THE ASTROPHYSICAL JOURNAL, 883:139 (23pp), 2019 October 1

Lia F. Sartori"

© 2019. The American Astronomical Society. All rights reserved.

A Forward Modeling Approach to AGN Variability—-Method Description
and Early Applications

2

! Institute for Particle Physics and Astrophysics, ETH Ziirich, Wolfgang-Pauli-Str. 27, CH-8093 Ziirich, Switzerland
Instituto de Astrofisica, Facultad de Fisica, Pontificia Universidad Catdlica de Chile, Casilla 306, Santiago 22, Chile
3 School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
4Modulos AG, Technoparkstrasse 1, CH-8005 Ziirich, Switzerland
5 Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544, USA; ncaplar@princeton.edu
6 Systems Group, ETH Ziirich, Universititstrasse 6, CH-8006 Ziirich, Switzerland
Received 2019 June 6; revised 2019 July 31; accepted 2019 August 15; published 2019 September 27

Abstract

We present a numerical framework for the variability of active galactic nuclei (AGNs), which links the variability
of AGNs over a broad range of timescales and luminosities to the observed properties of the AGN population as a
whole, and particularly the Eddington ratio distribution function. We implemented our framework on GPU
architecture, relying on previously published time-series-generating algorithms. After extensive tests that
characterize several intrinsic and numerical aspects of the simulations, we describe some applications used for
current and future time-domain surveys and for the study of extremely variable sources (e.g., “changing-look™ or
flaring AGNs). Specifically, we define a simulation setup that reproduces the AGN variability observed in the
(intermediate) Palomar Transient Factory survey and use it to forward model longer light curves of the kind that
may be observed within the Large Synoptic Survey Telescope (LSST) main survey. Thanks to our efficient
implementations, these simulations are able to cover, for example, over 1 Myr with a roughly weekly cadence. We
envision that this framework will become highly valuable to prepare for, and best exploit, data from upcoming
time-domain surveys, such as, for example, LSST.

Unified Astronomy Thesaurus concepts: Quasars (1319); Active galaxies (17); Supermassive black holes (1663)
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1. Introduction

Variable emission is a ubiquitous property of active galactic
nuclei (AGNSs). It can be observed or inferred at essentially all
timescales, from hours to billions of years (e.g., McHardy et al.
2004; Novak et al. 2011; MacLeod et al. 2012; Goyal et al.
2013; Schawinski et al. 2015; Sartori et al. 2018a; Smith
et al. 2018), and across the entire electromagnetic spectrum
(e.g., Paolillo et al. 2004, 2017; Uttley & Mchardy 2004;
Caplar et al. 2017; Assef et al. 2018). Because the AGN
luminosity originates from the accretion process, the study of
AGN variability can provide crucial information about the
physics of the supermassive black hole (SMBH) and central
engine, including at spatial scales that are beyond the resolving
power of most of the current and future facilities for most
AGNSs. In addition, it allows the close link between SMBHs
and their hosts to be probed by taking into account the fact that
the energy injection from the AGN varies with time (e.g.,
Hickox et al. 2014). AGN variability is also often employed as
an efficient method to select AGNs from large multiepoch
surveys (e.g., Trevese et al. 2008; Villforth et al. 2010; De
Cicco et al. 2015; Sanchez-Saez et al. 2019).

In the past decades, different campaigns with recurrent
photometry and/or spectroscopy such as the Sloan Digital Sky
Survey (SDSS) Stripe 82 (York et al. 2000; Ivezi¢ et al. 2007;
Sesar et al. 2007), the (intermediate) Palomar Transient Factory
(PTF/iPTF,; Bellm 2014), the Palomar Observatory Sky Survey
(POSS; Minkowski & Abell 1963), and the Catalina Real-Time
Transient Survey (CRTS; Drake et al. 2009; Djorgovski et al.
2011) have provided important insights into the variability
behavior of the AGN population on timescales of days to decades
(e.g., MacLeod et al. 2012; Morganson et al. 2014; Caplar et al.
2017; Graham et al. 2017). Indeed, these works show that the

amplitude of variability is increasing for increasing timescales,
and investigate additional dependencies with physical parameters
of AGNs. For a fixed timescale, the amplitude of variability is
observed to anticorrelate with luminosity, rest-frame wavelength,
and Eddington ratio, while little or no dependence is found as a
function of redshift (e.g., Wilhite et al. 2008; Ai et al. 2010;
MacLeod et al. 2010; Caplar et al. 2017; Rumbaugh et al.
2018). The dependence on black hole mass is still unclear
because different studies found either positive, negative, or absent
correlation (e.g., Wilhite et al. 2008; Kelly et al. 2009; MacLeod
et al. 2010; Zuo et al. 2012; Caplar et al. 2017). Interestingly, the
derived dependencies, as well the observed timescales at which
variability is occurring in the optical and UV, cannot be fully
explained with standard accretion disk theory (e.g., MacLeod
et al. 2010; Zuo et al. 2012; Caplar et al. 2017).

In addition to these overall AGN variability properties, in the
last years, new intriguing objects such as changing-look
quasars (or more generally, changing-look AGNs, CL-AGNs)
have been found in increasingly large numbers (e.g., LaMassa
et al. 2015; McElroy et al. 2016; Ruan et al. 2016; Runnoe
et al. 2016; Katebi et al. 2018; Mathur et al. 2018; Ross et al.
2018; Stern et al. 2018; Wang et al. 2018; Yang et al. 2018;
Zetzl et al. 2018; MacLeod et al. 2019; Trakhtenbrot et al.
2019). CL-AGNs are characterized by the appearance or
disappearance of broad Balmer emission line components over
periods ranging from months to years,” often accompanied by
changes in luminosity of over one order of magnitude in the

7 Another group of so-called CL-AGNs are AGNs with X-ray spectra that

show a switch from being Compton thick to Compton thin, or vice versa (e.g.,
Matt et al. 2003; Piconcelli et al. 2007; Marchese et al. 2012; Ricci et al. 2016).
The relation between “optical CL-AGNs” and *“X-ray CL-AGNs” is not
clear yet.
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same period, which again challenges our understanding of
AGN accretion physics. Indeed, the observed large magnitude
changes in short timescales are not consistent with the
predictions from standard thin accretion disks (e.g., Krolik
1999; LaMassa et al. 2015; MacLeod et al. 2016). CL-AGNs
also challenge the standard AGN unification model (Antonucci
1993; Urry & Padovani 1995), where the presence and absence
of broad emission lines are explained by different line-of-sight
orientations, as the angular position of the obscuring material
is not expected to vary on such short timescales. One open
question is if a similar level of variability should be expected
for every AGN, or if different AGNs may belong to distinct
classes with significantly different variability properties and
physical mechanisms.

As mentioned above, the rapid variability observed in the
optical /UV continuum, in particular in extreme cases such as
CL-AGNs, is hard to reconcile with standard accretion disk
theory. Indeed, timescales of months to years are much shorter
compared to the viscous timescales at which variability due to
overall accretion changes would appear, which is on the order of
~100-1000yr (see Lawrence 2018 for a discussion of the
“viscosity crisis”). The observed timescales are more consistent
with thermal timescales, which are relevant for instabilities or
local perturbations in the accretion disk. Such instabilities and
perturbations could explain the moderate variability character-
istic of the majority of AGNS, as well as produce structural
changes in the inner part of the accretion disk, which could lead
to the extreme variability observed in CL-AGNs (e.g., Ross et al.
2018; Stern et al. 2018). The possible causes of such instabilities
and perturbations are still a matter of debate, but they include
magnetorotational instabilities (MRI; Balbus & Hawley 1991;
Reynolds & Miller 2009), local temperature fluctuations driven,
e.g., by X-ray heating (Shappee et al. 2013), iron opacity (Jiang
et al. 2016), as well as perturbations due to stellar-mass black
holes, stellar remnants, and stars moving within the dense
medium of the accretion disk (e.g., Syer et al. 1991; McKernan
et al. 2014; Bartos et al. 2017). Other possible explanations
are that accretion disks are magnetically elevated, which could
lead to larger scale heights and shorter variability timescales
compared to those expected for standard thin accretion disks
(Dexter & Begelman 2019), or that the behavior of the accretion
disk is dominated by nonlocal physics such as magnetic fields
connecting different regions on timescales shorter than viscous
timescales (Lawrence 2018).

The above refers to variability that can be directly traced
through observations. In addition to this, indirect arguments
based on the photoionization state of large-scale gas in (and
outside) galaxies indicate that AGNs may dramatically change
their luminosity on timescales that are significantly longer than
what we can directly probe, i.e., 2104 yr (e.g., Lintott et al.
2009; Keel et al. 2012a; Gagne et al. 2014; Schawinski et al.
2015; Sartori et al. 2016, 2018a). This type of long-timescale
variability is addressed by simulations (e.g., Novak et al. 2011;
Gabor & Bournaud 2013) and theoretical models (e.g., Martini
& Schneider 2003; King & Nixon 2015), and may have
implications for our attempts to understand the SMBH-host
galaxy coevolution (Hickox et al. 2014; Volonteri et al. 2015).

With the advance of large, multiwavelength time-domain
surveys such as the Large Synoptic Survey Telescope (LSST;
Ivezic et al. 2008; LSST Science Collaboration et al. 2009),
the Time-Domain Spectroscopic Survey in SDSS-IV (TDSS;
Morganson et al. 2015), SDSS-V (Kollmeier et al. 2017), the
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Zwicky Transient Facility (ZTF; Bellm et al. 2019), the All-
Sky Automated Survey for SuperNovae (ASAS-SN; Shappee
et al. 2014), and the extended ROentgen Survey with an
Imaging Telescope Array (eROSITA; Merloni et al. 2012), we
are entering an exciting era of time-domain astronomy which
will allow us to probe the variable universe with unprecedented
cadence (~days), depth, sky area, and time span. These surveys
will allow us to probe the variability properties of individual
AGNs and of the AGN population as a whole, as well as new
types of flares and other extreme variability phenomena
associated with SMBH accretion such as CL-AGNs or tidal
disruption events (TDEs; e.g., Rees 1988; van Velzen et al.
2011; Gezari et al. 2012; Arcavi et al. 2014; Chornock et al.
2014; Hung et al. 2017; Auchettl et al. 2018). This will provide
crucial information to quantify the variability phenomena and
to test various models for its origin. However, challenges in
modeling and characterization of the observed light curves will
be important. These are due to the finite time resolution and
length of the obtained light curves (e.g., Uttley et al. 2002;
Emmanoulopoulos et al. 2010), as well as sample selection and
observational biases inherent to each survey. A careful study of
AGN variability therefore requires sophisticated statistical
analysis methods as well as computationally expensive
modeling and simulations.

In Sartori et al. (2018b), we proposed that the AGN variability
observed at optical/UV wavelengths may be modeled based on
the distribution of the Eddington ratio (L/Lgqq) among the
(observed) AGN population. In fact, the emission at such
wavelengths mainly arises from the accretion process (Shakura
& Sunyaev 1973) and can therefore be modulated by changes in
L/Lgqq, although other processes such as reprocessing of high-
energy photons from the hot corona may also affect the observed
luminosity at short timescales (e.g., Uttley et al. 2003).
Specifically, we suggest that AGN light curves can be fully
simulated starting from two statistical functions: the Eddington
ratio distribution function (ERDF, representing the L/Lggq
probability density function PDF; see Section 2.1.1) defining the
possible L/Lggq values in the simulation, and a power spectral
density (PSD; see Section 2.1.2) describing the variability and
therefore the time ordering of the I/Lg4q points. The obtained
L/Lgyq time series can then be converted to (optical/UV) light
curves in the observed band in question following commonly used
conversion factors (i.e., reciprocal bolometric corrections). In this
framework, every AGN light curve is therefore one realization of
the underlying variability process described by the assumed
ERDF+PSD set and represents the entire AGN population
(following the ergodic hypothesis). A forward modeling approach
allows the predictions of our models to be compared to
observations to test if and how the observed variability features
can be reproduced with this simple model and, if this is the case,
constrain the underlying ERDF and PSD. In addition, given a
model, it is possible to produce light curves that would be
observed by specific facilities. We also stress that what Sartori
et al. (2018b) allows to link and discuss, in the same framework,
AGN variability observed at very different timescales.

