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Electronic transport in hybrid mesoscopic structures: A nonequilibrium Green function approach
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We present a unified transport theory of hybrid structures, in which a confined normal state~N! sample is
sandwiched between two leads each of which can be either a ferromagnet~F! or a superconductor~S! via
tunnel barriers. By introducing a four-dimensional Nambu-spinor space, a general current formula is derived
within the Keldysh nonequilibrium Green function formalism, which can be applied to various kinds of hybrid
mesoscopic systems with strong correlations even in the nonequilibrium situation. Such a formula is gauge
invariant. We also demonstrate analytically for some quantities, such as the difference between chemical
potentials, superconductor order parameter phases, and ferromagnetic magnetization orientations, that only
their relative value appears explicitly in the current expression. When applied to specific structures, the formula
becomes of the Meir-Wingreen-type favoring strong correlation effects, and reduces to the Landauer-Bu¨ttiker-
type in noninteracting systems such as the double-barrier resonant structures, which we study in detail beyond
the wide-band approximation. We find that the spin-dependent density of states of the ferromagnetic lead~s! is
reflected in the resonant peak and resonant shoulder structure of theI -V characteristics ofF/I /N/I /F structures
with large level spacing. The tunnel magnetoresistance that exhibits complex behaviors as a function of the
bias voltage, can be either positive or negative, suppressed or enhanced within the resonant peak region~s!,
depending on the couplings to the leads. The Andreev current spectrum ofF/I /N/I /S structures consists of a
series of resonant peaks as a function of the gate voltage, of which the number and amplitude are strongly
dependent on the bias voltage, degree of spin polarization of the ferromagnetic lead, energy gap of the
superconducting lead, and the level configuration of the central region. InS/I /N/I /S resonant structures with
asymmetric superconducting energy gaps, the Josephson current through a single resonant level is slightly
enhanced in contrast to the significant enhancement of the Josephson current inS/N/S junctions. The current-
phase relation is relevant to the level position and the couplings to the superconducting leads.

DOI: 10.1103/PhysRevB.68.115319 PACS number~s!: 72.10.Bg, 72.25.2b, 74.50.1r, 73.21.2b
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I. INTRODUCTION

Electronic transport in mesoscopic systems or nanos
structures has received extensive theoretical and experim
tal attention.1 In mesoscopic systems the sample size
smaller than the phase coherent length, and electrons r
their phase when traveling through the sample. In the ba
tic limit, i.e., when the dimensions of the sample are sma
than the mean free path, electrons can traverse the sy
without any scattering. In contrast to macroscopic syste
the conductance of mesoscopic systems is sample spe
since electron wave functions are strongly dependent on
form of the boundary of the sample and the configuration
scatterers located within the sample.

To calculate the conductance of mesoscopic systems,
should first consider the wave nature of electrons. The c
sical Boltzmann transport equation2 is obviously inappropri-
ate, since the assumption that electrons can be viewe
classical particles does not hold at a mesoscopic scale d
the Heinsenberg uncertainty limitation. Linear-respon
theory3 is restricted to the weak perturbation regime and
parently cannot be applied to the nonlinear or nonequi
rium situation. Electronic transport through a mesosco
medium is in effect a wave transmitting process of electro
which can be associated with a scattering matrix. In mea
ing the conductance one always connects the sample to
tron reservoirs through perfect leads.4 In a two-terminal
0163-1829/2003/68~11!/115319~25!/$20.00 68 1153
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setup (L5 left, R5right), the Landauer-Bu¨ttiker formula5

states that the currentI can be expressed as a convolution
the transmission probabilityT and the Fermi distribution
function f a (a5L,R), i.e., I5(2e/h)*T(e)@ f L(e)
2 f R(e)#de. The conductanceG in the linear-response re
gime is G5(2e2/h)*T(e)(2] f /]e)de. Such a formulation
seems more appealing since the transport properties are
coded in the corresponding transmission probability, wh
can be calculated by various methods.

The nonequilibrium Green function~NEGF! approach6–9

has proven to be a powerful technique to investigate tra
port problems in many-body systems and mesoscopic
tems. The equation of motion for the NEGFG,, the quan-
tum Boltzmann equation~QBE!,6 serves a starting point fo
many transport calculations in the many-body problems7,8

where a four-variable distribution function is required to i
corporate the quantum effect due to the uncertainty princi
The Keldysh formalism of the NEGF,9,10 due to its integral
form, becomes a popular method in the formulation, cal
lation, and simulation of recent mesoscopic transport pr
lems. Caroli et al. were the first to employ the Keldys
NEGF technique to study the tunneling problems of a bia
~nonequilibrium! metal-insulator-metal junction.11 Meir and
Wingreen12 in 1992 derived a useful formula for the curre
through an interacting region with normal leads and appl
it to investigate the transport properties of a quantum
in Kondo and fractional quantum Hall regime
©2003 The American Physical Society19-1
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Later the Keldysh NEGF formalism was used to analyze
I -V characteristics of superconductor-superconductor p
contacts and the transport problem in a quantum dot w
superconductor leads in Nambu space.13–15 By introducing
Green functions in the spinor space, the Keldysh NEGF
proach has been also employed to study a quantum dot
nected to two ferromagnetic electrodes.16 Therefore, incorpo-
rating both Nambu and spinor spaces is a convenient de
in order to investigate transport problems in the presenc
both superconductors and ferromagnets within the Keld
NEGF formalism. It is the purpose of this work to presen
unified theory of electronic transport through an interact
region connected to either bulk ferromagnetic or superc
ducting leads. In such a formalism, resonant transmiss
due to single particle interference, correlation effects aris
from strong electron-electron interactions, ferromagnet
and superconductivity proximity effect in the presence
ferromagnets and superconductors can be treated in a
tematic way. We noticed that there exists a circuit theory
mesoscopic systems developed by Nazarovet al.18 based on
the kinetic equations of quasiclassical Green functions,19,20

which provides an alternative way to investigate the tra
port properties of hybrid structures with arbitra
connections.18 However, such a formalism is not favorable
the systems of strong correlation, and apparently inap
cable to the cases where the single particle interference e
~for example, in resonant-tunneling structures! is prominent
since the dependence on the relative coordinate of the
siclassical Green functions is integrated out.

Thanks to recent advances in nanofabrication and mat
growth technologies, several kinds of hybrid mesosco
structures have been realized experimentally. These na
cale structures include mesoscopic junctions such
normal-metal/superconductor21 (N/S) and ferromagnet/
superconductor22 (F/S) contacts, superconductor/insulato
superconductor23 (S/I /S) and superconductor/ferromagne
superconductor24 (S/F/S) junctions, and certain kinds o
resonant structures such as superconductor/quantum
superconductor25 (S-QD-S), normal-metal/superconductin
quantum-dot/normal-metal26 (N-SQD-N), normal-metal/
ferromagnetic-quantum-dot/normal-metal27 (N-FQD-N)
transistors. In a normal-metal/superconductor (N/S) junc-
tion, Andreev reflection28,29 dominates the transport proce
at low bias voltages, in which an electron in the norm
metal slightly above the chemical potential of the superc
ductor is reflected as a hole slightly below the chemical
tential at the interface between the normal metal and su
conductor with an electron pair moving into th
superconductor, and vice versa. When two supercondu
components are coupled together through an insulator
normal metal, electron pairs can move coherently from o
superconductor to the other, yielding a nonzero current e
in the zero bias limit—the well known dc Josephson effe
and an oscillating current at finite bias—the ac Joseph
effect.30 The S/N/S Josephson junction must be a meso
copic system, with the length smaller than the phase cohe
length of electrons in the normal region, to ensure elect
~hole!’s coherent motion inside the normal part. Then a
flected electron~hole! can interfere constructively with itself
11531
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a process that produces a set of decoupled forward or b
ward ‘‘Andreev energy levels’’ carrying positive or negativ
Josephson current.31,32An impurity inside the normal region
couples the Andreev energy levels, and thus modifies
quasiparticle energy spectrum and other quantities. In
presence of a ferromagnetic metal, a spin-polarized cur
may be induced due to the imbalance of the spin populati
at the chemical potential.33 Spin imbalance also introduces
net magnetic moment—the magnetization of ferromagn
When two ferromagnets participate in a transport exp
ment, the relative orientation of the magnetizations of th
two ferromagnets will play an important role in the transp
properties, and the spin-valve effect arises.34 Combining fer-
romagnets and superconductors, one may expect some
transport features, since there is no complete Andreev re
tion at theF/S interface. The conductance of aF/S junction
can be either smaller or larger than theN/S case, depending
on the degree of spin polarization of the ferromagne35

When ferromagnets, superconductors, and confined~interact-
ing! normal metals are integrated together, the interplay
tween ferromagnetism, superconductivity, and electr
electron interaction is anticipated to lead to more interest
and more complicated transport properties. Despite the b
interest in the fundamental theory as mentioned above,
brid mesoscopic systems also boast potential application
future electronic devices which employ both the charge a
spin degree of freedom of electrons.

Starting from a microscopic Hamiltonian, we derive
this paper a general current formula within the Keldy
NEGF formalism for hybrid mesoscopic systems in which
central nanoscale interacting normal region is weakly c
nected to two leads, each of which is either a ferromagne
a superconductor, thus providing a unified theory of elect
transport in general hybrid structures, which incorpora
resonant tunneling, strong correlation, ferromagnetism,
superconductivity proximity effect. Such a formula can
also applied to the nonequilibrium situation. Rather th
from the original mean-field Stoner ferromagnet35 and BCS
superconductor Hamiltonian,30 we calculate the current from
their diagonalized forms after appropriate Bogoliubov tra
formations, with which the ferromagnetism and superco
ducting proximity as well as the chemical potentials of t
system are embodied in the tunneling parts of the sys
Hamiltonian. Such a procedure is found to be a crucial s
in the analysis of our transport problem, and facilitates
applications of the general formula to the specific forms
given structures, which are Meir-Wingreen-type formulas12

Employing such a procedure it is easy to check whether s
a theory satisfies the condition of gauge invariance, a
quirement of all transport theories. Moreover, the energy
pendence and bias-voltage dependence of the level-w
functions and the distribution functions in the current fo
mula are derived in a strict and natural way, while this h
been done somewhat phenomenologically in the ot
formalisms.9,12,15–17This merit allows us to investigate th
I -V characteristics of hybrid mesoscopic systems with
much more broad bias region. In addition we demonstr
that only their relative value for some physical quantiti
appears in the current formula after some unitary transfor
9-2
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ELECTRONIC TRANSPORT IN HYBRID MESOSCOPIC . . . PHYSICAL REVIEW B 68, 115319 ~2003!
tions. These quantities include the chemical potential, m
netization orientation of ferromagnet and the phase of
superconductor order parameter. Physically only their re
tive value can be measured in a transport experiment
these physical quantities, thus justifying thead hocassump-
tion that one of them can be always set to zero.13–16 Such a
formalism can be directly extended to the cases with m
than two external leads, which can be either ferromagneti
superconducting. A shorter paper which summarizes the
mulation has been reported elsewhere.36

In order to illustrate the validity and versatility of ou
formulation, we apply the derived formulas to a nonintera
ing double-barrier resonant structure~DBRS! beyond the
wide-band approximation which is usually used in t
Keldysh NEGF formalisms.9,12,14–16We neglect the interac
tion effects, since in a regime where these interactions
not important, we can then see more clearly how ferrom
netism and superconductivity influence the transport prop
ties of a normal metal resonant structure coupled to fe
magnetic and/or superconducting leads. As demonstrate
Sec. III, we derive the final current formula based on o
formulation in a more systematic and economic way th
others.15,17Some unexpected and novel transport features
found. When the level spacing of the central normal regio
comparable to the bandwidth of the ferromagnetic lead~s!,
the I -V curves show resonant peaks plus resonant should
reflecting directly the profile of the density of states~DOS!
of the Stoner ferromagnet. This observation provides an
ternative way to measure the degree of spin polarization
the system. The tunnel magnetoresistance~TMR! decreases
nonmonotonically, as well as oscillates, as a function of
applied bias voltage between the ferromagnetic leads.
enhanced or suppressed within the resonant regions dep
ing on the couplings to the two sides. We also find nega
TMR at some bias voltages in the strong coupling lim
These features tell us that there is richer physics in the T
of a resonant structure. In the presence of ferromagnetic
superconducting leads, a series of peaks emerges in the
dreev current whenever the resonant Andreev reflection c
dition at theN/S interface is satisfied as the gate volta
applied to the central part varies. The number and heigh
these Andreev current peaks are strongly dependent on
bias voltage and the degree of spin polarization of the fe
magnet lead. Interesting step and peak structures are
served in theI -V characteristics, which may be used to d
termine the DOS of both ferromagnetic and superconduc
leads. Finally we investigate the dc Josephson curren
S/I /N/I /S structures. It is shown that the dc Josephson c
rent is slightly enhanced if the energy gaps of supercond
ors becomes asymmetric, in contrast to theS/N/S systems.
The current-phase relation is also weakly dependent on
asymmetry of the superconductor energy gaps.

