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Abstract

Background: Evidence suggests that individuals with interstitial lung abnormalities (ILA) on a chest computed
tomogram (CT) may have an increased risk to develop a clinically significant interstitial lung disease (ILD). Although
methods used to identify individuals with ILA on chest CT have included both automated quantitative and qualitative
visual inspection methods, there has been not direct comparison between these two methods. To investigate this
relationship, we created lung density metrics and compared these to visual assessments of ILA.

Methods: To provide a comparison between ILA detection methods based on visual assessment we generated
measures of high attenuation areas (HAAs, defined by attenuation values between −600 and −250 Hounsfield
Units) in >4500 participants from both the COPDGene and Framingham Heart studies (FHS). Linear and
logistic regressions were used for analyses.

Results: Increased measures of HAAs (in ≥10 % of the lung) were significantly associated with ILA defined by visual
inspection in both cohorts (P < 0.0001); however, the positive predictive values were not very high (19 % in COPDGene
and 13 % in the FHS). In COPDGene, the association between HAAs and ILA defined by visual assessment were
modified by the percentage of emphysema and body mass index. Although increased HAAs were associated with
reductions in total lung capacity in both cohorts, there was no evidence for an association between measurement of
HAAs and MUC5B promoter genotype in the FHS.

Conclusion: Our findings demonstrate that increased measures of lung density may be helpful in determining the
severity of lung volume reduction, but alone, are not strongly predictive of ILA defined by visual assessment. Moreover,
HAAs were not associated with MUC5B promoter genotype.

Keywords: High attenuation areas, Idiopathic pulmonary fibrosis, Interstitial lung disease, Interstitial lung abnormalities
(ILA), MUC5B

Background
Although idiopathic pulmonary fibrosis (IPF), the most
common and severe form of interstitial lung disease
(ILD), has historically been unresponsive to pharmaco-
therapy [1, 2], recent studies have finally demonstrated
that two medical therapies [3, 4] can reduce the rate of
decline in lung function, particularly when started early

in the course of disease [5]. These findings provide an
important motivation to identify patients in early stages
of disease.
Accumulating evidence suggest that interstitial lung

abnormalities (ILA) identified on chest imaging may
identify groups of subjects at risk to develop clinically
significant ILD in general [6], and IPF in particular
[7, 8]. Support for this statement comes evidence that
participants with ILA are more likely to have respira-
tory symptoms [9, 10] and physiologic decrements
(e.g. reduced lung volumes [9–11], exercise capacity
[12], and diffusion capacity of carbon monoxide
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[DLCO]) [7, 10] suggestive of, but less severe than,
those apparent in patients with IPF [13]. In addition, mul-
tiple studies have identified radiologic progression in par-
ticipants with ILA [7, 8, 14], a usual interstitial pneumonia
(UIP) pattern on chest computed tomograms (CTs) in
some participants with ILA [7–9, 11, 14], and progression
from a non-UIP pattern to a UIP pattern in small num-
bers of subjects [7, 8]. Finally, the genetic factor most
strongly associated with IPF (MUC5B promoter genotype)
[15] has been similarly associated with ILA in the
Framingham Heart Study (FHS) [10].
While these findings suggest the potential importance

of identifying ILA, and comparisons between quantita-
tive and visual assessments of clinically established
pulmonary fibrosis have been performed [16–18],
there has been no published data on the relationship
between quantitative and visual assessments for ILA
identification. In particular, while all studies to date
have utilized chest CTs and most have relied on
qualitative visual assessment [7–10, 14], one study
utilized a quantitative assessment of lung density to
identify ILA [11]. Assessing lung density as a method
of identifying ILA is attractive as it could be auto-
mated, it could provide a continuous metric of the
degree of abnormality, and it would be compatible
with methods commonly used to identify and quantify
the extent of emphysema in research studies [19]. To
compare these two methods, we created lung density
metrics and compared these to visual assessments of
ILA in two large cohorts [9, 10].

