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PREFACE

This thesis document presents the works performed by Mathias Lambert Villanueva

during his Master of Science in Engineering. The main work (”Hybrid data fidelity term

approach for Quantitative Susceptibility Mapping”) of this thesis was submitted to the jour-

nal Magnetic Resonance in Medicine in November 2021 (Manuscript #MRM-21-22642)

and accepted at the ISMRM 2020 conference. Two additional works (”Non-regularized

Dipole Inversion with streaking suppression via L1-norm optimization” and ”Improving

Quantitative Susceptibility Mapping reconstructions via non-linear Huber loss data fidelity

term”) presented at the ISMRM 2021 conference are presented in the appendices.

iv



ACKNOWLEDGEMENTS

First I want to thank my advisor Cristián Tejos, who opened the doors to the world of

research. I greatly appreciate the opportunities you have given me, the teachings you have

transmitted to me, and your supervision and attention.

Thanks to all the members of the Biomedical Image Center (CIB) with whom I had the

opportunity to share. Thanks to Gabriel Varela and Manuel Chapa for quickly offering me

their friendship when I joined the group. An enormous thank you to Javier Silva for being

an excellent friend and partner.

Special thanks to Carlos Milovic, for his friendship, for his trust, for sharing his knowl-

edge and ideas with me. Carlos was a fundamental part of my master’s degree and became

a great friend and advisor for me.

I thank my parents. For providing me with an education and for their support through-

out the long road we have traveled to reach this moment.

Finally, I want to thank Raquel, my girlfriend. For sharing her life with me, for her

support and words of encouragement in difficult moments.

v



TABLE OF CONTENTS

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

RESUMEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1. Hybrid data fidelity term approach for QSM (HD-QSM) . . . . . . . . . . 4

2.2. Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1. COSMOS forward simulation . . . . . . . . . . . . . . . . . . . . . 6

2.2.2. 2019 QSM Challenge (RC2) - SNR1 dataset . . . . . . . . . . . . . . 6

2.2.3. In vivo dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1. Cosmos Forward Simulation . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2. QSM Challenge 2.0 - SNR1 dataset . . . . . . . . . . . . . . . . . . . . 8

3.3. In vivo dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

APPENDIX A. SUPPLEMENTARY MATERIAL: Hybrid data fidelity term approach

for QSM (HD-QSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vi



A.1. ADMM Solver for Stage 1 . . . . . . . . . . . . . . . . . . . . . . . . . 26

A.2. ADMM Solver for Stage 2 . . . . . . . . . . . . . . . . . . . . . . . . . 28

A.3. Challenge 2.0 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 30

APPENDIX B. Non-regularized Dipole Inversion with streaking suppression via

L1-norm optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

B.1. Title and authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

B.2. Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

B.3. Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

B.3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

B.3.2. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

B.3.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

B.3.4. Discussion & Conclusion . . . . . . . . . . . . . . . . . . . . . . . 41

B.3.5. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . 42

APPENDIX C. Improving Quantitative Susceptibility Mapping reconstructions via

non-linear Huber loss data fidelity term (Huber-QSM) . . . . . . . . . . . . . . 43

C.1. Title and authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

C.2. Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

C.3. Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

C.3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

C.3.2. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

C.3.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

C.3.4. Discussion & Conclusion . . . . . . . . . . . . . . . . . . . . . . . 46

C.3.5. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . 47

LIST OF PUBLICATIONS, CONFERENCES AND AWARDS . . . . . . . . . . . 50

ISI Journals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

International Conferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

International Awards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

vii



LIST OF FIGURES

3.1 Cosmos Forward Simulation Results . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Cosmos Forward Simulation Results . . . . . . . . . . . . . . . . . . . . . . 12

3.3 NRMSE evolution RC2 reconstructions . . . . . . . . . . . . . . . . . . . . 13

3.4 In-vivo reconstructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

A.1 RC2 Sim1 NRMSE evolution . . . . . . . . . . . . . . . . . . . . . . . . . 30

A.2 RC2 Sim2 NRMSE evolution . . . . . . . . . . . . . . . . . . . . . . . . . 31

A.3 Solutions at the end of stages . . . . . . . . . . . . . . . . . . . . . . . . . 32

A.4 Discrepancy factor effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

A.5 Reconstructions without discrepancy factor . . . . . . . . . . . . . . . . . . 34

A.6 RC2 Sim1 reconstructions . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A.7 RC2 Sim2 reconstructions . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

B.1 nDI-L1 COSMOS reconstructions . . . . . . . . . . . . . . . . . . . . . . . 40

B.2 nDI-L1 RC2 SIM1SNR1 reconstructions . . . . . . . . . . . . . . . . . . . 40

B.3 nDI-L1 in-vivo reconstructions . . . . . . . . . . . . . . . . . . . . . . . . 41

C.1 Huber loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

C.2 Huber-QSM COSMOS reconstructions . . . . . . . . . . . . . . . . . . . . 47

C.3 Huber-QSM COSMOS with lesions . . . . . . . . . . . . . . . . . . . . . . 48

C.4 Huber-QSM RC2 SIM2SNR1 reconstructions . . . . . . . . . . . . . . . . . 48

C.5 Huber-QSM in-vivo reconstructions . . . . . . . . . . . . . . . . . . . . . . 49

viii



LIST OF TABLES

3.1 RC2 dataset metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

ix



ABSTRACT

Susceptibility maps are usually derived from local magnetic field estimations by min-

imizing a functional composed of a data consistency term and a regularization term. The

data consistency term measures the difference between the desired solution and the mea-

sured data using typically the L2-norm. It has been proposed to replace this L2-norm with

the L1-norm, due to its robustness to outliers and reduction of streaking artifacts arising

from highly noisy or strongly perturbed regions. However, in regions with high signal-

to-noise ratio, the L1-norm yields a suboptimal denoising performance. In this work, we

present a hybrid data fidelity approach that uses the L1-norm and subsequently the L2-

norm, so that to exploit the strengths of both norms.

We developed a Hybrid Data fidelity term approach for Quantitative Susceptibility

Mapping (HD-QSM) based on linear susceptibility inversion methods, with Total Variation

regularization. Each functional is solved with ADMM. HD-QSM is a two-stage method

that first finds a fast solution of the L1-norm functional and then uses this solution to ini-

tialize the L2-norm functional. In both norms we included spatially variable weights that

improve the quality of the reconstructions.

HD-QSM produced a good quantitative reconstructions in terms of structural defini-

tion, noise reduction and avoiding streaking artifacts comparable to nonlinear methods,

but with higher computational efficiency. Reconstructions performed with this method

achieved first place at the lowest RMSE category in Stage 1 of the 2019 QSM Reconstruc-

tion Challenge.