The rest of this paper is organized as follows. In Sec
the full Hamiltonian of an interacting normal metal placed
between either ferromagnetic or superconducting bulk le
is given. We first express the current in terms of the noneq
librium Green functions in the Nambu-spinor space in g
eral cases, and then present current expressions for the
cific structures. The gauge invariance is proven to hold
11531
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well. Section III is devoted to the applications of the curre
formulas derived in Sec. II to noninteracting double-barr
structures, with a detailed analysis based on the analy
results and numerical demonstrations. Concluding rema
are given in Sec. IV. An appendix is included to present
expressions of the self-energy matrices and level-width m
trices due to the elastic couplings to the leads.

II. FORMULATION OF THE PROBLEM

We consider electron motion along the longitudinal dire
tion x in a hybrid sandwich structure schematically shown
Fig. 1. The central part is assumed to be in the normal st
connected via tunnel barriers~insulators or point contacts
etc.! to two bulk materials acting as leads, each of which c
be either a ferromagnet, or a conventional BCS superc
ductor. We adopt the Stoner model35,37 for the ferromagnet
and the BCS Hamiltonian30 for the superconductor. The
Stoner model Hamiltonian is characterized by a mean-fi
exchange magnetizationh, and can be written as

HF5E dxC†~x!S 2
\2

2m*
¹x

22ŝ•h2m D C~x!, ~1!

wherem* is the electron effective mass,ŝ5(ŝx ,ŝy ,ŝz) is
the Pauli spin operator,m is the chemical potential, andC†

5(c↑
† ,c↓

†) is the spinor field. In what follows we assum
that the magnetizationh makes an angleu f relative to thez
axis, while we ignore the orientation with respect to t
plane perpendicular to the transport direction being not
evant to the transport properties.37

Within the mean-field approximation, the BCS Ham
tonian takes the form

HS5(
s

E dxCs
†~x!S 2

\2

2m*
¹x

22m D Cs~x!

1E dx@D~x!C↑
†~x!C↓

†~x!2D* ~x!C↓~x!C↑~x!#.

~2!

FIG. 1. A schematic diagram of a two-terminal hybrid meso
copic structure. A mesoscopic normal region is attached to ei
ferromagnetic or superconducting leads with chemical potentialmL
andmR . In the former case the magnetizationh makes an angleu f

relative to the normalz axis. The current is assumed to flow alon
the longitudinalx axis from the higher-chemical-potential lead
the lower-chemical-potential one.
9-3
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In Eq. ~2! Cs is the field operator of electrons with spins
5↑,↓, D(x)5U^C↑(x)C↓(x)& is the off-diagonal pair po-
tential, with U a negative constant characterizing t
electron-electron attraction. In general the pair potentiaD
needs to be determined self-consistently, and in this w
will be assumed to be position and energy independent
simplicity.

Since we are concerning about transport properties
electrons rather than their motion in real space it is m
convenient to deal with the lead Hamiltonian ink space.
Expanding the electron field operator in terms of the eig
functions of the momentum operator in the longitudinal~tun-
neling! direction asCs(x)5( f kseikx(skseikx) we cast the
ferromagnet and superconductor Hamiltonian~1! and~2! into
the following forms ink space~subscriptg5L and R are
added to denote which side of the structure the ferromag
or superconductor is located at!

H g
(F)5(

ks
@«gk2sgn~s!hgcosug f2mg# f gks

† f gks

1(
ks

hgsinug f f gks
† f gks̄ , ~3!

H g
(S)5(

ks
~«gk2mg!sgks

† sgks

1(
k

@Dgsgk↑
† sg2k↓

† 1Dg* sg2k↓sgk↑#, ~4!

where«gk5\2k2/2m* and s̄ stands for the opposite ofs.
Here the order parameterDg is characterized by its magn
tude and phaseuDgueiwg and, as we will show,uDgu opens an
energy gap in the excitation spectrum of the superconduc
f gks( f gks

† ) and sgks(sgks
† ) are the electron destruction an

creation operators of spins in statek in the ferromagnet and
superconductor, respectively. Henceforth, the notationss
5↑,↓ ands56 are used interchangeably. In what follow
physical quantities such as the particle operatorc, particle
energy«, and the chemical potentialm of the different parts
are labeled by subscriptg5L,R,C whenever convenient. In
addition, ferromagnetic or superconducting characteristic
the leads is stressed by adding a subscript or a superscf
or s to some quantities.

The Hamiltonian of the central regionHC in momentum
space can be modeled by

HC5(
ns

~«ns2mC!ccns
† ccns1Hint~$ccns

† %,$ccns%!,

~5!

whereccns
† (ccns) creates~destroys! an electron of spins in

staten andHint represents the interaction terms in the cen
region. It may include the electron-electron Coulomb int
action
11531
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el-el5 (

n,m,s,s8

nsÞms8

Uns,ms8ccns
† ccnsccms8

† ccms8 , ~6!

or the electron-phonon interaction

Hint
el-ph5(

q
\vqzq

†zq1 (
n,s;q

Uns,qccns
† ccns~zq

†1z2q!.

~7!

Here the first term is the free-phonon Hamiltonian, while t
second represents the electron-phonon interaction, with in
action matrix elementUns,q . zq

†(zq) is the phonon creation
~destruction! operator in modeq.

The couplings between the leads and the central reg
can be modeled by tunneling Hamiltonian, no matter how
leads are coupled to the central region, provided the c
plings are not strong enough. Certainly the coupli
strengths depend on the detailed configuration of the se
and should be determined in a self-consistent manner. H
ever, for simplicity they are assumed known and can be w
ten as

HT
g(F)5 (

kn;s
@Vkn;s

g f f gks
† ccns1Vkn;s

g f* ccns
† f gks#, ~8!

HT
g(S)5 (

kn;s
@Vkn;s

gs sgks
† ccns1Vkn;s

gs* ccns
† sgks#. ~9!

To see tunneling processes more clearly, and, more im
tantly, to facilitate the analysis of gauge invariance and
simplification of the general current formula~31! to the
forms of specific systems, we first diagonalize the Ham
tonian of the leads by Bogoliubov transformations. For t
ferromagnetic lead one has

f gks5cos~ug f /2!cg f ks2sgn~s!sin~ug f /2!cg f ks̄ ~10!

and for the superconducting lead

e2 iwg/2sgks5cosugskcgsks1sgn~s!sinugskPcgsks̄
† .

~11!

In Eqs. ~10!, ~11!, P †(P) is the pair creation~destruction!
operator guaranteeing particle conservation, which tra
forms a givenN-particle state into an (N12)-particle @(N
22)2particle# state, i.e.,P †/PuN&5uN12&/uN22& and

ugsk5arctanS «gk1A«gk
2 1uDgu2

«gk2A«gk
2 1uDgu2D 1/2

. ~12!

Substituting the Bogoliubov transformations~10! and~11!
into the lead Hamiltonian~3! and ~4!, we get the following
diagonalized forms for the ferromagnetic and supercond
ing leads, respectively,
9-4
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H g
(F)5(

ks
@«gk2sgn~s!hg2mg#cg f ks

† cg f ks

5(
ks

«g f kscg f ks
† cg f ks , ~13!

H g
(S)5(

ks
~A«gk

2 1uDgu22mg!cgsks
† cgsks1const

5(
ks

«gskcgsks
† cgsks1const. ~14!

Now the particle number operator commutes with the co
sponding lead Hamiltonian. After the Bogoliubov transfo
mations, the diagonalized lead Hamiltonian describe the
citation ~quasiparticle! properties. The minimum energy o
the excitations in a superconductor isuDgu, implying an en-
ergy gap in the excitation spectrum.

With the Bogoliubov transformations~10! and ~11! we
turn the tunneling Hamiltonian into

HT
g(F)5 (

kn;s
$Vkn;s

g f @cos~ug f /2!cg f ks
†

2sgn~s!sin~ug f /2!cg f ks̄
†

#ccns

1Vkn;s
g f* ccns

† @cos~ug f /2!cg f ks

2sgn~s!sin~ug f /2!cg f ks̄#%, ~15!

HT
g(S)5 (

kn;s
$Vkn;s

gs @cosugskcgsks
†

1sgn~s!sinugskcgsks̄P †#eiwg/2ccns

1Vkn;s
gs* ccns

† e2 iwg/2@cosugskcgsks

1sgn~s!sin~ugsk!Pcgsks̄
†

#%. ~16!

The associated physical processes are more obvious
clear in the semiconductor model:30,39 an electron of spins
in the central regime can tunnel into either the spins band or
s̄ band of the ferromagnetic lead, or tunnel into a spins
state or condensate into an electron pair with a hole stat
opposite spin being created, and vice versa.

In superconductors, correlation between two creation
annihilation quasiparticle operators with opposite spins
very important, relating to the Andreev reflection in transp
processes. When ferromagnets are introduced, the correl
between a creation and an annihilation quasiparticle oper
with opposite spins needs to be considered. To incorpo
these two kinds of correlations in a unified way and consi
the ferromagnet and superconductor on the same footing
here introduce a generalized Nambu-spin representa
spanning a four-dimensional spin-orientated particle-h
spaceCx5(cx↑

† cx↓ cx↓
† cx↑)†. Within the Keldysh NEGF

formalism, Green functions are defined as

Gx,y~ t1 ,t2!5 i ^TC@Cx~ t1! ^ Cy
†~ t2!#&, ~17!
11531
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whereTC is the time-ordering operator along the closed tim
path.9 The usual retarded/advanced and lesser/greater G
functions then take the form

Ga,b
r /a ~ t1 ,t2!5(

i , j
Ga i ,b j

r /a ~ t1 ,t2!

57 iq~6t17t2!(
i , j

^@Ca i~ t1! ^ Cb j
† ~ t2!

1Cb j
† ~ t2! ^ Ca i~ t1!#&,

Ga,b
,/.~ t1 ,t2!5(

i , j
Ga i ,b j

,/. ~ t1 ,t2!

56 i(
i , j

^Cb j
† ~ t2!/Ca i~ t1!

^ Ca i~ t1!/Cb j
† ~ t2!&,

wherea,b5g f ,gs,c and i , j 5k,n.
In this four-dimensional Nambu-spinor space the to

Hamiltonian can be rewritten in the following compact form

H5HC1HL1HR1HT
L1HT

R , ~18!

where

HC5(
n

Ccn
† EcnCcn1Hint~$Ccn

† ,Ccn%!, ~19!

H g
(F/S)5(

k
Cg f /sk

† Eg f /skCg f /sk , ~20!

H T
g(F/S)5(

kn
@Cg f /sk

† Vkn
g f /s~ t !Ccn1H.c.#. ~21!

In writing down Eqs.~19!–~21!, we have introduced the en
ergy matrices

Ea5S ea↑ 0 0 0

0 2ea↓ 0 0

0 0 ea↓ 0

0 0 0 2ea↑
D , a5cn, g f /sk

~22!

and the tunneling matrices

Vkn
g f~ t !5Rf S ug f

2 DVkn
g fP~mgCt !, ~23!

Vkn
gs~ t !5Rs~ugsk!Vkn

gsPS mgCt1
wg

2 D , ~24!

mgC5mg2mC

in which
9-5
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Vkn
g f /s5S Vkn

g f /s 0 0 0

0 2Vkn
g f /s* 0 0

0 0 Vkn
g f /s 0

0 0 0 2Vkn
g f /s*

D ,

Rf~x!5S cosx 0 sinx 0

0 cosx 0 2sinx

2sinx 0 cosx 0

0 sinx 0 cosx
D ,

Rs~x!5S cosx 2P sinx 0 0

P* sinx cosx 0 0

0 0 cosx P sinx

0 0 2P* sinx cosx
D ,

P~x!5S eix/\ 0 0 0

0 e2 ix/\ 0 0

0 0 eix/\ 0

0 0 0 e2 ix/\
D

are the coupling, rotation, and phase matrices, respectiv
Note that we have performed a gauge transformation38 to get
the above Hamiltonian. Chemical potential is now incorp
rated in the phase operatorP(mgCt) in the tunneling matrices
Eqs. ~23!, ~24!, which along with the rotation operators
very useful to demonstrate gauge invariance for our sys
as shown below.

The current flowing from leadg5L,R to the central
region can be defined as the rate of change of the e
tron number Ng5(ks f gks

† f gks(sgks
† sgks)5(kscg f ks

† cg f ks

(cgsks
† cgsks) in the lead. Within the Keldysh NEGF forma

ism, the current is expressed as

Ig~ t !52e^Nġ&5
ie

\
^@Ng ,HT#&

52
e

\ (
i 51,3

(
nk

$@Gcn,g f /sk
, ~ t,t !Vkn

g f /s~ t !

2Vkn
g f /s†~ t !Gg f /sk,cn

, ~ t,t !#% i i

5
2e

\ (
nk

i 51,3

Re$@Vkn
g f /s†~ t !Gg f /sk,cn

, ~ t,t !# i i %. ~25!

Since the Hamiltonian of leadg is of the form
cg f /sks

† cg f /sks , the equations of motion forGg f /sk,cn
, along

with the Langreth analytic continuation40 yield the following
Dyson equations:
11531
ly.

-

m

c-

Gg f /sk,cn
, ~ t,t8!

5(
m

E dt1@gg f /sk,g f /sk
r ~ t,t1!Vkm

g f /s~ t1!Gcm,cn
, ~ t1 ,t8!

1gg f /sk,g f /sk
, ~ t,t1!Vkm

g f /s~ t1!Gcm,cn
a ~ t1 ,t8!#, ~26!

