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Resumen

En este trabajo proponemos y estudiamos un concepto de soluciéon renormalizada
al problema
—Apu=0 en RY

\Vulu, +g(u) =p  en ORY

donde 1 <p < N, N > 2, RY = {(2,zy) : 2/ € RN 2y > 0}, u, es la derivada
normal de u, p es una medida de Radon acotada, y ¢ : R — R es un término
no lineal. Obtenemos resultados de estabilidad y, haciendo uso de la simetria del
dominio, estimaciones en hiperplanos, y métodos de potenciales, mostramos variados
resultados de existencia. En particular, mostramos existencia de soluciones para
problemas con términos no lineales del tipo sumidero tanto en el caso subcritico
como el supercritico. En el problema con fuente estudiamos el término no lineal
g(u) = —uf, mostrando existencia en el caso supercritico, y no existencia en el caso
subcritico. Ademds, damos una caracterizacion de conjuntos removibles cuando
=0y g(u) =—ul en el caso supercritico.

Debemos resaltar que este trabajo esta motivado por resultado obtenidos para la
ecuacion —Ayu + g(x,u) = p en dominios acotados. Notamos que existen algunos
resultados de existencia para problemas similares al aqui estudiado, pero en dominios
acotados, y que estos son bastante restrictivos ya que, por ejemplo, no admiten
cualquier medida acotada de Radon p como dato. En este sentido, los principales

resultados aqui presentados son completamente nuevos.



Abstract

We propose and study a concept of renormalized solution to the problem

—Apju=0 in Rf

Vul"*u, + g(u) = on ORY

where 1 <p < N, N > 2 RY = {(a:’,xN) s e RV oy > 0}, u, is the normal
derivative of u, u is a bounded Radon measure, and g : R — R is a nonlinear term.
We develop stability results and, using the symmetry of the domain, apriori esti-
mates on hyperplanes, and potential methods, we obtain several existence results.
In particular, we show existence of solutions for problems with nonlinear terms of the
absorption type in both the subcritical and supercritical case. For the problem with
source we study the power nonlinearity g(u) = —u4, showing existence in the super-
critical case, and nonexistence in the subcritical one. We also give a characterization
of removable sets when u = 0 and g(u) = —u? in the supercritical case.

We remark that this work is motivated by results obtained for the problem
—Ayu + g(x,u) = p in bounded domains. We note that there are some existence
results for similar problems to the one that we propose here, although in bounded
domains, and that these are fairly restrictive since, for example, not any Radon
measure g is allowed as datum. In this sense, the main results presented here are

completely new.

vi



Chapter 1

Introduction

In this work we consider the problem of finding solutions to

—Aju=0 in RY
g * (1.0.1)

IVul’u, +g(u) =p  on ORY

where 1 <p < N, N > 2, RY = {(¢/,2n) : @/ € RV"!, zy > 0}, and p € M, (ORY).
Here 9, (8Rf ) is the space of Radon measures in R with bounded total variation
which are supported in ORY = {(x’,mN) ol e RV oy = O}, u, is the normal

derivative of u, g : R — R is a nonlinear term, and
—Apu = —div (|Vul""? V).
Consider the related problem of finding a solution to

—Apju+g(xr,u) =p  in
e 9l w) (1.0.2)

u=0 on 0f)

where € is a bounded domain in RY, € M, (Q), and g : R¥ xR - R. If p> N a

unique solution can be obtained by the theory of monotone operators from W, ()



into its dual W~1F'(Q2), since in this case any bounded measure in § belongs to this
dual.

When 1 < p < N the study of problem is based upon the theory of
renormalized solutions. In the case g = 0 the concept of renormalized solution was
first introduced in [9], wherein the authors showed existence and partial uniqueness
results. The proof of existence relies in a delicate and very technical stability result.
The concept of renormalized solution has been since then the main tool to study
degenerate elliptic problems with measure data. We refer the reader to [25] for an
overview of the concept and further references. Let us note that in the special case
p € LY(Q) + W= (Q) the concept of renormalized solution coincides with the
concept of entropy solutions to introduced in [2] (see also [5]), in which it is
shown both existence and uniqueness for the case g = 0.

When ¢ is nontrivial, the nature of equation depends on the sign of
g(z,u)u. To emphasize this fact, and in accordance with the literature, we call
it a problem with absorption when g(x,u)u > 0, and a problem with source when
g(x,u)u < 0. Further, we say that the problem is subcritical whenever there are
conditions imposed on the growth of |g(z, s)|; otherwise we say that the problem is
supercritical.

For the problem with absorption, existence of renormalized solutions to (|1.0.2))

in subcritical cases has been shown in [3] and [25]. In [3] the author considers

g(u) = |u|* " u, while more general nonlinearities are considered in [25]. Let us
mention that in the power case one obtains the sufficient condition ¢ € (0, %__;)) if

1<p< N,and ¢ > 0if p= N. In the case p = N exponential-type nonlinearities
are considered, but under a restriction in the size of the measures.

The problem with absorption in supercritical cases has been studied in [4]. There
the authors show that given a fixed nonlinear term ¢ existence of renormalized so-
lutions to holds for a certain class of measures. Their results, which are

quite general, are based mainly on a delicate study of the Wolff potential and can



be applied to establish sufficient conditions for existence of renormalized solutions
when the form of the nonlinearity is more explicit. For example, when g = |u|q_1 u,
q > p — 1, a sufficient conditions on the measure is that it be absolutely continuous
with respect to the L” T (RN ) Bessel capacity. A boundedness condition on the
measure is obtained when the nonlinearity is of exponential-type.

Problem is rather more difficult when it is of the source type. In fact, in
this case only nonnegative solutions are considered. In [I§] the authors show equiv-
alent sufficient conditions to obtain nonnegative renormalized solutions to ((1.0.2)
when g(u) = —uf and p is a nonnegative measure. It is also shown that, if the
measure is compactly supported in €2, these conditions are necessary. Their results,
which are obtained through a careful study of the Wolff potential and its relationship
to the Bessel and Riesz potential, show in particular that if ¢ € (p — 1, %jp})) and
l<p<N,orqg>p—1and p= N (ie., the subcritical case), then any nonnegative
measure with small enough norm admits a solution. In the supercritical case, a suf-
ficient condition is that the measure must be ‘Lipschitz’ continuous with respect to
the LPa—s1 (]RN ) Bessel capacity. We note also that their main results allows them
to present a complete characterization of removable sets for (1.0.2)) in terms of some
fractional Bessel capacities, as well as to prove Liouville-type results for problems in
the whole RY.

Going back to problem , in the case p > N we can similarly obtain a unique
solution in the space WP (]Rf ) by using the theory of monotone operators. This
follows from the fact that if p > N then functions in WP (Rf ) have well defined
continuous and bounded traces in 9RY, and so any element in 9%, (ORY) can be
seen as an element in the dual of W1» (Rf ) Of course, this works whenever p is

in the dual of Wb (Rf ) (even if 1 < p < N). In fact, this is the approach used

in [26], where it is proven the existence of weak solutions to the subcritical problem



with absorption

—Ajutelul u=flz) inQ

\Vul""?u, = g(x) on 09,

where f € L (Q), g € Wl (092), € is a nonnegative constant, 2 is a bounded
domain, 13_11 < p, and q > 0 satisfies ¢ < NN—ZJ —1if p < N.

In the case 1 < p < N we turn to the idea of renormalized solutions. In [I] a
concept of renormalized solution was proposed for a Neumann problem in bounded
domains and with nonnegative measures in L' (see also [16]). However, to our
knowledge, there is no proposed definition of renormalized solutions to Neumann
problems such as for general bounded Radon measures. In this work we
propose such a definition and then prove existence of renormalized solutions for

various types of nonlinearities. Indeed, we have Theorem for the case g = 0,

Theorems |6.1.11) and [6.1.12] for subcritical problems with absorption, Theorem [6.2.

for supercritical problems with absorption, and Theorem for a supercritical
problem with source. On the other hand, in Theorem [7.3.2] we show nonexistence
of nontrivial nonnegative solutions for the same problem with source but in the
subcritical case.

Our approach to solving problem is to turn it into an associated problem
in the whole RY. Indeed, formally, if u is a solution to then we expect that

u, its even reflection across 6Rf , should be a solution to
— Ay +2g(u)H = 2p in RY (1.0.3)

where #H is a normalized (N — 1)-dimensional Hausdorff measure concentrated in
6Rf . Note however that not every solution of the above problem would yield a
solution to ((1.0.1)), unless it is a symmetric solution, and so the problems are not
equivalent.

The advantage of looking at this extended problem is that we can obtain a so-



lution to by applying the theory developed in [9], [25], [4], and [1§], to an
increasing sequence of bounded domains. In order for this approach to work we
need to establish some stability results. Then, to recover a solution to (|1.0.1)), we
show that the solutions obtained through this process might in fact be taken to be
symmetric with respect to ORY. It is worth mentioning that with our definition
of renormalized solution to problem ([1.0.1]), # becomes in fact a local renormalized
solution of the associated problem in RY, as defined for example in [3] and [25].

This thesis is organized as follows. In Chapter [2] we collect all the relevant
preliminary definitions and results we shall need both to define renormalized solutions
and to obtain the existence results. Since we consider measures and functions in both
RY and 8Rf , we will need to consider the problem of obtaining well defined traces,
as well as the interplay of the Bessel capacities defined in R and RY. In particular,
we will make use of trace and extension operators in the Lizorkin-Triebel spaces.

In Chapter [3]we give the definitions of renormalized solutions in bounded domains
and of local renormalized solutions in general domains, define renormalized solutions
to problem ([1.0.1)), and state estimates and other results from [9] which will be used
in the sequel. We prove some properties of renormalized solutions to problem (1.0.1)),
and also show that renormalized solutions to do in fact exists by proving that
the fundamental solution to problem , with ¢ = 0, is a renormalized solution
in the sense of our definition with p the Dirac mass.

In Chapter [d] we study the problem of obtaining local renormalized solutions
to —Ayu = p in RY. The existence of such solutions is given in Theorem .
The proof is based on two lemmas, both of which are of use later when dealing
with nonlinear terms. The first states that given a sequence {u,,}, of renormalized
solutions to with ¢ =0, Q = B,,,(0) = {|z| < m}, and data p,,, we can find a
convergent subsequence such that the limit function v has the necessary properties
to be a local renormalized solution in RY. This is proven by a slight modification of

the argument found in [9]. The second lemma is a stability result that will be used



to show that the function u is indeed a local renormalized solution. This is proven
for more general equations than the ones considered in the first lemma, and its proof
is based on the argument given in [I7] to bypass the rather involved arguments
developed in [9].

In Chapter |5 we show that the solution obtained by the above method is sym-
metric with respect to 8Rf . We do this by showing that, in a bounded domain, if a
measure is concentrated in ORY and the domain is symmetric with respect to ORY
then any renormalized solution has the same symmetry. For this we use the partial
uniqueness result obtained in [9]. Then, in Theorem [5.2.2] we use this symmetry to
recover a solution to the original problem ((1.0.1)) when g = 0.

In Chapter [6] Section [6.1) we consider the problem of obtaining renormalized
solutions to in subcritical cases with absorption. Here we use the theory
developed in [25] in the same spirit as the previous chapters, obtaining local renor-
malized solutions in RY as the limit of solutions in bounded domains, and then using
symmetry to obtain solutions to . Our approach is to use the existence results
developed for problem to obtain solutions to

—Apju+gu)H=p in§
pre+ 9t) (1.0.4)

u=>0 on 02,

as an intermediate step towards solving . We obtain solutions to the above
equation by solving when ¢ is multiplied by a sequence (,(zy) that is con-
centrating at the origin and then letting n — oo. The main result in this regard
is Lemma [6.1.8 where we show, under very general assumptions, that if u, are the
solutions with nonlinear term (,g(u,) then (,g(u,) converges, in a suitable sense, to
g(u)H. The result is proven by making a decomposition of the domain in order to
use the assumptions on g as well as the continuity properties of W'» functions and

their traces.



In the case p < N the existence result is given in Theorem |6.1.11] while for the
case p = N is given in Theorem [6.1.12, Let us mention that when g(s) = |s|?, ¢ > 0,
1 < p < N, Theorem [6.1.11| guarantees existence of renormalized solutions to (|1.0.1))

provided

(N-1p-1)
q< N,

If p = N then Theorem [6.1.12 only requires ¢ > 0, and in fact exponential-type
nonlinearities are allowed, but this imposes conditions on the size of the measure.

In Section [6.2| we consider supercritical problems with absorption under the con-
dition 1 < p < N. Here we use mainly the work in [4]. We have left the definition of
the Wolff potential of a measure, and other related quantities, to this chapter since
they are only used from this point forward. As in the previous section, we obtain
solutions to ({1.0.4) as an intermediate step towards solving . The main tool
for this is the improvement of an estimate of renormalized solutions, in terms of the
Wolff potential of their respective measures, from a.e. in ) to a.e. in any hyper-
plane. We also show that, given a fixed measure and a nondecreasing sequence of
domains, it is possible to obtain a nondecreasing sequence of renormalized solutions
in said domains. Both results are needed to show the main existence result, Theo-
rem [6.2.7, This theorem is then used to obtain explicit conditions on the measure
when more is known about the rate of growth of the nonlinearity. For example,
when g(s) = \$|q’71 s, ¢ > p — 1, we obtain as sufficient condition that the measure
must be absolutely continuous with respect to the L” —haprT (]RN _1) Bessel capacity.
Exponential-type nonlinearities are also considered.

Finally, in Chapter [7] we consider nonnegative solutions to the problem with
source g(u) = —u? when ¢ > p—1and 1 < p < N. Our work here follows closely
the ideas in [I8], particularly those used to treat problem ((1.0.2) when Q = RY. We
begin by establishing necessary and sufficient conditions for existence of nonnegative
renormalized solutions to . In particular, in the supercritical case, we obtain

existence of renormalized solutions to ([1.0.1)) when the nonnegative measure p is



‘Lipschitz’ continuous with respect to the L” L (]RN _1) Riesz capacity.

In Corollary we note that if u is a solution with datum p, then u?H + pu
must satisfy the above condition which, together with the properties of the Riesz
capacity, implies the nonexistence of nontrivial nonnegative solutions to in
the subcritical case, that is, when
(p — 1, W=D ey < N

Nf
q€ P

(p—1,00) if p=N.

This result is not surprising as it is a natural counterpart to the nonexistence
result in [I§]. It is also in agreement with the nonexistence result in [I5] for the
linear case (i.e., p = 2) where it is shown that any classical, but possibly singular

at the origin, nonnegative solution to ([1.0.1)), with u =0, g(u) = —u9, and ¢ in the

N-1
? N=-2

range |1 ], must be trivial.

We finish with the problem of characterizing when a compact set K C 9RY is
removable for in the case g(u) = —u? and p = 0. We say that such a set
K is removable if every nonnegative p-harmonic function u satisfying the Neumann
boundary condition |Vul’*u, = u? in 9RY \ K can be extended to a solution of
. The necessary and sufficient conditions for existence given in Corollary
and Corollary allows us to show that a set is removable in the supercritical case

if and only if its L” —hapr (RN _1) Riesz capacity is zero.



Chapter 2

Preliminary definitions and results

Here we collect basic definitions and results needed in the sequel. We remark that,
as in [9], we shall make use of Bessel capacities to decompose measures in 2, (ORY).
Since we will frequently consider the behavior of functions and measures when re-
stricted to hyperplanes, we will also consider capacities in RY~!. To this end, we
will introduce the more general capacities associated with the Lizorkin-Triebel spaces
Fpa.

Let us first introduce some notation. For any measurable set £ C RY we denote
by |E| its Lebesgue measure. When E C dRY ~ RV~! we take this measure to be
the (N —1)-dimensional Lebesgue measure. We let By (x) be the open ball of radius
M > 0 centered at x (simply By, when z = 0). Depending on the context, when
x € ORY this could be either a N-dimensional ball in RY or a (N — 1)-dimensional
ball in ORY. For any set E, we let xp be the characteristic function of E. The
truncation of functions will be very important in the sequel. For any k£ > 0, we let
Ty(s) = min(k, max(—k, s)).

By an abuse of notation, we define VVll’p (Rf) = Npseny W (BM N Rf) Simi-

oc

larly, we define L, (RY) := ey L° (Bar NRY). We remark that given a domain

loc

Q, L* (Q) are the usual Lebesgue spaces, while W7 () are the usual Sobolev spaces.

The norm in the L* (2) spaces will be written indistinctly as [|-[| . ), ||| 1, or simply



|Il,- The C* (Q2) space, k € NU{oo}, is the usual space of k— times continuously dif-
ferentiable functions, and CF (€2) is the subspace of elements with compact support

in .

2.1 Bessel capacities

We start with the standard definition of Bessel capacities in RY (see [10] for details).

For any compact set K C RY we let
wg ={p€SRY) : ¢>xk}
where S (RN ) is the Schwartz class, and define for any a > 0 and 1 < p < o0
cpag () = inf {91 o+ 6 € orc}

with the convention that inf() = +oo. Here [|-[|, g~ i3 the norm in the Bessel
potential spaces L*P (]RN ) of functions f = G, * g with g € LP, where G,(z) =
F1 [(1 + \-|2)_a/2} () is the Bessel kernel of order a € R, defined as [|f||, ,zv =
9]/ o®wy (note that S (RY) is a dense subset of this space). Then we extend the

definition to open sets G C RY by
capopn (G) =sup{capapn (K) : K C G, K compact}
and finally to arbitrary sets £ C RY by
capopn (E) =inf{cap,,n (G) : ECG, G open} .

Note that when a € N we have L*? (RY) = WP (RY), and so in this case
the Bessel capacities can be defined using Sobolev spaces. We do not follow this

approach since we will need to consider the case when o € (0,1). On the other

10



hand, we remark that we have the following equivalent definition of capacity:

capapn (E) = inf {If5my = f €}

where

Qp:={fel’(RY) : f>0VzeRY, G+ f>1Vze€E}

(see Proposition 2.3.13 of [10]).

We will also use the Riesz capacities. They can be defined as the capacities
associated to the Riesz potential spaces L*? (RN ), i.e., the space of functions f =
T, * g with g € LP | where Z,(x) = C(N, «a) \x!f(Nfa) is the Riesz kernel of order
a € (0,N). We will denote them by capy, ,n (). Let us explicitly state however
that our main interest are the cap; , y capacity in RY and the cap; 1pN-1 capacity
in ORY (which we identify as RV~1).

We say that a property holds cap, , yv—quasi-everywhere in Q (abbreviated as
capap N — g.e.) if there exists a set E such that the property holds in Q2 \ E and
capopn (E) = 0.

We say that a function w is cap,, n— quasi-continuous in € if for every ¢ > 0
there is an open set E such that cap,, v(F) < eandw € C (2 E). Unless otherwise
stated, we assume that cap, p v — quasi-continuous functions are cap, p n —g.e. finite.
Whenever we cannot assert that a cap, , y— quasi-continuous function w is capq p N —
g.e. finite, the statement w € C(Q2\ E) means that w : Q\ £ — [—o0,00] is
continuous with respect to the topology of the extended real line.

We say that a set £ C RY is quasi-open if for every € > 0 there exists an open set
Q2 such that £ C  and cap; , v(2\ E) < e. Clearly, countable unions of quasi-open
sets are quasi-open. It is also immediate that if w is cap; , y— quasi-continuous then
the sets {w > k} and {w < k} are quasi-open. By a result of [§], for every bounded
quasi-open set E there exists a nonnegative sequence w, € WP (RN ) such that

w, < xg and w, T xg cap1pn — g.e. in RY (see Lemma 2.2 of [I7]).

11



Remark 2.1.1 When dealing with a bounded domain €2, it is more natural to define
and use the so called condenser capacity associated with € (see for example Section
7.6 of [10]). Indeed, this condenser capacity is the capacity used in works such as
[9] and [17]. However, Theorem 2.38 of [14] shows that the condenser capacity is
equivalent to our definition of capacity whenever Q2 = By, for any fixed M (see also
section 2.7 of [I0]). Since in our applications we always ultimately have Q = By, for

some M € N, we see that we can always assume the two definitions are equivalent.

2.2 Decomposition of measures

Let 91, (RN ) be the set of Radon measures of bounded total variation. For any
Borel set 2 C RY we let I, (2) be the set of measures in 9, (RN ) supported in (2.

For measures p € M, (2) we let

[ ellgm, = [1] (€2)

be its total variation in 2.

We will work mainly with measures supported in 8]Rf . Such measures can be
naturally identified with measures in RV ~!. Indeed, if u € 9, (RN ) is supported in
ORY then ji(E) := i (E x {zy = 0}) is the natural representative of s in 9, (RV=1).
Similarly, if g € 90 (RV7!) then fi(E) := p({z/ € RN"' : (2/,0) € E}) belongs
to M, (RY) and is supported in ORY. This gives a bijection between 2, (ORY) and
M, (RN *1). Hence, whenever convenient, we will identify the two spaces under the
above construction.

We let H be the (N — 1)-dimensional Hausdorff measure concentrated in ORY,
normalized so that H (E) = }E N oRY } for any measurable set £ C RY. Then, we
define L* (QNORY) = L* (;dH) for any domain € and any 1 < s < oo (when
Q = RY we omit it from the notation). If a function g belongs to L},. (2N ORY) we

loc

12



write gH as shorthand for the measure gdH.
We will say that a sequence of measures pu,, € M, (RN ) converges to a measure
e My (RN ) in the narrow topology of measures in a domain 2 if and only if

lim [ pdp, = / by
Q Q

n—oo

for all functions ¢ continuous and bounded in 2. We recall that the convergence
is in the weak-* topology of 9, (€2) if the above holds for all functions ¢ € Cj ().
Here Cj (€2) is the space of continuous functions with compact support in 2.

It is standard that cap,p v is a countably subadditive nonnegative set function
(see for example [10]). This implies that any measure p € 9%, (RY) can be uniquely

decomposed as

L= o + Hs

where 1 is absolutely continuous with respect to cap,p n, and ps is singular with
respect to cap,,pn (see [13], Lemma 2.1). That is, po(E£) = 0 for every Borel set
E such that caps,n(E) = 0, while p, is supported in a Borel set E such that
capapn(E) = 0. Moreover, by the Jordan decomposition theorem, one can write
uniquely

[hs = pig — pg

where p} and p; are the positive and negative part of ju.

In what follows we shall denote by 91, (RN ) the set of measures in 901, (RN ) that
are absolutely continuous with respect to cap; p n. Similarly, 9% () is the set of
measures in 9%, (RN ) which are supported in €.

We remark that, whenever a > 0, the N-dimensional Lebesgue measure is abso-
lutely continuous with respect to capa, n (see [10]).

The following result is proved in [5].

Theorem 2.2.1. Let 2 be a bounded domain and p € My, (). Then p € My (Q) if

13



and only if p € L' (Q) + W= (Q). Thus, if p € My (Q) then p = f — div g in the
sense of distributions for some functions f € L' () and g € (Lp/ (Q))N Moreover,

1= f — di g also holds when acting on functions in W," () N L ().

We note that in the above result one can further assume | f|| .1 (q) +9llyy -1 () <

3 [|pllyy, (see Lemma 3.6 of [4]).

2.3 Lizorkin-Triebel capacities

Now we consider the spaces F24 (]RN ) mentioned earlier. The literature concerning
these spaces is very extensive. Here we only record a few facts about them and refer
the reader to [10] and [20] for details. Let us begin with their definition.

Let ¢ be any function in C§° (R™) such that supp (¢) C {¢ € RN : |¢| <2} and
¢=1in {C€RY : |¢| <1}. For j €N let

$;(¢) = ¢(277¢) — 9(2777()

so that supp (¢;) C {¢ € RY @ 2771 < ¢ < 20%!} and, setting ¢p = ¢,

D () =1

in RY. Let &' (RY) be the set of tempered distributions, and for any f € &' (RY)
let

fo=F "o F ]

where F is the Fourier transform. Then f; is an entire analytic function and it can

be shown that

F=Y
k=0
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in the topology of S’ (]RN). For 1 < p,q < oo and s € R we define

1

HfHFS”’q(RN) = (Z 2kea ’fk(xﬂq)

k=0 Lp(RN)

and
FPa(RY) = {f €S RY) : Iflppoger) < OO}‘

It is proven in [20] that this definition does not depend on the choice of ¢, and that
FP4 (RY) is a Banach space.