The proposed method allows robust and accurate QSM reconstructions, obtaining su-

perior performance to state-of-the-art methods.
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Keywords: magnetic susceptibility, QSM, inverse problems, magnetic resonance,

MRI, variational regularization, Augmented Lagrangian, L1-norm, L2-

norm.
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RESUMEN

Por lo general los mapas de susceptibilidad se obtienen resolviendo un problema de op-

timización compuesto por un término de consistencia de datos y un término regularizador.

El término de consistencia de datos mide la diferencia entre la solución deseada y los datos

medidos. Usualmente esta diferencia se mide utilizando la norma L2. Se ha propuesto

reemplazar esta norma L2 por la norma L1, debido a su robustez frente a valores atı́picos.

El cambio de norma permite disminuir los artefactos originados en regiones donde la señal

adquirida es muy ruidosa o está perturbada. Sin embargo, en regiones con una alta relación

señal / ruido, la norma L1 produce un rendimiento subóptimo de eliminación de ruido. En

este trabajo, presentamos un enfoque hı́brido de consistencia de datos que utiliza la norma

L1 y posteriormente la norma L2, para aprovechar las fortalezas de ambas normas.

Desarrollamos un método que utiliza un enfoque hı́brido en el término de consisten-

cia de datos (HD-QSM) basado en métodos de inversión de susceptibilidad lineal y que

utiliza variación total en el término de regularización. Cada funcional se resuelve medi-

ante la división de variables en el marco del método de multiplicadores de dirección alterna

(ADMM). HD-QSM es un método de dos etapas que primero encuentra una solución rápida

del funcional de la norma L1 y luego utiliza esta solución para inicializar el funcional de

la norma L2. En ambas normas incluimos pesos espacialmente variables que mejoran la

calidad de las reconstrucciones.

HD-QSM produjo buenas reconstrucciones en términos de definición estructural, re-

ducción de ruido y mitigación de la generación de artefactos, comparable a los métodos

no lineales, pero con menor consumo de tiempo y recursos computacionales. Con este

método obtuve el primer lugar en la categorı́a mejor RMSE en la Etapa 1 del Desafı́o de

Reconstrucción QSM 2019.

xii



El método propuesto permite obtener reconstrucciones robustas y precisas, obteniendo

un rendimiento superior a los métodos de QSM de última generación.

Palabras Claves: susceptibilidad magnética, QSM, problemas inversos, resonancia

magnética, MRI, regularización variacional, Lagrangiano Aumen-

tado, Norma L1, Norma L2.
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1. INTRODUCTION

Quantitative Susceptibility Mapping (QSM) is an MRI reconstruction technique that

allows calculating the magnetic susceptibility of tissues from the phase of gradient-echo

acquisitions (E. M. Haacke et al., 2015). The magnetic susceptibility of a material is a

property defined as the degree of magnetization of a material in the presence of an exter-

nal magnetic field. Most biological brain tissues are intrinsically diamagnetic. Whereas

diamagnetic myelin or calcium deposits are generating a magnetic field opposed to the ap-

plied field, paramagnetic materials, such as iron, react by generating a magnetic field in the

same direction as that of the external field (Langkammer et al., 2012). Unlike conventional

susceptibility-sensitive techniques (e.g., R2* mapping and susceptibility weighted imag-

ing), QSM quantifies the diamagnetic and paramagnetic contributions yielding exquisite

contrast between anatomical structures.

Specific physiological and pathological processes change the magnetic susceptibility

and QSM can be used to quantify oxygenation levels (E. Haacke, Tang, Neelavalli, &

Cheng, 2010) and detect hemorrhages and microhemorrhages (Klohs et al., 2011). In-

creased regional susceptibilities have been consistently found in several neurodegenera-

tive diseases (Langkammer et al., 2012), including Alzheimer’s (Acosta-Cabronero et al.,

2013), Parkinson’s (Acosta-Cabronero et al., 2016; Langkammer et al., 2016), Hunting-

ton’s (van Bergen et al., 2016) and multiple sclerosis (Blazejewska et al., 2015; Langkam-

mer et al., 2013).

Susceptibility maps are typically calculated by following three consecutive process-

ing steps: phase unwrapping (Robinson et al., 2017), background field removal (Schweser,

Robinson, de Rochefort, Li, & Bredies, 2017) and dipole inversion (de Rochefort, Brown,

Prince, & Wang, 2008; Shmueli et al., 2009; Kressler & Rochefort, 2010; de Rochefort et

al., 2010; Liu et al., 2013; Milovic, Bilgic, Zhao, Acosta-Cabronero, & Tejos, 2018; Bilgic,

Chatnuntawech, Langkammer, & Setsompop, 2015; Milovic, Lambert, et al., 2021). The

unwrapping stage eliminates 2⇡-jumps produced in the phase of the measured gradient echo

signal. Background field removal eliminates the magnetic field contributions originated by
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objects outside the region of interest or field of view and field inhomogeneities, leaving only

the magnetization field originated from local objects. The susceptibility-to-field model con-

siders non-interacting magnetic dipoles, each associated with a single susceptibility source.

This effectively models the measured magnetic field as the convolution between a dipole

kernel and the underlying susceptibility distribution (Salomir, de Senneville, & Moonen,

2003; J. Marques & Bowtell, 2005). Therefore, the susceptibility distribution might be ob-

tained by deconvolving the local magnetic fields by the dipole kernel. This process, known

as the dipole inversion, is an ill-posed inverse problem. The dipole kernel has a zero-valued

biconical surface in the Fourier domain, known as the ”magic cone”, which impedes direct

division. Truncated solutions (Shmueli et al., 2009) (i.e., replacing values below a thresh-

old with a small number) amplify noise and contaminate the reconstructed susceptibility

maps with streaking artifacts, i.e., conical patterns originated from noisy voxels.

To address this issue, the dipole inversion process is usually reformulated as an opti-

mization problem. Optimization models minimize a functional, usually composed of two

terms: a data consistency and a regularization term. The regularization term is used to

include prior information about the solution, which promotes desired characteristics, e.g.,

smoothness or continuous solutions (Tikhonov regularizer (de Rochefort et al., 2010)) or

piece-wise constant solutions (Total Variation regularizer (Chen & Cheng, 2012)). The data

consistency -or data fidelity term- is a measure of the error between the proposed solution

and the local magnetic fields given the susceptibility-to-field or forward model.