Gcn,g f /sk
, ~ t,t8!

5(
m

E dt1@Gcn,cm
, ~ t,t1!Vkm

g f /s†~ t1!gg f /sk,g f /sk
r ~ t1 ,t8!

1Gcn,cm
r ~ t,t1!Vkm

g f /s†~ t1!gg f /sk,g f /sk
, ~ t1 ,t8!#, ~27!

in which the unperturbed retarded/advanced Green func
gg f /s,g f /s

r /a of leadg can be readily obtained from the Hami
tonian ~13!, ~14! as diagonal matrices

gg f /sk,g f /sk
r /a ~ t,t8!57 iq~6t7t8!,

S gg f /sk
↑2 0 0 0

0 gg f /sk
↓1 0 0

0 0 gg f /sk
↓2 0

0 0 0 gg f /sk
↑1

D , ~28!

gg f /sk
s7 ~ t,t8!5e7 i«g f /sks(t2t8)/\, ~29!

and the lesser~greater! Green functions are related to the r
tarded~advanced! Green functions by gg f /sk,g f /sk

,/. (t,t8)
5@ fg(«g f /sk)2 1

2 16 1
2 1#@gg f /sk,g f /sk

a (t,t8)2gg f /sk,g f /sk
r (t,t8)#.

The Fermi distribution matrixfg(«g f /sk) reads

fg~«g f /sk!

5S f ~«g f /sk↑! 0 0 0

0 f ~2«g f /sk↓! 0 0

0 0 f ~«g f /sk↓! 0

0 0 0 f ~2«g f /sk↑!

D ,

where f (x)5(11ex/kBT)21 and we have used the relatio
f (2x)512 f (x).

Substituting Eq.~26! into ~25!, we obtain

Ig~ t !5
2e

\ (
nm

i 51,3 E
2`

t

dt1Re$@Sg f /s;nm
r ~ t,t1!Gcm,cn

, ~ t1 ,t !

1Sg f /s;nm
, ~ t,t1!Gcm,cn

a ~ t1 ,t !# i i %, ~30!

where

Sg f /s;nm
r ,a,,/.~ t1 ,t2!5(

k
Vkn

g f /s†~ t1!gg f /sk,g f /sk
r /a,,/. ~ t1 ,t2!Vkm

g f /s~ t2!

is the self-energy matrix~see the Appendix! arising from
electron tunneling between the central region and leadg.

For steady transport, no charge piles up in the cen
normal region. One then hasIL(t)52IR(t).12 After sym-
metrizing the current formula~30!, we finally get by setting
I(t)5@IL(t)2IR(t)#/2
9-6
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I~ t !5
e

\ (
i 51,3 E

2`

t

dt1ReTr$~@SLf /s
r ~ t,t1!

2SRf /s
r ~ t,t1!#Gc,c

, ~ t1 ,t !1@SLf /s
, ~ t,t1!

2SRf /s
, ~ t,t1!#Gc,c

a ~ t1 ,t !! i i %, ~31!

where the trace is over the level indices of the central reg
Equation~31! along with the self-energy matrices given
Appendix is the central result of this work. The current
expressed in terms of the local properties (Gr /a) and the
occupation (G,/.) of the central interacting region and th
equilibrium properties (S,/.) of the leads. It is emphasize
that the current is usually independent of time except
presence of two superconductor leads with nonzero bias v
age. Formula~31! can be employed to investigate both eq
librium and nonequilibrium electronic transport in vario
kinds of hybrid mesoscopic systems, includingF/I /N/I /F,
F/I /N/I /S, F/I /N/I /N, S/I /N/I /S, S/I /N/I /N, and
F-QD-F, F-QD-S, F-QD-N, S-QD-S, S-QD-N structures
as well, in which arbitrary interactions are allowed in t
central part of the structure.

It is not difficult to check that Eq.~31! is gauge invariant,
i.e., the currentI(t) remains unchanged under a global e
ergy shift in the whole region. This can be achieved throu
a gauge transformation for the Hamiltonian of the system

f̂ ~e0t !5expH i

\
e0tS (

ns
ccns

† ccns

1 (
g5L,R;ks

cg f /sks
† cg f /sksD J ,

wheree0 is just the energy shift. Such a gauge transform
tion gives rise, in turn, to thephasetransformations of all the
terms in the right-hand side of Eq.~31!

Sg f /s
r /, ~ t,t1!→P~«0t !Sg f /s

r /, ~ t,t1!P†~«0t1!,

Gc,c
a/,~ t1 ,t !→P†~«0t1!Gc,c

a/,~ t1 ,t !P~«0t !.

The above procedures, equivalent to applying aphasetrans-
formation to the current operatorP†(«0t)I(t)P(«0t), ensure
that the current remains the same under such a transfo
tion. Therefore, the current formula~31! is gauge invariant.

Now we check whether the current becomes zero if
take the zero bias limitmL5mR5m0. We first perform a
phaseoperationP(m0Ct1wR/2) corresponding to the gaug
transformationf̂ (mC0t), m0C5m02mC to Eq.~31!, obtaining

I~ t !52
e

\ (
i 51,3 E d«

2p
Im TrH F1

2
@G̃/%

Lf /s~«!

2G/%
Rf /s~«!#G̃c,c

, ~«!2~G̃/%
Lf /s~«!fL~«!

2G/%
Rf /s~«!fR~«!!G̃c,c

a ~«!G
i i
J , ~32!

where
11531
n.

e
lt-

-
h

-

a-

e

G̃/%
Lf /s~«!5P†S ws

2 DG/%
Lf /s~«!PS ws

2 D ,

G̃c,c
r ,a/,~«!5E d~ t2t8!ei«(t2t8)/\PS m0Ct1

wR
2 D

3Gc,c
r ,a/,~ t,t8!P†S m0Ct81

wR
2 D ,

with ws5wL2wR . From the fluctuation-dissipation theore
G̃c,c

,/.5@ feq(«)2 1
2 16 1

2 1#(G̃c,c
a 2G̃c,c

r ) (fL5fR5feq), one
can readily verify that the current is zero except in the pr
ence of two superconductor leads with different superc
ducting order parameter phases. In this case, there still e
a dc Josephson current in the zero bias limit due to the
herent tunneling ofquasiparticle pairs. This can be seen
more clearly in the expressions of the current in the spec
systems~33!–~35!.

Up to now we have obtained the expression for the c
rent in a general case in which each of the two leads can
either a ferromagnet or a superconductor. Next we apply
general result~31! to the specific structures we are interest
in. We first consider the case in which two leads are fer
magnetic. Inserting the expressions of the self-energy ma
cesSg f(t1 ,t2) @Appendix# into Eq. ~31!, we get the current
in a F/I /N/I /F or F-QD-F structure after arotation trans-
formation and aphasetransformation

If n f5
ie

2\ (
i 51,3 E d«

2p
Tr$~@ĜLf~«7eV!2GRf~«!#Ĝc,c

, ~«!

1@ĜLf~«7eV!fL~«7eV!

2GRf~«!fR~«!#@Ĝc,c
r ~«!2Ĝc,c

a ~«!#! i i %, ~33!

whereĜLf5Rf †(u f /2)GLfRf(u f /2), u f5uLf2uRf , and

Ĝc,c
r ,a/,~«!5E d~ t2t8!ei«(t2t8)/\P~mRCt !Rf S uRf

2 DGc,c
r ,a/,

3~ t,t8!Rf †S uRf

2 DP†~mRCt8!,

fg~«7c!5S f ~«2c! 0 0 0

0 f ~«1c! 0 0

0 0 f ~«2c! 0

0 0 0 f ~«1c!

D .

The expression of tunneling current~33! resembles formally
the current formula derived by Meir and Wingreen12 for a
confined region coupled to two normal electrodes. The d
ference lies in that the coupling matrices and Green functi
in Eq. ~33! are spanned in the Nambu-spinor space, wh
reflects the dependence of the current on the spin polar
tion of the ferromagnetic leads and the relative orientation
the magnetic moments. When we set to zero the magn
moments of the two leads, Eq.~33! reduces to Eq.~5! in the
paper of Meir and Wingreen,12 since in this case the ferro
9-7
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magnetic leads become normal metals. As seen from
~33!, current is only dependent on the relative orientation
the magnetizations of two leads, although there is an ap
ent uRf dependence in the expression forĜr ,a/,. Neverthe-
less, this dependence of the Green functionsĜr ,a/, on the
orientation of the ferromagnet magnetization comes from
self-energy matricesŜLf andŜRf after therotation operation
Rf(uRf /2), hence they only depend on the relative orien
tion as can be seen more clearly in the noninteracting mo

If one lead (L) is ferromagnetic and the other (R) is
superconducting it is expected that Andreev reflection p
cess, dependent on the spin polarization of the ferromag
will dominate the current at low bias voltages. Applying
phaseand arotation transformations to Eq.~31!, simple in-
tegration gives

If ns5
ie

2\ (
i 51,3 E d«

2p
Tr$~@GLf~«7eV!2Gr

Rs~«!#Ğc,c
, ~«!

1@GLf~«7eV!fL~«7eV!2Gr
Rs~«!fR~«!#

3@Ğc,c
r ~«!2Ğc,c

a ~«!#! i i %, ~34!

in which the full Green functions are

Ğc,c
r ,a/,~«!5E d~ t2t8!ei«(t2t8)/\PS mRCt1

wR
2 DRf S uLf

2 D
3Gc,c

r ,a/,~ t,t8!Rf †S uLf

2 DP†S mRCt81
wR
2 D .

In Eq. ~34! the current does not depend on the orientation
the magnetization of the ferromagnetic lead and the phas
the order parameter of the superconductor lead. This ca
clearly demonstrated by expanding the full Green functio
of the central part perturbatively, as we will show below
the non-interacting case. In addition, one can divide the c
rent into several parts implying the contributions from diffe
ent physical processes such as normal particle tunneling
Andreev reflection, after expanding the right hand side of
~34!. We will show it later in the noninteraction case.

When two leads are superconducting, the situation
comes much more complicated. As did in the previous
amples, we derive the following current formula fo
S/I /N/I /S or S-QD-S systems

Isns~ t !52
e

\ (
i 51,3 E d«

2p
Im TrH S 1

2
@G̃%

Ls~«7eV;t !

2G%
Rs~«!#G̃c,c

, ~«;t !2@G̃r
Ls~«7eV;t !fL~«7eV!

2Gr
Rs~«!fR~«!#G̃c,c

a ~«;t ! D
i i
J , ~35!

where

G̃%/r
Ls ~«7eV;t !5P†S eVt1

ws

2 DG%/r
Ls ~«7eV!PS eVt1

ws

2 D ,
11531
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G̃c,c
r ,a/,~«;t !5E d~ t2t8!ei«(t2t8)/\PS mRCt1

wR
2 D

3Gc,c
r ,a/,~ t,t8!P†S mRCt81

wR
2 D ,

with ws5wL2wR . One may wonder why we use the not
tion G̃c,c

r ,a/,(«;t) with the additional variablet other than

Ĝc,c
r ,a/,(«). The reason is that the full Green functionsGc,c

r ,a/,

should be calculated in the presence of tunneling between
central part and the two sides, as well as the interaction
the central region. In the present case, thet dependence can
not be avoided in the self-energy matrices, while it can
removed by a unitaryphaseoperation when only one supe
conductor is involved. The current through a confined int
acting region connected to two superconductor leads is g
erally time dependent, as in the case of biased w
Josephson links.30 However, in the limiting case of zero bias
the current is a time-independent nonzero quantity, as ca
seen from Eq.~35!. In other theoretical treatments,13,41 a
double-time Fourier transformation is usually taken
X(t,t8) 5 (1/2p)(n*dve2 ivtei (v1nv0/2)t8X(v,v 1nv0/2),
wherev052eV/\, and the current yields a harmonic expa
sion of the fundamental frequencyI(t)5(nI neinv0t. In fact,
the Green functionsG̃d,d

r ,a/, in Eq. ~35! can be expanded in

powers of the fundamental frequencyv0, i.e., G̃d,d
r ,a/,(«,t)

5(mG̃d,d
r ,a/,(«,«1mv0/2)eimv0t/2, which with the expres-

sion for the Green functionG̃d,d
r ,a/, below Eq.~35! is exactly

of the form of the double-energy transformation.41 However,
we show here that one can obtainin principle the time de-
pendence of the current, as long as one can derive the
Green functions of the central part, which need further inv
tigation.

So far we have presented a general formulation to ca
late the current through a confined normal region connec
to two leads being either ferromagnetic or superconduct
and the Meir-Wingreen-type formulas in the specific cas
Although the formalism can not applied to the strong co
pling of the central normal part to the outer world as t
circuit theory of the hybrid mesoscopic transport,18 it permits
us to investigate the effects of the single particle interfere
and strong electron-electron interaction on the transp
properties of hybrid mesoscopic systems, which is ignored
the circuit theory. Compared to the other formalisms ba
on the similar Keldysh NEGF technique,9,12,15–17,66our for-
malism is more systematic and more general. In the pre
formalism, one does not need to make additionalad hoc
assumptions as mentioned in the introduction. One can
judge what quantities can be measured in experiment
much more complicated structure, by observing simply
energy-independent arguments in the exponential funct
or the triangle functions in the unitary matrices of the tu
neling parts of the Hamiltonian after the Bogoliubov tran
formations. As we will demonstrate, we obtain the final cu
rent formula after simple matrix algebra rather than diffic
mathematical techniques.15–17,66 This kind of mathematical
simplicity makes our formalism more appearing than othe
9-8
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More importantly, an explicit energy- and bias-voltage d
pendence of the level-width functions and distribution fun
tions allows us to investigate theI -V characteristics in a
much more wider range of bias voltage.