Methods
Study design
Protocols for enrollment and phenotyping for both the
COPDGene and the Framingham Heart Study (FHS) par-
ticipants have been described previously [9, 10]. In brief,
the COPDGene cohort analyzed in this article includes
2508 non-Hispanic White (n = 1867, 74 %), and African-
American (n = 641, 26 %) smokers (with at least 10 pack
years of smoking) between the ages of 45 and 80, who
were enrolled into COPDGene at 21 clinical centers from
November of 2007 to April of 2010. The FHS cohort in-
cluded in this article includes 2764 mostly non-Hispanic
white adult men and women from the Third Generation
and Offspring Cohorts who participated in FHS Multi-
Detector Computed Tomography 2 (FHS-MDCT2) Study.
The COPDGene study (including this ancillary study) was
approved by the institutional review boards (IRBs) of all
participating centers and FHS-MDCT2 study (and this
ancillary study) was approved by the Boston University
and the Brigham and Women’s Hospitals’ IRBs
(2010P000996 and 2007P000554 for the FHS and COPD-
Gene, respectively). All included participants in both

cohorts provided written informed consent, including
consent for the use of their DNA in genetic studies.

Chest CT acquisition protocols
In COPDGene, the CT acquisition protocol used was as
follows: 120kVp, 200mAs, and 0.5 s rotation time for
General Electric (GE) LightSpeed-16, GE VCT-64,
Siemens Sensation-16, Siemens Sensation-64, Philips 40-
slice, and Philips 64-slice scanners. Images were recon-
structed using a standard algorithm at 0.625 mm slice
thickness and 0.625 mm intervals for GE scanners.
Siemens CT images were reconstructed using a B31f
algorithm at 0.625 (Sensation-16) or 0.75 mm slice
thickness and 0.5 mm intervals. Reconstruction of
Philips images was performed by using B algorithm at
0.9 mm slice thickness and 0.45 mm intervals. In the
FHS, CT images were acquired with a General Electric
Discovery VCT 64-slice PET/CT scanner (GE Health-
care) using a MA determined by subject weight (300 mA
for subjects less than 220 lbs, 350mG for subjects equal
to or greater than 220 lbs) 120 Kv, and a gantry rotation
time of 0.35 s. Raw data was collected using a 210° scan
reconstruction algorithm and a detector width of
0.625 mm. Images were reconstructed with a 50 cm field
of view (FOV).

Thoracic chest CT analysis
Visual assessment
The methods for the visual assessment of chest CTs
in both COPDGene and FHS have been described
previously [9, 10]. Chest CTs were evaluated by three
readers using a sequential reading method as previ-
ously described [20]. ILA were defined as nondepen-
dent changes (to exclude the effect of atelectasis as
prone images were not available) affecting >5 % of
any lung zone including, nondependent ground-glass
or reticular abnormalities, diffuse centrilobular nodu-
larity, nonemphysematous cysts, honeycombing, or
traction bronchiectasis. CTs with either focal or uni-
lateral ground-glass attenuation, focal or unilateral
reticulation, or patchy ground-glass abnormality
(<5 % of the lung) were considered indeterminate.

Quantitative assessment
Image analysis was performed on inspiratory CT scans
using Pulmonary Workstatins 2 and PLUS (VIDA
Diagnostics, Iowa City, IA) at the Core Imaging Cen-
ter of the COPDGene study to quantify the percent-
age of the lung occupied by high attenuation areas
(HAAs, defined by attenuation values between −600
and −250 Hounsfield Units [HUs]) [11]. While this
method includes lung segmentation of both the par-
enchyma and central vasculature, these vessels are
ultimately excluded in quantitation based on the
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attenuation values of blood (~40 HUs depending on
the hematocrit). Airway Inspector (http://airwayin-
spector.acil-bwh.org) was used to quantify the total
lung capacity and percentage of emphysematous lung
(at [−]950, in COPDGene) [19].

