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por la Vicerrectoŕıa de Investigación de la Pontificia Universidad Católica de Chile
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Resumen

En este trabajo proponemos y estudiamos un concepto de solución renormalizada

al problema −∆pu = 0 en RN
+

|∇u|p−2 uν + g(u) = µ en ∂RN
+

donde 1 < p ≤ N , N ≥ 2, RN
+ =

{
(x′, xN) : x′ ∈ RN−1, xN > 0

}
, uν es la derivada

normal de u, µ es una medida de Radon acotada, y g : R → R es un término

no lineal. Obtenemos resultados de estabilidad y, haciendo uso de la simetŕıa del

dominio, estimaciones en hiperplanos, y métodos de potenciales, mostramos variados

resultados de existencia. En particular, mostramos existencia de soluciones para

problemas con términos no lineales del tipo sumidero tanto en el caso subcŕıtico

como el supercŕıtico. En el problema con fuente estudiamos el término no lineal

g(u) = −uq, mostrando existencia en el caso supercŕıtico, y no existencia en el caso

subcŕıtico. Además, damos una caracterización de conjuntos removibles cuando

µ ≡ 0 y g(u) = −uq en el caso supercŕıtico.

Debemos resaltar que este trabajo está motivado por resultado obtenidos para la

ecuación −∆pu + g(x, u) = µ en dominios acotados. Notamos que existen algunos

resultados de existencia para problemas similares al aqúı estudiado, pero en dominios

acotados, y que estos son bastante restrictivos ya que, por ejemplo, no admiten

cualquier medida acotada de Radon µ como dato. En este sentido, los principales

resultados aqúı presentados son completamente nuevos.
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Abstract

We propose and study a concept of renormalized solution to the problem−∆pu = 0 in RN
+

|∇u|p−2 uν + g(u) = µ on ∂RN
+

where 1 < p ≤ N , N ≥ 2, RN
+ =

{
(x′, xN) : x′ ∈ RN−1, xN > 0

}
, uν is the normal

derivative of u, µ is a bounded Radon measure, and g : R→ R is a nonlinear term.

We develop stability results and, using the symmetry of the domain, apriori esti-

mates on hyperplanes, and potential methods, we obtain several existence results.

In particular, we show existence of solutions for problems with nonlinear terms of the

absorption type in both the subcritical and supercritical case. For the problem with

source we study the power nonlinearity g(u) = −uq, showing existence in the super-

critical case, and nonexistence in the subcritical one. We also give a characterization

of removable sets when µ ≡ 0 and g(u) = −uq in the supercritical case.

We remark that this work is motivated by results obtained for the problem

−∆pu + g(x, u) = µ in bounded domains. We note that there are some existence

results for similar problems to the one that we propose here, although in bounded

domains, and that these are fairly restrictive since, for example, not any Radon

measure µ is allowed as datum. In this sense, the main results presented here are

completely new.
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Chapter 1

Introduction

In this work we consider the problem of finding solutions to−∆pu = 0 in RN
+

|∇u|p−2 uν + g(u) = µ on ∂RN
+

(1.0.1)

where 1 < p ≤ N , N ≥ 2, RN
+ =

{
(x′, xN) : x′ ∈ RN−1, xN > 0

}
, and µ ∈Mb

(
∂RN

+

)
.

Here Mb

(
∂RN

+

)
is the space of Radon measures in RN with bounded total variation

which are supported in ∂RN
+ =

{
(x′, xN) : x′ ∈ RN−1, xN = 0

}
, uν is the normal

derivative of u, g : R→ R is a nonlinear term, and

−∆pu := −div
(
|∇u|p−2∇u

)
.

Consider the related problem of finding a solution to−∆pu+ g(x, u) = µ in Ω

u = 0 on ∂Ω

(1.0.2)

where Ω is a bounded domain in RN , µ ∈Mb (Ω), and g : RN × R→ R. If p > N a

unique solution can be obtained by the theory of monotone operators from W 1,p
0 (Ω)
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into its dual W−1,p′(Ω), since in this case any bounded measure in Ω belongs to this

dual.

When 1 < p ≤ N the study of problem (1.0.2) is based upon the theory of

renormalized solutions. In the case g ≡ 0 the concept of renormalized solution was

first introduced in [9], wherein the authors showed existence and partial uniqueness

results. The proof of existence relies in a delicate and very technical stability result.

The concept of renormalized solution has been since then the main tool to study

degenerate elliptic problems with measure data. We refer the reader to [25] for an

overview of the concept and further references. Let us note that in the special case

µ ∈ L1 (Ω) + W−1,p′ (Ω) the concept of renormalized solution coincides with the

concept of entropy solutions to (1.0.2) introduced in [2] (see also [5]), in which it is

shown both existence and uniqueness for the case g ≡ 0.

When g is nontrivial, the nature of equation (1.0.2) depends on the sign of

g(x, u)u. To emphasize this fact, and in accordance with the literature, we call

it a problem with absorption when g(x, u)u ≥ 0, and a problem with source when

g(x, u)u ≤ 0. Further, we say that the problem is subcritical whenever there are

conditions imposed on the growth of |g(x, s)|; otherwise we say that the problem is

supercritical.

For the problem with absorption, existence of renormalized solutions to (1.0.2)

in subcritical cases has been shown in [3] and [25]. In [3] the author considers

g(u) = |u|q−1 u, while more general nonlinearities are considered in [25]. Let us

mention that in the power case one obtains the sufficient condition q ∈ (0, N(p−1)
N−p ) if

1 < p < N , and q ≥ 0 if p = N . In the case p = N exponential-type nonlinearities

are considered, but under a restriction in the size of the measures.

The problem with absorption in supercritical cases has been studied in [4]. There

the authors show that given a fixed nonlinear term g existence of renormalized so-

lutions to (1.0.2) holds for a certain class of measures. Their results, which are

quite general, are based mainly on a delicate study of the Wolff potential and can
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be applied to establish sufficient conditions for existence of renormalized solutions

when the form of the nonlinearity is more explicit. For example, when g = |u|q−1 u,

q > p− 1, a sufficient conditions on the measure is that it be absolutely continuous

with respect to the Lp,
q

q−p+1
(
RN
)

Bessel capacity. A boundedness condition on the

measure is obtained when the nonlinearity is of exponential-type.

Problem (1.0.2) is rather more difficult when it is of the source type. In fact, in

this case only nonnegative solutions are considered. In [18] the authors show equiv-

alent sufficient conditions to obtain nonnegative renormalized solutions to (1.0.2)

when g(u) = −uq and µ is a nonnegative measure. It is also shown that, if the

measure is compactly supported in Ω, these conditions are necessary. Their results,

which are obtained through a careful study of the Wolff potential and its relationship

to the Bessel and Riesz potential, show in particular that if q ∈ (p − 1, N(p−1)
N−p ) and

1 < p < N , or q ≥ p− 1 and p = N (i.e., the subcritical case), then any nonnegative

measure with small enough norm admits a solution. In the supercritical case, a suf-

ficient condition is that the measure must be ‘Lipschitz’ continuous with respect to

the Lp,
q

q−p+1
(
RN
)

Bessel capacity. We note also that their main results allows them

to present a complete characterization of removable sets for (1.0.2) in terms of some

fractional Bessel capacities, as well as to prove Liouville-type results for problems in

the whole RN .

Going back to problem (1.0.1), in the case p > N we can similarly obtain a unique

solution in the space W 1,p
(
RN

+

)
by using the theory of monotone operators. This

follows from the fact that if p > N then functions in W 1,p
(
RN

+

)
have well defined

continuous and bounded traces in ∂RN
+ , and so any element in Mb

(
∂RN

+

)
can be

seen as an element in the dual of W 1,p
(
RN

+

)
. Of course, this works whenever µ is

in the dual of W 1,p
(
RN

+

)
(even if 1 < p ≤ N). In fact, this is the approach used

in [26], where it is proven the existence of weak solutions to the subcritical problem

3



with absorption −∆pu+ ε |u|q−1 u = f(x) in Ω

|∇u|p−2 uν = g(x) on ∂Ω,

where f ∈ Lp′ (Ω), g ∈ W
1
p
−1,p′ (∂Ω), ε is a nonnegative constant, Ω is a bounded

domain, 2N
N+1

< p, and q ≥ 0 satisfies q ≤ Np
N−p − 1 if p < N .

In the case 1 < p ≤ N we turn to the idea of renormalized solutions. In [1] a

concept of renormalized solution was proposed for a Neumann problem in bounded

domains and with nonnegative measures in L1 (see also [16]). However, to our

knowledge, there is no proposed definition of renormalized solutions to Neumann

problems such as (1.0.1) for general bounded Radon measures. In this work we

propose such a definition and then prove existence of renormalized solutions for

various types of nonlinearities. Indeed, we have Theorem 5.2.2 for the case g ≡ 0,

Theorems 6.1.11 and 6.1.12 for subcritical problems with absorption, Theorem 6.2.7

for supercritical problems with absorption, and Theorem 7.2.2 for a supercritical

problem with source. On the other hand, in Theorem 7.3.2 we show nonexistence

of nontrivial nonnegative solutions for the same problem with source but in the

subcritical case.

Our approach to solving problem (1.0.1) is to turn it into an associated problem

in the whole RN . Indeed, formally, if u is a solution to (1.0.1) then we expect that

ū, its even reflection across ∂RN
+ , should be a solution to

−∆pū+ 2g(ū)H = 2µ in RN (1.0.3)

where H is a normalized (N − 1)-dimensional Hausdorff measure concentrated in

∂RN
+ . Note however that not every solution of the above problem would yield a

solution to (1.0.1), unless it is a symmetric solution, and so the problems are not

equivalent.

The advantage of looking at this extended problem is that we can obtain a so-
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lution to (1.0.3) by applying the theory developed in [9], [25], [4], and [18], to an

increasing sequence of bounded domains. In order for this approach to work we

need to establish some stability results. Then, to recover a solution to (1.0.1), we

show that the solutions obtained through this process might in fact be taken to be

symmetric with respect to ∂RN
+ . It is worth mentioning that with our definition

of renormalized solution to problem (1.0.1), ū becomes in fact a local renormalized

solution of the associated problem in RN , as defined for example in [3] and [25].

This thesis is organized as follows. In Chapter 2 we collect all the relevant

preliminary definitions and results we shall need both to define renormalized solutions

and to obtain the existence results. Since we consider measures and functions in both

RN and ∂RN
+ , we will need to consider the problem of obtaining well defined traces,

as well as the interplay of the Bessel capacities defined in RN and ∂RN
+ . In particular,

we will make use of trace and extension operators in the Lizorkin-Triebel spaces.

In Chapter 3 we give the definitions of renormalized solutions in bounded domains

and of local renormalized solutions in general domains, define renormalized solutions

to problem (1.0.1), and state estimates and other results from [9] which will be used

in the sequel. We prove some properties of renormalized solutions to problem (1.0.1),

and also show that renormalized solutions to (1.0.1) do in fact exists by proving that

the fundamental solution to problem (1.0.1), with g ≡ 0, is a renormalized solution

in the sense of our definition with µ the Dirac mass.

In Chapter 4 we study the problem of obtaining local renormalized solutions

to −∆pu = µ in RN . The existence of such solutions is given in Theorem 4.0.1.

The proof is based on two lemmas, both of which are of use later when dealing

with nonlinear terms. The first states that given a sequence {um}m of renormalized

solutions to (1.0.2) with g ≡ 0, Ω = Bm(0) = {|x| < m}, and data µm, we can find a

convergent subsequence such that the limit function u has the necessary properties

to be a local renormalized solution in RN . This is proven by a slight modification of

the argument found in [9]. The second lemma is a stability result that will be used

5



to show that the function u is indeed a local renormalized solution. This is proven

for more general equations than the ones considered in the first lemma, and its proof

is based on the argument given in [17] to bypass the rather involved arguments

developed in [9].

In Chapter 5 we show that the solution obtained by the above method is sym-

metric with respect to ∂RN
+ . We do this by showing that, in a bounded domain, if a

measure is concentrated in ∂RN
+ and the domain is symmetric with respect to ∂RN

+

then any renormalized solution has the same symmetry. For this we use the partial

uniqueness result obtained in [9]. Then, in Theorem 5.2.2, we use this symmetry to

recover a solution to the original problem (1.0.1) when g ≡ 0.

In Chapter 6, Section 6.1, we consider the problem of obtaining renormalized

solutions to (1.0.1) in subcritical cases with absorption. Here we use the theory

developed in [25] in the same spirit as the previous chapters, obtaining local renor-

malized solutions in RN as the limit of solutions in bounded domains, and then using

symmetry to obtain solutions to (1.0.1). Our approach is to use the existence results

developed for problem (1.0.2) to obtain solutions to

−∆pu+ g(u)H = µ in Ω

u = 0 on ∂Ω,

(1.0.4)

as an intermediate step towards solving (1.0.1). We obtain solutions to the above

equation by solving (1.0.2) when g is multiplied by a sequence ζn(xN) that is con-

centrating at the origin and then letting n → ∞. The main result in this regard

is Lemma 6.1.8 where we show, under very general assumptions, that if un are the

solutions with nonlinear term ζng(un) then ζng(un) converges, in a suitable sense, to

g(u)H. The result is proven by making a decomposition of the domain in order to

use the assumptions on g as well as the continuity properties of W 1,p functions and

their traces.

6



In the case p < N the existence result is given in Theorem 6.1.11, while for the

case p = N is given in Theorem 6.1.12. Let us mention that when g(s) = |s|q, q ≥ 0,

1 < p < N , Theorem 6.1.11 guarantees existence of renormalized solutions to (1.0.1)

provided

q <
(N − 1)(p− 1)

N − p
.

If p = N then Theorem 6.1.12 only requires q ≥ 0, and in fact exponential-type

nonlinearities are allowed, but this imposes conditions on the size of the measure.

In Section 6.2 we consider supercritical problems with absorption under the con-

dition 1 < p < N . Here we use mainly the work in [4]. We have left the definition of

the Wolff potential of a measure, and other related quantities, to this chapter since

they are only used from this point forward. As in the previous section, we obtain

solutions to (1.0.4) as an intermediate step towards solving (1.0.1). The main tool

for this is the improvement of an estimate of renormalized solutions, in terms of the

Wolff potential of their respective measures, from a.e. in Ω to a.e. in any hyper-

plane. We also show that, given a fixed measure and a nondecreasing sequence of

domains, it is possible to obtain a nondecreasing sequence of renormalized solutions

in said domains. Both results are needed to show the main existence result, Theo-

rem 6.2.7. This theorem is then used to obtain explicit conditions on the measure

when more is known about the rate of growth of the nonlinearity. For example,

when g(s) = |s|q−1 s, q > p − 1, we obtain as sufficient condition that the measure

must be absolutely continuous with respect to the Lp−1, q
q−p+1

(
RN−1

)
Bessel capacity.

Exponential-type nonlinearities are also considered.

Finally, in Chapter 7 we consider nonnegative solutions to the problem with

source g(u) = −uq when q > p − 1 and 1 < p < N . Our work here follows closely

the ideas in [18], particularly those used to treat problem (1.0.2) when Ω = RN . We

begin by establishing necessary and sufficient conditions for existence of nonnegative

renormalized solutions to (1.0.1). In particular, in the supercritical case, we obtain

existence of renormalized solutions to (1.0.1) when the nonnegative measure µ is

7



‘Lipschitz’ continuous with respect to the L̇p−1, q
q−p+1

(
RN−1

)
Riesz capacity.

In Corollary 7.3.1 we note that if u is a solution with datum µ, then uqH + µ

must satisfy the above condition which, together with the properties of the Riesz

capacity, implies the nonexistence of nontrivial nonnegative solutions to (1.0.1) in

the subcritical case, that is, when

q ∈


(
p− 1, (N−1)(p−1)

N−p

]
if p < N

(p− 1,∞) if p = N.

This result is not surprising as it is a natural counterpart to the nonexistence

result in [18]. It is also in agreement with the nonexistence result in [15] for the

linear case (i.e., p = 2) where it is shown that any classical, but possibly singular

at the origin, nonnegative solution to (1.0.1), with µ ≡ 0, g(u) = −uq, and q in the

range [1, N−1
N−2

], must be trivial.

We finish with the problem of characterizing when a compact set K ⊂ ∂RN
+ is

removable for (1.0.1) in the case g(u) = −uq and µ ≡ 0. We say that such a set

K is removable if every nonnegative p-harmonic function u satisfying the Neumann

boundary condition |∇u|p−2 uν = uq in ∂RN
+ \ K can be extended to a solution of

(1.0.1). The necessary and sufficient conditions for existence given in Corollary 7.3.1

and Corollary 7.2.3 allows us to show that a set is removable in the supercritical case

if and only if its L̇p−1, q
q−p+1

(
RN−1

)
Riesz capacity is zero.

8



Chapter 2

Preliminary definitions and results

Here we collect basic definitions and results needed in the sequel. We remark that,

as in [9], we shall make use of Bessel capacities to decompose measures in Mb

(
∂RN

+

)
.

Since we will frequently consider the behavior of functions and measures when re-

stricted to hyperplanes, we will also consider capacities in RN−1. To this end, we

will introduce the more general capacities associated with the Lizorkin-Triebel spaces

F p,q
α .

Let us first introduce some notation. For any measurable set E ⊂ RN we denote

by |E| its Lebesgue measure. When E ⊂ ∂RN
+ ' RN−1 we take this measure to be

the (N−1)-dimensional Lebesgue measure. We let BM(x) be the open ball of radius

M > 0 centered at x (simply BM when x = 0). Depending on the context, when

x ∈ ∂RN
+ this could be either a N -dimensional ball in RN or a (N − 1)-dimensional

ball in ∂RN
+ . For any set E, we let χE be the characteristic function of E. The

truncation of functions will be very important in the sequel. For any k > 0, we let

Tk(s) = min(k,max(−k, s)).

By an abuse of notation, we define W 1,p
loc

(
RN

+

)
:=
⋂
M∈NW

1,p
(
BM ∩ RN

+

)
. Simi-

larly, we define Lsloc
(
RN

+

)
:=
⋂
M∈N L

s
(
BM ∩ RN

+

)
. We remark that given a domain

Ω, Ls (Ω) are the usual Lebesgue spaces, while W 1,p (Ω) are the usual Sobolev spaces.

The norm in the Ls (Ω) spaces will be written indistinctly as ‖·‖Ls(Ω), ‖·‖Ls , or simply

9



‖·‖s. The Ck (Ω) space, k ∈ N∪{∞}, is the usual space of k− times continuously dif-

ferentiable functions, and Ck
0 (Ω) is the subspace of elements with compact support

in Ω.

2.1 Bessel capacities

We start with the standard definition of Bessel capacities in RN (see [10] for details).

For any compact set K ⊂ RN we let

ωK =
{
φ ∈ S

(
RN
)

: φ ≥ χK
}

where S
(
RN
)

is the Schwartz class, and define for any α > 0 and 1 < p <∞

capα,p,N (K) = inf
{
‖φ‖p

α,p,RN : φ ∈ ωK
}

with the convention that inf ∅ = +∞. Here ‖·‖α,p,RN is the norm in the Bessel

potential spaces Lα,p
(
RN
)

of functions f = Gα ∗ g with g ∈ Lp, where Gα(x) =

F−1
[(

1 + |·|2
)−α/2]

(x) is the Bessel kernel of order α ∈ R, defined as ‖f‖α,p,RN =

‖g‖Lp(RN ) (note that S
(
RN
)

is a dense subset of this space). Then we extend the

definition to open sets G ⊂ RN by

capα,p,N (G) = sup {capα,p,N (K) : K ⊂ G , K compact}

and finally to arbitrary sets E ⊂ RN by

capα,p,N (E) = inf {capα,p,N (G) : E ⊂ G , G open} .

Note that when α ∈ N we have Lα,p
(
RN
)

= Wα,p
(
RN
)
, and so in this case

the Bessel capacities can be defined using Sobolev spaces. We do not follow this

approach since we will need to consider the case when α ∈ (0, 1). On the other

10



hand, we remark that we have the following equivalent definition of capacity:

capα,p,N (E) = inf
{
‖f‖p

Lp(RN )
: f ∈ ΩE

}
where

ΩE :=
{
f ∈ Lp

(
RN
)

: f ≥ 0 ∀x ∈ RN , Gα ∗ f ≥ 1 ∀x ∈ E
}

(see Proposition 2.3.13 of [10]).

We will also use the Riesz capacities. They can be defined as the capacities

associated to the Riesz potential spaces L̇α,p
(
RN
)
, i.e., the space of functions f =

Iα ∗ g with g ∈ Lp , where Iα(x) = C(N,α) |x|−(N−α) is the Riesz kernel of order

α ∈ (0, N). We will denote them by capIα,p,N (·). Let us explicitly state however

that our main interest are the cap1,p,N capacity in RN and the cap1− 1
p
,p,N−1 capacity

in ∂RN
+ (which we identify as RN−1).

We say that a property holds capα,p,N−quasi-everywhere in Ω (abbreviated as

capα,p,N − q.e.) if there exists a set E such that the property holds in Ω \ E and

capα,p,N (E) = 0.

We say that a function ω is capα,p,N− quasi-continuous in Ω if for every ε > 0

there is an open set E such that capα,p,N(E) < ε and ω ∈ C (Ω \ E). Unless otherwise

stated, we assume that capα,p,N− quasi-continuous functions are capα,p,N−q.e. finite.

Whenever we cannot assert that a capα,p,N− quasi-continuous function w is capα,p,N−

q.e. finite, the statement ω ∈ C (Ω \ E) means that w : Ω \ E → [−∞,∞] is

continuous with respect to the topology of the extended real line.

We say that a set E ⊂ RN is quasi-open if for every ε > 0 there exists an open set

Ω such that E ⊂ Ω and cap1,p,N(Ω \E) < ε. Clearly, countable unions of quasi-open

sets are quasi-open. It is also immediate that if w is cap1,p,N− quasi-continuous then

the sets {w > k} and {w < k} are quasi-open. By a result of [8], for every bounded

quasi-open set E there exists a nonnegative sequence wn ∈ W 1,p
(
RN
)

such that

wn ≤ χE and wn ↑ χE cap1,p,N − q.e. in RN (see Lemma 2.2 of [17]).
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Remark 2.1.1 When dealing with a bounded domain Ω, it is more natural to define

and use the so called condenser capacity associated with Ω (see for example Section

7.6 of [10]). Indeed, this condenser capacity is the capacity used in works such as

[9] and [17]. However, Theorem 2.38 of [14] shows that the condenser capacity is

equivalent to our definition of capacity whenever Ω = BM for any fixed M (see also

section 2.7 of [10]). Since in our applications we always ultimately have Ω = BM for

some M ∈ N, we see that we can always assume the two definitions are equivalent.

2.2 Decomposition of measures

Let Mb

(
RN
)

be the set of Radon measures of bounded total variation. For any

Borel set Ω ⊂ RN we let Mb (Ω) be the set of measures in Mb

(
RN
)

supported in Ω.

For measures µ ∈Mb (Ω) we let

‖µ‖Mb
= |µ| (Ω)

be its total variation in Ω.

We will work mainly with measures supported in ∂RN
+ . Such measures can be

naturally identified with measures in RN−1. Indeed, if µ ∈Mb

(
RN
)

is supported in

∂RN
+ then µ̃(E) := µ (E × {xN = 0}) is the natural representative of µ in Mb

(
RN−1

)
.