III. APPLICATIONS TO THE NONINTERACTING MODEL
IN THE CENTRAL REGION

In this section we use the formulas developed above
study transport properties of various kinds of hybrid mes
copic systems in which, for simplicity and convenience
comparison with other theories, the interaction effects in
central confined region are not considered. The absenc
the interactions permits an analysis of the genuine phys
influence of ferromagnetism and superconductor proxim
on the transport properties in hybrid structures. One of
best candidates for a non-interaction confined region
double-barrier resonant structures~DBRS’s! with quantized
discrete energy levels.4 Therefore we adopt the double
barrier model with the emitter and collector replaced by
ther a ferromagnet or a superconductor. Throughout the
lowing calculations we use the following approximations:~i!
the level shift is omitted,~ii ! the coupling coefficients are
real constants, independent of spin and energy such
Vkn;s

g f /s 5Vg f /s5Vg f /s* . However, we will abandon the
n

re
a
w
c

11531
-
-

to
-

f
e
of
al
y
e
is

-
l-

at

usual9,12,14–16 wide-band approximation of the level-widt
functions which is reasonable in the low-voltage transpo
since in this paper we also deal with high bias voltage s
ation. As we will show, this permits us to investigate t
current within a much wider region of bias voltage and fi
interesting transport features of the same resonant struc
which can not be found in the other formalisms based on
Keldysh NEGF technique.15–17

In the absence of interactions within the intermediate n
mal metal, the full retarded/advanced Green function can
solved from Dyson equation

Gc,c
r /a~ t,t8!5Gc,c

0r /a~ t,t8!

1E dt1E dt2Gc,c
0r /a~ t,t1!Sr /a~ t1 ,t2!Gc,c

r /a~ t2 ,t8!

5Gc,c
0r /a~ t,t8!

1E dt1E dt2Gc,c
r /a~ t,t1!Sr /a~ t1 ,t2!Gc,c

0r /a~ t2 ,t8!,

~36!

in which Gc,c
0r /a is the decoupled Green function, which b

comes when the central region is isolated from the outs
world
gc,c
r /a~ t,t8!57 iq~6t17t2!(

n S e2 i («n↑2mC)(t12t2)/\ 0 0 0

0 ei («n↓2mC)(t12t2)/\ 0 0

0 0 e2 i («n↓2mC)(t12t2)/\ 0

0 0 0 ei («n↑2mC)(t12t2/\)

D .

~37!
ag-
is

nel

o
The
ed
the

e
eld.
4.2

n-

res

so-
ingle
The lesser/greater Green function of the central regio
calculated via Keldysh equation

Gc,c
,/.~ t,t8!5E dt1E dt2E dt3E dt4

3@11Gc,c
r ~ t,t1!Sr~ t1 ,t2!#Gc,c

0,/.~ t2 ,t3!

3@11Sa~ t3 ,t4!Gc,c
a ~ t4 ,t8!#

1E dt1E dt2Gc,c
r ~ t,t1!S,/.~ t1 ,t2!Gc,c

a ~ t2 ,t8!.

~38!

Once the full Green functions in the central region a
known, we then have the complete knowledge to investig
tunneling processes in the specific structures. In the follo
ing we study electron tunneling in three typical hybrid stru
tures: ~a! F/I /N/I /F magnetic DBRS’s, ~b! F/I /N/I /S
DBRS’s, and~c! S/I /N/I /S DBRS’s.
is

te
-

-

A. F ÕI ÕNÕI ÕF structures

When two ferromagnets are separated by a thin nonm
netic barrier, two kinds of physical effects arise. The first
thespin valveeffect,34,37showing a (11« cosu) dependence
of the tunnel conductance on the relative orientationu be-
tween the involved two magnetizations. The other is tun
magnetoresistance~TMR!,34 defined by DR/R5(Ra

2Rp)/Ra , whereRp and Ra are the resistances when tw
magnetizations are parallel and antiparallel, respectively.
spin valveand TMR are due to the spin polarization induc
by an exchanging coupling between electron spins and
internal magnetization,34,37and the relative orientation of th
magnetizations can be adjusted by applying a magnetic fi
A TMR up to 11.8% at room temperatures, and 24% at
K, was reported in CoFe/Al2O3 /Co planar magnetic
junctions.42 It is observed that the TMR decreases with i
creasing bias voltage.42

Recently, double-barrier magnetic resonant structu
have attracted much experimental43 and theoretical16,44–48at-
tention. The theoretical results show that the TMR of re
nant magnetic structures is enhanced compared to the s
9-9



e

e
s,

ti

ce
-
th
b
r-

ted

tic
ra
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magnetic junctions due to resonant tunneling.44–48However,
there appears a controversial issue related to the TMR
hancement, on whether it is for peak44 or valley current.45 In
addition, Shenget al.46 found both positive and negativ
TMR in F/I /F/I /F double junctions. To clarify these issue
we reexamine this problem using our formula~33! in terms
of the two-band free-electron spin-polarization model37 for
the ferromagnetic leads. A typical double-barrier magne
structure is schematically plotted in Fig. 2.

We take two steps to calculate the full retarded/advan
Green functionGc,c

r /a(t,t8) of the central region. First we de
couple the system from the left ferromagnet, denoting
corresponding retarded/advanced Green function
Gc,c

r /a(t,t8), then we couple the central region to the left fe
romagnet and calculate the full Green functionG from G.
From the Dyson equation~36! we have

FIG. 2. A schematic potential profile for a biased magne
double-barrier structure with two ferromagnetic electrodes cha
terized by their respective magnetizationshL andhR . The hatched
regions denote the states occupied by electrons.
11531
n-

c

d

e
y

Ĝc,c
r /a~ t,t8!5Ĝc,c

r /a~ t,t8!

1E dt1E dt2Ĝc,c
r /a~ t,t1!ŜLf

r /a~ t1 ,t2!Ĝc,c
r /a~ t2 ,t8!,

~39!

Ĝc,c
r /a~ t,t8!5ĝc,c

r /a~ t,t8!

1E dt1E dt2ĝc,c
r /a~ t,t1!ŜRf

r /a~ t1 ,t2!Ĝc,c
r /a~ t2 ,t8!,

~40!

where (X5Gr ,a/,,Gr ,a/,,gr ,a/,, andSr ,a/,)

X̂~ t,t8!5P~mRCt !Rf S uRf

2 DX~ t,t8!Rf †S uRf

2 DP†~mRCt8!.

Substituting the self-energy matricesSRf
r /a ~Appendix! into

the Dyson equation~40!, one has

Ĝc,c
r /a~ t,t8!5E d«

2p
e2 i«(t2t8)/\F ĝc,c

r /a21~«!6
i

2
GRf~«!G21

5E d«

2p
e2 i«(t2t8)/\Ĝc,c

r /a~«!, ~41!

where the retarded/advanced Green function for the isola
central region is

c-
ĝc,c
r /a~«!51

S (
n

1

«2en↑8 6 i01D 21

0 0 0

0 S (
n

1

«1en↓8 6 i01D 21

0 0

0 0 S (
n

1

«2en↓8 6 i01D 21

0

0 0 0 S (
n

1

«1en↑8 6 i01D 212 ,

~42!
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with ens8 5«ns2mC1mR . The full retarded/advanced Gree
function is obtained in the same way:

Ĝc,c
r /a~ t,t8!5E d«

2p
e2 i«(t2t8)/\

3F Ĝc,c
r /a21~«!6

i

2
ĜLf~«7eV!G21

5E d«

2p
e2 i«(t2t8)/\

3F ĝc,c
r /a21~«!6

i

2
GRf~«!6

i

2
ĜLf~«7eV!G21

5E d«

2p
e2 i«(t2t8)/\Ĝc,c

r /a~«!. ~43!

The lesser Green function is associated with the retar
and advanced Green functions via the Keldysh equation~38!

whereĝ,(t,t8)50

Ĝc,c
, ~ t,t8!5E dt1E dt2Ĝc,c

r ~ t,t1!@ŜLf
,/.~ t1 ,t2!

1ŜRf
,/. ~ t1 ,t2!#Ĝc,c

a ~ t2 ,t8!

5E d«

2p
e2 i«(t2t8)/\Ĝc,c

r ~«!@ĜLf~«7eV!

3fL~«7eV!2GRf~«!fR~«!#Ĝc,c
a ~«!

5E d«

2p
e2 i«(t2t8)/\Ĝc,c

, ~«!. ~44!

Substituting the advanced and lesser Green functions~43!
and ~44! into Eq. ~33! or ~31!, one gets the following
Landauer-Bu¨ttiker-type5 formula for the current through a
noninteractingF/I /N/I /F magnetic structure

If n f~u f !5
2e

h E d«@ f L~«2eV!2 f R~«!#Tf n f~«,u f !,

~45!

where the transmission coefficientTf n f is cast into the fol-
lowing compact form:

Tf n f~«,u f !5
1

2 (
i 51,3

@ĜLf~«7eV!Ĝc,c
r ~«!GRf~«!Ĝc,c

a ~«!# i i

5
1

2 F S cos2
u f

2
Ĝ↑

LfG↑
Rf1sin2

u f

2
Ĝ↓

LfG↑
Rf D uĜc,c;11

r u2

2S 2G↑
RfG↓

Rf1cos2
u f

2
Ĝ↓

LfG↑
Rf

1sin2
u f

2
Ĝ↑

LfG↑
Rf D uĜc,c;13

r u22S 2G↑
RfG↓

Rf

1cos2
u f

2
Ĝ↑

LfG↓
Rf1sin2

u f

2
Ĝ↓

LfG↓
Rf D uĜc,c;31

r u2
11531
d

1S cos2
u f

2
Ĝ↓

LfG↓
Rf1sin2

u f

2
Ĝ↑

LfG↓
Rf D uĜc,c;33

r u2G .
~46!

Notice that we have dropped the arguments«2eV in Ĝs
Lf

and« in Gs
Rf for brevity. The full retarded Green function i

Eq. ~46! is determined by the matrix inversionĜc,c
r 5@ ĝc,c

r 21

1( i /2)ĜLf1( i /2)GRf #21, and we have

Ĝc,c;11
r 5Ĝf f

21~«!F S (
n

1

«2en↓8 1 i01D 21

1
i

2 S cos2
u f

2
Ĝ↓

Lf1sin2
u f

2
Ĝ↑

Lf1G↓
Rf D G ,

Ĝc,c;13
r 5Ĝc,c;31

r 5
2~ i /4!sinu f~ Ĝ↑

Lf2Ĝ↓
Lf !

Ĝf f~«!
,

Ĝc,c;33
r 5Ĝf f

21~«!F S (
n

1

«2en↑8 1 i01D 21

1
i

2 S cos2
u f

2
Ĝ↑

Lf1sin2
u f

2
Ĝ↓

Lf1G↑
Rf D G ,

Ĝf f~«!5Ĝc,c;11
r Ĝc,c;33

r 2Ĝc,c;13
r Ĝc,c;31

r .

To obtain the last equality of Eq.~46!, we have used

S ĝc,c;11
r /a216

i

2
G11

f D Ĝc,c;13
r /a 56

i

2
G13

f Ĝc,c;33
r /a ,

S ĝc,c;33
r /a216

i

2
G33

f D Ĝc,c;31
r /a 56

i

2
G31

f Ĝc,c;11
r /a ,

whereGf5ĜLf1GRf .
One sees from Eqs.~45! and ~46! that the current has a

generic dependence on the relative orientationu f between
the two magnetizations. By observing the current express
and scrutinizing the structure of the Green functions, it is
difficult to find that the tunneling current through the ma
netic structure is generally maximized atu f50 ~parallel
magnetization! and minimized atu f5p ~antiparallel magne-
tization!, a typicalspin valveeffect also in magnetic resonan
tunneling devices~data not shown here!. The ferromagnetism
is reflected in theu f and Gs

g f dependence of the full Gree

functions of the central partĜc,c , as well the transmission
function T. When at least one lead is nonmagnetic, theu f
dependence can be removed with the help of arotation op-
erationRf . If we setG↑

Lf5G↓
Lf and G↑

Rf5G↓
Rf , the current

formula ~45! will recover the usual Landauer-Bu¨ttiker for-
mula and the transmission is finally simplified to the Bre
Wigner type in the single level case. We notice that the c
rent formula~45! is formally similar to the results of Wang
et al.16 and Zhuet al.,17 however, the discrepancy is non
trivial. The current formula~45! allows us to calculate the
9-11
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I -V curves in a much wider region of bias voltage yieldi
rich physics, while according to the theoretical treatments
Wang et al.16 and Zhu et al.,17 the current formula is re-
stricted to the low bias voltage case where the level-wi
functions can be viewed as energy-independent consta
and thus may result in even wrong consequences in the l
bias voltage limit.