Commonly, the data consistency term minimizes the squared difference between the

dipole-convolved solution and the local field, i.e., a squared L2-norm. The squared L2-

norm is a mathematically and computationally efficient function which also defines a con-

vex penalty function that gives a unique solution. For QSM, this approach performs rel-

atively well with data that have been corrupted by moderate amount of noise. However,

the squared L2-norm heavily penalizes large discrepancies produced by strong noise or

other sources of discrepancy such as pre-processing artifacts, etc. This high penalty tends

to produce susceptibility maps with streaking artifacts, especially in low SNR areas. This

2



behavior might be explained from a Bayesian point of view. Finding the solution that min-

imizes the L2-norm with noise-corrupted measured data is equivalent to finding the max-

imum likelihood estimate in a maximum a posteriori probability (MAP) problem, but this

only happens when the noise source has a Gaussian distribution. Indeed, whereas the noise

distribution in phase MRI signals with high SNR can be approximated as Gaussian, this

approximation is no longer valid for low SNR (Irarrazaval, Dehghan Firoozabadi, Uribe,

Tejos, & Sing-Long, 2019; Gudbjartsson & Patz, 1995).

To address this problem, Liu et al. (Liu et al., 2013) proposed a nonlinear data fi-

delity term that computes the error of the forward model at the complex image domain

improving robustness to noise at the expense of higher computational cost. Later, Milovic

et al. (Milovic, Lambert, et al., 2021) proposed to use an L1-norm data consistency term

(least absolute error minimization), producing a better performance against outlier voxels

(Boyd, Parikh, Chu, Peleato, & Eckstein, 2011; Li & Swetits, 1998; “Asymptotic Theory of

Least Absolute Error Regression”, 1978; Wang, 2013). Compared with the L2-norm, the

L1-norm penalizes large discrepancies between the proposed solution and the measured

data less severely. This prevents energy-spilling from voxels with large discrepancies with

respect to their neighbors, which in turn reduces the generation and propagation of streak-

ing artifacts. However, from a Bayesian point of view, the L1-norm does not have similar

denoising capabilities as the L2-norm, thus the resulting images have a residual noise com-

ponent and lower SNR (Milovic, Lambert, et al., 2021).

In this thesis we present a Hybrid Data fidelity term approach for Quantitative Sus-

ceptibility Mapping (HD-QSM). This dipole inversion algorithm sequentially uses linear

L1- and L2-norms for data consistency. The resulting algorithm successfully combines the

strengths of both norms. HD-QSM participated at the 2019 QSM Reconstruction Chal-

lenge (RC2 - Seoul, Korea) (Committee et al., 2021; J. P. Marques et al., 2021), obtaining

the first place at the lowest RMSE category in Stage 1. We here present a validation of

our method using simulations and in-vivo data, and exhaustive comparisons with previous

methods.
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2. METHODS

2.1. Hybrid data fidelity term approach for QSM (HD-QSM)

The proposed method HD-QSM consists of two stages. The first stage finds a suitable

initial solution that is robust to streaking artifacts (Milovic, Lambert, et al., 2021). For this

purpose, we use the following linear optimization problem:

argmin
�1

��w ·
�
F

H
DF�1 � �

���
1
+ �

L1
1 · kr�1k1 (2.1)

where k·k1 is the L1-norm, F is the Fourier transform with its inverse FH , D = �H0TE

⇣
1
3 �

k
2
z

k2

⌘

is the dipole kernel, � is the local phase map, �1 is the susceptibility distribution obtained in

this first stage, kr�1k1 is the total variation regularizer, and �
L1
1 is the regularization weight

used in this first stage. w is a ROI binary mask or a magnitude-based weight defined as

w =

P
N

i=1 Magn2
i
· TEiP

N

i=1 Magn
i
· TEi

(2.2)

where N is the number of echoes, Magn
i

is the magnitude of echo i, and TEi is the i-th

echo time.

The second stage is to solve the following linear functional using the solution of the

previous stage (�1) as the initialization.

argmin
�2

1

2

��W ·
�
F

H
DF�2 � �

���2
2
+ �

L2
1 kr�2k1 (2.3)

where k·k22 is the L2-norm, W is a spatially variable weight modulated by the voxel-wise

phase discrepancy factor between the solution obtained in the first stage (convolved by the

dipole kernel) and the acquired local phase:

W = w ·
 
1�

���� F
H
DF�1

��
max (|�� FHDF�1|)

!
(2.4)

4



The discrepancy factor prevents the propagation of streaking artifacts by enforcing the

data consistency term to penalize areas with low SNR and areas contaminated with phase

inconsistencies less heavily.

The functionals were solved using the ADMM framework (Bilgic et al., 2015) as de-

scribed for FANSI (Milovic et al., 2018) and L1-QSM (Milovic, Lambert, et al., 2021).

A straightforward implementation would require to fine tune six parameters: two reg-

ularization weights
�
�
L1
1 , �

L2
1

�
, and four Lagrangian weights derived from the ADMM

solver associated with gradient consistency weights
�
µ
L1
1 , µ

L2
1

�
and data fidelity consis-

tency weights
�
µ
L1
2 , µ

L2
2

�
. These Lagrangian weights are introduced by the variable split-

ting procedure of ADMM, as described in the Appendix A. As in most optimization based

QSM algorithms, parameters must be set using some heuristics (Milovic, Prieto, et al.,

2021) (e.g., L-curve approach (Hansen, 2000)). To simplify the parameter-tuning process,

we propose the following heuristic, derived from the numerical relationship between the

L1- and L2-norms: �
L1
1 =

q
�
L2
1 , µL1

1 =
q

µ
L2
1 , µL1

2 = µ
L2
2 = 1. Considering also the

heuristic proposed for FANSI (Milovic et al., 2018) 10  µ1

�1
 100, where values within

the range do not produce major variations on the optimal reconstruction. We therefore

simplify the parameter setting problem to a one free parameter, �L2
1 .

The numbers of iterations in each stage (i1, i2) can be considered as free parameters

to be tuned. However, as shown in our experiments, these are not sensitive parameters

and might be fixed a priori. Considering a total number of iterations N we recommend

i1 2 [10, 100] and i2 = N � i1. For the Reconstruction Challenge 2.0 (Committee et

al., 2021), our winning reconstructions used this heuristic with the following parameters

i1 = 20, i2 = 280, �L2
1 = 6.3096⇥ 10�6 and µ1

�1
= 10.