Similarly, if µ ∈ Mb

(
RN−1

)
then µ̂ (E) := µ

({
x′ ∈ RN−1 : (x′, 0) ∈ E

})
belongs

to Mb

(
RN
)

and is supported in ∂RN
+ . This gives a bijection between Mb

(
∂RN

+

)
and

Mb

(
RN−1

)
. Hence, whenever convenient, we will identify the two spaces under the

above construction.

We let H be the (N − 1)-dimensional Hausdorff measure concentrated in ∂RN
+ ,

normalized so that H (E) =
∣∣E ∩ ∂RN

+

∣∣ for any measurable set E ⊂ RN . Then, we

define Ls
(
Ω ∩ ∂RN

+

)
:= Ls (Ω; dH) for any domain Ω and any 1 ≤ s ≤ ∞ (when

Ω = RN we omit it from the notation). If a function g belongs to L1
loc

(
Ω ∩ ∂RN

+

)
we

12



write gH as shorthand for the measure gdH.

We will say that a sequence of measures µn ∈ Mb

(
RN
)

converges to a measure

µ ∈Mb

(
RN
)

in the narrow topology of measures in a domain Ω if and only if

lim
n→∞

∫
Ω

φdµn =

∫
Ω

φdµ

for all functions φ continuous and bounded in Ω. We recall that the convergence

is in the weak-∗ topology of Mb (Ω) if the above holds for all functions φ ∈ C0 (Ω).

Here C0 (Ω) is the space of continuous functions with compact support in Ω.

It is standard that capα,p,N is a countably subadditive nonnegative set function

(see for example [10]). This implies that any measure µ ∈Mb

(
RN
)

can be uniquely

decomposed as

µ = µ0 + µs

where µ0 is absolutely continuous with respect to capα,p,N , and µs is singular with

respect to capα,p,N (see [13], Lemma 2.1). That is, µ0(E) = 0 for every Borel set

E such that capα,p,N(E) = 0, while µs is supported in a Borel set E such that

capα,p,N(E) = 0. Moreover, by the Jordan decomposition theorem, one can write

uniquely

µs = µ+
s − µ−s

where µ+
s and µ−s are the positive and negative part of µs.

In what follows we shall denote by M0

(
RN
)

the set of measures in Mb

(
RN
)

that

are absolutely continuous with respect to cap1,p,N . Similarly, M0 (Ω) is the set of

measures in M0

(
RN
)

which are supported in Ω.

We remark that, whenever α > 0, the N -dimensional Lebesgue measure is abso-

lutely continuous with respect to capα,p,N (see [10]).

The following result is proved in [5].

Theorem 2.2.1. Let Ω be a bounded domain and µ ∈Mb (Ω). Then µ ∈M0 (Ω) if

13



and only if µ ∈ L1 (Ω) +W−1,p′ (Ω). Thus, if µ ∈M0 (Ω) then µ = f − div g in the

sense of distributions for some functions f ∈ L1 (Ω) and g ∈
(
Lp
′
(Ω)
)N

. Moreover,

µ = f − div g also holds when acting on functions in W 1,p
0 (Ω) ∩ L∞ (Ω).

We note that in the above result one can further assume ‖f‖L1(Ω) +‖g‖W−1,p′ (Ω) ≤

3 ‖µ‖Mb
(see Lemma 3.6 of [4]).

2.3 Lizorkin-Triebel capacities

Now we consider the spaces F p,q
α

(
RN
)

mentioned earlier. The literature concerning

these spaces is very extensive. Here we only record a few facts about them and refer

the reader to [10] and [20] for details. Let us begin with their definition.

Let φ be any function in C∞0
(
RN
)

such that supp (φ) ⊂
{
ζ ∈ RN : |ζ| ≤ 2

}
and

φ ≡ 1 in
{
ζ ∈ RN : |ζ| ≤ 1

}
. For j ∈ N let

φj(ζ) = φ(2−jζ)− φ(2−j+1ζ)

so that supp (φj) ⊂
{
ζ ∈ RN : 2j−1 ≤ ζ ≤ 2j+1

}
and, setting φ0 = φ,

∞∑
k=0

φk(ζ) = 1

in RN . Let S ′
(
RN
)

be the set of tempered distributions, and for any f ∈ S ′
(
RN
)

let

fk = F−1 [φkF [f ]]

where F is the Fourier transform. Then fk is an entire analytic function and it can

be shown that

f =
∞∑
k=0

fk

14



in the topology of S ′
(
RN
)
. For 1 < p, q <∞ and s ∈ R we define

‖f‖F p,qs (RN ) :=

∥∥∥∥∥∥
(
∞∑
k=0

2ksq |fk(x)|q
) 1

q

∥∥∥∥∥∥
Lp(RN )

and

F p,q
s

(
RN
)

:=
{
f ∈ S ′

(
RN
)

: ‖f‖F p,qs (RN ) <∞
}
.

It is proven in [20] that this definition does not depend on the choice of φ, and that

F p,q
s

(
RN
)

is a Banach space.

It can be shown that the spaces F p,q
α

(
RN
)

can be realized as potential spaces,

and thus they can be used to define corresponding F p,q
α

(
RN
)

capacities, which we

denote by cap
(
·, F p,q

α

(
RN
))

(see [10] for the details).

The connection of these spaces with the Bessel potential spaces is given by the

fact that for any α > 0, and 1 < p < ∞, there holds F p,2
α

(
RN
)

= Lα,p
(
RN
)

in the sense of normed spaces. Given the above observation it is to be expected

that the F p,2
α

(
RN
)

capacities are equivalent to the corresponding Lα,p
(
RN
)

Bessel

capacities. A surprising result (see Proposition 4.4.4 of [10]) is that in fact for all

α > 0, 1 < q < ∞, and 1 < p ≤ N
α

, the F p,q
α

(
RN
)

capacity is equivalent to the

corresponding Bessel Lα,p
(
RN
)

capacity; we will point this out by writing

cap
(
·;F p,q

α

(
RN
))
∼ capα,p,N (·) .

An advantage of considering the more general F p,q
α

(
RN
)

spaces is the following the-

orem, which can be found in Chapter 4.4 of [20].

Theorem 2.3.1. Let 1 < p, q <∞, and αp > 1. Then the map

Tr : f(x′, xN) 7→ f(x′, 0)
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is a bounded linear operator from F p,q
α

(
RN
)

onto F p,p

α− 1
p

(
RN−1

)
. Moreover, there

exists a linear bounded extension operator Ex from F p,p

α− 1
p

(
RN−1

)
into F p,q

α

(
RN
)

such that

Tr ◦ Ex = Id in F p,p

α− 1
p

(
RN−1

)
.

Thanks to the above theorem, we can define the trace Tr(w) = w(x′, 0) ∈

F p,p

α− 1
p

(
RN−1

)
of any function w(x′, xN) in F p,q

α

(
RN
)
.

Let us mention that we will also use Sobolev’s embedding-type results for these

spaces in the sequel. We will point this out later.

The following proposition, which follows from Theorem 2.3.1, shows that the

‘trace’ of the cap1,p,N capacity in ∂RN
+ is the cap1− 1

p
,p,N−1 capacity.

Proposition 2.3.2. There exists a constant C(N, p) such that for all Borel sets

E ⊂ RN and E ′ ⊂ ∂RN
+

(1) C(N, p)cap1,p,N(E) ≥ cap1− 1
p
,p,N−1(E ∩ ∂RN

+ ), and

(2) C(N, p)cap1− 1
p
,p,N−1(E ′) ≥ cap1,p,N(E ′).

Proof. By the definition of capacity and the capacitability of Borel sets it is enough

to consider E and E ′ compact. Let g ∈ S
(
RN
)

be such that g ≥ χE. By Theorem

2.3.1 g has a trace ḡ = Tr(g) such that

‖ḡ‖F p,p
1− 1

p
(∂RN+) ≤ C(N, p) ‖g‖F p,21 (RN ) = C(N, p) ‖g‖1,p,RN .

Since ḡ ≥ χE∩∂RN+ we have C(N, p)cap1,p,N (E) ≥ cap

(
E ∩ ∂RN

+ ;F p,p

1− 1
p

(
∂RN

+

))
, and

since cap

(
E ∩ ∂RN

+ ;F p,p

1− 1
p

(
∂RN

+

))
∼ cap1− 1

p
,p,N−1

(
E ∩ ∂RN

+

)
we conclude

C(N, p)cap1,p,N (E) ≥ cap1− 1
p
,p,N−1

(
E ∩ ∂RN

+

)
.

For the second assertion we consider the extension operator. Suppose g ∈ S
(
∂RN

+

)
16



and g ≥ χE′ . Then its extension ḡ = Ex(g) belongs to F p,2
1

(
RN
)

= L1,p
(
RN
)

with

‖ḡ‖1,p,RN = ‖ḡ‖F p,21 (RN ) ≤ C(N, p) ‖g‖F p,p
1− 1

p
(∂RN+) .

Again, since cap

(
E ′;F p,p

1− 1
p

(
∂RN

+

))
∼ cap1− 1

p
,p,N−1 (E ′) we conclude

C(N, p)cap1− 1
p
,p,N−1 (E ′) ≥ cap1,p,N(E ′).

Thanks to the above result, we can describe the relationship between the decom-

position of a measure in Mb

(
RN−1

)
and its representative in Mb

(
∂RN

+

)
.

Proposition 2.3.3. Let µ ∈Mb

(
RN−1

)
and let

µ = µ0 + µs

be its decomposition with respect to cap1− 1
p
,p,N−1. Let µ̄ denote its identification as

an element of Mb

(
∂RN

+

)
. If

µ̄ = µ̄0 + µ̄s

is the decomposition of µ̄ with respect to cap1,p,N then

µ0 = µ̄0 and µs = µ̄s .

In particular

µ±s = µ̄±s .

Proof. We only prove the first assertion since the second follows easily. Let E

be such that cap1,p,N(E) = 0 and µ̄s(E
c) = 0. By Proposition 2.3.2 we have
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cap1− 1
p
,p,N−1

(
E ∩ ∂RN

+

)
= 0 and thus for any Borel set A ⊂ RN

µ̄0 (A) = µ̄0 (A ∩ Ec) = µ̄ (A ∩ Ec) = µ
(
A ∩ Ec ∩ ∂RN

+

)
= µ0

(
A ∩ ∂RN

+

)
+ µs

(
A ∩ Ec ∩ ∂RN

+

)
= µ0 (A) + µs (A ∩ Ec)

and

µ̄s (A) = µ̄s (A ∩ E) = µ̄ (A ∩ E) = µ
(
A ∩ E ∩ ∂RN

+

)
= µs

(
A ∩ E ∩ ∂RN

+

)
= µs (A ∩ E) .

Similarly, let E0 be such that cap1− 1
p
,p,N−1 (E0) = 0 and µs (Ec

0) = 0. By Proposition

2.3.2 we have cap1,p,N(E0) = 0 and so

µs (A) = µs
(
A ∩ ∂RN

+

)
= µs

(
A ∩ E0 ∩ ∂RN

+

)
= µ

(
A ∩ E0 ∩ ∂RN

+

)
= µ̄ (A ∩ E0)

= µ̄s (A ∩ E0) .

The previous inequality implies in particular that

µs (Ec) = µ̄s (Ec ∩ E0) = µs (Ec ∩ E0 ∩ E) = 0

from which the proposition follows since then

µs (A ∩ E) = µs (A) , µs (A ∩ Ec) = 0 .
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2.4 Finer properties of W 1,p functions

As we noted in the previous section, Theorem 2.3.1 guarantees the existence of a

trace w(x′, 0) ∈ F p,p

α− 1
p

(
RN−1

)
whenever w(x′, xN) belongs to F p,q

α

(
RN
)
. Since

F p,2
1

(
RN
)

= L1,p
(
RN
)

= W 1,p
(
RN
)

we see that every function w(x′, xN) ∈ W 1,p
(
RN
)

has a trace w(x′, 0) in F p,p

1− 1
p

(
RN−1

)
.

Since we want to integrate along the boundary of RN
+ we study the regularity

of these traces. The following proposition shows that functions in W 1,p
(
RN

+

)
also

have well defined traces and that, by selecting and adequate representative, we can

assume they are quasi-continuous.

Proposition 2.4.1. Let ω ∈ W 1,p
(
RN

+

)
. Then ω has a cap1,p,N− quasi-continuous

representative, defined in RN
+ , which is unique up to sets of zero cap1,p,N capacity.

In particular, identifying ω with this representative, the trace of ω is cap1− 1
p
,p,N−1−

quasi-continuous and unique cap1− 1
p
,p,N−1 − q.e. in ∂RN

+ .

Proof. Since RN
+ is an extension domain we consider ω as an element in W 1,p

(
RN
)
.

Recalling that W 1,p
(
RN
)

= L1,p
(
RN
)
, we obtain the existence of a cap1,p,N− quasi-

continuous representative which is unique in RN
+ modulo sets of zero capacity (see

Theorem 6.1.4 of [10]). In view of Proposition 2.3.2 the rest of the proposition follows

easily.

Remark 2.4.2 Thanks to the above proposition from now on we identify function

in W 1,p
(
RN

+

)
with their cap1,p,N− quasi-continuous representative in RN

+ and refer

to their cap1− 1
p
,p,N−1− quasi-continuous trace in ∂RN

+ whenever necessary. Note that

this result also applies to functions in W 1,p
(
RN
)
, or in W 1,p

0 (BM) by identifying

elements in this space with their extension by zero.

Remark 2.4.3 For a function ω ∈ W 1,p
loc

(
RN

+

)
one can still define the boundary
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values of ω. Indeed, for any fixed m we have ω ∈ W 1,p
(
Bm ∩ RN

+

)
and thus we can

extend ω to a function in W 1,p
(
RN
)

first by even reflection and then using that Bm

is an extension domain. The resulting extension has a cap1,p,N− quasi-continuous

representative, which we call ωm, coinciding with ω a.e. in Bm ∩ RN
+ . If we take

m′ > m then any cap1,p,N− quasi-continuous representative ωm′ coincides with ωm

a.e. in Bm ∩ RN
+ and thus, by Theorem 6.1.4 of [10], ωm′ = ωm cap1,p,N − q.e. in

Bm ∩ RN
+ . Hence, from now on, we identify functions in W 1,p

loc

(
RN

+

)
with this locally

defined, and cap1,p,N − q.e. unique, cap1,p,N− quasi-continuous representative in RN
+ .

In particular, if x′ ∈ RN−1, we define the trace ω(x′, 0) to be the value at (x′, 0) of any

representative ωm such that |x′| < m. By the above considerations, and Proposition

2.3.2, the trace is cap1− 1
p
,p,N−1−quasi-continuous and unique cap1− 1

p
,p,N−1 − q.e. in

∂RN
+ .

We shall make use of the following propositions regarding integrability and con-

vergence with respect to measures in M0

(
∂RN

+

)
.

Proposition 2.4.4. Let µ ∈M0

(
∂RN

+

)
and let w ∈ W 1,p

(
RN
)
. Then w is measur-

able with respect to µ. Furthermore, if the trace of w belongs to L∞
(
∂RN

+

)
then it

belongs to L∞
(
RN ; dµ

)
.

Proof. Since w ∈ W 1,p
(
RN

+

)
we have by Proposition 2.4.1 that w has a cap1− 1

p
,p,N−1−

quasi-continuous trace in ∂RN
+ , which is the restriction of any cap1,p,N− quasi-

continuous representative of w. Since every cap1,p,N− quasi-continuous function

coincides cap1,p,N − q.e. with a Borel function it follows that w is measurable with

respect to any (Radon) measure µ ∈ M0

(
∂RN

+

)
. If moreover |w| ≤ k a.e. on ∂RN

+

then it holds |w| ≤ k cap1− 1
p
,p,N−1 − q.e. on ∂RN

+ . That this is so follows from an

application of Theorem 6.1.4 of [10] to the cap1− 1
p
,p,N−1− quasi-continuous functions

(w−k)+ and (w+k)−. Since µ is absolutely continuous with respect to cap1− 1
p
,p,N−1

we see that |w| ≤ k µ− a.e. (see Proposition 2.3.3).
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One can similarly obtain the following proposition

Proposition 2.4.5. Let µ ∈ M0

(
RN
)

and let w ∈ W 1,p
(
RN
)
. Then w is mea-

surable with respect to µ. Furthermore, if w belongs to L∞
(
RN
)

then it belongs to

L∞
(
RN ; dµ

)
.

Remark 2.4.6 We will use the following fact: if u ≤ v a.e. in RN , where u and

v are capα,p,N− quasi-continuous functions, then u ≤ v capα,p,N − q.e. in RN . This

can be proven by applying Theorem 6.1.4 of [10] to the quasi-continuous function

w = max {u− v, 0}, which satisfies w = 0 a.e. in RN .

Combining the last proposition with Lebesgue’s Dominated Convergence Theo-

rem we obtain:

Proposition 2.4.7. Let fn → f cap1,p,N−q.e. in RN with fn in W 1,p
(
RN
)
∩L∞

(
RN
)

and uniformly bounded in L∞
(
RN
)
. Then for any measure µ ∈ M0

(
RN
)
, fn → f

µ−q.e. and

lim
n→∞

∫
RN
fndµ =

∫
RN
fdµ.

The following result is Proposition 2.8 in [9]. It is a consequence of Egorov’s

Theorem.

Proposition 2.4.8. Let Ω be a bounded open subset of RN . Let ρε be a sequence

in L1 (Ω) that converges to ρ weakly in L1 (Ω), and let σε be a sequence uniformly

bounded in L∞ (Ω) that converges to σ a.e. in Ω. Then,

lim
ε→0

∫
Ω

ρεσεdx =

∫
Ω

ρσdx.

2.5 p− superharmonic functions

Although not the focus of this work, we will use several results concerning p− super-

harmonic functions, especially on the relationship between them and renormalized
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solutions. We will give proper references whenever necessary, but most of the results

are classic (see [14]). Here we record some definitions and basic properties.

Let Ω be any domain. A p− superharmonic function is a lower semicontinuous

function u : Ω → (−∞,∞], not identically infinite, such that for all open sets

Ω′ ⊂⊂ Ω and for all h p-harmonic in Ω′ and continuous in Ω′ we have that h ≤ u on

∂Ω′ implies h ≤ u in Ω′.

It is well-known that if u is p− superharmonic then its truncation min {u, k}

belongs to W 1,p
loc (Ω). This allows us to define its gradient in the same generalized

sense as we will do for renormalized solutions (see Chapter 3), and in particular, it

makes sense to define −∆pu in the sense of distributions. In particular, when we say

that a p− superharmonic function u solves −∆pu = µ in Ω for some (not necessarily

bounded) Radon measure µ, we mean it precisely in the sense of distributions, where

the derivative of u is to be understood in the generalized sense. It is also known that

if u is p− superharmonic function in Ω then −∆pu is a nonnegative distribution, and

so there exists a nonnegative Radon measure µ such that −∆pu = µ in D′ (Ω).

Finally, we remark that when we say that a p− superharmonic function u solves

−∆pu = g(u)σ + µ in Ω, for some Radon measures µ and σ, we imply that g(u) ∈

L1
loc (Ω, dσ) so that the right hand side is actually a Radon measure.
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Chapter 3

Renormalized solutions

3.1 Renormalized solutions in bounded domains

We start with the definition of renormalized solution given in [9] for bounded do-

mains. In order to do this we first need to generalize the definition of ∇u.

Let Tk(s) be truncation by k, i.e., Tk(s) = min(k,max(−k, s)). Then for any

measurable and a.e. finite u such that Tk(u) ∈ W 1,p
0 (Ω) for every k > 0 there exists

a measurable vector-valued function v : Ω→ RN such that

∇Tk(u) = vχ{|u|<k}

a.e. in Ω for all k > 0 (see [2], Lemma 2.1). This function is unique a.e. and so

we define v as the gradient of u and write ∇u = v. One similarly obtains that if

Tk(u) ∈ W 1,p
loc

(
RN

+

)
for every k > 0 then there exists a measurable vector-valued

function v : RN
+ → RN such that

∇Tk(u) = vχ{|u|<k}

a.e. in RN
+ for all k > 0.
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Remark 3.1.1 We note that, in general, v is not the gradient of u used in the

definition of Sobolev spaces. In fact, u may not even belong to L1
loc (Ω) (see [9] for

details).

Definition 3.1.2. Let Ω be a bounded domain in RN . Let µ ∈ Mb (Ω) have a de-

composition µ = µ0 +µs with respect to cap1,p,N . Then a function u is a renormalized

solution of −∆pu = µ in Ω

u = 0 on ∂Ω

(3.1.1)

if

(1) u is measurable, finite a.e., and Tk(u) ∈ W 1,p
0 (Ω) for all k > 0;

(2) |∇u|p−1 ∈ Lq (Ω) for all 1 ≤ q < N
N−1

;

(3) there holds

∫
Ω

|∇u|p−2∇u · ∇wdx =

∫
Ω

wdµ0 +

∫
Ω

w+∞dµ+
s −

∫
Ω

w−∞dµ−s

for all w ∈ W 1,p
0 (Ω) ∩ L∞ (Ω) satisfying the following condition: there exist

k > 0, r > N , and functions w±∞ ∈ W 1,r (Ω) ∩ L∞ (Ω) such that

w = w+∞ a.e. in {x ∈ Ω : u > k}

w = w−∞ a.e. in {x ∈ Ω : u < −k} .

Remark 3.1.3 Note that the set of functions w for which (3) holds is not empty.

Indeed, it contains C∞0 (Ω) since the condition is satisfied by any w in C∞0 (Ω) choos-

ing any k > 0 and r > N , and setting w = w+∞ = w−∞. But there are more

admissible functions. In particular, Tk(u) is admissible with w±∞ = ±k.
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Remark 3.1.4 Theorem 2.33 of [9] shows that there are several equivalent defini-

tions of renormalized solution. In particular, the last condition above can be replaced

with the following one: for every k > 0 there exists two nonnegative measures λ+
k ,

λ−k ∈M0 (Ω) supported in {u = k} and {u = −k} respectively, such that λ±k → µ±s ,

as k →∞, in the narrow topology of Mb (Ω), and the truncations Tk(u) satisfy

∫
{|u|<k}

|∇Tk(u)|p−2∇Tk(u)dx · ∇v =

∫
{|u|<k}

vdµ0 +

∫
Ω

vdλ+
k −

∫
Ω

vdλ−k

for every v ∈ W 1,p
0 (Ω) ∩ L∞ (Ω). Whenever convenient we use this equivalent for-

mulation.

Remark 3.1.5 The conditions stated in definition 3.1.2 imply that any renormal-

ized solution has a cap1,p,N− quasi-continuous representative which is in fact finite

cap1,p,N−q.e. in Ω (see remark 2.18 of [9]). We always identify renormalized solutions

with this representative.

The following theorem is proved in [9] using Lemma 4.1 and 4.2 of [2].

Theorem 3.1.6. Let u be a renormalized solution of (3.1.1). Then

∫
{n≤|u|<n+k}

|∇u|p dx ≤ k |µ| (Ω) , ∀n ≥ 0, k > 0. (3.1.2)

If p < N then for every k > 0,

|{|u| > k}| ≤ C(N, p)
(|µ| (Ω))

N
N−p

k
N(p−1)
N−p

, (3.1.3)

|{|∇u| > k}| ≤ C(N, p)
(|µ| (Ω))

N
N−1

k
N(p−1)
N−1

. (3.1.4)
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If p = N then for every k > 0,

|{|u| > k}| ≤ C(r,N, p)
(|µ| (Ω))r

kr(p−1)
, (3.1.5)

for every r > 1, and

|{|∇u| > k}| ≤ C(s,N, p)
(|µ| (Ω))

N
N−1

ks
. (3.1.6)

for every s < N .