In this paper, we present a new simulation setup to produce
AGN light curves following the framework proposed in Sartori
et al. (2018b), based on the algorithm presented in Emmanou-
lopoulos et al. (2013, E13 hereafter), and discuss possible
applications. The paper is structured as follows. In Section 2,
we describe the model and method. An extensive description of
the simulations code and the tests to characterize both intrinsic
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and numerical behaviors of the simulations is given in
Section 3. Finally, in Section 4, we discuss some early
application of our framework based on the observed variability
in the PTF/iPTF survey and aimed at interpreting extremely
variable SMBHs in the LSST era. An up-to-date version of the
simulations code, along with examples and additional informa-
tion about its usage, can be found at https://github.com/
nevencaplar/ AGN-Variability-Simulations.

2. Model and Method

The goal of our framework is to statistically model the
(observed) AGN variability due to changes in accretion (thus,
variability in Eddington ratio, L/Lgqq), by simulating the
L/Lgyq time series based on the distribution of L/Lgyy among
the (active) galaxy population. Specifically, we simulate the
L/Lgyq time series with PDF inspired by the ERDF and
variability behavior described by a chosen input PSD.

In this section, we outline the methods that we use to
simulate the L/Lgqq time series. Specifically, we discuss how
we define the input PDF and PSD, and how the simulated
L/Lgqq time series can be converted to (observed) AGN light
curves. Details about the code implementation and testing are
given in Section 4. Finally, some early applications aimed at
illustrating the potential of our new framework are discussed in
Section 3.

We note that, although the framework presented here and the
algorithm are optimized for AGN and L/Lgqq time series, they
can be adapted to investigate other variable processes such as,
e.g., stellar variability (e.g., Catelan & Smith 2015 and
references therein; Labadie-Bartz et al. 2017) or star formation
histories (Caplar & Tacchella 2019).

2.1. Simulations of Eddington Ratio Time Series

To simulate L/Lgqq time series, we start from the time-series-
generating algorithm proposed by E13. This algorithm, which
is based on previous algorithms presented in Timmer & Koenig
(1995, TK9S5 hereafter) and Schreiber & Schmitz (1996, S96
hereafter), produces time series with PDF and PSD consistent
with the desired (input) ones. These input PDF and PSD can be
taken from real observations (e.g., to reproduce multiple
observations with the same variability behavior as an observed
light curve), or from models that have to be tested against the
data. The first step consists of creating a time series of the
desired length (e.g., in years) and time resolution, whose
periodogram scatters around the underlying input PSD (TK95
algorithm), therefore determining the variability in the data. A
second time series with the desired number of steps and PDF
corresponding to the input one is then obtained through a
random draw. Finally, the two time series are combined
following the iterative amplitude-adjusted Fourier transform
algorithm described S96 to produce a time series with both
PDF and PSD consistent with the input ones (see Figure 1
in E13). We stress that although this algorithm can be used to
generate the time evolution of any given quantity (e.g., count
rates, fluxes, or magnitudes), in our framework it is only
employed to directly simulate the L/Lgyq time series, while
the conversion from L/Lgyq to other observed quantities is
performed in post-processing.

In our framework, we assume that the PDF of the L/Lgy4 time
series corresponds to the ERDF of the AGN population (as
discussed in Section 2.1.1). We therefore implemented the
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algorithm in such a way that it allows us to choose between
different ERDF shapes proposed in the literature, such as a broken
power-law or log-normal distribution (see, e.g., Caplar et al.
2015, 2018; Weigel et al. 2017). We note that our fundamental
assumption that the PDF corresponds to the ERDF is physically
acceptable only if the simulation is long enough for the AGN to
span the whole ERDF. Although current knowledge about AGN
variability does not allow this timescale to be constrained yet, we
assume that it should be on the order of ~10° yr (see Section 4.1).
On the other hand, in order to compare the predictions to
observations, the simulations require a time resolution of years,
and preferably even shorter timescales. As a consequence, we
need to simulate light curves with >107 steps. This makes the
simulations extremely challenging from a computational point of
view. In order to maximize the performance and length of the
simulated light curves, we thus implemented our entire algorithm
to run on an architecture of graphical processing units (GPUs;
Section 3.1).

2.1.1. The ERDF as the Variability PDF

As mentioned above, we propose using the ERDF as the
PDF of the AGN (population) variability. By construction, the
ERDF describes the distribution of L/Lggg among the galaxy
population, i.e., the fraction of galaxies in a given L/Lgqq range,
for a given sample of galaxies at a given redshift range.’
Assuming that the ERDF shape does not vary significantly
during the considered time span, and that all galaxies in the
considered sample have the same variability properties, the
ERDF can also be interpreted as the distribution of L/Lg4q that
a galaxy can have during this time span (up to a normalization
factor): a galaxy moves across the ERDF, spending more time
at [/Lgqq states corresponding to higher ERDF values.’

Many studies have attempted to infer the ERDF directly from
observations (e.g., Kollmeier et al. 2006; Kauffmann & Heckman
2009; Schulze & Wisotzki 2010; Aird et al. 2012; Jones et al.
2016). However, directly measuring the ERDF is challenging,
mainly due to selection effects and difficulties in measuring black
hole masses Mpy for statistically significant samples (e.g.,
Trakhtenbrot & Netzer 2012; Shen 2013; Peterson 2014; Mejia-
Restrepo et al. 2016). Caplar et al. (2015) and Weigel et al.
(2017, W17 hereafter) proposed a different approach, where
they assume a simple ERDF shape and apply forward modeling to
deduce the parameterization of the ERDF by deconvolving the
AGN luminosity function. Specifically, W17 determined the
the ERDF for local AGNs, while Caplar et al. (2018) showed that
the typical L/Lgqq of the (broken power-law) ERDF increases with
redshift following \*(z) o< (1 + 2> (at least to z ~ 2).

Different parameterizations have been proposed in the
literature to describe the observed ERDF. The most common
are the broken power-law (e.g., Caplar et al. 2015; Bongiorno
et al. 2016; W17, Caplar et al. 2018) and the log-normal
distributions (Kollmeier et al. 2006; Conroy & White 2013;
Kauffmann & Heckman 2009). Because the aim of our study is
to reproduce the observed AGN variability, and therefore the
behavior of (mainly) radiatively efficient AGNs, we consider as
the local (z ~ 0) PDF the (normalized) ERDF inferred by W17
10 (see below). In later stages of the present work, we will use

8 We note that in many empirical studies the ERDF is determined for the
AGN population instead of the total galaxy population.

° Ina monotonically declining ERDF, this translates to spending more time at
lower L/Lgqq values than at higher ones.

19 11 the present work, we are considering values for radiatively efficient AGNs.
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Figure 1. Eddington ratio distribution functions for local AGNs, from W17,
described either as a log-normal (blue) or broken power-law (green)
distribution. The two descriptions are essentially indistinguishable for the
L/Lggq (A) range probed in that work, i.e., log A ~ —4 to 1 (lightly shaded
region). We note that while here we present £(\) = dN/d log A (i.e., the space
density per logarithmic unit in L/Lgqq), as parameterized in Equations (1) and
(2), our implementation uses a linear scaling, i.e., dN/d\.

the analysis of Caplar et al. (2018) to evolve the ERDF to
higher redshift. We stress again that these assumptions can be
made only if the length of the simulated light curve is
comparable to the time needed for the AGN to span the whole
ERDF, and if the ERDF is not expected to vary significantly on
these timescales.

Following W17, the broken power-law ERDF for local
AGNSs is parameterized as

o dN ex i)‘sl (i)éz -1
= dlog A —o [(A* U ’ M

with parameter values log \* = —1.84, §; = 0.47, 6, = 2.53,
and log& = —1.65. On the other hand, the log-normal
parameterization is

, (2)

dN £* —(og A — log X¥)?
A) = =——Xe
3% dlog\  &VJ2r xp( 252

where log \* = —3.25, 5 = 0.64, log & = —0.77.

It is important to note that the two parameterizations are
almost equivalent for the L/Lgqq range probed in W17, i.e., log
A =~ (—4) — (+1). However, the currently available data do
not allow the ERDF shapes to be constrained at lower ER
values where the two parameterizations differ significantly,
with the log-normal distribution leading to fewer low
L/Lggqqg AGNs (Figure 1). A drop at low L/Lgyq is, however,
expected because the ERDF cannot increase indefinitely at the
lower end. In order to allow future users of our implementation
to use various ERDF shapes (as proposed in the literature), we
implemented in our simulations code the possibility of using
both the broken power-law and the log-normal PDF para-
meterizations (see Section 3.1). We note that in the simulations
we will sample the PDF uniformly in linear space (as opposed
to logarithmic space). Therefore, we will consider dN/d\
instead of dN/dlog A (see Section 3.1 for more details).
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2.1.2. Power Spectral Density

The second statistical function needed from our simulations
is the PSD that describes the time variability of L/Lggqq. The
total PSD can be interpreted as a superposition of different
physical processes driving the variability at different time-
scales, and therefore at different frequencies, and its overall
shape is not yet fully understood. Multiple studies have
performed detailed investigations of the PSD on timescales of
hours to decades derived from light curves in the X-rays (in
counts units; e.g., Markowitz et al. 2003; McHardy et al. 2004;
Gonzélez-Martin & Vaughan 2012; Paolillo et al. 2017) or
optical /UV (in magnitude units; e.g., C17, Smith et al. 2018).
Specifically, in the case of X-rays, the PSD is generally well
described as a power law with slope approximately o = 2,
consistent with a random walk, at the highest probed
frequencies (e.g., Green et al. 1993; Lawrence & Papadakis
1993), and one or two breaks leading to shallower low-
frequency PSD (e.g., Uttley et al. 2002; McHardy et al. 2007).
The break frequency appears to be correlated with BH mass
and L/Lggg McHardy et al. 2004, 2006), but the physical
reason for this correlation is still unclear (e.g., McHardy et al.
2006; Gonzdlez-Martin & Vaughan 2012). On the other hand,
studies based on different optical/UV photometric surveys
(e.g., Zu et al. 2013; Caplar et al. 2017) or on Kepler light
curves (Mushotzky et al. 2011; Kasliwal et al. 2015; Smith
et al. 2018) revealed steeper high-frequency PSD, strongly
varying between different AGNs.

The studies mentioned above all refer to PSDs in counts or
magnitude units, while to the best of our knowledge, no
measurement or prediction for the PSD in L/Lgyq units is
present in the literature. However, for the sake of simplicity,
and inspired by the results above, we assume that the PSD of
L/Lgqq also has a broken power-law shape. In this scenario, the
bending may be associated with some specific physical process
that suppresses the variability on progressively short frequen-
cies, e.g., the response of the accretion disk to instabilities (e.g.,
Suberlak et al. 2017 and references therein).

Through the paper, we adopt the following parameterization
of a broken power law:

Qow Qg |1
f 1
PSD =A + 5 3
0 g [[fbr) (fbr] ] ©

where fy, is the break frequency, and oy and oug are the
slopes at lower and higher frequencies, respectively (longer and
shorter timescales, respectively). This parameterization can,
however, be modified to add additional breaks if needed. In
addition, we do not consider any evolution of the variability
behavior, and therefore of the PSD, with redshift, as supported
by some observations (e.g., C17, Paolillo et al. 2017). We
stress that throughout the paper, we will often refer to the
periodogram, which is the statistical estimator of the PSD. The
periodogram can be directly computed from a time series and
scatters around the underlying PSD (see the Appendix).

2.2. Converting Eddington Ratio Time Series to Observables:
Light Curves and Structure Function

As discussed in the Introduction and at the beginning of this
section, the primary outputs of our simulations are time series
in units of L/Lgqq. In order to compare the simulations to
observations, or to make predictions for future surveys, the
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simulated L/Lgqq time series therefore have to be converted to
observables. First, the simulated I/Lgqq time series can be
converted to light curves in luminosity or magnitude units at
the same wavelength range as the observations we want to
compare to. The forward modeling approach allows different
conversion recipes to be tested, e.g., by considering constant or
luminosity-dependent bolometric corrections (e.g., Marconi
et al. 2004 and references therein), as well as by introducing
flux limits or other observational biases proper of every
observation. The obtained light curves can then be treated as
real observations and used to compute other quantities
characterizing the AGN variability behavior. Specifically, in
this work, we concentrate on the (ensemble) structure function
(SF), which quantifies the characteristic amount of variability
for light-curve (or in general time-series) measurements
separated by a given time interval 7. A detailed definition
and discussion of the SF is given in the Appendix (see in
particular Equation (14)).

