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ABSTRACT

This thesis proposes to extract time-varying commodity risk premiums from multi-

factor models using futures prices and analyst’s forecasts of future prices. The model is

calibrated for oil using a 3-factor stochastic commodity-pricing model with an affine risk-

premium specification. WTI futures price data is from NYMEX and analysts forecasts

from Bloomberg and the U.S Energy Information Administration. Weekly estimations for

short, medium and long-term risk premiums between 2010 and 2017 are obtained. Results

from the model calibration show that risk premiums are clearly stochastic, that short-term

risk premiums tend to be higher than long-term ones and that risk premium volatility

is much higher for short maturities. An empirical analysis is performed to explore the

macroeconomic and oil market variables that may explain the stochastic behavior oil risk-

premiums.

Keywords: Risk premium, futures prices, oil prices
xi



RESUMEN

Esta tesis propone extraer premios por riesgo variables en el tiempo de modelos de

múltiples factores usando precios de futuros y pronósticos de precio de analistas. Se utiliza

un modelo de valorización de commodities de 3 factores, con una estructura de premios

por riesgo afines, el cual es calibrado para petróleo. Los precios de futuros de WTI son

obtenidos de NYMEX y los pronósticos de analistas de Bloomberg y la U.S Energy Infor-

mation Administration. Se obtienen estimaciones de premios por riesgo a corto, mediano

y largo plazo entre 2010 y 2017. Los resultados de la calibración del modelo muestran

que los premios por riesgo son claramente estocásticos, que los de corto plazo tienden a

ser mayores que los de largo plazo y que su volatilidad es mayor para plazos menores.

Un análisis empı́rico es realizado para explorar las variables macroeconómicas y las del

mercado del petróleo que puedan explicar el comportamiento estocástico de los premios

por riesgo de este commodity.

Palabras Claves: Premios por reisgo, contratos futuros, petróleo
xii



1. GENERAL OVERVIEW

Commodity prices have become an important matter of interest in the last few years show-

ing large volatilities and fast declining prices of some of them, rising the practitioners’

and researchers’ interest in understanding their behavior and main drivers. Most of the

commodity producers and many goods manufacturers, whose operations strongly depend

on commodity prices, are in need of credible price estimations to evaluate their projects

and define their business strategy. However, as no method has shown to be a totally valid

way of predicting future prices, most of them rely on the use of futures contracts’ prices

as the most likely price of a specific commodity in the future.

Futures contracts are one of the most basic financial contracts which essentially repre-

sent an agreement to buy or sell something at a certain price in a specific time-point in the

future. Their main function is to allow producers and buyers of different assets to be able

to trade it at a fixed price in the future to assure their continued business operations and to

be protected from any possible price fluctuation. A futures contract differs from an option

in the fact that it is an obligation for the participant to trade a certain asset at the agreed

price, even if the market price is more convenient. Futures are two-way contracts, which

means that a buyer and a seller need to agree on a certain price and time horizon for it to

exist.

Futures prices should theoretically represent the expected prices of the underlying

commodity, as producers and buyers are willing to trade it at the price they expect to

get in the future. However, this only holds in a perfect and risk free world. In the real

world there is always an imbalance between the amount of market players willing to buy

and sell futures contracts to hedge their risk, and in order to compensate this imbalance

speculators join the market asking for an additional premium, the risk premium, for enter-

ing the other side of the contract and taking on the commodity price risk (Keynes (1930),

Hicks (1939)).
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Risk premiums represent the price difference between the futures contracts’ prices and

the markets’ expected prices. Therefore, the use of futures prices as the most likely price

for a commodity in the future is only valid if the risk premium does not exist. If the risk

premium does exist and is different from zero, the most likely price of a commodity in the

future would be given by the risk premium added to the futures price, which is basically the

market expectation of the commodity price. The existence of a risk premium in futures

contracts is not a new finding and the fact that futures prices are not equal to expected

prices is accepted in the literature, however, many practitioners still use futures prices as

proxies for expected prices because of the difficulty to properly estimate risk premiums.

Futures prices are directly accessible at different exchanges across the globe and even

though their prices are not available for all possible time horizons, different methods

have been developed to estimate them for any given maturity (e.g. Cortazar and Naranjo

(2006)). Instead, neither expected prices nor risk premiums are directly available in market

prices of any kind. This issue represents a huge challenge for researchers and practitioners

needing to use expected prices’ estimates. Risk premiums probably depend on other risk

related variables of the market, whose estimation could be very straight forward, neverthe-

less no proper risk premium estimates have been achieved and therefore no clear relation

has been found. It is interesting to note that if futures prices are known, which generally

is the case, the estimation of risk premiums is equivalent to the estimation of expected

prices.

Some efforts have been done in order to try to estimate risk premiums (or expected

prices) from different market prices, but most of them fail due to the lack of informa-

tion contained on them. Market prices do not contain, or contain too few information on

expectations, nevertheless surveys done to market participants could contain significant

information if properly executed and validated. The problem of using survey forecasts is

that they are very noisy and their accuracy depends on the incentives placed on the par-

ticipants and their knowledge of the market. If survey participants are well chosen, then

it could be argued that at least some of the information in the survey is credible and can

2



be used to enhance risk premium estimations. One good example of that are Bloomberg’s

commodity survey forecats, which regularly ask experts on different commodities, whose

income directly depends on the quality of their forecast, and generates a commodity fore-

cast with their input.

Some recent researches try to link futures prices with different survey forecasts in order

to obtain a better estimate of expected prices for interest rates and commodities (e.g. Chun

(2011), Altavilla, Giacomini, and Ragusa (2016), Cortazar et al. (2018)), nevertheless

there still is no consensus on which is the proper way to use survey forecasts and to what

end they are accountable.

This paper has two main goals, first, to develop a methodology capable of obtaining

significant and consistent risk premium estimates of a commodity for different maturities

using only futures prices and survey forecasts as input. This methodology will be applied

to WTI oil prices and could then potentially be used for any other commodity as long as

enough information is available. The application of the developed methodology to other

commodities and the performance comparison between different commodities, however,

is out of the scope of this study. And, second, to understand the main drivers of WTI oil’s

risk premiums and their relation with other market variables. As there still is a contro-

versy on the basic behavior of risk premiums, this last point is key to generate a deeper

understanding of them and to guide future investigations.
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2. INTRODUCTION

Even though commodity risk premium is an important topic in financial economics,

there is no consensus on its magnitude, behavior and appropriate estimation procedure

(Baumeister and Kilian (2016); Bianchi and Piana (2017); de Roon, Nijman, and Veld

(2000); Melolinna (2011); Palazzo and Nobili (2010)). Moreover, the recent financial-

ization of commodity markets has increased its relevance for investors and strengthened

arguments on its time-varying behavior (Hamilton and Wu (2014); Baker and Routledge

(2017); Ready (2016)).

Understanding the stochastic behavior of commodity risk premiums is important for

several reasons. First, it provides valuable information on investment returns for agents

who treat commodities as an asset class. Second, it helps to relate risk-adjusted expected

prices, which are readily available in futures markets, with those of true expected prices,

which are required for NPV calculations or risk management purposes. Third, it may

shed light on some public policy implications by uncovering their macroeconomic deter-

minants.

This paper provides a procedure for estimating the stochastic process of the term struc-

ture of commodity risk premiums by calibrating a multifactor model using analysts’ fore-

casts of future spot prices and futures contracts oil price data. Once time-varying oil risk

premiums are obtained, an empirical analysis is performed to explore the main macroeco-

nomic and oil market specific variables that explain their behavior.

There have been various attempts in the literature to estimate commodity risk premi-

ums. Many practitioners and researchers use futures prices as proxies for market expec-

tations (see Baumeister and Kilian (2016), Bianchi and Piana (2017)), implicitly assum-

ing risk premiums are zero. But Keynes (1930) and Hicks (1939) had proposed in their

theory of normal backwardation, that if producers and other market participants wanted

to hedge their risk by selling future contracts, buyers should get a compensation in the

form of a risk premium for taking on that risk. Furthermore, there is already evidence

4



on its time-varying nature (de Roon et al. (2000); Sadorsky (2002); Pagano and Pisani

(2009); Achraya, Lochstoer, and Ramadorai (2013); Etula (2013); Hamilton and Wu

(2014); Singleton (2014)). In addition, in recent years there has been some discussion

on the impact of the post 2005 growth of commodity index fund traders on risk premiums

(Hamilton and Wu (2014); Singleton (2014); Hong and Yogo (2012); Stoll and Whaley

(2010); Irwin and Sanders (2011); Ready (2016)).

Regardless of its increasing importance, there is no current consensus on how to esti-

mate risk premiums and their stochastic behavior. In the last few years, different methods

have been developed to extract risk premiums, or equivalently to calculate expected spot

prices, from the available data. Even though most of the literature addresses how to get

the market’s expected interest rates (e.g. Diebold and Li (2006); Altavilla, Giacomini, and

Costantini (2014); Chun (2011)), some efforts have been oriented to commodities.

In what follows we present one way of characterizing existing methods for estimating

risk premiums in commodity markets by classifying them into three approaches: Econo-

metric, Economic, and Market.

In what we call the econometric approach we include Gorton, Hayashi, and Rouwen-

horst (2013), Hong and Yogo (2012), Pagano and Pisani (2009) and Baumeister and Kilian

(2016) among others. This approach regresses realized spot commodity prices, or a func-

tion of them, on different lagged market variables to infer the expected market’s spot price.

