in (Nocedal & Wright, 2006). The
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initial radius was 10 with a minimum and maximum value of 10−2 and 103 respectively. In

addition, when the solution was accepted, linesearch was performed using the difference

between the new and old iterates as the search direction. Since the Moreau envelopes are

differentiable, we were able to use Algorithm 3.5 in (Nocedal & Wright, 2006) to perform

linesearch over the iterates.

The regularization parameters used in the final implementation were λm = 103; λφ =

2 · 105; λS = 3 · 106

As mentioned earlier, the constraintsS,m ≥ 0 are not enforced. This leads to potential

artifacts where the reconstructed phase shifts in factors of π at the points where the mag-

nitude or the coil sensitivities are negative. Nevertheless, this artifacts are easily corrected

by unwrapping the reconstructed phase images and by the fact that the velocities depend on

the differences between the phases and not their absolute values (Herráez, Burton, Lalor,

& Gdeisat, 2002).

The algorithm was implemented in the Python programming language using the numpy

library (Walt, Colbert, & Varoquaux, 2011), with some parts written in C using the FFTW

library (Frigo & Johnson, 2005) to improve its performance.

2.3.3. Initial Point

As stated in Section 2.2.5, the initial point for the numerical solver plays a key role in

the recovered variables. In fact, from Proposition 2.2.1 it is clear that selecting all variables

equal to zero yields a stationary point to (2.7). For this reason, several initial points were

tested.

When both the sensitivities and an estimate Z?
p,c of the complex image for the c-th coil

and p-th direction are known, we can estimate the magnitude and phase as follows. First,
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the magnitude estimate is

m(0) =
1

ncnp

nc∑
c=1

np∑
p=1

|Z?
p,c| and Φ(0)

p = ∠
nc∑
c=1

Z?
p,c,

where ∠ denotes the complex phase of its argument. The methods used to obtain the

estimates Z?
p,c were the following.

(i) The zero-filling or minimum-energy estimate assumes the unobserved data is equal to

zero and applies an inverse Fourier transform, i.e., Z?
p,c = F∗

Ω(p)(yp,c).

(ii) The LASSO estimate is obtained by the procedure described in Section 2.2.3. In other

words, Z?
p,c is the optimal solution to the LASSO problem in (2.4) with data yp,c.

(iii) The zero-velocity estimate assumes there is no movement in the image, and that the

magnitude is a constant equal to one. In other words, Φ(0)
p = 0 and m(0) = 1.

For each one of these initialization strategies, when the coil sensitivities were being simul-

taneously estimated, they were assumed to be constant and equal to one.

2.3.4. Sensitivity Estimation

While coil sensitivities could be estimated and treated as known for the proposed ap-

proach, this did not cause any significant improvement on the resulting image, and slowed

down convergence. To test this, coil sensitivities were estimated using the method in (Uecker

et al., 2014) with the implementation in (Uecker & Lustig, n.d.).

2.3.5. Numerical Phantom

A three-dimensional numerical phantom was developed to test the algorithm perfor-

mance with known ground truth data. It is defined as a bent pipe with laminar flow from

a fixed velocity profile (see Figs. 2.3a and 2.3b). A Womersley flow model (Womersley,

1955) was used as the profile for an approximated cardiac flow.
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(a) Womersley profile (b) Vertical velocity

Figure 2.3. Numerical Flow Phantom

A maximum velocity value of 250cm/s was set and the maximum velocity frame was

used for the experiments.

2.3.6. In Vivo Experiments

Fully-sampled data from five healthy subjects were acquired on a 1.5T MR Philips

Achieva Scanner (Best, The Netherlands) using a 4D flow scan in a single sagittal slice of

the aorta with parameters FOV = 230× 23 mm2, res = 2.5× 2.5 mm2 TR/TE = 5/3 ms,

venc = 200 cm/s, with a five-channel cardiac coil.

2.3.7. Error Metrics and Divergence

Two different error metrics were used to evaluate the performance of the proposed

method relative to the fully sampled reconstructed velocity field. These aim to quantify

the errors in magnitude, and in direction between the recovered velocity field v and fully-

sampled velocity field v0 over a given region of interest (ROI) denoted by R.
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(i) The mean directional error quantifies the difference between the directions of the re-

covered and fully-sampled velocity fields over a ROI. It is defined as

MDE =
1

|R|
∑
x∈R

(
1− |v(x) · v0(x)|

‖v(x)‖2‖v0(x)‖2

)
. (2.16)

(ii) The normalized root mean square error quantifies the difference between the mag-

nitudes of the recovered and fully-sampled velocity fields over a ROI. It is also used to

quantify the error between the reconstructed and fully-sampled magnitude images. It is

defined as

nRMSEv =

√∑
x∈R(‖v(x)‖2 − ‖v0(x)‖2)2∑

x∈R ‖v0(x)‖22
. (2.17)

The ROI was chosen to be within the boundary of the vessels in the scanned volume.