It can be shown that the spaces FP (RN) can be realized as potential spaces,
and thus they can be used to define corresponding F?* (RN ) capacities, which we
denote by cap (-, F#7 (RY)) (see [10] for the details).

The connection of these spaces with the Bessel potential spaces is given by the
fact that for any @ > 0, and 1 < p < oo, there holds FP? (RY) = L** (RY)
in the sense of normed spaces. Given the above observation it is to be expected
that the FP? (R") capacities are equivalent to the corresponding L*? (RY) Bessel
capacities. A surprising result (see Proposition 4.4.4 of [10]) is that in fact for all
a>0,1<g<oo,and 1 <p< %, the FP4 (RN) capacity is equivalent to the

corresponding Bessel L*P (]RN ) capacity; we will point this out by writing
cap (- F7" (RY)) ~ capapn () -

An advantage of considering the more general F+ (]RN ) spaces is the following the-

orem, which can be found in Chapter 4.4 of [20].

Theorem 2.3.1. Let 1 < p,q < oo, and ap > 1. Then the map

Tr: f(z',on) — f(2,0)

15



is a bounded linear operator from FP4 (RN) onto Fgfl (RN_I). Moreover, there
P
exists a linear bounded extension operator Ex from FSfl (RN_l) into FP1 (]RN)
p

such that
TroEx=Id in F'?, (RN"1) .

Thanks to the above theorem, we can define the trace Tr(w) = w(2',0) €
FP'P (RN!) of any function w(a/, zy) in F27 (RY).

ﬁet us mention that we will also use Sobolev’s embedding-type results for these
spaces in the sequel. We will point this out later.

The following proposition, which follows from Theorem [2.3.1] shows that the

‘trace’ of the capypn capacity in ORY is the cap, 1, y_, capacity.
p7 2

Proposition 2.3.2. There exists a constant C(N,p) such that for all Borel sets
E CRY and E' C ORY

(1) C(N,p)caprpn(E) > capk%’p’Nfl(E N 8Rﬂ\:), and
(2) C(N, p)capl—%,p,N—l(El) > capipn(E').

Proof. By the definition of capacity and the capacitability of Borel sets it is enough
to consider £ and E’ compact. Let g € S (RN ) be such that g > xg. By Theorem

g has a trace g = Tr(g) such that

[, (o) < CON0) gl paqamy = CNop) -
p

Since g > Xpnory We have C(N, p)capy pv (E) = cap (E NORY; FPP (8]Rf)), and

since cap (E NORY; FP, (8Rf)) ~ cap;_1 , y_1 (ENORY) we conclude
O(NJ p>cap1,p,N (E> 2 Capl_%,pw_l (E N 8]1%5) .

For the second assertion we consider the extension operator. Suppose g € S (8]Rf )

16



and g > yp. Then its extension g = Ex(g) belongs to F{** (RY) = L'» (RV) with

ngl,p,RN = HgHFf”Q(RN) < C(N,p) HgHFf’f’l(aRf) :

P

Again, since cap (E’; PP (GRJI)) ~cap; 1,y 1 (E') we conclude

C(N,p)eapy_1 , x—1 (E') Z capyp n(E').

]

Thanks to the above result, we can describe the relationship between the decom-

position of a measure in 9, (RN _1) and its representative in 91, (8RJX )

Proposition 2.3.3. Let p € M, (RV ) and let

[t = po + ps

be its decomposition with respect to Cap;_1pN-1- Let i denote its identification as

an element of M, (ORY). If
f= po + fis
is the decomposition of ji with respect to capy , N then

fio = flo and fis = fis .

In particular

Proof. We only prove the first assertion since the second follows easily. Let E

be such that cap;,y(E) = 0 and is(E°) = 0. By Proposition we have
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Capy_1 N1 (ENORY) =0 and thus for any Borel set A ¢ RY

fio (A) = i (AN E®) = L (AN E°) = p (AN E°NORY)
= po (ANORY) + s (AN E°NORY)
= 1o (A) + s (AN EX)
and
fis (A) =

fis (ANE) = i (ANE) = u (AN ENIRY)
Is

(AN ENORY)

s (ANE) .

Similarly, let Ey be such that Capy_L N1 (Ep) = 0 and us (ES) = 0. By Proposition
we have cap; , n(Ep) = 0 and so

Ts (A) = ps (ANORY) = py (AN EgNORY) = pu (AN Ey NORY)

fi (AN Ep)

fs (AN Ey) .

The previous inequality implies in particular that

s (B = s (E°NEy) =15 (E°NE;NE)=0

from which the proposition follows since then

s (ANE) =15 (A) |, s (AN ES) =0
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2.4 Finer properties of W'? functions

As we noted in the previous section, Theorem guarantees the existence of a

trace w(z',0) € F?, (RN~') whenever w(z’, z) belongs to F£7 (RY). Since
FP?(RY) = L' (RY) = W (RY)

we see that every function w(a’, zy) € WP (RV) has a trace w(a’,0) in F'*, (RV-1).

Since we want to integrate along the boundary of ]Rf we study the ;egularity
of these traces. The following proposition shows that functions in W*'» (Rf ) also
have well defined traces and that, by selecting and adequate representative, we can

assume they are quasi-continuous.

Proposition 2.4.1. Let w € WP (Rf) Then w has a capyp n— quasi-continuous

representative, defined in @, which is unique up to sets of zero capypn capacity.

In particular, identifying w with this representative, the trace of w is capy_1 , n_1—
p7 K

. . . . N
quasi-continuous and unique Capy_1pN—1~ g€ in ORY .

Proof. Since RY is an extension domain we consider w as an element in WP (RN )
Recalling that W'? (RY) = L'* (RY), we obtain the existence of a cap; , y— quasi-
continuous representative which is unique in @ modulo sets of zero capacity (see
Theorem 6.1.4 of [10]). In view of Proposition [2.3.2]the rest of the proposition follows

easily. O]

Remark 2.4.2 Thanks to the above proposition from now on we identify function
in Wh? (RY) with their cap; , y— quasi-continuous representative in @ and refer
to their cap, _ 1pN-1" quasl-continuous trace in aRf whenever necessary. Note that
this result also applies to functions in WP (RN ), or in Wy (By) by identifying

elements in this space with their extension by zero.

oc

Remark 2.4.3 For a function w € I/Vll’p (Rf ) one can still define the boundary
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values of w. Indeed, for any fixed m we have w € WP (Bm N ]Rf ) and thus we can
extend w to a function in WP (RY) first by even reflection and then using that By,
is an extension domain. The resulting extension has a cap; p, n— quasi-continuous
representative, which we call w,,, coinciding with w a.e. in B,, N Rﬂ\rf . If we take
m’ > m then any cap; , n— quasi-continuous representative w,, coincides with w,,
a.e. in B, NRY and thus, by Theorem 6.1.4 of [10], wyy = wy, capipny — ¢.e. in
m. Hence, from now on, we identify functions in VVllocp (R_]X ) with this locally
defined, and cap; , v — g.€. unique, cap; , y— quasi-continuous representative in @
In particular, if 2/ € RV~ we define the trace w(z’,0) to be the value at (z’,0) of any

representative w,, such that |2'| < m. By the above considerations, and Proposition

2.3.2, the trace is capl_%,pﬁN_l—quas1—cont1nuous and unique Cap;_1pN-1 — ¢-¢- in

ORY.

We shall make use of the following propositions regarding integrability and con-

vergence with respect to measures in 91, (3]1%]}: )

Proposition 2.4.4. Let p € My (ORY) and let w € W (RYN). Then w is measur-
able with respect to p. Furthermore, if the trace of w belongs to L™ (GRJJ\:) then it
belongs to L= (RN; dp).

Proof. Since w € W (RY) we have by Proposition|2.4.1|that w has a cap, _1 , y_;—
p7 K

N

quasi-continuous trace in ORY,

which is the restriction of any cap;, y— quasi-
continuous representative of w. Since every cap;,n— quasi-continuous function
coincides cap; p v — ¢q.e. with a Borel function it follows that w is measurable with
respect to any (Radon) measure p € 9 (ORY). If moreover |w| < k a.e. on ORY
then it holds |w| < k capy_1,n—y — g-€. on ORY. That this is so follows from an
application of Theorem 6.1.4 of [10] to the cap,_ LpN-17 quasi-continuous functions

(w—Fk)y and (w+k)_. Since p is absolutely continuous with respect to cap, LpN-1

we see that |w| < k u — a.e. (see Proposition [2.3.3)). O
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One can similarly obtain the following proposition

Proposition 2.4.5. Let p € M (RN) and let w € WhHP (RN). Then w s mea-
surable with respect to p. Furthermore, if w belongs to L™ (]RN) then it belongs to
L (]RN ; du).

Remark 2.4.6 We will use the following fact: if v < v a.e. in RV, where u and
v are cap,, N— quasi-continuous functions, then v < v cap,,p N — g.€. in RY. This
can be proven by applying Theorem 6.1.4 of [10] to the quasi-continuous function

w = max {u — v,0}, which satisfies w = 0 a.e. in RV,

Combining the last proposition with Lebesgue’s Dominated Convergence Theo-

rem we obtain:

Proposition 2.4.7. Let f,, — f capipn—q.e. in RN with f,, in W'? (R¥)NL> (RY)
and uniformly bounded in L (RN). Then for any measure p € MMy (]RN), fo— f

1—q.e. and
lim fudp = fdp.
RN RN

n—o0
The following result is Proposition 2.8 in [9]. It is a consequence of Egorov’s

Theorem.

Proposition 2.4.8. Let Q be a bounded open subset of RN. Let p. be a sequence
in L' () that converges to p weakly in L' (Q), and let o, be a sequence uniformly

bounded in L (X)) that converges to o a.e. in Q). Then,

lim peaedxz/pada:.
Q

e—0 Q

2.5 p— superharmonic functions

Although not the focus of this work, we will use several results concerning p— super-

harmonic functions, especially on the relationship between them and renormalized
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solutions. We will give proper references whenever necessary, but most of the results
are classic (see [14]). Here we record some definitions and basic properties.

Let 2 be any domain. A p— superharmonic function is a lower semicontinuous
function u : Q@ — (—o00,00], not identically infinite, such that for all open sets
QY cc Q and for all  p-harmonic in € and continuous in € we have that h < u on
0 implies h < u in .

It is well-known that if u is p— superharmonic then its truncation min{u, k}
belongs to I/Vlif (©). This allows us to define its gradient in the same generalized
sense as we will do for renormalized solutions (see Chapter [3)), and in particular, it
makes sense to define —A,u in the sense of distributions. In particular, when we say
that a p— superharmonic function u solves —A,u = p in 2 for some (not necessarily
bounded) Radon measure p, we mean it precisely in the sense of distributions, where
the derivative of u is to be understood in the generalized sense. It is also known that
if u is p— superharmonic function in € then —A,u is a nonnegative distribution, and
so there exists a nonnegative Radon measure p such that —A,u = p in D’ ().

Finally, we remark that when we say that a p— superharmonic function u solves
—Ayu = g(u)o + p in €, for some Radon measures p and o, we imply that g(u) €
I

loc

(Q,do) so that the right hand side is actually a Radon measure.
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Chapter 3

Renormalized solutions

3.1 Renormalized solutions in bounded domains

We start with the definition of renormalized solution given in [9] for bounded do-
mains. In order to do this we first need to generalize the definition of Vu.

Let Ty(s) be truncation by k, i.e., Tj(s) = min(k, max(—k,s)). Then for any
measurable and a.e. finite u such that Ty (u) € VVO1 P (Q) for every k > 0 there exists

a measurable vector-valued function v : Q — RY such that

VT (u) = vX{jul<k}

a.e. in € for all k& > 0 (see [2], Lemma 2.1). This function is unique a.e. and so
we define v as the gradient of u and write Vu = v. One similarly obtains that if

Ti(u) € szif (Rf ) for every £ > 0 then there exists a measurable vector-valued

function v : Rf — RY such that

VTi(u) = VX {|ul<k}

a.e. in Rf for all £ > 0.
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Remark 3.1.1 We note that, in general, v is not the gradient of u used in the
definition of Sobolev spaces. In fact, u may not even belong to Lj,. () (see [9] for

details).

Definition 3.1.2. Let Q be a bounded domain in RY. Let u € 9%, (Q) have a de-
composition p = po+ ps with respect to cap; , v. Then a function w is a renormalized

solution of
“hu=p il (3.1.1)
u=20 on 0f2
if
(1) u is measurable, finite a.e., and Tj(u) € Wy (Q) for all k > 0;

(2) |Vul' ™t € L1(Q) for all 1 < ¢ < 25

(3) there holds

/|Vu\p2 Vu-dex:/wduo+/w+°°duj—/w_oodus_
Q Q 0 Q

for all w € W,?” (Q) N L*® (Q) satisfying the following condition: there exist
k>0, r > N, and functions w*>* € W' (Q) N L*> () such that

w=w"* ae in {reQ : u>k}

w=w"> aein {reQ : u<—k}.

Remark 3.1.3 Note that the set of functions w for which (3) holds is not empty.
Indeed, it contains C§° (€2) since the condition is satisfied by any w in C§° (2) choos-
ing any £k > 0 and » > N, and setting w = w™° = w~>°. But there are more

admissible functions. In particular, T} (u) is admissible with w*> = +k.
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Remark 3.1.4 Theorem 2.33 of [9] shows that there are several equivalent defini-
tions of renormalized solution. In particular, the last condition above can be replaced
with the following one: for every k > 0 there exists two nonnegative measures \;,
A, € My () supported in {u =k} and {u = —k} respectively, such that A7 — pF,

as k — oo, in the narrow topology of 9, (2), and the truncations Ty(u) satisfy

/ VT (w)|P 2 VT (u)dz - Vo = / vdpy + / vd\) — / vd\,
{lul<k} {Jul<k} Q Q

for every v € W, ? (Q) N L*® (Q). Whenever convenient we use this equivalent for-

mulation.

Remark 3.1.5 The conditions stated in definition [3.1.2] imply that any renormal-
ized solution has a cap; , y— quasi-continuous representative which is in fact finite
capy p N —q.€. in € (see remark 2.18 of [9]). We always identify renormalized solutions

with this representative.

The following theorem is proved in [9] using Lemma 4.1 and 4.2 of [2].

Theorem 3.1.6. Let u be a renormalized solution of (3.1.1)). Then
/ |Vul? de < k|p| () , Yn >0, k> 0. (3.1.2)
{n<ul<n+k}

If p < N then for every k > 0,

{Ju] > k)| < C(N’p)%’ (3.1.3)
H{|Vu| >k} < C(N,p)%. (3.1.4)
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If p= N then for every k > 0,

{ul > K] < O, Ny UL EDS (3.1.5)
for everyr > 1, and
19ul > k| < 0G5, N, py PG 5.16)

for every s < N.

We note explicitly that the above constants do not depend on the domain ).

Note also that by putting n = 0 in (3.1.2)) we get
/ VP dr < k|| () , k>0 . (3.1.7)
{lul<k}

The following result is proven in Section 5.1 of [9] as a first step in the proof of

their stability result. It will be useful for us later when dealing with nonlinear terms.

Theorem 3.1.7. Let u,, be renormalized solutions to problem (3.1.1|) with respective
measures fi, € My (). Assume || |lyy, are uniformly bounded. Then there exists a
function u such that, up to a subsequence, u, — u a.e. in 2. Moreover, u satisfies

(1) and (2) of the definition of renormalized solution, as well as all the estimates

stated in Theorem (with sup || pnllgn, instead of ||plly, ), and

(1) VT (u,) — VT (u) and Vu,, — Vu a.e. in €,

(2) ‘Vun’pf2 Vu, — \Vu\p*2 Vu strongly in (L1 (Q))N forany 1 <q< %7

(3) Ti(uy) — Ti(uw) weakly in WP ().
Remark 3.1.8 It follows from Remark 2.11 of [9] that the function w in the

above theorem has a cap; , y— quasi-continuous representative which is in fact finite

capi p,n — g-€. in Q. We identify u with this representative.
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3.2 Local renormalized solutions

A closely related concept is the one of local renormalized solutions (see [3], [25])
on domains which are not necessarily bounded. It is closer to our definition of
renormalized solution of (1.0.1]), and we will use it in the sequel. We remark that
the derivative here is to be understood in the same generalized sense as described

previously.

Definition 3.2.1. Let Q be any domain in RY. Let u € 9, () have a decomposition

[ = fo+ s with respect to capy p . Then a function w is a local renormalized solution
of

—Apu=p in Q
if

(1) u is measurable, finite a.e., and Tj,(u) € WP (Q) for all k > 0;

loc

(2) |Vul/™" e LL (Q) forall 1 <q< -

loc N_1’

(3) [uf™" € Lj

loc

(Q)fora111<q<NL_p(1<q<ooifp:N);

(4) there holds

/|Vu|p_2 Vu-dea::/wduo+/w+°°duj—/wOodus
Q 0 0 Q

for all w € WP (Q)NL> (Q) compactly supported in §2 satisfying the following
condition: there exist k > 0, r > N, and functions w*>* € W (Q) N L>= (Q)
such that

w=w"* aein {zreQ : u>k}
w=w">* aein {reQ  u<—k}.
Remark 3.2.2 We remark that all functions w in C§° (£2) are admissible functions

for (4). Note however that Tj(u) is no longer a valid test function. On the other
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hand, if w € C§° (Q) then wTj(u) is admissible with w*>* = +kw.

Remark 3.2.3 Just as in the case of Definition [3.1.1] condition (4) can be replaced
by some other equivalent conditions (see Theorem 2.2 of [3]). We will use this fact
in the proof of Lemma[4.2.1] On the other hand, our definition of local renormalized
solution is not exactly the same as the definition in [3] since there the author does

not require that p is bounded. We have chosen to add this extra condition since we

will need it when solving problem ({1.0.1)).

Remark 3.2.4 A fact that we will use frequently is that if u is nonnegative and u
is a local renormalized solution of —A,u = p in €, then u coincides a.e. with a p—

superharmonic function solving the same equation (see Theorem 4.3.2 of [25]).

Remark 3.2.5 Note that the estimates in Theorem [3.1.6] show that if  is bounded
then any renormalized solution of is also a local renormalized solution of the
corresponding equation. Indeed, we only need to show (3). To this end, we recall

the known identity
/]u| dx—// at*” 0|u|]dtd:r—/ /ato‘_lx(a:){|u|2t}dxdt
o Ja
= [ e gl =
0

which holds for any measurable function u, and any a > 0. From this identity one

obtains the estimate

/ |ul dx < 5|9 + a/ U |u| > t}] dt. (3.2.1)
0

to

In particular, if u is a renormalized solution in a bounded domain €2, and p < N,
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then combining the above estimate and ([3.1.3) we have

N(p—1)

/\u!sdx <19 —l—sC(p,N,,u)/ TN dt
Q 1

N(p—1)

which is finite if 1 < s < N If p = N then we use instead estimate (|3.1.5))

obtaining, for any fixed r > 1, the condition 1 < s < r(p — 1). Hence in this case

any 1 < s < oo is allowed.

3.3 Renormalized solutions to the Neumann prob-
lem in the half-space

We now define a renormalized solution to (1.0.1)). Recall that by the discussion of

the previous chapter, any measure p € 9, (GR_]X ) can be decomposed uniquely as

= po+ pl —py
where i is absolutely continuous with respect to cap , n, and pE are singular with

respect to cap; p v and nonnegative.

Definition 3.3.1. Let p € 9, (8R]+V) and g : R — R. A function u defined in RY
is a renormalized solution to ((1.0.1)) provided the following holds:

(1) u is measurable, finite a.c., and Tj(u) € WP (RY) for all k > 0;

loc

(2) |Vul" e L

loc

(RY) for all 1 < ¢ < 55

(3) [uf™" € Lj

loc

(]R_]f) fora111<q<NL_p (l1<g<ooifp=N);
(4) wis finite a.e. in ORY, and g(u) € L* (ORY);

(5) there holds
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/ |Vl Vu-dea:+/ g(u)wdx':/ wduo+/ w*ooduj—/ w™dp;
RY ORY ORY ORY ORY

for all w € Wt» (Rf ) compactly supported in @, with trace in L™ (GRf ),
and satisfying the following condition: there exist k > 0, » > N, and functions

wre e Whr (Rf) such that

w=w"™ a.e.in {xERf : u>k‘}

w=w"" a.e.in {xeRf : u<—l€}.

Remark 3.3.2 We remark that it makes sense to talk about the boundary values

of a renormalized solution since, in fact, any a.e. finite and measurable function

u defined in RY such that Ty(u) € WP (RY) for all & > 0 has a locally defined
capy p, N— quasi-continuous representative in @ which, however, could be infinite
on a set of positive cap; , v capacity. Indeed, by Remark we can locally iden-
tify Ty (u) with a cap; , y— quasi-continuous representative in R_f Then, it can be
directly verified that v = supjcy Tk (u) defines (locally) a cap; , n— quasi-continuous
function that coincides with u a.e. in ]Rf and which is unique cap,, n — g.€ in M
Notice that, in general, v may be infinite on a set of positive cap;, y capacity and
so its trace could be infinite. We remark that similar considerations hold for a.e.
finite and measurable functions u defined in RN such that Ty, (u) € W57 (R). From
now on, we always identify renormalized solutions to ([1.0.1) with their cap;, ny—
quasi-continuous representative in @ In particular, under this identification, the
trace of u is Capy_1pN-1~ quasi-continuous and unique capy_1pN-1~ ¢-€ in ORY.
Since u could be infinite on a set of positive capacity, we explicitly ask that the trace

must be finite a.e. in 8]Rf . We will show below that in fact renormalized solutions

are always finite cap; , y — g.e. in RY.
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Remark 3.3.3 If we consider cap; ,n— quasi-continuous representatives in @,
then the condition w = w*™> a.e. in {x € Rf tu > k:} implies that w = w'™®
capp, N — ¢.€ in {x € @ Su > k} To see this, apply Theorem 6.1.4 of [10] to

extend (w — wr®)(u — k)t = 0 from a.e. in RY to capy,n — g.e in RY (see also

Remark [2.4.6)). It follows that w = w*™ cap,_1, y_; — ¢.e in {z € ORY : u >k},
p7 k)

o0

and in particular w = w™> a.e. in {x € 3Rf Su > k:} Similarly, w = w™> a.e. in

{xE@Rf:u< —k}.

We verify that under the given assumptions all the integrals above are well defined
and finite. The first integral on the left hand side can be divided into three integrals
with domains of integration given by {z : |u| <k}, {x:u >k}, and {2z :u < —k}.
In the first case Ty(u) = u so [Vul’™" € L¥ (RY) and the integral is finite since
w € Whp (Rf ) has compact support. For the second case w = w™>® € Wir (Rf )
and 7 > N implies ' < 2= so by assumption |Vul|’ ey, (RY) and the inte-
gral is also finite since we integrate over the support of w. The third case can be
treated similarly. The second integral on the left hand side is obviously finite since
g(u(a’,0)) € L' (ORY) while w € L (ORY).

As for the right hand side, observe first that since r > N we have w*™>® &€
C (@) with the supremum norm. Since pF are bounded we conclude that the

integrals with respect to the singular measures are well defined and finite. For the

remaining integral Proposition |2.4.1| guarantees that w has a well defined trace, while

Proposition and the boundedness of 1y gives w € L' (ORY; dpy).

Remark 3.3.4 It follows directly from the definitions that if u is a renormalized
solution of then u, the extension of u by even reflection across GRf , is a local
renormalized solution of —Ayu = fi := 2u — 2g(u)H in RY (where g(u)H has the
meaning indicated in Chapter [2).

Remark 3.3.5 We have noted in Remark that Vu is not, in general, the
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gradient of u in the usual sense used in the definition of Sobolev spaces. However, it

can be shown that if Vu € (Lq (]RN))N for some 1 < ¢ < pthenu € I/Vllocq (]RN) and

loc
Vu is the usual gradient of u (see Remark 2.10 of [9]). In particular, when p = N
the definition of renormalized solution implies that u € VVlicl (RN ) and the gradient

of u coincides with the usual definition.