We note explicitly that the above constants do not depend on the domain Ω.

Note also that by putting n = 0 in (3.1.2) we get

∫
{|u|<k}

|∇u|p dx ≤ k |µ| (Ω) , ∀k > 0 . (3.1.7)

The following result is proven in Section 5.1 of [9] as a first step in the proof of

their stability result. It will be useful for us later when dealing with nonlinear terms.

Theorem 3.1.7. Let un be renormalized solutions to problem (3.1.1) with respective

measures µn ∈Mb (Ω). Assume ‖µn‖Mb
are uniformly bounded. Then there exists a

function u such that, up to a subsequence, un → u a.e. in Ω. Moreover, u satisfies

(1) and (2) of the definition of renormalized solution, as well as all the estimates

stated in Theorem 3.1.6 (with sup ‖µn‖Mb
instead of ‖µ‖Mb

), and

(1) ∇Tk(un)→ ∇Tk(u) and ∇un → ∇u a.e. in Ω,

(2) |∇un|p−2∇un → |∇u|p−2∇u strongly in (Lq (Ω))N for any 1 ≤ q < N
N−1

,

(3) Tk(un)→ Tk(u) weakly in W 1,p
0 (Ω).

Remark 3.1.8 It follows from Remark 2.11 of [9] that the function u in the

above theorem has a cap1,p,N− quasi-continuous representative which is in fact finite

cap1,p,N − q.e. in Ω. We identify u with this representative.

26



3.2 Local renormalized solutions

A closely related concept is the one of local renormalized solutions (see [3], [25])

on domains which are not necessarily bounded. It is closer to our definition of

renormalized solution of (1.0.1), and we will use it in the sequel. We remark that

the derivative here is to be understood in the same generalized sense as described

previously.

Definition 3.2.1. Let Ω be any domain in RN . Let µ ∈Mb (Ω) have a decomposition

µ = µ0+µs with respect to cap1,p,N . Then a function u is a local renormalized solution

of

−∆pu = µ in Ω

if

(1) u is measurable, finite a.e., and Tk(u) ∈ W 1,p
loc (Ω) for all k > 0;

(2) |∇u|p−1 ∈ Lqloc (Ω) for all 1 ≤ q < N
N−1

;

(3) |u|p−1 ∈ Lqloc (Ω) for all 1 < q < N
N−p (1 < q <∞ if p = N);

(4) there holds

∫
Ω

|∇u|p−2∇u · ∇wdx =

∫
Ω

wdµ0 +

∫
Ω

w+∞dµ+
s −

∫
Ω

w−∞dµ−s

for all w ∈ W 1,p (Ω)∩L∞ (Ω) compactly supported in Ω satisfying the following

condition: there exist k > 0, r > N , and functions w±∞ ∈ W 1,r (Ω) ∩ L∞ (Ω)

such that w = w+∞ a.e. in {x ∈ Ω : u > k}

w = w−∞ a.e. in {x ∈ Ω : u < −k} .

Remark 3.2.2 We remark that all functions w in C∞0 (Ω) are admissible functions

for (4). Note however that Tk(u) is no longer a valid test function. On the other
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hand, if w ∈ C∞0 (Ω) then wTk(u) is admissible with w±∞ = ±kw.

Remark 3.2.3 Just as in the case of Definition 3.1.1, condition (4) can be replaced

by some other equivalent conditions (see Theorem 2.2 of [3]). We will use this fact

in the proof of Lemma 4.2.1. On the other hand, our definition of local renormalized

solution is not exactly the same as the definition in [3] since there the author does

not require that µ is bounded. We have chosen to add this extra condition since we

will need it when solving problem (1.0.1).

Remark 3.2.4 A fact that we will use frequently is that if µ is nonnegative and u

is a local renormalized solution of −∆pu = µ in Ω, then u coincides a.e. with a p−

superharmonic function solving the same equation (see Theorem 4.3.2 of [25]).

Remark 3.2.5 Note that the estimates in Theorem 3.1.6 show that if Ω is bounded

then any renormalized solution of (3.1.1) is also a local renormalized solution of the

corresponding equation. Indeed, we only need to show (3). To this end, we recall

the known identity

∫
Ω

|u|α dx =

∫
Ω

∫ ∞
0

αtα−1χ(t)[0,|u|]dtdx =

∫ ∞
0

∫
Ω

αtα−1χ(x){|u|≥t}dxdt

=

∫ ∞
0

αtα−1 |{|u| ≥ t}| dt

which holds for any measurable function u, and any α > 0. From this identity one

obtains the estimate

∫
Ω

|u|α dx ≤ tα0 |Ω|+ α

∫ ∞
t0

tα−1 |{|u| ≥ t}| dt. (3.2.1)

In particular, if u is a renormalized solution in a bounded domain Ω, and p < N ,
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then combining the above estimate and (3.1.3) we have

∫
Ω

|u|s dx ≤ |Ω|+ sC(p,N, µ)

∫ ∞
1

ts−1t−
N(p−1)
N−p dt

which is finite if 1 < s < N(p−1)
N−p . If p = N then we use instead estimate (3.1.5)

obtaining, for any fixed r > 1, the condition 1 < s < r(p − 1). Hence in this case

any 1 < s <∞ is allowed.

3.3 Renormalized solutions to the Neumann prob-

lem in the half-space

We now define a renormalized solution to (1.0.1). Recall that by the discussion of

the previous chapter, any measure µ ∈Mb

(
∂RN

+

)
can be decomposed uniquely as

µ = µ0 + µ+
s − µ−s

where µ0 is absolutely continuous with respect to cap1,p,N , and µ±s are singular with

respect to cap1,p,N and nonnegative.

Definition 3.3.1. Let µ ∈ Mb

(
∂RN

+

)
and g : R → R. A function u defined in RN

+

is a renormalized solution to (1.0.1) provided the following holds:

(1) u is measurable, finite a.e., and Tk(u) ∈ W 1,p
loc

(
RN

+

)
for all k > 0;

(2) |∇u|p−1 ∈ Lqloc
(
RN

+

)
for all 1 ≤ q < N

N−1
;

(3) |u|p−1 ∈ Lqloc
(
RN

+

)
for all 1 < q < N

N−p (1 < q <∞ if p = N);

(4) u is finite a.e. in ∂RN
+ , and g(u) ∈ L1

(
∂RN

+

)
;

(5) there holds
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∫
RN+
|∇u|p−2∇u·∇wdx+

∫
∂RN+

g(u)wdx′ =

∫
∂RN+

wdµ0+

∫
∂RN+

w+∞dµ+
s −
∫
∂RN+

w−∞dµ−s

for all w ∈ W 1,p
(
RN

+

)
compactly supported in RN

+ , with trace in L∞
(
∂RN

+

)
,

and satisfying the following condition: there exist k > 0, r > N , and functions

w±∞ ∈ W 1,r
(
RN

+

)
such that

w = w+∞ a.e. in
{
x ∈ RN

+ : u > k
}

w = w−∞ a.e. in
{
x ∈ RN

+ : u < −k
}
.

Remark 3.3.2 We remark that it makes sense to talk about the boundary values

of a renormalized solution since, in fact, any a.e. finite and measurable function

u defined in RN
+ such that Tk(u) ∈ W 1,p

loc

(
RN

+

)
for all k > 0 has a locally defined

cap1,p,N− quasi-continuous representative in RN
+ which, however, could be infinite

on a set of positive cap1,p,N capacity. Indeed, by Remark 2.4.3 we can locally iden-

tify Tk(u) with a cap1,p,N− quasi-continuous representative in RN
+ . Then, it can be

directly verified that v = supk∈N Tk(u) defines (locally) a cap1,p,N− quasi-continuous

function that coincides with u a.e. in RN
+ and which is unique cap1,p,N − q.e in RN

+ .

Notice that, in general, v may be infinite on a set of positive cap1,p,N capacity and

so its trace could be infinite. We remark that similar considerations hold for a.e.

finite and measurable functions u defined in RN such that Tk(u) ∈ W 1,p
loc

(
RN
)
. From

now on, we always identify renormalized solutions to (1.0.1) with their cap1,p,N−

quasi-continuous representative in RN
+ . In particular, under this identification, the

trace of u is cap1− 1
p
,p,N−1− quasi-continuous and unique cap1− 1

p
,p,N−1 − q.e. in ∂RN

+ .

Since u could be infinite on a set of positive capacity, we explicitly ask that the trace

must be finite a.e. in ∂RN
+ . We will show below that in fact renormalized solutions

are always finite cap1,p,N − q.e. in RN
+ .
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Remark 3.3.3 If we consider cap1,p,N− quasi-continuous representatives in RN
+ ,

then the condition w = w+∞ a.e. in
{
x ∈ RN

+ : u > k
}

implies that w = w+∞

cap1,p,N − q.e in
{
x ∈ RN

+ : u > k
}

. To see this, apply Theorem 6.1.4 of [10] to

extend (w − w+∞)(u − k)+ = 0 from a.e. in RN
+ to cap1,p,N − q.e in RN

+ (see also

Remark 2.4.6). It follows that w = w+∞ cap1− 1
p
,p,N−1 − q.e in

{
x ∈ ∂RN

+ : u > k
}

,

and in particular w = w+∞ a.e. in
{
x ∈ ∂RN

+ : u > k
}

. Similarly, w = w−∞ a.e. in{
x ∈ ∂RN

+ : u < −k
}

.

We verify that under the given assumptions all the integrals above are well defined

and finite. The first integral on the left hand side can be divided into three integrals

with domains of integration given by {x : |u| ≤ k}, {x : u > k}, and {x : u < −k}.

In the first case Tk(u) = u so |∇u|p−1 ∈ Lp
′

loc

(
RN

+

)
and the integral is finite since

w ∈ W 1,p
(
RN

+

)
has compact support. For the second case w = w+∞ ∈ W 1,r

(
RN

+

)
and r > N implies r′ < N

N−1
so by assumption |∇u|p−1 ∈ Lr

′

loc

(
RN

+

)
and the inte-

gral is also finite since we integrate over the support of w. The third case can be

treated similarly. The second integral on the left hand side is obviously finite since

g(u(x′, 0)) ∈ L1
(
∂RN

+

)
while w ∈ L∞

(
∂RN

+

)
.

As for the right hand side, observe first that since r > N we have w±∞ ∈

C
(
RN

+

)
with the supremum norm. Since µ±s are bounded we conclude that the

integrals with respect to the singular measures are well defined and finite. For the

remaining integral Proposition 2.4.1 guarantees that w has a well defined trace, while

Proposition 2.4.4 and the boundedness of µ0 gives w ∈ L1
(
∂RN

+ ; dµ0

)
.

Remark 3.3.4 It follows directly from the definitions that if u is a renormalized

solution of (1.0.1) then ū, the extension of u by even reflection across ∂RN
+ , is a local

renormalized solution of −∆pū = µ̃ := 2µ − 2g(u)H in RN (where g(u)H has the

meaning indicated in Chapter 2).

Remark 3.3.5 We have noted in Remark 3.1.1 that ∇u is not, in general, the
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gradient of u in the usual sense used in the definition of Sobolev spaces. However, it

can be shown that if ∇u ∈
(
Lqloc

(
RN
))N

for some 1 ≤ q ≤ p then u ∈ W 1,q
loc

(
RN
)

and

∇u is the usual gradient of u (see Remark 2.10 of [9]). In particular, when p = N

the definition of renormalized solution implies that u ∈ W 1,1
loc

(
RN
)

and the gradient

of u coincides with the usual definition.

In the definition of renormalized solution we assumed u is finite a.e. in ∂RN
+ . In

the case g ≡ 0 this assumption could have been dropped. Moreover, the condition

could also be removed by assuming g is a function defined on the extended real line.

However, we now show that whenever g(u) ∈ L1
(
∂RN

+

)
then u must be finite a.e. in

∂RN
+ . Indeed, by our definition of trace, and in view of Proposition 2.3.2 and remark

3.3.4, it will be enough to show that local renormalized solutions of −∆pu = µ in RN

are finite cap1,p,N − q.e. in RN . We will obtain this as a consequence of the following

local version of the estimates on level sets stated in Theorem 3.1.6.

Theorem 3.3.6. Let u be a local renormalized solution of −∆pu = µ in Ω, and let

Ω′ be such that Ω′ ⊂⊂ Ω. Then

∫
{|u|<k}∩Ω′

|∇u|p dx ≤ C (p,Ω,Ω′, µ, u) k , ∀ k > 0, (3.3.1)

and there exists k0(u,Ω,Ω′, p) such that: if p < N then for every k > k0,

|{|u| > k} ∩ Ω′| ≤ C(N, p,Ω,Ω′, µ, u)k−
N(p−1)
N−p , (3.3.2)

|{|∇u| > k} ∩ Ω′| ≤ C(N, p,Ω,Ω′, µ, u)k−
N(p−1)
N−1 ; (3.3.3)

if p = N then for every k > k0,

|{|u| > k} ∩ Ω′| ≤ C(r,N, p,Ω,Ω′, µ, u)k−r(p−1), (3.3.4)
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for every r > 1, and

|{|∇u| > k} ∩ Ω′| ≤ C(s,N, p,Ω,Ω′, µ, u)k−s, (3.3.5)

for every s < N .

Proof. Choose φ ∈ C∞0 (Ω) such that 0 ≤ φ ≤ 1, φ ≡ 1 in Ω′, and supp (φ) ⊂ Ω0 ⊂⊂

Ω for some Ω0. Then, testing against φTk(u) we obtain

∫
Ω0

|∇Tk(u)|p φdx+

∫
Ω0

Tk(u) |∇u|p−2∇u · ∇φdx =∫
Ω0

Tk(u)φdµ0 +

∫
Ω0

kφd
(
µ+
s + µ−s

)
and so

∫
Ω′
|∇Tk(u)|p dx ≤ k ‖∇u‖Lp−1(Ω0) ‖∇φ‖∞ + k ‖µ‖Mb

= C(Ω0, p, µ, u)k

which is estimate (3.3.1).

Next, we observe that since u ∈ Ls (Ω0) for some s > 0 Chebyshev’s inequality

gives

|{|u| > k} ∩ Ω0| ≤ C(u,Ω0, p)k
−s.

Hence, we can choose k0 such that∣∣∣∣{|u| > k

2

}
∩ Ω0

∣∣∣∣ ≤ 1

4
|Ω′|

for all k ≥ k0. Define ck = (Tk(u))Ω′ : the average of Tk(u) in Ω′. Then we estimate

|ck| ≤
1

|Ω′|

(∫
Ω′∩{|u|≤k/2}

|Tk(u)| dx+

∫
Ω′∩{|u|>k/2}

|Tk(u)| dx
)
≤ k

2
+
k

4
=

3

4
k

for all k ≥ k0. Then, if p < N , by Poincaré-Wirtinger’s inequality, Sobolev inequality,
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and (3.3.1), we obtain

‖Tk(u)− ck‖Lq(Ω′) ≤ C(N, p,Ω0, µ, u)k
1
p ,

where q = Np
N−p . Since for all k ≥ k0 we have the inclusions

{|u| ≥ k} = {|Tk(u) ≥ k|} ⊂ {|Tk(u)− ck| ≥ k − |ck|} ⊂
{
|Tk(u)− ck| ≥

k

4

}

we deduce

|{|u| ≥ k} ∩ Ω′| ≤

(
4 ‖Tk(u)− ck‖Lq(BM )

k

)q

≤ C(N, p,Ω0, µ, u)kq(
1−p
p )

which is estimate (3.3.2). In the case p = N , the same procedure gives (3.3.4). The

remaining estimates follow from the above ones just as in the proof of Theorem 3.1.6

in [9], using the results in [2].

Note that unlike the estimates in Theorem 3.1.6 the above estimates are not

uniform on u. However, they are enough for our purposes.

Proposition 3.3.7. Let u be a local renormalized solution of −∆pu = µ in RN .

Then u is finite cap1,p,N − q.e. in RN . In particular, if v is a renormalized solution

of (1.0.1) in the sense of definition 3.3.1 then the trace of v, as defined in Remark

3.3.2, is finite cap1− 1
p
,p,N−1 − q.e. in ∂RN

+ .

Proof. As observed before, it is enough to show that u is finite cap1,p,N − q.e. in RN .

Fix M ∈ N. By the previous theorem, with Ω = RN and Ω′ = BM(0) =: BM , we

can find k0(u,M, p) such that for all k ≥ k0

|{|u| ≥ k} ∩BM | ≤
1

4
|BM | .
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Then, we can proceed as in the proof of the previous theorem to obtain that

c2k,M :=
1

|BM |

∫
BM

|T2k(u)| dx

satisfies

c2k,M ≤
3

2
k

for any k ≥ k0. Now consider the function φ =
T2k(u)−c2k,M

2k−c2k,M
. We have φ ∈ W 1,p (BM)

and by combining Poincaré-Wirtinger’s inequality, estimate (3.3.1), and the above

estimate we conclude

‖φ‖W 1,p(BM ) ≤
C(p,N,M, u)

|2k − c2k,M |
‖∇T2k(u)‖Lp(BM ) ≤ C(p,N,M, µ, u)k

1
p
−1.

for any k ≥ k0. Further, we have φ = 1 on the set {u ≥ 2k} ∩ BM . Hence, by

definition of cap1,p,N we obtain

cap1,p,N ({u ≥ 2k} ∩BM) ≤ ‖φ‖pW 1,p(BM ) ≤ Ck1−p

for any k ≥ k0. Since p > 1 we conclude that cap1,p,N ({u = +∞} ∩BM) = 0. In a

similar way we can control the set where u = −∞. Since M ∈ N is arbitrary, this

concludes the proof.

Note that to obtain the estimates of Theorem 3.3.6 for a local renormalized

solution u in Ω, it would have been enough to have |∇u|p−1 ∈ L1
loc (Ω) instead of

condition (2) of Definition 3.2.1. Similarly, instead of condition (3) we only used

u ∈ Lsloc (Ω) for some s > 0 as a step in obtaining the level set estimate |{|u| > k}| ≤

Ck−s. As an interesting consequence of this, we have that conditions (2) and (3)

in Definition 3.2.1 could be weakened. We remark that this result has already been

shown in Theorem 3.1 of [3], although by a different method and with the stronger

condition |u|q ∈ L1
loc (Ω) for some q > p− 1.
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Corollary 3.3.8. Let Ω be any domain, µ ∈Mb (Ω), and let u satisfy conditions (1)

and (4) of Definition 3.2.1. If u also satisfies

(2’) |∇u|p−1 ∈ L1
loc (Ω),

(3’) for any Ω0 ⊂⊂ Ω there exists C > 0 and α > 0 such that

|{|u| > k} ∩ Ω0| ≤ Ck−α,

then u is a local renormalized solution of −∆pu = µ in Ω.

Proof. Since we have the estimates of Theorem 3.3.6, we can show (2) and (3) of

Definition 3.2.1 following the ideas in Remark 3.2.5. Indeed, thanks to (3.2.1), we

can write ∫
Ω0

|u|s dx ≤ ks0 |Ω0|+ s

∫ ∞
k0

ks−1 |{|u| ≥ k}| dk

which is finite when Ω0 ⊂⊂ Ω and 1 < s ≤ N
N−p (s <∞ if p = N). Hence, we have

(3). Similarly, the estimates on ∇u show that (2) holds.

We now show that renormalized solutions of (1.0.1) in fact exists.

Proposition 3.3.9. Let 1 < p ≤ N , and let

u =


p−1
N−p

(
2
σN

) 1
p−1 |x|

p−N
p−1 if p < N(

2
σN

) 1
N−1

ln(|x|) if p = N

where σN is the surface area of ∂B1. Then u is a renormalized solution to−∆pu = 0 in RN
+

− |∇u|p−2 uν = δ0 on ∂RN
+ .

Proof. Let us first observe that δ0 is positive and singular with respect to cap1,p,N
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since cap1,p,N ({0}) = 0. This can be proven, for example, by using the known

relationships between capacity and Hausdorff measure (see [10]).

We assume p < N since the case p = N is almost identical. We note that u

is finite a.e., measurable, and clearly satisfies Tk(u) ∈ W 1,p
loc

(
RN

+

)
and so the first

requirement holds. For the second one observe that ∇u = −
(

2
σN

) 1
p−1 |x|

2−p−N
p−1 x

and so |∇u|q(p−1) =
(

2
σN

)q
|x|q(1−N). If q(N − 1) < N then −q(1 − N) < N and

so the singularity is integrable at the origin and |∇u|p−1 ∈ Lqloc
(
RN

+

)
. The third

requirement is immediate.

Suppose now that w ∈ W 1,p
(
RN

+

)
has compact support in RN

+ and trace in

L∞
(
∂RN

+

)
. Let k > 0 and suppose w = w+∞ a.e. in the set

{
x ∈ RN

+ : u(x) > k
}

with w+∞ ∈ W 1,r
(
RN

+

)
and r > N . Note that since r > N we have that w+∞

is continuous in RN
+ . As in the considerations following definition 3.3.1, we see

that |∇u|p−1 |∇w| belongs to L1
(
RN

+

)
. Hence, we can apply Lebesgue’s Dominated

Convergence Theorem to obtain

∫
RN+
|∇u|p−2∇u · ∇wdx = lim

ε↓0

∫
RN+
|∇u|p−2∇u(x′, xN + ε) · ∇w(x)dx .

Since ∇u(x′, xN + ε) is smooth for every ε > 0, vanishes as |x| → ∞, and ∆pu = 0

in RN
+ we obtain

∫
RN+
|∇u|p−2∇u(x′, xN + ε) · ∇w(x)dx =

∫
∂RN+
|∇u|p−2 uν(x

′, ε)w(x′, 0)dx′

= − 2ε

σN

∫
∂RN+

w(x′, 0)

|(x′, 0)− (0, ε)|N
dx′.

Finally, it is well-known (cf. [12]) that this last integral satisfies

lim
ε↓0
− 2ε

σN

∫
∂RN+

w(x′, 0)

|(x′, 0)− (0, ε)|N
dx′ = −w+∞(0)

since w has bounded trace and is continuous in a neighborhood of the origin because
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w = w+∞ cap1,p,N − q.e. near the origin (see Remark 3.3.3).

Remark 3.3.10 The ideas above can be used to define renormalized solutions to

Neumann problems in bounded domains. We do so now.

Let Ω be a bounded extension domain, i.e., a domain such that there exists a

linear bounded extension operator fromW 1,p (Ω) intoW 1,p
(
RN
)
. Assume 1 < p ≤ N

and µ ∈Mb

(
RN
)

is supported in ∂Ω. Let µ = µ0 + µ+
s − µ−s be the decomposition

of µ with respect to cap1,p,N . Then, a renormalized solution of

−∆pu = 0 in Ω

|∇u|p−2 uν = µ on ∂Ω

is a function u defined in Ω such that

(1) u is measurable, finite a.e., and Tk(u) ∈ W 1,p (Ω) for all k > 0;

(2) |∇u|p−1 ∈ Lq (Ω) for all 1 ≤ q < N
N−1

;

(3) there holds∫
Ω

|∇u|p−2∇u · ∇wdx =

∫
∂Ω

wdµ0 +

∫
∂Ω

w+∞dµ+
s −

∫
∂Ω

w−∞dµ−s

for all w ∈ W 1,p (Ω) with trace in L∞ (∂Ω; dµ0), and satisfying the following

condition: there exist k > 0, r > N , and functions w±∞ ∈ W 1,r (Ω) such that

w = w+∞ a.e. in {x ∈ Ω : u > k}

w = w−∞ a.e. in {x ∈ Ω : u < −k} .