Statistical analysis
In both COPDGene and the FHS, the percentage of
HAAs was evaluated as both a continuous and as a bin-
ary variable selected on the basis of a prior presentation
[11] (e.g. ≥10 % or <10 % and ≥6.4 % or <6.4 % [≥6.4 %
corresponds to the ≥ upper 95th percentile] of the lung
occupied by HAAs in COPDGene). To provide a
complete comparison between methods, when ILA was
the primary outcome we assessed controls as those that
both included and excluded participants indeterminate
for ILA by visual assessment. In COPDGene, covariate
adjustment and statistical analyses were performed as
described using Statistical Analysis Software version 9.2
(SAS Institute, Cary, NC). In the FHS, all analyses
accounted for familial relationship using generalized lin-
ear mixed effect models as previously described [21] and
were performed using R version 2.9 [22]. All genetic
analyses were performed using additive genetic models

[10]. Reported P values are two-sided and those < 0.05
were considered statistically significant.

Results
Population characteristics of ILA by characterization
method
Population characteristics of participants with ILA,
defined by both visual assessment and a threshold of
HAAs for both the COPDGene and FHS, are presented
in Table 1. Population characteristics of participants
without ILA and indeterminate for ILA defined by visual
assessment and the interobserver variability of ILA as-
sessments in both the COPDGene and FHS have been
presented previously [9, 10]. The most strikingly consist-
ent differences between the classification methods of
ILA are that participants with ILA defined by HAAs
tended to have an increased BMI and greater reductions
in total lung capacity (TLC) in both the COPDGene and
FHS cohorts when compared to participants with ILA
classified by visual assessment.

COPDGene
In COPDGene, of the 2416 chest CTs previously assessed
for the presence of ILA [9], quantitative assessment of

Table 1 Baseline characteristics of COPDGene and Framingham Heart Study (FHS) participants with Interstitial Lung Abnormality
(ILA) by identification method

Variablea Number (%) or Median (standard deviation) where appropriate

Demographic parameters COPDGene FHS

ILA by Visual Assessment ILA by HAAsb ILA by Visual Assessment ILA by HAAsb

n = 194 (8 %) n = 26 (1 %) n = 177 (7 %) n = 46 (2 %)

Age (years) 64 (10) 62 (8) 70 (12) 65 (13)

Gender (female) 101 (52 %) 14 (54 %) 89 (50 %) 19 (41 %)

Race (African-American) 56 (29 %) 14 (54 %) - -

Body Mass Index 28 (7) 33 (4) 28 (5) 32 (5)

Pack years of smoking 44 (27) 42 (26) 26 (20) 18 (15)

Current Smoker 97 (50 %) 18 (69 %) 17 (10 %) 5(11 %)

Spirometric Parameters

FEV1 (% of predicted)d 81 % (21) 80 % (32) 98 % (17) 96 % (16)

FVC (% of predicted)d 88 % (17) 78 % (23) 101 % (15) 96 % (15)

FEV1/FVC %d 71 % (14) 81 % (18) 97 % (9) 100 % (7)

DLCO (% of predicted)e - - 86 % (14) 86 % (17)

Chest CT parameters

Total Lung Capacity (TLC)f 5.0 (1.4) 3.5 (1.4) 4.6 (1.2) 3.8 (0.9)