Then the resulting risk premium is obtained by comparing this expected spot price with the

futures price for the same maturity. Baumeister and Kilian (2016) extract expected spot

prices from the historical payoffs of future contracts. They first calculate the payoff from

different futures contracts as the difference between the futures price for a given maturity

and the realized spot price at that date. Then, regressing the above payoffs on different

set of variables, expected prices are obtained. Their results show that none of the sets

of regressors used is capable of getting a lower MSPE than the Hamilton and Wu (2014)

model detailed below when performing an out-of-sample analysis. However, given that

5



realized future spot prices and current futures prices with same maturity are compared, the

required data-sample gets bigger as longer-term risk premium are estimated.

In what we call the economic approach we include Hamilton and Wu (2014), Bianchi

and Piana (2017), and Cortazar, Kovacevic, and Schwartz (2015). These models use no-

arbitrage or rational expectation models to infer expected spot prices from past and current

market variables, typically futures and spot prices. For example, Hamilton and Wu (2014),

following the normal backwardation theory of Keynes (1930), present a model in which

hedgers sell futures contracts to hedge their risk and speculators and investors buy those

futures contracts in order to maximize their utility function caring about the expected value

and the variance of their future income. They find a change in behavior of commodity risk

premiums before and after 2005 due to the financialization of commodity markets. Bianchi

and Piana (2017) argue against using realized risk premiums as they do not represent the

ex-ante premiums if the spot prices are biased from their expectations. To directly capture

the ex-ante risk premiums they create a model with adaptive learning to calculate expected

spot prices for every date in the sample using only the past spot prices and the aggregate

demand as input. Their model is based on the belief that investors learn from their mistakes

predicting spot prices and their next predictions are therefore going to be influenced by

their past prediction errors. They analyze the behavior of oil, copper, silver and corn,

showing strong evidence on risk premia being time-varying.

Cortazar et al. (2015) follows the extensive literature on no-arbitrage commodity pric-

ing models that uses multifactor models to explain the time-series and cross section of fu-

tures prices (Gibson and Schwartz (1990); Heston (1993); E. S. Schwartz (1997); Duffie,

Pan, and Singleton (2000); E. Schwartz and Smith (2000); Cortazar and Schwartz (2003);

Casassus and Collin-Dufresne (2005); Cortazar and Naranjo (2006); Trolle and Schwartz

(2009); Cortazar and Eterovic (2010); Bhar and Lee (2011); Chiang, Hughen, and Sagi

(2015)). They argue that these models, being successful in fitting futures prices, pro-

vide very poor risk premium estimates. Therefore, they propose using an asset-pricing

6



model instead of restricting some of their parameters. Asset-pricing models have been ex-

tensively applied to estimate commodity risk premiums, diverging on their approach and

application, including the definition and number of risk factors, obtaining mixed results

(Dusak (1973); Bodie and Rosansky (1980); Carter, Rausser, and Schmitz (1983); Chang,

Chen, and Chen (1990); Bessembinder and Chan (1992); Bjornson and Carter (1997); Erb

and Harvey (2006); Hong and Yogo (2012); Dhume (2010)).

In what we call the market approach we include a recent paper by Cortazar et al. (2018)

in which they propose extracting information on expected spot prices directly from market

surveys and using them, in addition to spot and futures prices, to calibrate a term struc-

ture model. Thus, risk premiums are obtained directly from the model as the difference

between the expected spot price and the futures price consensus curves. Including survey

forecasts in economic models, even though it had not been previously applied to com-

modities, had been previously used in other contexts. For example, Chun (2011) shows

that using GDP, inflation and other macroeconomic variables’ survey forecasts adds im-

portant information, not fully incorporated in market prices, to interest rates prediction

models and gives them a higher accuracy. Altavilla et al. (2016) develop a method in

which interest rate predictions become more accurate using interest rate surveys.

This paper proposes to extract time-varying risk premium observations using the mar-

ket approach by extending Cortazar et al. (2018) to allow for a stochastic specification of

risk premiums. We propose a 3-factor model based on Cortazar and Naranjo (2006) and

Dai and Singleton (2000), and consider an affine risk premium specification following

Duffee (2002). The model is estimated with the Kalman Filter using WTI oil analysts’

forecasts of spot prices and futures contracts price data between 2010 and 2017. Analysts’

forecasts are provided by Bloomberg and the U.S. Energy Information Administration

(EIA) for up to 25 years, and oil futures price data is obtained from the New York Mer-

cantile Exchange (NYMEX) for maturities up to 10 years. This allows us to obtain weekly

estimates for short, medium and long-term oil risk premiums and to analyze the market

determinants of these premiums comparing them with previous findings in the literature.

7



This analysis requires having time-varying risk premium estimates provided by our pro-

cedure and which were not available in the previous literature.

Once the term structures for oil risk premiums between 2010 and 2017 are computed,

we explore the market determinants of those premiums. Following Bhar and Lee (2011)

among others, we perform several regressions on different market variables that have been

previously proposed in the literature. In this way, we provide some light on the deter-

minants of risk premium variations and propose an adjustment to futures prices as a new

simple way to estimate market expected prices.

The remainder of this paper is organized as follows. Section 3 presents the model to

estimate time-varying term structures of risk premiums. Section 4 describes the data used.

Section 5 provides the risk premium results. Section 6 discusses the market determinants

of risk premiums and Section 7 concludes.

8



3. THE MODEL TO ESTIMATE RISK PREMIUMS

3.1. Model Definition

We present an N-factor term structure model which is a non-stationary version of the

canonical A0(N) Dai and Singleton (2000) model with stochastic risk premiums as in

Duffee (2002). We propose calibrating this model using both futures prices and analyst’s

forecasts to obtain a time-varying term structure of risk premiums1. Let St be the spot

price of the commodity at time t, then assume that:

lnSt = Yt = h′xt (3.1)

dxt = (−Axt +


b1

0
...

0

)dt+ dwt (3.2)

where h is an n × 1 vector of constants, xt is an n × 1 vector of state variables, b1 is a

scalar, A is an n×n upper triangular matrix with its first diagonal element being zero and

the other diagonal elements all different and strictly positive. Let dwt be an n × 1 vector

of uncorrelated Brownian motions following

dwtdw
′
t = Idt (3.3)

where I is an n×n identity matrix. Dai and Singleton (2000) show that their model has the

maximum number of econometrically identifiable parameters and at the same time nests

most of the models used in literature.

To specify a time-varying risk premium in our constant-volatility model we resort to

Duffee (2002) who shows how to use affine risk premiums in all types of Dai and Singleton

(2000) canonical models, including the ones with non-stochastic volatility. Let RPt be the

1This paper builds on Cortazar et al. (2018) which also used futures and analysts’ forecasts, but assumed
constant risk premiums. That paper used the Cortazar and Naranjo (2006) N-factor model. In Appendix A
we show that our proposed model is a rotated version of the Cortazar and Naranjo (2006) model.

9



commodity risk premium and assume that:

RPt = λ+ Λxt (3.4)

and the risk adjusted version of the model shown in Equations 3.1 and 3.2, is

Yt = h′xt (3.5)

dxt =

−(A+ Λ)xt +


b1

0
...

0

− λ
 dt+ dwQ (3.6)

where λ is a n× 1 vector and Λ is a n× n matrix which does not need to be diagonal nor

triangular. No further restrictions are set for the elements2 in λ and Λ.

Notice that in our model the risk-adjusted process differs from the true one not only

by a constant risk premium, λ, but also by the Λ matrix. Thus, futures prices and expected

prices depend on different processes for the state variables, the former with the A + Λ

matrix, while the latter only with matrix A. However, if the Λ matrix were set to zero, risk

premiums would be a constant and not time-varying.

It is well known (Cox, Ingersoll, and Ross (1981)) that futures prices are the expected

value of the spot price, St, under the risk-adjusted probability measure, Q. Given that the

risk-adjusted spot price follows a log-normal distribution, futures prices are given by:

Ft(T ) = EQ
t (ST ) = eE

Q
t (YT )+ 1

2
V arQ(YT ) (3.7)

where the risk-adjusted expected price and variance of YT can be obtained by replacing

Equation 3.1 into 3.7:

Ft(T ) = EQ
t (ST ) = eh

′EQ
t (xT )+ 1

2
h′CovQ(xT )h (3.8)

2An equivalent model definition is also used by Casassus and Collin-Dufresne (2005), Dai and Singleton
(2002), Duarte (2004), Kim and Orphanides (2012), Palazzo and Nobili (2010) among others, however
none of them use observations on analysts’ forecasts as expected prices as we propose, having difficulties
estimating significant risk premiums.

10



with3

EQ
t (xT ) = e−(A+Λ)(T−t)xt +

(∫ T−t

0

e−(A+Λ)τdτ

)
(b− λ) (3.9)

CovQt (xT ) =

∫ T−t

0

e−(A+Λ)τ (e−(A+Λ)τ )′dτ (3.10)

Analogous to Equations 3.7, 3.8, 3.9 and 3.10, the expected price should satisfy the fol-

lowing equations:

Et(ST ) = eEt(YT )+ 1
2
V ar(YT ) (3.11)

Et(ST ) = eh
′Et(xT )+ 1

2
h′Cov(xT )h (3.12)

Et(xT ) = e−A(T−t)xt +

(∫ T−t

0

e−Aτdτ

)
b (3.13)

Covt(xT ) =

∫ T−t

0

e−Aτ (e−Aτ )′dτ (3.14)

It can be shown4 that Equations 3.9 and 3.10 have a closed form solution if matrix A+ Λ

is diagonal. The same occurs for Equations 3.13 and 3.14, now considering matrix A. In a

more general case, as in our model, futures prices and expected prices have to be obtained

numerically5.