HD-QSM was compared with linear and non-linear QSM methods using total variation

as regularizer. For convenience, we will use the following nomenclature. L1 and nlL1

correspond to the linear and non-linear L1-norm methods proposed in L1-QSM (Milovic,

Lambert, et al., 2021), respectively. L2 and nlL2 correspond to the linear and non-linear L2-

norm methods proposed in FANSI (Milovic et al., 2018), respectively. L1L2 corresponds
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to the HD-QSM method with the proposed heuristic and L1L2wH corresponds to the HD-

QSM without the heuristic (i.e., optimizing each parameter independently). Comparisons

were performed using synthetic data and in vivo acquisitions, as described below.

2.2. Experimental design

2.2.1. COSMOS forward simulation

We used the COSMOS (Liu, Spincemaille, De Rochefort, Kressler, & Wang, 2009)

reconstruction included in the 2016 QSM Reconstruction Challenge (RC1) (Langkammer

et al., 2018) dataset as ground truth. We forward-simulated the phase and added complex

Gaussian noise with SNR 40, 100 and 300. Additionally, we forward-simulated the phase

(SNR=100) with two consecutive phase jumps (±20⇡) to generate strong phase inconsis-

tencies. These phase simulations were used as input for the QSM reconstructions of L1, L2

and L1L2 methods to compare their performances. Optimal reconstructions were obtained

for each method by optimizing the normalized root mean squares error (NRMSE). We

performed an sensitivity analysis evaluating the quality of the reconstructions around the

optimal regularization parameter (�⇤), within a range defined by [0.1 · �⇤
, 10 · �⇤], sampled

at �i = �
⇤ · 10 i

30 , with i 2 [�30, �29, . . . , 29, 30].

2.2.2. 2019 QSM Challenge (RC2) - SNR1 dataset

In the context of the RC2 (Committee et al., 2021), two simulated datasets (J. P. Mar-

ques et al., 2021) with different SNRs were provided. Each dataset consisted of two brain

images: Sim1 and Sim2. Sim2 had higher contrast between white matter and gray matter

than Sim1. Additionally, a strong calcification was included in Sim2. We used the SNR1

dataset, as it presents a lower SNR ratio (SNR1=100 vs. SNR2 = 1000). We estimated

the local magnetic field from the phase of the simulated multi-echo acquisitions using a

magnitude-weighted least-squares fitting. Field maps were zero-padded to 256x256x256 to

prevent large scale aliasing and other artifacts. All reconstructions were stopped when they

reached 300 iterations, and the reconstruction parameters were set to minimize NRMSE.

For each of the optimal NRMSE reconstructions, we computed the error metrics used in

6



RC2, namely (Committee et al., 2021): dNRMSE, dNRMSE TISSUE, dNRMSE DeepGM,

dNRMSE blood, Calcification streaking and Deviation from calcification moment. We

considered two additional global metrics: Susceptibility-tuned Structural Similarity Index

Metric (XSIM) (Milovic, Tejos, & Irarrazaval, 2019) and the High Frequency Error Norm

(HFEN) (Ravishankar & Bresler, 2011).

2.2.3. In vivo dataset

We performed an in vivo acquisition on a Siemens 3T scanner (Magnetom Trio Tim;

Siemens Healthcare, Erlangen, Germany) with a 12-channel phased-array head coil. We

used a GRE sequence with six echoes of a patient showing extensive brain hemorrhage

with the following sequence parameters: TE1=4.92ms, �TE=4.92ms, TR=35ms, flip an-

gle=15°, 232×288×64 matrix with 0.8×0.8×2mm3 voxel size, and Tacq=4:51 min. Phase un-

wrapping was performed with SEGUE (Karsa & Shmueli, 2019) and background field re-

moval was performed by Projection onto Dipole Fields (Liu et al., 2011). We estimated the

local field using a magnitude-weighted least-squares phase fitting. Background field resid-

uals were removed using the harmonic phase estimation obtained with the Weak-harmonic

QSM method (WH-TV) (Milovic, Bilgic, et al., 2019).
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3. RESULTS

3.1. Cosmos Forward Simulation

L1L2 obtained the best performance for medium and low SNRs (Figures 3.1.A and

3.1.B), whereas L1 achieved the best results for high SNR (Figure 3.1.C). Independently of

the SNR level, L1L2 obtained the most stable performance, i.e., varying the regularization

parameter around the optimum produced the smallest NRMSE change.

While L2 reconstructions yielded streaking artifacts in the presence of phase inconsis-

tencies, both L1 and L1L2 could successfully suppress those artifacts (Figure 3.2). To com-

pensate the generation of streaking artifacts, the minimization of the NRMSE produced an

over-regularized L2 reconstruction. L1L2 reconstructions demonstrated better delineation

or definition (without over-regularization) of small blood vessels along with better contrast

between white and gray matter.

3.2. QSM Challenge 2.0 - SNR1 dataset

HD-QSM (L1L2 and L1L2wH) achieved the best performance in most of the ana-

lyzed metrics, especially when considering RMSE-based metrics (Table 3.1). The metrics

obtained using the proposed heuristic (L1L2) are similar as those obtained by tuning all

parameters (L1L2wH). nlL1 obtains the second-best performance in NRMSE (optimized

variable), but the processing time is more than two times larger than those of the linear

competitors.

The optimal number of L1 iterations (i1) was 40 and 280 for L1L2 and L1L2wH,

respectively. For different i1, the optimized reconstructions of L1L2 and L1L2wH showed

differences less than 1% in NRMSE (Figures A.1-A.5).

The reconstructions obtained for each method are presented in figures A.6 and A.7.

Figure 3.3 shows the evolution of NRMSE per iteration of the optimal reconstructions
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TABLE 3.1. Metrics of RMSE based optimal reconstructions. We evaluated the
QSM challenge 2.0 metrics plus XSIM, HFEN and computation time. In simulation
1 L1L2 and L1L2wH scored highest in 6 out of 7 metrics evaluated. In simulation
2 L1L2wH scored best in 6 out of 9 metrics. L1L2wH is slightly superior to L1L2,
removing L1L2wH from the comparison the best performance is obtained by L1L2.

achieved for each method. The curves for L2 and nlL2 are overlapped since their perfor-

mances were almost identical. Stage 1 of L1L2 and L1L2wH diverged before the transition

to stage 2 and then it quickly converged again.

The optimal regularization values of our proposed methods (L1L2 and L1L2wH) were

smaller than those respectively obtained for L1 and L2 methods (Table 3.1). Having a

9



smaller �L1
1 , might explain the divergence observed in NRMSE curves in our stage 1. Fig-

ures A.4 and A.5 present reconstructions at the end of stage 1 and stage 2, with and without

the use of the weight modulated by the voxel-wise phase discrepancy factor. The use of the

discrepancy factor helps the L2-norm to reduce the artifacts present in the image provided

by stage 1. This is done penalizing with a low weight those voxels that might produce

strong artifacts.