TLC % of predictedf 95 % (20) 57 % (17) 79 % (17) 64 % (14)
aData missing in the COPDGene study (n = 2416) for COPD status and pulmonary function testing (n = 1, <1 %) and TLC (n = 19, <1 %). Data missing in the FHS
(n = 2633) for spirometry (n = 165, 6 %), diffusion capacity of carbon monoxide (DLCO, n = 572, 22 %), and total lung capacity (n = 192, 7 %)
bHAAs = High Attenuation Areas (defined by attenuation values between −600 and −250 Hounsfield Units [HUs]) [11]
cGold Stage ≥ 2 includes those with an FEV1/FVC % ≥ 0.70, FEV1 < 80 % of predicted
dPost-bronchodilator pulmonary function measurements presented. Predicted values for FEV1 and FVC are derived from Crapo et al. [34]
eDLCO = Diffusion capacity of carbon monoxide, predicted values are derived from Miller et al. [27]
fQuantitative metrics of TLC were performed using Airway Inspector (http://airwayinspector.acil-bwh.org). HU: Hounsfield units. Percent of predicted total lung
capacity based on ATS/ERS guidelines [35]
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HAA could be measured in 2093 (87 %) participants.
HAAs were significantly associated with ILA in analyses
that excluded participants indeterminate for ILA status
(for each 1 % increase in HAAs a participant had a 2.3-
fold increase in their odds to have ILA, 95 % confidence
interval [CI] 2.0–2.6, P < 0.0001) and in analyses including
participants indeterminate for ILA as controls (for each
1 % increase in HAAs a participant had a 1.3-fold increase
in their odds to have ILA, 95 % confidence interval [CI]
1.2–1.4, P < 0.0001). In addition, increases in HAAs were
associated with reductions in total lung capacity (TLC)
both in analyses of all participants (after adjusting for
covariates including age, sex, race, body mass index
[BMI], smoking behavior, the percent of emphysema
and COPD status) and in analyses limited to those
with ILA (after adjusting for covariates). For all par-
ticipants, for each 1 % increase in HAAs a participant
was predicted to have a 351 ml decrease in TLC
(95 % CI 324–378 ml, P < 0.0001). For those with
ILA, for each 1 % increase in HAAs a participant was
predicted to have a 278 ml decrease in TLC (95 % CI
216–340 ml, P < 0.0001). However, as noted in Fig. 1, the
difference between the median value of the percentage of

the lung occupied by HAAs among participants with ILA,
compared to those without ILA, was < 1.4 %. Among par-
ticipants with ILA, the median value of HAAs was 4.6 %
ranging between 2.7 and 16.5 %. Among participants with-
out ILA, the median value of HAAs was 3.3 % ranging
between 2.2 and 10.8 %.
Next, we assessed the ability of HAA thresholds to

predict the presence of ILA by visual assessment in
COPDGene. As noted in Table 2, although there was
significant evidence for a correlation between ILA de-
fined by visual assessment and those having ≥10 % of
the lung occupied by HAAs (P = 0.03), the agreement
between methods was slight (Kappa = 0.03). The positive
predictive value of having ≥10 % HAAs in the prediction
of ILA by visual assessment in COPDGene was 19 %.
We considered an alternate threshold of lung density
(≥6.4 %, corresponding to the upper 95th percent of
HAAs in COPDGene), and noted increased evidence for
a correlation between ILA defined by visual assessment
and lung density methods (P < 0.0001). However, the
agreement between methods remained modest (Kappa =
0.13). The best performing threshold of HAAs in the
prediction of ILA defined by visual assessment (c-statis-
tic 0.76) was obtained with an HAA threshold of ≥ 3.6 %
(which corresponds to the 50th percentile of HAAs in
COPDGene).
There is evidence that the association between HAAs

and ILA defined by visual assessment was modified by
the percentage of emphysema (P = <0.0001) and the BMI
(P = 0.03) of participants. For example, among partici-
pants with <5 % emphysema, for each 1 % increase in
HAAs a participant had a 1.2-fold increase in the odds
of having ILA (95 % CI 1.1–1.3, P < 0.0001). Whereas,
among participants with ≥5 % emphysema, for each 1 %
increase in HAAs a participant had a 3.8-fold increase in
the odds of having ILA (95 % CI 2.3–6.0, P < 0.0001).
Among participants with a BMI ≥30, for each 1 % in-
crease in HAAs a participant had a 1.9-fold increase in
the odds of having ILA (95 % CI 1.6–2.3, P < 0.0001).
Whereas, among participants with a BMI <30, for each
1 % increase in HAAs a participant had a 3.1-fold
increase in the odds of having ILA (95 % CI 2.5–4.0,
P < 0.0001). Figure 2 demonstrates an example of a
participant with ILA defined by visual assessment on
the background of emphysema but with <10 % HAAs,
and an example of a participant without ILA defined by
visual assessment and an increased BMI with ≥10 %
HAAs. As apparent in Fig. 2 (and noted in the data
above), an increase in the percentage of emphysema
appears to reduce the sensitivity of HAA thresholds for
the detection of ILA by visual assessment, while an
increased BMI alone can result in an increase in the
percentage of HAAs even when there is minimal visual
evidence for ILA on chest CT imaging.