3. Simulations

As discussed in the previous sections, in this paper, we
present a new approach for investigating AGN variability on
multiple timescales and among different objects, based on the
simulation of L/Lg4q time series. In this section, we provide
details about the implementation of our simulations code, and
we illustrate the extensive tests performed in order to
characterize both the intrinsic and numerical behavior of the
simulations.

3.1. Code Implementation

We implemented the algorithm proposed by E13 to be
executed on GPUs. Specifically, we wrote our implementation
in C++ within the CUDA programming framework,'" with the
libraries cuFFT,'? cuRAND, 13 and Thrust.!'* This platform
choice allows us to maximize the length (in steps) of the
simulations and is therefore more suited to our science goal
than other available implementations based on, e.g., MATLAB
(E13) or Python (Connolly 2015). This is particularly due to
the fact that the algorithm requires multiple (inverse) discrete
Fourier transform (DFT) and sorting operations,'> which are
time consuming especially on arrays of the lengths considered
in our work (up to ~10® points) and are being optimized on this
platform.

We note that the current implementation is optimized for
broken power-law and log-normal PDFs, and for single or
broken power-law PSDs. Specifically, for the random draw
step, we apply slice sampling (Neal 2003) from a normalized
ERDEF that is parameterized as in Equations (1) and (2). This
choice of PDF and PSD shape is motivated by the observed
ERDF and PSD, as discussed in Section 2. However, additional
functional forms can be added if needed. As mentioned in
Section 2.1.1, we are sampling the PDF uniformly in linear
space.

' Version 9.0, https://developer.nvidia.com/cuda-downloads.
12 https: //docs.nvidia.com/cuda/cufft/index.html

13 https://docs.nvidia.com/cuda/curand /index.html

" hitps: //docs.nvidia.com/cuda/thrust/index.html

15 As an example, one simulation with Ny, iterations requires O(N) DFT, O
(N) IDFT, and O(N) sorting operations. See also Section 3.2.3.
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3.2. Testing and Characterization of the Simulations Code

We tested and optimized our code for the TITAN X (Pascal)
NVIDIA GPU. In the following, we describe a series of tests
that we performed to characterize both numerical effects and
intrinsic behavior of the simulations.

3.2.1. Distortions in the Timmer & Konig Algorithm

The first step of the E13 algorithm consists of running
the TK95 algorithm to create a time series of the desired length
with a periodogram consistent with the input PSD. The PDF of
the output time series should asymptotically approach a normal
distribution for an increasing number of steps (e.g., E13).
However, we found that this is not true for power-law PSDs
with steep slopes, a = 1.5 (PSD o v~ <). We illustrate these
distortions for several choices of « in Figure 2. We conducted a
number of simple tests in an attempt to understand the origin of
these distortions. We found that the deviation from a normal
PDF does not depend on the number of steps and is therefore
not a consequence of the finite simulation length. We also
found that the same behavior is present in simulations
performed with other open codes (e.g., astroML, Ivezi¢ et al.
2014; Vanderplas et al. 2012; DELCgen, Connolly 2015) and
is therefore not an artifact of our specific implementation.
Because our simulations only rely on the PSD of the TK95
output and not on its PDF, this discrepancy between claimed
and observed PDF does not affect our results. However,
the TK95 algorithm is extensively used in the literature, and
this aspect should be further investigated. We therefore decided
to report it here for future reference.

3.2.2. Iterations and Convergence

The algorithm that we use to produce the time series is
iterative in nature (E13, see also Section 2.1), and so has to
converge in order to be robust. As described in E13, while
the values that can be assumed by the points in the simulated
time series are determined at the beginning of the algorithm and
do not change during the iterative process, these values are
reordered at every iterative step until their variability converges
to the variability described by the input PSD. Following E13
and S96, we consider that this convergence is reached when the
order of the time series values no longer (significantly) changes
between two consecutive steps. The exact number of iterations
needed for the algorithm to converge to the final time series
depends on the total number of steps, the assumed PDF and
PSD, as well as the seed used for the random draw process. E13
proposed a convergence test where, at each step, the period-
ogram of the resulting time series is fitted with the same
functional form as the input PSD, and the convergence of the fit
parameters with respect to the input ones is considered.
However, due to the significantly larger number of steps used
in our simulations—more than three orders of magnitude larger
than what was considered in previous applications of the
algorithm—this convergence test would be too time consuming
to implement in our case. We therefore decided to base our
convergence criterion on the ratio between the time series
obtained from two consecutive iterations. Specifically, at every
iteration i, we consider the following distance measurement &;


https://developer.nvidia.com/cuda-downloads
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Figure 2. Example output PDFs of simulated time series based on the TK95 algorithm and on single power-law PSDs with various slopes (as indicated in each panel).
In each panel, the black lines show normal distributions, which match the output PDFs in mean values and in standard deviations. For steep PSDs, the resulting PDF

deviates from a normal distribution. We note that, differently from the text, for this image we assume PSD o v instead of PSD o v~ .

between the time series x;(f) and x;_():

o = rms[log(M)], n =1, ..,num.steps. 4

xi—1(tn)

The use of logarithm is motivated by the large dynamical range
of the values in the time series that are simulated using our
observationally motivated ERDF as PSD. The threshold
corresponding to convergence strongly depends on the input
PSD and PDF and should therefore be chosen by the user
depending on their simulation setup and the goals of the
performed analysis. We ran several tests with 200 up to 1000
iterations and found that, for the considered setups, the
simulated time series remain essentially unchanged, except
for some minor differences at the highest frequencies probed.
We caution and stress that using our framework for simulating
the most extreme cases of AGN variability (e.g., >3 dex
difference in <1 yr) may require a simulation setup with an
increased number of iterations to reach robust results. In what
follows, however, we do not put particular focus on such
extreme events and instead demonstrate how the framework
can be used to describe the broad phenomena of AGN
variability seen in large, wide-field time-domain surveys.

3.2.3. Performance

The maximum number of steps per simulation allowed in the
current implementation is 227 (~10%), which is set by memory
limitations.'® In the astrophysical context of the present study,
this may correspond to, e.g., a ~13 Gyr long simulation with
~100 yr resolution, or a ~10°yr long simulation with ~ day
resolution.

The running time is currently limited by the random draw
and sorting steps of the algorithm (steps ii and iv in Figure 1
of E13, respectively). On the other hand, using cuFFT ensures
that the (inverse) Fourier transform steps are performed in the
most efficient way. Because the running time is mostly
determined by the random draw step, it can vary depending
on the assumed PDF shape. However, typical running times for

16 The number of steps is defined in powers of 2 to maximize the simulation
speed, in particular with regard to the discrete Fourier and inverse DFTs. All of
the arrays involved in the simulations are allocated in shared memory for the
CPU and GPU using cudaMallocManaged.

o

one simulation with 200 iterations on TITAN X (Pascal)
NVIDIA GPU machines do not exceed a few/several minutes.

3.2.4. Dependencies on Input Parameters, Combining and Dividing
Light Curves

In this subsection, we discuss how the final L/Lgyq time
series, PDF, periodogram, and SF shapes depend on the
following input quantities:

1. ty;,: time separation between consecutive steps

2. Ngieps: number of steps

3. T: simulation length in the same units of time as #;,. This
quantity combines fyiy and Nyeps, 1.€., T = tyin X Ngieps.

4. p: the mean of the simulated L/Lgqq time series. For large
Nieps this corresponds to the mean of the input PDF.

5. o: the standard deviation of the simulated L/Lgqq time
series. For N that is large enough, this corresponds to
the standard deviation of the input PDF.

In addition, we look at the effect of combining or dividing light
curves obtained from different simulations. Indeed, given the
challenge in running long simulations (see Section 3.2.3), a
naive approach would have been to consider “stitching”
together separate shorter simulations. On the other hand,
understanding the behavior of subsamples is critical for the
interpretation of observed light curves, which actually span
only a short time window of the whole AGN life (or, in the case
of these simulations, of the time needed for the AGN to span
the whole ERDF). We note that in this subsection we refer to
quantities computed in L/Lgqq units, while a discussion of the
actual observables, i.e., magnitudes, is given in Section 3.2.10.

For these tests, we considered multiple simulations with
broken power-law PDFs inspired by the ERDF from W17 (see
Equation (1)) and a broken power-law PSD as in Sartori et al.
(2018b; BPL3), but with different choices of #,;, and Ngeps. A
summary of the input parameters for the different simulations is
given in Table 1. Specifically, we consider L/Lgqq time series
simulated assuming different combinations of fyin, Nyeps, and T
(ER_sim_1 - ER_sim_6 in Table 1; we will refer to these
simulations as “direct simulations”), as well as L/Lgqq time
series obtained by dividing (ER_sim_2_cut) or stitching
together (ER_sim_1_comp) direct simulations. We note that
although some of the observed features depend on the specific
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Figure 3. Testing the prospects of simulating increasingly long time series. Top: L/Lgqq time series from a single simulation spanning the entire PDF (i.e., the entire
ERDF; ER_sim_2). Bottom: composite L/Lgyq time series obtained by “stitching” together multiple shorter simulations (different colors), each of them also spanning
the entire PDF (ER_sim_2_comp). Evidently, although both example data sets span the same physical length (in yr) and L/Lgq4q range, the direct (top) and composite
(bottom) simulations present different features. Specifically, the composite simulations show multiple peaks (periods of elevated L/Lgq4), approximately one per short
simulation, while the single simulation only has one such peak (around 0.75 x 107 yr). This can be naturally understood given that each of the short simulations is
forced to cover the entire ERDF. As a consequence, stitching together light curves is not a feasible solution to obtain a realistically long L/Lg4q time series (with a
given computational setup), because it will not preserve the L/Lgyq time-series shape.

Table 1
Summary of Simulations for the Tests in Section 3.2.4
Name toin (ks) Ngieps T (10° yr) Comment
Initial simulation ER_sim_1 8640 2% ~ 8 x 10° ~2.30
Longer simulation but with same #;, ER_sim_2 8640 227 ~ 108 ~36.75 16x longer in yr
Append simulations ER_sim_1_comp 8640 277 ~ 108 ~36.75 Append 16 realizations of ER_sim_1
Cut long simulation ER_sim_2_cut 8640 2% ~ 8 x 10° ~2.30 Cut ER_sim_2 in 16X pieces with
same length and binning as ER_sim_1

Change fyin and Nyeps, Same T ER_sim_3 4320 224~ 2 x 107 ~2.30 2 X Nyepss 0.5 X toin

ER_sim_4 2160 2%~ 3 % 107 ~2.30 4 X Nyepss 0.25 X tin
Change i, and T, same Nyeps ER_sim_5 2160 2% ~ 8 x 10° ~0.60 0.25 X tyi, and T

ER_sim_6 34560 2%~ 8 x 10° ~9.20 4 X fyi and T

Note.
For reference, 8640 ks corresponds to 100 days.

adopted PSD and PDF, the main conclusions from these tests
are also valid for different simulation setups.

Shape of the L/Lg,, time series: For the considered PSD and
PDF set, the shape (global behavior) of the L/Lgqq time series
obtained from direct simulations (ER_sim_1 - ER_sim_6 in
Table 1) is similar and does not depend on fy;, Ngieps, and T.
Specifically, in this particular case, all of the simulations show
one main prolonged period of elevated L/Lgyqq (a “burst” or
“switch on”), and a few additional, shorter “spikes.” This is a
direct consequence of the fact that each of the simulations
spans the entirety of the same PDF, and of the (bent) power-law
shape of the periodogram, which gives more power to the
lowest frequencies (longer time separations).