Note that under the above conditions test functions have well defined traces on ∂Ω.

Indeed, by using that Ω is an extension domain, we can proceed as in Proposition

2.4.1 to show that w has a cap1,p,N− quasi-continuous representative which is unique
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µ0−a.e.. Hence, we let the trace of w be the restriction to ∂Ω of this cap1,p,N− quasi-

continuous representative. Similarly, w±∞ can be extended, uniquely, as continuous

and bounded functions in Ω.

It can be shown, just as in the case of definition 3.3.1, that all the integrals above

are well defined and finite. Note that we have assumed that the trace of w belongs

to L∞ (∂Ω; dµ0). This has to be contrasted with definition 3.3.1 where, thanks to

Proposition 2.4.4, we only assumed that the trace is in L∞
(
∂RN

+

)
.
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Chapter 4

Local renormalized Solutions in RN

We now prove some preliminary results that will help us to obtain a renormalized

solution to (1.0.1) in the sense of definition 3.3.1. We will mostly use ideas developed

in [9] for the case g ≡ 0. Note however that the theory developed there only applies

to bounded domains and so it cannot be applied directly to our case. We circumvent

this problem by working locally, that is, we first obtain a sequence of solutions on

balls Bm of increasing radii and then we consider the behavior of these solutions on

any fixed ball BM .

As a corollary, we will prove the following theorem on the existence of local

renormalized solutions in RN .

Theorem 4.0.1. Let µ̄ ∈ Mb

(
RN
)

and 1 < p ≤ N . Then there exists a local

renormalized solution to

−∆pu = µ̄ in RN .

4.1 Preliminary convergence result

Consider the following restrictions of a measure µ̄ ∈Mb

(
RN
)

µ̄m(A) := µ̄(A ∩Bm)
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where Bm is the ball centered at the origin of radius m. It is easy to see that

(µ̄m)0 = (µ̄0)m , (µ̄m)±s =
(
µ̄±s
)
m
.

For each m ∈ N we can use the results in [9] to obtain a renormalized solution

um to the problem −∆pum = µ̄m in Bm

um = 0 on ∂Bm.

(4.1.1)

Here and in the sequel we identify the functions um as functions defined on the whole

space extending them by zero outside of Bm. Note that since Tk(um) ∈ W 1,p
0 (Bm)

the extension satisfies Tk(um) ∈ W 1,p
(
RN
)
. Hence, by Remarks 3.3.2 and 3.1.5, the

extension of um has a cap1,p,N− quasi-continuous representative in RN . Clearly, up

to a set of zero capacity, this representative is the extension by zero of the cap1,p,N−

quasi-continuous representative of um given by Remark 3.1.5.

In the following lemma we show that we can extract a point-wise convergent

subsequence from {um}m. The argument follows closely the ideas used in Section 5

of [9].

Lemma 4.1.1. Let 1 < p ≤ N . Let νm ∈Mb

(
RN
)

be a sequence of measures such

that |νm| (Bm) ≤ C1 <∞ for all m ∈ N. Let um be renormalized solutions to (4.1.1)

with data νm, i.e., −∆pum = νm in Bm

um = 0 on ∂Bm.

Then there exists a function u such that, up to a subsequence, um → u a.e. in RN .

Moreover :

(1) u is measurable and finite cap1,p,N −q.e., Tk(um)→ Tk(u) weakly in W 1,p (BM)

for any fixed k > 0 and M ∈ N, and ∇Tk(um) → ∇Tk(u) a.e in RN for any

k > 0;
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(2) ∇um → ∇u a.e. and |∇um|p−2∇um → |∇u|p−2∇u strongly in (Lq (BM))N for

any M ∈ N and 1 ≤ q < N
N−1

;

(3) |u|p−1 ∈ Lqloc
(
RN
)

for all 1 < q < N
N−p (1 < q <∞ if p = N).

Proof. To begin we note that each um satisfies the estimates stated in Theorem 3.1.6

uniformly in the sense that they hold with |νm| (Bm) replaced by C1. Now fix any

M ∈ N, k ∈ N, and σ > 0. Observe that {x ∈ BM : |um − un| > σ} is contained in

{x ∈ BM : |um| > k} ∪ {x ∈ BM : |un| > k}∪

{x ∈ BM : |Tk(um)− Tk(un)| > σ} . (4.1.2)

Thanks to (3.1.3) and (3.1.5) the measure of the first two sets is arbitrarily small,

independent of m and n, provided k is large enough.

Since for each fixed k estimate (3.1.2) gives an uniform bound for ‖∇Tk(um)‖Lp

we conclude that the sequence {Tk(um)}m is uniformly bounded in W 1,p (BM) for any

fixed k and M . Since the injection W 1,p (BM) ↪→ Lp (BM) is compact, this means

that {Tk(um)}m has a subsequence that converges strongly in Lp (BM), and hence,

that it is a Cauchy subsequence in measure in BM .

Now take k = 1 and apply the above argument in BM to obtain a subsequence

{um,1}m ⊂ {um}m such that {T1(um,1)}m is a Cauchy sequence in measure in BM .

Since {um,1}m has the same properties as {um}m, we fix k = 2 and apply again the

argument above to obtain a subsequence {um,2}m ⊂ {um,1}m such that {T2(um,2)}m
is a Cauchy sequence in measure in BM . Proceeding inductively, we see that we

can define a diagonal sequence {um,m}m. Going back to (4.1.2), it easy to see that

this sequence, which we relabel as {um}m, is a Cauchy sequence in measure. Hence,

passing to a subsequence, there exists a measurable and a.e. finite function vM such

that um → vM a.e. in BM . Proceeding in a similar way, but now with respect to

M ∈ N, we can obtain a subsequence {um,m}m ⊂ {um}m, such that for every M ∈ N

um → vM a.e. in BM . Relabeling this subsequence as {um}m, we see that there exists
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a measurable and a.e. finite function u such that

um → u a.e. in RN

satisfying u = vM a.e. in BM .

We now consider the properties of the limit function. Note that since Tk(s)

is continuous we have Tk(um) → Tk(u) a.e. in BM . Estimate (3.1.2) implies that

{Tk(um)}m is uniformly bounded in W 1,p (BM) for any fixed k > 0. Thus, for

any subsequence
{
Tk(umj)

}
j

a further subsequence converges weakly in W 1,p (BM)

to a limit function vk. But Tk(um) → Tk(u) a.e. in BM , which implies (by the

boundedness of the sequence) that vk = Tk(u). Therefore

Tk(um)→ Tk(u) weakly in W 1,p (BM) for any fixed k > 0.

In particular

Tk(u) ∈ W 1,p (BM) ,

and thus for any k > 0

Tk(u) ∈ W 1,p
loc

(
RN
)
.

Let us make explicit that this allows us to define∇u in the generalized sense described

earlier. Also, using (3.1.2) and Fatou’s Lemma we further conclude that

1

k

∫
{n≤|u|<n+k}∩BM

|∇Tk+n(u)|p dx ≤ C1. (4.1.3)

Now we want to show that for any fixed k > 0 and M ∈ N, {∇Tk(um)}m is a

Cauchy sequence in measure in BM . For this we follow the approach in the proof of

Theorem 4.3.8 in [25]. Fix any M ∈ N, k > 0, and η, σ > 0, and let m,n ≥ M + 1.

Choose any φ ∈ C∞0 (BM+1) such that φ = 1 in BM and 0 ≤ φ ≤ 1. For δ > 0 we
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define

Dδ := {|Tk(um)− Tk(un)| > δ} , Eδ := Dc
δ ∩ {|∇Tk(um)−∇Tk(un)| > σ}

and observe that

{|∇Tk(um)−∇Tk(un)| > σ} ⊂ Dδ ∪ Eδ.

Let w = φTδ (Tk(um)− Tk(un)) and test against w in the equations solved by the

truncates Tk(um) and Tk(un) (see Remark 3.1.4) to find that

∣∣∣∣∣
∫
BM+1

(
|∇Tk(um)|p−2∇Tk(um)− |∇Tk(un)|p−2∇Tk(un)

)
· ∇wdx

∣∣∣∣∣ ≤
δ
(
2 |µ0| (BM+1) + λ+

k,m (BM+1) + λ−k,m (BM+1) + λ+
k,n (BM+1) + λ−k,n (BM+1)

)
for some measures λ±k,m and λ±k,n converging in the narrow topology of measures to

(µ±s )m and (µ±s )n, respectively, as k → ∞. By testing against Tk(um) in the equa-

tion solved by Tk(um), and using estimate (3.1.2), we obtain that λ±k,m are bounded

independently of m. Hence, the right hand side in the above inequality is bounded

by δc1 where c1 = c1(k, C1) is independent of m and n. On the other hand,

∣∣∣∣∣
∫
BM+1

Tδ (Tk(um)− Tk(un)) |∇Tk(um)|p−2∇Tk(um) · ∇φdx

∣∣∣∣∣ ≤
δ ‖∇Tk(um)‖p−1

Lp(BM+1) ‖∇φ‖Lp(BM+1) ≤ δc2

where, again by (3.1.2), c2 = c2(k, p, φ, C1) is independent of m. Then, using the

structural inequality (5.1.3), we can proceed as in the proof of Theorem 5.1.1 to show
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that

∫
BM∩Dcδ

|∇Tk(um)−∇Tk(un)|p dx ≤

c3

∫
BM∩Dcδ

(
|∇Tk(um)|p−2∇Tk(um)− |∇Tk(un)|p−2∇Tk(un)

)
·(∇Tk(um)−∇Tk(un)) dx

where c3 = c3(k, p, C1) is independent of m and n. Hence, by combining all the above

estimates we see that

|Eδ ∩BM | ≤
1

σp

∫
BM∩Dcδ

|∇Tk(um)−∇Tk(un)|p dx ≤ δ

(
c3(c1 + c2)

σp

)
,

and so we can choose δ > 0 independent of m and n such that |Eδ ∩BM | < η. Since

{Tk(um)}m is a Cauchy sequence in measure in BM , once δ is fixed we obtain that

|Dδ ∩BM | < η if m and n are large enough. Hence, the desired result follows. Note

that we also obtain that there exists a subsequence such that ∇Tk(umj)→ vk a.e. in

BM . Since ∇Tk(um) is uniformly bounded in (Lp (BM))N we conclude that in fact

vk = ∇Tk(u).

Now, noticing that {x ∈ BM : |∇um −∇un| > σ} is contained in

{x ∈ BM : |um| > k} ∪ {x ∈ BM : |un| > k} ∪ {x ∈ BM : |∇Tk(um)−∇Tk(un)| > σ}

we proceed as before to obtain that, passing to a subsequence, ∇um converges a.e.

to a function v in BM . Note that for fixed k > 0 we can choose a subsequence to

obtain

vχ{|u|<k} = lim
j→∞
∇umjχ{|u|<k} = lim

j→∞
∇umjχ{|u|<k}χ{|umj |<k}

= lim
j→∞
∇Tk(umj)χ{|u|<k} = ∇Tk(u)
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a.e. in BM . Therefore

∇um → ∇u a.e. in RN .

It then follows that in fact, for any k > 0, ∇Tk(um)→ ∇Tk(u) a.e. in RN . Moreover,

the identity (3.2.1) and the uniform decay estimates of Theorem 3.1.6 imply that

the family |∇um|p−2∇um is uniformly integrable over BM (see also Step 1 of Section

5 of [9]). Hence, by Vitali’s Theorem it follows that

|∇um|p−2∇um → |∇u|p−2∇u in (Lq (BM))N for all 1 ≤ q <
N

N − 1
.

In particular

|∇u|p−1 ∈ Lqloc
(
RN
)

for all 1 ≤ q <
N

N − 1
.

In the same spirit one can show that

|u|p−1 ∈ Lqloc
(
RN
)

for all 1 < q <
N

N − p

when p < N , whereas

|u|p−1 ∈ Lqloc
(
RN
)

for all 1 < q <∞

when p = N (see Remark 3.2.5).

To finish the proof we show that u is finite cap1,p,N − q.e. in BM for all M ∈ N,

and thus in the whole RN . Fix M ∈ N. By estimate (3.1.3) and (3.1.5) we can

choose k0 > 0 such that for all k ≥ k0 and for all m ∈ N

|{|um| ≥ k}| ≤ 1

4
|BM | .
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Thus, we can estimate

∫
BM

|T2k(um)| dx =

∫
BM∩{|um|<k}

|T2k(um)| dx+

∫
BM∩{|um|≥k}

|T2k(um)| dx

≤ k |BM |+ 2k
1

4
|BM | =

3

2
k |BM |

for any k ≥ k0. Let us define the following averages:

ck,m,M :=
1

|BM |

∫
BM

Tk(um)dx , ck,M :=
1

|BM |

∫
BM

Tk(u).

Note that by Lebesgue’s Dominated Convergence Theorem we have

ck,M = lim
m→∞

ck,m,M

and by the above estimate we get

|c2k,M | ≤
3

2
k

for any k ≥ k0. Now, to finish, we can proceed as in the proof of Proposition 3.3.7,

by considering the function φ =
T2k(u)−c2k,M

2k−c2k,M
.

4.2 Stability

We now consider the problem of showing that the limit function u defined in the

previous lemma is a local renormalized solution of the desired equation. Since we will

deal with nonlinear terms later, it will be useful to prove a more general result. Let

us recall that if ν ∈ L1
(
Bm ∩ ∂RN

+

)
then, by Proposition 2.3.2, νH ∈M0 (Bm) (see

also Proposition 2.3.3). We also remark that if a function u satisfies (1) in Lemma

4.1.1 then u has a cap1,p,N− quasi-continuous representative, which we identify with

u (see Remark 3.3.2).
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Lemma 4.2.1. Let µ̄ ∈ Mb

(
RN
)

and assume gm and g are measurable functions

defined in ∂RN
+ such that ‖gm‖L1(Bm∩∂RN+) + ‖g‖L1(∂RN+) ≤ C1 <∞ for some positive

constant C1. Let um be renormalized solutions to−∆pum = µ̄m − gmH in Bm

um = 0 on ∂Bm

where µ̄m is the restriction of µ̄ to Bm. Assume um → u a.e. in RN , where u is a

function satisfying properties (1), (2), and (3) in Lemma 4.1.1. Suppose also that

lim
m→∞

∫
BM∩∂RN+

φmgmdx
′ =

∫
BM∩∂RN+

φgdx′ (4.2.1)

for any M ∈ N and any sequence {φm}m converging to φ both a.e. in BM and weakly

in W 1,p
0 (BM) and such that φm is uniformly bounded in L∞ (BM). Then u is a local

renormalized solution of

−∆pu = µ̄− gH in RN .

Moreover, Tk(um)→ Tk(u) strongly in W 1,p (BM) for any fixed k > 0 and M ∈ N.

Proof. Since properties (1), (2), and (3) of Lemma 4.1.1 hold, we have that u solves

the desired equation if we can prove the last property listed in Definition 3.2.1. We

show this first, following the approach of [17].

First we note that by Theorem 2.2.1 we have (µ̄m)0 = (µ̄0)m = fm − div hm in

D′ (Bm) for some fm ∈ L1 (Bm) and hm ∈
(
Lp
′
(Bm)

)N
. Note that this representation

is also valid in D′ (Bm′) for any m′ < m and so (fm − div hm)|Bm′ = (fm′ − div hm′).

Then, by Lemma 3.1 of [17] there exists a set U ⊂ (0,∞) with U c of zero measure

such that each um satisfies the following condition: for every k ∈ U there exists two

measures α+
m,k, α

−
m,k ∈M0 (Bm) supported in {um = k} and {um = −k} respectively,

such that up to a subsequence (possibly depending on m) α±m,k → (µ̄m)±s , as k ∈ U

goes to infinity, in the weak-∗ topology of Mb (Bm), and the truncations Tk(um)

48



satisfy

∫
{|um|<k}

(
|∇Tk(um)|p−2∇Tk(um)− hm

)
· ∇vdx =∫

{um=k}
vdα+

m,k −
∫
{um=−k}

vdα−m,k +

∫
{|um|<k}

vfmdx−
∫
{|um|<k}∩∂RN+

vgmdx
′

(4.2.2)

for every v ∈ W 1,p
0 (Bm) ∩ L∞ (Bm).

Let us consider the convergence, in m, of the above terms. Given M ∈ N let

EM = {k ∈ R+ : |{x ∈ BM : |u| = k}| > 0} and write FM = (EM)c. Since |BM | <

∞, EM is countable and thus of zero measure. Note that χ{|um|<k} → χ{|u|<k} a.e. in

BM except possibly in {x ∈ BM : |u| = k}, thus χ{|um|<k} → χ{|u|<k} a.e. in BM and

weakly-∗ in L∞ (BM) for all k ∈ FM .

By hypothesis, we have that |∇um|p−2∇um → |∇u|p−2∇u strongly in (L1 (BM))
N

for any M ∈ N. It follows that

∫
{|um|<k}

|∇Tk(um)|p−2∇Tk(um) · ∇φdx →
∫
{|u|<k}

|∇Tk(u)|p−2∇Tk(u) · ∇φdx

for any φ ∈ C∞0 (BM) and k ∈ FM . Similarly, for any such φ and k there holds

∫
{|um|<k}

hm · ∇φdx+

∫
{|um|<k}

φfmdx→
∫
{|u|<k}

hM · ∇φdx+

∫
{|u|<k}

φfMdx.

Note that since gm are uniformly bounded in L1
(
BM ∩ ∂RN

+

)
so are the functions

gmχ{|um|<k}. Then, up to a subsequence depending on k, there exist a measure

τk ∈Mb

(
RN
)

such that

∫
{|um|<k}

φgmdx
′ →

∫
BM

φdτk

for any φ ∈ C∞0 (BM).
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Now we turn our attention to the measures α±m,k. Just as in the proof of Theorem

4.1 in [17] we can use the fact that µ̄m and gm and are uniformly bounded as measures

to conclude that for every m

∣∣α+
m,k

∣∣ (Bm) +
∣∣α−m,k∣∣ (Bm) ≤ C(µ̄, C1)

for any k > 0 in some subset V with |V c| = 0, and where C is independent of k or

m. Hence, for each k ∈ V , there exists nonnegative measures λ+
k and λ−k defined in

RN such that, up to a subsequence,

α±m,k → λ±k weakly-∗ in Mb

(
RN
)
.

In particular, given φ ∈ C∞0 (BM) we can pass to a subsequence to conclude

∫
BM

φdα+
m,k −

∫
BM

φdα−m,k →
∫
BM

φdλ+
k −

∫
BM

φdλ−k

which implies, by the previous considerations, that for any φ ∈ C∞0 (BM) and k ∈

KM = FM ∩ U ∩ V

∫
{|u|<k}

(
|∇Tk(u)|p−2∇Tk(u)− hM

)
· ∇φdx =∫

{|u|<k}
φfMdx−

∫
BM

φdτk +

∫
BM

φdλ+
k −

∫
BM

φdλ−k .

Note that |∇Tk(u)|p−1 + |hM | ∈ Lp
′
(BM) while fM ∈M0 (BM) ∩ L1 (BM) and thus,

by Theorem 2.2.1, −τk + λ+
k − λ

−
k

∣∣
BM

belongs to M0 (BM) and

∫
{|u|<k}∩BM

(
|∇Tk(u)|p−2∇Tk(u)− hM

)
· ∇φdx =∫

{|u|<k}∩BM
φfMdx+

∫
BM

φd
(
−τk + λ+

k − λ
−
k

)
(4.2.3)
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for any φ ∈ W 1,p
0 (BM) ∩ L∞ (BM) and k ∈ KM .

Since u is cap1,p,N− quasi-continuous {x ∈ BM : |u| > k} is quasi-open, and thus

there exists a sequence of functions ωn ∈ W 1,p
(
RN
)

such that 0 ≤ ωn ≤ χ{|u|>k} and

ωn ↑ χ{|u|>k} cap1,p,N − q.e. in RN (see Chapter 2). For any φ ∈ C∞0 (BM) we can

put φωn as test function in (4.2.3) and conclude

∫
BM

φωnd
(
−τk + λ+

k − λ
−
k

)
= 0

for any k ∈ KM . Since
(
−τk + λ+

k − λ
−
k

)∣∣
BM
∈ M0

(
RN
)

we can pass to the limit

using Proposition 2.4.7 to conclude that for any k ∈ KM

(
−τk + λ+

k − λ
−
k

)
{|u|>k}∩BM

= 0.

As above, let now ωn denote a sequence in W 1,p
(
RN
)

such that 0 ≤ ωn ≤ χ{|u|<k}

and ωn ↑ χ{|u|<k} cap1,p,N−q.e. in RN . Let φ ∈ C∞0 (BM) and put φωn as test function

in (4.2.3) with both k and h > k in KM to conclude

∫
BM

φωnd
(
−τh + λ+

h − λ
−
h

)
=

∫
BM

φωnd
(
−τk + λ+

k − λ
−
k

)
,

and by passing to the limit

∫
{|u|<k}∩BM

φd
(
−τh + λ+

h − λ
−
h

)
=

∫
{|u|<k}∩BM

φd
(
−τk + λ+

k − λ
−
k

)
which implies

(
−τh + λ+

h − λ
−
h

)∣∣
{|u|<k}∩BM

=
(
−τk + λ+

k − λ
−
k

)∣∣
{|u|<k}∩BM

for any h > k in KM . As in the proof of Theorem 4.1 in [17], this allows us to define
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a measure ν0 ∈M0

(
RN
)

with support in BM such that

ν0|{|u|<k} =
(
−τh + λ+

h − λ
−
h

)∣∣
{|u|<k}∩BM

for any h ≥ k in KM . Hence, if we define

ν+
k =

(
−τk + λ+

k − λ
−
k

)∣∣
{u=k}∩BM

, ν−k = −
(
−τk + λ+

k − λ
−
k

)∣∣
{u=−k}∩BM

we can rewrite (4.2.3) as

∫
{|u|<k}∩BM

(
|∇Tk(u)|p−2∇Tk(u)− hM

)
· ∇φdx =∫

{|u|<k}∩BM
φfMdx+

∫
BM∩{|u|<k}

φdν0 +

∫
{u=k}∩BM

φdν+
k −

∫
{u=−k}∩BM

φdν−k

(4.2.4)

for any φ ∈ W 1,p
0 (BM) ∩ L∞ (BM) and k ∈ KM .