This choice reduces noise artifacts due to complex phase noise on low magnitude areas.

Additionally the divergence of the resulting velocities for the phantom data was esti-

mated using central finite differences to test the performance of the different algorithms.

2.3.8. Numerical Experiments

For both phantom and in vivo data, the error incurred by the proposed method was

compared both against a frame-by-frame Compressed Sensing reconstruction with the `1-

norm regularization of the wavelet coefficients of the complex images, and a minimum `2-

norm reconstruction. In both cases, the undersampling patterns for different acceleration

factors were randomly generated using a variable density distribution that fully samples

the region around the center of the k-space.

2.4. Results

2.4.1. Convergence

In Fig. 2.2 we show the result of solving the reconstruction problem using coordinate

descent and using the proposed approach for one of the in-vivo data sets. In Fig. 2.2a we
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(a) Zero-velocity (b) Minimum-energy (c) LASSO estimate

Figure 2.4. Comparison between different initialization points on the re-
construction algorithm for one of the in-vivo datasets and an acceleration
factor of 4. The same number of iterations and regularization parameters
were used for each reconstruction. All images were normalized and share
the color scale.

observe that over 4000 iterations, our approach achieves an objective value that is about

50% lower than that achieved by coordinate descent. In Figs. 2.2b and 2.2c we see the

effect of the convergence in the recovered image. Our approach is able to recover most of

the qualitative features of the phase variable (see Fig. 2.2c), whereas the result obtained by

coordinate descent does not resolve the main features of the velocity image (see Fig. 2.2b).

2.4.2. Effect of the initial point

Empirical evidence obtained through several experiments suggests that the reconstruc-

tion obtained using the minimum-energy initial point (see Section 2.3.3) incurs the least

error when compared to the LASSO estimate, which generates substantial noise in low

magnitude points, and the zero-velocity estimate that takes longer to converge. This initial

point has the additional advantage of having a low computational cost. Fig. 2.4 shows the

resulting recovered phase for the same number of iterations for different initial points. The

high variance in the performance regarding the initial point is most likely a consequence

of the lack of convexity of the model.
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(a) Ground Truth (b) Sensitivities as
known values

(c) Sensitivities as
variables

Figure 2.5. Comparison between assuming known coil sensitivities and us-
ing them as optimization variables. Notice the inaccuracies shown in green
circles due to non-convergent areas. All images were normalized and share
the color scale.

2.4.3. Sensitivity Estimation

Using the sensitivity as a known value did not improve the quality of the reconstructed

velocity field and reduced the convergence of the algorithm. This could be explained due to

inaccuracies in the estimated coil sensitivities and phase inhomogeneties of the scanner’s

magnetic field. Fig. 2.5 shows an example of the resulting velocity after the same number of

iterations using known and variable sensitivities. It can be seen in the highlighted areas that

the resulting velocity field with estimated sensitivities presents inaccuracies that usually

appear in non-convergent points in the optimization process.

2.4.4. Reconstruction quality

The errors incurred by the proposed approach for increasingly large acceleration factors

over the phantom data are shown in Fig. 2.6. Magnitude errors stay below 4.5% for all

acceleration factors up to 6, and directional errors are mostly negligible for the tested data.

Fig. 2.7 compares the proposed method with the frame-by-frame Compressed Sensing and

the minimum-energy reconstruction. It can be seen that the proposed method performs

substantially better than the other two methods in both metrics. One interesting fact is that

while the Compressed Sensing reconstruction shows lower errors in the velocity magnitude

when compared to the minimum-energy reconstruction, it performs poorly in the directional
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Figure 2.6. Error for different acceleration factors on the phantom data

error metrics when compared to the other methods. This result is consistent with the fact

that a frame-by-frame reconstruction does not use information about the whole system and

may incur in errors when using the differences between the reconstructed phases. In other

words, in the Compressed Sensing procedure, no further properties are enforced over the

reconstructed phases other than data consistency.
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Figure 2.7. Comparison of the proposed Gauss-Newton Trust-Region
method (GN-TR), Compressed Sensing (CS) and Minimum Energy (ME)
reconstructions

In Fig. 2.8a we see that the divergence of the velocity field reconstructed with the pro-

posed approach is relatively small. On the other hand, in Fig. 2.8b we see that using frame-

by-frame Compressed Sensing results in significantly larger values, by a factor of 10, for
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(a) GN-TR (b) CS (c) ME

Figure 2.8. Divergence of the resulting velocity fields for different recon-
struction algorithms.