Of particular interest is the current-voltage characteris
of double-barrier structures. In subsequent calculations,
approximate the density of states of the ferromagnetic le
by that of the two-band free-electron spin-polarizati
model37,45 and take into consideration the finite width
these two bands. In this model the dimensionless DOS of
spin bands isrs

g f(«)}A(«1shg1W)/W, where W is the
bandwidth measured from the band bottom to the Fe
level. For some ferromagnetic metals, this is quite an app
priate approximation.37,49,50 In the absence of a magnet
field in the central region«n↑5«n↓5«n . To model the bias
voltage drop inside the well we takemC5mR2eV/2, since
the bias potential is assumed distributing uniformly acr
the double-barrier structure. Without any loss of genera
we consider two quasistationary levels in the well, of whi
the energy of the lowest one is 0.25W when V50 and the
level spacing is chosen as 1.5W, larger than the bandwidth o
the ferromagnets. This assumption is, in practice, quite
sonable for the narrow-band ferromagnetic metals and qu
tum wells with very large level spacing or small quantu
dots with very large charging energy. TheI -V curves are
shown in Fig. 3. The dotted line in Fig. 3~a!, the well-known
I -V characteristics of usual double-barrier structures, is gi
for comparison with the ferromagnetic case. In the prese

FIG. 3. I -V characteristics of a magnetic double-barrier stru
ture for ~a! different magnetizationshL and hR and ~b! different
couplingsGLf(0) andGRf(0) at temperaturekBT50.1W. The level
spacing is 1.5W, larger than the bandwidthW.
11531
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of ferromagnets, the structure of resonant shoulders ne
boring to resonant peaks is celebrated in theI -V plots. The
ratio of the peak width to the shoulder width is about (W
2hg)/2hg . Moreover, the valley current in a normal res
nant tunneling structure is lifted when the leads become
romagnetic. These surprising results, unexpected within
wide-band approximation, can be understood from the po
tial profile of this kind of magnetic double junction structur
shown in Fig. 2. It is well known that the current through
usual double-barrier structure is resonantly enhanced w
one of the well levels falls into the region of a Fermi sea, i.
eV,«n1eV/2,W1eV.51 In the ferromagnetic situation
the Fermi sea is distorted and comprises two distinct pa
one with both spin-up and spin-down bands, and the ot
with only a spin-up or spin-down band, as displayed in F
2. We thus have two types of Fermi sea for ferromagnets,
is represented byhg1eV,«n1eV/2,W1eV and the other
is 2hg1eV,«n1eV/2,hg1eV. It is obvious that the
resonant current through one of the well levels being wit
the sea of the first type is larger than that of the second ty
which is clearly reflected in theI -V characteristics in Fig.
3~a!.

Next we investigate the influence of coupling asymme
on the tunneling current. The results are presented in
3~b!. The magnitude of resonant current is significantly e
hanced when one of the couplings becomes 10 times
large. The coupling asymmetry induces a more signific
enhancement of the tunneling current if it is the coupling
the higher-voltage lead~emitter! that is stronger, consisten
with the tight-binding numerical result in the usual DBRS52

The ferromagneticI -V characteristics~peaks plus shoulders!
in the reverse-bias case is blurred, also due to the same
pling asymmetry effect. These features can be understoo
a similar way. The resonant current is roughly proportiona
the ratio GLf(0)rLfGRf(0)rRf /@GLf(0)rLf1GRf(0)rRf #2,
which becomes larger when one of the couplingsGLf(0) or
GRf(0) is enhanced. However, the magnitude of this e
hancement also depends on the DOS of the ferromagnet
rg f . If one strengthens the coupling to the lower-voltage le
~collector!, the tunneling current is slightly enhanced sin
the DOS of the collector is comparatively large.

Following Shenget al.,46 we define the tunnel mag
netoresistance ~TMR! as DR/R5@If n f(p)2If n f(0)#/
max@If n f(p),If n f(0)#. In Fig. 4 we give the TMR as a func
tion of the bias voltage for some typical couplings, and t
I -V curves in the cases of parallel and antiparallel alignme
of magnetizations for the convenience of comparison a
analysis. In contrary to the monotonous decay with the b
voltage,42 the TMR in magnetic DBRS’s displays comple
dependence on the bias voltage no matter what the value
couplings are, which arises from the resonant tunneling
electrons. This feature reveals that there is richer physic
the TMR of magnetic resonant structures. We notice also
the bias voltage dependence of the TMR can be comp
tively simple if the collector ferromagnet is of low degree
spin polarizationhg /W, as shown in the negative bias do
mains of Fig. 4. This phenomenon can be ascribed to
weak perturbation of the spin-up and spin-down DOS of
ferromagnet with smallhg /W by an external magnetic field

-

9-12



-
-

d
ith
c-
in

ELECTRONIC TRANSPORT IN HYBRID MESOSCOPIC . . . PHYSICAL REVIEW B 68, 115319 ~2003!
FIG. 4. TMR versus bias voltage of a mag
netic double-barrier structure for different cou
plings at temperaturekBT50.1W. The thick lines
are the results for TMR, and the thin solid an
dashed lines represent the tunneling current w
parallel and antiparallel magnetizations, respe
tively. The other parameters are the same as
Fig. 3.
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In addition, the peculiar behavior of the TMR also depen
on the strengths and symmetry of the elastic couplings. In
strong coupling case@Fig. 4~d!#, the TMR shows a resonan
behavior similar to that in the tunneling current,44,46 and can
even be negative at some bias voltages.46 In other cases
@Figs. 4~a!–4~c!#, the TMR drops within the resonant pea
region and then develops peaks at the boundaries betw
the current peaks and shoulders, similar to the result o
noninteracting quantum dot coupled to two magnetic lead45

The different oscillatory behaviors of the TMR with the bi
voltage for different couplings imply that the analysis on t
TMR in the resonant structure45 may not stand. It is worth
noticing that the TMR will eventually decay to zero in th
large bias voltage limit, due to the trivial dependence on
interchange of the spin-up and spin-down DOS of the lea
lower voltage. It is interesting to notice that the TMR reach
a maximum of 18% for asymmetric couplings. The ma
mum would increase further as the couplings become m
asymmetric. The TMR ratio given by our simple model
consistent with the estimation for a resonant structure w
Fe electrodes50 and that of the Coulomb-blockade-fre
double junction model.53 In magnetic resonant structure
TMR depends not only on the DOS of two electrodes as
the single junction case, but also on the spectral densit
the central well associated withĜc,c

r , and thus exhibits com
plicated dependence on the bias voltage. As for the coup
dependence of peaks and valleys in the TMR curve, i
associated with the sensitivity to the distortion in the spin
and spin-down DOS of the leads. Such a sensitivity stron
depends on the coupling strengths and which type of
Fermi sea the well levels fall into. In general, electrons in
one-band Fermi sea in the weak coupling case can de
much better the change in the DOS of the other ferrom
netic lead, and so the TMR develops a peak at the boun
between the two distinct types of Fermi sea.

To summarize this subsection, we have studied theI -V
characteristics and TMR behavior in a double-barrier m
netic structure. It is found that both a peak and a shou
emerge within the resonant region, manifesting directly
DOS profile of the ferromagnets. This finding may provide
new way to measure the degree of spin polarization o
11531
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ferromagnet. The TMR of resonant structures exhibits co
plex dependence on the bias voltage. It is either enhance
suppressed, depending on the strengths and symmetry o
elastic couplings of the central region to the magnetic lea

B. F ÕI ÕNÕI ÕS structures

At an N/S interface a dissipative current in the norm
metal can be converted into a dissipationless supercurre
the superconductor via the Andreev reflection process.28,29

Owing to the spin imbalance in the ferromagnet, the Andre
current may be suppressed or enhanced in aF/S contact.35

Blonder, Tinkham, and Klapwijk presented a on
dimensional model based on the Bogoliubov–de Gen
equation to analyze the transport processes at anN/S inter-
face in terms of normal electron transmission and Andre
reflection probability, known as the BTK theory.54 Cuevas
et al. in 1996 also uncovered some kinds of electron tunn
ing processes in theN/S quantum point contacts within th
Keldysh NEGF formalism starting from a microscop
Hamiltonian.13 The scattering matrix theory55–57 and
Keldysh NEGF formalism14,15 of electronic transport in
N-QD-S systems were also presented. Quite recently Z
et al.17 investigated a 2F-QD-S structure using the Keldysh
NEGF method, obtaining some interesting results. Howe
in the Keldysh NEGF treatment to theN-QD-S ~Refs. 14,15!
or 2F-QD-S,17 they always made some assumptions that
ferromagnetic magnetization is along thez axis and the su-
perconductor order parameter is a real quantity, and take
wide-band limit. Here we use the current formula~34! for
F/I /N/I /S systems to investigate the resonant Andreev c
rent andI -V characteristics of a genuine noninteracting h
brid structure~see Fig. 5! beyond the wide-band limit.

Following similar procedures as in the last subsection,
derive the various kinds of full Green functions of the no
mal region for a noninteractingF/I /N/I /S resonant structure
as

Ğc,c
r ,a/,~ t,t8!5E d«

2p
e2 i«(t2t8)/\Ğc,c

r ,a/,~«!, ~47!
9-13
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where (X5Gr ,a/,,gr ,a/,, andSr ,a/,)

X̆~ t,t8!5PS mRCt1
wR
2 DRf S uRf

2 DX~ t,t8!

3Rf †S uRf

2 DP†S mRCt81
wR
2 D

and

Ğc,c
r /a~«!5F ğc,c

r /a21~«!6
i

2
G%

Rs~«!6
i

2
GLf~«7eV!G21

,

~48!

FIG. 5. A schematic potential profile for a biased DBRS co
nected to a ferromagnetic and a superconducting leads. The ma
tization of the ferromagnetic lead ishL and the energy gap of th
superconductor isuDRu. The hatched regions represent occup
electron states. A typical Andreev reflection process is shown
spin-up electron above the chemical potential of the supercondu
is reflected as a spin-down hole below the chemical potential a
NS interface, and finally into the ferromagnetic lead.
11531
Ğc,c
, ~«!5Ğc,c

r ~«!@GLf~«7eV!fL~«7eV!

2Gr
Rs~«!fR~«!#Ğc,c

a ~«!.

Substituting the above Green functions into Eq.~34!, we
obtain

If ns5I f ns
A 1I f ns

N

5
2e

h E d«@ f L~«2eV!2 f L~«1eV!#T f ns
A ~«!

1
2e

h E d«@ f L~«2eV!2 f R~«!#T f ns
N ~«!, ~49!

where

T f ns
A 5

1

2 (
i 51,3

@GLf~«7eV!Ğc,c
r ~«!# i i 11

3@GLf~«7eV!Ğc,c
a ~«!# i 11i

5
1

2
@G↑

Lf~«2eV!G↓
Lf~«1eV!uĞc,c;12

r u2

1G↓
Lf~«2eV!G↑

Lf~«1eV!uĞc,c;34
r u2#, ~50!

T f ns
N 5

1

2 (
i 51,3

@GLf~«7eV!Ğc,c
r ~«!Gr

Rs~«!Ğc,c
a ~«!# i i

5
1

2
rRs~«!GRsH G↑

Lf~«2eV!F uĞc,c;11
r u21uĞc,c;21

r u2

22
uDRu

«
Re$Ğc,c;11

r Ğc,c;21
a %G1G↓

Lf~«2eV!F uĞc,c;33
r u2

1uĞc,c;43
r u212

uDRu
«

Re$Ğc,c;33
r Ğc,c;43

a %G J . ~51!

The elements of the Green function matrixĞc,c;11
r /a , Ğc,c;12

r /a ,
Ğc,c;21

r /a , Ğc,c;33
r /a , Ğc,c;34

r /a , and Ğc,c;43
r /a are derived from Eq.

~48! as

-
ne-

a
tor
e

Ğc,c;11
r 5

S (
n

1

«1en↓8 1 i01D 21

1
i

2
@G↓

Lf~«1eV!1GRs%Rs~«!#

Ğf s1~«!
,

Ğc,c;12
r 5Ğc,c;21

r 5

i

2
GRs%Rs~«!

uDRu
«

Ğf s1~«!
,

Ğc,c;33
r 5

S (
n

1

«1en↓8 1 i01D 21

1
i

2
@G↑

Lf~«1eV!1GRs%Rs~«!#

Ğf s2~«!
,

Ğc,c;34
r 5Ğc,c;43

r 52

i

2
GRs%Rs~«!

uDRu
«

Ğf s2~«!
,
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in which

Ğf s1~«!5H S (
n

1

«2en↑8 1 i01D 21

1
i

2
@G↑

Lf~«2eV!1GRs%Rs~«!#J
3H S (

n

1

«1en↓8 1 i01D 21

1
i

2
@G↓

Lf~«1eV!

1GRs%Rs~«!#J 1
1

4 FGRs%Rs~«!
uDRu

« G2

, ~52!

Ğf s2~«!5H S (
n

1

«2en↓8 1 i01D 21

1
i

2
@G↓

Lf~«2eV!1GRs%Rs~«!#J
3H S (

n

1

«1en↑8 1 i01D 21

1
i

2
@G↑

Lf~«1eV!

1GRs%Rs~«!#J 1
1

4 FGRs%Rs~«!
uDRu

« G2

. ~53!