Let us now consider the measures ν0, ν+
k , and ν−k . For any δ > 0 let ωδ,k(s) be

defined by

ωδ,k(s) =


0 , s < k − δ

1
δ

(s− k + δ) , k − δ ≤ s < k

1 , k ≤ s

(4.2.5)

and choose k ∈ KM , φ ∈ C∞0 (BM). Plugging φωδ,k(u) as test function in (4.2.3) and

passing to the limit as δ → 0 we conclude

lim
δ→0

1

δ

∫
{k−δ<u<k}∩BM

(
|∇Tk(u)|p−2∇Tk(u)− hM

)
· φ∇Tk(u)dx =∫

{u≥k}∩BM
φd
(
−τk + λ+

k − λ
−
k

)
=

∫
{u=k}∩BM

φdν+
k

Following the argument in the proof of Theorem 4.1 of [17] we see that there exists a
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sequence of positive numbers k ∈ KM going to infinity such that ν+
k → ν+ weakly-∗

in Mb (BM) as k →∞, for some nonnegative measure ν+. Choosing now

ωδ,k(s) =


1 , s < −k

1
δ

(−s− k + δ) ,−k ≤ s < −k + δ

0 ,−k + δ ≤ s

we obtain

lim
δ→0
−1

δ

∫
{−k<u<−k+δ}∩BM

(
|∇Tk(u)|p−2∇Tk(u)− hM

)
·φ∇Tk(u)dx = −

∫
{u=−k}∩BM

φdν−k

and similarly conclude that, up to a sequence k ∈ KM , ν−k → ν− weakly-∗ in

Mb (BM) for some nonnegative measure ν−.

Next, let us note that by the very definition of um we have

∫
BM

|∇um|p−2∇um · ∇φdx =

∫
BM

φdµ̄−
∫
BM∩∂RN+

φgmdx
′

for any φ ∈ C∞0 (BM), m ≥M , and thus taking limit

∫
BM

|∇u|p−2∇u · ∇φdx =

∫
BM

φdµ̄−
∫
BM∩∂RN+

φgdx′.

(Note that we have used the assumptions on gm with φm = φ). On the other hand,

for any such φ we can take a sequence k →∞, k ∈ KM , in (4.2.4) to conclude

∫
BM

|∇u|p−2∇u · ∇φdx =

∫
BM

φdµ̄0 +

∫
BM

φdν0 +

∫
BM

φdν+ −
∫
BM

φdν−

where we have used that (µ̄0)M = fM − div hM in the sense of distributions. Thus
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we get

∫
BM

φdµ̄s −
∫
BM∩∂RN+

φgdx′ =

∫
BM

φdν0 +

∫
BM

φdν+ −
∫
BM

φdν−

which implies µ̄s − gH = ν0 + ν+ − ν− in BM .

Consider now the function βn(s) defined by

βn(s) =


0 , s < n

s−n
n

n ≤ s < 2n

1 , 2n ≤ s.

For any nonnegative φ ∈ C∞0 (BM) we have φβn(u) ∈ W 1,p
0 (BM) ∩ L∞ (BM) and so

by (4.2.4) we have

∫
{|u|<k}∩BM

βn(u)
(
|∇Tk(u)|p−2∇Tk(u)− hM

)
· ∇φdx+

1

n

∫
{|u|<k}∩{n<u<2n}∩BM

φ
(
|∇Tk(u)|p−2∇Tk(u)− hM

)
· ∇udx

=

∫
{|u|<k}∩BM

φβn(u)fMdx+

∫
{|u|<k}∩BM

φβn(u)dν0 +

∫
{u=k}∩BM

φβn(u)dν+
k

for k ∈ KM . Using Lebesgue’s Dominated Convergence Theorem, the fact that

|∇u|p−1 ∈ L1 (BM), hM ∈
(
Lp
′
(BM)

)N
, the smoothness of φ, the fact that u is finite

cap1,p,N − q.e., and that βn(k) = 1 for all k ≥ 2n we may take k → ∞, for some

sequence of k ∈ KM , to conclude

∫
BM

βn(u) |∇u|p−2∇u · ∇φdx+
1

n

∫
{n<u<2n}∩BM

φ |∇u|p dx

=

∫
BM

βn(u)φd (µ̄0 + ν0) +

∫
BM

φdν+

where we have used again Theorem 2.2.1 to identify (µ̄0)M = fM − div hM for
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functions in W 1,p
0 (BM)∩L∞ (BM). Since βn(u)χBM → 0 weakly-∗ in both L∞

(
RN
)

and L∞
(
RN ; d (µ̄0 + ν0)

)
, thanks to Lebesgue’s Dominated Convergence Theorem

and Proposition 2.4.7, we can take n→∞ and conclude

lim
n→∞

1

n

∫
{n<u<2n}∩BM

φ |∇u|p dx =

∫
BM

φdν+. (4.2.6)

On the other hand, if we go back to the definition of um and put w = βn(um)φ as

test function with w+∞ = φ, w−∞ = 0, for k > 2n, we obtain

1

n

∫
{n<um<2n}∩BM

|∇um|p φdx+

∫
BM

βn(um) |∇um|p−2∇um · ∇φdx

=

∫
BM

φβn(um)dµ̄0 −
∫
BM∩∂RN+

φβn(um)gmdx
′ +

∫
BM

φdµ̄+
s . (4.2.7)

Note that since βn is continuous we have βn(um)→ βn(u) a.e. in BM , and so we can

pass to the limit in the second term above as m → ∞. For the third term we use

that φβn(um) belongs to W 1,p
0 (BM) ∩ L∞ (BM) and Theorem 2.2.1 to write

∫
BM

φβn(um)dµ̄0 =∫
BM

φβn(um)fMdx+

∫
BM

βn(um)∇φ ·hMdx+
1

n

∫
BM∩{n<um<2n}

φ∇T2n(um) ·hMdx.

Then, by Lebesgue’s Dominated Convergence Theorem, and combining the fact that

Tk(um)→ Tk(u) weakly in W 1,p (BM) with Proposition 2.4.8, we see that we may also

take limit as m→∞ above for almost every n ∈ R+. Similarly, by the continuity of

βn and Proposition 2.4.8, φβn(um)→ φβn(u) weakly in W 1,p
0 (BM) for almost every

n ∈ R+. Hence, since ‖φβn(um)‖∞ is uniformly bounded in m, we can use condition

(4.2.1) to obtain

−
∫
BM∩∂RN+

φβn(um)gmdx
′ → −

∫
BM∩∂RN+

φβn(u)gdx′
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as m→∞ for almost every n ∈ R+.

Thus, since we can take m→∞ in the second, third, and fourth term in (4.2.7),

we can use Fatou’s Lemma to conclude

1

n

∫
{n<u<2n}∩BM

|∇u|p φdx ≤ lim inf
m→∞

1

n

∫
{n<um<2n}∩BM

|∇um|p φdx

≤ −
∫
BM

βn(u) |∇u|p−2∇u·∇φdx+

∫
BM

βn(u)dµ̄0−
∫
BM∩∂RN+

φβn(u)gdx′+

∫
BM

φdµ̄+
s

for almost every n ∈ R+. Passing to the limit as n→∞ as before yields

lim
n→∞

1

n

∫
{n<u<2n}∩BM

|∇u|p φdx ≤
∫
BM

φdµ̄+
s ,

and so comparing with (4.2.6) we obtain

∫
BM

φdν+ ≤
∫
BM

φdµ̄+
s ,

which implies ν+ ≤ µ̄+
s in BM . Similarly, one can conclude ν− ≤ µ̄−s . This implies in

particular that ν+ and ν− are singular with respect to cap1,p,N , and since µ̄s− gH =

ν0 + ν+ − ν− we conclude that ν0 ≡ −gH. Recalling that µ̄+
s and µ̄−s have disjoint

support we further conclude ν+ = µ̄+
s and ν− = µ̄−s in BM . In particular this allows

us to rewrite (4.2.4) as

∫
{|u|<k}∩BM

(
|∇Tk(u)|p−2∇Tk(u)− hM

)
· ∇φdx =∫

{|u|<k}∩BM
φfMdx−

∫
{|u|<k}∩BM

φgdx′ +

∫
{u=k}∩BM

φdν+
k −

∫
{u=−k}∩BM

φdν−k

(4.2.8)

for any φ ∈ W 1,p
0 (BM) ∩ L∞ (BM) and k ∈ KM .

We are now ready to finish. Let w ∈ W 1,∞ (R) with w′ compactly supported,

and let φ ∈ W 1,r
(
RN
)
, for some r > N , be compactly supported and such that
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w(u)φ ∈ W 1,p
(
RN
)
. We write w(±∞) = lims→±∞w(s). Choosing M ∈ N large

enough we can assume w(u)φ ∈ W 1,p
0 (BM) so that w(u)φ is a valid test function for

(4.2.8) and thus

∫
{|u|<kj}∩BM

(
|∇u|p−2∇u− hM

)
· ∇ (w(u)φ) dx =∫

{|u|<kj}∩BM
w(u)φfMdx−

∫
{|u|<kj}∩BM

w(u)φgdx′

+

∫
{u=kj}∩BM

w(u)φdν+
kj
−
∫
{u=−kj}∩BM

w(u)φdν−kj ,

where we have chosen kj ∈ KM to be the sequence such that ν±kj → ν± weakly-∗ as

kj →∞. Let τ be such that w(s) is constant in (−τ, τ)c. Then, if kj > τ ,

∫
{|u|<kj}∩BM

(
|∇u|p−2∇u− hM

)
· ∇ (w(u)φ) dx =∫

{|u|<τ}∩BM

(
|∇u|p−2∇u− hM

)
· ∇ (w(u)φ) dx

+ w(+∞)

∫
{τ<u<kj}∩BM

(
|∇u|p−2∇u− hM

)
· ∇φdx

+ w(−∞)

∫
{−kj<u<−τ}∩BM

(
|∇u|p−2∇u− hM

)
· ∇φdx.

Since r > N we have that r′ < N
N−1

. Hence,
(
|∇u|p−2∇u− hM

)
·∇φ ∈ L1 (BM) and

since u is finite a.e. we take kj →∞ in the last two terms above and obtain

∫
{|u|<kj}∩BM

(
|∇u|p−2∇u− hM

)
· ∇ (w(u)φ) dx→∫

BM

(
|∇u|p−2∇u− hM

)
· ∇ (w(u)φ) dx.

We know that u is finite cap1,p,N − q.e. in BM and so χ{|u|<kj} → 1 cap1,p,N − q.e. in
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BM . It follows that

∫
{|u|<kj}∩BM

w(u)φfMdx−
∫
{|u|<kj}∩BM

w(u)φgdx′ →∫
BM

w(u)φfMdx−
∫
BM∩∂RN+

w(u)φgdx′

as kj →∞. Recall that ν±kj are concentrated in {u = ±kj}∩BM , respectively. Thus,

assuming kj > τ , we use that φ ∈ C0 (BM) to conclude

∫
BM

w(u)φdν±kj = w(±∞)

∫
BM

φdν±kj → w(±∞)

∫
BM

φdν± = w(±∞)

∫
BM

φdµ̄±s

as kj →∞. Putting together all the above we get

∫
BM

|∇u|p−2∇u · ∇ (w(u)φ) dx =

∫
BM

w(u)φdµ̄0 −
∫
BM∩∂RN+

w(u)φgdx′

+ w(+∞)

∫
BM

φdµ̄+
s − w(−∞)

∫
BM

φdµ̄−s .

Hence, by the results in [3], u is a local renormalized solution of −∆pu = µ̄− gH in

RN .

Now we show the strong convergence of the truncates. Fix M ∈ N, k > 0, and let

φ ∈ C∞0 (BM). By testing against Tk(um)φ in the definition of um as renormalized

solution, for any m ≥M we have

∫
BM

φ |∇Tk(um)|p dx+

∫
BM

Tk(um) |∇um|p−2∇um · ∇φdx =

−
∫
BM∩∂RN+

φTk(um)gmdx
′ +

∫
BM

Tk(um)φdµ̄0 + k

∫
BM

φdµ̄+
s − k

∫
BM

φdµ̄−s .
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Similarly,

∫
BM

φ |∇Tk(u)|p dx+

∫
BM

Tk(u) |∇u|p−2∇u · ∇φdx =

−
∫
BM∩∂RN+

φTk(u)gdx′ +

∫
BM

Tk(u)φdµ̄0 + k

∫
BM

φdµ̄+
s − k

∫
BM

φdµ̄−s .

Comparing the above identities we have

∫
BM

φ |∇Tk(u)|p dx−
∫
BM

φ |∇Tk(um)|p dx =∫
BM

φTk(u)dµ̄0 −
∫
BM

φTk(um)dµ̄0 +

∫
BM∩∂RN+

φTk(um)gmdx
′ −
∫
BM∩∂RN+

φTk(u)gdx′

−
∫
BM

Tk(u) |∇u|p−2∇u · ∇φdx+

∫
BM

Tk(um) |∇um|p−2∇um · ∇φdx.

Writing again (µ̄0)M = fM − div hM we use that φ ∈ C∞0 (BM) and that Tk(um)→

Tk(u) weakly in W 1,p (BM) and weakly-∗ in L∞ (BM) to obtain

∫
BM

φTk(um)dµ̄0 →
∫
BM

φTk(u)dµ̄0

as m→∞. Note that by condition (4.2.1)

∫
BM∩∂RN+

φTk(um)gmdx
′ →

∫
BM∩∂RN+

φTk(u)gdx′

as m → ∞. Moreover, since |∇um|p−2∇um → |∇u|p−2∇u strongly in (Lq (BM))N

for some q > 1, while Tk(um) → Tk(u) strongly in Lr (BM) for any 1 ≤ r < ∞, we

get ∫
BM

Tk(um) |∇um|p−2∇um · ∇φdx→
∫
BM

Tk(u) |∇u|p−2∇u · ∇φdx

as m→∞. Hence,

lim
m→∞

∫
BM

φ |∇Tk(um)|p dx =

∫
BM

φ |∇Tk(u)|p dx
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for any φ ∈ C∞0 (BM), which implies that

lim
m→∞

‖∇Tk(um)‖Lp(BM′ )
= ‖∇Tk(u)‖Lp(BM′ )

for any M > M ′ ∈ N. Using the above, the inequality ||a+ b| − |a| − |b|| ≤ 2 |b| with

a = |∇Tk(um)|p−|∇Tk(u)|p and b = |∇Tk(u)|p, and the fact that∇Tk(um)→ ∇Tk(u)

a.e. in BM ′ , we obtain that |∇Tk(um)|p → |∇Tk(u)|p strongly in L1 (BM ′). Then,

by Vitalli’s Theorem, ∇Tk(um) → ∇Tk(u) strongly in (Lp (BM ′))
N , from which the

claim follows.

Proving Theorem 4.0.1 is now trivial:

Proof of Theorem 4.0.1. Let µ̄m be the restriction of µ̄ to Bm. Since |µ̄m| (Bm) ≤

µ̄
(
RN
)
<∞ we can apply Lemma 4.1.1 and Lemma 4.2.1 with g = gm ≡ 0.
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Chapter 5

Symmetric Solutions

5.1 Symmetry

In this section we show that any solution of the extended problem given by Theorem

4.0.1 must be symmetrical with respect to ∂RN
+ whenever the measure µ̄ is supported

in ∂RN
+ . This symmetry will allows us to recover a solution to the original problem,

i.e., equation (1.0.1).

Theorem 5.1.1. Let Ω be any bounded domain in RN that is symmetric with respect

to the hyperplane ∂RN
+ . Let µ̄ ∈ Mb (Ω) be supported in ∂RN

+ ∩ Ω and let u be a

renormalized solution to −∆pu = µ̄ in Ω

u = 0 on ∂Ω.

Then u(x′, xN) = u(x′,−xN) a.e. in Ω.

Proof. In what follows we write Ω+ = Ω∩RN
+ and for any f defined in Ω we denote

by f ∗ its reflection with respect to ∂RN
+ , i.e., f ∗(x′, xN) = f(x′,−xN).

Let us first show that u∗ is also a renormalized solution of the above problem.

Indeed, this is clear when we observe that if ω is a test function with respect to u∗
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then w∗ is a valid test function with respect to u. Hence we conclude

∫
Ω

|∇u∗|p−2∇u∗ · ∇wdx =

∫
Ω

|∇u|p−2∇u · ∇w∗dx =∫
Ω

wdµ̄0 +

∫
Ω

w+∞dµ̄+
s −

∫
Ω

w−∞dµ̄−s

as required, since w∗ = w on ∂RN
+ and Ω is invariant under xN 7→ −xN .

To continue, let us note that Tk(u)− Tk(u∗) ∈ W 1,p
0 (Ω+) for any k > 0. Indeed,

since Tk(u) ∈ W 1,p
0 (Ω) we can choose a sequence φn ∈ C∞0 (Ω) such that φn →

Tk(um) in W 1,p (Ω). Then φn − φ∗n → Tk(um) − Tk(u
∗
m) in W 1,p (Ω+) and since

φn − φ∗n ∈ C
(
Ω+
)
∩W 1,p (Ω+) vanishes in ∂Ω+ we conclude φn − φ∗n ∈ W

1,p
0 (Ω+)

and thus our claim follows.

By the equivalence of definitions of renormalized solutions (see Remark 3.1.4),

we have that for every k > 0 there exists two nonnegative measures λ+
k , λ−k ∈M0 (Ω)

supported in {u = k} and {u = −k} respectively, such that λ±k → µ̄±s as k → ∞ in

the narrow topology of measures, and the truncations Tk(u) satisfy

∫
{|u|<k}

|∇Tk(u)|p−2∇Tk(u) · ∇vdx =∫
{u=k}

vdλ+
k −

∫
{u=−k}

vdλ−k +

∫
{|u|<k}

vdµ̄0 (5.1.1)

for every v ∈ W 1,p
0 (Ω) ∩ L∞ (Ω). In particular

λ±k
(
Ω+
)
→ µ̄±s

(
Ω+
)

= 0

as k →∞ since µ̄±s is supported in ∂RN
+ .

We now extend Tk(u)−Tk(u∗) by 0 outside Ω+. Since Tk(u)−Tk(u∗) ∈ W 1,p
0 (Ω)∩
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L∞ (Ω) is a valid test function for (5.1.1) which vanishes in ∂RN
+ ∩ Ω we get

∫
{|u|<k}

|∇Tk(u)|p−2∇Tk(u) · ∇ [Tk(u)− Tk(u∗)] dx =∫
{u=k}

[Tk(u)− Tk(u∗)] dλ+
k −

∫
{u=−k}

[Tk(u)− Tk(u∗)] dλ−k .

Arguing in the same way for u∗ we obtain sequences (λ±k )∗ converging to µ̄±s such

that (5.1.1) holds with u∗ in place of u, and so testing against Tk(u) − Tk(u∗) and

subtracting it from the previous equality we get

∫
Ω+

[
|∇Tk(u)|p−2∇Tk(u)− |∇Tk(u∗)|p−2∇Tk(u∗)

]
· ∇ [Tk(u)− Tk(u∗)] dx =∫

Ω+

[Tk(u)− Tk(u∗)] dλ+
k −

∫
Ω+

[Tk(u)− Tk(u∗)] dλ−k

−
∫

Ω+

[Tk(u)− Tk(u∗)] d(λ+
k )∗ +

∫
Ω+

[Tk(u)− Tk(u∗)] d(λ−k )∗. (5.1.2)

Using the well-known inequality

N∑
i=1

(
|z|p−2 zi − |ζ|p−2 ζi

)
(zi − ζi) ≥

γ


(

1
4

)p−1 |z − ζ|p , if p ≥ 2(
1
4

)
|z − ζ|2 (|z|+ |ζ|)p−2 , if p ≤ 2

(5.1.3)

for some γ > 0, it follows immediately from (5.1.2) that

∫
Ω+

|∇Tk(u)−∇Tk(u∗)|p dx ≤

C(p)k
[∣∣λ+

k

∣∣ (Ω+
)

+
∣∣λ−k ∣∣ (Ω+

)
+
∣∣(λ+

k )∗
∣∣ (Ω+

)
+
∣∣(λ−k )∗

∣∣ (Ω+
)]
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when p ≥ 2. When 1 < p < 2 we use Holder’s inequality first to get

∫
Ω+

|∇Tk(u)−∇Tk(u∗)|p dx =∫
Ω+

|∇Tk(u)−∇Tk(u∗)|p

(|∇Tk(u)|+ |∇Tk(u∗)|)
p
2

(2−p) (|∇Tk(u)|+ |∇Tk(u∗)|)
p
2

(2−p) dx ≤{∫
Ω+

|∇Tk(u)−∇Tk(u∗)|2

(|∇Tk(u)|+ |∇Tk(u∗)|)2−pdx

} p
2 {∫

Ω+

(|∇Tk(u)|+ |∇Tk(u∗)|)p dx
} 2−p

2

which then by (5.1.3), (5.1.2), and (3.1.2) yields

∫
Ω+

|∇Tk(u)−∇Tk(u∗)|p dx ≤

C(p)

{∫
Ω+

[
|∇Tk(u)|p−2∇Tk(u)− |∇Tk(u∗)|p−2∇Tk(u∗)

]
· ∇ [Tk(u)− Tk(u∗)] dx

} p
2

× {k |µ̄| (Ω)}
2−p
2

≤ C(p)k
[∣∣λ+

k

∣∣ (Ω+
)

+
∣∣λ−k ∣∣ (Ω+

)
+
∣∣(λ+

k )∗
∣∣ (Ω+

)
+
∣∣(λ−k )∗

∣∣ (Ω+
)] p

2 {|µ̄| (Ω)}
2−p
2 .

Thus we see that for any 1 < p ≤ N there holds

1

k

∫
Ω+

|∇Tk(u)−∇Tk(u∗)|p dx→ 0

as k →∞. By symmetry, the same is true in Ω∩RN
− = Ω∩{(x′, xN) ∈ RN : xN < 0}.

Hence we can apply the partial uniqueness result stated in Theorem 10.4 of [9] to

conclude that u = u∗ a.e. in Ω.

5.2 Existence from symmetry

Now we are ready to prove an existence result for problem (1.0.1) in the case g ≡ 0.

We will state it as a corollary to the following theorem.

Theorem 5.2.1. Let 1 < p ≤ N and µ ∈Mb

(
∂RN

+

)
. Suppose u is a local renormal-
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ized solution of −∆pu = 2µ in RN that is symmetric with respect to the hyperplane

∂RN
+ . Then the restriction of u to RN

+ is a renormalized solution of

−∆pu = 0 in RN
+

|∇u|p−2 uν = µ on ∂RN
+ .

Proof. It is clear from the definition of local renormalized solution that the restriction

of u to RN
+ satisfies conditions (1), (2), and (3) of Definition 3.3.1. Hence, we only

need to show that (5) holds.

Assume that w ∈ W 1,p
(
RN

+

)
has compact support in RN

+ and trace in L∞
(
∂RN

+

)
and there exist k > 0, r > N , and functions w±∞ ∈ W 1,r

(
RN

+

)
such that

w = w+∞ a.e. in
{
x ∈ RN

+ : u > k
}

w = w−∞ a.e. in
{
x ∈ RN

+ : u < −k
}
.

Choose L such that |w| ≤ L a.e. in ∂RN
+ and |w±∞| ≤ L in RN

+ . Let us extend w and

w±∞ to RN by even reflection, i.e., w(x′, xN) = w(x′,−xN) for xN < 0 and similarly

for w±∞. Note that since u is symmetric with respect to ∂RN
+ we have

w = w+∞ a.e. in
{
x ∈ RN : u > k

}
w = w−∞ a.e. in

{
x ∈ RN : u < −k

}
.

Next, we let

Φε =


0 , xN ≤ 0

xN
ε

, 0 < xN ≤ ε

1 , ε ≤ xN
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and

Ψε =


0 , xN ≤ −ε

xN+ε
ε

,−ε < xN ≤ 0

1 , 0 ≤ xN .