Fig. 1 A density plot of the percentage of the lung occupied by High
Attenuation Areas (HAAs, chest CT attenuation values between −600
and −250 HU) in participants with ILA (in red, n = 163), in participants
indeterminate for ILA (in gray, n = 757), and in the participants without
ILA (in black, n = 1173). Despite the differences in numbers between
the groups for each category (defined by color) the area under the
curve is normalized to a density of 1 which gives a sense of the
relative spread of the data between categories. The percentage of lung
occupied by various HAA thresholds is listed on the x-axis. The density
of subjects at various HAA thresholds is listed on the y-axis
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Table 2 Comparison of methods for the detection of interstitial lung abnormalities in COPDGene and Framingham Heart Study
(FHS) participants

COPDGene HAAs < 10 %a HAAs≥ 10 %a HAAs < 95th percentile (HAA < 6.44 %)a HAAs≥ 95 percentile (HAA≥ 6.44 %)a

No ILAa 1909 21 1850 80

ILA 158 5 139 24

Kappa 0.03, p = 0.03 Kappa 0.13, p < 0.0001

Framingham Heart Study HAAs < 10 % HAAs≥ 10 % HAAs < 95th percentile HAAs≥ 95 percentile

No ILAa 1987 306 2188 105

ILA 104 46 132 18

Kappa 0.11, p = <0.0001 Kappa 0.08, p < 0.0001

COPDgene Cohort:

HAAs at 10 % Sensitivity 3 % Specificity 99 % PPV 19 % NPV 92 %

HAAs at 95th% Sensitivity 15 % Specificity 96 % PPV 23 % NPV 93 %

Framingham Cohort:

HAAs at 10 % Sensitivity 31 % Specificity 87 % PPV 13 % NPV 95 %

HAAs at 95th% Sensitivity 12 % Specificity 95 % PPV 15 % NPV 94 %
aHAAs high attenuation areas (defined by the percentage of the lung occupied by high attenuation areas between −600 and −250 Hounsfield Units) [11]
bNumber of subjects grouped as “no ILA” that are classified as indeterminate: COPDgene: HAA <10 % - n = 739, HAAs ≥ 10 % - n = 18, HAAs < 95 % – n = 698,
HAAs ≥ 95 % – n = 59
cNumber of subjects grouped as “no ILA” that are classified as indeterminate: Framingham: HAA <10 % - n = 805, HAAs ≥ 10 % - n = 184, HAAs < 95 % – n = 926,
HAAs ≥ 95 % – n = 63

Fig. 2 On the vertical axis we present representative examples of (a) a subject with interstitial lung abnormalities identified by visual assessment
but has less than 10 % of the lung with chest CT attenuation values between −600 and −250 HU (HAA) (7.5 % HAA) and (b) a subject having > 10 %
of the lung with chest CT attenuation values between −600 and −250 HU (HAA) (10.8 %) but not identified as having interstitial lung abnormalities
identified by visual assessment. Each row represents data from a single subject. On the horizontal axis we present axial high resolution chest computed
tomographic (HRCT) images (1 [approximately at the level of the carina] and 2 [approximately at the level of the right inferior pulmonary vein])
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Framingham Heart Study (FHS)
As a prior study utilizing HAAs in the identification of
ILA was performed in a general population sample [11],
we additionally analyzed the FHS and compared the as-
sociation between thresholds of HAAs and ILA defined
by visual assessment in 2443 (93 %) of the previously
assessed 2633 chest CTs, where this measurement could
be obtained.
As noted in Table 2, and comparable to our findings