In the definition of renormalized solution we assumed wu is finite a.e. in ORY. In
the case g = 0 this assumption could have been dropped. Moreover, the condition
could also be removed by assuming ¢ is a function defined on the extended real line.
However, we now show that whenever g(u) € L' (ORY) then u must be finite a.e. in
8Rf . Indeed, by our definition of trace, and in view of Proposition and remark
, it will be enough to show that local renormalized solutions of —A,u = p in RY
are finite cap; , y — ¢.e. in RY. We will obtain this as a consequence of the following

local version of the estimates on level sets stated in Theorem [3.1.6]

Theorem 3.3.6. Let u be a local renormalized solution of —A,u = v in Q, and let

Q' be such that Q' CcC Q. Then
/{| o \Vul? de < C(p, 0, pyu)k , ¥V k>0, (3.3.1)
u|<k}INQ’

and there ezists ko(u, 2, Y, p) such that: if p < N then for every k > ko,

N(p—1)

Hlu| > k}NQ| < C(N,p,Q,Q p,u)k™ N-r | (3.3.2)
|Vl > kY N Q| < C(N,p, Q, 0, u)k™ N1 (3.3.3)

if p= N then for every k > ko,
{lu| > EyNQ| < C(r,N,p, Q,, p,u)k~ @), (3.3.4)
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for everyr > 1, and
H{|Vu| > kN Q| < C(s,N,p, Q,Q, p,u) k™2, (3.3.5)

for every s < N.

Proof. Choose ¢ € C§° (£2) such that 0 < ¢ <1, ¢ =1 in ', and supp (¢) C Qy CC
Q for some Qy. Then, testing against ¢Ty(u) we obtain

VT (w)|” ¢pdx + / Tio(u) [Vul’ "> Vu - Vpdr =

Qo Qo

/ Ty (w)ddo + / kod (it + 1)
Qo

Qo

and so
[ VTP do < K[ Ful-s0) 1900+ K i, = OS2 0k

which is estimate ([3.3.1)).
Next, we observe that since u € L* (2g) for some s > 0 Chebyshev’s inequality
gives

|{|U| > k} N QOl S C(u7 Qo)p)k_s‘

Hence, we can choose ky such that

k
H|u| > 5} ﬂQo

for all k > ko. Define ¢, = (T (u))q: the average of Ty(u) in ©'. Then we estimate

1
] < o ( / Tl do + | T(w)] dx) <
V| \Jonfju<k/2} QN {Jul>k/2}

for all k > ky. Then, if p < N, by Poincaré-Wirtinger’s inequality, Sobolev inequality,

1
< - |
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and (3.3.1]), we obtain
1
HTk(u) - CkHL‘l(Q/) < C(N7p7 QO,/%U)I“,
where ¢ = NN—ZQ. Since for all £ > ky we have the inclusions
k
{1 2 K} = {17(0) 2 K} € (73w~ ] = £ = fal) < {[00) ~ o] 2 §

we deduce

AT (w) = cull pagpyy)
k

{lul >k} N < ( ) < C(N,p, o, i, u)k?C5")

which is estimate (3.3.2). In the case p = N, the same procedure gives (3.3.4). The
remaining estimates follow from the above ones just as in the proof of Theorem [3.1.6

in [9], using the results in [2]. O

Note that unlike the estimates in Theorem [B.1.6] the above estimates are not

uniform on u. However, they are enough for our purposes.

Proposition 3.3.7. Let u be a local renormalized solution of —Ayu = p in RY.

Then w is finite capy p, x — q.e. in RN . In particular, if v is a renormalized solution

of (1.0.1)) in the sense of definition then the trace of v, as defined in Remark
3.8.9, is finite cap, 1, y_, — q.e. in ORY .
p7 b

Proof. As observed before, it is enough to show that u is finite cap; , y — ¢.e. in RV,
Fix M € N. By the previous theorem, with Q = RY and ' = By (0) =: By, we
can find ko(u, M, p) such that for all k > ko

1
H{lul > k} N Byl < 1 | Bl -
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Then, we can proceed as in the proof of the previous theorem to obtain that

1
= — T d
Coke, M |BM| BM| 2k(“)| &
satisfies
Cokm < §/€

for any k > ky. Now consider the function ¢ = %_2:2]’;1” We have ¢ € WP (By)

and by combining Poincaré-Wirtinger’s inequality, estimate (3.3.1), and the above

estimate we conclude

C(p, N, M, u)

|2k — Cog M‘ HVTQk(u)HLp(BM) S C(pa N, Mnuau)k571~

1D llwrm ) <

for any k > ko. Further, we have ¢ = 1 on the set {u > 2k} N By. Hence, by

definition of cap; , v We obtain
caprpy ({u = 2k} 0 Bag) < [0,y < CK

for any k > ko. Since p > 1 we conclude that cap;, vy ({u =400} N By) =0. In a
similar way we can control the set where u = —oo. Since M € N is arbitrary, this

concludes the proof. O

Note that to obtain the estimates of Theorem [B.3.6] for a local renormalized
solution u in €2, it would have been enough to have |[Vu|’™" € LL (Q) instead of
condition (2) of Definition [3.2.1] Similarly, instead of condition (3) we only used
ue Lj () for some s > 0 as a step in obtaining the level set estimate |{|u| > k}| <
Ck=*. As an interesting consequence of this, we have that conditions (2) and (3)
in Definition [3.2.1] could be weakened. We remark that this result has already been
shown in Theorem 3.1 of 3], although by a different method and with the stronger
condition |u|? € L} () for some ¢ > p — 1.

loc
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Corollary 3.3.8. Let 2 be any domain, p € My, (L), and let u satisfy conditions (1)
and (4) of Definition|3.2.1. If u also satisfies

(27) |Vul’™ € Lj,. (),

loc

(3°) for any Qy CC Q2 there exists C > 0 and o > 0 such that

{lul >k} N Q| < Ck77,

then w is a local renormalized solution of —Ayu = p in .

Proof. Since we have the estimates of Theorem [3.3.6, we can show (2) and (3) of
Definition following the ideas in Remark [3.2.5| Indeed, thanks to (3.2.1)), we

can write

ol o <k 190] 45 [ (] 2 K} d
Q() kO

which is finite when Q) CC Q and 1 < s < Ni_p (s < o0 if p = N). Hence, we have
(3). Similarly, the estimates on Vu show that (2) holds. O

We now show that renormalized solutions of ((1.0.1)) in fact exists.

Proposition 3.3.9. Let 1 <p < N, and let

1

p—1 p=N i
EL(2) T R ppn
1

()" () ifp=N

ON

where ox s the surface area of 0By. Then u is a renormalized solution to

—Apu=0 m ]RJX

— |Vul"?u, =35 on IRY.

Proof. Let us first observe that dy is positive and singular with respect to cap; v
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since capypn ({0}) = 0. This can be proven, for example, by using the known
relationships between capacity and Hausdorff measure (see [10]).
We assume p < N since the case p = N is almost identical. We note that

is finite a.e., measurable, and clearly satisfies Tj(u) € WP (RY) and so the first

requirement holds. For the second one observe that Vu = — (%)E |x|2;p:1N x
and so |Vu|™P™) = <%>q 2|7 If (N — 1) < N then —¢(1 — N) < N and

so the singularity is integrable at the origin and |Vu|'™' € LI (RY). The third
requirement is immediate.

Suppose now that w € W?'» (Rf ) has compact support in M and trace in
L> (0RY). Let k > 0 and suppose w = w™ a.e. in the set {z € RY : u(z) > k}
with w™> e Whr (Rf) and » > N. Note that since r > N we have that wt>
is continuous in @ As in the considerations following definition , we see
that |Vu|’~" |Vw| belongs to L' (RY). Hence, we can apply Lebesgue’s Dominated

Convergence Theorem to obtain

/ IVul""* Vu - Vwds = hfon \Vul" " Vu(z', 2y + €) - Vw(x)dz .
RY ¢

N
R+

Since Vu(x',xy + €) is smooth for every € > 0, vanishes as |z| — 0o, and A,u =0

in RY we obtain

/ \VulP? Vu(z, 2y + €) - Vw(z)ds = / (V"% u, (2, €)w(z', 0)da’
RY ORY
2 /
S w(’, 0) <Az’
ON ORY |<I/7 O) - (07 6)'

Finally, it is well-known (cf. [I2]) that this last integral satisfies

) 2e w(a’,0)
lim —— N
el0 ON 8R$’ ‘(JI/, 0) - (07 6)'

dr' = —w™(0)

since w has bounded trace and is continuous in a neighborhood of the origin because
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w = w"t> cap; , y — q.e. near the origin (see Remark (3.3.3). O

Remark 3.3.10 The ideas above can be used to define renormalized solutions to
Neumann problems in bounded domains. We do so now.

Let € be a bounded extension domain, i.e., a domain such that there exists a
linear bounded extension operator from W (Q) into W'» (RN ) Assumel <p < N
and p € M, (]RN ) is supported in 9Q. Let u = o + pf — p; be the decomposition

of p with respect to capy , y. Then, a renormalized solution of
—Ayu=0 in
IVul"?u, =y on 9Q

is a function u defined in (2 such that

(1) u is measurable, finite a.c., and Tj(u) € WP (Q) for all k > 0;

(2) |Vul' ™t € L1(Q) for all 1 < ¢ < Y5

(3) there holds

/|Vu\p_2 Vu~deac:/ wdug—i-/ w+°°d,uj—/ w™®du;
Q o0 o0 o0

for all w € WP (Q) with trace in L> (09; dpug), and satisfying the following

condition: there exist k£ > 0, 7 > N, and functions w*> € W (Q) such that

w=w" ae in {reQ : u>k}

w=w""> aein {reQ : u<—k}.

Note that under the above conditions test functions have well defined traces on 0.
Indeed, by using that €2 is an extension domain, we can proceed as in Proposition

to show that w has a cap; , y— quasi-continuous representative which is unique
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o —a.e.. Hence, we let the trace of w be the restriction to €2 of this cap; , y— quasi-

continuous representative. Similarly, w*>

can be extended, uniquely, as continuous
and bounded functions in Q.

It can be shown, just as in the case of definition that all the integrals above
are well defined and finite. Note that we have assumed that the trace of w belongs
to L (0€2; duo). This has to be contrasted with definition where, thanks to

Proposition we only assumed that the trace is in L™ (8Rf )
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Chapter 4

Local renormalized Solutions in RYY

We now prove some preliminary results that will help us to obtain a renormalized
solution to in the sense of definition . We will mostly use ideas developed
in [9] for the case g = 0. Note however that the theory developed there only applies
to bounded domains and so it cannot be applied directly to our case. We circumvent
this problem by working locally, that is, we first obtain a sequence of solutions on
balls B,, of increasing radii and then we consider the behavior of these solutions on
any fixed ball B);.

As a corollary, we will prove the following theorem on the existence of local

renormalized solutions in RY.

Theorem 4.0.1. Let g € M, (RN) and 1 < p < N. Then there exists a local
renormalized solution to
~Ayu =i in RY .
4.1 Preliminary convergence result
Consider the following restrictions of a measure i € 91, (RN )
fim(A) i= (A0 Byy)
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where B,, is the ball centered at the origin of radius m. It is easy to see that

(Fim)o = (io), + ()T = (),

For each m € N we can use the results in [9] to obtain a renormalized solution
U, to the problem
—A Uy, = iy in By,
! (4.1.1)
Uy, = 0 on 0B,,.
Here and in the sequel we identify the functions u,, as functions defined on the whole

space extending them by zero outside of B,,. Note that since Tj(up,) € W7 (By,)
the extension satisfies T}, (u,,) € WP (RN ) Hence, by Remarks |3.3.2| and |3.1.5|, the

extension of u,, has a cap; , y— quasi-continuous representative in R". Clearly, up
to a set of zero capacity, this representative is the extension by zero of the cap; , n—
quasi-continuous representative of u,, given by Remark [3.1.5]

In the following lemma we show that we can extract a point-wise convergent

subsequence from {u,,}, . The argument follows closely the ideas used in Section 5

of [A].

Lemma 4.1.1. Let 1 <p < N. Let v,, €M, (]RN) be a sequence of measures such
that |vm| (Bn) < Cy < oo for allm € N. Let u,, be renormalized solutions to
with data v,,, i.e.,

—ApUy, =V, 0 By,

Uy = 0 on 0B,,.

Then there exists a function u such that, up to a subsequence, U, — u a.e. in RY.

Moreover :

(1) w is measurable and finite capy p n — q.€., Ti(ty) — Ti(u) weakly in WP (Byy)
for any fized k > 0 and M € N, and VT}(uy) — VTi(u) a.e in RN for any
k>0,

41



(2) Vu, — Vu a.e. and \Vum|p_2 Vi, — ]Vu]p_z Vu strongly in (L9 (BM))N for

anyMeNand1§q<%;

(3) [ul""" € L{,. (RY) forall1<q<NL_p (1<g<ooifp=N)

loc
Proof. To begin we note that each u,, satisfies the estimates stated in Theorem [3.1.6
uniformly in the sense that they hold with |v,| (B,,) replaced by C;. Now fix any

M e N, k€ N, and ¢ > 0. Observe that {z € By : |uy, — u,| > o} is contained in

{x € By : |um| > k}U{z € By |uy| > k}U

{z € By : |T(um) — Ti(upn)| >0}, (4.1.2)

Thanks to (3.1.3) and the measure of the first two sets is arbitrarily small,
independent of m and n, provided k is large enough.

Since for each fixed k estimate gives an uniform bound for ||VT}(um)]| .,
we conclude that the sequence {7y (u,)},, is uniformly bounded in W'» (B),) for any
fixed k and M. Since the injection WP (By;) < LP (Byy) is compact, this means
that {T}(um)},, has a subsequence that converges strongly in L? (B);), and hence,
that it is a Cauchy subsequence in measure in B);.

Now take k = 1 and apply the above argument in B),; to obtain a subsequence
{tma},, C {um},, such that {T1(up,1)},, is a Cauchy sequence in measure in By;.
Since {um,1},, has the same properties as {uy,},,, we fix k = 2 and apply again the
argument above to obtain a subsequence {um 2}, =~ C {tm1}, such that {T5(umz2)},
is a Cauchy sequence in measure in Bj;. Proceeding inductively, we see that we
can define a diagonal sequence {u;,}, . Going back to (4.1.2)), it easy to see that
this sequence, which we relabel as {u,,}, , is a Cauchy sequence in measure. Hence,
passing to a subsequence, there exists a measurable and a.e. finite function vy, such
that w,, — vy a.e. in By;. Proceeding in a similar way, but now with respect to
M € N, we can obtain a subsequence {tym}, C {tm},,, such that for every M € N

Uy, — Upr a.e. in By, Relabeling this subsequence as {u,,},,, we see that there exists
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a measurable and a.e. finite function v such that
U — u a.e. in RY

satisfying u = vy a.e. in Byy.

We now consider the properties of the limit function. Note that since Tj(s)
is continuous we have Ty (u,,) — Tx(u) a.e. in By;. Estimate implies that
{T)(um)},, is uniformly bounded in WP (By) for any fixed k& > 0. Thus, for
any subsequence {Tk(umj)}j a further subsequence converges weakly in WP (By)
to a limit function vy. But Tp(u,,) — Tk(u) a.e. in By, which implies (by the

boundedness of the sequence) that v, = Ty (u). Therefore
Ty (um) — Ty (u) weakly in WP (By) for any fixed k > 0.

In particular

Tyw(u) € W' (By),

and thus for any £ > 0
Ti(u) € WP (RY).

loc

Let us make explicit that this allows us to define Vu in the generalized sense described

earlier. Also, using (3.1.2)) and Fatou’s Lemma we further conclude that

1

/ IV Tsn(w)|’ dx < Cy. (4.1.3)
k {n<|u|<n+k}NBy

Now we want to show that for any fixed k > 0 and M € N, {VT\(up)}m is a
Cauchy sequence in measure in Bj;. For this we follow the approach in the proof of
Theorem 4.3.8 in [25]. Fix any M € N, k£ > 0, and ,0 > 0, and let m,n > M + 1.
Choose any ¢ € C§° (Bys41) such that ¢ = 1 in By and 0 < ¢ < 1. For § > 0 we
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define
Dy = {|Tx(tm) = Tiun)| > 8}, By = D5 0 {|VTi(t) = VTi(un)| > 0}

and observe that

{|VTk(um) — VTk(Un)| > U} C DsU Es.

Let w = ¢Ts (Ty(um) — T(uy,)) and test against w in the equations solved by the
truncates Tg(uy,) and Tg(u,) (see Remark [3.1.4)) to find that

/ (|VTk(um)|p_2 VT (tn) — [V T () [P2 VTi(un)) - Vwdz| <
By

0 (2 lpol (Bar1) + M (Barr) + A (Barat) + AL, (Bara) + A, (Barer))

for some measures Aim and )\in converging in the narrow topology of measures to
(), and (uf),, respectively, as k — oco. By testing against T (u,,) in the equa-
tion solved by T}(u,,), and using estimate (3.1.2)), we obtain that )\im are bounded
independently of m. Hence, the right hand side in the above inequality is bounded
by dcy where ¢; = ¢ (k, C}) is independent of m and n. On the other hand,

/B Ts (Te(tm) — Tio(tn)) [V i ()P~ V() - Voda| <

-1
6 [VTi(um)| ZP(BMH) ||V¢HLP(BM+1) <06y

where, again by (3.1.2), co = ca(k,p, ¢, 1) is independent of m. Then, using the
structural inequality ([5.1.3]), we can proceed as in the proof of Theorem to show
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that

/ VT () — VTi(u,)| do <
BunDS

cs / (VT () P2 VT () — [V T (wn) P72 VT (un) ) (VT () — V(1)) dae
B]wﬂDg
where ¢35 = c3(k, p, C1) is independent of m and n. Hence, by combining all the above

estimates we see that

1
P JBunDg

o

cs(er + c2)) |

oP

and so we can choose 0 > 0 independent of m and n such that |Es N By| < n. Since
{Ty () }m is a Cauchy sequence in measure in By, once ¢ is fixed we obtain that
|Ds N Bys| < mif m and n are large enough. Hence, the desired result follows. Note
that we also obtain that there exists a subsequence such that VT} (um]) — v, a.e. in
Byy. Since VT, (uy,) is uniformly bounded in (L? (By))" we conclude that in fact
v = VT (u).

Now, noticing that {x € By : |Vu,, — Vu,| > o} is contained in
{z € By : |um| >k} U{x € Byt |un| > k}U{x € By 2 |[VTi(uy) — VIg(u,)| > o}

we proceed as before to obtain that, passing to a subsequence, Vu,, converges a.e.
to a function v in By;. Note that for fixed £ > 0 we can choose a subsequence to

obtain

Ul <ky = M NV X <ky = MVl Xl <k} X [u, | <k}

= lm VT (tm,)X{jul<ty = VIk(u)

Jj—o0
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a.e. in B);. Therefore

Vu, = Vu a.e. in RY.

It then follows that in fact, for any k > 0, VT} () — VTi(u) a.e. in RY. Moreover,
the identity (3.2.1) and the uniform decay estimates of Theorem imply that
the family |Vu,,|" ~?Yu,, is uniformly integrable over By, (see also Step 1 of Section

5 of [9]). Hence, by Vitali’s Theorem it follows that

IV t|? % Vit — [Vt 2V in (L9 (By))Y forall 1< ¢ <

N-—-1

In particular

loc

[Vul™" € Lf, (RY) forall 1 <q <

In the same spirit one can show that

luP~' e LY

loc

(]RN) forall 1 < ¢ < N]ip

when p < N, whereas

lufP~' e L¢

loc

(RN) forall 1 < g < o0

when p = N (see Remark [3.2.5]).
To finish the proof we show that w is finite cap; , v — g.e. in By for all M € N,

and thus in the whole RY. Fix M € N. By estimate (3.1.3) and (3.1.5) we can
choose ky > 0 such that for all £ > ky and for all m € N

1
[{lm| > B} < £ Byl
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Thus, we can estimate

/ Ty ()| dz = / T ()| dz + / T ()|
By By {lum|<k} By {|um|>k}

1 3
< k|Bul + 2k | Bu| = Sk|Bul

for any k > k. Let us define the following averages:

1 1
Tk(um)d:c , Ck.M -

= M= Ty (u).
Bl J Bl J

Ck,m,M -

Note that by Lebesgue’s Dominated Convergence Theorem we have

Ck. M = lim Ckm.M
’ m—oo

and by the above estimate we get

3
ek ] < 5/’{7

for any k > kq. Now, to finish, we can proceed as in the proof of Proposition |3.3.7]

Top (u)—car, M O

by considering the function ¢ = S —

4.2 Stability

We now consider the problem of showing that the limit function u defined in the
previous lemma is a local renormalized solution of the desired equation. Since we will
deal with nonlinear terms later, it will be useful to prove a more general result. Let
us recall that if v € L' (B, N ORY) then, by Proposition vH € My (Byn) (see
also Proposition 2.3.3). We also remark that if a function u satisfies (1) in Lemma
then u has a cap; , n— quasi-continuous representative, which we identify with

u (see Remark [3.3.2)).
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Lemma 4.2.1. Let p € M, (RN) and assume ¢,, and g are measurable functions
defined in ORY such that ||9mHL1(BmmaRf) + ||gHL1(8R$) < () < o for some positive

constant Cy. Let u,, be renormalized solutions to

—Apty, = by — gnH  in By,

Uy = 0 on 0B,

where iy, is the restriction of i to B,,. Assume u, — u a.e. in RN, where u is a

function satisfying properties (1), (2), and (3) in Lemma|4.1.1. Suppose also that

lim OmGmdx’ :/ ogdx’ (4.2.1)
BunIRY By NoRY

m—r0o0

for any M € N and any sequence {¢,, },, converging to ¢ both a.e. in By and weakly
in WP (By) and such that ¢, is uniformly bounded in L (By;). Then u is a local
renormalized solution of

—Apu =i —gH in RY .
Moreover, Ty(um) — Tr(u) strongly in W' (Byy) for any fized k > 0 and M € N.

Proof. Since properties (1), (2), and (3) of Lemma hold, we have that u solves
the desired equation if we can prove the last property listed in Definition [3.2.1] We
show this first, following the approach of [17].

First we note that by Theorem we have (fin), = (fo),, = fm — div hy, in
D' (B,,) for some f,, € L' (B,,) and h,,, € (L (Bm))N. Note that this representation
is also valid in D' (Byy) for any m' < m and so (fr — div hin)|p , = (for — div ).
Then, by Lemma 3.1 of [I7] there exists a set U C (0, 00) with U of zero measure
such that each u,, satisfies the following condition: for every k € U there exists two
measures a;, ., . . € Mo (By,) supported in {u,, = k} and {u,, = —k} respectively,

such that up to a subsequence (possibly depending on m) o , — (ﬂm)si, as ke U

m,k

goes to infinity, in the weak-* topology of 9, (B,,), and the truncations Ty (u,,)
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satisfy

/ (VT () P2 VT3 (1) — i) - Vodz =
{lum| <k}

/ vdaoy), |, — / vdae,, |, + / U fndx — / vGmda’
{um=k} {um=—k} {lum|<k} {lum|<k}nORY

(4.2.2)

for every v € Wy (B,,) N L™ (By,).

Let us consider the convergence, in m, of the above terms. Given M € N let
Ey = {k€eRy:|{z € By : |u| = k}| > 0} and write Fyy = (Ey)°. Since |By| <
00, Ky is countable and thus of zero measure. Note that x{ju,.|<k} = X{jul<k} @-€. in
By except possibly in {& € By : |u| =k}, thus X{ju,.|<k} = X{ju/<k} @-€. in By and
weakly-x in L™ (Byy) for all k € F)y.