Risk premiums may be defined as the return of the expected spot price over the future

price. Let, πt(T − t) be the instantaneous risk premium at time t for T − t years ahead:

πt(T − t) =
ln
(
Et(ST )
Ft(T )

)
T − t

(3.15)

Then, replacing the expected spot price and the future price from Equations 3.8 and 3.12

we obtain

πt(T − t) =
h′(Et(xT )− EQ

t (xT )) + 1
2
h′(Covt(xT )− CovQt (xT ))h

T − t
(3.16)

3See Appendix B
4See Appendix B
5To solve the equations efficiently we follow Pashke and Prokopczuk (2009) who develop a way of avoiding
numerical integration, using a decomposition of matrix A+Λ in eigenvalues and eigenvectors. See Appendix
C.
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Finally, implied model volatilities for expected spots, σe, and for futures prices, σf , may

be computed using the following expressions6:

σE =

√
h′e−A(T−t) (e−A(T−t))

′
h (3.17)

and for the futures prices by,

σF =

√
h′e−(A+Λ)(T−t) (e−(A+Λ)(T−t))

′
h (3.18)

3.2. Model Estimation

The parameters of the model and the state variables are estimated using the Kalman

Filter (Kalman (1960)), which computes the optimal value of each state variable for any

given time taking all past information into account. The procedure can handle a large

number of observations (in our case analysts’ forecasts and futures prices) and allow for

measurement errors.

At any given time-iteration (date), a variable number of observations is available, so

we use the incomplete data panel specification of the Kalman filter previously used for

Futures (Cortazar and Naranjo (2006)), Bonds (Cortazar, Naranjo, and Schwartz (2007))

and Analysts’ forecasts (Cortazar et al. (2018)):

zt = Hxt + d+ vt vt ∼ N(0, R) (3.19)

xt+1 = Āxt + c̄+ wt wt ∼ N(0, Q) (3.20)

where zt is an mt × 1 vector which contains the log-prices of each futures and analysts’

forecast (in that order) observation at week t; H is an mt × n matrix; d is an mt × 1

vector and vt is an mt × 1 vector of measurement errors with zero mean and covariance

given by R; xt is the n× 1 vector of the state variables from Equation 3.1; Ā and c̄ are an

n×n matrix and an n× 1 vector, respectively, representing a discretization of the process

described in Equation 3.2 and wt is an n × n vector of random variables with mean zero

6See Appendix D
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and covariance given by the n × n matrix Q. In this specification mt varies depending

on the number of available observations changing the size of zt, H , d, vt and R on every

iteration. In contrast to Cortazar et al. (2018) we specify two error terms in Equation

3.19, with different variances to differentiate between futures prices and forecasts, since

the latter include estimations from different analysts’ and should be much noisier.

Thus, we define the mt ×mt matrix R as follows:

Rt =



σf · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · σf 0 · · · 0

0 · · · 0 σe · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · σe


(3.21)

To estimate the parameters of this model a maximum-likelihood approach is used.
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4. DATA

To be able to estimate the risk premiums, futures prices and analyst’s forecasts for

different dates and maturities are required. This section describes the data used.

4.1. Futures Contracts

WTI crude oil futures prices are obtained from the New York Mercantile Exchange.

We used weekly futures prices with expiration every 6 months, including the closest one

to maturity. The longest traded contracts expire in approximately 9.2 years. Table 4.1

presents the futures price data, separated in one-year buckets.

Table 4.1. Futures price observations between January 2010 and June
2017 by yearly maturity buckets.

Maturity Bucket Mean Price Price SD Max Price Min Price Mean Maturity Number of
(years) ($/bbl.) ($/bbl.) ($/bbl.) (years) Observations

0-1 77.8762 22.2808 113.7 26.55 0.4472 968
1-2 78.2296 19.4252 112.83 35.36 1.4795 795
2-3 77.5466 17.5891 109.33 38.66 2.4947 821
3-4 77.2896 16.4093 107.14 41.34 3.5103 783
4-5 77.39 15.7564 105.8 43.24 4.4861 786
5-6 77.4764 15.4024 105.56 44.42 5.4722 809
6-7 78.0038 15.2228 105.88 45.77 6.5043 767
7-8 78.1963 15.2019 106.3 46.5 7.4942 774
8-9 78.2701 15.7178 106.95 46.99 8.4316 635
9-10 77.1498 13.7851 95.16 55.08 9.0582 44

4.2. Survey Based Expected Prices

Since we assume that analysts’ forecasts are noisy proxies for expected future spot

prices, WTI’s expected prices were collected from Bloomberg’s analysts’ predictions, a

list of surveys done to professional analysts on the expected future commodity prices.

The expectations are given quarterly for the next 8 quarters and yearly for the next 4

years. Data is available only when one of the many analysts does a prediction, and may be
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available any day of the week. Each prediction is grouped on the oncoming Wednesday

resulting in weekly groups of observations. If predictions for the same maturity on the

same date are available, their mean value is used. On average, there are 220 oil price pre-

dictions available every month for different maturities. In addition to Bloomberg analysts’

expectations, EIA’s oil price forecasts are also used. Data is available once a year since

2010. EIA’s data includes yearly long-term predictions for up to 33 years ahead. Even

though both Bloomberg’s and EIA’s predictions are for the average price of each quarter

or year they were assumed to represent the price in the middle of their time period. Data

of the current quarter and year were left out. Table 4.2 describes the forecast data used.

The bucket size grows with maturity due to the fewer observations available for longer

maturities.

Table 4.2. Analysts’ price forecasts between January 2010 and June
2017 separated by maturity bucket.

Maturity Bucket Mean Price Price SD Max Price Min Price Mean Maturity Number of
(years) ($/bbl.) ($/bbl.) ($/bbl.) (years) Observations

0-1 81.0201 22.2566 122 35 0.5314 1118
1-2 85.619 21.2545 135 40 1.4296 808
2-3 89.0411 23.4254 189 44 2.4752 289
3-4 88.3383 23.0256 154 40 3.4448 239
4-5 86.2134 22.6815 150 38.5 4.4235 179
5-10 101.217 22.0268 152.96 60 6.2903 79

10-34 171.5592 34.2276 265.2 104.678 18.4838 134
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5. RESULTS

This section presents the results of using WTI oil weekly data between January 2010

and June 2017 to calibrate the N-factor term structure model using a 3-factor specification.

Table 5.1 shows the model parameter estimates. It can be noted that half of the param-

eter estimates are statistically significant at a 1% and 3/4 of them at a 10% significance

level.

Table 5.1. Parameter estimates for the 3-factor model. Data between
January 2010 and June 2017. Significance levels are given by ***1%,
**5% and *10%.

Estimate Deviation tStat pValue
A11 0 - - -
A12 0.728* 0.3676 1.9802 0.0564
A13 1.4204 0.9677 1.4678 0.1358
A22 1.4929*** 0.185 8.0674 0
A23 2.7146* 1.3379 2.0291 0.0512
A33 0.163*** 0.0238 6.8577 0
Λ11 0.2267*** 0.0076 29.7516 0
Λ12 -0.7768* 0.3877 -2.0037 0.0539
Λ13 -1.5684* 0.9397 -1.669 0.0992
Λ21 -0.044 0.0423 -1.0404 0.2319
Λ22 -1.3074*** 0.2862 -4.5686 0
Λ23 -2.2669 1.4022 -1.6166 0.108
Λ31 -0.0306 0.0248 -1.2314 0.1867
Λ32 0.2826*** 0.0673 4.2015 0.0001
Λ33 0.4187*** 0.111 3.7708 0.0004
h1 0.1521*** 0.0184 8.2626 0
h2 0.2146* 0.117 1.8333 0.0745
h3 0.7469*** 0.0431 17.3302 0
λ1 -6.081*** 0.5953 -10.2143 0
λ2 1.2692 1.2894 0.9843 0.2454
λ3 1.0407* 0.6039 1.7233 0.0905
b1 0.1767*** 0.0543 3.2549 0.0021
σf 0.0058*** 0 302.9228 0
σe 0.1*** 0.0005 195.163 0
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Figure 5.1 shows the term structure (from 1 month to 10 years) of annualized risk

premiums over the whole sample period (01/2010 to 06/2017). Three things are worth

noting. First, risk premiums are clearly stochastic. Second, short-term risk premiums tend

to be higher that long-term ones. Third, risk premium volatility is much higher for short

maturities.

Figure 5.1. Annualized risk premium term structure from 1 month to 10
years. Data between January 2010 and June 2017.

Figure 5.2 analyzes the term structure mean and volatility of risk premiums. Figure

5.2a compares our model’s mean risk premiums to those of Cortazar et al. (2018) constant

risk premium model (with our same data) and to the data means. It can be noted that our

model’s mean risk premium level is similar to that of Cortazar et al. (2018) and both fit

the data risk premiums well. Additionally, both premiums decrease with maturity.

Where both models diverge is Figure 5.2b that shows the volatility term structure be-

cause by construction Cortazar et al. (2018)’s assumes constant risk premiums while an

essential element of our model are time-varying risk premiums. Finally, we analyze the

goodness-of-fit of our model to futures and analysts’ forecasts data. Table 5.2 presents the
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mean absolute percentage error (MAPE) of our model and shows that its fit for both data

sets is better than for the constant risk premium model in Cortazar et al. (2018).

(a) Mean risk premiums (b) Risk premium volatility

Figure 5.2. Mean risk premiums (a) and risk premium volatility (b) for our
model and for the constant volatility model in Cortazar et al. (2018). Data
mean risk premiums are also included in Figure (a). Data between January
2010 and June 2017.

Table 5.2. Mean Absolute Percentage Error (MAPE) for our time-
varying risk premium model and for Cortazar et al. (2018) constant risk
premium model. Data between January 2010 and June 2017.