in COPDGene, although there was significant evidence
for a correlation between ILA defined by visual assess-
ment and those having ≥10 % of the lung occupied by
HAAs (P = <0.0001), the agreement between methods
was slight (Kappa = 0.11). Comparable to results from
COPDGene, increases in HAAs were associated with re-
ductions in TLC both in analyses of all participants
(after adjusting for covariates including age, sex, race,
BMI, and smoking behavior, for each 1 % increase in
HAAs a participant was predicted to have a 233 ml de-
crease in TLC, 95 % CI 223–243 ml, P < 0.0001) and in
analyses limited to those with ILA (after adjusting for
covariates, for each 1 % increase in HAAs a participant
was predicted to have a 214 ml decrease in TLC, 95 % CI
179–249 ml, P < 0.0001). However, the positive predictive
value of having ≥10 % HAAs in the prediction of ILA by
visual assessment in the FHS was 13 %. Similar evidence
was noted when we considered an alternate threshold of
lung density (≥6.4 %, Kappa 0.08, P < 0.0001). The positive
predictive value of having ≥6.4 % HAAs in the prediction
of ILA by visual assessment in the FHS was 15 %.
Finally, based on a prior association between MUC5B

promoter genotype (rs3570950) and ILA defined by vis-
ual assessment in the FHS [10], we compared the associ-
ation between MUC5B promoter genotype and ILA
defined by various thresholds of HAAs and continuous
measures of HAAs. After adjusting for covariates includ-
ing age, sex, body mass index, and smoking behavior,
there was no evidence for an association between
MUC5B promoter genotype and having ≥10 % of the
lung occupied by HAAs (OR 1.1, 95 % CI 0.9–1.5, P =
0.33), or when we considered an alternate threshold of
lung density (≥6.44 % in the FHS, OR 1.1, 95 % CI 0.7–
1.6, P = 0.75). Finally, after adjusting for covariates, there
was no evidence for an association between MUC5B
promoter genotype and continuous measures of HAAs
in the FHS (P = 0.31).

Discussion
Our findings demonstrate that, although individuals
with an increased percentage of the lung occupied by
regions of high density are more likely to have inter-
stitial lung abnormalities defined by visual assessment
in both the COPDGene and the FHS cohorts, lung
density thresholds do not appear to be strongly

predictive of ILA defined by visual assessment.
Although ILA defined by visual assessment and ILA
defined by lung density thresholds both predict a
phenotype that is associated with reduced total lung
capacity, ILA defined by lung density thresholds are
not associated with MUC5B promoter genotype.
As information accrues that suggests that the presence

ILA on chest CT, in some cases, may define groups that
are at an increased risk for the development of clinically
evident pulmonary fibrosis [6], consistency in ILA detec-
tion across studies will be important to allow for accurate
comparisons. Automated methods of lung abnormality
detection are attractive in that they could provide a rapid,
quantifiable, and reproducible method (at least across
similar scanners and scanning protocols) [23] to deter-
mine if a person is at an increased risk for pulmonary
fibrosis. Unfortunately, our findings suggest that most
cases of ILA defined by visual assessment would be
missed by detection methods based on classification using
lung density alone. Given that the primary purpose of this
research is to identify groups at an increased risk for pul-
monary fibrosis, it is important to note that although both
methods identify groups with reduced lung volumes
(an effect noticeably greater with ILA detection
methods based on lung density), the genetic factor
most strongly associated with IPF (MUC5B promoter
genotype) [15, 24–28] is similarly associated with ILA
when defined by visual assessment [10] but not with
ILA when defined by thresholds of lung density. This
suggests that quantitative methods for detecting ILA
based on lung density may include additional pheno-
types associated with reduced total lung volume mea-
surements (based on chest CT measurements) but
not suggestive of an ILD (e.g. atelectasis, reduced
inspiratory volume, or increased attenuation values
due to increased soft tissue as can be noted in sub-
jects with a high BMI).
As it has been known for some time that ILD is asso-