3.3. In vivo dataset

Figure 3.4 presents the in-vivo reconstructions for each method. The optimal recon-

structions were chosen by visual inspection around the optimum indicated by the L-curve

analysis. The reconstruction of the linear L1-norm method shows a hallucinated suppres-

sion of the frontal lesion which limits the clinical useability of this method. All other meth-

ods were able to successfully recover the lesions, with L1L2 showing the fewest shadow

artifacts adjacent to the frontal and posterior lesions.

The difference maps highlight that the L1L2 reconstruction is smooth like the L2-norm

reconstructions but comes with a better structural definition such as the nlL1 reconstruction.

L1L2 and nlL1 resolved structural details such as the posterior lesion generating only minor

shadows around it.
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FIGURE 3.1. Subfigures A, B and C show the RMSE for different regularization
parameters normalizing the scale with center at the optimum.
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FIGURE 3.2. Optimal reconstructions of L1, L2 and L1L2 over the simulation with
SNR=100 and phase jumps. Areas of interest are enclosed in bounding boxes and
magnified to show details.
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FIGURE 3.3. Evolution of NRMSE by iterations for all methods on Sim1 and
Sim2. The curves of L2 and nlL2 overlap. The first stage of L1L2 and L1L2wH
diverges while stage 2 converges fast. The difference in NRMSE between L1L2
and L1L2wH is 0.5 points.
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FIGURE 3.4. Optimal reconstructions obtained by visual inspection around the op-
timum indicated by the L-curve analysis. Areas of interest are enclosed in bound-
ing boxes. The red box shows the basal ganglia region and encloses a zone with
a hyper-intense structure (might be a blood vessel shown as a white circle) in the
center. nlL1 generates an artifact in the structure, generating a different geometry
and propagating a streaking artifact. The blue and white boxes enclose frontal and
posterior lesions respectively. L1L2 generates reconstructions with less artifacts
around the lesions.
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4. DISCUSSION

HD-QSM is an iterative method that differs from current methods as it is composed of

two consecutive stages using the L1 and L2 norm in a linear data consistency term. HD-

QSM provides good reconstructions at low, medium and high SNRs, and obtains superior

performances at low and medium SNRs compared to single-stage linear methods using the

L1 norm, or alternatively, the L2 norm. The use of two stages allows HD-QSM to exploit

the strengths of both norms, the reconstructions are robust to outliers, providing good noise

reduction capabilities and stability with respect to the regularization parameter.

The data consistency weights (Eqs. 2.2 and 2.4) play a fundamental role in HD-QSM.

They help to identify voxels that generate artifacts so that the L2-norm data consistency

penalizes them less heavily and avoids generating artifacts. It also allows stage 1 to search

for a sub-regularized solution rich in structural information and provides stage 2 with an

initial solution closer to the optimum. This makes HD-QSM regularization parameters

lower than their single-stage counterparts.

Our method has 6 free parameters to be tuned. However, we propose a heuristic to

reduce this complexity to only one free parameter. After a fixed total number of iterations,

the difference of the NRMSE obtained between the six free parameter method and the

proposed heuristic was always less than 1%, independent of the distribution of iterations

between the first and the second step. Even though, the L1 minimization step seems to

diverge after a few iterations, the L2 stage plus the use of data consistency weights can

rapidly reduce the errors. In other words, setting only one free parameter and running only

a few iterations for the L1 minimization step would be enough to define a good initialization

for the L2 minimization step, and lately, achieve high quality QSM reconstructions.

In terms of image quality, the proposed two-stage solver represents an improvement

over linear and non-linear formulations in terms of reducing noise and preventing streak-

ing artifacts emanating from low SNR regions. Compared to L2-norm methods, HD-QSM

produced reconstructions with better structural definition and better artifact management.
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Compared to L1-norm methods, HD-QSM produced reconstructions with a less noisy vi-

sual appearance and closer to the ground truth. HD-QSM requires similar computational

time compared to linear methods and outperforms non-linear methods.

The idea of solving QSM reconstructions using a previous reconstruction as a starting

point might be extended to single-step formulations, i.e., including phase unwrapping and

background field removal into the functionals. Initialization based on solutions that do

not require parameter tuning can also be explored (i.e., non-regularized functional, deep

learning models), in which case this model would serve as a refinement step.

16



5. CONCLUSIONS

HD-QSM combines the beneficial features of the L1- and L2-norms to obtain high

quality QSM reconstructions, namely: good structural definition, noise reduction and pre-

venting streaking artifacts, while maintaining the computational complexity of a linear

method. We also proposed a simple and effective heuristic that reduces fine-tuning to only

one parameter to achieve optimal performance. HD-QSM demonstrated exquisite numeri-

cal performance in the QSM challenge 2.0 and in pathological MRI datasets with structural

abnormalities and conspicuous features.
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APPENDIX A. SUPPLEMENTARY MATERIAL: HYBRID DATA FIDELITY

TERM APPROACH FOR QSM (HD-QSM)

A.1. ADMM Solver for Stage 1

The first stage of HD-QSM is to solve the following linear QSM functional with L1-

norm:

argmin
�1

��w ·
�
F

H
DF�1 � �

���
1
+ �

L1
1 kr�1k1 (A.1)

Using ADMM, we introduced an auxiliary variable z1 = r�1, and decoupled the

equation system, leading to the following augmented Lagrangian functional:

arg min
�1, z1

��w ·
�
F

H
DF�1 � �

���
1
+ �

L1
1 kz1k1 +

µ
L1
1

2
kr�1 � z1 + s1k22 (A.2)

where s1 is an Lagrange multiplier and µ
L1
1 > 0 is a penalty parameter, in this case

called gradient consistency weight. To decouple the �1 subproblem we introduced z2 =

F
H
DF�1 � �:

arg min
�1, z1, z2

kw · z2k1+�
L1
1 kz1k1+

µ
L1
1

2
kr�1 � z1 + s1k22+

µ
L1
2

2

��FH
DF�1 � �� z2 + s2

��2
2

(A.3)

where s2 is an Lagrange multiplier and µ
L1
2 > 0 is called data fidelity consistency weight.