By hypothesis, we have that |V, [P Vi, — |[Vul’™? Vu strongly in (L' (By))™
for any M € N. It follows that

/ VT (1) P2 VT () - Vodz — / VT (w)|P > VTi(u) - Vodx
{lum| <k} {

lul<k}

for any ¢ € C§° (By) and k € Fyy. Similarly, for any such ¢ and k there holds

/ B - Vedz + / & frndr — / hays - Vdr + / ¢ frrde.
{lum| <k} {lum| <k} {lul<k} {lul<k}

Note that since g,, are uniformly bounded in L! (B VAR aRf ) so are the functions
ImX{|um|<k}- Then, up to a subsequence depending on k, there exist a measure

T, € My (RN ) such that
/ dgmdr’ — odTy,
{um|<k} By

for any ¢ € C§° (Bu).
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Now we turn our attention to the measures ai’ .- Just as in the proof of Theorem
4.1 in [I7] we can use the fact that f, and g,, and are uniformly bounded as measures

to conclude that for every m
|oz;;7k} (Bm) + |O‘;@,k| (Bm) < C(p,Ch)

for any &£ > 0 in some subset V' with |V¢| = 0, and where C' is independent of k or
m. Hence, for each k € V| there exists nonnegative measures A\ and A\, defined in

RY such that, up to a subsequence,
afmk — )\f weakly-* in 901, (RN) )
In particular, given ¢ € C§° (B)s) we can pass to a subsequence to conclude

odacs, — [ ¢dag,, — [ ed\— | edr;

B B By Bar

which implies, by the previous considerations, that for any ¢ € C3° (By) and k €
Ky=FynUinV

/{ <k} (‘VTk(U)VF2 VTi(u) — hy) - Vodz =

/ O fudx — odTy, + ddN} — Pd;, .
{lul<k} By By By
Note that |VTj(u)|["~" + |has| € L¥ (Bys) while far € 9 (By) N L' (Byy) and thus,

5,, belongs to My (Byr) and

by Theorem 2.2.1) —7; + A\ — )\,;|

w|<k;NBps

/ o farde + / od (— 4 NP - D) (42.3)
{|U|<k}mB]\/[ By
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for any ¢ € Wy (By) N L (Byy) and k € Ky,

Since w is capy , xn— quasi-continuous {z € By : |u| > k} is quasi-open, and thus
there exists a sequence of functions w,, € WP (RN ) such that 0 < w, < x{ju>k} and
wn T X{ju>k} caprpn — g-e. in RY (see Chapter [2). For any ¢ € C§° (By) we can
put ¢w, as test function in and conclude

Pwy,d (—Tk + )\; — )\,;) =0

B

for any k € Kj,;. Since (—Tk + )\kF — )\,;) € My (RN) we can pass to the limit

’B]\/I
using Proposition to conclude that for any k € K,

+ - _
(=75 + N = A gusignzy, =0

As above, let now w,, denote a sequence in WP (RN ) such that 0 < w,, < X{ju|<k}
and wy, T X{juj<k} Capipn—g.e. in RY. Let ¢ € C§° (Bar) and put ¢w, as test function
in (4.2.3)) with both £ and A > k in K, to conclude

pwpd (=70 + X = A;) = Pwad (—Te + N — Ay )

By B

and by passing to the limit

[ edCnaat-a) = [ sd(enear- )
{|u\<k}ﬁBM {|u\<k}ﬂBM

which implies

(=1 + X = A) (=7 + X = AL)

‘{|u|<k}ﬂBM - ‘{|u|<k}ﬂBM

for any h > k in K. As in the proof of Theorem 4.1 in [17], this allows us to define
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a measure vy € My (RN ) with support in Bj; such that

VO’{\uKk} = (_Th + )‘; o )‘l:) |{\u|<k}ﬂBM

for any h > k in K,;. Hence, if we define

vl = (=t A =) |{u=k}ﬂBM v == (N =) ‘{u:—k}ﬂBM
we can rewrite as

/{ . (|VTk(u)|p_2 VTi(u) — har) - Vodr =
u|<k;NBpr

/ o frvdx +/ oduy +/ pdv; —/ odvy,
{|u\<k}ﬂBM BMﬂ{‘u‘<k‘} {u:k}mBAJ {u:—k‘}ﬂB]\{
(4.2.4)

for any ¢ € Wy (By) N L>® (By) and k € K.
Let us now consider the measures vy, v, and v, . For any § > 0 let w;x(s) be

defined by

(
0 ,Ss<k—90
wir(s) = t(s—k+0) k—0<s<k (4.2.5)
1 Jk<s
\

and choose k € Ky, ¢ € C§° (Byy). Plugging ¢ws i (u) as test function in (4.2.3)) and

passing to the limit as 6 — 0 we conclude

1
lim

—/ (|VTk(u)|p72 VTi(u) = har) - ¢V T (u)dz =
60 0 {k—6<u<k}NBy

/ od (—me + N — Af) = / vt
{qu}ﬂB]u {U,:k’}ﬂB]\/I

Following the argument in the proof of Theorem 4.1 of [I7] we see that there exists a
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sequence of positive numbers k € K, going to infinity such that v;7 — v+ weakly-*

in M, (Byr) as k — oo, for some nonnegative measure v*. Choosing now

;

1 s < —k

wik(s) =i (=s—k+06) ,~k<s<-k+

0 ,—k+0<s
\
we obtain
1
lim ——/ (|VTk(u)|p72 VTi(u) = har) - ¢V Ti(u)dz = —/ odv,;
50 0 {—k<u<—k+d6}NBys {u=—k}NBp

and similarly conclude that, up to a sequence k& € Ky, v, — v~ weakly-* in
M, (Byy) for some nonnegative measure v-.

Next, let us note that by the very definition of u,, we have
/ VP> Vi, - Vodr = | ¢dfi — / PGgmda’
By B BMﬂE)]Rf
for any ¢ € C§° (Bys), m > M, and thus taking limit

/ \VulP > Vu - Vodr = odfi — / pgdx’.
By By Bk[ﬂaRﬁ

(Note that we have used the assumptions on g, with ¢,, = ¢). On the other hand,
for any such ¢ we can take a sequence k — oo, k € Ky, in (4.2.4)) to conclude

/ IVul" > Vu - Vodr = odfig + ¢dvy + pdv — ¢dv
By By By Bm By

where we have used that (fi),, = fum — div hjs in the sense of distributions. Thus
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we get

¢djis — / dgda’ = [ ddro+ [ ¢dvT — [ GdvT
B By NoRY B

By By

which implies fi, — gH = vy +vT — v~ in By,.
Consider now the function f3,(s) defined by

(
0 ,s<n
Br(s) = S;” n<s<?2n
1 ,2n < s.

\

For any nonnegative ¢ € C3° (Byy) we have ¢f,(u) € Wy (By) N L™ (Byy) and so
by (4.2.4) we have

/ Bu(w) (VT3 (w) [P~ VT (u) — har) - Voda+
{lul<k}n B
1

n /{|u|<k}m{n<u<2n}ﬂBM
-/ o8 fuds + [ oBa(win+ [ OB (u)dvjt
{‘u|<k’}ﬂB]\4 {|u|<k‘}ﬂBA/[ {u:k}ﬂBM

for k € Kj;. Using Lebesgue’s Dominated Convergence Theorem, the fact that
\VulP™" € L' (By), hay € (¥ (BM))N, the smoothness of ¢, the fact that u is finite

¢ (IVTi(w)["~* VTi(u) — har) - Vuda

capy pn — q.€., and that §,(k) = 1 for all £ > 2n we may take k — oo, for some

sequence of k € K, to conclude

1
B () [VulP~* Vu - Vodz + - / ¢ |Vul? dx

{n<u<2n}NBp

= Bn(uw)éd (fig + vo) + ddvt

By By

By

where we have used again Theorem to identify (fig),, = fm — div hyy for
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functions in Wy (Bys) N L™ (Byy). Since B, (u)xs,, — 0 weakly-* in both L™ (RY)
and L (RY;d (fio + 1)), thanks to Lebesgue’s Dominated Convergence Theorem

and Proposition [2.4.7] we can take n — oo and conclude

1
lim — o |Vull de = pdv™. (4.2.6)
N0 N J{n<u<2n}nBy B

On the other hand, if we go back to the definition of u,, and put w = £, (u,,)¢ as

test function with w™ = ¢, w=>° = 0, for k > 2n, we obtain

1

_/ |vum|p ¢d15 + /8n<um) |vum|p*2 Vum : VQSdIE
n {n<um<2n}ﬂBM BM

— [ 6B — /

By B ma]Rﬂ\_’

OB (tm) gmda" + / Gpdit. (4.2.7)

B

Note that since (3, is continuous we have (3,,(u,,) = 5,(u) a.e. in By, and so we can
pass to the limit in the second term above as m — oo. For the third term we use

that ¢S, (um) belongs to Wy* (Bys) N L>® (Byy) and Theorem m to write

OB (tm) frrdr + /Bn(um)ng-thva% / AV Top () - haydax.

B B BMQ{TL<’Mm<2n}

Then, by Lebesgue’s Dominated Convergence Theorem, and combining the fact that
Ty (Um) — Ti(u) weakly in WP (B)s) with Proposition|2.4.8| we see that we may also
take limit as m — oo above for almost every n € R,. Similarly, by the continuity of

B, and Proposition 0B (tm) — HBn(u) weakly in WP (Byy) for almost every
n € R,. Hence, since ||¢5, (u,)

(4.2.1)) to obtain

||, is uniformly bounded in m, we can use condition

ByNoRY

ByNoRY
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as m — oo for almost every n € R.
Thus, since we can take m — oo in the second, third, and fourth term in (4.2.7)),

we can use Fatou’s Lemma to conclude

1 1
—/ |Vul” pdz < liminf—/ Vi, |” pdx
n {n<u<2n}NBps m—oo T {n<um<2n}NBys

< - B (u) [VulP? Vu-Vodz+ | B(u)dfio— / GBn(u)gda'+ | pdfif

BJ\I BM BMHBR_,JY BJW
for almost every n € R,. Passing to the limit as n — oo as before yields

1
lim — (Vul’ pdx < pdiit,

=0 N Jin<u<2n}nBy By

and so comparing with (4.2.6) we obtain

¢pdvt < [ odi],

By B

which implies v < i in By,. Similarly, one can conclude v~ < ;. This implies in
particular that vt and v~ are singular with respect to cap; , n, and since fis — gH =
Vo + vt — v~ we conclude that vy = —gH. Recalling that i and f; have disjoint

support we further conclude v* = i and v~ = i in By;. In particular this allows

us to rewrite (4.2.4) as

/{ - (|VTk(u)|p_2 VTi(u) — hy) - Vodz =
u|<k;NBar

/ qude—/ ¢gda:’+/ Pdv;" —/ oy,
{lul<k}NBa {lul<k}NBu {u=k}NBy {u=—k}NBuy
(4.2.8)

for any ¢ € Wy (By) N L™ (Byy) and k € K).
We are now ready to finish. Let w € Wh* (R) with w’ compactly supported,
and let ¢ € Whr (]RN ), for some r > N, be compactly supported and such that
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w(u)g € WH* (RY). We write w(£00) = lim,_1o w(s). Choosing M € N large
enough we can assume w(u)¢ € Wy” (Byy) so that w(u)é is a valid test function for

(4.2.8) and thus

/{ |<k;}NB (IVul”™* V= har) - V (w(u)9) dz =

/ w(u)ofds — w(u)pgds’
{lul<k;}NBas {Jul<k;}NBas

—|—/ w(u)pdy —/ w(u)ody,_,
{U,:k‘j}ﬂBM ’ {uszj}ﬂB]\/j !

where we have chosen k; € Kjs to be the sequence such that Vkij — vt weakly-* as

kj — oo. Let 7 be such that w(s) is constant in (—7,7)¢. Then, if k; > 7,

/{ |<k;}NB (IVul"™ Vu —har) -V (w(u)g) dr =
/ (’Vu|73—2 Vu — hy) -V (w(u)g) de
{lul<T}NBaur
+ w(+oo)/ (IVul"™ V- hyy) - Voda
{7 <u<k;}NBum

+ w(—00) / (IVul’? Vu — hy) - Voda.
{—kj<u<—7}NBp

Since > N we have that r’ < %~ Hence, (|Vu|p_2 Vu —hy) -V € L' (By) and

since u is finite a.e. we take k; — 0o in the last two terms above and obtain

/{ |<k;}NB (IVul”™ Vu — har) - V (w(u)g) da —

/B (|Vu|p_2 Vu — hyr) - V (w(u)p) da.

We know that u is finite cap, , v — g.e. in By, and so X{lul<k;} — 1 capipn —g.e. in
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By. It follows that

/ w(u)ofrydr — / w(u)pgds’ —
{lul<k;}NBar

{|u|<kj}ﬁB]u

/ (s - [ wwogds

By ﬂaR_J'\_r

as k; — oo. Recall that ykij are concentrated in {u = %k;} N By, respectively. Thus,

assuming k; > 7, we use that ¢ € Cy (Byy) to conclude

odr* = w(zoc) [ odg?

By Bum

/ (o = (o) / 6 = u(o0) /

as k; — oo. Putting together all the above we get

/BM |Vl > Vu - V (w(u)p) dz = /

By

e

ByNoRY

+w(+00) [ ¢dif —w(—o00) [ ¢di, .
By By

Hence, by the results in [3], u is a local renormalized solution of —A,u = i — gH in
RY.

Now we show the strong convergence of the truncates. Fix M € N, k > 0, and let
¢ € C§° (By). By testing against Ty (u,,)¢ in the definition of u,, as renormalized

solution, for any m > M we have

& |VTi(um)|” dz + / Tio(tim) |Vt [P~ Vi, - Vo =

By By

By By By

— / ATy (Upy) grad” + / Ty (um)pdjig + k odipt —k odjiy .
By NoRY

o8



Similarly,

o VT, (uw)|P do + / T(u) |VulP > Vu - Voda =

B
[ omeds s [ Twodpok [ odit <k [ o
B]\/jﬂaRi\_] By B By

Comparing the above identities we have

By

& |VTi(u)|’ do — & |VTi(up)|" de =

B M B M

/ (ka(u)dﬁo—/ quk(um)dﬂo—i—/ ¢Tk(um)gmda:’—/ dT(u)gdz’
Bum Bu BuyNoRY By NoRY

— / Ti(u) [Vul’™> Vu - Vodz + / Tio () [Vt |2 Vi, - Vpdar.
By

By

Writing again (fi9),, = fu — div hy we use that ¢ € C5° (Byy) and that T (uy,) —
Ty.(u) weakly in WP (By) and weakly-x in L™ (Bj;) to obtain

/ Ty () dfio — T (w)dfio
By

By

as m — oo. Note that by condition (4.2.1])

/ ATk () gmdx' — ¢T(u)gda'
By NORY By NORY
as m — oo. Moreover, since |V, |’ Vi, — |Vul’"> Vu strongly in (L4 (By))"™
for some ¢ > 1, while Tj(u,,) — T(u) strongly in L™ (By) for any 1 < r < oo, we
get
/B Tio(tm) [Vt [P > Vi, - Vodz — [ Ti(u) [Vul’™> Vu - Vodx
M

By

as m — o0o. Hence,

lim & |VTi(up)|P dz = & |VTi(u)|’ dz

m—r0o0
Bum Bar
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for any ¢ € C§° (Bys), which implies that

WP_I}I;O Hka(um)HLP(BM/) = HVT]C(U/)HLP(B]\/I/)

for any M > M’ € N. Using the above, the inequality ||la + b| — |a| — |b|| < 2 |b| with
a = |VTi(un)|"—|VTi(u)[’ and b = |VTi(u)|’, and the fact that VT (u,,) — VTi(u)
a.e. in By, we obtain that |[VTi(u,)[" — |VTi(u)[” strongly in L' (Bys). Then,
by Vitalli’s Theorem, VT (up,) — V) (u) strongly in (L? (Byy))Y, from which the

claim follows. O
Proving Theorem [4.0.1]is now trivial:

Proof of Theorem[{.0.1 Let [i,, be the restriction of i to B,,. Since |fip|(Bm) <

it (RN ) < oo we can apply Lemma and Lemma with g = ¢,, = 0. O
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Chapter 5

Symmetric Solutions

5.1 Symmetry

In this section we show that any solution of the extended problem given by Theorem
must be symmetrical with respect to 8RJ+V whenever the measure i is supported
in ORY. This symmetry will allows us to recover a solution to the original problem,

i.e., equation (|1.0.1]).

Theorem 5.1.1. Let Q be any bounded domain in RN that is symmetric with respect
to the hyperplane ORQ. Let i € My, () be supported in aM N Q and let u be a
renormalized solution to

—Ayju=p inQ

u=20 on 0S.

Then u(z',xy) = u(2’, —zN) a.e. in Q.

Proof. In what follows we write QT = QN Rf and for any f defined in 2 we denote
by f* its reflection with respect to ORY, ie., f*(2/,zn) = f(2/, —zn).
Let us first show that u* is also a renormalized solution of the above problem.

Indeed, this is clear when we observe that if w is a test function with respect to u*
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then w* is a valid test function with respect to u. Hence we conclude

/ IV P Vu* - Vwds = / |Vul[""? Vu - Vw'dr =
Q 0

/wduo—l—/eroodu:—/w_oodu;
Q 0 Q

as required, since w* = w on 8Rﬂf and () is invariant under xy — —x .

To continue, let us note that Ty (u) — Tj(u*) € Wy P (Q) for any k > 0. Indeed,
since Ty(u) € Wy” (Q) we can choose a sequence ¢, € C5°(Q) such that ¢, —
Ti(up) in W (Q). Then ¢, — ¢% — Ti(up) — Ti(ul,) in WP (QF) and since
¢n — ¢4 € C(QF) N WP (QF) vanishes in 9QF we conclude ¢, — ¢ € Wy (QF)
and thus our claim follows.

By the equivalence of definitions of renormalized solutions (see Remark ,
we have that for every k& > 0 there exists two nonnegative measures A\, \;, € M, (Q)
supported in {u = k} and {u = —k} respectively, such that \; — ¥ as k — oo in

the narrow topology of measures, and the truncations T} (u) satisfy

/{ <k} VTi(w)["™* VTi(u) - Vode =
u|<

/ vd/\;—/ vd)\,:—l—/ vdip (5.1.1)
{u=k} {u=—k} {Jul<k}

for every v € Wy () N L*® (Q). In particular
XE () = i (2) = 0

as k — oo since jif is supported in 8Rf .

We now extend T}, (u) — T (u*) by 0 outside QF. Since Tj(u) — Ty (u*) € Wy (Q)N
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L> () is a valid test function for (5.1.1]) which vanishes in IRY N Q we get

/{ <k} |VTk(u)|p_2 VTk(U) -V [Tk(u) _ Tk(u*)] dr —

[ m-nena - [ @) - T
fu=k} fu=—k}

Arguing in the same way for u* we obtain sequences ()\f)* converging to it such
that (5.1.1)) holds with «* in place of u, and so testing against Tj(u) — Ty (u*) and

subtracting it from the previous equality we get

A+mmamwavnwy4vnmﬂwﬁvumﬂ-kuw—Tum»mz

/Q+ [Tk<u) - Tk(u*)] d)\,': — / [Tk(u) _ Tk(u*)] d)‘];

O+

—AJHM—E@W&&Y+L[E@—E@W&&W(M%

+
Using the well-known inequality

N
S (2P = 1K) (= G) >

=1

L — P if p>2
5 (2) T (5.1.3)

(1) [z = CP (el + ey, ifp<2

for some v > 0, it follows immediately from (5.1.2)) that

/ VT (u) = VT (u*)|" doe <
QO+

Cp)k [N () + A7) + [0 (27) + [ (27)]
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when p > 2. When 1 < p < 2 we use Holder’s inequality first to get

/ VT (u) — VT (u)]P de =
O+

VT (u) — VT (u)]? Tl o (VT g <
/Q+ (‘VTk(u)‘ + \VTk(u*)])§(2_p) (| ( )| | ( >|) =

VTiw) - V)P | ) )
{/m (|VTk<u)|+|VTk<U*)|)2_pd } {/m(WTk( )|+ VT (u?)])" d }

which then by (5.1.3), (5-1.2), and (B1.2) yields

QO+

[MIS]

c{ [ [Vl 9T - [FH() P V)] - V i) - Tifu) o

2—p
2

x {k |7 ()}
< Ok [N (2F) + X[ (@F) + [N (2F) + ()

(@]
Thus we see that for any 1 < p < N there holds

1
—/ VT (u) — VT (u*)|” de — 0
ko

as k — oo. By symmetry, the same is true in QNRY = Qn{(2/, zy) € RY : x5 < 0}.
Hence we can apply the partial uniqueness result stated in Theorem 10.4 of [9] to

conclude that v = u* a.e. in €. O

5.2 Existence from symmetry

Now we are ready to prove an existence result for problem ([1.0.1]) in the case g = 0.

We will state it as a corollary to the following theorem.

Theorem 5.2.1. Let 1 <p < N and € M, (8]Rf). Suppose u is a local renormal-
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ized solution of —Ayu = 2u in RN that is symmetric with respect to the hyperplane

ORY. Then the restriction of u to RY is a renormalized solution of

—Apju=0 in RY

VulP 2w, =p  on ORY,

Proof. 1t is clear from the definition of local renormalized solution that the restriction
of u to RY satisfies conditions (1), (2), and (3) of Definition m Hence, we only
need to show that (5) holds.

Assume that w € W (RY) has compact support in RY and trace in L (ORY)

and there exist k¥ > 0, r > N, and functions w*>* € W' (RY') such that
w=w" q.e. in {xERf:u>k}
w=w"" a.e. in {zeRﬂ\::u<—k‘}.

Choose L such that |w| < L a.e. in RY and |w**°| < L in RY. Let us extend w and
w*>® to RY by even reflection, i.e., w(2, xy) = w(a2’, —xy) for xy < 0 and similarly
for w*>. Note that since u is symmetric with respect to IRY we have

w=w" aein {zeRY : u>k}

w=w"" qa.e. in {xERN : u<—k:}.

Next, we let

0 ,$N<O
P = xTN ,0<zy <e
1 ,e< TN
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and

(

0 ,.TN<—E
U= mte ey <0

\1 ,OSIN

Then for any [ > L we see that T)(w)¥. € W? (RV) N L> (RY) is an adequate test

function and thus we get

1
/ U, |Vul" > Vu - VT (w)dz + = / Ti(w) |Vul"~? ug, dz =
RN {—e<azn <0}

€

2 / wd,uOJr/ w+°°dps+—/ w-dpy .
ORY ORY ORY

By now taking 7;(w)®, as test function we get

€

1
/ O, |Vul' 7 Vu - VTj(w)dz + = / Ti(w) [ VulP " uy, dz = 0.
RN {0<zny<e}

By the symmetry of u we have that u,, (', zy) = —u,, (2', —zx) and so

1 1
—/ Ti(w) |Vul" > ug, dz = ——/ Ti(w) |VulP > uy, d.
{—e<zn <0} {0<z N <e}

€ €

Adding up the previous equalities we conclude

/ U, [Vul'~ W-VTl(w)dx+/ O, |Vul"? Vu - VI (w)dx =
RN

RN
2 / wduo—l—/ w+°°duj—/ w=dp;
ORY ORY oRY

and by Lebesgue’s Dominated Convergence Theorem we let € — 0 to obtain
/ \Vul""? Vu - VTi(w)de = / wdpy + / wtdul — / w™du; .
RY ORY ORY oRY
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Writing

/ \Vul""? Vu - VT (w)de = / VT (w)|P 2 VT (u) - VT (w)dz+

RY RY N{ul<k}
/ IVul" > Vu - Vuwt®dz + / \Vul|P > Vu - Vo~ ®dz
RYN{u>k} RYN{u<—k}

we use the fact that VI;(w) — Vw weakly in (L? (Rf))N to take | — oo above,

and so conclude

/ IVu| > Vu - Vwds = / wdjiy + / wtredul — / w > duy
RY ORY ORY ORY

thus completing the proof of the theorem. n

Theorem 5.2.2. Let 1 <p < N and p € M, (8]1%5). Then there exists a renormal-

1zed solution to

—Ayju=0 in RY
-2
IVul"“u, =pu  on ORY.