Compared to the work for theN-QD-S system from the
similar Keldysh formalism,15 the derivation of the final cur-
rent formulas~49!, ~50!, and ~51! from the formalism we
developed is more direct, simple and systematic. What
need to do is just some simple matrix algebra, while com
cated mathematical techniques are needed in the deriva
of the Green functions in the formalism of Sunet al.15 Also
the current formula permits us to investigate theI -V charac-
teristics within a much wider bias voltage region
F/I /N/I /S DBRS’s.

The ferromagnetism and superconductor proximity
manifested in the dependence on the magnetizationhL and
the magnitude of the superconducting order parameteruDRu
of the full Green functions through self-energy matrice
From expressions~49!–~51!, one observes that the curre
through aF/I /N/I /S resonant structure results from differe
contributions.13,54 I f ns

A is the Andreev reflection current:
spin-up/down electron/hole associated with spectral we
G↑

Lf(«2eV)/G↓
Lf(«2eV) incident from the ferromagnetic

lead is reflected as a spin-down/up hole/electron with sp
tral weight G↓

Lf(«1eV)/G↑
Lf(«1eV) backward into the

original lead, and at the same time two electrons in the n
mal region are removed into the superconductor as an e
tron pair with probabilityuĞc,c;12

r u2/uĞc,c;34
r u2. I f ns

N comes
from three kinds of physical processes. The first and fou
terms in Eq.~51! represent the contribution from norm
electron transmission, a spin-up/down electron/hole tunn
into the superconductor with probabilityuĞc,c;11

r u2/uĞc,c;33
r u2;

the second and fifth terms describe the ‘‘branch-crossi
11531
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process in the BTK theory,54 a spin-up/down electron/hole in
the ferromagnetic lead is converted into a spin-down
hole/electron in the superconductor side, with particle pa
of opposite spins created in the normal regi
uĞc,c;21

r u2/uĞc,c;43
r u2. The terms left correspond to the n

transfer of electrons/holes, along with the creatio
annihilation of particle pairs inside the well and th
annihilation/creation of pairs into the superconductor le
with probability proportional to Re$Ğc,c;11

r Ğc,c;21
a %/

Re$Ğc,c;33
r Ğc,c;43

a %. At absolute zero temperature, the on
contribution to the current isI f ns

A for eV,uDRu, since in this
caserRs(«) in T f ns

N becomes zero and thenI f ns
N 50. When

eV.uDRu all processes contribute to the current. If one s
hL50 and assumes the wide-band approximation, the
rent formula will reduce to the result obtained by Sunet al.15

in the N-QD-S case.
Assuming a single active level«0 in the well, we get the

following linear-response conductance of theF/I /N/I /S sys-
tem:

Gf ns~«0!5
4e2

h

G↑
LfG↓

Lf~GRs!2/4

F«0
21

G↑
LfG↓

Lf1~GRs!2

4
G2

1
«0

2~G↑
Lf2G↓

Lf !2

4

.

~54!

For the completely polarized ferromagnetic lead, i.e.,hL /W
51, andG↓

Lf50, the linear conductance turns out to be ze
since there is no state available for the Andreev reflec
spin-down holes. If the magnetizationhL is zero,G↑

Lf5G↓
Lf

5GL(0), the ferromagnetic lead becomes a normal met
and the conductance is reduced to

Gnns~«0!5
4e2

h S 2GL~0!GRs

4«0
21@GL~0!#21~GRs!2D 2

, ~55!

which is the same as the result obtained by Beenakker f
the scattering matrix approach.55 In contrast to a singleF/S
junction,35 the conductance of anN/I /N/I /S resonant struc-
ture is always not less than that of theF/I /N/I /S structure,
regardless of the value of the magnetizationhL . At «050
the conductance in theN/I /N/I /S structure is maximal for
symmetric couplingsGL(0)5GRs, equaling to 4e2/h twice
that in theN/I /N/I /N case. Moreover the line shapes of th
linear-response conductances~54! and ~55! which decay as
«0

24 are not of the simple Lorentzian formGLGR/@«0
21(GL

1GR)2/4#.
Let us analyze further the spin polarization dependenc

Gf ns at resonance«050 for different couplings. Setting
GRs5lGLf(0), Eq. ~54! evolves into

Gf ns5
4e2

h

4kl2

~k1l2!2
, ~56!

where k5A12hL
2/W2 is a quantity characterizing the de

gree of spin polarization of the ferromagnetic lead:k51 for
normal metals andk50 for completely polarized ferromag
nets. Whenl>1, the conductance increases with increas
k, implying that the conductance decreases when the de
9-15
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ZHAOYANG ZENG, BAOWEN LI, AND F. CLARO PHYSICAL REVIEW B68, 115319 ~2003!
of spin polarization rises. Ifl,1, the conductance first in
creases with increasing the spin polarization and then
creases rapidly after it reaches its maximum value 4e2/h.
The critical value ofk is given byk5l2. This interesting
result is also obtained by Zhuet al.,17 shown in Fig. 2 of
their paper.

Next we explore the dependence of the Andreev curr
spectrum on the degree of spin polarization of the ferrom
netic lead. From the schematic view of the resonant Andr
reflection processes inF/I /N/I /S structures, one immedi
ately becomes aware that the resonant Andreev curren
determined mainly by the applied bias voltageV, the ratio of
the strength of ferromagnetic magnetization to the bandw
hL /W, and the level separationd«n . We choose a specia
level separationD«n50.501uDRu, a case in which at mos
three levels are allowed to fall into the energy gap of
superconductor lead. For simplicity we assume ident
level separations and do not consider the influence of
bias voltage on the level shift for convenience of compa
son. At fixed bias voltage smaller than the energy gapuDRu,
resonant Andreev reflection takes place whenever the ch
cal potential of the superconductor lies just in between t
levels and there are states available for the reflec
electrons/holes. The energy levelsen2eVg can be shifted up
and down by tuning continuously the gate voltageVg .
Therefore, one can expect a series of peaks in the And
current as a function ofVg .

In Fig. 6 we present numerical results of the Andre
current as a function of the gate voltageeVg for different
spin polarizationshL /W and different bias voltageseV. The
cases of positive and negative bias voltage are considere
compare the Andreev current contributed from electron
hole transmission. Let us first inspect the Andreev curr
spectra in theN/I /N/I /S case@Figs. 6~a1!–~6a3!#.15 At a
small positive bias voltageeV50.1uDRu @Fig. 6~a1!#, a series
of peaks labeled byS with the same separation as the lev
spacing is observed. These peaks come from the reso
Andreev reflection processes by electron tunneling throug
single level aligned with the chemical potential of the sup
conductor. When the bias voltage is small, there is no po
bility for two levels to satisfy the resonant Andreev reflecti
condition. As the bias increases toeV50.3uDRu @Fig. 6~a2!#,
there is possibility for two neighboring levels to lie equa
above and below the chemical potential of the superc
ductor. The condition of the resonant Andreev reflection
volving two levels can be satisfied and two-level Andre
reflection also contributes to the Andreev current. As a re
another series of resonant Andreev current peaks labele
D is observed neighboring to the original series from sin
level contributions. TheseD peaks, with the same spacing
the S series and 0.25uDRu away from it, stand out for their
double height compared to theSones. This is because for th
D peaks two neighboring levels are involved in the cor
sponding resonant Andreev reflection processes, so the p
ability is doubled as compared to the single level situati
At a still higher bias voltageeV50.6uDRu @Fig. 6~a3!# the
Andreev current spectrum can be understood similarly,
S-type peaks are now replaced byT ones with tripled ampli-
tudes, resulting from three-level contributions. Since ateV
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50.6uDRu, two additional levels near the middle one
alignment with the chemical potential also contribute to t
Andreev current, so there are three neighboring levels tak
part in resonant Andreev reflections, making the height of
T series three times as that of theS ones. When the bias is
reversed, the Andreev current becomes negative, imply
that the Andreev reflection is induced by hole transmissi
However, the Andreev current spectra remains unchan
Since in normal metals the DOS is spin degenerate, comp
resonant Andreev reflections are guaranteed for electron
well as their hole counterparts. Therefore, except for the s
the Andreev current spectra are the same for electronV
.0) and hole transmission (V,0). The above phenomen
can also be understood from the intuitive diagrams in Fig
with different spin-up and spin-down bands of the ferroma
nets replaced by identical ones of the normal metals.

In a F/I /N/I /S resonant structure the Andreev current d
pends not only on the position of the quantum well levels
in the normal case, but also on whether there are availa
states for the backward reflecting holes. The Andreev spe

FIG. 6. The Andreev current spectra at zero temperature
fixed bias voltage for different spin polarizations~a! hL /W50, ~b!
hL /W50.75, and~c! hL /W50.9, whereW52uDRu. The full lines
correspond to the results wheneV.0 and the dashed wheneV
,0. LabelsS, D, andT are used to denote the current peaks aris
from the resonant Andreev reflections involving single, double
triple levels, respectively. Here we assume 20 levels with ident
level separation 0.5uDRu, and the first level aligns with the chemica
potential of the superconductor lead whenVg50. The other param-
eters areGLf(0)5GRs50.01uDRu.
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ELECTRONIC TRANSPORT IN HYBRID MESOSCOPIC . . . PHYSICAL REVIEW B 68, 115319 ~2003!
for electron and hole transmission appear to be differen
the ferromagnetic lead is of large spin polarization. For
completely polarized ferromagnetic lead, no Andreev curr
is expected due to the absence of empty states for the re
ing holes. We therefore choose the spin polarizationshL /W
50.75 andhL /W50.9 for our purpose, whereW52uDRu,
and the results are given in Figs. 6~b1!–6~b3! and 6~c1!–
6~c3!. At a low bias voltageeV50.1uDRu there are still
available states for the reflecting holes and the Andreev
rent exhibits the same resonant spectrum as in the no
case, with slightly suppressed peak amplitude. If the b
voltage iseV50.3uDRu, the spin-down band of polarizatio
hL /W50.9 moves above the chemical potential of the sup
conducting lead, leaving only the possibility for a spin-
electron to be transmitted through a level below the chem
potential and then reflected backwards through the neigh
ing level above the chemical potential to the spin-do
band. Hence we can only observe theD-type peaks with
amplitude half that in the normal case in the spectrum@Fig.
6~c2!#. As hL /W50.75, theD-type Andreev current peak
with half the amplitude of the normal case are origina
from the same resonant Andreev reflection processes
spin-up electrons going through the states below the che
cal potential as in the casehL /W50.9. This is the reason
why we observe the amplitudes of theSandD-type peaks to
be nearly the same@Fig. 6~b2!#. As the bias voltageeV is
further increased to 0.6uDRu, the spin-down bands fo
hL /W50.75 andhL /W50.9 shift above the chemical poten
tial of the superconductor, and one can no longer observe
series ofS-type peaks from the contribution of the levels ju
at the chemical potential. For ferromagnets with high s
polarization, the current arises only from the resonant A
dreev reflections by the spin-up electrons tunneling thro

FIG. 7. Schematic views of the resonant Andreev reflection p
cesses arising from the electron~a! and hole~b! transmission from
the ferromagnetic lead. The hatched region represents states th
occupied by electrons. The Andreev current peaks labeled byS in
Fig. 6 is originated from the Andreev reflection process involvin
singlelevel represented by the solid line,D doublelevels by dashed
lines, andT triple levels by dotted lines. The block arrows stand f
the process at the edges of the superconducting band invo
electron tunneling through the level located at«n5uDRu, which
results in sharp peaks in theI -V characteristics.
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the levels 0.5uDRu below the chemical potential. Thus th
Andreev current spectrum@Fig. 6~c3!# only consists of a se-
ries of peaks at the positions of theT-type peaks in the nor-
mal case. Whereas in the small polarization case@~Fig.
6~b3!#, the Andreev reflections involving two neighborin
levels and two of three levels contributing to theT-type
peaks in the normal case can happen, and a series of res
peaks with equal separation 0.25uDRu is observed.

Schematic views of the above resonant Andreev reflec
processes for electron transmission are given in Fig. 7~a!.
When the bias voltage is reversed, the current is contribu
from hole transmissions, and the situation is now very sim
lar to the normal case. The only difference is that the am
tudes of the peaks in the ferromagnetic case are suppre
due to the reduced DOS for the reflected electrons. The
lation among theS-, D-, andT-type current amplitudes stil
hold, for which a heuristic physical picture is given in Fi
7~b!. When the level spacings are not identical, more int
esting and complicated resonant Andreev current patte
can be expected.15 However, we can still analyze them from
the intuitive pictures of Fig. 7 whatever the Andreev curre
spectra may be.