We solved the �1 subproblem, the gradient operator can be decomposed as r =

F
H
EF , where E is a diagonal matrix that represents the differential operation in frequency

domain:
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We solved the z1 subproblem by the soft thresholding operation:

argmin
z1
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We solved the z2 subproblem by the soft thresholding operation as well:

argmin
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2

2

��FH
DF�1 � �� z2 + s2

��2
2

(A.12)

z2 = max

✓��FH
DF�1 � �+ s2

��� w

µ
L1
2

, 0

◆
· sign

�
F

H
DF�1 � �+ s2

�
(A.13)

The update rules for the Lagrangian multipliers are given by:

s1 = s1 + F
H
EF�1 � z1 (A.14)

s2 = s2 + F
H
DF�1 � �� z2 (A.15)

A.2. ADMM Solver for Stage 2

The second stage of HD-QSM is to solve the following linear QSM functional with

L2-norm:

argmin
�2

1

2

��W ·
�
F

H
DF�2 � �

���2
2
+ �

L2
1 kr�2k1 (A.16)

where

W = w ·
 
1�

���� F
H
DF�1

��
max (|�� FHDF�1|)

!
(A.17)

Using ADMM, we introduced an auxiliary variable z1 = r�2, and decoupled the

equation system, leading to the following augmented Lagrangian functional:

arg min
�2, z1

1

2

��W ·
�
F

H
DF�2 � �

���2
2
+ �

L2
1 kz1k1 +

µ
L2
1

2
kr�2 � z1 + s1k22 (A.18)

To decouple the �2 subproblem we introduced z2 = F
H
DF�2 � �:
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arg min
�2, z1, z2

kW · z2k22+�
L2
1 kz1k1+

µ
L2
1

2
kr�2 � z1 + s1k22+

µ
L2
2

2

��FH
DF�2 � �� z2 + s2

��2
2

(A.19)

We solved the �2 subproblem by closed form:

argmin
�2

µ
L2
1

2

��FH
EF�2 � z1 + s1

��2
2
+

µ
L2
2

2

��FH
DF�2 � �� z2 + s2

��2
2

(A.20)
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��2
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µ
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��FH
DF�2 � �� z2 + s2

��2
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◆
= 0 (A.21)
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H
µ
L2
1 E

H
F (z1 � s1) + µ

L2
2 D

H
F (z2 � s2 + �)

µ
L2
1 EHE + µ

L2
2 DHD

(A.23)

We solved the z1 subproblem by the soft thresholding operation:

argmin
z1

�
L2
1 kz1k1 +

µ
L2
1

2
kr�2 � z1 + s1k22 (A.24)

z1 = max

✓
|r�2 + s1|�

�
L2
1

µ
L2
1

, 0

◆
· sign (r�2 + s1) (A.25)

We solved the z2 subproblem by the soft thresholding operation as well:

argmin
z2

kW · z2k22 +
µ
L2
2

2

��FH
DF�2 � �� z2 + s2

��2
2

(A.26)

z2 = max

✓��FH
DF�2 � �+ s2

��� W
µ
L2
2

, 0

◆
· sign

�
F

H
DF�2 � �+ s2

�
(A.27)
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The update rules for the Lagrangian multipliers are given by:

s1 = s1 + F
H
EF�2 � z1 (A.28)

s2 = s2 + F
H
DF�2 � �� z2 (A.29)

A.3. Challenge 2.0 Experiment

FIGURE A.1. NRMSE evolution of Sim1 optimal reconstructions for different i1.
The error difference obtained between the free parameter method and the proposed
heuristic is less than 1% for all i1. The difference between the best and the worst
reconstruction is less than 1%, indicating that the number of iterations of L1 norm
is not an extremely determinant factor, which confirms the hypothesis that the stage
of an L1 norm solution is a better starting point than 0.
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FIGURE A.2. NRMSE evolution of Sim2 optimal reconstructions for different i1.
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FIGURE A.3. Solutions at the end of stage 1 and stage 2 for Sim1 and Sim2. The
solutions at the end of stage 1 show a noisy appearance with streaking artifacts (see
around the calcification), but with good structural definition. The final solutions
maintain the structural details but do not show the noise and streaking artifacts.
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FIGURE A.4. The first column presents the solution at the end of stage 1, the sec-
ond the discrepancy factor which weights the data consistency weight, the third the
solution of stage 2 using the adjustment factor and the fourth the solution without
using the adjustment factor with the same parameters.

33



FIGURE A.5. NRMSE optimized solutions of HD-QSM without the discrepancy
factor. The first column presents the solution at the end of stage 1 and the second
column the final solution.
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FIGURE A.6. Optimal NRMSE reconstructions of Sim 1. For the search of
the optimum of L1L2wH a search was performed in a vector space of 5x5x5x5
(�L1

1 , µL1
1 ,�L2

1 , µL2
1 ) , once the optimum of this space was located, a second search

was performed in a space of the same size in the vicinity of the optimum, In total
3 search processes were performed for each simulation, which is 3750 reconstruc-
tions, while for L1L2 only 50 reconstructions were necessary.
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FIGURE A.7. Optimal NRMSE reconstructions of Sim 2. For the search of
the optimum of L1L2wH a search was performed in a vector space of 5x5x5x5
(�L1

1 , µL1
1 ,�L2

1 , µL2
1 ) , once the optimum of this space was located, a second search

was performed in a space of the same size in the vicinity of the optimum, In total
3 search processes were performed for each simulation, which is 3750 reconstruc-
tions, while for L1L2 only 50 reconstructions were necessary.
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APPENDIX B. NON-REGULARIZED DIPOLE INVERSION WITH STREAKING

SUPPRESSION VIA L1-NORM OPTIMIZATION

B.1. Title and authors

Non-regularized Dipole Inversion with streaking suppression via L1-norm optimiza-

tion. Poster at ISMRM21. The authors are: Mathias Lambert, Cristián Tejos, Carlos

Milovic.

B.2. Synopsis

Non-regularized QSM reconstructions are feasible by stopping gradient descent meth-

ods before they diverge. These methods consume less computation time, while avoiding

the time required for parameter selection. In this work we present a linear dipole inversion

method without regularization that uses the L1-norm in a proximal step to prevent streaking

propagation and present more robustness against phase outliers. Compared to the Nonlin-

ear Dipole Inversion method, our implementation achieved lower RMSE scores in phantom

experiments and in vivo reconstructions with fewer artifacts.

B.3. Abstract

B.3.1. Introduction

Quantitative susceptibility mapping is typically performed by optimization methods

that minimize a functional that consists of regularization and data fidelity terms. These

methods require fine-tuning the parameters associated with the regularization terms. Re-

cently, a non-linear inversion method (Nonlinear Dipole Inversion, NDI) (Polak et al.,

2020) was presented with comparable in vivo results with state-of-the-art methods such

as MEDI (Liu et al., 2013) and FANSI (Milovic et al., 2018). It is possible to optimally

use NDI without a regularizer, by early stopping the algorithm (before it diverges). Never-

theless, NDI is prone to noise amplification, and is susceptible to strong streaking artifacts.