ciated with increased measures of lung density [29], it is
perhaps surprising that increased measures of lung dens-
ity are not strongly predictive of ILA defined by visual
assessment. To explore this phenomenon further, we
postulated that additional factors known to influence
lung density could modify the correlation between
lung density metrics and ILA defined by visual assess-
ment. We found that both chest CT-defined metrics
of emphysema (a factor defined by reduced lung
density) [19] and BMI (a factor that can increase
image noise and thus lung density when increased)
[30] influence the correlation between measures of
lung density and ILA defined by visual assessment. In
short, our findings are consistent with the fact that
individuals with ILA defined by visual assessment will
tend to have lower measures of high attenuation areas
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when a significant amount of emphysema is present.
In addition, individuals with a high BMI, even with-
out ILA defined by visual assessment, are more likely
to have increased measures of high attenuation areas.
Although measures of emphysema and BMI likely do not
entirely explain the lack of a strong correlation between
these methods of ILA detection, our findings do suggest
that factors influencing global lung density can influence
the performance of lung density thresholds when classify-
ing pulmonary parenchymal abnormalities.
Our study has a number of important limitations.

First, although our study suggests that there are limi-
tations of lung density thresholds for the classification
of ILA in multiple cohorts, longitudinal follow-up of
individuals with ILA defined by various methods has
not been presented. Second, while our study demon-
strates that automated ILA classification methods
(based on global increases in regions of high attenuat-
ing areas) alone may have limitations, our study does
not exclude the possibility that alternate automated
ILA detection methods (including those involving
lung segmentation and texture analysis) [31] could
have improved classification performance. Importantly,
in patients with known interstitial lung disease, radio-
logic discrimination and quantitation methods based
on texture analysis and feature selection have demon-
strated good sensitivity and specificity when compared
to radiologic interpretations [17, 18, 32, 33] and have
been demonstrated to be superior to lung density
based detection methods [33]. Third, although evi-
dence has been presented that suggests, in some
cases, that ILA defined by visual inspection could
represent an early stage of pulmonary fibrosis, it is
important to note that there is currently no “gold
standard” criteria for the detection of an early stage
of pulmonary fibrosis. In addition, some of the radio-
logic features that we have used to define ILA are
atypical and suggest alternate diagnoses from idio-
pathic pulmonary fibrosis (e.g. centrilobular ground-
glass nodules). Our findings do not preclude the
possibility that alternate methods of visual assessment
or quantitative measurement could ultimately, and
more accurately, identify groups at high risk to de-
velop pulmonary fibrosis. Fourth, it is worth noting
that although specific HU thresholds for measurement
of HAAs of the lung (between −600 and −250 HUs)
exclude central pulmonary vasculature (~40 HU de-
pending on hematocrit), it is not known what effect
residual segmental and subsegmental vasculature
(which might be captured by HAA thresholds) could
have on HAA quantification. Finally, although our
study raises concerns about the use of high attenu-
ation lung density thresholds alone for the classifica-
tion of ILA, our study does not exclude the

possibility that measures of increased lung density
could provide additive clinical information. In fact,
our study demonstrates that increased measures of
lung density are strongly correlated with reduced lung
volumes, even in analyses limited to those with ILA
defined by visual assessment. Future longitudinal
studies will be needed to determine if increased mea-
sures of lung density among those with ILA are asso-
ciated with a greater risk for a progressive disease.

Conclusion
In conclusion, our findings demonstrate that metrics of
increased lung density may be helpful in determining
the severity of lung volume reduction, but alone, are
insufficient in classifying interstitial lung abnormalities
defined by visual assessment.
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