The I -V characteristics of this kind of generic hybri
structure is also interesting. It is known that the reson
Andreev reflection process also contributes to the curr
when the bias voltageeV is greater thanuDRu, the energy
gap of the superconducting lead. For this reason we cons
cases in which the level spacingD«n can be either smaller o
greater than the energy gapuDRu, as well as when the firs
level «0 is either below or above the chemical potential
the superconductor whenV50. Figures 8~a! and 8~b! give
the I -V curves for small level spacingD«n50.5uDRu when
the first level«0520.33uDRu lies below@Fig. 8~a!# and«0
50.25uDRu above@Fig. 8~b!# the chemical potential of the
superconductor lead. As usual we approximate the varia
of the energy levels with the bias voltage by«n10.5eV.
There is no substantial difference between theI -V character-
istics of the F/I /N/I /S and N/I /N/I /S systems when the
level separation is small, as shown by the full and das
lines in Fig. 8. However, the current as a function of the b
voltage is strongly dependent on the symmetry between
couplings and the level configuration, especially when
applied bias is positive. The peaks in theI -V curves are
originated from the resonant Andreev reflections, wh
emerge at some specific bias voltages when the resonan
dreev reflection condition is satisfied. The irregular curre
plateaus come from the normal particle transmission. Th
are two types of current plateaus with different heigh
Those with higher height are determined by particle tunn
ing through the level aligned with one of the edges of t
superconducting energy gap at which the DOS is diverg
represented by a block arrow in Fig. 7, while the others
contributed from the levels away from the edges. Such
analysis can be confirmed by the following simple estim
tion: If «0520.33uDRu, then at bias20.33uDRu10.5eV
50 and 0.17uDRu10.5eV50, the resonant Andreev reflec
tion condition is satisfied and current peaks emerge ateV
50.66uDRu andeV520.34uDRu. For the first plateau to ap
pear, we need«n10.5eV56uDRu and eV>6uDRu, i.e.,
eV51.66uDRu and eV521.34uDRu. The numerical results
are consistent with this simple argument@Fig. 8~a!#.
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ZHAOYANG ZENG, BAOWEN LI, AND F. CLARO PHYSICAL REVIEW B68, 115319 ~2003!
In the case of negative biaseV,2uDRu, the levels are
pushed down gradually inside the energy gap and the r
nant Andreev reflection condition is eventually satisfied
some bias voltages. Since both the normal particle tunne
and the resonant Andreev reflection contribute to the curr
one observes a series of equally spaced resonant peak
perimposed onto the plateaus with identical widths. Wh
the couplings become asymmetric~one of the couplings is
weakened!, both the Andreev current peaks and current p
teaus are suppressed. This is because the normal and
dreev current is proportional to the product of the couplin
GLf(0)GRs, as can be found in the formulas~49!, ~50!, and
~51!. It has already been found analytically by Sunet al.15

that the Andreev reflection probability is maximized for sym
metric couplings inN-QD-S structures and decreases rapid
with the increasing coupling asymmetry. In the special asy
metric coupling case whereGRsGLf(0), the sharp DOS at
the edges of the superconductor energy gap can be disce
clearly whenever particles transmit through a level aligned
the edge~see the dotted lines in Fig. 8!. This can be easily
understood from the Breit-Wigner formula for resonant n
mal electron transmission at resonanceT
54GLf(0)GRsrLfrRs/@GLf(0)rLf1GRsrRs#2. The trans-
mission probabilityT depends on the ratio between the lev
widthsGLf(0)rLf andGRsrRs. At the edges of the gap,rRs

is divergent and thus the coupling constant should be sm
enough to balance these two level widths to guarantee
transmission. Notice that the ferromagnetic feature can
be observed in theI -V curves ofF/I /N/I /S structures when
the level spacing is small. It can only be displayed when

FIG. 8. I -V characteristics of aF/I /N/I /S resonant structure a
temperature 0.1uDRu for small level spacingD«n5 ~a! 0.33uDRu
below and~b! 0.25uDRu above the chemical potential of the supe
conducting lead whenV50. The solid curves are the results for th
N/I /N/I /S case with symmetric coupling GLf(0)5GRs

50.01uDRu, and the other curves for theF/I /N/I /S structure with
hL /W50.5.
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level separation is greater than the band width of the fe
magnets. In Fig. 9 we present the results ofI -V relation of
this case for different couplings and different level arrang
ments. As expected, the degree of spin polarization of
ferromagnetic lead is reflected in theI -V curves. In the nor-
mal case and wheneV.0, the current first develops a reso
nant Andreev peak at20.33uDRu10.5eV50 and exhibits
usual resonant peaks in the double-barrier structure aft
narrow peak with width determined from20.33uDRu
10.5eV5uDRu and20.33uDRu10.5eV5eV2W. When the
bias is reversed, the current displays a plateau from the
sition 20.33uDRu10.5eV52uDRu, superimposed by som
weak Andreev peaks arising from the resonant Andreev
flections for u«u.uDRu. If «050.25uDRu when V50, one
observesI -V characteristics similar to those of a usual ma
netic DBRS in the case of positive biasV.0, and in the
negative bias case a resonant Andreev peak at 0.2510.5eV
50 and a plateau-peak structure similar to the case«05
20.33uDRu. For F/I /N/I /S structures, the current develop
both a resonant peak as well as a shoulder which are m
prominent in the high bias case foreV.0, while they keep
nearly the same as in theN/I /N/I /S structure when the bias
is negative. This picture is violated when the couplin
become asymmetric. As in the case of small level spac
the sharp DOS at the edges of the energy gap is also pr
nent in theI -V characteristics when the coupling to the s
perconductor sideGRs is much smaller than that to the fe
romagnetic sideGLf(0). The spin polarization of the
ferromagnet can thus be measured when the couplings to
ferromagnetic and superconducting leads are symmetric
suggested from the comparison of the dashed, dotted
dashed-dotted lines in Fig. 9. It is noted that theI -V charac-
teristics of F/I /N/I /S resonant structures are qualit

FIG. 9. Same as Fig. 8, but for level spacingD«n52.5uDRu
.W52uDRu when the first level«0 lies ~a! 0.33uDRu below and~b!
0.25uDRu above the chemical potential of the superconducting le
whenV50.
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ELECTRONIC TRANSPORT IN HYBRID MESOSCOPIC . . . PHYSICAL REVIEW B 68, 115319 ~2003!
tively right, because the idea about the band-width of
superconductor is somewhat vague within its semicondu
model.30

In summary, we have investigated in this subsection
Andreev current spectra andI -V relations of aF/I /N/I /S
resonant structure in detail. Interesting dependence on
ferromagnetic spin polarization of the linear conductance
discussed in terms of analytic expressions, given by E
~54! and~56!. Our results demonstrate that the peak struct
of the Andreev current as a function of the gate voltage
determined by the applied bias~both the value and sign! and
the degree of spin polarization, which differs substantia
from the results under the wide-band approximation. TheI -V
characteristics, closely associated with the level arrangem
coupling symmetry, bias sign and spin polarization, can
employed to characterize the density of states~DOS! of both
ferromagnets and superconductors by tuning the coup
strengths.

C. SÕI ÕNÕI ÕS structures

The discovery of the Josephson effect58 has provoked a
lasting research interest in the properties of the dc- and
Josephson current in mesoscopicS/N/S junctions in thirty
years.30,59 When the width of the normal region is small
than the coherence length, electron pairs can coherently
nel from one superconductor to the other, inducing a pha
dependent dc current even when the bias is zero. Earl
1963, Ambergaokar and Baratoff60 derived a useful formula
for the supercurrent inS/I /S junctions with the help of the
Gor’kov Green functions. In the 1990’s investigations on t
mesoscopicS/N/S junctions became timely59 due to the ad-
vances in experimental techniques. In most of these w
the scattering matrix method based on the Bogoliuboiv–
Gennes~BdG! equation61 is commonly used. In aS/N/S
junction, the Andreev reflections at theN/S boundaries con-
fined the quasiparticle inside the normal region, resulting
the bound states sensitive to the superconducting phase
ference of the two superconductors.31 Impurities inside the
normal region altering the quasi-particle wave interferenc32
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and the asymmetry between the two energy gaps can
modify the Josephson current.62 Glazman and Matreev,63 and
Ishizakaet al.64 have studied the influence of the Coulom
interactions on the Josephson current inS-QD-S systems.
Researches have also been conducted on the dc Jose
current in noninteracting symmetricS-QD-S structures by
Beenakker from the scattering matrix approach,65 and by
Lin’s Group from the Keldysh NEGF method.66 However,
these investigations are restricted to the symmetric case
same couplings and energy gaps. Motivated by this lim
tion, we investigate in this subsection the dc Josephson
rent through a generalS/I /N/I /S resonant structure, in orde
to reveal the dependence of the Josephson current on
energy gaps. Results for the ac Josephson current wil
reported elsewhere.

Neglecting the interaction effects in the central regi
we obtain an unexpectedly simple form of the dc Joseph
current formula for a generalS/I /N/I /S system shown in
Fig. 10 from Eq.~35!

FIG. 10. A schematic potential profile for a biased DBRS
tached to two superconducting leads with order parametersDL and
DR . Here the hatched region represent occupied electron state
~57!
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ZHAOYANG ZENG, BAOWEN LI, AND F. CLARO PHYSICAL REVIEW B68, 115319 ~2003!
where we assume in generaluDLu<uDRu, and«p , the ener-
gies of the discrete Andreev bound states, are the poles o
spectral functionG̃s

r(«)

G̃s
r~«!5H S (

n

1

«2en81 i01D 21

1
i

2
@GLs%Ls~«!

1GRs%Rs~«!#J H S (
n

1

«1en81 i01D 21

1
i

2
@GLs%Ls~«!1GRs%Rs~«!#J

1
1

4 F ~GLsuDLu!2

«22uDLu2
1

~GRsuDRu!2

«22uDRu2

12 coswsG
LsGRs

uDLDRu

«2
%Ls~«!%Rs~«!G . ~58!

It is seen from Eq.~57! that the dc Josephson currentIsns in
a generalS/I /N/I /S system has contributions from three d
ferent scattering processes:I1 results from the resonant Jo
sephson tunneling through the discrete Andreev bound s
given byG̃s

r(«)50 within u«u,uDLu; I2 from the quasipar-
ticle escaping through broadened levels from the normal
gion to the weaker superconductor side, i.e.,uDLu<u«u
,uDRu; andI3 from quasiparticle tunneling from the norm
region to both superconductorsu«u>uDRu.62 One can con-
sider Eq.~57! as an extension to the asymmetric case of
Beenakker’s result for symmetricS-QD-S systems.65,67 In
addition one can check after simple algebra that the dc
sephson current formula~57! for the general asymmetri
S/I /N/I /S system reduces to the known result for the sy
metric case.65–67

Now we consider the simplest situation in which there
only a single active level«0 in the central normal region. It is
expected that the resonant Josephson scattering via the
dreev bound states«p will dominate the dc Josephson cu
rent. In Fig. 11 we plot this quantity at zero temperatu
calculated from Eq.~57! as a function of the single leve
energy «0 for symmetric couplingsGLs5GRs50.01uDLu.
However, the superconducting energy gaps are allowed t
asymmetric. The superconducting phase difference is cho
asws5p/2. The total current labeled byI in Fig. 11~a! has a
resonant peak when the single level is aligned with
chemical potential of the superconductor, i.e.,«050, result-
ing from the constructive interference between the forw
Andreev state1«p and backward Andreev state2«p . In-
specting the current components for three different scatte
regions u«u,uDLu, uDLu<u«u,uDRu and u«u>uDRu,62 la-
beled, respectively, by 1, 2, and 3, one finds that the cur
component 1 contributed by discrete Andreev levels ma
the major contribution to the dc Josephson current. It p
sesses one peak at«050 plus two side peaks pinned at«0
56uDLu which are offset by two peaks in the current com
ponentI2, in which two additional wider side peaks ca
celled exactly byI3. The side peaks come from the abnorm
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superconductor DOS singularities at the edges of the en
gap~s!, and the exact cancellation of these side peaks in
total Josephson current is due to the fact that both elect
like and holelike excitations can escape through the ac
level from the superconductor to the central normal regi
This is equivalent, mathematically, to the vanishing resid
of the spectral functionG̃s

r .66 In contrast to the symmetric
case uDLu5uDRu, the dc Josephson current is slightly e
hanced in the asymmetric caseuDLu,uDRu, as demonstrated
in Fig. 11~b!. This result differs from the usualS/N/S struc-
ture, where the current is greatly enhanced.62 The reason is
that the energy levels lie withinu«u,uDLu, and then resonan
Josephson tunneling dominates the dc current, as can be
more clearly in the current-phase relation in Fig. 12. T
significant enhancement of the dc Josephson current ma
observed in a resonantS/I /N/I /S system with many levels
located inside the regionu«u,uDLu, since in this case so
many levels are active to contribute to the Josephson curr
Figure 12 shows the resonant dc Josephson current at
temperature as a function of the superconducting phase
ferencews for general asymmetricS/I /N/I /S systems. When
«050, i.e., the single level is exactly located at the positi
of the superconducting chemical potential, the dc Joseph
currentIsns(ws) and its componentI1 vs the superconduct
ing phase differencews is of the sawtooth shape@Figs. 12~a!
and 12~b!#, no matter how big the difference between the tw
superconducting energy gaps is. The physical origin of
sharp discontinuity atws5p is the same as in the usua
S/N/S junction:32,68 the Andreev levels«p and 2«p deter-
mined from the spectral functionG̃s

r(«)50 at ws50 inter-
change their position atws5p, producing a discontinuity in
the dc Josephson current. Unlike the usualS/N/S structure,

FIG. 11. The dc Josephson current vs«0 for ~a! different scat-
tering processes, and~b! different energy gaps, where we take sym
metric couplings asGLs5GRs50.01uDLu. The superconducting
phase difference isws5p/2.
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ELECTRONIC TRANSPORT IN HYBRID MESOSCOPIC . . . PHYSICAL REVIEW B 68, 115319 ~2003!
the supercurrent-phase relation has a weak dependenc
the asymmetry between the superconducting energy gap
resonantS/I /N/I /S structures. This is because the main co
tribution to the dc Josephson current in resonant struct
with a single level is mainly from the Andreev reflectio
processes inside the regionu«u,uDLu, where the energy o
the Andreev bound states has a trivial dependence on
energy gapuDRu, as can be seen from the spectral functi
associated withG̃s

r(«). When the single level moves awa
from the position of the chemical potential«050.2uDLu @Fig.
12~c!#, or the coupling to the superconductors becom
asymmetricGRs54GLs @Fig. 12~d!#, the abrupt jump atws
5p is smoothed out and the current-phase approaches
sinusoidal relation. The transmission probability becom
smaller when the level moves away from the chemical
tential or the elastic couplings becomes asymmetric. A
result the link between these two superconductors beco
wicker, and thus the current-phase relationI(ws)}sinws is
expected.30 As the single level moves away from the chem
cal potential or the couplings become unequal, the dc
sephson current is significantly suppressed, with the com
nent I1 from the discrete spectra suppressed while
componentI2 from the continuum spectrauDLu,u«u,uDRu
enhanced. The suppression ofI1 is due to the decrease in th
resonant Josephson tunneling probability which is origina
from the violation of the constructive interference betwe
the wave functions of the Andreev levels, while the enhan
ment ofI2 results from the fact that the Andreev levels a
pushed towards the regionuDLu,u«u,uDRu and thus the
leaky probability is increased.