Proof. Apply Theorem to obtain a local renormalized solution to —A,u = 2u
in RY. By the construction of u, and in view of Theorem [5.1.1} u is symmetric
with respect to GRf . Then the result follows from an application of the previous

theorem. []
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Chapter 6

Nonlinear problems with

absorption

6.1 The subcritical case

We now consider the problem of finding renormalized solutions to problem (|1.0.1))
with a nonlinear term g(u). The fact that g(s) is subcritical is expressed in the

following assumption.

Assumption 6.1.1

(1) g : R — R is a continuous function such that g(s)s > 0.

(2) Define g: Ry — R by g(s) =sup,_, 4 |9(t)]. If 1 <p < N we assume
L _pN-2)41
/ g(s)s™ N ds < oc.
1

If p = N we assume that there exists 7 > 0 such that

/ G(s)e™™sds < oo.
1
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Remark 6.1.2 In the special case when g(s) = [s|" s, ¢ > 0, Assumption m

holds whenever
(N-1)(p—1) :
N—Z ,ifl<p< N

q <
00 , if p=N.
Hence, we say that ¢.:= (N — 1)(p — 1)/(N — p) is a critical exponent for problem
(1.0.1), and the problem is subcritical whenever g < ¢..

We will use the tools developed in Chapters [4] and [5] to obtain a renormalized
solution of ([1.0.1)) as the limit of renormalized solutions to

—Aju=pu—g(u)H in B,
pu = — g(u) (6.0.1)

u =0 on 0B5,,.

To find solutions of the above problem we use the theory developed in [25] for the
equation

—Au+g(r,u)=p in €2
i+ gt u) (6.1.2)

u=0 on 0f

in bounded domains. In order to pass from (6.1.2)) to (6.1.1)) we apply the theory for

problem (/6.1.2)) to a sequence g, (z, u) obtained by multiplying g(u) by an adequately
chosen sequence (,(zy), and then show that the associated sequence of solutions

converges to a solution of problem (|6.1.1).

We define ¢ € C* (R) as

m):%(lit?)'

Note that ||¢||;: = 1. Then, for n € N we define
Ca(t) = nC (nt) , gn(r,5) = Calwn)g(s). (6.1.3)
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We start by defining renormalized solutions to problems (6.1.1)) (in a general
bounded domain ) and (6.1.2)).

Definition 6.1.3. Let €2 be a bounded domain, € 9, (2), and g : R — R. Then
a function u defined in € is a renormalized solution to problem if u is finite
a.e. in QN ORY, g(u) € L! (Q N aM) and v is a renormalized solution to problem
(3.1.1) with datum g — g(u)H in the sense of Definition |3.1.2]

Similarly, if g : 2 x R — R then a function u defined in € is a renormalized
solution to problem if g(x,u) € L' () and u is a renormalized solution to
problem (3.1.1)) with datum g — g(z,u) in the sense of Definition .

The following result is obtained in the proof of Theorem 5.1.2 in [25] by testing

against ws = tanh(sTy(u)), s > 0, and taking s — oo:

Proposition 6.1.4. Let u be a renormalized solution to problem (6.1.2), where g(z, -)

is continuous and satisfies g(x,s)s > 0 for all x € Q and s € R. Then

/Q 9, w)] de < |11 ().

The next lemma collects some relationships between capacities and Lebesgue

measure.

Lemma 6.1.5. Let 1 < p < N. There ezists constants C1(M, N,p), Co(M, N, p),
Cs(N,p), and Cy(M, N, p) such that for all Borel sets E C By C RYN there holds

D=

(1) |[ENORY| < Cicapy_1 , n_y (ENORY)?,

3=

(2) |E] < Cacapypn (E)7,

(3) capy_1 y—1 (ENORY) < Ccapyyy (E),

B =

(4) |Eﬂ {lL‘N == t}| S C4cap17p’N (E) .
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Proof. The first two inequalities follow from (the proof of) Proposition 2.6.1 of [10],
while the third is just Proposition [2.3.2] The last one follows from (1), (3), and the

translation invariance of both the Lebesgue measure and capacities. O]

Now we obtain estimates similar to (3.1.3)) and (3.1.5) but on hyperplanes. We

note explicitly that any cap; , y— quasi-continuous function on RY has a well defined
cap; 1, y_1— quasi-continuous trace in any hyperplane RN x {t}, t € R (see the
p? b

above lemma and Remark [2.4.2)).

Lemma 6.1.6. Let f be cap;, n— quasi-continuous in RY and such that Ty.(f) €

Wy (By) satisfies

1
E/ VT dx < .
{IfI<k}NBn

If 1 < p < N then there exists a constant C(N,p, Byr) such that for any t € R

N=1 (N-1)(1-p)

{w € Bunan =t} © |fl > K} < OV, p, Ba)Cr P k55
If p = N then there exists constants C(N, Byy) and ¢(N) > 0 such that for anyt € R
=~
{z € By n{zy =t} 1 |f| >k} < C(N, By)e “WHE T

Proof. Suppose 1 < p < N. By Sobolev’s embedding (see [21]), trace inequality, and
. . . _ p(N-1)
Poincare’s inequality, we have for ¢ = ”N—_p that

HTk(f)“Lq(BMﬂ{xN:t}) < C(N7 p) HTk(f)HFlp’_pl(BMﬂ{xN:t})

< C(N,p) ||Tk(f>HW1>p(BM)
< C(N,p, By)(kCy)7
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Since {|f| > k} = {|Tx(f)| = k} we conclude

IT:(H)ll,

|{.’I? € By N {IN :t} : |f| > /{Z}| < (T) < C(N,p7 BM)C’?]{;<%_1)Q

which finishes the proof for the case p < N. When p = N, the results in [6] show

that

_N_

o (o)

/ . T DTN (5,) dz" < ca(N, Bu)
Byn{zn=t}

for some constants ¢;(N) and cy(N, Byy). Since |Tx(f)| = k whenever |f| > k and
IVTi(f)]ly < (kC1)V we conclude

1

Cl(lTw)l>N1
/ . INTe DN (B dr’ < ¢
{zeByn{an=t} : |f|>k}

which gives the desired bound. [

Remark 6.1.7 Let us note that, in exactly the same way, one can prove that for

any such function f there holds

1

{z € Bur: |f] > k}| < C(N, Byy)e R

when p = N. The fact that ¢(/N) does not depend on Bj; will be important to us
when proving Theorem [6.1.12]

Next we prove a lemma that will allow us to obtain solutions to (6.1.1)) from
solutions to ([6.1.2]) under very general conditions.

Lemma 6.1.8. Fiz m > 0. Suppose g satisfies part (1) of Assumption let g
be defined as in part (2) of Assumption and let g, be defined by (6.1.3)). Let

Uy — U a.e. in By, where u,u, are capip n— quasi-continuous in RYN. Assume also
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that Tp,(un) — Ti(u) weakly in Wy'* (By,) for any k > 0. Define

5.(n, h) = / i(lual) (@, £)da’
BN {|un|>h}N{zn=t}

and

o(h) = 9(Jul) (@', 0)dx".

/Bmﬂ{|u|>h}m{x1\r:0}
If 64(n,h) — 0 and 6(h) — 0 as h — oo, uniformly in t and n, then

lim gbngn(x,un)dx:/ og(u)dx’
n— JB,, BmNORY

whenever {¢y}, is a bounded subset of L (B,,) such that ¢, — ¢ both a.e. in B,
and weakly in I/VO1 P(By,). Here ¢ is identified with its capy, n— quasi-continuous

representative in RY.

Proof. We first note that ¢ € L*(B,,). Now, for any n and k we write E¥ =
{|lu,| < k} and E*¥ = {|u| < k}. We note that

/ 6] 190 (2, 1) — g (@, Ti (1)) d = / 160 Golm) lg(un) — (T

Bm (E)

and since sup|_y ) |9(s)| = §(k) we estimate

/(Ek)c |nl Culan) [9(un) — g(Th(un))| d < 2 ||¢n|!oo/( " o3|tV

n n

where we have used that [T (u,)| = k < |u,| in (EX)°. For all n we can estimate

/( L G < feo[f e ]

:/Rgn(t)at(n, B)dt < [[Gally 10:(n, %)l -
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and since d(n, k) — 0 uniformly we conclude
[ Glamatualiz -0
(£8)°
as k — oo uniformly in n. In a similar way we can write I' = B,,, N\ORY and estimate

/F 161 19(u) — 9(Ti(w))] da’ = / 18] lg(w) — g(Tu(w)| < 28]l 6(k) = 0

n(E*)

as k — oo. Thus, collecting the above estimates we have

/mgn(%un)%dw—/rg(u)gbdx’

< wy (k) + w(k) + (6.1.4)

[l Titun))nd - /F o(Te(w))ods!

for some functions w(k) and w, (k) such that w(k) — 0 and w,(k) — 0 as k — oo
uniformly in n. Note that we have used that ||¢, ||, are uniformly bounded.

Fix now any € > 0 and let go € C" (R) be such that sup,c_ 4 190(s) — g(s)] < e.
Then

< [[9nllo C(m, N)e

5 anCn(xN)g(Tk(un))dx - gann(xN)gO(Tk(un»dx

Bm

and

; PG (@n)g(Th(w))de — | ¢Cu(xn)go(Th(u))dx

Bm

< |9l C(m, N)e.

On the other hand, since gy € C' (R) has bounded derivative in [—k, k] we see that
9(Ti(w)) and g(Tx(u,)) belong to Wy (By,) N L>® (B,,). It is easy to show, by using
density of C* (B,,) in W'? (B,,) N L” (B,,), that

/ \IllaN\Ilgdl’ = —/ \PQaN\IfldI
BTIL

B m
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for any pair of functions ¥y € Wy* (B,,) N L> (B,,) and ¥y € W' (B,,) N L>® (B,,).
We also observe that

Gu(t) = %@ arctan(nt)

and let

To(x) = = arctan(nzy).

Then, using that ¢, is smooth, we can write

Co(2n) (Dngo(Th(un))dz — go(Th(w))) dv = —(A) — (B),

Bm

where

(4) = / 7o [(On¢n)go(Th(un)) — (On @) go(Ti(w))] dx

m

and

(B) = / o [0y (Ti(0)) O T (1) — db(Ti () On T ()] de.

m

Note that 7,(t) — 3 <é—|> =: 7(t) and go(Tk(un)) — go(Tk(u)) strongly in L" (By,)
for any 1 < r < oo since 7,,, go(Tk(u,)), 7, and go(Tx(u)) are uniformly bounded
in L= (B,,). Similarly 7,,go(T%(u,)) — 7g0(Ti(u)) strongly in L¥' (B,,). Thus, since

(On®)go(Tk(u)) € LP (B,,) and On¢,, — On¢ weakly in LP (B,,) we conclude
(A) =0

as n — oo for any fixed £ > 0. Recall that ¢, — ¢ a.e. in B,,. Since ¢,, ¢,
90(Tr(uy)), and g4(Tk(u)) are uniformly bounded in L* (B,,), we conclude as above
that 7,0n96(Tk(un)) — TOgh(Ti(u)) strongly in L (B,,). Since OxTi(uy) — OnTi(u)
weakly in L? (B,,) we conclude

(B)—0

5



as n — oo for any fixed k > 0. Collecting the above we can rewrite (6.1.4)) as

< wp(k) + w(k) + wg(n)

/ () /F g(u)pds’

+eC(m, N) (I6all, + I161L0) + \ [ ot Titwpons — [ oftiuonr

(6.1.5)

for any € > 0, where wy (n) is a function such that wg(n) — 0 as n — oo for any
k>0 and € > 0 fixed.

To continue we observe that since both ¢ and u are cap; , y— quasi-continuous
in RY, given ¢ > 0 we can find a closed set Qg such that u,¢p € C(€) and
capy pn (25) < €. Then, g(T)(u)) and ¢ are uniformly continuous and bounded

in Q = QyN B,,, and we can find ¢, small enough so that
62", 2n) g(Th(w) (2, o) — ¢(2’, 0)g(Th(w)) (2, 0)] <€
for any (2/,zn) € QN {|zn| < to}. We can also assume ¢y is such that
(T xR)\ By) N{ay =t} <€

for all |t| < to. Note that HX{|t|>t0}Cn — 0 as n — oo for any ¢y > 0. Then, we

[

write

b (2, Ti(w))d — /F b9(Th(w)da

Bm

Ggn(x, Te(u))dz — Gn(2n) (09(Ti(w))) (2", 0)dz

Bm, I'xR

< Gnlzn) [0z, 2x)g(Th(u)) (', 2n) — B(2, 0)g(Tk(u)) (', 0)] da,

I'xR
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and estimate

/“ Calw) [6(2", 2 g (T (W) (2! ) — (a’, 0)g(Tu(u)) (&, 0) | dax <
IxRO(QN{|zn[<to})

eC(m, N)

and

/FXRO({l >to]) Cn($N> ‘¢(3}/71‘N)9(T]€(U))(3;’, xN) — ¢(l‘/, O)Q(Tk(u))(:zz’, 0)| dr <

10/l o0 G(k) || Xglzn1>t0}Cn | 11 -

In view of Lemma [6.1.5] we also have

/ Gulan) [(2", 2n)g(Ti(w)) (2", wn) — (2',0)g(Th(u)) (2", 0)| d
IxRA(QeN{|zx|<to})

to

<l ak) [ <) 195 N {an =t} + |((T x R)\ By) N {zy = t}|] dt

—to

< (e5C(m, N.p) +€) 0] 3(h)

Note that we have used that ||¢(2’, 0)||, < ||¢]l., (see Proposition(2.4.5)). Considering
the above estimates we obtain from (6.1.5)) that

< wy (k) + w(k) + wee(n)

/ () /F g(u)pids’

+enC (m, N,p, k), [6]lo - [ 6nll.)  (6.1.6)

for any 0 < € < 1, where wy,(n) is a function such that @y (n) — 0 as n — oo for

any fixed k£ > 0 and € > 0. Thus, taking k large enough and then choosing ¢ small
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enough, we see that for any 6 > 0

<9

/ ()6 [ stwoas

for all n large enough. Hence, the result follows. O]

When g, (z, u,) — g(u) in L' (B,,,), renormalized solutions to —A,u,+gn (7, u,) =
fi converge to a solution of —A,u + g(u) = i by the stability result of [9] or [17].
Since in our case the convergence is not quite in L' we cannot simply use the same

result. To pass to the limit, we use the following stability result.

Lemma 6.1.9. Fiz m > 0. Let u, be renormalized solutions of

—Apuy + gn(z,u,) =i in By,

U, =0 on 0B,

where fi € My, (Bm), gn(x, s) is defined by (6.1.3), and g satisfies Assumption [6.1.1]

Suppose u, — u, VI (u,) = VIi(u), and Vu, — Vu a.e. in B, where u satisfies
condition (1) and (2) of Definition and is capyp N — g-e. finite. Assume also
that

IV, |P ™2 Vu, — |VulP > Vu strongly in (LT (By))™ for any 1< ¢ < N1

Tio(tn) — Ti(u) weakly in Wy (By,)

and

lim c;Sngn(x,un)da::/ og(u)dx’ (6.1.7)
"7 JBm BrmNORY

whenever {¢,}, is a bounded subset of L™ (B,,) such that ¢, — ¢ both a.e. in By,
and weakly in Wy (By,). If g(u) € L* (B,, N ORY) then u is a renormalized solution
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—Apju+gw)H=p in By,
u=20 on 0B,,.

Moreover, Ty(uyn) — Ti(u) strongly in Wy (By,) for any k > 0.

Proof. Note that since properties (1) and (2) of Definition hold, to prove that
u is a renormalized solution of the above equation it is enough to show that (3) also
holds. Since we essentially repeat, with a few modifications and simplifications, the
argument used to pass to the limit in the proof of Theorem 4.1 in [17] we only point
out the main ideas (see also the proof of Lemma [4.2.1)).

Before we begin, note that by choosing ¢, = ¢ we have
fim [ dga(euds= [ oglu)ds
"7 J B BmNORY

for all ¢ € W, ” (B,,) N L (By).

Now, by Theorem jio = f —div h in D' (B,,) for some f € L'(B,,) and
he (L¥ (Bm))N. Using Lemma 3.1 of [I7] we obtain a set U C (0, 00) with |U¢| =0
such that each u,, satisfies the following: for every k£ € U there exists two measures
an g, g € Mo (By,) supported in {u, = k} and {u, = —k} respectively, such that
up to a subsequence (possibly depending on n) aik — T, as k € U goes to infinity,

in the weak-* topology of 9, (B,,), and the truncations Ty (u,,) satisfy

/ (IV Tk (un) [P VT (u,) — h) - Vode =
{lun|<k}

/ vfdx—/ vgn(ﬂc,un)dw+/ vda;k—/ vda,, . (6.1.8)
{lun|<k} {lun|<k} {un=Fk} {un=—k}

for every v € Wy (B,,) N L™ (B,,).
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We consider the convergence of the above terms as n — co. Let
E={keR,:|{z € B, :|u =k} >0}

and write F' = (F)°. Since |B,,| < 0o, F is countable and thus of null measure.
Note that X{ju,|<k} = X{jul<k} @-€- in By, except possibly in {z € By, : [u| = k}, thus
X{lun|<k} = X{|u|<k} @-€.in By, and weakly-* in L*> (B,,) for all £ € F'. Then, as in

Lemma [4.2.1], we can show that

/ VT4 () P2 V() - Vodz — / VT (W) VT(u) - Voda
{lun|<k} {

lul<k}

and

/ h-v¢dx+/ ¢fdx—>/ h.v¢dx+/ o fdx
{Jun| <k} {Jun| <k} {Jul<k} {ul <k}

for any ¢ € C§° (B,,) and k € F.
By Proposition [6.1.4] we see that for each £ > 0

[ lonteun)lds <1l (B,
{lun|<k}

Hence, for each k there exists a measure 7, € 9, (B,,,) such that, up to a subsequence

possibly depending on k,

/ ¢gn<x7 un>dx — ¢d7—k
{lun|<k}

Bm

for any ¢ € C§° (B,). Similarly, following the argument in the proof of Theorem 4.1

in [I7], we can conclude that for every n

| k| (Bm) + |a i (Bm) < C(N,p, 1)
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for any k& > 0 in some subset V' with |V¢| = 0. It follows that for each k € V' there

exists nonnegative measures A} and ); such that, up to a subsequence,
+ + :
O — Ay weakly-x in 0y, (By,) -
In particular, given ¢ € C§° (B,,,) we can pass to a subsequence to conclude

(bdoz;k—/ ¢dan7k—>/ qbd)\,j—/ odN, .
Bm Bm Bm B

Then, collecting all the above, we get that for any ¢ € C5°(B,,) and k € K =
FnunvVv

/{ - (IVTe(u)|P> VT (u) — h) - Vodr =

[ s [ ont [ oai- [ o
{|u|<k} B B Bm

From the above we see that —7; + A — A, belongs to W~ (B,,) + L' (B,,) and so

/ (IVTe(u)["™* VTi(u) — h) - Voda =
{lul<k}

/ o fdx +/ ¢d (= + X = A,) (6.1.9)
{ul<k} B

for any ¢ € Wy (B,,) N L>® (B,,) and k € K.

Since w is capy p n — g.e. finite, it follows that {x € B,, : |u] > k} is quasi-open,
and we can find a sequence w, € WP (RN) such that 0 < w, < X{u>k} and
wn T X{ju/>k} Capipn — g.e. in RN, For any ¢ € C5° (B,,) we can put ¢w, as test
function in and conclude

dwnd (=7, + N — A ) =0

Bm

81



for any k € K. Taking n — oo we conclude that for any k € K

(=76 + M =) \{|u|>k} =0.

Letting now w, be a sequence in WP (RN) such that 0 < w, < X{ju/<ky and
Wn T X{lul<k} CaP1pN — q.€., We put ¢w, as test function in (6.1.9) with both k and
h > k in K and take n — oo to conclude, as in the proof of Theorem 4.1 in [I7],

that there exists a measure vy € My (B,,) such that

1/0’{|u\<k} = (_Th + A — )‘;) |{\UI<k}

for any h > k in K. Hence, defining

vy = (_Tk + A - )‘I;) ‘{u:k} Vg =~ (_Tk + A - )‘I;) ‘{u:—k}
we can rewrite as

/{ e (IVTx(u)]?> VTi(u) — h) - Vodr =

/ ¢fda:—i—/ ¢du0+/ ¢d1/,j—/ ¢dv,  (6.1.10)
{lul<k} {lul<k} {u=k} {u=—k}

for any ¢ € Wy (B,,) N L® (B,,) and k € K.

Proceeding as in the proof of Lemma we can use (6.1.7) to show that

vy = —g(u)H, and that, up to a sequence k; € K going to infinity, ykij —

weakly-* in 9%, (B,,). In particular, we can rewrite (6.1.10]) as

/{ e (IVTx(u)|P> VTi(u) — h) - Vodr =

/ gbfdx—/ ¢g(u)daz’—i—/ ngdz/,j—/ pdv, (6.1.11)
{|ul<k} {|u\<k}ﬂ8Rﬁ {u=k} {u=—k}
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for any ¢ € Wy (B,,) N L® (B,,) and k € K. At this point, the fact that u is
a renormalized solution of the desired equation follows exactly as in the proof of
Theorem 4.1 of [17].

To finish the proof of our lemma, we observe that on one hand we have

/ |VTk(u)|pdx:/ Tk(U)dﬂ,g—/ Tk(u)g(u)da:'—{—/ kd,u:—i-/ kdji;
m m Bmﬂ{)Ri’

m m

while on the other

[ TP o= [ Twdie— [ Tugate e [ v [ v
m m m B

m m

Comparing the above identities we have

/m VT (u)|P do — /Bm IV T ()P de =
/Bm T (w)dpio — /Bm Ty (un)dfio + /Bm Ty (un)gn (2, up)da — / T (w)g(w)de’.

BmNIRY

Writing again fip = f — div h for some f € L'(B,,) and h € (Lp' (Bm))N, we use
that Ty (u,) — Tj(u) weakly in W, * (B,,) and weakly-* in L (B,,) to obtain

/ To(w)diio — | Te(wn)diio

m Bm

as n — oo. Similarly, by (6.1.7)

/ Ty (un) gn (2, up )dx — Ty (u)g(u)dx'

m Bmmaﬂw

as n — 00, and so

VT (un)ll o = IV Tk (w) | o

as n — 00. As in the proof of Lemma [4.2.1, we conclude from the above that
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VT (un) P — |VTi(u)? strongly in L' (B,,), and then, by Vitalli’s Theorem, that
VTi(un) = VTi(u) strongly in (L? (B,,))". Hence the claim follows. O

The following lemma, similar to Lemma [6.1.8] gives a useful sufficient condition
under which (4.2.1)) holds. It will be used to obtain stability of local solutions
throughout the sequel.

Lemma 6.1.10. Let u,, and u be cap,, n— quasi-continuous functions such that
Uy, — u a.e. in RY and Ty (uy,) — Ty(u) weakly in WP (By,) for any fived k > 0
and M € N. Suppose g satisfies part (1) of Assumption and let g be defined as
in part (2) of Assumption[6.1.1 For any fized M € N we define

pm(h) = 9(Jum|) (") d’

/B]Mﬂ{|um|>h}ﬂaRf

and

o) = [ 3(Jul)(@')da.
Buan{|u|>h}NORY

If pm(h) — 0 and p(h) — 0 as h — oo, uniformly in m, then

lim Omg(um)da’ = / og(u)da’
M09 J By noRY By NoRY

for any sequence {¢,,},, converging to ¢ both a.e. in By and weakly in Wy (Bay)

and such that ¢, is uniformly bounded in L (Byy).

Proof. We follow very closely the ideas in the proof of Lemma [6.1.8 and so we omit
some details.