Our model Cortazar et al. (2018)’s model
Futures prices 0.37% 0.39%

Expected prices 7.39% 8.00%
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6. THE DETERMINANTS OF OIL RISK PREMIUMS

6.1. The Methodology

In this section, we explore the market determinants that may explain the variations of

the estimated oil risk premiums. To do this we gather a set of market variables that have

been previously reported in the literature as candidates for being related to risk premiums.

We then perform a series of linear regressions in order to find which variables are the most

significant in explaining the term structure of oil risk premiums.

There are few studies which analyze risk premiums directly (e.g. Bhar and Lee (2011);

Bianchi and Piana (2017); Chen and Zhang (2011); Melolinna (2011)) as most investiga-

tions only calculate them as a side result from a price prediction model. However, there

is some literature that discusses the impact of different market variables on risk premiums

which we review below. The potential explanatory variables for the oil’s risk premiums

that we consider are: the S&P500 Index returns, the NASDAQ Emerging Markets Index

returns (EMI), oil inventories percentage variation, oil futures open interest percentage

variation, hedging pressure, the term premium, the default premium and the 5-year trea-

sury bill rate. These variables have been shown to include most of the risk factors taking

part in the oil market as we explain below.

The S&P500 index returns is used in some studies (de Roon et al. (2000); Bianchi

and Piana (2017)) as a proxy for the state of the US’ economy which could affect oil risk

premiums. Daily data is available in Bloomberg since 1950.

The NASDAQ Emerging Markets Index (EMI) represents the state of the emerg-

ing markets’ economy. It is known that many big emerging economies, such as Russia

or China, are important oil market players, hence their economic performance could di-

rectly affect oil prices and premiums. EMI daily returns are available from the NASDAQ

database since 2001.
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Oil inventories percentage variation is a commonly used regressor in oil studies

(Gorton et al. (2013); Melolinna (2011)) since it directly affects the supply of oil and

therefore its price. The theoretical relationship between available stocks and risk premi-

ums was first introduced by Kaldor (1939) in his Theory of Storage, in which he proposes

the existence of a convenience yield to explain differences between current spot and fu-

tures prices. Gorton et al. (2013) develop a model, based on Kaldor (1939)’s Theory of

Storage, which under a few assumptions implies that a rise in inventories should lead to

a decrease in the overall risk premiums, and they find empirical results supporting their

model. Weekly US WTI inventories starting at 1983 are available from the EIA and their

percentage differences were calculated in order to obtain a stationary time series.

Open Interest (OI) and Hedging Pressure (HP) are the usual measures to represent

the size and behavior of an instrument’s market (in our case WTI futures). OI is measured

as the total number of outstanding contracts, and therefore represents the market’s size.

It could be linked to the risk premiums as a larger amount of outstanding contracts could

affect market’s liquidity and therefore its premium. Kang, Rouwenhorst, and Tang (2017)

propose that there exists a liquidity premium on commodity futures markets. OI is often

used as an explanatory variable for commodity related studies (Bianchi and Piana (2017);

Hong and Yogo (2012)).

HP is measured as the net positions of hedgers in a specific market, and represents

the difference between hedgers’ and speculators’ positions, which according to Keynes

(1930)’s and Hicks (1939)’s theories should have a strong correlation with risk premiums.

According to them if hedgers want to hedge their risk by selling futures contracts, the

buyers of those contracts should get a compensation for taking on that risk. As HP rises,

risk premium will rise, because speculators will be willing to accept a greater amount of

risk only if the premium is big enough. The relation between HP and prices or premiums

has been empirically tested by different studies (Bianchi and Piana (2017); de Roon et

al. (2000); Gorton et al. (2013); Kang et al. (2017); among others) generally supporting

Keynes (1930). OI and HP weekly data was obtained from reports from the Commodity
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Futures Trading Commission (CFTC), which is available since 2007. OI is directly avail-

able in the reports and their weekly percentage variations were used in the analysis. HP

was computed as the short minus long commercial positions, divided by the total amount

of outstanding contracts:

HPt =
CSt − CLt

OIt
(6.1)

where CSt and CLt stand for short and long commercial positions, respectively.

The term premium (TRM) and the default premium (DEF) have shown to predict

market excess returns in stocks and bonds (Fama and French (1989); Keim and Stambaugh

(1986)), and could, therefore, affect oil risk premiums. TRM is defined as the difference

between the 10-year treasury bill rate and the 3-month treasury bond yield, and DEF as

the difference between the BAA-rated and the AAA-rated corporate bond yield. Daily

treasury bill rates are available at the Federal Reserve while corporate bond yields were

obtained from the Federal Reserve Bank of St. Louis.

The 5-year treasury bill rate (5Y T-Bill) was used directly as it represents a good

approach for a medium-term interest rate. Daily rates are available at the Federal Reserve.

Once the potential independent variables were chosen a set of multivariate OLS re-

gressions were conducted:

RPit = β0i + β1iXt + εit (6.2)

where RPit is the risk premium for maturity i and date t, Xt is the set of regressors

described previously which are independent of the maturity, β0i and β1i are the estimators

for each maturity i, and εit is the regression error for maturity i and date t.

We conduct our analysis in two steps. In the first step, a univariate regression is done

for each independent regressor to check whether it is able to explain risk premiums in a

statistically significant way. Then a multivariate regression analysis is performed using

only the variables that were significant1 in the univariate regressions. We run risk premi-

ums regressions for 3, 6, 12, 18 months and 2, 5 and 10 years maturities. An independent

1Meaning the variables that showed p-values under 5% or R squared of over 30% for most maturities.

21



regression is performed for every different time horizon, both in the univariate and mul-

tivariate regressions. Robust standard errors were used in order to account for possible

heteroscedasticity.

6.2. The Results

Table 6.1 shows the results of the univariate regressions for each of the independent

variables and maturities chosen. Inventories, HP, TRM, DEF and 5Y T-Bill have reason-

able significance (p-value) to explain changes in oil risk premiums and are candidates for

inclusion in the multivariate analysis, while the others are not.

Table 6.2 shows the results of multivariate regressions for each maturity using only

the above variables. It can be noted that the R-Squared of the regressions vary between

47.61% and 60.10% , and all variables are significant for most of the maturities.

From the above tables several results are worth discussing. First, we find a statistically

significant and maturity-independent positive relation between inventories and risk pre-

miums, similar to Dincerler, Khokher, and Simin (2005) and Khan, Khokher, and Simin

(2008). Our results are, however, contrary to Gorton et al. (2013)’s model which could be

due to their assumptions not holding for our sample period.

Second, our statistical significance and positive value of the HP estimator over all

studied maturities is backed up by Keynes (1930)’ theory of normal backwardation, as a

larger number of hedgers wanting to hedge their risk produces a greater HP which should

by related to speculators demanding a larger premium to take on that risk. Basu and Miffre

(2013), de Roon et al. (2000) and Bianchi and Piana (2017), among others, obtain similar

results.

Third, TRM is negative and significant for all maturities. These results support the

belief that a negative slope of the yield curve predicts a decrease in the GDP (Estrella and
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Hardouvelis (1991); Harvey (1988)) which could lead to an inverse relation with premi-

ums.

Finally, the 5Y T-Bill and DEF have a positive effect on risk premiums, however only

for maturities up to two years. The relation between DEF and risk premiums was expected

to be positive as the first one is highly correlated with the short-term market uncertainty,

and should therefore affect risk premiums in a positive way. Higher short-term uncertainty

should induce the average investor to demand a larger premium specially for short term in-

vestments which is consistent with DEF affecting only short term premiums in a significant

way. If the treasury bill yield serves as a proxy for the current state of the economy, being

higher when the economy grows and lower on slow economic periods, we would expect

to get a negative effect of it on risk premiums, such as in Bhar and Lee (2011). However,

interest rates were unusually and constantly low during our sample period, which might

alter the way in which treasury bill yields represent the state of economy. These results

suggest that these 5 market variables are able to explain half of the variation of oil risk

premiums in our model for all studied maturities. In addition to the economic insight the

regression results provide, they could also be used to obtain estimates of risk premiums

and therefore expectations of future spot prices. For example, many practitioners who

currently use futures prices as a proxy for the market’s spot price expectations could infer

them directly from our market variables.

Figure 6.1 shows expected spot price estimations for two different maturities obtained

by adding the expected risk premium from our regression analysis to the observed futures

prices, along with analysts’ forecasts and futures prices observations. The figure shows

that by adding the risk premium to futures prices a less volatile estimate of expected prices

is obtained. In addition, as Table 6.3 shows, this also increases its fit to analysts’ forecasts,

reducing estimation errors.

23



Table 6.1. Univariate regression analysis for each of the chosen inde-
pendent variables and for each different maturity. Monthly maturities are
written as “Mn” and yearly maturities as “Yn”. Data between January 2010
and June 2017.