Then for any l > L we see that Tl(w)Ψε ∈ W 1,p
(
RN
)
∩L∞

(
RN
)

is an adequate test

function and thus we get

∫
RN

Ψε |∇u|p−2∇u · ∇Tl(w)dx+
1

ε

∫
{−ε≤xN≤0}

Tl(w) |∇u|p−2 uxNdx =

2

{∫
∂RN+

wdµ0 +

∫
∂RN+

w+∞dµ+
s −

∫
∂RN+

w−∞dµ−s

}
.

By now taking Tl(w)Φε as test function we get

∫
RN

Φε |∇u|p−2∇u · ∇Tl(w)dx+
1

ε

∫
{0≤xN≤ε}

Tl(w) |∇u|p−2 uxNdx = 0.

By the symmetry of u we have that uxN (x′, xN) = −uxN (x′,−xN) and so

1

ε

∫
{−ε≤xN≤0}

Tl(w) |∇u|p−2 uxNdx = −1

ε

∫
{0≤xN≤ε}

Tl(w) |∇u|p−2 uxNdx.

Adding up the previous equalities we conclude

∫
RN

Ψε |∇u|p−2∇u · ∇Tl(w)dx+

∫
RN

Φε |∇u|p−2∇u · ∇Tl(w)dx =

2

{∫
∂RN+

wdµ0 +

∫
∂RN+

w+∞dµ+
s −

∫
∂RN+

w−∞dµ−s

}

and by Lebesgue’s Dominated Convergence Theorem we let ε→ 0 to obtain

∫
RN+
|∇u|p−2∇u · ∇Tl(w)dx =

∫
∂RN+

wdµ0 +

∫
∂RN+

w+∞dµ+
s −

∫
∂RN+

w−∞dµ−s .
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Writing

∫
RN+
|∇u|p−2∇u · ∇Tl(w)dx =

∫
RN+∩{|u|≤k}

|∇Tk(u)|p−2∇Tk(u) · ∇Tl(w)dx+∫
RN+∩{u>k}

|∇u|p−2∇u · ∇w+∞dx+

∫
RN+∩{u<−k}

|∇u|p−2∇u · ∇w−∞dx

we use the fact that ∇Tl(w) → ∇w weakly in
(
Lp
(
RN

+

))N
to take l → ∞ above,

and so conclude

∫
RN+
|∇u|p−2∇u · ∇wdx =

∫
∂RN+

wdµ0 +

∫
∂RN+

w+∞dµ+
s −

∫
∂RN+

w−∞dµ−s

thus completing the proof of the theorem.

Theorem 5.2.2. Let 1 < p ≤ N and µ ∈Mb

(
∂RN

+

)
. Then there exists a renormal-

ized solution to −∆pu = 0 in RN
+

|∇u|p−2 uν = µ on ∂RN
+ .

Proof. Apply Theorem 4.0.1 to obtain a local renormalized solution to −∆pu = 2µ

in RN . By the construction of u, and in view of Theorem 5.1.1, u is symmetric

with respect to ∂RN
+ . Then the result follows from an application of the previous

theorem.
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Chapter 6

Nonlinear problems with

absorption

6.1 The subcritical case

We now consider the problem of finding renormalized solutions to problem (1.0.1)

with a nonlinear term g(u). The fact that g(s) is subcritical is expressed in the

following assumption.

Assumption 6.1.1

(1) g : R→ R is a continuous function such that g(s)s ≥ 0.

(2) Define g̃ : R+ → R by g̃(s) = sup[−s,s] |g(t)|. If 1 < p < N we assume

∫ ∞
1

g̃(s)s−
p(N−2)+1
N−p ds <∞.

If p = N we assume that there exists γ > 0 such that

∫ ∞
1

g̃(s)e−γNsds <∞.
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Remark 6.1.2 In the special case when g(s) = |s|q−1 s, q ≥ 0, Assumption 6.1.1

holds whenever

q <


(N−1)(p−1)

N−p , if 1 < p < N

∞ , if p = N.

Hence, we say that qc := (N − 1)(p− 1)/(N − p) is a critical exponent for problem

(1.0.1), and the problem is subcritical whenever q < qc.

We will use the tools developed in Chapters 4 and 5 to obtain a renormalized

solution of (1.0.1) as the limit of renormalized solutions to

−∆pu = µ− g(u)H in Bm

u = 0 on ∂Bm.

(6.1.1)

To find solutions of the above problem we use the theory developed in [25] for the

equation −∆pu+ g(x, u) = µ in Ω

u = 0 on ∂Ω

(6.1.2)

in bounded domains. In order to pass from (6.1.2) to (6.1.1) we apply the theory for

problem (6.1.2) to a sequence gn(x, u) obtained by multiplying g(u) by an adequately

chosen sequence ζn(xN), and then show that the associated sequence of solutions

converges to a solution of problem (6.1.1).

We define ζ ∈ C∞ (R) as

ζ(t) =
1

π

(
1

1 + t2

)
.

Note that ‖ζ‖L1 = 1. Then, for n ∈ N we define

ζn(t) = nζ (nt) , gn(x, s) = ζn(xN)g(s). (6.1.3)
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We start by defining renormalized solutions to problems (6.1.1) (in a general

bounded domain Ω) and (6.1.2).

Definition 6.1.3. Let Ω be a bounded domain, µ ∈Mb (Ω), and g : R→ R. Then

a function u defined in Ω is a renormalized solution to problem (6.1.1) if u is finite

a.e. in Ω ∩ ∂RN
+ , g(u) ∈ L1

(
Ω ∩ ∂RN

+

)
and u is a renormalized solution to problem

(3.1.1) with datum µ− g(u)H in the sense of Definition 3.1.2.

Similarly, if g : Ω × R → R then a function u defined in Ω is a renormalized

solution to problem (6.1.2) if g(x, u) ∈ L1 (Ω) and u is a renormalized solution to

problem (3.1.1) with datum µ− g(x, u) in the sense of Definition 3.1.2.

The following result is obtained in the proof of Theorem 5.1.2 in [25] by testing

against ws = tanh(sTk(u)), s > 0, and taking s→∞:

Proposition 6.1.4. Let u be a renormalized solution to problem (6.1.2), where g(x, ·)

is continuous and satisfies g(x, s)s ≥ 0 for all x ∈ Ω and s ∈ R. Then

∫
Ω

|g(x, u)| dx ≤ |µ| (Ω) .

The next lemma collects some relationships between capacities and Lebesgue

measure.

Lemma 6.1.5. Let 1 < p ≤ N . There exists constants C1(M,N, p), C2(M,N, p),

C3(N, p), and C4(M,N, p) such that for all Borel sets E ⊂ BM ⊂ RN there holds

(1)
∣∣E ∩ ∂RN

+

∣∣ ≤ C1cap1− 1
p
,p,N−1

(
E ∩ ∂RN

+

) 1
p ,

(2) |E| ≤ C2cap1,p,N (E)
1
p ,

(3) cap1− 1
p
,p,N−1

(
E ∩ ∂RN

+

)
≤ C3cap1,p,N (E),

(4) |E ∩ {xN = t}| ≤ C4cap1,p,N (E)
1
p .
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Proof. The first two inequalities follow from (the proof of) Proposition 2.6.1 of [10],

while the third is just Proposition 2.3.2. The last one follows from (1), (3), and the

translation invariance of both the Lebesgue measure and capacities.

Now we obtain estimates similar to (3.1.3) and (3.1.5) but on hyperplanes. We

note explicitly that any cap1,p,N− quasi-continuous function on RN has a well defined

cap1− 1
p
,p,N−1− quasi-continuous trace in any hyperplane RN−1 × {t}, t ∈ R (see the

above lemma and Remark 2.4.2).

Lemma 6.1.6. Let f be cap1,p,N− quasi-continuous in RN and such that Tk(f) ∈

W 1,p
0 (BM) satisfies

1

k

∫
{|f |<k}∩BM

|∇Tk(f)|p dx ≤ C1.

If 1 < p < N then there exists a constant C(N, p,BM) such that for any t ∈ R

|{x ∈ BM ∩ {xN = t} : |f | > k}| ≤ C(N, p,BM)C
N−1
N−p
1 k

(N−1)(1−p)
N−p .

If p = N then there exists constants C(N,BM) and c(N) > 0 such that for any t ∈ R

|{x ∈ BM ∩ {xN = t} : |f | > k}| ≤ C(N,BM)e−c(N)k(C1)
1

1−N
.

Proof. Suppose 1 < p < N . By Sobolev’s embedding (see [21]), trace inequality, and

Poincare’s inequality, we have for q = p(N−1)
N−p that

‖Tk(f)‖Lq(BM∩{xN=t}) ≤ C(N, p) ‖Tk(f)‖F p,p
1− 1

p
(BM∩{xN=t})

≤ C(N, p) ‖Tk(f)‖W 1,p(BM )

≤ C(N, p,BM)(kC1)
1
p .
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Since {|f | > k} = {|Tk(f)| ≥ k} we conclude

|{x ∈ BM ∩ {xN = t} : |f | > k}| ≤
(‖Tk(f)‖q

k

)q
≤ C(N, p,BM)C

q
p

1 k
( 1
p
−1)q

which finishes the proof for the case p < N . When p = N , the results in [6] show

that ∫
BM∩{xN=t}

e
c1

(
|Tk(f)|

‖∇Tk(f)‖LN (BM )

) N
N−1

dx′ ≤ c2(N,BM)

for some constants c1(N) and c2(N,BM). Since |Tk(f)| = k whenever |f | > k and

‖∇Tk(f)‖N ≤ (kC1)
1
N we conclude

|{x ∈ BM ∩ {xN = t} : |f | > k}| ec1kC
1

1−N
1 ≤

∫
{x∈BM∩{xN=t} : |f |>k}

e
c1

(
|Tk(f)|

‖∇Tk(f)‖LN (BM )

) N
N−1

dx′ ≤ c2

which gives the desired bound.

Remark 6.1.7 Let us note that, in exactly the same way, one can prove that for

any such function f there holds

|{x ∈ BM : |f | > k}| ≤ C(N,BM)e−c(N)kC
1

1−N
1

when p = N . The fact that c(N) does not depend on BM will be important to us

when proving Theorem 6.1.12.

Next we prove a lemma that will allow us to obtain solutions to (6.1.1) from

solutions to (6.1.2) under very general conditions.

Lemma 6.1.8. Fix m > 0. Suppose g satisfies part (1) of Assumption 6.1.1, let g̃

be defined as in part (2) of Assumption 6.1.1, and let gn be defined by (6.1.3). Let

un → u a.e. in Bm, where u, un are cap1,p,N− quasi-continuous in RN . Assume also
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that Tk(un)→ Tk(u) weakly in W 1,p
0 (Bm) for any k > 0. Define

δt(n, h) =

∫
Bm∩{|un|≥h}∩{xN=t}

g̃(|un|)(x′, t)dx′

and

δ(h) =

∫
Bm∩{|u|≥h}∩{xN=0}

g̃(|u|)(x′, 0)dx′.

If δt(n, h)→ 0 and δ(h)→ 0 as h→∞, uniformly in t and n, then

lim
n→∞

∫
Bm

φngn(x, un)dx =

∫
Bm∩∂RN+

φg(u)dx′

whenever {φn}n is a bounded subset of L∞ (Bm) such that φn → φ both a.e. in Bm

and weakly in W 1,p
0 (Bm). Here φ is identified with its cap1,p,N− quasi-continuous

representative in RN .

Proof. We first note that φ ∈ L∞ (Bm). Now, for any n and k we write Ek
n =

{|un| < k} and Ek = {|u| < k}. We note that

∫
Bm

|φn| |gn(x, un)− gn(x, Tk(un))| dx =

∫
(Ekn)

c
|φn| ζn(xN) |g(un)− g(Tk(un))| dx

and since sup[−k,k] |g(s)| = g̃(k) we estimate

∫
(Ekn)

c
|φn| ζn(xN) |g(un)− g(Tk(un))| dx ≤ 2 ‖φn‖∞

∫
(Ekn)

c
ζn(xN)g̃(|un|)dx

where we have used that |Tk(un)| = k ≤ |un| in
(
Ek
n

)c
. For all n we can estimate

∫
(Ekn)

c
ζn(xN)g̃(|un|)dx ≤

∫
R
ζn(t)

[∫
(Ekn)c∩{xN=t}

g̃(|un|)(x′, t)dx′
]
dt

=

∫
R
ζn(t)δt(n, k)dt ≤ ‖ζn‖1 ‖δt(n, k)‖∞ ,

73



and since δt(n, k)→ 0 uniformly we conclude

∫
(Ekn)

c
ζn(xN)g̃(|un|)dx→ 0

as k →∞ uniformly in n. In a similar way we can write Γ = Bm∩∂RN
+ and estimate

∫
Γ

|φ| |g(u)− g(Tk(u))| dx′ =
∫

Γ∩(Ek)
c
|φ| |g(u)− g(Tk(u))| ≤ 2 ‖φ‖∞ δ(k)→ 0

as k →∞. Thus, collecting the above estimates we have

∣∣∣∣∫
Bm

gn(x, un)φndx−
∫

Γ

g(u)φdx′
∣∣∣∣

≤ wn(k) + w(k) +

∣∣∣∣∫
Bm

gn(x, Tk(un))φndx−
∫

Γ

g(Tk(u))φdx′
∣∣∣∣ (6.1.4)

for some functions w(k) and wn(k) such that w(k) → 0 and wn(k) → 0 as k → ∞

uniformly in n. Note that we have used that ‖φn‖∞ are uniformly bounded.

Fix now any ε > 0 and let g0 ∈ C1 (R) be such that sups∈[−k,k] |g0(s)− g(s)| ≤ ε.

Then∣∣∣∣∫
Bm

φnζn(xN)g(Tk(un))dx−
∫
Bm

φnζn(xN)g0(Tk(un))dx

∣∣∣∣ ≤ ‖φn‖∞C(m,N)ε

and ∣∣∣∣∫
Bm

φζn(xN)g(Tk(u))dx−
∫
Bm

φζn(xN)g0(Tk(u))dx

∣∣∣∣ ≤ ‖φ‖∞C(m,N)ε.

On the other hand, since g0 ∈ C1 (R) has bounded derivative in [−k, k] we see that

g(Tk(u)) and g(Tk(un)) belong to W 1,p
0 (Bm)∩L∞ (Bm). It is easy to show, by using

density of C∞ (Bm) in W 1,p (Bm) ∩ Lp′ (Bm), that

∫
Bm

Ψ1∂NΨ2dx = −
∫
Bm

Ψ2∂NΨ1dx
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for any pair of functions Ψ1 ∈ W 1,p
0 (Bm)∩L∞ (Bm) and Ψ2 ∈ W 1,p (Bm)∩L∞ (Bm).

We also observe that

ζn(t) =
1

π
∂t arctan(nt)

and let

τn(x) :=
1

π
arctan(nxN).

Then, using that ζn is smooth, we can write

∫
Bm

ζn(xN) (φng0(Tk(un))dx− φg0(Tk(u))) dx = −(A)− (B),

where

(A) =

∫
Bm

τn [(∂Nφn)g0(Tk(un))− (∂Nφ)g0(Tk(u))] dx

and

(B) =

∫
Bm

τn [φng
′
0(Tk(un))∂NTk(un)− φg′0(Tk(u))∂NTk(u)] dx.

Note that τn(t) → 1
2

(
t
|t|

)
=: τ(t) and g0(Tk(un)) → g0(Tk(u)) strongly in Lr (Bm)

for any 1 ≤ r < ∞ since τn, g0(Tk(un)), τ , and g0(Tk(u)) are uniformly bounded

in L∞ (Bm). Similarly τng0(Tk(un)) → τg0(Tk(u)) strongly in Lp
′
(Bm). Thus, since

(∂Nφ)g0(Tk(u)) ∈ Lp (Bm) and ∂Nφn → ∂Nφ weakly in Lp (Bm) we conclude

(A)→ 0

as n → ∞ for any fixed k > 0. Recall that φn → φ a.e. in Bm. Since φn, φ,

g′0(Tk(un)), and g′0(Tk(u)) are uniformly bounded in L∞ (Bm), we conclude as above

that τnφng
′
0(Tk(un))→ τφg′0(Tk(u)) strongly in Lp

′
(Bm). Since ∂NTk(un)→ ∂NTk(u)

weakly in Lp (Bm) we conclude

(B)→ 0
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as n→∞ for any fixed k > 0. Collecting the above we can rewrite (6.1.4) as

∣∣∣∣∫
Bm

gn(x, un)φndx−
∫

Γ

g(u)φdx′
∣∣∣∣ ≤ wn(k) + w(k) + wk,ε(n)

+ εC(m,N) (‖φn‖∞ + ‖φ‖∞) +

∣∣∣∣∫
Bm

gn(x, Tk(u))φdx−
∫

Γ

g(Tk(u))φdx′
∣∣∣∣ (6.1.5)

for any ε > 0, where wk,ε(n) is a function such that wk,ε(n) → 0 as n → ∞ for any

k > 0 and ε > 0 fixed.

To continue we observe that since both φ and u are cap1,p,N− quasi-continuous

in RN , given ε > 0 we can find a closed set Ω0 such that u, φ ∈ C (Ω0) and

cap1,p,N (Ωc
0) < ε. Then, g(Tk(u)) and φ are uniformly continuous and bounded

in Ω = Ω0 ∩Bm, and we can find t0 small enough so that

|φ(x′, xN)g(Tk(u))(x′, xN)− φ(x′, 0)g(Tk(u))(x′, 0)| < ε

for any (x′, xN) ∈ Ω ∩ {|xN | ≤ t0}. We can also assume t0 is such that

∣∣((Γ× R) \Bm

)
∩ {xN = t}

∣∣ < ε

for all |t| ≤ t0. Note that
∥∥χ{|t|>t0}ζn∥∥L1 → 0 as n → ∞ for any t0 > 0. Then, we

write

∣∣∣∣∫
Bm

φgn(x, Tk(u))dx−
∫

Γ

φg(Tk(u))dx′
∣∣∣∣ =∣∣∣∣∫

Bm

φgn(x, Tk(u))dx−
∫

Γ×R
ζn(xN) (φg(Tk(u))) (x′, 0)dx

∣∣∣∣
≤
∫

Γ×R
ζn(xN) |φ(x′, xN)g(Tk(u))(x′, xN)− φ(x′, 0)g(Tk(u))(x′, 0)| dx,
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and estimate

∫
Γ×R∩(Ω∩{|xN |≤t0})

ζn(xN) |φ(x′, xN)g(Tk(u))(x′, xN)− φ(x′, 0)g(Tk(u))(x′, 0)| dx ≤

εC(m,N)

and

∫
Γ×R∩({|xN |>t0})

ζn(xN) |φ(x′, xN)g(Tk(u))(x′, xN)− φ(x′, 0)g(Tk(u))(x′, 0)| dx ≤

‖φ‖∞ g̃(k)
∥∥χ{|xN |>t0}ζn∥∥L1 .

In view of Lemma 6.1.5 we also have

∫
Γ×R∩(Ωc∩{|xN |≤t0})

ζn(xN) |φ(x′, xN)g(Tk(u))(x′, xN)− φ(x′, 0)g(Tk(u))(x′, 0)| dx

≤ ‖φ‖∞ g̃(k)

∫ t0

−t0
ζ(t)

[
|Ωc

0 ∩ {xN = t}|+
∣∣((Γ× R) \Bm

)
∩ {xN = t}

∣∣] dt
≤
(
ε

1
pC(m,N, p) + ε

)
‖φ‖∞ g̃(k).

Note that we have used that ‖φ(x′, 0)‖∞ ≤ ‖φ‖∞ (see Proposition 2.4.5). Considering

the above estimates we obtain from (6.1.5) that

∣∣∣∣∫
Bm

gn(x, un)φndx−
∫

Γ

g(u)φdx′
∣∣∣∣ ≤ wn(k) + w(k) + w̃k,ε(n)

+ ε
1
pC (m,N, p, g̃(k), ‖φ‖∞ , ‖φn‖∞) (6.1.6)

for any 0 < ε < 1, where w̃k,ε(n) is a function such that w̃k,ε(n) → 0 as n → ∞ for

any fixed k > 0 and ε > 0. Thus, taking k large enough and then choosing ε small
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enough, we see that for any δ > 0∣∣∣∣∫
Bm

gn(x, un)φndx−
∫

Γ

g(u)φdx′
∣∣∣∣ ≤ δ

for all n large enough. Hence, the result follows.

When gn(x, un)→ g(u) in L1 (Bm), renormalized solutions to−∆pun+gn(x, un) =

µ̄ converge to a solution of −∆pu + g(u) = µ̄ by the stability result of [9] or [17].

Since in our case the convergence is not quite in L1 we cannot simply use the same

result. To pass to the limit, we use the following stability result.

Lemma 6.1.9. Fix m > 0. Let un be renormalized solutions of−∆pun + gn(x, un) = µ̄ in Bm

un = 0 on ∂Bm

where µ̄ ∈Mb (Bm), gn(x, s) is defined by (6.1.3), and g satisfies Assumption 6.1.1.

Suppose un → u, ∇Tk(un) → ∇Tk(u), and ∇un → ∇u a.e. in Bm where u satisfies

condition (1) and (2) of Definition 3.1.2 and is cap1,p,N − q.e. finite. Assume also

that

|∇un|p−2∇un → |∇u|p−2∇u strongly in (Lq (Bm))N for any 1 ≤ q <
N

N − 1
,

Tk(un)→ Tk(u) weakly in W 1,p
0 (Bm) ,

and

lim
n→∞

∫
Bm

φngn(x, un)dx =

∫
Bm∩∂RN+

φg(u)dx′ (6.1.7)

whenever {φn}n is a bounded subset of L∞ (Bm) such that φn → φ both a.e. in Bm

and weakly in W 1,p
0 (Bm). If g(u) ∈ L1

(
Bm ∩ ∂RN

+

)
then u is a renormalized solution
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of −∆pu+ g(u)H = µ̄ in Bm

u = 0 on ∂Bm.

Moreover, Tk(un)→ Tk(u) strongly in W 1,p
0 (Bm) for any k > 0.

Proof. Note that since properties (1) and (2) of Definition 3.1.2 hold, to prove that

u is a renormalized solution of the above equation it is enough to show that (3) also

holds. Since we essentially repeat, with a few modifications and simplifications, the

argument used to pass to the limit in the proof of Theorem 4.1 in [17] we only point

out the main ideas (see also the proof of Lemma 4.2.1).

Before we begin, note that by choosing φn = φ we have

lim
n→∞

∫
Bm

φgn(x, un)dx =

∫
Bm∩∂RN+

φg(u)dx′

for all φ ∈ W 1,p
0 (Bm) ∩ L∞ (Bm).

Now, by Theorem 2.2.1 µ̄0 = f − div h in D′ (Bm) for some f ∈ L1 (Bm) and

h ∈
(
Lp
′
(Bm)

)N
. Using Lemma 3.1 of [17] we obtain a set U ⊂ (0,∞) with |U c| = 0

such that each un satisfies the following: for every k ∈ U there exists two measures

α+
n,k, α

−
n,k ∈M0 (Bm) supported in {un = k} and {un = −k} respectively, such that

up to a subsequence (possibly depending on n) α±n,k → µ̄±s , as k ∈ U goes to infinity,

in the weak-∗ topology of Mb (Bm), and the truncations Tk(un) satisfy

∫
{|un|<k}

(
|∇Tk(un)|p−2∇Tk(un)− h

)
· ∇vdx =∫

{|un|<k}
vfdx−

∫
{|un|<k}

vgn(x, un)dx+

∫
{un=k}

vdα+
n,k −

∫
{un=−k}

vdα−n,k (6.1.8)

for every v ∈ W 1,p
0 (Bm) ∩ L∞ (Bm).
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We consider the convergence of the above terms as n→∞. Let

E = {k ∈ R+ : |{x ∈ Bm : |u| = k}| > 0}

and write F = (E)c. Since |Bm| < ∞, E is countable and thus of null measure.