As in Lemma [6.1.8] we use the assumptions on p,, and p to obtain that

Omg (U )dz' — og(u)dx’

INY; INY,

< wp (k) +

/FM G (Ti () )dz’ — /FM ¢g(Ty(u))da’
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for some wy, (k) such that w,,(k) — 0 as k — oo uniformly on m, and where I'y; =

By NORY. For any n we let ¢, be the functions defined in (6.1.3). Hence,

Omg(Thun))ds’ — [ 6g(Ti(u))da’ =

Ty INY;

[ Glo) malTalm)) = 60730, 0

To continue we observe that since ¢y, ¢, g(Tx(un)) and g(Tk(u)) are capypn—
quasi-continuous in RY, given € > 0 we can find a closed set € such that all of them
belong to C' (€) and cap; p v (25) < €. Then, all of them are uniformly continuous
in Q = QN By, and since they are also uniformly bounded, for any fixed m and

e > 0 we can find ¢y small enough so that

|6 (2, 28) g (Tho(um)) (&, 2n) = G (@, 0)g(Th(um)) (2", 0)] <€

and

|0(z', 2)g(Te () (2, 2x) — @', 0)g(Ti(u)) (2", 0)| < e

for any (2/,zn) € QN {|zn| < to}. We also assume ¢ is such that
|(Tar x R)\ Byr) N{zy =t} <e

for all |¢t| < tg. Then, by decomposing I'y; x R as

[FM x RN (Q N {|IN| < to})] U [FM xRN ({|$N| > to})]

Uy xRN QN{lzny] <to})],
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we see that

/F o) (g (Tul)) = G9(Ti ) (& 0)d | < )

+erC(M,N,p,g(k), 9]l > [Fmll o)

(@) (omg(Ti(um)) — dg(Ti(u))) (2, wn)dz|,

By

_|_

for any € > 0, where Wy, ,, (1) is a function such that @y, ,,, .(n) — 0 as n — oo for any
fixede > 0, m € Nand k£ > 0. Since all the functions involved are uniformly bounded,
we may approximate g with a gy € C' ([~k, k]) such that sup_, ;|9 — go| < ¢, and

upon integrating by parts, obtain

Co(2n) (Dimgo(Th(tm)) — ¢go(Th(u))) (QJ/, ry)dr =

- /B Ta(2N) ((OnPm) go(Tk(um)) = (On @) go(Tk(w))) d
- /B Ta(2N) (dmON (90(Tk(um))) = @O (9o(Tk(w)))) da.

Let us consider the first integral in the right hand side of the above identity. Recall

that 7,,(t) — 7(t) = %ﬁ—‘ strongly in L*® (R) for any 1 < s < oco. Since Oy¢y, is

uniformly bounded in L” (B)s) and Ty(u,,) is uniformly bounded in L™ (B);) we

obtain that

/B () (O ) go(Te(um)) — (Ow) go(Th(w))) dac

= [ 7(an) ((Ondm) go(Tk(um)) — (On¢) go(Tk(w))) dx

By

as n — oo uniformly in m. On the other hand, as in Lemma [6.1.8],

/B 7(2n) ((Ondm) 9o(Tk(um)) — (On¢) go(Tk(u))) dz — 0
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as m — 0o. A similar reasoning applies to the second integral. Hence, we may write

| Galan) (Gmgo(Ti(um) = 6g0(Ti(w))) (¢, 23 )de = Wy m,e(n) + wi.(m)

for some functions wy ;. (n) and wy(m) such that wy,,(n) — 0 as n — oo, uni-
formly on m, and wg (m) — 0 as m — oo, for any fixed £ > 0 and 1 > ¢ > 0. Thus,

collecting all the above estimates, we conclude that

< Wi (k) + Wi m e (n)

/F ) Png(um)da' — /F ) ¢g(u)dz’

+erC(M,N,p, §(k), [0l s [0mlloc) + Wrm.c(1) + whe(m).

Hence, we obtain

im [ ng(un)ds’ = [ ¢g(u)da’

m—0o0
Ty 1N}

as desired. O

We are now ready to prove the existence of renormalized solutions to (1.0.1)) in
the subcritical case. We treat the cases 1 < p < N and p = N separately for clarity

of exposition.

Theorem 6.1.11. Let 1 < p < N and p € 9, (ORY). Suppose g(s) satisfies

Assumption [6.1.1. Then there exists a renormalized solution of

—Ayju=0 in RY

IVul u, +g(u) =p  on IRY.

Proof. Let gn(x,s) be defined by (6.1.3) and fix m € N. By Theorem 5.1.2 of [25]
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for any n € N there exists a renormalized solution of

—Ayult + 29, (v, ult) =24, in By,

up, =0 on 0B,,,

where pi,,, is the restriction of u to B,,. By Proposition we have

[ lonlaa)lde < ] (B (6.112)

By writing

oy, = o — gn(xa u?n)

we see that u), is a renormalized solution to —Ayu;, = 24", in B,,. Since
] (Ba) < 2l (BY) < o0

we can apply Theorem to obtain that, passing to subsequences, u)!, — u,, a.e.
in B,, as n — oo for suitable behaved functions u,,. Note that each v, and also w,,,

have cap; , n— quasi-continuous representatives that are finite cap; , v — g.e. in B,

(see Remark (3.1.5/and [3.1.8)) which implies that they have well defined cap, _ 1pN-17

quasi-continuous traces. By the same theorem, since each ], satisfies the estimate

| IVl do < 2615 (B,) < 4kl (RY)

m

so does the functions u,,.

Now we consider the convergence of g, (z,ul,) for fixed m € N. We fix |[t| < m
and for any n and h we write E" = {|u"| < h} and E" = {|u,| < h}. Define
o(s) = {x € BpyN{zn =t} : |u}] > s}. Proceeding as in Remark we see
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that

/ )| (' 0de’ < [ | B0 (B2 1 o =1} 11 (52 o
BN (ER)en{zy=t} 0
= ahath) + [ o(s)di(s)
By Lemma [6.1.6
o(ih) + [ ols)dis) <

=Ll @ene-n * _W-ne=n
CON o) lnlli? [ F5 500 + [ 57 ag)
h

while integration by parts gives

— — oo — —
e CRY I O
h

—1)(p— N o 1 o 1 00 (N .
i 0] OB [

Note that by Assumption [6.1.1

(N-1)(p—1) N-1)(p—1 o p(N=2)
lim s~ %o g(s) < ( Jp = 1) lim g(t)t™ N dt =0

500 N—p 5—00

S

and so we obtain

No1o o0 _p(N=2)+1
/ )| 0" < OO, ) Ll [ o)™ 575 s
BmN(ER)en{zn=t} h

— 0
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as h — 0o, uniformly in ¢ and n. Using the same argument we can show

, NoLo oo _ p(N=2)41
/ ol ' < O p) il [ (o)™ 55 ds
ORN (\BN\(ER)e h

—0

as h — oo. Note also that

_p(N—=2)+1

[ o)l e’ < 501) B 0ORY |+ OOV o) [ a(5)s™ 575 ds < oc
BmNORY 1

so in particular g(u.,) € L' (B, N ORY).
By the above considerations, we see that we can combine Lemma [6.1.8] and

Lemma to obtain that wu,, is a renormalized solution of

=AU, = 2/, — 2g(up)H  in By,

Uy, = 0 on 0B,,.
Moreover, since we have (6.1.12]) and
lim [ ¢gu(z,up,)dr = / ¢g(um)dz’
n=o J B, BmNORY
for any ¢ € C§° (B,,) we get
[ et e’ < i (B) <[] (RY) < .
B NORY

Thus, we can apply Lemma with data 2p, — 2g(u,)H to obtain a suitable
limit function u such that wu,, — v a.e. in RY. Note that the above estimate says
that ||g(um)||L1<Bmm6R$) is uniformly bounded.

Now we obtain estimates on the level sets of u,,(z’,0) and u(z’,0). Fix any M > 0.

Since u, satisfies estimate (3.1.3) and ||t — g(um)H|lgy, is uniformly bounded, we
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can find ko(M, N, p, 1) independent of m such that

k 1
H‘Um‘ > 5}‘ < Z'BM|

for all k& > ko. Let cxmamr = (Tk(um))n be the average of Ty (uy,) in By Then we

estimate

1
comnr] < — ( / ()| ds + / <
By {Jum|<k/2} B0 {|um|>k/2}

| T ()| dx

N—

m)
i
2

NS
Il
|
e

for all £ > ky. As in the proof of Lemma [6.1.6] replacing Poincaré’s inequality with

Poincaré-Wirtinger’s inequality, we obtain

3 =

ITi () = ham il yromy) < OOV Bar) (k 1lon,)

with ¢ = p%v—:;). Since for all k > ky we have the inclusions
{um| >k} = {|Tk(un)| = k} C {|Tk(um) — crmaml =k — |exmarl}
k
C {lTk(um) - Ck,m,M| Z Z} 3

we similarly deduce

_(p=1)(N-1)
N—p

[{ltum| >k} 0 By NORY| < C(N,p, Bur, || allgn, )&

In a similar way, by Fatou’s Lemma, u satisfies estimate (3.1.2) in By, while if

e = (Trp(u))ar is the average of Ty (u) in By, then, by Lebesgue’s Dominated

Convergence Theorem, [cy | < 2k (see also the proof of Lemma [4.1.1)). Thus, we
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also have

_(=H((N-1)

[{Jul > k} N By NORY| < C(N, p, Bur, |pllgn, )k~ -7
Now we are ready to finish. As above, using the assumptions on g we have

/ (] )da' —> 0
{lum|>k}NORY "By,

as k — oo, uniformly on m. Similarly

/ §(jul)dz’ = 0

{|u|>k}NORY By,

as k — oo. Then, we can apply Lemma [6.1.10| to obtain condition (4.2.1]) (with
gm = g(uy,) and g = g(u)). Note that from the estimate ||9(“m)||L1(BMnaR§) < [ pelgm,
and (4.2.1) we conclude that Hg(u)HLl@Rﬁ) < [|uflgn,- Then, Lemma [4.2.1] implies

that u is a local renormalized solution of
—Apu =2p — 2g(u)H in RY,

Since the measures 2, —2g(u,,)H are supported in IRY, we apply Theorem m to
obtain that ,,, and thus u, are symmetric with respect to 9R%Y. Hence, by Theorem

5.2.1| the restriction of u to Rf is a solution to the problem. O

Now we consider the case p = N.

Theorem 6.1.12. Let p = N and p € M, (ORQI). Suppose g(s) satisfies Assump-
tion with some v > 0. There exists a constant C(N) such that if ||plyy, <

C(N)y'= then there exists a renormalized solution of

—Ayu=0 m Rﬂf

IVul" P, +g(u) =p  on ORY.
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Proof. We repeat the ideas used in the proof of Theorem [6.1.11, so we only point
out the main differences.

As before, the first step is obtaining solutions ", to

—Anul, + 2g,(z,ul) =2, in By,

up, =0 on 0B,,.

This could be achieved by using Theorem 5.1.2 of [25], which guarantees the existence

of a solution to

—Anu+ gp(z,u) =p in By,
(6.1.13)

u=0 on 0B,

provided that |||y, is bounded by (%)N_l, where Cy = Cy(B,,) is a constant that
may depend on the domain B,,. Note that, since we intend to take m to infinity, this
could be troublesome for us. Indeed, if Cy(B,,) happens to vanish as m — oo then
requiring that the bound holds for all m would lead to the conclusion that pu = 0.
Let us see that we can work around this problem.

A look at the proof of Theorem 5.1.2 of [25] shows that the constant C is exactly

the constant in the estimate

1

{z € Byt |u] >k} < O(N, B,,)e Ml

which holds for solutions wu. to problem (|6.1.13) with u replaced by a regular-

ized pi.. Since any such solution satisfies T (u.) € Wy (Bn) and ||[VTk(ud)|y <

(Ck ||,u||£mb)ﬁ we have, as noted in Remark [6.1.7, that we can use the results of []

to replace the above estimate with

1

o€ Byt ] > k)| € O(N, B, e HHIE”

93



for some ¢; (V) independent of B,,. Hence, by applying the same argument as in

[25], but with the above estimate, it is easy to see that in fact a solution u, exists

N-1
; <
if we assume [|2fi, |lgy, < <N7> :
Next, as in the case 1 < p < N, we obtain a limit function u,, which we claim is

a renormalized solution of

—ANUm + 29(um)H = 2y, in By,

Uy, = 0 on 0B8,,.

The proof of this claim is as before: by using that

/ G(s)e ™MNsds — 0
h

as h — oco, we can apply Lemmas [6.1.6] 6.1.8] and [6.1.9| to show that wu,, solves the

above equation.
In the final step, we similarly obtain a limit function v which yields a renormalized
solution to
—Apyu =0 in ]Rf

\Vul" " u, +gu) =p  on IRY

provided we can show (4.2.1)) holds. By Lemma [6.1.10} it is enough to obtain

/ G(Jum])dz" — 0
{\uMEk}ﬂ{)Ri’OBM

and

/ g(|lu)dz" — 0
{lu|>k}NORY NBs

as k — oo, uniformly on m.

As in the case 1 < p < N we want to estimate the averages of the solutions and

proceed as in the proof of Lemmal6.1.6l Let us first observe that by the results of [11]
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the solutions u,, belong the Lorentz-Sobolev space WL (B,,), i.e., the space of
weakly differentiable functions in B,, such that (the absolute value of) their derivative
belongs to the Lorentz space LYV:>° (B,,) (note that in the case p = N renormalized

solutions have well defined L] , derivatives; see Remark [3.3.5). Moreover, one has

loc
_1 _1
IVt voo g,y < CN) [120mllan, " < C(N) (20| y, "

and so

1
HumHBMO(BM) < C(N, Bu) HQ/LHSJVQI

for any m > M (see also [7]). Here BMO (Byy) is the space of LY (By;) functions
of bounded mean oscillation (see [I1] for a definition of BMO). On the other hand,

by Theorem 2.5 of [6], we can assert
Oy ~Jum=(um) |
/ e ”V“’”HLNW(Bm)dI’ S C(BM,N)
ByNoRY

for some constant C;(N) and where (u,,),s is the average of u,, in By;. Hence, just

as in Lemma [6.1.6, we obtain

_ClkHVumH;}\,’OO(BM)

{z € ByunoRY : |uy — (um)u| > k}| < C(N, By)e

< C(N, BM)e—Canmnﬁ
with ¢o = (V). Since

{lum| =k} € {lum — (um)m| = k = |(um)arl}
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we then get

_1_
[{w € BuNaRY : Jun| > k}| < O(N, Byy)e bl =

1

< C(N, By, p)e” 12"

where we have used that [(un)u| < C(N) [|uml grros,,)- Thus we have

1

/ §(|Um])dx’ < C(N, BM,M)/ g(s)e‘%sII?uIIaanN ds
By [um | >k}NIRY :

N-1
which vanishes as & — oo provided [|2p[y;, < (%) (note that the above inequal-
ity can be obtained by the same argument as the one used in the case 1 < p < N).

We now obtain the same estimate for u. We note that [|[Vun | vep,,) < C

implies, by definition, that
{IVum| > A} < OX7Y

for all A > 0 (see [19]). Since Vu,, — Vu a.e. in By, by Fatou’s Lemma we obtain
that
{|Vul > A} <A™

for all A > 0 such that |{|Vu| = A}| = 0 and so, in particular, for a.e. A > 0. Hence,
by density, the bound can be seen to hold for all A > 0 and, again by definition, we
obtain [[Vul| e (p,,) < C. Thus, all the above computations remain true for u and

the desired estimate holds.

N-1
Hence, we obtain a solution to the problem provided ||ulgy, < 5 (NLV) where

c=c¢(N)=min (c;(N),ca(N)) .
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Remark 6.1.13 Note that we have proven stability of solutions without using any
type of convergence of u?, to un, (or of u,, to u) in IRY. On the other hand, it
is rather natural to expect that g(u?) — g(um) strongly in L' (B,, NORY) and
() — g(u) strongly in L! (GRJJ\: N BM) for any M € N. Let us see that in fact we
can assume convergence in IRY.

Indeed, by Lemma we have Ty (u?,) = Tj(uy,) strongly in W, (B,,). Then,
by Proposition 2.3.8 of [10], up to a subsequence, Tj(ul,) — Tk(um) capipn —
g.e. in B,,. By taking k¥ € N we may extract a diagonal subsequence {un }; from
{u},, such that Ty(uni) — Ti(um) capipn — g-e. in B, as j — oo for any k € N.
We relabel this subsequence as {u,},. Then, since u,, is cap; , v — ¢.e. finite, we
conclude that u;, — wu,, capipn — g.e. in B,,. Hence, we may assume u;, — Un,
a.e. in B, N 8Rf . Moreover, using the same estimates as in the above proofs, it is
easy to show using Vitali’s Theorem that this implies g(u”) — g(u,,) strongly in
L' (B, NORY). Similarly, one can use the strong convergence of Tj(um,) — Tk(u) in
WP (Bys) guaranteed by Lemma to show that, up to a subsequence, u,, — u
a.e. in ORY and g(u,,) — g(u) strongly in L' (ORY N By,) for any M € N.

6.2 The supercritical case

We now obtain renormalized solutions to equation ((1.0.1)) when 1 < p < N and the
absorption term g(s) does not necessarily satisfy the growth estimates of Assumption
[6.1.7] In this case we can only guarantee existence of solutions if 1 belongs to a subset
of M, (@Rf ) which, in general, is strictly smaller.

Throughout this section we will assume that
g : R — R is a continuous nondecreasing odd function.

Note that g satisfies part (1) of Assumption [6.1.1} and that if § is the function
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defined in part (2) of Assumption then g(s) = g(s) (s > 0). Note also that
g([s]) = |g(s)| for any s € R.
As in the subcritical case, our starting point is the existence results for the prob-

lem

—Apu+g(r,u) =p inQ
g (6.2.1)

u=0 on 0f).

We will use the existence results obtained in [4] (see also [25]), which rest mainly
on the study of the Wolff potential of the measure p. As it turns out, the estimates
involved are well suited to study trace problems such as ours.

We begin by defining the R-truncated Wolff potential of a nonnegative measure

€ My (RY) by 1
Wi v 1] () = /OR (%) o %

where a > 0,1 < s < a™ !N, 0 < R < oo, and By(r) is the N-dimensional ball of
radius ¢ centered at x € RY. If R = oo we just write W, n [1].

It follows immediately from the definition that if u is supported in ORZY then

Wi ] (') = /OR (“ Bila) > drw = OD) - % (6.2.2)

1—%,p,N—1 tN—1—(p—1)
_1
_/R i (Bi(2',0) NORY) \ "~ dt
—Jo tN-p t

- le,%p,N [,LL] ('rlu O)

for any 1 < p < N, 2/ € R¥~'. Moreover, we clearly have B;(z/,xy) N IRY C
By(2/,0) N ORY and so

Wi (1] (@' 2n) < Wlﬁi%,p,N—l (1] (=) (6.2.3)

for any (2, zy) € RV,
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Remark 6.2.1 Let us record the following important relationship between Wolff
potential and p— superharmonic functions: if u is a nonnegative p— superharmonic
function in 2, 1 < p < N, and —A,u = i in 2 then there exists positive constants
1, €9, c3, depending only on p and N, such that for any = € Q and Bs,.(x) CC Q
there holds

Wiy ) (2) < u(a) < o fnf ut eaWi (1] (@)

(see [14], [18] or [25]).

The following existence result is Theorem 4.1 of [4].

Theorem 6.2.2. Let Q2 be a bounded domain and let g : QxR — R be a Caratheodory
function such that s — g(x,s) is nondecreasing and odd for a.e. x € Q. Then there
exists a constant ¢ = ¢(N,p) such that the following is true: if p; € M, (), 1 =
1,2, are nonnegative and there exists nondecreasing sequences {ji;, }, of nonnegative

measures in My, () with compact support in Q converging to p; weakly and such that

g <cWigZJ§Lm(Q) [um]> € L' () then there exists a renormalized solution of

—Apu+g(r,u) = pg —po in

u=0 on O0f2.

Moreover,
- cWigi?m(Q) (o] () < wu(z) < cWiZé?m(Q) (1] (x) a.e. in Q. (6.2.4)

Our first goal is to improve estimate (6.2.4) from a.e. in £ to cap; , v —g.e. in Q.

Lemma 6.2.3. Let Q2 be a bounded domain and let g : 2 X R — R be a Caratheodory

function such that s — g(x,s) is nondecreasing and sg(z,s) > 0 for a.e. x € Q and
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all s € R. Let pn € My, (Q) and let u be a renormalized solution to

—Apu+g(z,u) =p inQ
u=>0 on 0).
Then
diam(@) r — diam(o
—Wipn D 1] (@) < u(x) < WY 1] (@)
capy p, N — q.e. in Q with ¢ = ¢(N,p) as in the statement of Theorem .

Proof. We know that for every k& > 0 the functions Ti(u) = uy are renormalized

solutions to

—Apui + (2, ur)X{ul<k} = HoX{ul<k} + Af — Ay in Q

u=0 on 0f)

for some nonnegative measures A € 9 (Q) that converge to yF in the narrow

topology of measures. Let v, be a renormalized solution to

— AUk = fig X{juj<k} T AL in Q

v =0 on 0f).

Since pig X{ju|<k} + Af is nonnegative we have v, > 0 (see Remark 6.5 of [18]), and so
g(x,vg) > 0 a.e. in Q. Since uy, is bounded we have g(x, V) X {uy >0 € L () and so
we can use that g(z, s) is a.e. nondecreasing on s and that all the measures involved
are in My (2) to obtain, by an easy adaptation of the proof of Lemma 6.8 of [18],

that ur, < vy a.e. in Q. By Theorem 3.4 of [9], passing to a subsequence we have
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v — v a.e. in §Q where v is a renormalized solution to

—Apu =g +pf =pt in Q

v=0>0 on 0f).

In particular, since u is a.e. finite, u < v a.e. in Q.
Since pt is nonnegative, by Theorem 2.1 of [I8] v coincides a.e. in 2 with a p—

superharmonic function v satisfying
- adiam(o
o(0) < WY 1] (@)

in Q where ¢ = ¢(N,p) is the same constant as in Theorem [6.2.2] (see the proof
of Theorem 3.8 in [4]). Moreover, by Theorem 10.9 of [I4] v is capypn— quasi-
continuous in 2. Considering the cap;, n— quasi-continuous representative of u,

and since v < ¥ a.e. in €2, we can conclude u < ¥ capy, y — g.e. in Q (see Remark

2.4.6)). Hence,

u < cWiiijf,lm(Q) [/ﬁ} (x)

capi p.n — g-e. in . The lower estimate can be obtained similarly. O

Remark 6.2.4 We note that in the second part of the above proof we have used
that the p— superharmonic representative of a nonnegative renormalized solutions
u, mentioned in Remark [3.2.4] is a cap; , y— quasi-continuous representative of w.
We will use this fact in the sequel.

Let us also mention the following: if u < v a.e. in §2, where v and v are p—
superharmonic, then u < v everywhere in ). Indeed, this follows from applying

Corollary 7.23 of [14] to the p— superharmonic function min(u, v).

The above estimate is sufficient to obtain local solutions to ((1.0.1f). To obtain

global solutions we need to compare solutions defined in nondecreasing sequences of
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domains. The following lemma asserts that for a nonnegative measure it is possible

to obtain nondecreasing solutions defined on nondecreasing domains.

Lemma 6.2.5. Let Q2 and Q' be bounded domains such that Q C Q. Let p € My, ()
be nonnegative, compactly supported in €2, and assume g (ch g Z]\?m(gl) [,u]) e L' ()

where g(z,s) and ¢ = c¢(N,p) are as in Theorem[6.2.9. Then there exists renormal-

1zed solutions u and v to

—Ayu+g(r,u)=pn in 2
pu gl u) (6.2.5)

u=0 on OS2

and

—Ayv+g(r,v)=p inQ
: ) (6.2.6)

v=0 on OV,

respectively, such that u <wv a.e. in €.

Proof. Suppose first that ¢ is bounded. Then Lemma 4.2 of [4] shows that the
desired solutions u and v exists and that they can be defined as the a.e. limit of
sequences {u,}, and {v,}, of weak solutions to (6.2.5) and (6.2.6)), respectively,
with data pu, converging to p in a weak sense. Since the solutions are nonnegative,
u, € Wy (Q), and v, € W (Q), the maximum principle shows that u, < v, a.e.
in Q. Hence, u < v a.e. in . If g is not bounded then one can proceed as in
the proof of Lemma 4.3 of [4] and consider the truncations 7,(g). The fact that
Jo (W™ W), < o (WS W)

to the limit as n — oo to obtain solutions that conserve the desired property. O]

shows that one can pass

Next we use Lemma to show that we can obtain solutions with absorption

term g(u)H from solutions to problem ([6.2.1]).