M3 M6 Y1 M18 Y2 Y5 Y10

S&P500
Estimate -0.3639 -0.2689 -0.1437 -0.0723 -0.0312 0.0224 0.0175
p-value 0.0518 0.0586 0.0893 0.1859 0.4446 0.4826 0.5018

r2 0.0072 0.0066 0.0049 0.0019 -0.0011 -0.0013 -0.0014

EMI
Estimate -0.2225 -0.1641 -0.0877 -0.0446 -0.0201 0.0109 0.0095
p-value 0.1315 0.1433 0.1888 0.3009 0.5319 0.6628 0.6434

r2 0.0033 0.0029 0.0019 0.0002 -0.0016 -0.0021 -0.002

Inventories
Estimate 4.5019 3.5144 2.225 1.4986 1.0845 0.5104 0.4163
p-value 0 0 0 0 0 0.0049 0.0051

r2 0.043 0.0456 0.052 0.0568 0.0533 0.0177 0.0175

OI
Estimate -0.051 -0.041 -0.0283 -0.0213 -0.0175 -0.0122 -0.0096
p-value 0.7157 0.6998 0.6549 0.6013 0.5651 0.608 0.6242

r2 -0.0022 -0.0022 -0.0021 -0.0019 -0.0017 -0.0019 -0.002

HP
Estimate -0.0269 -0.0025 0.0299 0.0485 0.0592 0.0689 0.0567
p-value 0.3916 0.9149 0.0347 0 0 0 0

r2 -0.0007 -0.0025 0.0089 0.0701 0.1917 0.4299 0.4325

TRM
Estimate -0.0363 -0.0305 -0.0228 -0.0182 -0.0156 -0.011 -0.0094
p-value 0 0 0 0 0 0 0

r2 0.0984 0.1208 0.1919 0.2977 0.3895 0.3174 0.3463

5Y T-Bill
Estimate -0.0005 -0.003 -0.0066 -0.009 -0.0105 -0.0122 -0.0096
p-value 0.9503 0.6117 0.0578 0.0001 0 0 0

r2 -0.0026 -0.0019 0.0067 0.0383 0.0977 0.2201 0.1993

DEF
Estimate 0.1332 0.0997 0.0559 0.0313 0.0174 -0.0006 -0.0009
p-value 0 0 0 0 0 0.8105 0.6747

r2 0.2051 0.1989 0.1768 0.1324 0.0721 -0.0024 -0.0021
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Table 6.2. Multivariate regression coefficients for each maturity. Data
between January 2010 and June 2017. Significance levels are given by
***1%, **5% and *10%.

M3 M6 Y1 M18 Y2 Y5 Y10
Intercept -0.0774*** -0.0506*** -0.0065 0.0212*** 0.0358*** 0.0461*** 0.0395***

Inventories 2.6957*** 2.1408*** 1.4595*** 1.0931*** 0.8667*** 0.4687*** 0.3731***
HP 0.0784*** 0.072*** 0.0641*** 0.0608*** 0.0606*** 0.0568*** 0.0473***

TRM -0.0693*** -0.0549*** -0.0355*** -0.0238*** -0.0167*** -0.0059*** -0.006***
5Y T-Bill 0.1083*** 0.0828*** 0.0485*** 0.0284*** 0.0166*** 0.0002 0.0019

DEF 0.1827*** 0.1377*** 0.0784*** 0.0448*** 0.0259*** 0.0008 0.001
R2 0.4761 0.49 0.5287 0.5727 0.601 0.534 0.5541

(a) 2 year ahead expected prices (b) 5 year ahead expected prices

Figure 6.1. Expected prices obtained adding the regression estimated risk
premiums to the observed futures prices (blue line) in comparison with
analysts’ forecasts (red dots) and futures prices (yellow line)

Table 6.3. MAPE between analysts’ forecasts and two different ex-
pected price approaches: Futures and Futures plus Regression Market Risk
Premium. Data between January 2010 and June 2017.

M3 M6 M9 Y1 M18 Y2 Y5
Regression implied expectations 5.61% 5.65% 6.08% 6.11% 6.84% 7.7% 16.16%

Futures prices 6.01% 6.31% 7.71% 8.79% 11.24% 12.04% 17.72%
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7. CONCLUSIONS

This paper proposes to extract time-varying commodity risk premiums from multi-

factor models using futures prices and analyst’s forecasts of future spot prices. The model

is calibrated for oil between 2010 and 2017 using a 3-factor stochastic commodity-pricing

model with an affine risk-premium specification, weekly WTI futures data from NYMEX

and analyst’s forecasts from Bloomberg and the U.S Energy Information Administration.

Results from the model calibration show that risk premiums are clearly stochastic, that

short-term risk premiums tend to be higher than long-term ones and that risk premium

volatility is much higher for short maturities.

Once weekly term structures of oil risk premiums are obtained an empirical analysis

to explore the macroeconomic and oil market specific variables that may explain their sto-

chastic behavior is performed. We find that inventories, hedging pressure, term premium,

default premium and the level of interest rates all play a significant role in explaining the

risk premium and thus could be used also for estimating expected commodity prices when

reliable analyst’s forecasts are not available.
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A. ROTATION OF CORTAZAR AND NARANJO (2006)’S MODEL TO OURS AND

BACKWARDS

From Cortazar and Naranjo (2006)’s to our model

Given the state space model of the form

Yt = 1′xt (A.1)

dxt = (−Axt + b)dt+ Σdwt (A.2)

where A and Σ are n × n diagonal matrices, b is a n × 1 vector whose elements are zero

excepting its first one and dwt is an n× 1 vector of correlated brownian motions such that

dwtdw
′
t = Θdt. The covariance matrix ΣΘΣ′ is positive definite and therefore admits a

Cholesky decomposition. Let define the matrix M as

M =


0 · · · 0 1

0 · · · 1 0
... . .

. ...
...

1 · · · 0 0

 (A.3)

where M−1 = M , then the matrix MΣΘΣ′M is still positive definite and still admits a

Cholesky decomposition (L) so that

MΣΘΣ′M = LL′ (A.4)

then applying the transformation ξt = ML−1Mxt where ML−1M is an upper triangular

matrix

Yt = (~1′MLM)(ML−1Mxt) = h′ξt (A.5)

dξt = (−(ML−1MAMLM)(ML−1Mxt)+ML−1Mb)dt+ML−1MΣdwt = (−Âξt+b̂)dt+dŵt
(A.6)

where h is an n× 1 vector, Â is an n× n upper triangular matrix whose first eigenvalue is

zero, b̂ is an n × 1 vector with zeros in all its entries excepting the first one and dŵt is an
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n × 1 vector of uncorrelated brownian motions. This formulation is the one used by Dai

and Singleton (2000) modified to hold for a matrix A with one zero valued eigenvalue by

adding the b̂ vector.

From our model back to Cortazar and Naranjo (2006)’s

Starting from equations A.5 and A.6 it is possible to get back to the model stated in

equations A.1 and A.2 by finding a transformation matrix T which satisfies both following

equations,

h′T−1 =
[
1 1 · · · 1

]
(A.7)

TÂT−1 = A (A.8)

where A is the original diagonal matrix from equation A.2 which contains all Â’s eigen-

values. Therefore, if Â = ÛAÛ−1, where Û is a matrix containing Â’s eigenvectors, T−1

has to contain the columns of Û scaled by a any chosen diagonal matrix G so that

T−1 = ÛG (A.9)

Equation A.9 assures that A.8 hold, thus to find T the system from equations A.7 and A.9

has to be solved for G obtaining for each of its i-th diagonal element

Gi =
[
h′Û
]
i

(A.10)

having finally that T =
(
ÛG
)−1

. Applying the transformation xt = Tξt to equations A.5

and A.6,

Yt = h′T−1Tξt = 1′xt (A.11)

dxt = (−TÂT−1Tξt + T b̂)dt+ Tdŵt = (−Axt + b)dt+ Σdwt (A.12)

where this last representation is the exact one shown in equations A.1 and A.2.
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B. EXPECTED VALUE AND COVARIANCES OF STATE VARIABLES

In this section we show how to get the expected value an covariances of the state

variables of any model of the type:

dxt = (−Axt + b)dt+ Σdwt (B.1)

dwtdw
′
t = Θdt (B.2)

Where dwt are correlated brownian motions with a correlation matrix given by dwtdw′t =

Θdt. First we define the following state space vector:

yt = eAtxt (B.3)

and applying Itô’s lemma

dyt = eAtdxt + AeAtxtdt (B.4)

= eAt ((−Axt + b)dt+ Σdwt) + AeAtxtdt (B.5)

= eAtbdt+ eAtΣdwt (B.6)

This last equation can be integrated as follows:∫ T

t

ys =

∫ T

t

eAsbds+

∫ T

t

eAsΣdws (B.7)

yT − yt =

(∫ T

t

eAsds

)
b+

∫ T

t

eAsΣdws (B.8)

xT = e−A(T−t)xt + e−AT
(∫ T

t

eAsds

)
b+ e−AT

∫ T

t

eAsΣdws (B.9)

Now it is straight forward to obtain the expected value and the variance of the state space

variables:

Et(xT ) = e−A(T−t)xt +

(∫ T−t

0

e−Aτdτ

)
b (B.10)

Covt(xT ) =

∫ T−t

0

e−AτΣΘΣ′(e−Aτ )′dτ (B.11)
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C. METHOD TO AVOID NUMERICAL INTEGRATION

To get the expected values and covariances of the state variables as shown in equa-

tions B.10 and B.11 numerical integration seems to be necessary. Nevertheless, there is

an alternative shown by Pashke and Prokopczuk (2009) which does not need numerical

integration, but uses eigenvalues and eigenvectors of some matrices.

To solve for the expected value of the state variables like in equation B.10 first we

decomposeA = UV U−1 where V is a matrix containing all A‘s eigenvalues in its diagonal

and U is a matrix containing all its eigenvectors. It can be shown that e−Aτ = Ue−V τU−1,

where eV (T−t) is a diagonal matrix with evi(T−t) (where vi is the ith eigenvalue of matrix

A) in its ith position. It can be shown that

∫ T−t

0

e−V τdτ =


1−ev1(T−t)

v1
. . . 0

...
. . .

...