The composite simulation (ER_sim_1_comp) shows more
bursts, and therefore a higher level of variability on short
timescales, compared to a direct simulation of the same length
(ER_sim_2; see Figure 3). In fact, in the composite simulation,

every subsample has characteristic features (e.g., burst and spikes)
similar to the direct simulation, although at different timescales.
This means that stitching together shorter L/Lgyq time series will
not conserve the variability behavior proper of the input PSD (see
also the discussion below). As a consequence, simulating and
stitching together shorter light curves, although computationally
cheaper (see Section 3.2.3), is not a feasible way to obtain longer
L/Lgqq time series with both L/Lg4q values and variability proper-
ties consistent with the assumed PDF and PSD.

Cutting a long simulation into subsamples (ER_sim_2_cut)
also returns L/Lg4q time series with different shapes compared to
direct ones with the same final length (ER_sim_3, ER_sim_4).
These are in general smoother as they are not covering the whole
L/Lgqq range allowed by the PDF, only a (consecutive) part of it.

In summary, combining or cutting simulations returns
L/Lg4q time series with different shapes and variability features
compared to direct simulations with the same final length. This
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Figure 4. Comparison of input and output for a realistic choice of PDF (i.e., ERDF) and PSD (i.e., broken power laws). Left: the PDF of the ER_sim_2 simulation
(purple) compared with the input PDF (black line). By construction, the PDF (i.e., ERDF) of the simulated time series is statistically consistent with the input one. As
expected, the sampling of the PDF becomes more accurate with increasing Nyeps, as is particularly evident at the high L/Lgqq end, where the sampling probability
decreases. Right: the periodogram of the same simulation. The red line illustrates the input PSD, normalized according to the 1, 0, fpin, and Nyps Of the simulation (see
Equations (12) and (13)). Here, too, the output periodogram is statistically consistent with the input PSD.
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Figure 5. Same as Figure 4 but for four subsamples of ER_sim_2 (from ER_sim_2_cut; that is, shorter simulations). The PDFs of the subsamples do not match the
input PDF well, as the simulated time series are not sufficiently long to cover the entire PDF. Moreover, the periodogram shows distortions, which are more important

for subsamples covering a broader L/Lgqq range. See text for discussion.

effect is visible also in the PDF and periodogram, as discussed
below.

Probability density function: By construction, the PDF of
every direct simulation (ER_sim_1-ER_sim_6), and of the
composite simulation (ER_sim_1_comp), is statistically
consistent with the input PDF (e.g., Figure 4, left). In addition,
as expected, the sampling of the PDF is more accurate for high
values of Ngeps, especially at the increasingly high L/Lgqq end,
which is sampled increasingly rarely. The lack of points with
high L/Lggq for low Ngeps simulations has to be taken into
account when looking at specific features in the L/Lgqyy time
series, which may ultimately be interpreted as extreme
variability events (e.g., CL-AGNs).

On the other hand, the different subsamples (ER_sim_2_cut)
also show PDFs that are (mostly) continuous in L/Lgq4q space, but
these do not overlap in any way/range with the input PDF
(Figure 5, top). Specifically, most of the subsamples span a

narrower L/Lgqq range. This is due to the fact that the L/Lgqq time
series values are not randomly distributed (in time) but follow an
order defined by the PSD. As a consequence, the PDF of light
curves corresponding to different times during the AGN’s life can
be significantly different.

Periodogram: By construction, all periodograms computed
for the direct simulations (ER_sim_1 - ER_sim_6) have
shapes consistent with the input PSD (e.g., Figure 4, right). As
described in the Appendix, the normalization of the output
periodogram differs from the input one and depends on all
other aforementioned parameters, as well as on the covered
frequency range. We verified that the normalizations of the
periodograms computed for direct simulations are consistent
with the expected value.

The periodograms computed for the subsamples (ER_sim_2_
cut) show some distortions compared to the input PSD, which
are more important for subsamples with a larger dynamical range



THE ASTROPHYSICAL JOURNAL, 883:139 (23pp), 2019 October 1

1010
108
106

PSD

10*
102
10°
102

10‘! 1 Illud ’l lllud L IIII“‘ L IIIIM L Illud L lllm .
10 10 10" 10 10° 10% 107

freq [Hz]

SF? (AER?)

Sartori et al.

10

10—:’)

10°

109 - 1 Illlud L Illld L llllud 1 IIIIM L 11l -
107 10° 10° 10 10" 102
7[s]

Figure 6. Scatter and robustness in repeated realizations of a time-series simulation. Left: periodograms for 200 realizations of the same simulation input with a simple
power-law PSD (slope o = 1.5; colored crosses). The black line traces the input PSD (renormalized; see the Appendix for a discussion about PSD normalization). As
expected, the periodograms measured from the simulated time-series scatter around the intrinsic (input) PSD. Right: SF? for the same simulations (dashed color lines).
The SF? measurements for different simulations have a similar shape, but different normalizations. The representative (mean) SF?, defined following Equation (6), is
shown in black. We note that, as discussed in Section 3.2.8, some distortions can be observed at the longest probed timescales (i.e., lowest frequencies).

in L/Lgqq (Figure 5). A detailed discussion of these distortions,
including both well-known spectral distortions and effects related
to the simulations, is given in Sections 3.2.7 and 3.2.9. On
the other hand, the periodogram of the composite simulation
(ER_sim_1_comp) also shows some distortion which in this
case may be explained by a suppression of variability at long
timescales (every subsample has same L/Lgyq values, therefore not
allowing the formation of a single peak as observed in the direct
simulation, Figure 3 top) and an increase of variability at short
timescales (every subsample spans the whole PDF; Figure 3,
bottom).

Structure function: We construct the SF following Equation (14)
and Sartori et al. (2018b). All of the SFs computed for direct
L/Lgyq time series (ER_sim_1-ER_sim_6) show a broken power-
law shape, which seems to reflect the PSD shape. Indeed, the two
slopes coincide asymptotically (for 7 — 0 and 7 — o0) with the
prediction of the Wiener—Khinchin theorem,'” and the break is
broadly consistent with 7, ~ 1/v4.

In the case of composite and divided L/Lgqq time series
(ER_sim_1_comp, ER_sim_2_cut), the SFs show a beha-
vior similar to that described above for the periodogram, again
confirming a relation between the two quantities. Specifically,
distortions of the PSD at high frequencies are reflected to
distortions of the SF at low 7.

The normalization of the SF differs between our various
simulations. For a fixed PSD, it depends on the total length of
the simulation (7), as well as on the standard deviation of the
time series (o). Specifically, for a pure power-law PSD. we
empirically found that the normalization has the following
proportionality:

g

normsg X —mmm—,
3
(tbin X Ivstepsy

(5)

where 3 = (a — 1)/2 is the same exponent as in the Wiener—
Khinchin theorem, i.e., the exponent expected for the SF (in an
ideal case). For a broken power-law PSD, the difference

17 The Wiener—Khinchin theorem states that a power-law PSD with slope —a,
1 < a < 3 should correspond to a power-law SF with slope 3 = (o — 1) /2
(under specific assumptions; see also Emmanoulopoulos et al. 2010).

between SFs obtained from different simulation setups (i.e.,
different T and o) is less well defined, as the ratio between two
SFs changes as a function of 7 (i.e., the SF have slightly
different shapes). Although we were not able to find an
analytical description of the normalization in this case, we see
similar dependencies: the overall SF is higher for increasing o
or decreasing 7, although the dependency on 7 is more
important for steeper PSDs. This can be understood as follows.
By construction, the time series obtained with our simulations
span the entire PDF (i.e., the ERDF). If the simulation length is
shorter, this means that the PDF has to be covered faster, which
translates to an overall higher level of variability and thus a
higher SF. Similarly, a larger ¢ corresponds to a broader PDF,
which, for fixed 7, has to be again covered faster. This
dependency of the SF normalization on 7 and o has to be
considered when comparing simulations to observations, as
discussed in detail in Section 4.1. Specifically, the length of the
simulation has to be chosen such that the normalization of
the output SF (i.e., the SF of the simulated time series) matches
the observed one. Moreover, we note that the normalization
does not depend on t#,i, or Ngeps separately, but on the
combination of the two (i.e., simulations with different #,;, and
Ngieps but the same T have the same normalization).

3.2.5. Mean Variability Behavior from Multiple Realizations

Because we are working with stochastic processes, every
simulated ER curve will have a different periodogram and SF, i.e.,
they fluctuate around the input PSD and SF. By construction, at
every frequency, the periodogram scatters around the intrinsic
PSD as defined by the Timmer & Konig algorithm (see Section 3
in Timmer & Koenig 1995 or Appendix A2 in E13 for more
details). On the other hand, the SFs of different realizations have
similar shapes but different normalizations. Both effects are
illustrated in Figure 6.

In order to compare the simulated SF to observations as
proposed in Sartori et al. (2018b), we need to define a
representative SF and properly take into account the scatter
among the different realizations. To get a representative SF for
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random subsamples of the simulations shown in Figure 6 (gray dashed lines; see
text for more details). The representative SF* of the subsamples (purple crosses)
overlaps with the representative SF* of the long simulations (black line).

a given input set, SF(7),.,, we therefore repeat the simulation
Ngim times (Ngim > 50; see discussion below), and compute the
mean of the obtained SF(T)2 (see also C17):

Niim
SE-QP(T)2 = ( SF(7)? ) = L Z SFi(7)2.

sim j—1

(6)

The standard error on SF(7),p at every 7 can then be estimated
using the scatter in the set of calculated SF/(1)°. Uttley et al.
(2002) used a similar procedure to determine the intrinsic PSD
from multiple light curves, and claimed that >50 realizations
are needed in order to reliably estimate the standard errors on
the simulated periodograms. The same seems to also hold for
the SF, but more testing should be done for every specific
input set.

We note that in general the time span probed by observations
are much shorter compared to the simulated ones. In order to
probe whether the observed SF can be directly compared to the
representative one (i.e., there is no distortion or different
normalization), we first simulated 200 time series with ~10°
points each and computed the representative SF (Figure 6,
right). From every time series, we then randomly selected a
(consecutive) subsample of 1000 points, obtained the corresp-
onding SF, and then computed the representative SF (Figure 7).
Although the shorter SFs show a larger dispersion, the
representative  SF for the subsamples overlaps with the
representative SF of the long simulations. This means that
the representative SF can be directly compared to the SF
computed by taking into account only subsamples (see also
Section 3.2.6). We confirmed that this holds by considering
various input PSD shapes and by computing the SF in
magnitude units instead of L/Lgyq units.

3.2.6. Ensemble Analysis

Because the SF is a statistical measurement, it is possible to
compute it for a single source only in the case of a well-
sampled light curve (e.g., Suberlak et al. 2017 and references
therein). However, for sparsely sampled light curves, the SF is
usually computed in an ensemble way (e.g., Sesar et al. 2006;
MacLeod et al. 2012; C17). In this case, it is assumed that all
sources in the considered sample have the same variability

10
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behavior, and that the SF at a given time lag 7 is computed with
Equation (14), by considering simultaneously all the pairs of
data points separated by a corresponding time lag, in all sources
under question.

In order to test if SFs computed in an ensemble way (i.e.,
considering subsamples of different light curves) are consistent
with SFs computed directly from individual simulations, we
performed a test similar to what is described at the end of
Section 3.2.5. First, we ran 1000 simulations with ~10° points
each and selected a (consecutive) subsample of 1000 data
points from each simulation. For every simulation, we then
masked the subsamples to mimic sparse measurements and
computed the ensemble SF. As an example, Figure 8 shows the
ensemble SF obtained by considering only 0.5%, 1%, and 10%
of every subsample, respectively (randomly selected points).
As expected, the ensemble SF always scatters around the
representative SF, but the scatter significantly decreases with
increasing number of considered points. This means that the
mean shape and normalization of the SF are conserved with
ensemble analysis, but the accuracy strongly depends on the
number of measurements.

We stress that what is reported in the test above is only
indicative of a trend. In fact, the scatter in the ensemble
analysis strongly depends on the number of considered sources,
and on the length and sampling of the light curves measured for
each source. Therefore, in order to determine how well an
ensemble SF computed for a given survey represents the
intrinsic one (i.e., if we can compare the ensemble SF with our
simulations), the test above should be repeated by assuming the
same source numbers and observational cadence as in the
considered survey.