Note that χ{|un|<k} → χ{|u|<k} a.e. in Bm except possibly in {x ∈ Bm : |u| = k}, thus

χ{|un|<k} → χ{|u|<k} a.e. in Bm and weakly-∗ in L∞ (Bm) for all k ∈ F . Then, as in

Lemma 4.2.1, we can show that

∫
{|un|<k}

|∇Tk(un)|p−2∇Tk(un) · ∇φdx →
∫
{|u|<k}

|∇Tk(u)|p−2∇Tk(u) · ∇φdx

and

∫
{|un|<k}

h · ∇φdx+

∫
{|un|<k}

φfdx→
∫
{|u|<k}

h · ∇φdx+

∫
{|u|<k}

φfdx

for any φ ∈ C∞0 (Bm) and k ∈ F .

By Proposition 6.1.4 we see that for each k > 0

∫
{|un|<k}

|gn(x, un)| dx ≤ |µ̄| (Bm) .

Hence, for each k there exists a measure τk ∈Mb (Bm) such that, up to a subsequence

possibly depending on k,

∫
{|un|<k}

φgn(x, un)dx→
∫
Bm

φdτk

for any φ ∈ C∞0 (Bm). Similarly, following the argument in the proof of Theorem 4.1

in [17], we can conclude that for every n

∣∣α+
n,k

∣∣ (Bm) +
∣∣α−n,k∣∣ (Bm) ≤ C(N, p, µ̄)
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for any k > 0 in some subset V with |V c| = 0. It follows that for each k ∈ V there

exists nonnegative measures λ+
k and λ−k such that, up to a subsequence,

α±n,k → λ±k weakly-∗ in Mb (Bm) .

In particular, given φ ∈ C∞0 (Bm) we can pass to a subsequence to conclude

∫
Bm

φdα+
n,k −

∫
Bm

φdα−n,k →
∫
Bm

φdλ+
k −

∫
Bm

φdλ−k .

Then, collecting all the above, we get that for any φ ∈ C∞0 (Bm) and k ∈ K :=

F ∩ U ∩ V

∫
{|u|<k}

(
|∇Tk(u)|p−2∇Tk(u)− h

)
· ∇φdx =∫

{|u|<k}
φfdx−

∫
Bm

φτk +

∫
Bm

φdλ+
k −

∫
Bm

φdλ−k .

From the above we see that −τk +λ+
k −λ

−
k belongs to W−1,p′ (Bm) +L1 (Bm) and so

∫
{|u|<k}

(
|∇Tk(u)|p−2∇Tk(u)− h

)
· ∇φdx =∫
{|u|<k}

φfdx+

∫
Bm

φd
(
−τk + λ+

k − λ
−
k

)
(6.1.9)

for any φ ∈ W 1,p
0 (Bm) ∩ L∞ (Bm) and k ∈ K.

Since u is cap1,p,N − q.e. finite, it follows that {x ∈ Bm : |u| > k} is quasi-open,

and we can find a sequence ωn ∈ W 1,p
(
RN
)

such that 0 ≤ ωn ≤ χ{|u|>k} and

ωn ↑ χ{|u|>k} cap1,p,N − q.e. in RN . For any φ ∈ C∞0 (Bm) we can put φωn as test

function in (6.1.9) and conclude

∫
Bm

φωnd
(
−τk + λ+

k − λ
−
k

)
= 0
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for any k ∈ K. Taking n→∞ we conclude that for any k ∈ K

(
−τk + λ+

k − λ
−
k

)∣∣
{|u|>k} = 0.

Letting now ωn be a sequence in W 1,p
(
RN
)

such that 0 ≤ ωn ≤ χ{|u|<k} and

ωn ↑ χ{|u|<k} cap1,p,N − q.e., we put φωn as test function in (6.1.9) with both k and

h > k in K and take n → ∞ to conclude, as in the proof of Theorem 4.1 in [17],

that there exists a measure ν0 ∈M0 (Bm) such that

ν0|{|u|<k} =
(
−τh + λ+

h − λ
−
h

)∣∣
{|u|<k}

for any h ≥ k in K. Hence, defining

ν+
k =

(
−τk + λ+

k − λ
−
k

)∣∣
{u=k} , ν

−
k = −

(
−τk + λ+

k − λ
−
k

)∣∣
{u=−k}

we can rewrite (6.1.9) as

∫
{|u|<k}

(
|∇Tk(u)|p−2∇Tk(u)− h

)
· ∇φdx =∫

{|u|<k}
φfdx+

∫
{|u|<k}

φdν0 +

∫
{u=k}

φdν+
k −

∫
{u=−k}

φdν−k (6.1.10)

for any φ ∈ W 1,p
0 (Bm) ∩ L∞ (Bm) and k ∈ K.

Proceeding as in the proof of Lemma 4.2.1, we can use (6.1.7) to show that

ν0 ≡ −g(u)H, and that, up to a sequence kj ∈ K going to infinity, ν±kj → µ̄±s

weakly-∗ in Mb (Bm). In particular, we can rewrite (6.1.10) as

∫
{|u|<k}

(
|∇Tk(u)|p−2∇Tk(u)− h

)
· ∇φdx =∫

{|u|<k}
φfdx−

∫
{|u|<k}∩∂RN+

φg(u)dx′ +

∫
{u=k}

φdν+
k −

∫
{u=−k}

φdν−k (6.1.11)
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for any φ ∈ W 1,p
0 (Bm) ∩ L∞ (Bm) and k ∈ K. At this point, the fact that u is

a renormalized solution of the desired equation follows exactly as in the proof of

Theorem 4.1 of [17].

To finish the proof of our lemma, we observe that on one hand we have

∫
Bm

|∇Tk(u)|p dx =

∫
Bm

Tk(u)dµ̄0 −
∫
Bm∩∂RN+

Tk(u)g(u)dx′ +

∫
Bm

kdµ̄+
s +

∫
Bm

kdµ̄−s ,

while on the other

∫
Bm

|∇Tk(un)|p dx =

∫
Bm

Tk(un)dµ̄0−
∫
Bm

Tk(un)gn(x, un)dx+

∫
Bm

kdµ̄+
s +

∫
Bm

kdµ̄−s .

Comparing the above identities we have

∫
Bm

|∇Tk(u)|p dx−
∫
Bm

|∇Tk(un)|p dx =∫
Bm

Tk(u)dµ̄0 −
∫
Bm

Tk(un)dµ̄0 +

∫
Bm

Tk(un)gn(x, un)dx−
∫
Bm∩∂RN+

Tk(u)g(u)dx′.

Writing again µ̄0 = f − div h for some f ∈ L1 (Bm) and h ∈
(
Lp
′
(Bm)

)N
, we use

that Tk(un)→ Tk(u) weakly in W 1,p
0 (Bm) and weakly-∗ in L∞ (Bm) to obtain

∫
Bm

Tk(u)dµ̄0 →
∫
Bm

Tk(un)dµ̄0

as n→∞. Similarly, by (6.1.7)

∫
Bm

Tk(un)gn(x, un)dx→
∫
Bm∩∂RN+

Tk(u)g(u)dx′

as n→∞, and so

‖∇Tk(un)‖Lp → ‖∇Tk(u)‖Lp

as n → ∞. As in the proof of Lemma 4.2.1, we conclude from the above that
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|∇Tk(un)|p → |∇Tk(u)|p strongly in L1 (Bm), and then, by Vitalli’s Theorem, that

∇Tk(un)→ ∇Tk(u) strongly in (Lp (Bm))N . Hence the claim follows.

The following lemma, similar to Lemma 6.1.8, gives a useful sufficient condition

under which (4.2.1) holds. It will be used to obtain stability of local solutions

throughout the sequel.

Lemma 6.1.10. Let um and u be cap1,p,N− quasi-continuous functions such that

um → u a.e. in RN and Tk(um) → Tk(u) weakly in W 1,p (BM) for any fixed k > 0

and M ∈ N. Suppose g satisfies part (1) of Assumption 6.1.1 and let g̃ be defined as

in part (2) of Assumption 6.1.1. For any fixed M ∈ N we define

ρm(h) =

∫
BM∩{|um|≥h}∩∂RN+

g̃(|um|)(x′)dx′

and

ρ(h) =

∫
BM∩{|u|≥h}∩∂RN+

g̃(|u|)(x′)dx′.

If ρm(h)→ 0 and ρ(h)→ 0 as h→∞, uniformly in m, then

lim
m→∞

∫
BM∩∂RN+

φmg(um)dx′ =

∫
BM∩∂RN+

φg(u)dx′

for any sequence {φm}m converging to φ both a.e. in BM and weakly in W 1,p
0 (BM)

and such that φm is uniformly bounded in L∞ (BM).

Proof. We follow very closely the ideas in the proof of Lemma 6.1.8 and so we omit

some details.

As in Lemma 6.1.8, we use the assumptions on ρm and ρ to obtain that

∣∣∣∣∫
ΓM

φmg(um)dx′ −
∫

ΓM

φg(u)dx′
∣∣∣∣ ≤ ωm(k)+∣∣∣∣∫

ΓM

φmg(Tk(um))dx′ −
∫

ΓM

φg(Tk(u))dx′
∣∣∣∣
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for some ωm(k) such that ωm(k) → 0 as k → ∞ uniformly on m, and where ΓM =

BM ∩ ∂RN
+ . For any n we let ζn be the functions defined in (6.1.3). Hence,

∫
ΓM

φmg(Tk(um))dx′ −
∫

ΓM

φg(Tk(u))dx′ =∫
ΓM×R

ζn(xN) (φmg(Tk(um))− φg(Tk(u))) (x′, 0)dx.

To continue we observe that since φm, φ, g(Tk(um)) and g(Tk(u)) are cap1,p,N−

quasi-continuous in RN , given ε > 0 we can find a closed set Ω0 such that all of them

belong to C (Ω0) and cap1,p,N (Ωc
0) < ε. Then, all of them are uniformly continuous

in Ω = Ω0 ∩ BM , and since they are also uniformly bounded, for any fixed m and

ε > 0 we can find t0 small enough so that

|φm(x′, xN)g(Tk(um))(x′, xN)− φm(x′, 0)g(Tk(um))(x′, 0)| < ε

and

|φ(x′, xN)g(Tk(u))(x′, xN)− φ(x′, 0)g(Tk(u))(x′, 0)| < ε

for any (x′, xN) ∈ Ω ∩ {|xN | ≤ t0}. We also assume t0 is such that

∣∣((ΓM × R) \BM

)
∩ {xN = t}

∣∣ < ε

for all |t| ≤ t0. Then, by decomposing ΓM × R as

[ΓM × R ∩ (Ω ∩ {|xN | ≤ t0})] ∪ [ΓM × R ∩ ({|xN | > t0})]

∪ [ΓM × R ∩ (Ωc ∩ {|xN | ≤ t0})] ,
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we see that

∣∣∣∣∫
ΓM×R

ζn(xN) (φmg(Tk(um))− φg(Tk(u))) (x′, 0)dx

∣∣∣∣ ≤ w̃k,m,ε(n)

+ ε
1
pC (M,N, p, g̃(k), ‖φ‖∞ , ‖φm‖∞)

+

∣∣∣∣∫
BM

ζn(xN) (φmg(Tk(um))− φg(Tk(u))) (x′, xN)dx

∣∣∣∣ ,
for any ε > 0, where w̃k,m,ε(n) is a function such that w̃k,m,ε(n)→ 0 as n→∞ for any

fixed ε > 0, m ∈ N and k > 0. Since all the functions involved are uniformly bounded,

we may approximate g with a g0 ∈ C1 ([−k, k]) such that sup[−k,k] |g − g0| < ε, and

upon integrating by parts, obtain

∫
BM

ζn(xN) (φmg0(Tk(um))− φg0(Tk(u))) (x′, xN)dx =

−
∫
BM

τn(xN) ((∂Nφm) g0(Tk(um))− (∂Nφ) g0(Tk(u))) dx

−
∫
BM

τn(xN) (φm∂N (g0(Tk(um)))− φ∂N (g0(Tk(u)))) dx.

Let us consider the first integral in the right hand side of the above identity. Recall

that τn(t) → τ(t) = 1
2
t
|t| strongly in Ls (R) for any 1 ≤ s < ∞. Since ∂Nφm is

uniformly bounded in Lp (BM) and Tk(um) is uniformly bounded in L∞ (BM) we

obtain that

∫
BM

τn(xN) ((∂Nφm) g0(Tk(um))− (∂Nφ) g0(Tk(u))) dx

→
∫
BM

τ(xN) ((∂Nφm) g0(Tk(um))− (∂Nφ) g0(Tk(u))) dx

as n→∞ uniformly in m. On the other hand, as in Lemma 6.1.8,

∫
BM

τ(xN) ((∂Nφm) g0(Tk(um))− (∂Nφ) g0(Tk(u))) dx→ 0
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as m→∞. A similar reasoning applies to the second integral. Hence, we may write

∫
BM

ζn(xN) (φmg0(Tk(um))− φg0(Tk(u))) (x′, xN)dx = wk,m,ε(n) + wk,ε(m)

for some functions wk,m,ε(n) and wk,ε(m) such that wm,k,ε(n) → 0 as n → ∞, uni-

formly on m, and wk,ε(m)→ 0 as m→∞, for any fixed k > 0 and 1 > ε > 0. Thus,

collecting all the above estimates, we conclude that

∣∣∣∣∫
ΓM

φmg(um)dx′ −
∫

ΓM

φg(u)dx′
∣∣∣∣ ≤ ωm(k) + w̃k,m,ε(n)

+ ε
1
pC (M,N, p, g̃(k), ‖φ‖∞ , ‖φm‖∞) + wk,m,ε(n) + wk,ε(m).

Hence, we obtain

lim
m→∞

∫
ΓM

φmg(um)dx′ =

∫
ΓM

φg(u)dx′

as desired.

We are now ready to prove the existence of renormalized solutions to (1.0.1) in

the subcritical case. We treat the cases 1 < p < N and p = N separately for clarity

of exposition.

Theorem 6.1.11. Let 1 < p < N and µ ∈ Mb

(
∂RN

+

)
. Suppose g(s) satisfies

Assumption 6.1.1. Then there exists a renormalized solution of−∆pu = 0 in RN
+

|∇u|p−2 uν + g(u) = µ on ∂RN
+ .

Proof. Let gn(x, s) be defined by (6.1.3) and fix m ∈ N. By Theorem 5.1.2 of [25]
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for any n ∈ N there exists a renormalized solution of−∆pu
n
m + 2gn(x, unm) = 2µm in Bm

unm = 0 on ∂Bm,

where µm is the restriction of µ to Bm. By Proposition 6.1.4 we have

∫
Bm

|gn(x, unm)| dx ≤ |µm| (Bm) . (6.1.12)

By writing

µ̃nm = µm − gn(x, unm)

we see that unm is a renormalized solution to −∆pu
n
m = 2µ̃nm in Bm. Since

|µ̃nm| (Bm) ≤ 2 |µ|
(
RN
)
<∞

we can apply Theorem 3.1.7 to obtain that, passing to subsequences, unm → um a.e.

in Bm as n→∞ for suitable behaved functions um. Note that each unm, and also um,

have cap1,p,N− quasi-continuous representatives that are finite cap1,p,N − q.e. in Bm

(see Remark 3.1.5 and 3.1.8) which implies that they have well defined cap1− 1
p
,p,N−1−

quasi-continuous traces. By the same theorem, since each unm satisfies the estimate

∫
Bm

|∇Tk(unm)| dx ≤ 2k |µ̃nm| (Bm) ≤ 4k |µ|
(
RN
)

so does the functions um.

Now we consider the convergence of gn(x, unm) for fixed m ∈ N. We fix |t| < m

and for any n and h we write Eh
n = {|unm| < h} and Eh = {|um| < h}. Define

σ(s) = |{x ∈ Bm ∩ {xN = t} : |unm| > s}|. Proceeding as in Remark 3.2.5 we see

88



that

∫
Bm∩(Ehn)c∩{xN=t}

|g(unm)| (x′, t)dx′ ≤
∫ ∞

0

∣∣Bm ∩ (Eh
n)c ∩ {xN = t} ∩ (Es

n)c
∣∣ dg̃(s)

= σ(h)g̃(h) +

∫ ∞
h

σ(s)dg̃(s).

By Lemma 6.1.6

σ(h)g̃(h) +

∫ ∞
h

σ(s)dg̃(s) ≤

C(N, p,m) ‖µm‖
N−1
N−p
Mb

[
h−

(N−1)(p−1)
N−p g̃(h) +

∫ ∞
h

s−
(N−1)(p−1)

N−p dg̃(s)

]

while integration by parts gives

h−
(N−1)(p−1)

N−p g̃(h) +

∫ ∞
h

s−
(N−1)(p−1)

N−p dg̃(s) =

lim
s→∞

[
s−

(N−1)(p−1)
N−p g̃(s)

]
+

(N − 1)(p− 1)

N − p

∫ ∞
h

g̃(s)s−
p(N−2)+1
N−p ds.

Note that by Assumption 6.1.1

lim
s→∞

s−
(N−1)(p−1)

N−p g̃(s) ≤ (N − 1)(p− 1)

N − p
lim
s→∞

∫ ∞
s

g̃(t)t−
p(N−2)+1
N−p dt = 0

and so we obtain

∫
Bm∩(Ehn)c∩{xN=t}

|g(unm)| (x′, t)dx′ ≤ C(N, p,m) ‖µm‖
N−1
N−p
Mb

∫ ∞
h

g̃(s)s−
p(N−2)+1
N−p ds

→ 0
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as h→∞, uniformly in t and n. Using the same argument we can show

∫
∂RN+∩Bm∩(Eh)c

|g(um)| dx′ ≤ C(N,m, p) ‖µm‖
N−1
N−p
Mb

∫ ∞
h

g̃(s)s−
p(N−2)+1
N−p ds

→ 0

as h→∞. Note also that

∫
Bm∩∂RN+

|g(um)| dx′ ≤ g̃(1)
∣∣Bm ∩ ∂RN

+

∣∣+ C(N, p,m, µm)

∫ ∞
1

g̃(s)s−
p(N−2)+1
N−p ds <∞

so in particular g(um) ∈ L1
(
Bm ∩ ∂RN

+

)
.

By the above considerations, we see that we can combine Lemma 6.1.8 and

Lemma 6.1.9 to obtain that um is a renormalized solution of−∆pum = 2µm − 2g(um)H in Bm

um = 0 on ∂Bm.

Moreover, since we have (6.1.12) and

lim
n→∞

∫
Bm

φgn(x, unm)dx =

∫
Bm∩∂RN+

φg(um)dx′

for any φ ∈ C∞0 (Bm) we get

∫
Bm∩∂RN+

|g(um)| dx′ ≤ |µm| (Bm) ≤ |µ|
(
RN

+

)
<∞.

Thus, we can apply Lemma 4.1.1 with data 2µm − 2g(um)H to obtain a suitable

limit function u such that um → u a.e. in RN . Note that the above estimate says

that ‖g(um)‖L1(Bm∩∂RN+) is uniformly bounded.

Now we obtain estimates on the level sets of um(x′, 0) and u(x′, 0). Fix anyM > 0.

Since um satisfies estimate (3.1.3) and ‖µm − g(um)H‖Mb
is uniformly bounded, we
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can find k0(M,N, p, µ) independent of m such that∣∣∣∣{|um| > k

2

}∣∣∣∣ ≤ 1

4
|BM |

for all k ≥ k0. Let ck,m,M = (Tk(um))M be the average of Tk(um) in BM . Then we

estimate

|ck,m,M | ≤
1

|BM |

(∫
BM∩{|um|≤k/2}

|Tk(um)| dx+

∫
BM∩{|um|>k/2}

|Tk(um)| dx
)
≤

k

2
+
k

4
=

3

4
k

for all k ≥ k0. As in the proof of Lemma 6.1.6, replacing Poincaré’s inequality with

Poincaré-Wirtinger’s inequality, we obtain

‖Tk(um)− ck,m,M‖Lq(BM∩∂RN+) ≤ C(N, p,BM)
(
k ‖µ‖Mb

) 1
p

with q = p(N−1)
N−p . Since for all k ≥ k0 we have the inclusions

{|um| ≥ k} = {|Tk(um)| ≥ k} ⊂ {|Tk(um)− ck,m,M | ≥ k − |ck,m,M |}

⊂
{
|Tk(um)− ck,m,M | ≥

k

4

}
,

we similarly deduce

∣∣{|um| ≥ k} ∩BM ∩ ∂RN
+

∣∣ ≤ C(N, p,BM , ‖µ‖Mb
)k−

(p−1)(N−1)
N−p .

In a similar way, by Fatou’s Lemma, u satisfies estimate (3.1.2) in BM , while if

ck,M = (Tk(u))M is the average of Tk(u) in BM then, by Lebesgue’s Dominated

Convergence Theorem, |ck,M | ≤ 3
4
k (see also the proof of Lemma 4.1.1). Thus, we
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also have

∣∣{|u| ≥ k} ∩BM ∩ ∂RN
+

∣∣ ≤ C(N, p,BM , ‖µ‖Mb
)k−

(p−1)(N−1)
N−p .

Now we are ready to finish. As above, using the assumptions on g̃ we have

∫
{|um|≥k}∩∂RN+∩BM

g̃(|um|)dx′ → 0

as k →∞, uniformly on m. Similarly

∫
{|u|≥k}∩∂RN+∩BM

g̃(|u|)dx′ → 0

as k → ∞. Then, we can apply Lemma 6.1.10 to obtain condition (4.2.1) (with

gm = g(um) and g = g(u)). Note that from the estimate ‖g(um)‖L1(BM∩∂RN+) ≤ ‖µ‖Mb

and (4.2.1) we conclude that ‖g(u)‖L1(∂RN+) ≤ ‖µ‖Mb
. Then, Lemma 4.2.1 implies

that u is a local renormalized solution of

−∆pu = 2µ− 2g(u)H in RN .

Since the measures 2µm−2g(um)H are supported in ∂RN
+ , we apply Theorem 5.1.1 to

obtain that um, and thus u, are symmetric with respect to ∂RN
+ . Hence, by Theorem

5.2.1 the restriction of u to RN
+ is a solution to the problem.

Now we consider the case p = N .

Theorem 6.1.12. Let p = N and µ ∈ Mb

(
∂RN

+

)
. Suppose g(s) satisfies Assump-

tion 6.1.1 with some γ > 0. There exists a constant C(N) such that if ‖µ‖Mb
≤

C(N)γ1−N then there exists a renormalized solution of

−∆Nu = 0 in RN
+

|∇u|N−2 uν + g(u) = µ on ∂RN
+ .
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Proof. We repeat the ideas used in the proof of Theorem 6.1.11, so we only point

out the main differences.

As before, the first step is obtaining solutions unm to

−∆Nu
n
m + 2gn(x, unm) = 2µm in Bm

unm = 0 on ∂Bm.