0 . . . 1−evn(T−t)

vn

 = φ (C.1)

thus the expected value of the state variables can be written as

Et(xT ) = UeV (T−t)U−1xt + UφU−1b (C.2)

The variance shown in equation B.11 can be calculated using the same properties as the

expected value, so that

Covt(xT ) = U

∫ T−t

0

e−V τU−1U ′−1(e−V τ )′dτU ′ = UHU ′ (C.3)

where H represents the integral just for ease of notation. As e−V τ is a diagonal matrix

containing e−viτ in each of its diagonal elements, a closed form solution for the integral

H can be obtained element-wise. To obtain the element in the i-th row an the j-th column

of the matrix the next expression has to be evaluated

Hi,j =

∫ T−t

0

e−viτ
[
U−1U ′−1

]
ij
e−vjτdτ =

[
U−1U ′−1

]
ij

∫ T−t

0

e−(vi+vj)τdτ (C.4)
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=
[
U−1U ′−1

]
ij

1− e−(vi+vj)(T−t)

vi + vj
(C.5)
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D. MODEL IMPLIED VOLATILITIES

First, letD be a function of the state variables and time. Its returns can then be modeled

as
dD

D
= µDdt+ σDdwD (D.1)

Applying Itô’s lemma we find that

dD

D
=

1

D
∇Ddx+

1

2

1

D
∇Ddxdx′∇D′ + 1

D

dD

dt
dt (D.2)

where∇ represents the jacobian operator. Replacing dx from equation 3.2,

dD

D
=
∇D(−Ax+ c) + 1

2
∇D∇D′ + dD

dt

D
dt+

∇D
D

dwx (D.3)

Additionally it can be found that,(
dD

D

)(
dD

D

)
= σ2

Ddt (D.4)

and replacing equation D.3,

σ2
D =

∇D∇D′

D2
(D.5)

Now replacing D by the expected spot prices Et(ST ) calculated in section 3 the jacobian

results in

∇Et(ST ) = h′e−A(T−t)Et(ST ) (D.6)

and replacing in D.5 we can get the following structure for the expected spot’s implied

volatility

σ2
E(S) = h′e−A(T−t) (e−A(T−t))′ h (D.7)

Following the same procedure for futures prices and using the structure derived in section

3 the jacobian and the futures prices’ implied volatility respectively result in

∇Ft(T ) = h′e−(A+Λ)(T−t)Ft(T ) (D.8)

σ2
F = h′e−(A+Λ)(T−t) (e−(A+Λ)(T−t))′ h (D.9)
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E. DUFFEE (2002)’S RISK PREMIUMS

In his investigation, Duffee (2002) proposes a new specification of affine risk premi-

ums which differ from completely affine risk premiums, like the ones used by Dai and

Singleton (2000), in their independence from stochastic volatility. In order to define the

risk adjustment the next stochastic process for the state variables is defined,

dXt = [(Kθ)−KXt] dt+ ΣStdWt (E.1)

where Xt is the n × 1 vector of state variables, K and Σ are n × n matrices and (Kθ) is

an n× 1 vector. St is an n× n diagonal matrix with the following in each of its diagonal

elements,

St(ii) =
√
αi + β′iXt (E.2)

being αi the i-th element of vector a and βi the i-th row of matrix β. Thus the model’s

degree of stochastic volatility depends solely on the composition of matrix β. The new

premiums are then defined as,

πt = Stλt + S−t ΛtXt (E.3)

where λt is an n× 1 vector, Λt is an n× n matrix. S−t is an n× n diagonal matrix whose

elements are defined as

S−t (ii) =


√
αi + β′iXt, if inf(αi + β′iXt) > 0

0, otherwise
(E.4)

The previous specification can be rewritten in its canonical form according to Dai and

Singleton (2000). In our case we are using a model with non-stochastic volatility, which

taken to the canonical form implies that α becomes a vector of ones and β a matrix of

zeros. This leads St and S−t into becoming identity matrices, so that the correct risk

premium specification for us would be given by

πt = λt + ΛtXt (E.5)
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F. ESTIMATION METHODOLOGY

To estimate the parameters of this model a maximum-likelihood approach is used. The

number of parameters to be estimated1 is given by 3N2

2
+ 5N

2
+ 3, growing quadratically as

the number of latent factors N increases. Thus, each additional factor enlarges the dimen-

sionality of the optimization problem and toughens its numerical resolution significantly.

Duffee (2002) uses time varying risk premiums with a stationary version of our model

and concludes that quasi maximum likelihood functions, which should have exactly the

same convergence properties as maximum likelihood functions, “...have a large number

of local maxima. The most important reason for this is the lack of structure placed on

the feedback matrix K. ... . Another reason is that the feasible parameter space is not

convex for any model with nonconstant volatility”, where K is our matrix A. Neverthe-

less, we find that at least the first statement and probably the second one appear not to be

true. The lack of structure placed in the matrix K has no influence in the non-convexity of

the log-likelihood function as long as the model has the maximum number of statistically

identifiable parameters. Moreover, the K (or A) matrix can be written in diagonal form by

applying an invariant transformation to the model as shown in appendix A. Additionally

we find that 2-factor models with time-changing risk premiums do not tend to show local

maxima, while 3-factor models do. The only reasonable explanation of a statistically iden-

tified model showing local maximums as its dimension grows is the existence of numerical

issues in the optimization process. When speaking of the dimension of the problem not

only the number of parameters matter, but also the degrees of freedom of each model.

For example when estimating the parameters of the 3-factor Cortazar et al. (2018) model

which has constant volatility and 14 parameters to be estimated no important convergence

issue arises, however if any of them is restricted to a specified value and one parameter

for stochastic risk premiums (any element in our matrix Λ) is added the model presents

serious convergence issues and gets stuck in multiple local maxima. We address those

convergence problems to numerical issues of the additional degree of freedom the model

1The number of parameters to estimate includes the model’s parameters and the two error terms from the
Kalman filter
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incorporated when their risk premiums were allowed to vary over time, because the num-

ber of parameters remained unchanged. Probably the multiple local maxima documented

in several stochastic volatility models in literature is a numerical issue appearing due to

the high dimensionality of them as well.

To solve this problem Duffee (2002) optimizes the model 1000 times from different

starting points and restricts all parameters that show t-statistics lower than one. Alterna-

tively Dai and Singleton (2002) propose to make a first optimization of the model and

then setting the parameters with the largest relative standard errors to zero and reestimat-

ing the model. This would reduce the number of parameters to be estimated and therefore

could eventually find a global maxima, nevertheless it imposes undesired restrictions to

the model which do not necessarily represent the best possible estimation of the param-

eters. Furthermore, standard errors are not representative if calculated in a local maxima

which exists because of numerical issues, so that the process of constraining parameters

with the longest errors is probably mistaken. Additionally, when imposing restrictions to

specific parameters the sense of a ”canonical representation” as Dai and Singleton (2000)

propose is killed: Restricting one specific parameter to zero in their representation does

not mean that all of the infinite alternative representations will also have a parameter re-

stricted to zero. Thus if one parameter is set to zero this representation becomes the only

one with the maximum number of identifiable parameters and is therefore unique and not

”canonical”.

More recently Chernov and Mueller (2012) evaluate the log-likelihood function in two

billion starting points and select the best 20 thousand of them. Then they optimize al-

ternating between simplex and sequential quadratic programming algorithms, eliminating

half of the likelihoods at each stage. Other researches propose their own way to estimating

them but most of them rely on trying a big amount of starting points and choosing the best

possible solution.
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We propose a slightly different approach, based on the belief that our log-likelihood

function is actually convex, but presents numerical non-convexities due to its large dimen-

sionality. If this would hold then different rotations in the sense of Dai and Singleton

(2000)’s appendix A which maintain the number of parameters unchanged should have

identical convexity properties, but not necessarily the same numerical issues. Therefore,

when stuck in a numeric local maximum a rotation of the model will produce the same

log-likelihood value, but probably not the same numerical issue leading out of the numeric

local maxima. We implement this idea by rotating between the model described in section

3 and the one proposed by Cortazar and Naranjo (2006) as shown in appendix A. The new

algorithm (we call it rotating algorithm) tends to show less local maxima and is able to

find the global optimum much quicker, however multiple starting points are still needed in

order to find a possible global maximum. This way we implement the following steps in

order to find the optimal parameter estimates:

(i) Generate 70 random starting points and optimize them with the fmincon algo-

rithm from MATLAB.

(ii) Choose the 2 best log-like values from 1 and optimize using the rotating algo-

rithm implemented with MATLAB’s fminsearch.

(iii) Compare both results and if their parameters differ significantly repeat step 2

with the next best log-like value.

It is not possible to assure that the found value is indeed the global optimum, nevertheless

we argue that if the model lands at least two times in similar points with a higher log-

likelihood value than any other optimization it is probably due to the presence of the

global maxima.
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G. RISK PREMIUM PREDICTION USING ONLY MARKET VARIABLES

Even though our model does not intend to create the best possible risk premium pre-

dicting regression it would be interesting to analyze how well are the market variables able

to fit risk premium forecasts on their own. First we compare the model’s risk premiums

from section 5 with the regression implied risk premiums, which are obtained replacing all

known market values and estimated coefficients from section 6 in equation 6.2 and assume

a zero valued error. The results for a 2 and 5 year time horizon are shown in figure G.1. It

can be noted that the market variables are able to replicate the risk premiums’ behavior in

an accurate way but showing less volatility

(a) 2 year risk premiums (b) 5 year risk premiums

Figure G.1. Risk premiums created directly by the regression results of
section 6 (blue line) in comparison with the models risk premiums of sec-
tion 5

However the replication of risk premiums is more straight forward and of less impor-

tance than the replication of market’s expectations themselves. Expected prices’ estimates

can be obtained by adding the corresponding risk premiums to the futures prices observa-

tions. The results for maturities of 2 and 5 years are shown in figure 6.1 compared to the

use of futures prices only as predictors of expectations. The errors between the estimated
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expected prices and the analysts’ forecasts are shown in table 6.3. It can be noted that the

addition of this easily obtainable risk premium enhances the futures prices ability to rep-

resent the market expectations consistently across all studied maturities. These results are

of special interest to practitioners currently using futures prices as a proxy for the market’s

price expectations.
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H. TRANSFORMATION OF ANY LINEAR MODEL INTO AN EQUIVALENT

CORTAZAR AND NARANJO (2006)’S MODEL

To transform any linear model into an equivalent one, an invariant transformation T

has to be applied. In this section we will use Cortazar and Naranjo (2006)’ definition of

an invariant transformation to rewrite any general model as one following Cortazar and

Naranjo (2006)’s structure.