L1-norm data fidelity terms have been successfully used in conjunction with the Total Vari-

ation regularization (Milovic, Lambert, et al., 2021) to suppress the appearance of streaking
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artifacts in QSM. Here, we present a robust and fast non-regularized linear method that uses

a L1-norm data fidelity term to prevent streaking artifact propagation.

B.3.2. Methods

We propose to solve the dipole inversion problem by formulating the QSM functional

using a L1-norm (nDI-L1) data fidelity term (without regularization):

argmin
�

��w ·
�
F

H
DF�� �

���
1

(B.1)

where F is the Fourier transform with its inverse F
H , D is the dipole kernel (Salomir

et al., 2003; J. Marques & Bowtell, 2005), � is the tissue phase, � is the susceptibility

distribution, w is a magnitude-based weight or ROI mask. To solve this functional we

use the auxiliary variable z =
�
F

H
DF�� �

�
to augment the functional in a proximal

framework:

argmin
�, z

kw · zk1 +
�

2

���FH
DF�� �

���2
2

(B.2)

The solution scheme is to employ gradient descent for the � sub-problem and a proxi-

mal step for z:

�k+1 = �k � ⌧ · FH
D

H
F
��
F

H
DF�� �

�
� z
�

(B.3)

zk+1 = max
⇣��FH

DF�k+1 � �
��� w

�
, 0
⌘
· sign

�
F

H
DF�k+1 � �

�
(B.4)

where ⌧ is the gradient step size and � is a Lagrangian weight that acts as the L1

proximal soft-thresholding parameter.

Instead of a fixed � value, we � iterative update � to threshold a given percentage of the

discrepancy between the input data and the proposed solution (cut-off ratio). The gradient

step size (⌧) is set to 2. As in the NDI algorithm, the number of iterations is the most

critical parameter.

38



We compared the proposed method with NDI in the following experiments:

(i) COSMOS (Liu et al., 2009) forward simulations: From a COSMOS brain recon-

struction (2016 QSM challenge dataset) (Langkammer et al., 2018) we synthe-

sized the local phase and added complex noise to the complex image (SNR=100).

In addition, two simulated lesions were added, one paramagnetic (-0.55 ppm)

and one diamagnetic (0.3 ppm), to mimic highly noisy phase inconsistencies.

We tested the performance of the reconstruction using w = 1, w = mask and

w = magn as weighting methods.

(ii) SIM2SNR1: Using SIM2SNR1 dataset (2019 QSM challenge) (Committee et

al., 2021; J. P. Marques et al., 2021) we compared the performance using the

official metrics, plus HFEN (Ravishankar & Bresler, 2011) and XSIM (Milovic,

Tejos, & Irarrazaval, 2019). We used the provided frequency map data and the

masked magnitude data as weight. We zero-padded the field map to 256x256x256

voxels.

(iii) IN-VIVO: Phillips Ingenia 3T. TGE sequence, voxel size: 0.59x0.59x1mm, TR=44ms,

TE=7.2ms, �TE=6.2ms, 5 echoes, bandwidth 550.5Hz. We perform Laplacian

phase unwrapping (Li, Wu, & Liu, 2011) and background field removal using

LBV (Zhou, Liu, Spincemaille, & Wang, 2014) and VSHARP (Li et al., 2011).

B.3.3. Results

Figure B.1 shows the results using the COSMOS-brain example. nDI-L1 achieved

better RMSE scores and it is evident that nDI-L1 manages to effectively reduce streaking

artifacts surrounding the lesions. The nDI-L1 reconstruction has a smoother appearance

than NDI reconstruction, in which a better definition of the vein is observed. Figure B.2

shows the optimal (RMSE-based) reconstruction and metrics of the SIM2SNR1 dataset. It

is observed that nDI-L1 reconstructs a smaller calcification than NDI, which is closer to

the ground truth. Figure B.3 shows the results of the experiment with in-vivo data.

39



FIGURE B.1. Optimal (RMSE-based) reconstructions of the COSMOS forward simulation.

FIGURE B.2. Optimal (RMSE-based) reconstructions of the QSM Challenge 2.0
SIM2SNR1 dataset. The provided multi-echo data was used.
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FIGURE B.3. Results in in-vivo data. The optimal number of iterations was se-
lected by visually inspecting the result of each iteration.

B.3.4. Discussion & Conclusion

The proposed nDI-L1 method shows good performance in qualitative metrics in our

experiments. Despite having a worse CalcStreak score than NDI, nDI-L1 more effectively

suppressed the streaks and achieved a more accurate representation of the calcification

(CalcError metric). This might suggest a limitation in the CalcStreak metric. The use of

the L1-norm makes non-regularized methods based on gradient descent solvers robust to

the generation of streaking artifacts and to noise. nDI-L1 has the quality of performing

quick reconstructions saving us the work of fine-tuning regularization parameters, which

usually requires multiple reconstructions, which costs a lot of time.
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APPENDIX C. IMPROVING QUANTITATIVE SUSCEPTIBILITY MAPPING RE-

CONSTRUCTIONS VIA NON-LINEAR HUBER LOSS DATA FI-

DELITY TERM (HUBER-QSM)

C.1. Title and authors

Improving Quantitative Susceptibility Mapping reconstructions via non-linear Huber

loss data fidelity term (Huber-QSM). Poster at ISMRM21. The authors are: Mathias Lam-

bert, Carlos Milovic, Cristián Tejos.

C.2. Synopsis

Compared to L2-norm based QSM reconstructions, methods based on L1-norm data

consistency are less prone to artifact generation caused by phase inconsistencies (e.g. un-

wrapping artifacts, intravoxel dephasing). However, L2-norm methods present better de-

noising performance in high SNR regions. Here, we present a QSM algorithm that com-

bines the strengths of the L1- and L2-norms, using Huber’s loss function as the data consis-

tency term. Simulations and in vivo reconstructions showed enhanced performance, with

superior artifact suppression capabilities of our proposed method.