3.2.7. Spectral Distortions: Red Noise Leak and Aliasing

The periodograms computed for finite, discrete light curves
are subject to spectral distortions known as red noise leak and
aliasing (see below for a definition, and Uttley et al. 2002 for a
detailed discussion). In fact, measuring a light curve /(f) with a
time sampling given by the window function w(f), where w
(H) = 1 during the observations and 0 elsewhere, corresponds
to convolving the Fourier transform of the underlying light
curve F(f) with the Fourier transform of the window function

W(f):
lops() = 1(t) x w(t) = Fons(f) = F(H*W(H. (D

Because the periodogram is computed from Fu,(f) (see the
Appendix), a distortion due to a window function is reflected as
a distortion in the periodogram. Specifically, red noise leak
(e.g., Deeter & Boynton 1982; Deeter 1984) appears when the
length of the observed light curve is significantly shorter than
the length of the intrinsic light curve, so that significant power
is present at frequencies shorter than the ones probed with the
observations. In this case, trends in the light curve due to
frequencies below the observed limit (timescales longer than
the light-curve total length) are not distinguishable from trends
at higher frequencies, and power is transported from low to
high frequencies. This effect is more pronounced for steep
PSDs (see Uttley et al. 2002 and references therein). On the
other hand, aliasing (e.g., van der Klis 1997) appears when the
time sampling does not allow variability to be probed at high
frequencies f, and in this case there is a foldback of power from
Inyq T AF to fayqg — Af, where fy,q is the Nyquist frequency
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(see the Appendix). This effect is more pronounced for
shallow PSD.

Both red noise leak and aliasing cause a flattening of the
measured periodogram, at a level that depends on the shape of
the underlying PSD. Studies comparing simulated periodograms
to observed ones should therefore include such distortions in the
simulations. The standard way to do it is to simulate longer light
curves (e.g., 100 times longer, for red noise leak) with higher
sampling (e.g., 10% of the observed sampling, for aliasing), and
then randomly select a subsample with length and sampling as in
the observations (e.g., Uttley et al. 2002).

3.2.8. Distortions of the Structure Function

While the spectral distortions discussed in Section 3.2.7 can
significantly modify the computed periodogram, the SF is
commonly thought to be less affected by finite, irregularly
sampled light curves. However, Emmanoulopoulos et al.
(2010) showed that spurious breaks can appear in the SF of
single light curves even in the case of a power-law PSD (i.e.,
no intrinsic characteristic timescales), with unpredictable
behavior at timescales longer than the break. The position of
the break increases with light-curve length and PSD steepness
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(see Figure 5 in Emmanoulopoulos et al. 2010), so that the
effect is less important in long light curves with steep PSDs. In
addition, he showed that windowing of the light curve may also
affect the precise SF shape (although the general behavior is
conserved). As can be seen in, e.g., Figure 6, some distortions
at the longest probed timescales are also present in our
simulations, although they are not as extreme as reported in
Emmanoulopoulos et al. (2010). However, these distortions
smooth out when considering the representative or ensemble
SF, so that these distortions do not significantly affect statistical
studies (see also Guo et al. 2017; Koztowski 2017a), as is the
case in the applications presented in Section 4.

Although the distortions described in Emmanoulopoulos
et al. (2010) do not affect ensemble studies, other distortions
can be seen in our simulations and should be taken into
account. According to the Wiener—Khinchin theorem, a power-
law PSD with slope —a, 1 < a < 3, should correspond to a
power-law SF with slope 0= (a — 1) /2 (under specific
assumptions, see also Emmanoulopoulos et al. 2010). How-
ever, as can be seen in Figure 9, for a < 1.5 (22.5), the
obtained SF is steeper (shallower) than expected from the
theorem. For a given time resolution, this effect is more



THE ASTROPHYSICAL JOURNAL, 883:139 (23pp), 2019 October 1

Sartori et al.

10!°

10" ey 100
10" AR, 4 1onf
100 k- RN = 1013
10”;— _; 1012;_
10" E E 10"
8 1010% 'é 8 loll)é_
= 10{1:_ — _.':- [al 109%
wf o ] wf
10'g o =20 4 10F
10“5—-‘ Pink noise (a = 1) | | | > 10“;—

LU LR L IR L B B AL LR R B

LIRS B R BN R B ML) B ML R B

1014
]OU
101.1
10]1
101[)
10°
10®
107
]OG

PSD

IR T RRTT NRTT RTT RUT RRTT RN RRTT AT

T m| IRLREL REL REL REL REL REL RAL REL

=T T P FRTT RRT WRT FRTT RUT AT

10 .
10" 10103 102 10 101 10° 10° 107
freq [Hz]

10" 10 1013 1012

10 101° 10° 10° 10’
freq [Hz]

10 - .
10“ 10" 10 102 10 10%° 10° 10% 107
freq [Hz]

Figure 10. Example of the periodogram “collapse.” We show three sets of simulations with broken power-law PDFs and power-law PSDs with slopes of a = 1.6, 1.8,
and 2.0 (green, orange, and purple, respectively). The three panels correspond to three initial random number generator seeds. The periodograms collapse to a line with

negligible scatter and slope close to &« = —1 (pink noise), the specific shape of which mostly depends on the initial random seed.
10 g 10* Er e SREAL B UL UL I IR AL AL I
E 3 F E 10 1
10 'E- -! 10°F = E E
H; : ;1 1w 'g
= 10°F TR B As
E 2 - ] = L L 6 e
5 10°f ,;{f‘_,- . g 100F ot _:1&’7 10 r L
4 E il 14 E 2" 139 107§ 3
~ a6l 244 - 1 = L - 1= r 1
o 107 P s 1. 10°F o F 3
2 : 2 .- i r 1% 100 4
07 1% 107 3 ] 1
aF - q B 107 1
105 - § 10°F . E E.-- 3
k- E - 4 b~ B
DP] PV ISPV SOV POV IO VROV, IUPUV EPOOY, (PO, gis Ecandeavall vl banllwufor gl vabopeillengd, 197 Wl sud wevalin snllsornfopnlionvalaeall’y i
10 10% 10" 10* 10° 10'° 10" 10" 10" 10" 10 10% 107 10®* 10" 10' 10" 10" 10" 10" 10 10% 107 10®* 10" 10' 10" 10" 10'% 10"
7[s] 7 [s] [s]

Figure 11. Distortions of the structure function due to the dynamic range of the PDF. Left: SF computed for 30 L/Lgyq time series simulated with the same input
parameters (gray dashed lines), i.e., a power-law PSD with slope oz = 1.5 and a broken power-law PDF spanning 6 dex in L/Lgqq. The SFs are distorted compared to
the predictions of the Wiener—Khinchin theorem (black dashed line, arbitrarily normalized). The distortions are clearly reduced if the SF is computed in magnitude
instead of L/Lgqq (center), or if the PDF covers a narrower dynamical range (right; here 1 dex).

pronounced for short time series, as the difference between the
predicted and observed SF slope is higher at the lowest probed
tau 7, independently of the total number of steps (see Figure 9
for TK95 simulations). The main reason for this discrepancy is
that the observed and simulated light curves are not infinite and
continuous in time, as required by the theorem. In addition, for
steep PSDs, we often see a distortion at the highest probed 7
even in the representative SF. The main reason of these
distortions is that the number of pairs for a given 7 decreases
with increasing 7, and therefore the SF, which is a statistical
measure, cannot be reliably computed for large 7.

The issues discussed strongly illustrate why one should be
cautious when considering the highest 7 SF measurements of
any simulation, as these are essentially unreliable. The actual
threshold above which the SF becomes unreliable depends on
light-curve sampling and length, as well as on the PSD shape.
As a rule of thumb, in our analysis, we are considering SFs
only up to 1/10 of the total light-curve length (e.g., C17). We
stress, however, that for the PSD slopes expected from
observations (see Section 4), and for ensemble studies, we do
not expect our results to be biased by these distortions.

3.2.9. PSD and SF Collapse

For some choices of PSD and PDF sets, the algorithm returns
time series with periodograms that “collapse” toward utterly
unrealistic PSD shapes. As an example, a PDF as described
in W17 with Ayin = 107>, Apax = 10 combined with a (broken)
power-law PSD with low-frequency slope a2 1.5 leads to a
collapse of the final periodogram to a line with negligible scatter
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and a slope close to v = 1 (pink noise). This effect is observed for
both log-normal and broken power-law PDFs, and the final shape
mostly depends on the initial random seed (and not on other
parameters such as, e.g., the input slope). An example of this
collapse for three simulations with a power-law PDF and three
different slopes, a = 1.6, 1.8 and 2.0, is given in Figure 10. We
note that a distortion of the periodogram at high (low) frequencies
is usually reflected in a distortion of the SF at short (long) 7.

As we elaborate below, our tests only showed PSD and SF
collapses for simulations setups that considered an overall steep
PSD (« 2 1.5; see Figure 10) and/or large dynamical ranges
for the values in the considered time series (e.g., 26 dex; see
Figure 11). The observed collapse in the periodogram, as well
as the distortions in the SF, disappears in the following
circumstances (see example in Figure 11):

1. The overall slope is shallower. This will very likely
always be the case in most of our analysis, because a
steep low-frequency end would mean a steep long-
timescale SF, and this does not seem to be allowed by the
observations;

. The dynamical range [Anin, Amax] for the PDF is narrower
(e.g., 2 dex instead of 6 dex);

3. We only consider a subsample of the light curve (LC), e.g.,
10%. We note that in most cases this also corresponds to a
smaller dynamical range (as the time series does not have
enough time to traverse the entire PDF); and

4. We consider the SF in magnitude units instead of L/Lg4q. We
note that, because Amag o< Alog L oc Alog [/Lgyq (see
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below), working in magnitude instead of L/Lggyq results in a
reduced dynamical range (i.e., a PDF covering 4 dex in
L/Lqq would be mapped to 10 magnitudes).

These conditions suggest that the observed distortions are due
to a numerical issue (that is, the LC intrinsically have the right
PSD and SF, but we are not able to compute it) instead of being
intrinsic to the LC. Specifically, because the SF is computed by
looking at the differences between two different points, it is
numerically harder to compute it carefully when the dynamical
range of the time series is larger (i.e., a roundoff error). In
addition, it is possible that some choices of PSD-+PDF sets are not
allowed for mathematical reasons (as an extreme, a very sharp
PDF would not allow almost any variability). Although we are not
investigating this issue further, we acknowledge this effect and
stress that this issue does not affect our results because the region
of parameter space where this sort of collapse occurs is not
considered in our analysis. Indeed, as discussed in Sections 2.1.2
and 4.1.2, the overall PSD is expected to break and flatten beyond
a given frequency, such that the overall (mean) slope is shallow
enough not to cause the collapse (see also Point 1 in the list
above). In addition, the comparison to observed data is usually
performed in magnitude (i.e., logarithmic) space instead of in
linear [/Lgy4q or luminosity space, which naturally reduces the
dynamical range for the values in the considered time series, in a
significant way.

3.2.10. Structure Function in Eddington Ratio versus Structure
Function in Magnitude

As we mentioned in Section 2.2, the primary outputs of our
simulations are [/Lgqq time series which, in order to be
compared to observations, have to be converted to light curves.
Specifically, most of the ensemble studies considered in this
work compute SFs in magnitude units, SFy,,, (e.g., de Vries
et al. 2003; Sesar et al. 2006; MacLeod et al. 2010, 2012; C17).
A description of how to convert from L/Lgyq to luminosity
curves is given in Section 2.2. However, in the simplest case
where the luminosity L(#) in the considered band is proportional
to the bolometric luminosity Lioi(0),'® the magnitude difference
needed to compute the SF,,,, (Equation (14)) can be directly
derived from the L/Lgyq time series following

m(ty) — m(t) =—2.5 log[i((l;z))] - _25 log[ibL((t;))]
1 bol (11

Agda(t2) ]
Meaa(®) |

= 25 log[
®)

where A\gqq(?) is the Eddington ratio at time ¢ (I/Lgqq throughout
the text).