Figure 2.9. Reconstructed velocities of the phantom data for different ac-
celeration rates. Magnitude of the velocity fields are shown

the divergence of the reconstructed velocity field. This shows that using the total-variation

seminorm effectively controls the size of the divergence in the reconstructed velocity field,

while producing smaller reconstruction errors, as discussed in Section 2.4.4.

Fig. 2.9 compares the reconstructed velocity magnitude for several acceleration rates

on the phantom data. While the quality of the reconstructed velocity fields gets degraded

for higher acceleration rates, the error measurements are kept low as shown in Fig. 2.6b.

Fig. 2.10 shows the foot-head velocity of an undersampled reconstruction for one of

the in vivo data sets. It can be appreciated that structural information is correctly preserved

in the undersampled reconstruction.

While errors generally remain low in the region of interest, areas in the boundary of

vessels or with significant distortions due to motion do present higher velocity and magni-

tude errors.
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(a) Fully Sampled (b) GN-TR

(c) CS (d) ME

Figure 2.10. Comparison between a fully sampled and different undersam-
pled reconstruction algorithms in a foot-head velocity of an aorta using 25%
of the acquired data.
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2.5. Discussion

We have propose a novel method for the acceleration of 4D flow images, which has

distinctive advantages as we discussed next:

(i) A Gauss-Newton Trust Region method: The 4d flow data acquisition process leads to

a non-convex optimization problem that nonetheless has structure that can be exploited,

namely, the objective is a sum of convex functions composed with smooth non-linear maps.

This kind of problem is amenable to a Gauss-Newton trust region method, which considers

at each major iteration a convex model which has to be minimized over a convex set. This

allows us to use standard convex solvers to solve the trust region problem, while being able

to leverage convergence results from trust region algorithms even when the objective might

be non-smooth. In addition, our results show this method converges in practice faster than

coordinate descent methods, and has the advantage of being a descent method, i.e., at each

major iteration the algorithm decreases the objective value, ensuring the stationary point

one obtains is the closest one to the initial point. This contrasts with the use of proximal

methods directly on the non-convex problem, which generate sequences of iterates that

may not decrease the objective value at each iteration.

(ii) Joint magnitude, phase and coil sensitivity reconstruction: Our approach has the ad-

vantage of modifying all the optimization variables at the same time without increasing

the computational cost over coordinate descent methods. This allows us to easily perform

joint reconstruction of the magnitude and phase, along with coil sensitivity estimation.

Our results show that estimating the coil sensitivities while reconstructing the magnitude

and phase images achieves a lower reconstruction error than simply using sensitivities es-

timated by standard method

(iii) Total-variation and divergence regularization: As mentioned in the introduction, flow

incompressibility has been proposed as a structural property that can be promoted on the

recovered velocity field. In practice, this reduces to penalizing the divergence of the recov-

ered velocity field, which can be thought as a sparsifying transform for the phase. Instead

of using the divergence directly, we propose to simply use the total-variation norm of the
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phase. The reason for this is three-fold: (i) the total-variation norm controls the size of the

divergence; (ii) computing the total-variation is computationally less demanding than com-

puting the divergence using methods proposed in the literature (Deriaz & Perrier, 2006);

(iii) the total-variation norm effectively removes the spurious fluctuations in the phase ob-

served in practice. Our results show that the total-variation is an effective regularizer for

4d flow recovery problems.

Despite the advantages discussed above, our methodology also suffers from some lim-

itations. First is the computational cost for a large 4D flow data sets. The number of

variables in the problem, which depends directly on the size of the volume being recon-

structed, is the most significant factor in the algorithm’s execution speed, ranging from a

few minutes for small two dimensional problems to up to 4 hours for the largest phantom

experiments. We observe that if the volume has N pixels, with np encoding directions

and nc coils, the number of variables involved is of the order of N(np + nc + 1). Fur-

ther research can be done into the formulation of the optimization problem by introducing

auxiliary variables to build a convex relaxation of the original problem. This could benefit

from convex optimization theory to improve the convergence of the algorithms. Second,

we only test our algorithm in phantoms and in five volunteers, future work will apply our

method to more volunteers or patients, in this work our purpose was to introduce the theory

and its implementation.
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3. CONCLUSIONS

Experimental results with the proposed method show it is possible to achieve 6-fold

acceleration without incurring in significant error in the recovered velocity. The recon-

struction technique shows that it is possible to jointly recover the optimization variables

without compromising the reconstruction quality or the convergence of the algorithm.

The presented work provides a generalized method for non-linear magnetic resonance

imaging reconstruction that allows one to think that further improvements can be done to

improve the quality of undersampled data reconstruction for dynamic MR images.

Future research topics include building a convex relaxation formulation of the recon-

struction model, where the required problem is indirectly solved by using additional vari-

ables that map the non-convex model into a higher dimensional convex manifold. This

would allow a finer analysis on the convergence of the algorithms while maintaining, or

potentially improving, the reconstruction quality.