FIG. 12. The current-phase relation for a resonantS/I /N/I /S
structure, where the insets are enlargements of the current co
nent I3. Here the total dc Josephson currentIsns and its compo-
nentsI1 , I2, andI3 are represented by the thick solid, thin soli
dashed, and dotted lines, respectively.
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In summary, we have shown in this subsection that the
Josephson current in an asymmetric-gap resonantS/I /N/I /S
structure with a single level is slightly enhanced in contr
to the symmetric-gap case. The current-phase relation
closely related to the position of the single level and t
symmetry between the couplings to the two superconduc
leads.

IV. CONCLUDING REMARKS

We have developed a unified theory of electronic tra
port in a general two-terminal hybrid nanosystem, in whi
each lead can be either a ferromagnet or a supercondu
Within the Keldysh NEGF formalism, the current is e
pressed in terms of the local properties of the central in
acting regionGr ,a,,/. and the equilibrium distribution func
tions of the leadsfg . The ferromagnetism and supercondu
ing proximity are treated on the same footing, incorpora
into the tunneling Hamiltonian and the self-energy matric
after introducing a four-dimensional Nambu-spinor spa
and performing appropriate Bogoliubov transformation
With the help of some unitary rotation and phase matric
one can demonstrate analytically the gauge invariance of
general current formula~31!, and simplify it to the Meri-
Wingree forms for specific structures. For some quantit
such as the chemical potential, magnetization orientat
and the superconducting order parameter phase, only
relative value appears explicitly in the expressions of curre
Moreover, resonant tunneling, strong electron correlati
~Coulomb blockade, Kondo resonance, etc.!, ferromagnetism
and superconductivity proximity effect can be investigated
a unified transport theory without introduction of any ad h
assumptions. In addition, the energy and bias-voltage de
dence of the level-width functions and distribution functio
enters into the current formula in a strict and natural mann
allowing us to explore theI -V characteristics in the large
bias limit. However, the disadvantage of applying first t
Bogoliubov transformation for the ferromagnetic lea
Hamiltonian is that we can only obtain the expressions
the sum of the spin-up and spin-down current, while t
information about the spin components of the current is lo

Applying the current formulas to the simplest DBR
where the interactions are ignored some interesting trans
properties are revealed if one takes into consideration
finite energy band structure of the ferromagnets. We h
reported on the current flowing through a noninteract
zero-dimensional central region, thus the results obtained
qualitatively right for a 2D quantum well with the attache
emitter and/or collector being ferromagnetic. In addition,
did not consider the spin-flip process due to the interfac
scattering or the existence of paramagnetic impurities ins
the barrier. It is known that the spin-flip process may redu
the magnitude of the tunnel magnetoresistance of aF/I /F
junction.69 Also, we can expect that the Andreev curre
spectrum inF/I /N/I /S structures will be modified to a grea
extent in the presence of the spin-flip process, since the
dreev reflection may be enhanced with the assistance of
process.

In F-QD-F, F-QD-S or S-QD-S systems, electron-
electron interactions inside the QD are important and t

o-
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one should consider many-body effect. One example is
Kondo effect at low temperatures.70 In such a circumstance
one has to calculate the full Green functions of the QD in
presence of electron-electron interactions, taking into con
eration the couplings between the QD and the leads. We
aware of three recent preprints71 on the Kondo physics in
F-QD-F systems in which the wide-band approximation
used.16,71 Such a simplification of the ferromagnetic DO
may lead to even spurious results inI -V characteristics.
However. interesting and even unexpected Kondo resona
in these systems may arise with the full consideration of
finite energy band structure of the ferromagnetic leads.
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APPENDIX: DERIVATION OF THE SELF-ENERGY
MATRICES Sgf Õs

r ,a,ŠÕ‹

In this appendix we derive various kinds of self-ener
matrices for the elastic couplings between the central reg
and the ferromagnetic and superconductor leads. First,
calculate the retarded/advanced self-energy ma
11531
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Sg f ;nm
r /a (t1 ,t2) arising from the coupling between the centr

normal metal and the ferromagnetic lead

Sg f ;nm
r /a ~ t1 ,t2!5(

k
Vkn

g f †~ t1!gg f k,g f k
r /a ~ t1 ,t2!Vkm

g f ~ t2!

5(
k

P†~mgCt1!Vkn
g f †Rf †S ug f

2 Dgg f ,g f
r /a ~ t1 ,t2!

3Rf S ug f

2 DVkm
g f P†~mgCt2!.

The sum over momentumk can be converted to energ
integration, i.e.,(k→*d«ksrs

g f(«ks). Neglecting the level
shift term, we get

Sg f ;nm
r /a ~ t1 ,t2!57

i

2E d«

2p
e2 i«(t12t2)P†~mgCt1!

3Rf †S ug f

2 DGnm
g f ~«!Rf S ug f

2 DP~mgCt2!

57
i

2E d«

2p
e2 i«(t12t2)Rf †S ug f

2 D
3Gnm

g f ~«7mgC!Rf S ug f

2 D , ~A1!

in which
ad
Gnm
g f ~«7c!5S Gnm;↑

g f ~«2c! 0 0 0

0 Gnm;↓
g f ~«1c! 0 0

0 0 Gnm;↓
g f ~«2c! 0

0 0 0 Gnm;↑
g f ~«1c!

D , ~A2!

Gnm
g f ~«!5Gnm

g f ~«70!, ~A3!

with

Gnm;s
g f ~«!52prs

g f~«!Vkn
g f* Vkm

g f .

Similarly, after transforming the momentum sum(k into an integral*d«krN
gs(«k), whererN

gs is the normal state of the
superconductor, we obtain the self-energy matrix due to the coupling of the central region to the superconducting le

Sgs;nm
r /a ~ t1 ,t2!5(

k
Vkn

gs†~ t1!ggsk,gsk
r /a ~ t1 ,t2!Vkm

gs ~ t2!

57
i

2E d«

2p
e2 i«(t12t2)/\P†S mgCt11

wg

2 DG%/%* ;nm
gs

~«!PS mgCt21
wg

2 D
57

i

2E d«

2p
e2 i«(t12t2)/\P†S mgCt11

wg

2 DG%/%* ;nm
gs

~«7mgC!PS mgCt11
wg

2 D ~A4!

57
i

2E d«

2p
e2 i«(t12t2)/\P†S mgCt21

wg

2 D @G%/%* ;nm
gs

#T~«7mgC!PS mgCt21
wg

2 D , ~A5!
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where we have defined the complex level-width matrix as

G%;nm
gs ~«7c!5Gnm

gsS %gs~«2c! 2
uDgu
«1c

%gs~«1c! 0 0

2
uDgu
«2c

%gs~«2c! %gs~«1c! 0 0

0 0 %gs~«2c!
uDgu
«1c

%gs~«1c!

0 0
uDgu
«2c

%gs~«2c! %gs~«1c!

D ,

G%* ;nm
gs

~«7c!5@G%;nm
gs ~«7c!#* , ~A6!
e

ise

ic
tic

i-

in
the
with

Gnm
gs 52prN

gs~0!Vkn
gs* Vkm

gs ,

%gs~«!5
u«uq~ u«u2uDgu!

A«22uDgu2
2 i

«q~ uDgu2u«u!

AuDgu22«2
. ~A7!

Here we have defined a complex superconducting DOS,
tending to the forbidden region in the usual BCS theoryu«u
,uDgu, inside which the Andreev reflection processes ar
as shown in the Blonder-Tinkham-Klapwijk theory.54 When
u«u,uDgu, the quasiparticle density of states% is purely
imaginary, indicating evanescent states in the gap wh
eventually decay into the pair condensate. The quasipar
density of states of the superconducting leadg is defined as

rgs~«!5
1

p
Im ĝgs,gs;11

a 5
u«uq~ u«u2uDgu!

A«22uDgu2
5Re%~«!. ~A8!

In deriving Eq.~A5! we have used the following equal
ties:

q~t!E
2`

1`

dek@cos2ugske
6 iA«k

2
1uDgu2t/\

1sin2ugske
7 iAek

2
1uDgu2t/\#

5 i E d«

2p
e2 i«t/\E

2`

1`

d«k

«6«k

«22«k
22uDgu2

5E d«e2 i«t/\%gs~«!,
11531
x-

,

h
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q~2t!E
2`

1`

dek@cos2ugske
6 iA«k

2
1uDgu2t/\

1sin2ugske
7 iAek

2
1uDgu2t/\#

52 i E d«

2p
e2 i«t/\E

2`

1`

d«k

«6«k

«22«k
22uDgu2

,

5E d«e2 i«t/\@%gs~«!#* ,

q~t!E
2`

1`

d«k

sin~2ugsk!

2
~e2 iA«k

2
1uDgu2t/\2eiA«k

2
1uDgu2t/\!

5 i E d«

2p
e2 i«t/\E

2`

1`

d«k

uDgu

«22«k
22uDgu2

5E d«e2 i«t/\%gs~«!
uDgu

«
,

q~2t!E
2`

1`

d«k

sin~2ugsk!

2
~e2 iA«k

2
1uDgu2t/\

2eiA«k
2
1uDgu2t/\!

52 i E d«

2p
e2 i«t/\E

2`

1`

d«k

uDgu

«22«k
22uDgu2

5E d«e2 i«t/\@%gs~«!#*
uDgu

«
.

Note that we have chosen different complex half-planes
the contour integrations, in order to guarantee that
retarded/advanced self-energy matrices satisfySgs

r («)
5@Sgs

a («)#†.
The lesser/greater self-energy matrix defined by

Sg f /s;nm
,/. ~ t1 ,t2!5(

k
Vkn

gs/s†~ t1!gg f /s,g f /s
,/. ~ t1 ,t2!Vkm

g f /s~ t2!

are obtained in a similar way
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Sg f ;nm
,/. ~ t1 ,t2!5 i E d«

2p
e2 i«(t12t2)/\P†~mgCt1!Rf †S ug f

2 DGnm
g f ~«!Rf S ug f

2 D F fg~«!2
1

2
16

1

2
1GP~mgCt2!

5 i E d«

2p
e2 i«(t12t2)/\Rf †S ug f

2 DGnm
g f ~«7mgC!Rf S ug f

2 D F fg~«7mgC!2
1

2
16

1

2
1G , ~A9!

Sgs;nm
,/. ~ t1 ,t2!5 i E d«

2p
e2 i«(t12t2)/\P†S mgCt11

wg

2 DGr;nm
gs ~«!F fg~«!2

1

2
16

1

2
1GPS mgCt21

wg

2 D
5 i E d«

2p
e2 i«(t12t2)/\P†S mgCt11

wg

2 DGr;nm
gs ~«7mgC!F fg~«7mgC!2

1

2
16

1

2
1GPS mgCt11

wg

2 D
5 i E d«

2p
e2 i«(t12t2)/\P†S mgCt21

wg

2 D F fg~«7mgC!2
1

2
16

1

2
1G@Gr;nm

gs ~«7mgC!#TPS mgCt21
wg

2 D , ~A10!

where the real level-width matrix is defined as

Gr;nm
gs ~«7c!5Gnm

gsS rgs~«2c! 2
uDgu
«1c

rgs~«1c! 0 0

2
uDgu
«2c

rgs~«2c! rgs~«1c! 0 0

0 0 rgs~«2c!
uDgu
«1c

rgs~«1c!

0 0
uDgu
«2c

rgs~«2c! rgs~«1c!

D .

The Fermi distribution matrix in the Numbu-spinor space takes the form

fg~«7c!5S f ~«2c! 0 0 0

0 f ~«1c! 0 0

0 0 f ~«2c! 0

0 0 0 f ~«1c!

D ,

fg~«!5fg~«70!. ~A11!
:
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