By inspecting multiple simulations we found that, if no
distortions are present in SF; /1., (see Section 3.2.9), then for the
same simulation, the SF,,,, computed following Equations (14)
and (8) would have a similar shape, but different normalization,
compared to SF; ... On the other hand, for cases where
SF; /1., shows distortions due to, e.g., a large dynamical range
of the PDF (ERDF), these distortions disappear for SFy,,,. The
true underlying reason for this is not yet clear.

18 We assume that the BH mass is not increasing significantly during the time
probed by the simulations.
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4. Applications

In the previous sections, we presented our framework to
simulate AGN light curves starting from the distribution of
L/Lgqq among the galaxy population. In the following, we
illustrate some early science applications for the framework and
describe how this framework (and, hopefully, similar studies
pursued by the community) will become increasingly important
to best exploit new observational data and surveys.

We note that the observational data available to date, and in
particular the lack of observational constraints on superhuman
timescales, do not allow our framework to be fully applied to
constrain the underlying PDF+4-PSD driving AGN variability
(or to probe its existence). However, new IFU observations of
galaxies with extended AGN photoionized gas (e.g., the
Voorwerpjes galaxies; Lintott et al. 2009; Schawinski et al.
2010; Keel et al. 2012a, 2012b; Gagne et al. 2014; Sartori et al.
2016; Keel et al. 2017; Sartori et al. 2018a) will allow us to
reconstruct historical AGN light curves (e.g., Treister et al.
2018) and gain new information about AGN variability on
>10" yr timescales. This will be crucial to constrain our models
including data at timescales which are still poorly understood.
In addition, new time-domain surveys, such as the upcoming
LSST, will provide light curves for millions of sources (LSST
Science Collaboration et al. 2009) which will allow us to better
investigate the variable behavior of single AGNs, as well as
compare it to the ensemble behavior of the general AGN
population (e.g., MacLeod et al. 2010, 2012; C17).

4.1. Constraining Specific Models with Existing AGN
Variability Data

The goal of this section is to provide an example of how
existing AGN variability data, in this case the optical SF
measurements from the PTF/iPTF survey (Bellm 2014)
presented in C17, can be used to constrain the input model
parameter space for the kinds of simulations enabled by our
framework. Specifically, we want to find a simulation setup
such that the derived 4000 A (R-band) SF is consistent with the
observed one, presented in C17.

As described in Section 3.2, the shape and normalization of
the simulated SF depend on the input PSD and PDF, while the
simulation’s length in physical units (7} e.g., yr) also influences
the overall normalization (in particular for steep PSDs).
Because different normalizations correspond to different
variability behaviors, it is crucial to choose physically
motivated assumptions for these input parameters in order to
obtain realistic SFs to use for our analysis. In addition,
observational biases such as flux limits and sample selection
can influence the shape and normalization of the observed SF,
and therefore have to be included as additional steps in the
simulation process.'® In the following, we outline how to use
available observations to define a reference simulation setup
consistent with the PTF/iPTF SF and which will be used for
other example applications in the next sections.

4.1.1. The PTF/iPTF Structure Function

C17 presented the ensemble 4000 A SFs for a homogeneous
sample of ~28,000 quasars selected from SDSS-DR7 (Shen
et al. 2011) divided into 64 Mgy—z —Ly bins (median z ~ 1.3,

19 We stress that the simulations presented and discussed in the previous
sections did not consider sample selection or flux limits.
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median log Mgy = 9.1; see Figure 4 in C17). In order to obtain
a representative SF for the whole PTF/iPTF sample, we divided
the SF values C17 in six time bins and took the mean of all SF*
measurements in that bin (see Figure 13, black points). In the
following, we will refer to this representative SF as the PTF/
iPTF structure function, SFprg c17.

4.1.2. The Input PDF and PSD

Following Section 2.1.1, we defined the input PDF as a broken
power law with slopes as in W17 (see Section 2.1.1) and \* =
0.11 as expected for z ~ 1.3 and the redshift evolution in Caplar
et al. (2018). For these simulations, we fixed log A .x = 0.5 in
order to allow for short periods of super-Eddington accretion (and
thus, super-Eddington sources). On the other hand, we chose log
Amin = —3.75 such that the active fraction, defined as the fraction
of time the AGN spends above A\ = 0.01, is ~10% (this is
broadly consistent with observations; e.g., Aird et al. 2018). We
stress that different definitions of the active fraction are present in
the literature, and that its value is not fully constrained yet, as it
may depend on multiple parameters such as black hole mass,
luminosity, and redshift.

While the PDF can be motivated by observational constraints
(e.g., ERDF, AGN fraction), the shape of the PSD is less well
defined (see discussion in Section 2.1.2). However, inspired
by the PSD obtained, e.g., in mag or flux units, we assumed
a broken power-law shape with slopes and break to be
determined through forward modeling, i.e., by comparing the
SFs obtained through our suite of simulations to the observed
one, SFPTF,C17-

4.1.3. Creating Mock Ensemble Structure Functions

For every input PDF and PSD set (see Section 4.1.4 for the
assumed inputs, including total simulation length), we ran 300
simulations (i.e., 300 realizations of the same input set) and
created a mock ensemble SF to be compared to SFprg 7 as
follows. First, for every simulation, we looked for one
subsample with similar length as the PTF survey (assumed
here to simply be 2000 days in the observed frame), and
observational biases and sample selection similar to the sample
selection in C17, following the procedure below:

1. SDSS selection: select a random point in the L/Lgyq time
series and convert L/Lgyq to the observed SDSS i-band
magnitude assuming z = 1.3 and log Mpy)= 9.1. Speci-
ﬁcally, we convert Ly, to the observed magnitude by
assuming the Vanden Berk et al. (2001) quasar composite
UV-optical SED, shifted to z = 1.3, sampled at 3000 A
(rest frame), and applying a bolometric correction of
Lot/ ALA(3000 A) = 3.25 (e.g., Trakhtenbrot & Netzer
2012). Whenever the flux exceeds the SDSS main quasar
sample flux limit, i < 19.1, we proceed to step (ii);
otherwise, we select another random point and repeat the
calculation. This step ensures that the mock AGNs would
have been selected within the main SDSS quasar sample,
and therefore, part of the initial sample used in C17.

2. PTF sample: take a 2000 day long subsample starting
5 yr after the SDSS point.?’

20 We chose 5 yr as representative of the gap between SDSS and PTF
observations, but we tested that varying this gap by a couple of years does not
significantly affect our results.
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3. PTF masking: convert L/Lgqqto the observed PTF
R-band magnitude (following the same conversions as
in step (i) above) and apply a mask such that (1) all points
with R < 20 are observed, (2) all points with R > 21 are
not observed, and (3) the points with 20 < R < 21 have
a probability of being observed that a linear interpolation
in mag between 20 and 21. This step aims to reproduce
the observational limits in the PTF sample with a simple
prescription.

4. PTF selection: if the median of the masked subsample is
R < 19.1, accept the subsample as a legitimate mock PTF
light curve, otherwise go back to step (i). This magnitude
cut reproduces the specific sample selection applied
in C17. We note that at the considered redshift (z = 1.3)
and BH mass (log (Mpu/M.)=9.1), the R = 19.1
magnitude cut corresponds to an L/Lgyqq cut of roughly
log (L/Lgqq) = —1.2, which is consistent with that seen
in the C17 sample. As an illustration, Figure 12 shows
the regions above the PTF limit for 100 of the 300
simulations, as well as the position of a possible PTF
region.

We then computed the ensemble observed SF, in magni-
tudes, from the 300 mock PTF light curves (i.e., observed R-
band magnitudes), and converted it to intrinsic 4000 A SF
using Equation (4) in C17. For every choice of input parameter
set (i.e., every PDF and PSD set), we repeated this procedure
500 times (i.e., we computed 500 ensemble SFs, each time
using different subsamples), and computed the representative
SFprr following Equation (6). We note that this is essentially
equivalent to computing the ensemble SF for 300 x 500 =
150,000 AGNs.

4.1.4. The Reference Simulation

In principle, what was described in Section 4.1.3 should be
repeated following an MCMC approach by stepping over a grid
of input parameters (i.e., PSD break and slopes, and simulation
length), in order to find the best possible model for the data.
However, as pointed out above, the current data are not
sufficient to fully constrain the PSD, especially due to the lack
of measurements beyond human timescales. Therefore, for now
we can only use a forward modeling approach to test if a given
set of input parameters is consistent with the observed
ensemble analysis. For the PDF described in Section 4.1.2,
We found that a PSD with aygy, = 1, ahign = 2, and fi,, = 1 X

? (~30 yr), and a simulation length of 1.4 Myr is consistent
w1th the observations, as shown in Figure 13. The reference
simulation setup is summarized in Table 2 and will be used in
the next sections.

We stress that timescales on the order of the PSD break
(~30 yr in intrinsic frame) or longer are not directly probed by
the subsamples used for the ensemble analysis, as the iPTF/
PTF data span only 5.5 yr. However, they are probed by the
total light curves from which the subsamples are selected.
Therefore, they indirectly also affect the timescales probed in
the ensemble analysis. Specifically, in this case, we saw that the
break position influences the SF normalization at the timescales
that are probed by the observed data. In addition, we notice that
a simulation length of ~1 Myr is long enough for the AGN to
realistically span the whole ERDF, but advanced computational
setup allowing simulations with >10° points (see Section 3.2.3)
will allow even longer timescales to be probed.
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Figure 12. Identifying the PTF quasar sample in simulated light curves. This figure illustrates the regions above the PTF limit for 100 of the 300 reference simulations
(orange; see Section 4.1.4), as well as the position of a possible PTF-observed region, selected following the procedure outlined in Section 4.1.3 (black points). Only
~1.7% of the points in every light curve meet the PTF selection (mainly the SDSS+PTF flux limits). This fraction may appear to be higher in this illustration due to
the limited image resolution (see, e.g., Figure 15, top panel). Evidently, there is no preferential position within the ~1.4 Myr covered by the simulation where the the

points that could be associated with the PTF quasars sample are clustered.

We also note that a break position of ~30yr is longer
compared to the breaks reported in the literature for both
ensemble SF or PSD, which are on the order of several years
(e.g., MacLeod et al. 2012; Simm et al. 2016 C17). However,
as discussed in Koztowski (2017b), break timescales directly
computed from observed SFs may be considerably under-
estimated, due to the finite length of the AGN light curves,
which is not sufficient to fully probe the variability behavior at
timescales longer than the claimed break (that is, the surveys do
not satisfy T > 7y,). Moreover, PSD analyses almost always
refer to individual AGNs and find break frequencies that vary
from source to source (e.g., Simm et al. 2016). Such short
timescale breaks could therefore be “washed out” when
averaged over an ensemble of sources and could therefore
not be robustly identified in the intrinsic PSD of the AGN
population. Finally, we stress that the observed SF and PSD
always refers to specific samples (e.g., with a magnitude limit),
such that the observed variability features do not always
correspond to the intrinsic ones. As an example, Figure 13 also
shows a comparison between the simulated ensemble SF and
the total SF obtained from the same simulations without
applying any flux cut or sample selection (i.e., the intrinsic SF).
The ensemble SF obtained in Section 4.1.3 has a lower
normalization compared to the intrinsic one, suggesting that the
sample selected in PTF/iPTF has an overall lower variability
compared to the total sample of AGNs at the same redshift and
BH mass. Because the sample selection mostly relies on the
AGN luminosity, including only the most luminous sources
(see Section 4.1.3), this effect is consistent with works
suggesting the variability to be inversely proportional to
luminosity and L/Lggq (e.g., MacLeod et al. 2010; CI17,
Rumbaugh et al. 2018).
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4.2. Simulating Future Time-domain Surveys

With the advance of large, multiwavelength time-domain
surveys such as LSST (Ivezic et al. 2008; LSST Science
Collaboration et al. 2009), TDSS (Morganson et al. 2015), ZTF
(Bellm 2014), and eROSITA (Merloni et al. 2012), we are
entering an era of time-domain astronomy that will allow us to
probe the variable universe with an unprecedented time
resolution and time span for very large statistical samples
(~millions of objects). Thanks to the high observing cadence,
these surveys will allow us to probe for the first time the
variability properties of individual AGNs in a large sample and
to compare them to what was found in ensemble analyses,
therefore gaining new insights into the diversity of variability
behaviors among the galaxy population.