PROPOSITION H.1. Any given state space model with the next structure:

Yt = h′xt + d (H.1)

dxt = (−Axt + b)dt+ Σdwt (H.2)

where dwt are correlated Brownian motions such that dwtdw′t = Θdt and A has all its

eigenvalues positive and different excepting the first one which is set to zero, can be trans-

formed into the model proposed in section 3.

Starting from the model shown in equations H.1 and H.2, it can be shown that A =

UV U−1 if A has all its eigenvalues different, where U is a matrix containing all A’s eigen-

vectors and V is a diagonal matrix with A’s eigenvalues in its diagonal. It is important to

note that the matrix U can be rescaled by any diagonal matrix M whose elements can be

chosen arbitrarily and the equation A = UMV (UM)−1 would still hold. Thus, the matrix

M can be chosen conveniently putting the inverse of the i-th element of h′U in its i-th

diagonal element which results in

h′UM =
[
1 1 1

]
(H.3)

Then, applying the change of variables ξt = (UM)−1xt the model can be rewritten as

Yt = (h′UM)((UM)−1xt) + d = 1′ξt + d (H.4)

dξt =
[
−(UM−1AUM)(UM−1xt) + UM−1b

]
dt+UM−1Σdw = (−Vξt + b̄)dt + Sdwt

(H.5)
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Even though the matrix S needs not to be diagonal, the covariance matrix SΘS ′ is still

symmetric and positive definite and can therefore be rewritten as Σ̄Θ̄Σ̄′, where Σ̄ is a

diagonal matrix and Θ̄ is a correlation matrix. Equation H.5 is equivalent to:

dξt = (−V ξt + b̄)dt+ Σ̄dw̄t (H.6)

dw̄tdw̄t
′ = Θ̄dt (H.7)

Assuming now that the first element of V is the zero valued eigenvalue, if bi represents the

i-th element of b̄ and ui is the ith diagonal element from the matrix V , then applying the

change of variables

ζt = ξt +



N∑
i=2

bi/ui + d

−b2/u2

...

−bN/uN


(H.8)

the next equivalent model can be obtained,

Yt = ~1′ζt (H.9)

dζt = (−V ζt +


b1

0
...

0

)dt+ Σ̄dw̄t (H.10)

Where ζt is a n × 1 vector of state variables, V is a n × n diagonal matrix with its first

diagonal element being zero and all others strictly positive, b1 is a scalar, Σ̄ is a n ×

n diagonal matrix and dw̄t is a n × 1 vector of correlated brownian motions following

dw̄tdw̄t
′ = Θ̄dt.
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I. TRANSFORMATION OF ANY LINEAR MODEL INTO OURS

To transform any linear model into an equivalent one, an invariant transformation T

has to be applied. In this section we will use Cortazar and Naranjo (2006)’ definition of

an invariant transformation to rewrite any general model as one following our proposed

structure.

PROPOSITION I.1. Any given state space model with the next structure:

Yt = h′xt + d (I.1)

dxt = (−Axt + b)dt+ Σdwt (I.2)

where dwt are correlated Brownian motions such that dwtdw′t = Θdt and A has all its

eigenvalues positive and different excepting the first one which is set to zero, can be trans-

formed into the model proposed in section 3.

As shown in appendix H any linear model of the form shown in proposition I.1 can be

rewritten into

Yt = ~1′ζt (I.3)

dζt = (−V ζt +


b1

0
...

0

)dt+ Σ̄dw̄t (I.4)

where V and Σ̄ are diagonal matrices and dw̄t is a vector of correlated brownian motions

such that

dw̄tdw̄t
′ = Θ̄dt (I.5)

48



The covariance matrix is given by Σ̄Θ̄Σ̄′ and is symmetric and positive definite. Let define

M as

M =


0 · · · 0 1

0 · · · 1 0
... . .

. ...
...

1 · · · 0 0

 (I.6)

where M−1 = M , then the matrix MΣΘΣ′M ′ is still positive definite and still admits a

Cholesky decomposition such that

LL′ = MΣΘΣ′M ′ (I.7)

where L is a lower triangular matrix then applying the transformation ηt = ML−1Mζt

where ML−1M is an upper triangular matrix

Yt = (~1′MLM)(ML−1Mζt) = h′ηt (I.8)

dηt = (−(ML−1MVMLM)(ML−1Mζt)+ML−1M


b1

0
...

0

)dt+ML−1MΣ̄dw̄t = (−Âηt+b̂)dt+dŵt

(I.9)

where Â is an upper triangular matrix whose first eigenvalue is zero and dŵt is a vector of

uncorrelated brownian motions.
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J. WHY WE CAN’T USE CORTAZAR AND NARANJO (2006)’S FORMULATION

DIRECTLY

In this section the inconveniences of directly using the model proposed by Cortazar

and Naranjo (2006) are shown. Although their model nests any other with the properties

described in proposition H.1, it does not behave well for an affine risk premium structure.

Their model can be derived following the same transformations done in appendix H, but

replacing equation H.8 with

ζt = ξt +



N∑
i=2

bi/ui + d− b1t

−b2/u2

...

−bN/uN


(J.1)

resulting this time in

Yt = ζt + b1t (J.2)

dζt = −V ζtdt+ Σ̄dw̄t (J.3)

which is very similar to equations H.9 and H.10. The problems appear when trying to

apply the same transformations to the risk adjusted version of the model. Using an affine

risk adjustment as defined in section 3 the risk adjusted process of a general model results

in

dxt = (−(A+ Λ)xt + b− λ)dt+ ΣdwQt (J.4)

Then, applying the transformation ξt = (UM)−1xt we obtain

dξt =
[
−(V + (UM)−1ΛUM)ξt + b̄− (UM)−1λ

]
dt+ SdwQt (J.5)

dξt =
[
−(V + Λ̄)ξt + b̄− λ̄

]
dt+ Σ̄dw̄Qt (J.6)
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Using the transformation from equation H.8,

dζQt =


−(V + Λ̄)


ζt −



N∑
i=2

bi/ui + d

−b2/u2

...

−bN/uN




+ b̄− λ


dt+ Σ̄dw̄Qt (J.7)

dζQt =


−(V + Λ̄)ζt +


b1

0
...

0

+ Λ̄



N∑
i=2

bi/ui + d

−b2/u2

...

−bN/uN


− λ


dt+ Σ̄dw̄Qt (J.8)

dζQt =

−(V + Λ̄)ζt +


b1

0
...

0

− λ̄
 dt+ Σ̄dw̄Qt (J.9)

Which means applying a Duffee (2002) risk premium adjustment to the original model or

to its transformation is equivalent. On the other hand, when the transformation of equation

J.1 is used the resulting model is

dζQt =


−(V + Λ̄)


ζt −



N∑
i=2

bi/ui + d− b1t

−b2/u2

...

−bN/uN




+ b̄− λ


dt+ Σ̄dw̄Qt +


−b1

0
...

0

 dt
(J.10)

dζQt =


−(V + Λ̄)ζt + Λ̄



N∑
i=2

bi/ui + d− b1t

−b2/u2

...

−bN/uN


− λ


dt+ Σ̄dw̄Qt (J.11)
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dζQt =
[
−(V + Λ̄)ζt − λ̄(t)

]
dt+ Σ̄dw̄Qt (J.12)

in which the part λ̄(t) = λ̄1 + λ̄2t of the risk adjustment is a linear function of time t.

The obtained risk premiums differ from the ones proposed by Duffee (2002) and have a

greater number of parameters which is necessarily bigger than the maximum number of

econometrically identifiable parameters. This issue makes the direct use of the Cortazar

and Naranjo (2006) model inconvenient as the risk adjustment of the original model is no

longer equivalent to the same adjustment in the transformed one.

52



K. 2-FACTOR MODEL RESULTS

This section presents the 2-factor model implementation results. Even though this

models’ estimation process was much simpler than the 3-factor models’, the obtained

results were not able to account for rapid changes in risk premiums as desired. The cal-

ibration was done for a weekly sample period between January 2010 and June 2017 and

the estimated parameters can be observed in table K.1. 12 of the 13 estimated parameters

appear to be statistically significant at the 1% level meaning that the model actually cap-

tures information about risk premiums just as the 3-factor model does, and hinting that a

greater number of parameters would model the information contained by the data better.