Other regularization functions could be considered to improve the quality of the recon-

struction that enforce known properties of the scanned region. One of such regularizers

that have been previously used is some norm of the divergence of the velocity field, which

assuming a non-compressible fluid, should be zero. While this could be considered a more

reliable physically model, preliminary tests using a finite differences approximation for

the divergence showed high numerical inestabilities that outweighted the benefits of the

physical correctness.

The use of total variation over the reconstructed complex phases turned out to be a very

convenient measure to control the divergence of the velocity field. This could use a deeper

analysis and testing to find well defined bounds relative to divergence that could shed some

light into new acquisition sequences to improve MR flow imaging.

The software itself that was developed to implement the recovery procedure and per-

form the documented experiments turned out to be a well featured optimization framework
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capable of working with several convez optimization algorithms and some non-convex

problems as well. It provides a great amount of flexibility to further extend the capabil-

ities of the problems it can solve, while retaining a compact and robust core focused on

efficiency. Further work is planned on improving the efficiency and ease of use of the

software for future applications.
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A. DIFFERENTIAL FOR THE MEASUREMENT MAP

As stated in Section 2.2.2, the components of the data consistency map T are non-linear

and defined as

Tp,c(S,m,Φ) = FΩ(p)(S �m� exp{iΦ} ).

Observe their form is independent of the coil. To find the differential for each of them, it

will be useful to write it as follows

dTp,c|(S,m,Φ)(δS, δm, δΦ) =DSTp,c|(S,m,Φ)(δS)+

DmTp,c|(S,m,Φ)(δm)+

DΦTp,c|(S,m,Φ)(δΦ).

Recall that, by definition, a differentiable function f at x satisfies

f(x+ δx) = f(x) +Df |x(δx) +O(‖δx‖2)

where Df |x is its differential at x. From the definition of Tp,c we can compute

Tp,c(S + δS,m,Φ)

= FΩ(p)((S + δS)�m� exp{iΦ} )

= FΩ(p)(S �m� exp{iΦ} )︸ ︷︷ ︸
T (Sc,m,Φ)

+FΩ(p)(δSc �m� exp{iΦ} )︸ ︷︷ ︸
DST |(S,m,Φ)(δSc)

As magnitude and coil sensitivities are both linear over the operator, it is easy to see

that

DmT |(S,m,Φ)(δm) = FΩ(S � δm� exp{iΦ} ).

The phase operator comes from a similar analysis
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T (S + S,m, δΦ)

= FΩ(S �m� exp{i(Φ+ δΦ)} )

= FΩ(S �m� exp{iΦ} � exp{iδΦ} )

= FΩ(S �m� exp{iΦ} � (1 + iδΦ+O(‖iδΦ‖2))

= O(‖iδΦ‖2)+

FΩ(S �m� exp{iΦ} )︸ ︷︷ ︸
T (S,m,Φ)

+FΩ(S �m� exp{iΦ} � iδΦ)︸ ︷︷ ︸
DΦT |(S,m,Φ)(δΦ)

Now, using the fact that for every linear operator A, its adoint operator must satisfy

〈y, Ax〉 = 〈A∗y, x〉 for every x, y and properties of the inner product, the adjoint operator

for dT can be found as

〈y, DST |(S,m,S)(δS)〉 = 〈y, FΩ(δS �m� exp{iΦ} )〉

= 〈F∗
Ω(y), δS �m� exp{iΦ} 〉

= 〈F∗
Ω(y)� (m� exp{iΦ} )∗, δS〉

= 〈F∗
Ω(y)�m� exp{−iΦ}︸ ︷︷ ︸

DST ∗|(S,m,Φ)(y)

, δS〉

The adjoint of the magnitude and phase differential operators can be found in essentially

the same way:
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〈y, DmT |(S,m,S)(δm)〉 = 〈y, FΩ(S � δm� exp{iΦ} )〉

= 〈F∗
Ω(y), S � δm� exp{iΦ} 〉

= 〈F∗
Ω(y)� (S � exp{iΦ} )∗, δm〉

= 〈F∗
Ω(y)� S � exp{−iΦ}︸ ︷︷ ︸

DmT ∗|(S,m,Φ)(y)

, δm〉

and

〈y, DΦT |(S,m,S)(δΦ)〉 = 〈y, iFΩ(S �m� exp{iΦ� δΦ} )〉

= 〈−iF∗
Ω(y), S �m� exp{iΦ} � δΦ〉

= 〈−iF∗
Ω(y)� (S �m� exp{iΦ} )∗, δΦ〉

= 〈−iF∗
Ω(y)� S �m� exp{−iΦ}︸ ︷︷ ︸

DΦT ∗|(S,m,Φ)(y)

, δΦ〉
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