Based on current observed light curves, which show a
variety of features among different AGNs (e.g., Smith et al.
2018), one would expect the light curves from the new surveys
to be very diverse. In our framework, this diversity arises from
the fact that (1) every AGN corresponds to a different
realization of the underlying statistical process, and (2) that
the observed time span (~decades) is significantly shorter than
the AGN life, and therefore only probes a small part of it.
Indeed, we assume that the AGN variability behavior is
(statistically) the same for every AGN, only “integrated” over
the time needed for the AGN to span the entire ERDF, which
for our reference simulation is on the order of ~10°yr. As a
consequence, peculiar variability features lasting only for short
times (i.e., rare events) will be observed only in a few galaxies,
although they may be present in all of them.

To illustrate this point, Figure 14 shows some example AGN
light curves that may be expected to arise from LSST assuming
the reference simulation setup defined in Section 4.1. First, we
simulated a ~10° yr long (intrinsic frame) L/Lgyq time series
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Figure 13. Matching the observed PTF/iPTF structure function with our reference simulation. Left: black points denote the ensemble PTF/iPTF SF, taken from C17;
the gray lines trace 500 ensemble SFs from light curves obtained with the reference simulation setup. The indigo line traces the final, representative ensemble SF for
the best model, computed from the 500 intrinsic ones. Right: same as left panel, but showing also the total SF obtained directly from the best model simulations
without applying any cut or sample selection (black line). We note that the ensemble SF obtained as discussed in Section 4.1.3 has a lower normalization compared to

the intrinsic one.

Table 2
Summary of Reference Simulation Setup for a Sample with z ~ 1.3,
log Mgy = 9.1, Consistent with the PTF/iPTF Sample in C17

PDF Broken power law (Equation (1))
A" =0.11

6 =047

6, =2.53

log Amin = —3.75

log Amax = 0.5

PSD Broken power law (Equation (3))
Qlow = 1

Qhigh = 2

for = 1077 (~30 yr)

Simulation length ~1.4 x 10°yr

Eddington ratio cut log Aeye = —1.2

based on the reference PSD and PDF (from Section 4.1) with a
nine-day resolution in observed frame (3.9 days in intrinsic
frame at z ~ 1.3), which is comparable to the ~weekly LSST
resolution. We then converted it to bolometric luminosity and
LSST i-band magnitude in a way similar to that discussed in
Section 4.1 and extracted 10 yr long ‘“‘snapshots” to mimic
LSST light curves. As is clearly visible in Figure 14, every
short light curve, i.e., every mock observed time series, shows a
different variability behavior. Specifically, the example shown
in Figure 14 illustrates well how the AGN can experience a
variety of variability features, such as “switch on,” “switch
off,” and a sharp, year-long “flare,” as well as periods of much
more subtle variability (see the different panels in Figure 14).
Naturally, not all of these features will be observed in every
AGN because of the limited observation length, as well as
magnitude limits and host galaxy contamination (as will be
discussed below). This framework therefore allows the
occurrence rate of specific variability features to be investigated
by considering both intrinsic AGN behavior as well as
observational limitations (e.g., the fact that we are observing
every AGN only for a short time). In addition, the framework
proposed in this paper will be highly valuable to constrain the
true (intrinsic) AGN variability from artifacts and distortions,
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due to the fact that we are not continuously probing the whole
AGN light curve (see Section 3.2), as well as other
observational biases.

One additional advantage of the new and upcoming surveys
is the deeper flux limit, which will allow the variability
properties of fainter AGNs to be detected and investigated. As
an example, LSST will reach a magnitude limit i = 2421
which is almost 5 magnitudes deeper than SDSS and PTF.
Given these deep flux limits, it is, however, important to
consider the possible effect of host galaxy contamination on the
observed AGN light curves. To illustrate this, we again
simulated a ~10° yr long (intrinsic frame) L/Lgqq time series as
described above (Figure 15 top, gray light curve). We then
computed the i-band magnitude for a galaxy at z ~ 1.3 hosting
a log Mgy = 9.1 BH (as in the PTF sample) by assuming the
Bruzual & Charlot templates at 1 Gyr and solar metallicity
(Bruzual & Charlot 2003), initial mass function (IMF) from
Chabrier (2003), and the Mgp—Mpyg. relation from Kormendy
& Ho (2013). This gives a host galaxy magnitude i = 22.2.
The green light curve in Figure 15 (top), which considers both
AGN and galaxy contributions, corresponds to the total light
curves. The magnitude change due to host galaxy contribution
is ~0.06 mag for sources at the PTF limit and ~2 mag at the
LSST limit. Adding the galaxy contribution therefore causes an
increase in total flux of ~6% at the PTF limit and of a factor
~6x at the LSST limit. Although the effect is almost
negligible for PTF, it should be considered when analyzing
faint LSST observations.

4.3. Extremely Variable Quasars and Changing-look AGNs

In the last years, quasars exhibiting extreme variability
behavior (i.e., large magnitude changes over months—years
timescales) have been found in increasingly high numbers, both
serendipitously (e.g., LaMassa et al. 2015; Husemann et al.
2016; McElroy et al. 2016; Runnoe et al. 2016; Katebi et al.
2018; Ross et al. 2018; Stern et al. 2018; Trakhtenbrot
et al. 2019) or through systematic searches in surveys such as

2! This corresponds to the 5o detection limit for a point source in a single visit
(Kahn 2018).
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Figure 14. Simulating AGN variability as observed within the LSST. The top panel shows an example AGN light curve, simulated using the reference setup
(described in Section 4.1), and a resolution of nine days in the observed frame—comparable to the LSST cadence. The horizontal lines mark the PTF and LSST flux
limits (dashed lines) and the fiducial host galaxy emission (dashed—dotted line). In the panels below, we show several 10 yr long “snapshots” (in the observed frame)
which mimic AGN light curves that may possibly be observed within the LSST main survey. The positions within the total simulated light curve (upper panel) at
which the different “snapshots” are extracted from are marked with vertical lines of the same color. This figure illustrates how observing AGNs at different moments
during their life can show significantly different variability features, namely, “switch on,” “switch off,” and “flaring” events, in addition to much more subtle AGN

variability.

the SDSS (MacLeod et al. 2016, 2019; Ruan et al. 2016;
Rumbaugh et al. 2018), PanSTARRS-1 (Lawrence et al. 2016),
or CRTS (Graham et al. 2017). One example of extreme
variability is observed in CL-AGNs which, in addition to
changes in emission line structure, show changes in luminosity
of an order of magnitude or more on years—decades timescales.
Future time-domain surveys will allow these extreme variable
objects to be found and followed up in a systematic way.
Although multiple explanations for extreme variability have
been put forward (e.g., Graham et al. 2017; Lawrence 2018; Ross
et al. 2018; Rumbaugh et al. 2018; Stern et al. 2018), it is not yet
clear if these sources are driven by physical processes that are
distinct from what drives “normal” AGN variability, or if their
extreme variable behavior is simply the tail of a continuous
distribution characterizing the overall AGN variability phenom-
enon (see, e.g., Sartori et al. 2018b; MacLeod et al. 2019). Our
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framework provides an alternative way to address these questions
by comparing the observed numbers (or rates) of variable sources
with the prediction from our simulations. Indeed, our framework
allows the probability of observing a given magnitude change to
be quantified given a model for the underlying AGN variability
(i.e., the input of the simulations) and specifics of the survey (such
as flux limit, cadence, and length).

As an illustration, Figure 16 shows the probability P of an
AGN undergoing a change in magnitude |[Am| > Amies
between two epochs separated by 7, within our reference
simulation (as specified in Section 4.1). Specifically, for a
given simulated light curve, P(|Amgps| > Amyes is defined as
the ratio of the number of pairs separated by 7 with
|Amgps] > Amyer to the total number of pairs separated by 7.
As expected, the probability of undergoing a large magnitude
change drops significantly with increasing Am,., but increases
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Figure 15. The effect of host galaxy contamination on realistic AGN light-curve simulations. Top: in gray we show the same total AGN light curve as in the top panel
of Figure 14, but for a different realization of the simulation (i.e., identical input parameters). This light curve corresponds solely to the AGN emission. In green we
show the light curve derived when adding the contribution of the host galaxy (at i ~ 22; see text for details). Because the host is fainter than the PTF flux limit, the
magnitude change due to host light is only ~0.06 mag for sources above the PTF flux limit (i.e., i < 19.1). However, it grows to ~2 mag for the LSST limit (i < 24).
Bottom: the magnitude difference due to the addition of the galaxy contribution.

with increasing 7.2 This is a direct consequence of the
assumed general PSD shape, which gives more power to low
frequencies (long 7).

Because the PDF assumed in this example spans the range
log (L/Lgqq) € [—3.75, 0.5], the maximum possible |Am]| that
can be found in the simulated light curves is |Am| ~ 10.6 mag,
which corresponds to a change in luminosity of more than four
orders of magnitude (4.24 dex). As can be clearly seen in
Figure 16, such extreme variability can be found at all
timescales probed by our simulations, although the probability
for such changes is extremely low. As an example, the
probability for the simulated AGN to undergo a magnitude
change |Am| > 10 mag within 7 = 1 yris P ~ 10~°. Because
such large |Am/| over such short timescales are very unlikely to
be physically explainable (see, e.g., Katebi et al. 2018 and
references therein for a discussion of possible timescales linked
to AGN variability), this feature could arise from the fact that
the assumed model (both for the PSD and for the L/Lgyq to
magnitude conversion) is too simplistic, as the SED shape
could change drastically (Trakhtenbrot et al. 2019). However,
the probability of these features is low enough that it does not
affect the main results presented in this paper, and we only
acknowledge this issue to be investigated in future studies.

It is important to stress that Figure 16 shows the probability
of a simulated AGN undergoing a certain change in emission,
which does not directly correspond to the probability of
observing or detecting such a change. In fact, given the flux
limit of any reasonable considered survey, combined with the
contamination from the host galaxy, low L/Lgyqq sources are
(usually) not observed (or not identified as AGNs), which
limits the range of |Am| that may be observable.

To address this limitation, in Figure 17 we show a similar
analysis to that shown in Figure 16, but now assuming the
different magnitude limits discussed in the previous sections:

22 We caution that the trend observed at the highest probed Amg, where the
probability appears to decrease for 7 > 30 yr, may be due to the fact that the
number of corresponding pairs within the simulated light curves is not large
enough to reliably sample this low-probability regime.
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the PTF magnitude limit » = 19.1, the LSST magnitude limit
i = 24, as well as the host galaxy contamination, at i = 22.2.
Specifically, for a given survey depth (magnitude limit) mi .y,
we first substitute all of the points with m > m,,, with an upper
magnitude limit m, = mcy,, and then compute the probabilities
as in the previous test, although now considering only the pairs
of data points in which at least one point is above the detection
limit. As expected, the probability of detecting large magnitude
changes over a given timescale decreases for higher flux limits
(shallower surveys). As an example, for the considered
simulation, the probability of detecting a magnitude change
of [Am| = 2.5 (1 dex change in luminosity) over 10 yr is
P ~ 102 assuming the LSST depth, and P ~ 10~ for the
PTF. We stress that the probabilities showed in Figures 16
and 17 are not directly comparable because they are computed
using different assumptions for the total number of considered
pairs (total number of pairs versus number of pairs where at
least one point is detected), and because Figure 17 also includes
upper limits.