Table K.1. Parameter estimates for the 2-factor model calibrated be-
tween January 2010 and June 2017

Estimate Deviation tStat pValue
A11 0 - - -
A12 -0.1644 0.057 -2.8817 0.0065
A22 0.5488 0.0168 32.7558 0
Λ11 0.0079 0.0025 3.1837 0.0027
Λ12 0.1262 0.0346 3.6482 0.0006
Λ21 -0.0299 0.0016 -18.2425 0
Λ22 -0.1144 0.017 -6.7389 0
δ1 0.131 0.0039 33.5316 0
δ2 0.5087 0.0137 37.0754 0
λ1 -0.0042 0.0895 -0.0472 0.3982
λ2 1.0559 0.0512 20.607 0
b1 0.2411 0.0105 22.9318 0
σf 0.0113 0 299.5937 0
σe 0.1061 0.0006 181.7876 0

Using the estimated parameters we are able to get the risk premium structure for every

date as shown in figure K.1. The mean risk premiums over the whole sample period

are shown in figure K.2a compared to our 3-factor model premiums. The risk premium

volatilities of the 2-factor model and the 3-factor model are shown in figure K.2b for

comparison. It can be noted that the levels of both mean risk premium curves differ for
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the short horizons but are very similar for longer ones. The 3-factor model risk premiums

have a bigger time varying ability than the 2-factor model ones for all maturities.

Figure K.1. Risk premium structure estimated using the 2-factor model
with parameters calibrated between January 2010 and June 2017.

Table K.2 shows the MAPEs of our 2-factor and our 3-factor model for comparison.

Our 3-factor model clearly outperforms the 2-factor model in both, futures and expected

prices. These results are not surprising as a smaller number of factors is expected to fit the

data in a worse way.

Table K.2. MAPEs of our 2- and 3- factor models for comparison. The
sample time period starts in January 2010 and ends in June 2017

2-factor model 3-factor model
Futures prices 0.78% 0.37%

Expected prices 7.98% 7.39%
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(a) Mean risk premiums (b) Risk premium volatility

Figure K.2. Mean risk premium and volatilities estimated using the 2-
factor model for maturities between 0 and 10 years over the sample pe-
riod from January 2010 to June 2017. Mean risk premiums are com-
pared against the 3-factor models’, and theoretical and curve volatilities
are shown along with empirical data volatilities.
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L. PARTIAL SAMPLE ESTIMATION

In order to test the model’s behavior out-of-sample a different parameter calibration

was done optimizing the parameters for data between January 2010 and June 2016 only.

The parameter estimates are available in table L.1 and only 9/24 of the parameters are

significant at a 1% and 16/24 at a 10% significance level this time.

Table L.1. Parameter estimates for the 3-factor model calibrated be-
tween January 2010 and June 2016

Estimate Deviation tStat pValue
A11 0 - - -
A12 2.182 0.9245 2.3602 0.025
A13 1.6557 1.646 1.0059 0.2402
A22 1.4818 0.1405 10.5446 0
A23 1.104 0.8029 1.375 0.1549
A33 0.0646 0.0296 2.1817 0.0373
Λ11 0.1813 0.0437 4.1486 0.0001
Λ12 -2.4181 0.9143 -2.6448 0.0124
Λ13 -1.6518 1.7261 -0.9569 0.252
Λ21 -0.1378 0.0345 -4.0007 0.0002
Λ22 -0.6445 0.3394 -1.899 0.066
Λ23 -0.5673 0.5961 -0.9518 0.2533
Λ31 0.0969 0.052 1.8631 0.0705
Λ32 0.267 0.2025 1.3186 0.1671
Λ33 0.1855 0.2587 0.7171 0.3081
δ1 0.0726 0.0214 3.3865 0.0014
δ2 0.4915 0.1995 2.4639 0.0195
δ3 0.619 0.1709 3.6227 0.0006
λ1 -8.8957 1.0353 -8.5922 0
λ2 7.3439 2.384 3.0805 0.0036
λ3 -4.7814 3.7047 -1.2906 0.1733
b1 0.6594 0.26 2.5362 0.0163
σf 0.0055 0 300.6888 0
σe 0.0983 0.0006 171.2085 0

It is possible to get in-sample and out-of-sample risk premium estimates using the

latter parameters. Figure L.1 shows the risk premium structure for the whole sample,

showing the in-sample and out-of-sample estimations together in order to compare them
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properly. Finally the mean risk premiums over the in-sample and out-of-sample periods

are shown in figure L.2a and L.2b for the partial sample calibration and the full-sample

calibration of section 5 for comparison.

Figure L.1. Risk premium structure estimated using the 3-factor model
with parameters calibrated between January 2010 and June 2016 (grey).
Out-of-sample premiums start in July 2016 and end in June 2017 (in
colour).

The adjustment errors to the data are shown in table L.2. Both calibrations have similar

errors during the period between January 2010 and June 2016, however the full-sample

calibrated model beats the partial-sample calibration in the July 2016 - June 2017 time

period.
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(a) Mean risk premiums between January 2010
and June 2016

(b) Mean risk premiums between July 2016 and
June 2017

Figure L.2. Mean risk premium for the in-sample period from January
2010 to June 2016 and out-of-sample period from July 2016 to June 2017.

Table L.2. MAPEs of our model in comparison with Cortazar et al.
(2018)’s model. The in-sample time period starts in January 2010 and ends
in June 2016, the out-of-sample period starts in July 2016 and ends in June
2017. The same data and Kalman filter specification was used for both
models.

Partial-Sample calibration Full-Sample calibration

In sample period Futures prices 0.36% 0.38%
Expected prices 7.25% 7.23%

Out of sample period Futures prices 0.72% 0.39%
Expected prices 8.81% 8.35%
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M. ANALYSIS OF RISK PREMIUM PRINCIPAL COMPONENTS

Our risk premium estimates from section 5 are calculated from only 3 different la-

tent factors, hence our premiums should only have 3 principal components which explain

100% of their volatility. In order to understand the relation of the market variables of sec-

tion 6 and our risk premium estimates we try to find out how the 3 principal components

relate to those variables. We start by computing the 3 principal components of our monthly

risk premium panel, that is 1 to 120 months. The volatilities explained by each of the 3

components is given in table M.1. It can be noted that the first component explains most

of the variance and together with the second they are able to explain more than 99.9% of

it.

Table M.1. Percentage of risk premium volatility explained by each
principal component. A risk premium panel from 1 to 120 months was
used and only the 3 first principal components are shown as they explain
100% of the volatility.

Principal Component Variance Explained
First 77.74%

Second 22.24%
Third 0.03%

As only one component explains most of the risk premiums variance the risk premiums

probably depend on the same market variables for all maturities which is consistent with

the results found in section 6. Furthermore, probably the same variables used that section

are able to predict the first principal component in a very significant way. Repeating

the multivariate regression of section 6 replacing the different risk premium maturities

with the three components we obtain the results shown in table M.2. It can be noted

that the three principal components are closely related with the selected market variables.

Analyzing the first one it is possible to note that even the signs of the estimated coefficients

are consistent with the results from section 6, probably because of it being the main source

of variability in risk premiums.
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Table M.2. Regression analysis of the three principal components of the
risk premium structure. f1, f2 and f3 represent the first, second and third
principal component respectively.

f1 f2 f3

Intercept -0.5512*** -0.1026** -0.0025**
Inventories 9.3405*** -3.0992** 0.1397***

HP 0.3752*** -0.4924*** -0.0029**
TRM -0.2238*** 0.0335*** 0.0061***

5Y T-Bill 0.3158*** 0.0322** -0.0086***
DEF 0.5272*** 0.0635*** 0.0016**
R2 0.5099 0.4882 0.625
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N. PREDICTIVE ABILITY

The prediction of oil prices has shown to be very difficult and futures prices are known

as the best predictors of future spot prices. Even the no-change forecast appears to achieve

better results than any model over long periods of time (Baumeister and Kilian (2016),

Bernard, Khalaf, Kichian, and Yelou (2015)), hence we choose to compare our model’s

price forecasts with futures prices and the no-change forecast. As only 7.5 years of data

are available we can only evaluate predictions for horizons up to 90 months. However we

decided to evaluate predicting errors only up to 60 months in order to have a long enough

data window.

We calculate the mean absolute percentage error (MAPE) as the average absolute val-

ues of all percentage deviations of the forecasts from the actual values. We do not analyze

forecast done the first 10 weeks of the model as it had too little information until then. Fig-

ure N.1 compares the MAPEs of our 3-factor model’s predictions with the no-change and

the future-based forecasts. It can be concluded that our model is equivalent to the other two

when doing short term forecasts, but clearly gets outperformed on longer time horizons. A

few comments are in order, first non of the three models is able to achieve decent forecasts

for long maturities having all of them errors of over 80% for 5 year forecasts. Second, the

no-change forecast is not significantly worse than the futures forecasts and they are equiv-

alent for longer maturities which raises doubts about the existence of any predictive ability

in futures and our model. Third, the high value of the MAPEs (some bigger than 100%)

are probably due to the 2014’s worldwide drop in commodity and specifically oil prices.

Figure N.2a shows the spot price of WTI oil between 2010 and 2017, while N.2b gives the

errors done by the three forecasting alternatives for a one year time horizon. It is evident

that the big drop in prices occurred during 2014 drove the forecasting errors to a much

higher level for the three models simultaneously, indicating that neither our model nor the

benchmarks were able to predict the fall in prices. This is an important finding because it

means neither futures prices nor analysts’ expectations contained significant information

about it. Because prices have remained on a lower level ever since, long horizon forecasts
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Figure N.1. MAPEs from the 3-factor model (blue) compared to the ones
from the no-change forecast (red) and the futures forecast (green). Errors
are shown for every forecast horizon up to 60 months. The comparison was
made for forecasts done between April 2010 and June 2017.

are obviously more affected and their accuracy is even worse. Given the bad results to

forecast futures prices it does not appear necessary to make an out-of-sample analysis as

it probably will give similar or worse results.
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(a) WTI spot price (b) Prediction error for the 12 month forecast

Figure N.2. WTI spot prices and prediction errors done by the one year
forecast of our model (blue), the no change forecast (red) and futures prices
(green).
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