Lemma 6.2.6. Let g be a continuous nondecreasing odd function, and let ¢ = ¢(N, p)

be the constant in Theorem|6.2.4. Let pn € 9, (ORY ) be such that gocW DN_1 (1]
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isin L* (ORY N B,,). Let g,(z, s) be defined as in (6.1.3) and let u,, be renormalized

solutions to

—Apty + gn(T,uy) = in By,
Uy, =0 on 0B,,.

Then there exists a function u and a subsequence of {u,}, , which we relabel as {u,},,

such that w, — uw a.e. in B,, and u is a renormalized solution to

—Apju+gu)H=p in By,
pit o) (6.2.7)

u=>0 on 0B,

that satisfies

- CWfT%,p,N_l (7] (@) S w2, zn) < ch‘liniyp,N_l 1] () (6.2.8)

capy pN—q.€ in By,.

Proof. By Lemma the functions wu,, satisfy
—cWﬁng [u‘] () < up(x) < chZfN [;ﬁ] (x) caprpn —q.e. in By,

and so, by (6.2.3]), they satisfy estimate (6.2.8]).

Since the measure p is bounded independent of n, Proposition implies that
the same is true for the measures i, = u — g,(z,u,). Hence, we can apply Theorem
and obtain that, up to a subsequence there exists, a suitable behaved function
u defined in B,, such that w,, — v a.e. in B,, as n — 0.

Using than u,, satisfies (6.2.8]), which holds a.e. in the intersection of B, with
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any hyperplane, and that ¢ is nondecreasing we conclude

/ g (u,) (', t)dx’
{un>h}N{zn=t}

= / 9 (C 141nl N—-1 [/1/ ]) (x/)da;" —0
{CWI‘T; , Nil[uﬂz}z}maﬂ%mem »P
7P

as h — oo and similarly

/ —g (u,) (2, t)da’
{un<—=h}n{zn=t}

= / g (CWELTA PN_1 [/L_D (2')dz' — 0
{Cme; v N_l[u‘}zh}maRﬁmBm 7D
as h — oo, since g (cW{‘Tle_l [,ui]) c I} (Bm A QRf),

The above estimates can be seen to hold also for the limit function u. Indeed, it is
enough to show that u also satisfies . Looking at the proof of Lemma , we
see that we obtain the right hand side of estimate for u,, from the inequality
u, < v for some particular renormalized solution v. Using that u is the a.e. limit
of the u, we get v < v a.e. in B,,. Then, considering cap; , n— quasi-continuous
representatives, we conclude u < v capy N — g.e. in B, (see Remark , and
so, proceeding as in the proof of the lemma, we obtain that the right hand side of
estimate also holds for u. The left hand side estimate follows in the same
way, and so holds for u. With this estimate we obtain

/ 19 ()| da’ = 0
{lu|>h}NoRY

as h — oo and g(u) € L' (B,, N ORY). Hence we apply Lemma m together with
Lemma to finish the proof. O

We are now ready to show the following trace version of Theorem [6.2.2] Recall
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that we assume 1 < p < N.

Theorem 6.2.7. Let g be a continuous nondecreasing odd function, and let ¢; =

217%10(]\[, p) where ¢(N, p) is the constant in Theorem|6.2.4. Assume p; € M, (ORY ),

t = 1,2, are nonnegative and for every m € N there exists nondecreasing se-

quences {,uf”k}k of nonnegative measures in N, (8Rf) with compact support in

B, N 8Rf converging to pl" = ] B ORY weakly-+ in Iy (Bm N 8]1@: ) such that

go 01W14£”Z;1])Vil (] is in L' (ORY N By,) and p, < pi't' for each k € N. Then
ph ’ ’ )

there exists a renormalized solution of

—Ayu =10 in RY

IVul’u, +g(u) = iy —pa  on ORY.

Moreover,

- ClWl—%,p,N—l [12] (') < u(a’,2n) < ClWl—%,p,N—l (1] (2) (6.2.9)

caprp N — g-e. in RY.

Proof. Let g, (z, s) be defined as in (6.1.3)). It is easy to see that g, (x, s) = (.(zn)g(s)
satisfies the assumptions of Theorem [6.2.21 Note that p;7} has compact support in
B,,. Since

WL D] (1) = Wil (] &)

and ¢ is nondecreasing we obtain

< 0.
L' (BmnoRY)

Hgn (CWﬁZN [Qﬂznk]) HLl(Bm) < C(n,m) Hg (Cle:n%,p,N—l [“;nk])

Hence, we may apply Lemma 4.3 of [4] to obtain renormalized solutions u™* and
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™ with i = 1,2, of

m,i)

—Apu+ 2¢g,(z,u) =21 in B,
: (6.2.10)

u=0 on 0B,,

with data p = pi"y — py'y, and p = pffy, respectively, satisfying

n,k n,k n,k
U 2 < U, < U1

n,k n,k+1
< Ui

a.e. in B,,. Let us remark that by the same lemma we can assume u,,’; < a.e.

in B,,. Note also that the functions uzkl are nonnegative (proceed as in Remark 6.5

n,k
m,i)

of [18], testing against T;(min(w, ", 0)) and using the hypothesis on g).

For any fixed n, k, and m, the measures ., satisfy all the necessary conditions to

n,k
m,i’

guarantee, again by Lemma 4.3 of [4], the existence of renormalized solutions w

i = 1,2, to problem (6.2.10)) with data pu = w7}, in Bp,y1. Since py < ,uzlljl we can

combine the results of Lemma 4.3 of [4] with Lemma above to further assume

n,k n,k n,k . . . n,k
Uy i < Wpry < Upiq, @€ in By, That is, we may assume the solutions w,,; are

nondecreasing in m.

Now, applying Lemma we take n — oo to obtain renormalized solutions
k

m?

k
Up,, and uy, ; t0

—Apu+2g(u)H =2p  in B,
8 () (6.2.11)
u=0 on 0B,,

with data p = pi", — py'y, and p = py, respectively. By Lemmam (which is used
in the proof of Lemma , we have Th(ufnkz) — Th(uk ) and Tp,(u™F) — T, (uk)

m,i m
strongly in Wy ? (B,,) for any h > 0. Since renormalized solutions are cap;, n —

g.e. finite, we can use Proposition 2.3.8 of [10] to obtain, passing to a diagonal
n,k

subsequence, that u): — uF, . and u®* — u® cap;,n — q.e. in B, (see Remark

2 m
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6.1.13]). Hence, we can assume that

- CWfin%prl [2/13%] (I/> S —UI:mQ(I/,t) S U]:n(ZE,,t)

k 4
S um,l(xla t) S Cwlin%JLN_l |:2:u117,1ki| (:CI) (6212)
capypn — g-e. in RY. Here we have used again that we are considering cap; , y—
quasi-continuous representatives, so that we can extend the inequalities from a.e. in

B, to capy p N — g-e. in By, (see Remark [2.4.6). Note that we also can assume

0 <y, ;(x) <upti(x) and U]:nz(x) < ufn-l—l,i(x)

m,i — Ym,i

capi p,N — g.€. in B, and so in particular a.e. in B,, N aRf.
Next we fix m € N. Since the measures p;} are uniformly bounded in norm by

1; we obtain by Proposition that

o)

< g llom. -
pioy < Il

By Lemma [6.1.8] we have

n—oo Bm

i [ dga(egfde= [ aglub, )as
’ BnnoRY ’
for any ¢ € C§° (B,). Thus,

Hg(uﬁ%i)HL1<BmﬂaRf) < ||/‘L’L||9ﬁb

and by (6.2.12))

||g(ufn)HLl(Bmﬁ8Ry) S ||/J“1||9:Rb + ||H2||fmb :

With the above estimates we can apply Theorem to obtain the existence

k

of subsequences such that u;,

— Uy, and uf |

i = Upm, a.e. in By, as k — oo for
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some suitable behaved functions w,, and w,, ;. Note that there is no loss of generality

k

. ; coincides with its p— superharmonic representative mentioned in

in assuming u
Remark , so that in particular we can assume ufm are nondecreasing in k every-
where in B,,. Then, Lemma 7.3 of [14] shows that sup, u* , is a p— superharmonic
function in B, and so, by Theorem 10.9 of [14], also cap; , n— quasi-continuous in
B,,. Hence, sup,, u’fm is a capi p, v — quasi-continuous representative of u,,;, and we

k . _ . B Th .d . _ ._
can assume u,, ; — Upy; CaP1p N — ¢-€. in By,. us, considering cap; , y— quasi
continuous representatives, we conclude from ([6.2.12)) that

4m m / / !
— Wit vy 2u5'] (2') < —uma(2',t) < upy(2',t)

P

/ 4m
< U (2',t) < ch_%%N_l

207 (') (6.2.13)

capyp N — g-e. in RY.

Since we have the estimate

Hg(ufnvi)HLl(BmﬁﬁRi’) S H/“L’L“fmb <0

and u” . are nondecreasing in k and nonnegative, we obtain by Monotone Conver-

m,i

gence that g(uk ;) = g(um,;) € L' (B,, N ORY) and moreover

||9(Um,i>||Ll(anaR$) < ||PJz||gmb

Then, by slightly modifying the arguments leading to Corollary 3.5 of [4] we obtain
that w,,; is a renormalized solution to (6.2.11)) with data u = p}". Indeed, to obtain
the same stability result we only need to consider the terms g(ul, ,)H and g(um.i)H,
since the focus of the corollary is the handling of the measures an,i in order to apply

the stability result of [9]. But, replacing this stability result by the one in [17], we see
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by the proof of Lemma m (or Lemma 4.2.1)) that we can prove stability provided

lim drg(ur )da' :/ g (Upm,i)da’
k=00 ) B, noRY ’ BmNIRY

for any {¢;}, converging to ¢ both a.e. in B, and weakly in Wy (By,) and such

that ¢y is uniformly bounded in L*>° (B,,). By Lemma [6.1.10} it is enough to show

that

gk, )] do’ + / 9t )| d2’ — 0

. N
{Jtm,i|>hINORY N By,

/{|u’;”|>h}maMmBm

k are nonnegative and

m,i

as h — oo uniformly in k. But this is clearly true since
g(uk, ) 1 g(umy;) € L (B, NORY).
Similarly, we can show that w,, is a renormalized solution to (|6.2.11)) with data

= pi* — ps* provided we show that

/ 9(m) da’ — 0
{lum|>h}NORY NBm

and

|g(u§1)‘ dz’ — 0

[{|u§n|>h}maR§mBm
as h — oo, uniformly in k. Now, by the monotonicity of g and the fact that g is

odd, we conclude from estimate (6.2.12)) that

g(un,)| < gub, 1) + g(ug, ) < g(tm) + 9(tm,2)

while from (6.2.13)) we have

9(um)| < G(Um1) + g(tm2).
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Moreover

({|um| > h}U {‘ufn’ > h}) C {tm1 > h} U{um, > h}

outside a set of zero measure in B, N ORY. Hence, since g(um1) + g(umz2) €
L' (B, N ORY), the desired estimates hold.

To finish we can proceed exactly as in the proof of Theorem [6.1.11] Indeed,
putting p, = " — p4* and using the uniform boundedness of ||g(uy,)]| L1 (BroRY)
we can apply Lemma to obtain a suitable behaved function u as the limit of
the w,,. Note that we can also take the limit of the u,,; to obtain suitable functions
Uj.

As we argued above, using that w,,; are nondecreasing in m and passing to

capy p N— quasi-continuous representatives, we obtain from ((6.2.13)) that

— W1, v 2] (2) < —ua(a ) < w2 1)

<uy (2! t) < W1 ,n [2p1] (2")  (6.2.14)

capy pn — q.e. in RY,

Next, we want to show that for any given M € N

lim Smsun)ds’ = [ gu)ds
M09 J B noRY B NORY

for any {¢,} . converging to ¢ both a.e. in By, and weakly in W, (By) and such

that ¢,, are uniformly bounded in L* (B),). By Lemma|6.1.10] it is enough to show

that

/ lg(u)] dz’ — 0
{lu|>h}NORY NBs

and

/ ()| ' = 0
{tm|>R}NORY By

as h — oo, uniformly on m. From (6.2.13), (6.2.14), and the hypothesis on g we
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conclude

19(um)| < g(Um1) + g(um2) < g(ur) + g(uz) and [g(u)| < g(ur) + g(uz)

in By NORY. By the uniform bounds

l90im i)l 3oy < illon,

we use that u,,; are nondecreasing in m to conclude that

(i) oy < llan, -

Then, the desired estimates follow and g(u) € L' (ORY). Thus, by Lemma we
obtain that —A,u + 2g(u)H* = 2u in RY. Applying Theorem and Theorem
we obtain that the restriction of u to Rf is a solution of the desired problem

satisfying (6.2.14]) (which gives (6.2.9)). ]

Remark 6.2.8 As in Remark [6.1.13] we observe that it can be shown that, pass-
ing to subsequences if necessary, g(u™*) — g(uf) and g(u*) — g(u,,) strongly in

L' (B, NORY), and g(u,,) — g(u) strongly in L' (ORY N By) for any M € N.

Theorem [6.2.7] can be used to obtain existence of renormalized solutions when g
satisfies more explicit conditions. For example, we have the following application to

the case when ¢(s) is dominated by a power function.

Theorem 6.2.9. Assume 1 <p < N and let g : R — R be a continuous nondecreas-

ing odd function such that
lg(s)| < Cls|" for all |s| > |5l

for some C"' >0, ¢ >p—1, and s € R. If p € M, (8]Rf) s absolutely continuous
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with respect to CaPp1, 2 N-1 then there exists a renormalized solution to ((1.0.1)

with datum p.

Proof. Since 1 is absolutely continuous with respect to cap,_ 1, N_1 SO are f; =

Fag

pt po = p~, and p* = til g, » @ = 1,2. Then for every m we can apply Theorem 2.6
of [] in dimension N — 1 with sy =so =¢, a =1 — %, and R = 4(m + 1) to obtain
nondecreasing sequences { ,uznk} ) of nonnegative measures in 9, (8]1@: ) with compact
support in B, N ORY converging to p" weakly- in 9, (Bm N oORY ) and such that
Wfﬁ"j;lj)v ] € L9 (RN, 1t follows immediately that g (01W (mt+D) N1 [ k})
belongs to L! (8]1@: N Bm).

To apply Theorem it only remains to show that we can assume p;} < ,umH
for each & € N. For this we note that the approximating sequences p;} given by
Theorem 2.6 of [4], which are defined in the proof of Theorem 2.5 of [4], can be
taken equal to sup {0y, -, 0%} for some o; that approximate, and are bounded by,
wi*dr, where ¢y is a smooth function supported in a neighborhood of Bm*%' Since
p™ coincides with p*~! in B, ; one can check directly that by redefining iy, as
sup { [ g u;”k_l} one obtains approximating sequences with the same properties listed

above and that moreover satisfy the desired condition p3 < ,um“. O

Remark 6.2.10 It must be noted that Theorem [6.2.9| agrees with Theorem [6.1.11
in the sense that if ¢ < ¢. (see Remark |6 then cap,_1,_s_ n_1 ({0}) > 0 (see

Proposition 2.6.1 of [10]), and so any bounded Radon measure is adrms&ble according
to Theorem [6.2.91
On the other hand, Theorem [6.1.11] gives that any bounded Radon measure is

admissible for a wider range of nonlinearities than Theorem [6.2.9] For example

|s %=l g

(In (|s] + €)™

g9(s) =

is subcritical if € > 0 (and C' is chosen large enough) since it satisfies Assumption

6.1.1, but there is no ¢ < ¢. such that |g(s)| < |s|? for large values of s. Hence,
g g
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in this case, Theorem [6.2.9[ can only be applied with ¢ > ¢., and so it no longer
guarantees that every bounded Radon measure is admissible since, for example, the

Dirac measure ¢ is singular with respect to cap,_; ¢ N-1 precisely when g > q..
7q7p b

Let us also mention that, since p — 1 > 0, the (N — 1)-Lebesgue measure is ab-

solutely continuous with respect to cap,_1,_1__ n_; (see [10]), and so every measure
? q—p )

in L' (ORY) is admissible according to Theorem m (even when ¢ > q.).

To obtain similar conditions for other nonlinearities we need to introduce some
terminology. First we define the Bessel-Lorentz capacities, which can be viewed as
a generalization of the Bessel capacities.

For 1 < sy < oo and 1 < s3 < oo we denote by L2 (]RN) the standard Lorentz
space (see for example [19]). Then for &« > 0 one can define the Lorentz-Bessel

capacities

CaPog, 5y x (E) = int {|\f| ey S 20, Gox f>1on E}

where G, is the Bessel kernel of order « in RY (see [10] or [4]). The identification
Lr? (RN) = L? (RY), which holds for 1 < p < oo, shows that indeed these capacities

generalize the standard Bessel capacities.

Theorem 6.2.11. Let 1 < p < N and let g be a continuous nondecreasing odd

function such that

/ g(s)s~ W ds < o0
1

for some ¢ > p—1. If p € M, (8Rf) 1s absolutely continuous with respect to
cap,—1,—a_ 1 n-1 then there exists a renormalized solution to (1.0.1)) with datum p.

q—p+1’

Proof. If ;i is absolutely continuous with respect to cap,_, _1,N-1 then so are
q—p

p1 = pt, po = p~, and pf" = |y . For every m apply Theorem 2.6 of [4] in

dimension N — 1 with s;1 = ¢, 9 = 00, @« = 1 — 11—7, and R = 4(m + 1) to obtain

nondecreasing sequences { uz"k} L of nonnegative measures in 9, (8]Rf ) compactly
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supported in B, N 8R , converging to " weakly-* in 9, (Bm N 8Rf\rf ) and such

that W m+1 (i) € Lo~ (RN71). Just as in the proof of Theorem [6.2.9| we may

also assume that 17y ,um“.

We observe that f € L#* (RN7) implies {2/ € B,, NRN"! : [f(2/)] > t}| <
Ct~? for every ¢t > 0 and where C' depends on || f{| g.cc(gv-1y (see [19]). Then, as in
the proof of Theorem [6.1.11] we can obtain the inequality

/B . g (Cle(T?J)\r Ll k]) da’ < g(1)| B NORY | +

C(Qa C1, Ck,p,N,m,i)/ g(t)t_(q+1)dt < 00,
1

where ¢4, n,m, is the L% (RV=!) norm of W4(m+1])V L [ul .]. Hence, we finish by

applying Theorem [6.2.7] 0

Remark 6.2.12 Let us make a few observations regarding this result. It is well-
known that L1 = Li-171 < L™ and that L7 is the dual of La=6=1"
Thus

Gp-1% f(0) 21 =1 < ||Gp1ll o |If] < G-l o I£11

=1 0!

which implies that if G, ; € LT (R¥1) then cap,— Lt 1N ({0}) > 0. Since

b
this happens precisely when ¢ < ¢., we conclude that 1f q < q. then any bounded
Radon measure is admissible under the above theorem. In particular, this shows
that Theorem coincides with Theorem when |g(s)| < C'|s]? and ¢ < ¢..

Proceeding in a similar way, one can use the fact that xpeG, | € Lt (]RN _1)
whenever 0 < p — 1 < ¢ to prove (as in Proposition 2.6.1 of [10]) that the (N — 1)-
41, N—1- Thus,

every measure in L! (8]Rf ) is admissible according to Theorem [6.2.11}
Note that, in general, if |g(s)] < C|s|? then Theorem [6.2.9] guarantees exis-

Lebesgue measure is absolutely continuous with respect to Capp—1,
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tence of a solution to ([1.0.1)) provided g is absolutely continuous with respect to
cap,—1,—a__ n_1, while Theorem [6.2.11] guarantees existence if u is absolutely con-

g—p+1’

. . ,
tinuous with respect to Capp—l,q/f;+171’N—1 for any ¢’ > q.

On the other hand, under the hypotheses on ¢, if the growth condition of the

above theorem is satisfied with ¢ = ¢. then g satisfies Assumption [6.1.1] and so it is

subcritical. Hence, we expect that the above estimate CaPp—1, L 1N-1 ({0}) > 0,
which implies existence for any bounded Radon measure, can be improved to the
case ¢ = ¢.. It can be proven directly that this is true. Indeed, following the ideas
above, it is enough to show that G, ; € L%/®~1-> (RN=1). This can be shown by

definition using that G,_; has exponential decay at infinity and that it is controlled

by the Riesz kernel of the same order.

As a final application we consider nonlinearities of exponential type. To this end

we define the truncated n-fractional maximal operator as

MZ,R,N 1] (z) = UiltlfR %

where 0 < s < N, 0 < R<o00,n7 >0 and

() = (—Int)™ ,0<t<1/2
(In2)=7  |1/2 <t.

Then we have the following result.

Theorem 6.2.13. Let 1 < p < N and let g be a continuous nondecreasing odd

function such that

g(ls]) < el 1 for all s > s

for someT >0, A >1, and so € R. Let u € M, (aRf) be such that = f 41y — vy,
where f € L! (8RN) and v; € M, ((’“)Rf), 1 = 1,2, are nonnegative. There exists
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M(N,p,7,\) > 0 such that if

<M

H (p=1)(A=1)
A
Loo(RN—l)

p—1,00,N—1 [yi

then there exists a renormalized solution to (1.0.1)) with datum .

Proof. Let f = fi1 — fo with f; > 0, define p; = f; + v;, and let " = f* + v be its

restriction to B,,. Define pf3 = (To(f") + ") xp_,- Then pf}, are nonnegative,
m—1 )

nondecreasing on k, compactly supported in B,,NORY, and moreover 7}, < /LZL,:FI. It

is also clear that 7} — p" weakly- in 9, (Bm N 8Rf ) Hence, to apply Theorem

6.2.7)it remains to show g <c1Wff’T;1}V_1 [u;’jk}) € L' (Bn).

Let us first note that since p > 1 and p(1 — %) > (0 we have

Wi [, | @) < € N pm).

1
k

On the other hand, it holds that for every s > 1, € > 0 there exists C' = C(¢, s) such
that if a,b > 0 then (a + b)® < a*C + (1 + €)b®. Using this twice we conclude

A A
(W 3] @) = €N+ (140 (W0 @))
for some € > 0 to be fixed later, and so we have
A
4(m—+1 m
exXp (7' (Clwlfllj)v_l [Mzk] (xl)) )
A
< C(r,k, N, p,m, A, ¢) exp <r<1 o (clwff“f*;;_l 7] <x’>) )

since ¢; = ¢1(N, p). Now, an application of Theorem 2.4 of [4] in dimension N — 1

with o = 1 — %, n= w, r =m, and R = 4(m + 1), shows that there exists
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0 < dp(p, A) such that
5

A
/ L exp ) <Wf(1?;71])\71 [I/zm]) dr' < oo
BmNIRY P Lo (BmnoRY)

for any ¢ € (0,00). Hence, if we choose any M (p, A\, N, T) such that

(p—=1)(A—-1)
A

p—1,4(m+1),N—1 [v;"]

s\
M < (—OA)

then by hypothesis and the fact that

(p,1¥A,1) m (p,1)>f>\,1>
p—1,4(m—+1),N—1 Iz < Mp—1,oo,N—1 [vi]
Lo (BmnoRY) Lo (9RY)
we conclude that there exist € > 0 such that
\ (r=1O-1) ol
T(L+e)y <6 M, Sty N—1 ;"]
Loo(BmmaRﬁ)

for some 6 € (0,dy) and so

A
/ exp | 7(1+¢) (01Wf£"f;1])\]_1 [I/Zm]) dr' < oo
BnNoRY P

which concludes the proof. O
Remark 6.2.14 It is immediate that the above theorem guarantees existence for
data in L! (8Rf).