C.3. Abstract

C.3.1. Introduction

Susceptibility maps are estimated by solving an ill-posed inverse problem. The source-

to-field problem is modeled by a magnetic dipole convolution. The magnetic dipole kernel

has a zero-valued bi-conical surface in the frequency space (Salomir et al., 2003; J. Marques

& Bowtell, 2005). This singularity makes the noise propagate through the reconstructed

maps generating the so-called streaking artifacts (Shmueli et al., 2009). QSM reconstruc-

tion algorithms with data consistencies based the L1-norm probed to be more robust against

phase outliers than those using the L2-norm, preventing the generation of artifacts (Milovic,
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Lambert, et al., 2021). However, L2-norm based methods have shown better noise man-

agement on high SNR regions. In this thesis we present a new data consistency term that

combines the L1- and L2-norms by using the Huber loss (Huber, 1964).

C.3.2. Methods

The proposed method consist in solving the following nonlinear functional (Liu et al.,

2013; Milovic et al., 2018):

argmin
�

h�

⇣
w ·
⇣
e
iF

H
DF� � e

i�

⌘⌘
+ � · TV (�) (C.1)

where F is the Fourier transform with its inverse F
H , D is the dipole kernel, � is

the tissue phase, � is the susceptibility distribution, w is a magnitude-based weight or ROI

binary mask, TV(·) is the total variation regularizer (Chen & Cheng, 2012), and � is the

regularization weight. h� (·) is the Huber loss defined by:

h� (x) =

8
><

>:

1
2·�x

2 |x|  �

|x|� �

2 |x| > �

(C.2)

where � > 0 is the threshold parameter. We solve this optimization problem using

the ADMM framework (Bilgic et al., 2015). To decouple the data fidelity term, we add

the following auxiliary variables z1 = F
H
DF� and z2 = e

iz1 � e
i�. The z1 subproblem

is solved as shown earlier for the L1-norm (Milovic et al., 2018; Milovic, Lambert, et al.,

2021), with a Newton-Raphson iterative approach. The solution of the z2 subproblem is

given by the following shrinkage function:

z2 =
� · µ2 ·

�
e
iz1 � e

i� + s2

�
+ w

2 ·max
⇣��eiz1 � e

i� + s2

��� w
2+µ2·�

w·µ2
, 0
⌘
· sign

�
e
iz1 � e

i� + s2

�

w2 + � · µ2

(C.3)

Figure C.1 shows the cost and shrinkage functions of h� (·), L1-norm and L2-norm.
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FIGURE C.1. The graph on the left shows the cost functions, you can see how the
Huber loss penalizes less the large values. The graph on the right shows the penalty
functions, you can see that as the parameter � decreases the Huber loss converges
to a soft threshold(L1-norm).

We compared the proposed method (nlHu) with non-linear L2-norm (FANSI) (Milovic

et al., 2018) and non-linear L1-norm (nlL1) (Milovic, Lambert, et al., 2021) methods, all

with total variation regularization, in the following experiments:

(i) COSMOS forward simulations: From a COSMOS (Liu et al., 2009) brain recon-

struction (2016 QSM challenge dataset) (Langkammer et al., 2018) we synthe-

sized the local phase and added complex noise to the complex image (SNR=40

and SNR=100). In addition, two simulated lesions were added, one paramag-

netic (-0.5 ppm) and one diamagnetic (0.2 ppm), to mimic highly noisy phase

inconsistencies.

(ii) SIM2SNR1: Using the SIM2SNR1 dataset (2019 QSM challenge) (Committee

et al., 2021; J. P. Marques et al., 2021) we compared the performance using the

official metrics, plus HFEN (Ravishankar & Bresler, 2011) and XSIM (Milovic,

Tejos, & Irarrazaval, 2019). We used multi-echo data and masked magnitude-

based weight. For the inversions we used a zero-padding to form a volume of

256x256x256 voxels.
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(iii) IN-VIVO Data: Siemens 3T scanner (Magnetom Trio Tim; Siemens Healthcare,

Erlangen, Germany) with a 12-channel phased-array head coil. GRE sequence

with 6 echoes. A patient showing extensive bleeding was scanned with the fol-

lowing sequence parameters: TE1=4.92ms, �TE=4.92ms, TR=35ms, flip an-

gle=15°, 232×288×64 matrix with 0.8×0.8×2mm3 voxels, and Tacq=4:51min.

We performed Laplacian phase unwrapping (Li et al., 2011) and background

field removal using PDF (Liu et al., 2011) and VSHARP (Li et al., 2011).

C.3.3. Results

Figure C.2 presents the COSMOS-based reconstructions for both SNR levels, at both

noise levels nlHu obtained the lowest RMSE. Figure C.3 presents the sagittal slices of

reconstructions of SNR=100 with the simulated lesions. SIM2SNR1 reconstructions are

presented in Figure C.4, along with difference maps and a table with the performance

metrics. In-vivo reconstructions and difference maps are shown in Figure C.5.

C.3.4. Discussion & Conclusion

In Figure C.2, we can see that in comparison to FANSI, nlHu manages to reconstruct

the veins in the cortical zone more effectively. In the same figure we can see that nL1

reconstructions have a noisier appearance than nlHu. In Figure C.3 we can see that nlHu

manages to stop the propagation of streaking artifacts. The metrics obtained in experiment

2 show that nlHu has better performance than FANSI and similar performance to nlL1.

However, the results of the other experiments show that nlHu has a better performance than

nlL1 in areas with high SNR. Although nlHu has one additional parameter over FANSI,

optimizing it does not require much effort. Our simulated experiments revealed a convex

behavior of � on the RMSE, whereas it is possible to fine-tune the regularization parameter

(�) first and then �. The experiments we conducted show the importance of the term data

consistency in noise reduction. The Huber loss combines the strengths of the L1- and

L2-norms into a single term.
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FIGURE C.2. COSMOS forward simulation results. 500 iterations were performed
on all reconstruction methods. In the results with snr = 40, it is observed that
the Huber loss has a better noise reduction capacity than the L1- and L2-norms.
In the results with snr = 100, it is observed that nlHu, unlike FANSI manages to
reconstruct the veins in the cortical area and, unlike nlL1, it has a less noisy appear-
ance
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FIGURE C.3. COSMOS-based forward simulation reconstructions including two
lesions simulating diamagnetic and paramagnetic tissues, and zero effective signal
magnitude. Results are provided without masking of lesions. This tests the robust-
ness against signal inconsistencies. 500 iterations were performed in each method.

FIGURE C.4. Optimal (RMSE-based) reconstructions of the QSM Challenge 2.0
SIM2SNR1 dataset. The provided multi-echo data was used. 500 iterations were
performed in each method.
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FIGURE C.5. Optimal (L-curve analysis) reconstructions of the in-vivo data. Dif-
ference maps between algorithms also provided. 500 iterations were performed in
each method.
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