If our hypothesis of an underlying common PSD+PDF set is
correct and the reference simulation defined in Section 4.1
realistically describes the AGN population, then, for sources
with redshifts and BH masses comparable to the PTF quasar
sample, we would expect to detect a level of variability in LSST
consistent with the predictions from our simulations (after
accounting for sample selection biases in a similar way to what
is discussed in Section 4.1). Finding different values would,
however, also be informative. For example, detecting a lower
than expected number of highly variable quasars may indicate
that L/Lgygq changes do not directly translate to luminosity
changes, but the variability is suppressed due, e.g., to a
luminosity-dependent bolometric correction (that is, a luminos-
ity-dependent SED shape; see, e.g., Vignali et al. 2003; Marconi
et al. 2004; Just et al. 2007), and to the fact that the AGN may
become radiatively inefficient at low L/Lgyqy (Narayan et al.
1998; Panessa et al. 2006; Ho 2009). On the other hand, a higher
detection rate may be expected if additional external processes,
such as microlensing (e.g., Lawrence et al. 2016), dust
obscuration (e.g., Maiolino et al. 2010; Ricci et al. 2016), or
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Figure 16. Expected distributions of AGN flux variability. We show the calculated probability of a simulated quasar, drawn from our reference simulation, to undergo
a change in magnitude [Am| > Am,s between two epochs separated by 7 (in the intrinsic/rest frame; see Sections 4.1 and 4.2). The small panels below show the
analysis for the different 7 separately, where the colored lines are the different realizations and the black lines show the mean trends. The large panel summarizes the
mean trends for all considered 7. We note that at the redshift assumed for the reference simulation, z = 1.3, an intrinsic 7y, = 4.5 yr corresponds to an observed
Tobs ~ 10 yr, i.e., the foreseen length of the LSST main survey. Because in general the probability of the AGN undergoing a given |Am| decreases with decreasing 7,
for every possible 7 probed by the LSST, the probability of the AGN undergoing a given |Am]| is lower than that found for 7y, = 4.5 yr.

supernovae also contribute to the observed luminosity changes.
Other possible explanations of high variability proposed in the
literature are stellar-mass binary black hole mergers within the
dense gas of the AGN accretion disk (e.g., McKernan et al.
2014; Bartos et al. 2017) or TDEs (e.g., Gezari et al. 2012;
Arcavi et al. 2014; Hung et al. 2017; Auchettl et al. 2018).
Although these events may contribute to the instantaneous
emission changes seen in the concerned galaxy, their appearance
is not expected to have the same probability in every galaxy (see
e.g., Arcavi et al. 2014; French et al. 2016; Law-Smith et al.
2017 for the host galaxy dependence of TDEs). Therefore, such
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bursts of “external” origin are not expected to be present in our
simulations, which aim to reproduce the intrinsic stochastic
AGN behavior only.

Systematic searches for CL-AGNs require large multiepoch
spectroscopic surveys and elaborate spectral fitting analysis to
determine the changes in emission line structure (e.g., MacLeod
et al. 2016). Therefore, current studies aimed at systematically
searching for highly variable objects are concentrating on
changes in the overall luminosity. As an example, starting from a
sample of ~900,000 quasars in CRTS, Graham et al. (2017)
found 51 sources with |Am| > 1 (V-band) over ~900 days,
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which corresponds to a fraction of ~5 x 107> = 0.005%. On
the other hand, Rumbaugh et al. (2018) detected a variability of
|[Am| > 1 (g band) over a 15yr period in ~10% of sources
among a quasar sample drawn from SDSS and DES (Flaugher
et al. 2015), and further estimate that this fraction would increase
to ~30%-50% accounting for selection effects. Furthermore,
Lawrence et al. (2016) performed a joint analysis of SDSS and
PanSTARRS-1 and estimated the fraction of AGNs showing
|Am| > 1.5 in the g band to lie between 107°-107>. A direct
comparison between the results of these studies is impossible,
due to the different sample selection criteria and the analysis
methodology (see Rumbaugh et al. 2018 for details). Similarly, a
comparison between these observational results and the predic-
tions from simulations would require a whole analysis aimed at
reproducing the sample selection and observational biases in a
similar way to that showed in Section 4.1 for PTF, which is
beyond the scope of this paper. We stress that the proposed
framework will be very valuable to test if the results from
different studies can be reproduced starting from the same
simple model, i.e., if the observed differences are only
attributable to different sample selections and analysis methods,
or if different works are finding intrinsically different classes of
objects. Indeed, this framework allows us to start from the
intrinsic AGN variability predicted by simple models, and
forward model all observational effects which may be affecting
the observed variability.

It is also important to note that, although CL-AGNs usually
show a change in the overall luminosity |Am| > 1, not all
highly variable sources also present changes in the line
structure. For example, MacLeod et al. (2019) report that only
10%-50% of the quasars with |[Ag| > 1 in the SDSS and
PanSTARRS-1 surveys also show CL-AGN behavior in the
optical spectrum. By combining upcoming photometric and
spectroscopic time-domain surveys such as LSST and SDSS-V,
it will be possible to better constrain this fraction. Together
with the predictions from the simulations enabled by our
framework, this will allow the relation between changes in
accretion rate and changes in the broad line structure, and in
general of the AGN structure, to be investigated, therefore
gaining new insights into the interplay between the accretion
disk and broad line regions (e.g., Marin 2017).

5. Summary and Conclusions

We presented a framework designed to model AGN
variability over a broad range of timescales and in different
objects, based on the observed Eddington ratio distribution
among the AGN population. The framework was initially
proposed in Sartori et al. (2018b). In this paper, we discussed in
detail the fundamental assumptions of the framework, its

implementation using GPU architecture, and various simula-
tions that test and characterize both the intrinsic and numerical
behavior of our implementation. We then demonstrate several
possible applications of the framework, based on the observed
variability in the PTF/iPTF survey, with the aim to interpret
the light curves expected to be observed with the LSST and the
prospects of discovering extremely variable AGNs in upcom-
ing time-domain surveys. An up-to-date version of the
simulations code, along with examples and additional informa-
tion about its usage, can be found at https://github.com/
nevencaplar/AGN-Variability-Simulations.

The central points of our framework can be summarized as
follows (see Section 2 for details):

1. We propose that AGN light curves can be modeled
starting from the distribution of L/Lgy4g among the galaxy
population. Specifically, we assume that the distribution
of L/Lggq covered by an AGN during its lifetime is
consistent with the ERDF of the galaxy population, and
that the variability behavior is described by a PSD that is
similar for all AGNs.

2. This implies that the variety of AGN variability features
observed in different AGNs arises from the fact that every
AGN is a different realization of the same underlying
process (here described by the PSD and the ERDF), and
that the observed period is much shorter than the AGN
lifetime.”

3. The primary outputs of our simulations are L/Lggq time
series, which can be converted to light curves and other
observables in post-processing. This requires taking into
account both the AGN physics (e.g., different bolometric
corrections) as well as properties of the observations (e.g.,
flux limits and sample selection).

In order to perform the simulations, we implemented the
iteration algorithm from E13 to run on a GPU architecture
(Section 3):

1. Thanks to the CUDA environment, our GPU implemen-
tation allows the performance both in terms of length of
the simulation (up to ~10® points) and speed (~minutes
for the longest simulations) to be maximized.

2. The code is optimized for broken power-law or log-
normal PDFs and broken power-law PSDs; however,
different functional forms can be added.

3. By construction, the PDF and the periodogram of the
final light curves are consistent with the input PDF and
PSD. On the other hand, the normalization of the

23 This can be thought of as following the ergodic hypothesis for test particles.
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corresponding SF depends on the physical length (e.g., in
yr) of the simulated light curve (Equation (5)).

As an example application, we looked for a model (i.e., input
set) consistent with the variability behavior observed in the
PTF/iPTF sample (C17) and used it to simulate possible light
curves, of the kind that are expected to be observed with LSST
(Section 4):

1. After taking into account sample selection and flux limit,
we found that the PTF/iPTF ensemble SF is consistent
with simulations performed assuming the ERDF pro-
posed in W17 and C17, and a broken power-law PSD
characterized by a random walk at low frequencies and a
break at ~30yr. In this case, the time needed for the
AGN to span the entire ERDF is ~1.4 Myr (Table 2).

2. We showed that the ensemble SF computed by including
only light-curve points above the PTF flux limit has a
lower normalization (and therefore a lower overall
variability) compared to the SF computed by considering
the entire simulated light curve (Figure 13). This is
consistent with observations showing that the amplitude
of variability is anticorrelated with the AGN luminosity
and/or Eddington ratio (e.g., MacLeod et al. 2010; C17,
Rumbaugh et al. 2018).

3. The simulated LSST light curves show that the same
AGN can experience a variety of rather extreme
variability features such as “switch on,” “switch off,”
and year-long “flares,” in addition to prolonged periods of
much more subtle variability (Figure 14). Naturally,
because the foreseen observations span much shorter
periods that the AGN lifetime, not all of these features are
observed for each AGN.

4. We expect that the framework presented here would
become highly valuable to understand whether any
observed variability feature is consistent with the general
behavior of the AGN population (i.e., if it can be
reproduced with our general model), and to constrain the
intrinsic variability from artifacts due to, e.g., sample
selections and observational cadence.

5. Our framework provides a forward modeling approach
that can be used to compare results of different time-
domain surveys, for “normal” AGN variability, extreme
variability events, and, with suitable adaptations, for the
variability of other astrophysical sources.
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Appendix
PSD and Structure Function

A time series corresponds to a single realization of an
underlying PSD and probability density function (PDF). Given
a time series x(t,), k = 1, 2, ..., N, the statistical estimator of the
underlying PSD is called a periodogram P(f,) and is computed
based on Fourier analysis.

21

Sartori et al.

Let us assume a time series x(f), k = 1, 2, ..., N, with Ngeps
equidistant observations with sampling period #; — f;,_| = fyjn.
Depending on the study, the quantity x can correspond e.g., to
luminosity, magnitude, counts rate or Eddington ratio. The
DFT of x(#) is given by

N
DFT(f)) = 3 x(t)em0Dirv,
k=1

©))

wheref;,j = 0, 1, ..., N — 1, are the Fourier frequencies which
depend on the parity of Ngeps:
Niieps €VEN

1. f/f =j/(Ntyy,) forj =1, .., N/2 — 1

2. fj2 = fayq = 1/Qipin) for j = N/2

3. f; = (N = j)/(Ntin) for j = N/2 + 1, ., N — 1
Ngieps 0dd

L f = Jj/ONtyy) forj =1, ... (N = 1)/2
2. f; = —(N — )/ (Ntyy) for j = (N + 1)/2, .. N — 1

The periodogram P(f;) is then computed from the DFT (up to a
normalization constant depending on the convention used):
2
P(f) = F{Re[DFT(fj)]2 + Im[DFT(fj)]z}, (10)
where j =0, 1, /.., N/2 for even Ngeps and j =0, 1, ...,
(N — 1)/2 for odd Ngeps: The units of the PSD, and
consequently of its estimator P(f;), are (power/Hz), so that
the integral of the PSD is proportional to the total power in the
process:
total power oc f PSD(f)df. (11)
0
For a given frequency f;, PSD(f;) is therefore proportional to
the power of variations with frequency f;.
One of the most widely used PSD normalizations is the

fractional rms normalization defined by van der Klis (1997; see
also Miyamoto et al. 1991; Vaughan et al. 2003):

thin
1N

Bms(f}) = {Re [DFT(f)I* + Im[DFT(f)I*}, (12)

where p is the mean value of the time series. With this
normalization, the integral of the underlying PSD,,; between
two frequencies f; and f;, i < j corresponds to the contribution of
the frequency window [ f;, f;] to the total rms squared variability
02/ 2. The total rms squared variability can be obtained by
integrating between f; and fiax, Where frax = fv2 = fyq for
even Ngeps and frax = fov — 1y/2 Tor 0dd Neps:

2 fmax
%zﬁipmmm# (13)

An alternative way to characterize the variability in a given
time series is to construct the SF, which quantifies the amount
of variability in the data for a given timescale. We stress that
different definitions are present in the literature (e.g., MacLeod
et al. 2012; Koztowski 2016), so that caution has to be used
when comparing the SFs obtained in different studies. In this
work, for a time series x(#;) as defined above and a given time
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lag 7, we adopt the following SF formulation:
1
SF(1)* = > S — x@)P = ([x() — x(t + D),
ij>i

(14)

where #; — t; = 7 and P is the number of {x(z,), x(#})} pairs,
mostly in L/Lggq or mag units (x(f;) are the observed or
simulated L/Lgqq and light curves).

In the case of a zero mean stationary time series with f varying
between 0 and 00, a power-law PSD with slope —«, 1 < o < 3,
corresponds to a power-law SF with slope 0= (a — 1) /2,
where 7 = 1/f (e.g., Emmanoulopoulos et al. 2010). This is a
direct consequence of the Wiener—Khinchin theorem. However,
the analytical relationship between PSD and SF for the general
case is not clear yet.
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