When A = 1, i.e. g(|s]) < el — 1, the condition imposed on v; reads

v (Bie) _ ),

sup sup Ny =

N
r€ORY t>0

This condition can be expressed in terms of the Riesz capacities (See Chapter [2)).
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Indeed, it is known that in the case 1 < p < N it holds tV P = Ceapr,_, pN-1 (Bi(x))
for some C' > 0 independent of ¢ (see Chapter 5 of [10]), and so the above condition

is equivalent to

vi (Bi(w)) < CMeapy, _, pn-1 (Bi(2))

for every z € ORY and t > 0.
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Chapter 7

Nonlinear problems with source

In this chapter we consider nonnegative solutions to the following problem with

source
—~Ayu=0 in RY
g i (7.0.1)
IVul’ ?u, = p+u?f  on IRY,
where 1 <p < N,p—1<gq, and p € M, (8Rf) is nonnegative.
We begin obtaining necessary conditions for existence of solutions. Then, we
show that under a smallness assumption on the constants involved, these conditions

imply existence of solutions. Lastly, we use these conditions to show nonexistence

results and also to characterize removable sets.

7.1 Necessary conditions for existence

To obtain necessary conditions for existence of solutions to (7.0.1)) we follow the ideas
in [I8].

In order to state our first result we need to introduce the Riesz potential I, n of
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order o, 0 < o < N, on R", of a nonnegative Radon measure p by

L) = N,) [ =3l duty)

where ¢(N,«) is a normalized constant. We recall that the Riesz capacities were

defined in Chapter [2| while the Wolff potential W, ¢ x [-] was defined in Section .

Theorem 7.1.1. Let 1 <p < N andp—1<q. Let p in M, (8Rf) be nonnegative

and suppose there exists a nonnegative renormalized solution to (7.0.1)). Then

Lu%w4mwfw5saN%@uw> (7.1.1)

holds for all balls B C ORY ~ RN~ (where up is the restriction of p to B).

Proof. We know by Remark that if u solves (7.0.1]) then @, the extension of u

to RY by even reflection across 9RY, is a local renormalized solution to
— Ayt = 2u"H + 2 in RY.

Let w = 2a9H + 2p. Combining Theorems 4.3.2 and 4.2.5 of [25], we obtain that u

coincides a.e. with a p— superharmonic function u satisfying
Wi, N [w] < C(N,p)a.

By Remark we can conclude that
Wipn [w] < C(N,p)u

capy p x —q.e. in RY and so, by Proposition [2.3.2) H— a.e. Thus, for any dyadic cube
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P c ORY (ie., P =2 (k + [0, 1)N_1> for some j € Z and k € ZV~!) we have

w(P) > /PQuqu > C(N /Wle 19dx’ = (N’p>/PW1—11,,p,N—1 (w]? da.

Using that, for any @ > 0, p > 1, and any N,

1

Wosw o~ 3 ( w(lQL)S .

QCP |Q| N

with || the N— dimensional measure of ), and where the sum is taken over all

dyadic cubes @ contained in P (see [10]), we conclude

>

QCP

q

=
Q) o] < oplp).
QI
By Proposition 3.1 of [I§] the above implies
w(Q vt

>, (%) Q] < C(N,p)w(P)

qcp \ Q[ M1
which, by an application of Theorem 3 of [22], yields

PPEEACZ f(Q

o Q"

CNp ) 1FIl ey

L q—(g_l) (dw)

for any nonnegative f € La D (R¥1), where f(Q) = fQ fdx' and the sum is

taken over all dyadic cubes (). Since

@
f] Z ’Q|1,% XQ

Q
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and w > 2 we obtain

1,51 (F)] C(g:p) [ p-1.x 1 ()] C(N,p,q) | /]

q < q
La=®=1 (du) — La=®=1) (dw ) La— -1

for any f € La0-D =y (RN 1) Hence, I,_1 n-1: LeG — [T (dp) is a bounded

linear operator and so its dual satisfies

{1 D) e < CWNp,0) N9l e, " )

for any g € Lﬁ(du). Taking g = xp we obtain ([7.1.1)). O

Remark 7.1.2 It is known that ((7.1.1]) is equivalent with the condition

p(K) < C(N,p,q)capy,_, n-1 (K) (7.1.2)

q
’q—(p—1)’

for all compact sets K C ORY ~ RY~!. The proof of this equivalence, which we will

use in the following sections, can be found in [23]. On the other hand, it is known

that (7.1.1]) implies
| el i < CNpan (B
RN-1
(see [24] or [18]). By Proposition 5.1 of [1§]
a_ q
[ Gl ae [ (W fn])
RN-1 RN-1 P
so we see that (7.1.1)) implies

/RNl (Wl—%m,N—l [“Bqul"' < C(N,p,q)u(B) (7.1.3)

for all balls B C JRY ~ R "' Note that, by Monotone Convergence, the above
condition implies that if p € 9, (ORY) then Wy_1 v, [u] € L7 (ORY).
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As we will see, condition (7.1.1)) is ‘almost’ sufficient to obtain existence of a
solution. However, because of the method we use to show existence, it is convenient

to work with another necessary condition which is actually a consequence of (7.1.1]).

Theorem 7.1.3. Let 1 <p < N, p—1<gq, and let p in NN, ((9]Rf) be nonnegative.
Then condition (7.1.1)) implies W,_1 , n_ [u] € L? (ORY) and

q .
Wl—%,p,N—l [(Wl—%,p,N—l [N]) ] < ClWI—%,p,N—l (1] ae. in 8Rfa (7.1.4)

for some nonnegative constant Cy depending on p, q, and N.

Proof. By Remark [7.1.2] it is enough to check that (7.1.3) implies (7.1.4). To this
end we decompose the Wolff potential as W, 1 n (] = Uppp + L1, where

Uyp(z) = /0 (%) o d?

t
pate = [ (052)

for any r > 0. Setting

V= <W1—%,p,N—1 [M])q
7 = (Urp)"
r = (Lrp)?

we see that v < C(q) (7, + A,) for any r > 0. Note that these are L' (9RY') measures.
Now fix any z € ORY ~ RN¥~1 and write for simplicity B, = B,(z) C RVL. If

y € B, and 0 < t < r then By(y) C Bs,, and so U.u = U,up,, in B,.. Hence, by
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(7.1.3]) we have

and so

W, 1

57 rr-N—p

pv-1 [1] (2) < /0 ) (“ 5 2’”)) o T oW, sy @) (715)

Next, we study the rate of decay of A, as function of r. If y € B, and s > 2t then
B, C Bs(y) and so

Wi lam ) 2 [ (M <B;Q%<y>>) 7 ds

+ S

p—N

> Cu(B)7tor.

Comparing the above with ((7.1.3) it follows that

q(p—1)

1(By) < CtN e

and then
Lr'u < erfl(;fD .

If y € B, and t > r then B,(y) C By and so

Lyn(y) < / ) (” ﬁ?) RELPTIE

,
which gives

A (By) = / (Lyp)?da’ < C (Lpp(x))?rN 1

T
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Combining the above estimates and using integration by parts we get

[ ) o [
ol (,M)‘
0/“(5532) K

IN

that is,
Wy s M (@) < CW sy [ (@) (7.16)

By combining (7.1.5)) and ([7.1.6) we conclude
Wl—%,p,N—l V] (x) < CWl—%,p,N—l 1] ()

which is the desired estimate (|7.1.4)). O

7.2 Sufficient conditions for existence

Our strategy for solving problem ([7.0.1]) is to combine the techniques developed in

[18], where the authors study the existence of p— superharmonic solutions to
—Apu = u?+ p in RY,

with our symmetry and existence results of Chapter . The results of [18] are based
on a careful study of the Wolff potential, and the existence of solutions is guaranteed
under any one of some equivalent conditions, among which is that the measure u
satisfies

WLp,N [(WLPJV [u])q] < OQWLP’N [,u] < 00 a.e. in RN (721)

125



for some small enough constant Cy = Co(V, p, q).
Unlike the problem with absorption, we do not use directly the existence result
of [I§] to construct a global solution. Instead, we define a recursive sequence of

solutions to

—Apty, = ul H+ py  in By,
Y ' (7.2.2)

Uy, = 0 on (9Bm,

where vy = 0 and p,,(EF) = p(EN B,,), and then take limit as m — oo. In this
way we dispense with the need to define a sequence of nonlinearities g, converging
to u? (as was done in the previous chapter). As we show in the next theorem, this
method gives a solution to (7.0.1)) under a natural adaptation of condition (7.2.1]).

But before, we need the following lemma.

Lemma 7.2.1. Let u, v € M, (2) be nonnegative measures and suppose p < v. Let

Q' cc Q and let u be a renormalized solution to

—Apu=p inQ

u =0 on 0fY.

then there exists a renormalized solution v to

such that u < v a.e. in ).

Proof. The lemma (and its proof) is a slight modification of Lemma 6.9 in [I8], so
we omit some details. Let uy = Ty(u). Then uy solves —Ayup = poX{juj<k} + Ap
in ', u, = 0 on 9, where A/ is a nonnegative measure (see Remark . Let
vg solve —Ayvr = o+ A\ +v — pin Q, v = 0 on 9Q. By the stability results of

[9], passing to a subsequence, vy converges a.e. to a function v solving the desired
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equation. Since u is a.e. finite, the result follows if we can show that u, < v a.e. in
(Y. For this we can proceed exactly as in the proof of Lemma 6.8 in [I§]. We only
remark that min ((uy — Thiar(vg)) ", h), where b > 0 and M = supg, uy, belongs to
Wy () because v, € W () is nonnegative and u, € W, ? (). O

Theorem 7.2.2. Let 1 <p < N and p—1 < q. Let u be a nonnegative measure in
M, (ORY) satisfying Wk%’p,]\_l (1] € L9 (ORY) and condition (7.1.4) with

< g—p+1 ”1( p—1 )
= \qeV, p)C(p)2iT g—p+1

where C(p) = max{l,Q%} and c¢(N,p) is the constant in Theorem |6.2.4. Then

there exists a nonnegative renormalized solution to (7.0.1)) satisfying

u(! ay) < [ LLNPIC@2T
’ - g—p+1

) W1 ,n1 i (2) in QN RY, (7.2.3)

where Q is a set of the form Q@ = Q1 N (2 x R), Qy C RV with capypn () =
0 and |Q5| = 0. In particular, the above estimate holds a.e. in any hyperplane

RN x {t}.

Proof. Let u; be a renormalized solution of

_Apul = 2/,61 in Bl (7 5 4)

u; =0 on 0By,

where 1 (E) = p(E N By). Such a function exists by, for example, the results in
[9]. By testing against Ty (min(ui,0)) one can see that p > 0 implies that u; is
nonnegative (see Remark 6.5 of [18]). By Lemma [6.2.3] u; satisfies

u < c(N, p)Wﬁp,N [2p1] < e(N,p)Wipn [20]
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capy p N — q.e. in By, where ¢(N, p) is the constant in Theorem [6.2.2| As observed in
6.2.2)
Wipn [20] = Wl_%,p’N_l 24) in ORY

so u; € L7 (B; NORY) and, by (6.2.3),
ul(x/7 'TN) S C(N> p)WI—%,p,N—l [2/1J] (.T/)

capy p N — g-e. in By, and in the whole RY if we extend the function by zero outside

of By. Suppose m > 1, m € N, and u,, is a renormalized solution to

—Apty, = 2ul H +2p,  in By,
! ' (7.2.5)

Uy, = 0 on 0B,,

where p,,(E) = p(ENBy,) and u,_y € L7 (9RY) is nonnegative, supported in

B,,_1, and satisfies
Um—1(2',xy) < ozm_lwl_%’p’N_l [2u) (2) for every (z',zy) € QN By

for some constant a,—1, where Q is a set of the form Q = Qy,,-1 N (R x R) with

capypn (1) = 0 and Q, € RN the set where W, _1 , v [p] («/) is finite and
) p7 K

condition (7.1.4)) holds (note that |Q5] = 0). Since the measure 2u?, _H + 2u,, is

nonnegative we have u,, > 0 and, again by Lemma [6.2.3|
U < (N, p)WiTy [2uf,_\H + 2] capipn — ge. in By,
By definition of the Wolff potential one can see that

Wﬁ?,N [QUanlﬂ + Qﬂm] < C(p) (WﬁZfN [QUanlf’Lq + Wfl,ng [2Mm])
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where C(p) = max {1, 2%} Therefore, we can use that u!,_H and p, are sup-
ported in ORY, together with ([6.2.3), the monotonicity of the Wolff potential, as-
sumption ([7.1.4), and the induction hypothesis, to compute that

udﬂm)C@MM@M’H%mﬂ}WﬁM%w@ﬂm
< C(p)c = (Wle uph } +W14’§N [Nm]) (2',0)
< C(p)e O%pNKmnwm1pN1mm)H}+wmme@£m

sc@dw(@w%u) q+0wmmmwm

= C(p)c ((2”110%1) m Cy+ 1) Wl—%,p,N—l [24] ()

for every (2',zx) € QN B, where Q = Qy,, N (Q2 x R), Qy € R¥7! is as described
above, and (2 ,, is the intersection of )y ,,,_1 with the set where the first inequality
holds. Note that cap; , n (Qfm) = (0. Hence, by induction starting with a; = ¢(N, p),

we obtain a sequence of nonnegative functions {u,},, C L? (ORY) such that
um(xlal’N) < amwl—l,p,N—l [2/4 (ZE'/) in QN Bm,

with € as described above, and where

q

am = C(p)e(N, p) ((2#1%_1) et 1) .

Since C'(p) > 1, it is easy to show by induction that the assumption

< g—p+1 pl( p—1 )
= \qe(N, p)C(p)2r g—p+1

implies that the sequence {,}, satisfies

,p)C(p)

Oy, < M = ge(N
qg—p+1

foralm e N
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and so we obtain
U (', 2n) < MW, 1 v [20] (27) in QN By,

Note that we may assume uy,—1 < U, cap;pn — g.e. in RY. Indeed, assume t,_;
is a solution of such that w, o < Up_1 caprpy — ge. in RY. Set v, =
2Up—1H + - Then, since v,,—1 < v,,,, Lemma shows that we can obtain a
renormalized solution u,, of such that u,, 1 < u,, a.e. in B,,_1. Extending by
zero and using cap; , y— quasi-continuous representatives we conclude uy,—1 <
capy pn — q.e. in RV,

Now, since these solutions are nonnegative, we may identify them with their
p— superharmonic representatives and conclude u,, 1 < u,, everywhere in RY (see
Remark|[6.2.4). Then, by Lemma 7.3 of [14] u = sup,, u,,, defines a p— superharmonic
function which, by Theorem 10.9 of [14], is cap; , x— quasi-continuous in RY (note
that u is finite in ©Q and |Q°N B,,| = 0 for every m € N). Moreover, it follows that
u e L7 (ORY) and u?, — u? in L' (ORY). Notice that {up,},, is uniformly bounded
in L7 (ORY). Hence, by Lemma u satisfies properties (1), (2), and (3) in the
statement of that lemma. Note also that u satisfies the desired estimate (7.2.3).

By Lemma [6.1.10] to show that (4.2.1]) holds it is enough to have

/ ul dr' + / uldx’ — 0
{um>k}NBpNORY {u>k}NBpNORY

as k — 0, uniformly in m. But this is clearly true since u,, T u a.e. in By N IRY

and u? € L! (ORf ) Hence, we may apply Lemma with ¢, = —2u! | and

m—1

g = —2u9, to conclude that u is a local renormalized solution to
~Apu = 2u'H + 2 in RY,
By Theorem [5.1.1] such a solution is symmetric, and so by applying Theorem [5.2.1
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the result follows. O

Combining Theorems [7.2.2] [7.1.1] [7.1.3] and Remark we obtain the follow-

ing.

Corollary 7.2.3. Let 1 < p < N, p—1 < q, and assume p in M, (5]&]:7) is

nonnegative. Then the following are equivalent:

(1) For some € > 0 there exists a nonnegative renormalized solution to

—A,u=0 in RY

IVulP u, = ep+u?  on ORY
satisfying
u(z’,xn) < C(p,q, N, E)I/Vl_%’pJV_1 (1] (z') in Q ﬂ@,

where Q@ = Oy N (Q2 X R), Q9 C RV with capy v (25) =0 and Q5] = 0.

(2) There exists C > 0 such that for all balls B C ORY ~ RN-1

[ v [as)) 5 o’ < ()

where pp is the restriction of u to B.

(3) There exists C > 0 such that for all compact sets K C ORY ~ RN-1

p(K) < Ceapy

1 q
P=trq—(p—1)’

No1(K).
(4) There exists C > 0 such that for all balls B C ORY ~ RN-1

q
/RN1 (Wl—%,pw—l MB]) dx’ < Cu(B).
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(5) Wk%,p’]\,fl (1] € L7 (ORY) and
q
Wk%,p,]\hl [(Wlf%,p,Nfl [N]) ] < CWIf%,p,Nfl (1] ae. in 8Rf'

Proof. We know (1) implies (2) from Theorem [7.1.1, We noted in Remark
that (2) is equivalent with (3) and implies (4). That (4) implies (5) was shown in
Theorem Finally, suppose (5) holds for some constant C'. Then we see that

for any € > 0

g—(p—1)

q
Wl—%,p,N—l |:<W1—%,p,N—1 [W]) } < Ce -7 Wl—%,p,N—l [ep]

a.e. in ORY, and so (1) follows from Theorem provided € > 0 is chosen small
enough. O

7.3 Nonexistence for the subcritical case

We now turn to the problem of nonexistence.
Notice that when showing ((7.1.1)), in the proof of Theorem [7.1.1, we actually

obtain

/B (Iy1v1 [ws)) 7T d2’ < C(N,p,q)w (B)

where w = 2u9H 4 2. Note also that the argument could have been applied directly
to a p— superharmonic function v solving —A,v = 207H + 2 in RY. On the other

hand, we obtained

q

> (ﬁﬂ) " 1Ql < OV, p(P)

1—p=L
ocp \|Q N1
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for all dyadic cubes Q, P C 8]1%_];[ , which in the case p = N implies
w(P)¥1 |P| < C(N)w (P).

This last inequality cannot hold for a bounded nonnegative w defined in 8Rf unless it
is trivial. Hence, considering also the equivalences in Remark [7.1.2] we can conclude

the following.

Corollary 7.3.1. Let 1 <p < N and p—1 < q. Let u in M, (8Rf) be nonnegative
and suppose u is a nonnegative p— superharmonic solution to —A,u = 2uiH + 2p

in RV, If p < N then

/ uwldx’ + p (K) < C(N,p, q)cap;pth# no1 (K)
K

(=1

for all compact sets K C ORY. If p= N then u(z/,0) = 0 a.e in ORY and = 0.

(»—1)q

Since capy,_, ~N—1 = 0 whenever ooy 2 N — 1 (see [10]) we have the

’q*(gfl)’
following Liouville-type theorem for subcritical problems with source.

Theorem 7.3.2. Let 1 < p < N, p—1<gq, and p € M, (8]1%1) nonnegative. If
p=N,orp<N andq < %, then there are no nontrivial nonnegative p—
superharmonic solutions of —Apu = 2uiH + 2u in RN . In particular, there are no

nontrivial nonnegative renormalized solutions of ((7.0.1]).

Proof. Since every nonnegative local renormalized solution coincides a.e. with a p—
superharmonic solution of the same equation (see Remark , by Remark
the hypothesis, and the previous corollary, we see that is enough to show that there
are no nontrivial nonnegative p— superharmonic solutions of —A,u = 0 in ]Rf whose

trace vanishes a.e. in GRf . As noted in Remark any such solution u satisfies

u(z) < Cinfu

By

133



in By for any M > 0, and so u = 0.

7.4 Characterization of removable sets

In this section we obtain a characterization of removable sets for problem (7.0.1]
when p = 0. In order to properly define removable sets we first define what does it
mean to have a renormalized solution up to a portion of the boundary. We give a

definition which is a natural variant of definition [3.3.1]

Definition 7.4.1. Let 1 <p < N and p—1 < q. Given K C G]Rf compact, a
renormalized solution of
—Apju=0 in ]Rf

(7.4.1)
\Vul’u, = u|"'u  on IRY \ K

is a function u defined in Rf such that:

(1) w is measurable, finite a.e., and Tj(u) € W,L? (RY) for all k > 0;

loc

(2) |Vul" e L, (RY) for all 1 < s < 355;

(3) [ulf~! € Lf,, (RY) fora111<s<NL7p(1<3<ooifp:N);

loc

(4) w is finite a.e. in IRY \ K, and u € L () for any closed set Q@ C IRY such
that Q@ C K¢

(5) there holds

\Vul|P > Vu - Vwdz = / lu|" " uwdz’
ORN\K

J

for all w € Wte (Rf ) compactly supported in R_f \ K, whose trace belongs

N
+

to L™ (8Rf \ K ), and satisfying the following condition: there exists & > 0,
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r > N, and functions w*> € Wt" (Rf) such that

w=wT™ q.e. in {xERf : u>k’}

w=w"" @a.e. in {xeRf : u<—k}.

Remark 7.4.2 We note that, just as in Remark |3.3.2] it makes sense to talk about
the boundary values of u in ORY \ K.

Now we define removable sets.

Definition 7.4.3. We say that a compact set K C 8Rf is removable for ([7.4.1]
if every nonnegative renormalized solution of ([7.4.1)) is a nonnegative renormalized

solution of
—A,u=0 in RY
g i (7.4.2)
IVulP u, =u?  on ORY.

We have the following characterization of removable sets.

Theorem 7.4.4. If 1 <p < N and q > (N_Nl)& then a compact set K C 8Rﬂ\r’ 18

—-p

removable for (7.4.1) if and only if cap;,_, o+ _ n_q (K) = 0.

q—(p—1)’

Proof. Let u be a renormalized solution to (7.4.1)) and suppose cap;,_, ¢ n_q (K)

q—(p—1)°

is equal to zero. Since q‘i(f]:i) < N — 1 we can combine Theorems 5.1.4 and 5.5.1 of

[10] to conclude that Capy_1 N1 (K) = 0. Let u be the extension of u to RY by

even reflection. Then # is a local renormalized solution to —A, i = 2u¢H in RV \ K.
By Proposition capy p N (K) = 0 and by Theorem 4.3.6 of [25] this implies that
the p— superharmonic representative of % can be extended to R as a nonnegative
p— superharmonic function. By Remark[6.2.4] this p— superharmonic representative
coincides cap; , v — ¢q.e. with u in @ Let u be the Radon measure associated to u,

i.e., the measure such that —A,u = p in D’ (RN). Let us show that pu = 2u?H.
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Take ¢ € Cy° (RN ) nonnegative and let ¢, be such that 0 < ¢, < ¢, ¢, €
Cs° (RV\ K), and ¢, — ¢ point-wise in RV \ K. Note in particular that ¢, — ¢

H—a.e.. Hence, by Fatou’s Lemma,

/ 2uigpdr’ = / 2ulpdH
ORY RN

< lim inf / 2ulp,dH
RN

n—o0

=liminf [ |Va|"?>Va- Vé,dx
RN

= lim inf OndiL

n—oo RN

< pdp

RN

and so we conclude w4 € L' (8Rf ) and p > 2u?H in D’ (RN ) (recall that u satisfies
(4) of Definition [7.4.1)). It follows at once from considering the equations solved by
@ that in fact g = 2u9H in RY \ K. Then, setting u® = p — 2u¢H we have that u is

a p— superharmonic solution of
—A,t = 2uIH + p in RN

where the measure ;i is supported in K (and hence bounded). Then, by Corollary

IEL

p* (K) < Ceapy, \,—a N1 (K)=0

q—(p—1)’

and so u = 0. By Theorem 4.3.4 of [25], @ is a local renormalized solution to
—A,u = 2u?H in RY, and so, by Theorem the restriction of u to RY is a
renormalized solution of .

For the converse, suppose Capr, ), s N1 (K) > 0. We let u be the capacitary

measure of K (see Theorem 2.5.3 of [10]) and extend it to IRY by setting u (A) =
p(ANK). By Theorem 2.5.5 of [10] we see that p satisfies (7.1.2) and so, by
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Corollary [7.2.3], there exists a renormalized solution u of (7.0.1)) with measure ey for
some € > 0. Since p is concentrated in K, u is also a solution of (7.4.1)) and thus K

is not removable. O
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