This could be achieved by using Theorem 5.1.2 of [25], which guarantees the existence

of a solution to −∆Nu+ gn(x, u) = µ in Bm

u = 0 on ∂Bm

(6.1.13)

provided that ‖µ‖Mb
is bounded by

(
C0

Nγ

)N−1

, where C0 = C0(Bm) is a constant that

may depend on the domain Bm. Note that, since we intend to take m to infinity, this

could be troublesome for us. Indeed, if C0(Bm) happens to vanish as m → ∞ then

requiring that the bound holds for all m would lead to the conclusion that µ ≡ 0.

Let us see that we can work around this problem.

A look at the proof of Theorem 5.1.2 of [25] shows that the constant C0 is exactly

the constant in the estimate

|{x ∈ Bm : |uε| > k}| ≤ C(N,Bm)e
−C0k‖µ‖

1
1−N
Mb

which holds for solutions uε to problem (6.1.13) with µ replaced by a regular-

ized µε. Since any such solution satisfies Tk(uε) ∈ W 1,N
0 (Bm) and ‖∇Tk(uε)‖N ≤(

Ck ‖µ‖Mb

) 1
N we have, as noted in Remark 6.1.7, that we can use the results of [6]

to replace the above estimate with

|{x ∈ Bm : |uε| > k}| ≤ C(N,Bm)e
−c1(N)k‖µ‖

1
1−N
Mb
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for some c1(N) independent of Bm. Hence, by applying the same argument as in

[25], but with the above estimate, it is easy to see that in fact a solution unm exists

if we assume ‖2µm‖Mb
≤
(
c1
Nγ

)N−1

.

Next, as in the case 1 < p < N , we obtain a limit function um which we claim is

a renormalized solution of−∆Num + 2g(um)H = 2µm in Bm

um = 0 on ∂Bm.

The proof of this claim is as before: by using that

∫ ∞
h

g̃(s)e−γNsds→ 0

as h → ∞, we can apply Lemmas 6.1.6, 6.1.8 and 6.1.9 to show that um solves the

above equation.

In the final step, we similarly obtain a limit function u which yields a renormalized

solution to −∆Nu = 0 in RN
+

|∇u|N−2 uν + g(u) = µ on ∂RN
+

provided we can show (4.2.1) holds. By Lemma 6.1.10, it is enough to obtain

∫
{|um|≥k}∩∂RN+∩BM

g̃(|um|)dx′ → 0

and ∫
{|u|≥k}∩∂RN+∩BM

g̃(|u|)dx′ → 0

as k →∞, uniformly on m.

As in the case 1 < p < N we want to estimate the averages of the solutions and

proceed as in the proof of Lemma 6.1.6. Let us first observe that by the results of [11]
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the solutions um belong the Lorentz-Sobolev space W 1LN,∞ (Bm), i.e., the space of

weakly differentiable functions inBm such that (the absolute value of) their derivative

belongs to the Lorentz space LN,∞ (Bm) (note that in the case p = N renormalized

solutions have well defined L1
loc derivatives; see Remark 3.3.5). Moreover, one has

‖∇um‖LN,∞(Bm) ≤ C(N) ‖2µm‖
1

N−1

Mb
≤ C(N) ‖2µ‖

1
N−1

Mb

and so

‖um‖BMO(BM ) ≤ C(N,BM) ‖2µ‖
1

N−1

Mb

for any m ≥ M (see also [7]). Here BMO (BM) is the space of LN (BM) functions

of bounded mean oscillation (see [11] for a definition of BMO). On the other hand,

by Theorem 2.5 of [6], we can assert

∫
BM∩∂RN+

e
C1

|um−(um)M |
‖∇um‖LN,∞(Bm) dx′ ≤ C(BM , N)

for some constant C1(N) and where (um)M is the average of um in BM . Hence, just

as in Lemma 6.1.6, we obtain

∣∣{x ∈ BM ∩ ∂RN
+ : |um − (um)M | > k

}∣∣ ≤ C(N,BM)e
−C1k‖∇um‖−1

LN,∞(BM )

≤ C(N,BM)e
−c2k‖2µ‖

1
1−N
Mb

with c2 = c2(N). Since

{|um| ≥ k} ⊂ {|um − (um)M | ≥ k − |(um)M |} ,
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we then get

∣∣{x ∈ BM ∩ ∂RN
+ : |um| > k

}∣∣ ≤ C(N,BM)e
−c2(k−|(um)M |)‖2µ‖

1
1−N
Mb

≤ C(N,BM , µ)e
−c2k‖2µ‖

1
1−N
Mb

where we have used that |(um)M | ≤ C(N) ‖um‖BMO(BM ). Thus we have

∫
BM∩{|um|≥k}∩∂RN+

g̃(|um|)dx′ ≤ C(N,BM , µ)

∫ ∞
k

g̃(s)e
−c2s‖2µ‖

1
1−N
Mb ds

which vanishes as k →∞ provided ‖2µ‖Mb
≤
(
c2
Nγ

)N−1

(note that the above inequal-

ity can be obtained by the same argument as the one used in the case 1 < p < N).

We now obtain the same estimate for u. We note that ‖∇um‖LN,∞(BM ) ≤ C

implies, by definition, that

|{|∇um| > λ}| ≤ Cλ−N

for all λ > 0 (see [19]). Since ∇um → ∇u a.e. in BM , by Fatou’s Lemma we obtain

that

|{|∇u| > λ}| ≤ Cλ−N

for all λ > 0 such that |{|∇u| = λ}| = 0 and so, in particular, for a.e. λ > 0. Hence,

by density, the bound can be seen to hold for all λ > 0 and, again by definition, we

obtain ‖∇u‖LN,∞(BM ) ≤ C. Thus, all the above computations remain true for u and

the desired estimate holds.

Hence, we obtain a solution to the problem provided ‖µ‖Mb
≤ 1

2

(
c
Nγ

)N−1

where

c = c(N) = min (c1(N), c2(N)) .
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Remark 6.1.13 Note that we have proven stability of solutions without using any

type of convergence of unm to um (or of um to u) in ∂RN
+ . On the other hand, it

is rather natural to expect that g(unm) → g(um) strongly in L1
(
Bm ∩ ∂RN

+

)
and

g(um)→ g(u) strongly in L1
(
∂RN

+ ∩BM

)
for any M ∈ N. Let us see that in fact we

can assume convergence in ∂RN
+ .

Indeed, by Lemma 6.1.9 we have Tk(u
n
m)→ Tk(um) strongly in W 1,p

0 (Bm). Then,

by Proposition 2.3.8 of [10], up to a subsequence, Tk(u
n
m) → Tk(um) cap1,p,N −

q.e. in Bm. By taking k ∈ N we may extract a diagonal subsequence {unjm }j from

{unm}n such that Tk(u
nj
m ) → Tk(um) cap1,p,N − q.e. in Bm as j → ∞ for any k ∈ N.

We relabel this subsequence as {unm}n. Then, since um is cap1,p,N − q.e. finite, we

conclude that unm → um cap1,p,N − q.e. in Bm. Hence, we may assume unm → um

a.e. in Bm ∩ ∂RN
+ . Moreover, using the same estimates as in the above proofs, it is

easy to show using Vitali’s Theorem that this implies g(unm) → g(um) strongly in

L1
(
Bm ∩ ∂RN

+

)
. Similarly, one can use the strong convergence of Tk(um)→ Tk(u) in

W 1,p (BM) guaranteed by Lemma 4.2.1 to show that, up to a subsequence, um → u

a.e. in ∂RN
+ and g(um)→ g(u) strongly in L1

(
∂RN

+ ∩BM

)
for any M ∈ N.

6.2 The supercritical case

We now obtain renormalized solutions to equation (1.0.1) when 1 < p < N and the

absorption term g(s) does not necessarily satisfy the growth estimates of Assumption

6.1.1. In this case we can only guarantee existence of solutions if µ belongs to a subset

of Mb

(
∂RN

+

)
which, in general, is strictly smaller.

Throughout this section we will assume that

g : R→ R is a continuous nondecreasing odd function.

Note that g satisfies part (1) of Assumption 6.1.1, and that if g̃ is the function
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defined in part (2) of Assumption 6.1.1 then g̃(s) = g(s) (s ≥ 0). Note also that

g(|s|) = |g(s)| for any s ∈ R.

As in the subcritical case, our starting point is the existence results for the prob-

lem −∆pu+ g(x, u) = µ in Ω

u = 0 on ∂Ω.

(6.2.1)

We will use the existence results obtained in [4] (see also [25]), which rest mainly

on the study of the Wolff potential of the measure µ. As it turns out, the estimates

involved are well suited to study trace problems such as ours.

We begin by defining the R-truncated Wolff potential of a nonnegative measure

µ ∈Mb

(
RN
)

by

WR
α,s,N [µ] (x) =

∫ R

0

(
µ (Bt(x))

tN−αs

) 1
s−1 dt

t

where α > 0, 1 < s < α−1N , 0 < R ≤ ∞, and Bt(x) is the N -dimensional ball of

radius t centered at x ∈ RN . If R =∞ we just write Wα,s,N [µ].

It follows immediately from the definition that if µ is supported in ∂RN
+ then

WR
1− 1

p
,p,N−1

[µ] (x′) =

∫ R

0

(
µ (Bt(x

′)× {xN = 0})
tN−1−(p−1)

) 1
p−1 dt

t
(6.2.2)

=

∫ R

0

(
µ
(
Bt(x

′, 0) ∩ ∂RN
+

)
tN−p

) 1
p−1

dt

t

= WR
1,p,N [µ] (x′, 0)

for any 1 < p < N , x′ ∈ RN−1. Moreover, we clearly have Bt(x
′, xN) ∩ ∂RN

+ ⊂

Bt(x
′, 0) ∩ ∂RN

+ and so

WR
1,p,N [µ] (x′, xN) ≤ WR

1− 1
p
,p,N−1

[µ] (x′) (6.2.3)

for any (x′, xN) ∈ RN .

98



Remark 6.2.1 Let us record the following important relationship between Wolff

potential and p− superharmonic functions: if u is a nonnegative p− superharmonic

function in Ω, 1 < p ≤ N , and −∆pu = µ in Ω then there exists positive constants

c1, c2, c3, depending only on p and N , such that for any x ∈ Ω and B3r(x) ⊂⊂ Ω

there holds

c1W
r
1,p,N [µ] (x) ≤ u(x) ≤ c2 inf

Br(x)
u+ c3W

r
1,p,N [µ] (x)

(see [14], [18] or [25]).

The following existence result is Theorem 4.1 of [4].

Theorem 6.2.2. Let Ω be a bounded domain and let g : Ω×R→ R be a Caratheodory

function such that s 7→ g(x, s) is nondecreasing and odd for a.e. x ∈ Ω. Then there

exists a constant c = c(N, p) such that the following is true: if µi ∈ Mb (Ω), i =

1, 2, are nonnegative and there exists nondecreasing sequences {µi,n}n of nonnegative

measures in Mb (Ω) with compact support in Ω converging to µi weakly and such that

g
(
cW

2diam(Ω)
1,p,N [µi,n]

)
∈ L1 (Ω) then there exists a renormalized solution of

−∆pu+ g(x, u) = µ1 − µ2 in Ω

u = 0 on ∂Ω.

Moreover,

− cW 2diam(Ω)
1,p,N [µ2] (x) ≤ u(x) ≤ cW

2diam(Ω)
1,p,N [µ1] (x) a.e. in Ω. (6.2.4)

Our first goal is to improve estimate (6.2.4) from a.e. in Ω to cap1,p,N − q.e. in Ω.

Lemma 6.2.3. Let Ω be a bounded domain and let g : Ω×R→ R be a Caratheodory

function such that s 7→ g(x, s) is nondecreasing and sg(x, s) ≥ 0 for a.e. x ∈ Ω and
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all s ∈ R. Let µ ∈Mb (Ω) and let u be a renormalized solution to

−∆pu+ g(x, u) = µ in Ω

u = 0 on ∂Ω.

Then

−cW 2diam(Ω)
1,p,N

[
µ−
]

(x) ≤ u(x) ≤ cW
2diam(Ω)
1,p,N

[
µ+
]

(x)

cap1,p,N − q.e. in Ω with c = c(N, p) as in the statement of Theorem 6.2.2.

Proof. We know that for every k ≥ 0 the functions Tk(u) = uk are renormalized

solutions to−∆puk + g(x, uk)χ{|u|<k} = µ0χ{|u|<k} + λ+
k − λ

−
k in Ω

u = 0 on ∂Ω

for some nonnegative measures λ±k ∈ Mb (Ω) that converge to µ±s in the narrow

topology of measures. Let vk be a renormalized solution to−∆pvk = µ+
0 χ{|u|<k} + λ+

k in Ω

vk = 0 on ∂Ω.

Since µ+
0 χ{|u|<k}+λ+

k is nonnegative we have vk ≥ 0 (see Remark 6.5 of [18]), and so

g(x, vk) ≥ 0 a.e. in Ω. Since uk is bounded we have g(x, vk)χ{uk>vk} ∈ L1 (Ω) and so

we can use that g(x, s) is a.e. nondecreasing on s and that all the measures involved

are in M0 (Ω) to obtain, by an easy adaptation of the proof of Lemma 6.8 of [18],

that uk ≤ vk a.e. in Ω. By Theorem 3.4 of [9], passing to a subsequence we have
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vk → v a.e. in Ω where v is a renormalized solution to−∆pv = µ+
0 + µ+

s = µ+ in Ω

v = 0 on ∂Ω.

In particular, since u is a.e. finite, u ≤ v a.e. in Ω.

Since µ+ is nonnegative, by Theorem 2.1 of [18] v coincides a.e. in Ω with a p−

superharmonic function ṽ satisfying

ṽ(x) ≤ cW
2diam(Ω)
1,p,N

[
µ+
]

(x)

in Ω where c = c(N, p) is the same constant as in Theorem 6.2.2 (see the proof

of Theorem 3.8 in [4]). Moreover, by Theorem 10.9 of [14] ṽ is cap1,p,N− quasi-

continuous in Ω. Considering the cap1,p,N− quasi-continuous representative of u,

and since u ≤ ṽ a.e. in Ω, we can conclude u ≤ ṽ cap1,p,N − q.e. in Ω (see Remark

2.4.6). Hence,

u ≤ cW
2diam(Ω)
1,p,N

[
µ+
]

(x)

cap1,p,N − q.e. in Ω. The lower estimate can be obtained similarly.

Remark 6.2.4 We note that in the second part of the above proof we have used

that the p− superharmonic representative of a nonnegative renormalized solutions

u, mentioned in Remark 3.2.4, is a cap1,p,N− quasi-continuous representative of u.

We will use this fact in the sequel.

Let us also mention the following: if u ≤ v a.e. in Ω, where u and v are p−

superharmonic, then u ≤ v everywhere in Ω. Indeed, this follows from applying

Corollary 7.23 of [14] to the p− superharmonic function min(u, v).

The above estimate is sufficient to obtain local solutions to (1.0.1). To obtain

global solutions we need to compare solutions defined in nondecreasing sequences of
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domains. The following lemma asserts that for a nonnegative measure it is possible

to obtain nondecreasing solutions defined on nondecreasing domains.

Lemma 6.2.5. Let Ω and Ω′ be bounded domains such that Ω ⊂ Ω′. Let µ ∈Mb (Ω)

be nonnegative, compactly supported in Ω, and assume g
(
cW

2diam(Ω′)
1,p,N [µ]

)
∈ L1 (Ω′)

where g(x, s) and c = c(N, p) are as in Theorem 6.2.2. Then there exists renormal-

ized solutions u and v to

−∆pu+ g(x, u) = µ in Ω

u = 0 on ∂Ω

(6.2.5)

and −∆pv + g(x, v) = µ in Ω′

v = 0 on ∂Ω′,

(6.2.6)

respectively, such that u ≤ v a.e. in Ω.

Proof. Suppose first that g is bounded. Then Lemma 4.2 of [4] shows that the

desired solutions u and v exists and that they can be defined as the a.e. limit of

sequences {un}n and {vn}n of weak solutions to (6.2.5) and (6.2.6), respectively,

with data µn converging to µ in a weak sense. Since the solutions are nonnegative,

un ∈ W 1,p
0 (Ω), and vn ∈ W 1,p (Ω), the maximum principle shows that un ≤ vn a.e.

in Ω. Hence, u ≤ v a.e. in Ω. If g is not bounded then one can proceed as in

the proof of Lemma 4.3 of [4] and consider the truncations Tn(g). The fact that∥∥∥g (cW 2diam(Ω)
1,p,N [µ]

)∥∥∥
L1(Ω)

≤
∥∥∥g (cW 2diam(Ω′)

1,p,N [µ]
)∥∥∥

L1(Ω′)
shows that one can pass

to the limit as n→∞ to obtain solutions that conserve the desired property.

Next we use Lemma 6.2.3 to show that we can obtain solutions with absorption

term g(u)H from solutions to problem (6.2.1).

Lemma 6.2.6. Let g be a continuous nondecreasing odd function, and let c = c(N, p)

be the constant in Theorem 6.2.2. Let µ ∈Mb

(
∂RN

+

)
be such that g◦cW 4m

1− 1
p
,p,N−1

[µ±]
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is in L1
(
∂RN

+ ∩Bm

)
. Let gn(x, s) be defined as in (6.1.3) and let un be renormalized

solutions to −∆pun + gn(x, un) = µ in Bm

un = 0 on ∂Bm.

Then there exists a function u and a subsequence of {un}n, which we relabel as {un}n,

such that un → u a.e. in Bm and u is a renormalized solution to−∆pu+ g(u)H = µ in Bm

u = 0 on ∂Bm

(6.2.7)

that satisfies

− cW 4m
1− 1

p
,p,N−1

[
µ−
]

(x′) ≤ u(x′, xN) ≤ cW 4m
1− 1

p
,p,N−1

[
µ+
]

(x′) (6.2.8)

cap1,p,N−q.e in Bm.

Proof. By Lemma 6.2.3 the functions un satisfy

−cW 4m
1,p,N

[
µ−
]

(x) ≤ un(x) ≤ cW 4m
1,p,N

[
µ+
]

(x) cap1,p,N − q.e. in Bm

and so, by (6.2.3), they satisfy estimate (6.2.8).

Since the measure µ is bounded independent of n, Proposition 6.1.4 implies that

the same is true for the measures µ̃n = µ− gn(x, un). Hence, we can apply Theorem

3.1.7 and obtain that, up to a subsequence there exists, a suitable behaved function

u defined in Bm such that un → u a.e. in Bm as n→∞.

Using than un satisfies (6.2.8), which holds a.e. in the intersection of Bm with
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any hyperplane, and that g is nondecreasing we conclude

∫
{un≥h}∩{xN=t}

g (un) (x′, t)dx′

≤
∫
{
cW 4m

1− 1
p ,p,N−1

[µ+]≥h
}
∩∂RN+∩Bm

g
(
cW 4m

1− 1
p
,p,N−1

[
µ+
])

(x′)dx′ → 0

as h→∞ and similarly

∫
{un≤−h}∩{xN=t}

−g (un) (x′, t)dx′

≤
∫
{
cW 4m

1− 1
p ,p,N−1

[µ−]≥h
}
∩∂RN+∩Bm

g
(
cW 4m

1− 1
p
,p,N−1

[
µ−
])

(x′)dx′ → 0

as h→∞, since g

(
cW 4m

1− 1
p
,p,N−1

[µ±]

)
∈ L1

(
Bm ∩ ∂RN

+

)
.

The above estimates can be seen to hold also for the limit function u. Indeed, it is

enough to show that u also satisfies (6.2.8). Looking at the proof of Lemma 6.2.3, we

see that we obtain the right hand side of estimate (6.2.8) for un from the inequality

un ≤ v for some particular renormalized solution v. Using that u is the a.e. limit

of the un we get u ≤ v a.e. in Bm. Then, considering cap1,p,N− quasi-continuous

representatives, we conclude u ≤ v cap1,p,N − q.e. in Bm (see Remark 2.4.6), and

so, proceeding as in the proof of the lemma, we obtain that the right hand side of

estimate (6.2.8) also holds for u. The left hand side estimate follows in the same

way, and so (6.2.8) holds for u. With this estimate we obtain

∫
{|u|≥h}∩∂RN+

|g (u)| dx′ → 0

as h→∞ and g(u) ∈ L1
(
Bm ∩ ∂RN

+

)
. Hence we apply Lemma 6.1.8 together with

Lemma 6.1.9 to finish the proof.

We are now ready to show the following trace version of Theorem 6.2.2. Recall
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that we assume 1 < p < N .

Theorem 6.2.7. Let g be a continuous nondecreasing odd function, and let c1 =

2
1
p−1 c(N, p) where c(N, p) is the constant in Theorem 6.2.2. Assume µi ∈Mb

(
∂RN

+

)
,

i = 1, 2, are nonnegative and for every m ∈ N there exists nondecreasing se-

quences
{
µmi,k
}
k

of nonnegative measures in Mb

(
∂RN

+

)
with compact support in

Bm ∩ ∂RN
+ converging to µmi = µi|Bm∩∂RN+ weakly-∗ in Mb

(
Bm ∩ ∂RN

+

)
such that

g ◦ c1W
4(m+1)

1− 1
p
,p,N−1

[
µmi,k
]

is in L1
(
∂RN

+ ∩Bm

)
and µmi,k ≤ µm+1

i,k for each k ∈ N. Then

there exists a renormalized solution of−∆pu = 0 in RN
+

|∇u|p−2 uν + g(u) = µ1 − µ2 on ∂RN
+ .

Moreover,

− c1W1− 1
p
,p,N−1 [µ2] (x′) ≤ u(x′, xN) ≤ c1W1− 1

p
,p,N−1 [µ1] (x′) (6.2.9)

cap1,p,N − q.e. in RN
+ .

Proof. Let gn(x, s) be defined as in (6.1.3). It is easy to see that gn(x, s) = ζn(xN)g(s)

satisfies the assumptions of Theorem 6.2.2. Note that µmi,k has compact support in

Bm. Since

W
4(m+1)

1− 1
p
,p,N−1

[
µmi,k
]

(x′) ≥ W 4m
1,p,N

[
µmi,k
]

(x′, xN)

and g is nondecreasing we obtain

∥∥gn (cW 4m
1,p,N

[
2µmi,k

])∥∥
L1(Bm)

≤ C(n,m)
∥∥∥g (c1W

4m
1− 1

p
,p,N−1

[
µmi,k
])∥∥∥

L1(Bm∩∂RN+)
<∞.

Hence, we may apply Lemma 4.3 of [4] to obtain renormalized solutions un,km and
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un,km,i, with i = 1, 2, of

−∆pu+ 2gn(x, u) = 2µ in Bm

u = 0 on ∂Bm

(6.2.10)

with data µ = µm1,k − µm2,k, and µ = µmi,k, respectively, satisfying

−un,km,2 ≤ un,km ≤ un,km,1

a.e. in Bm. Let us remark that by the same lemma we can assume un,km,i ≤ un,k+1
m,i a.e.

in Bm. Note also that the functions un,km,i are nonnegative (proceed as in Remark 6.5

of [18], testing against Tk(min(un,km,i, 0)) and using the hypothesis on g).

For any fixed n, k, and m, the measures µmi,k satisfy all the necessary conditions to

guarantee, again by Lemma 4.3 of [4], the existence of renormalized solutions wn,km,i,

i = 1, 2, to problem (6.2.10) with data µ = µmi,k in Bm+1. Since µmi,k ≤ µm+1
i,k we can

combine the results of Lemma 4.3 of [4] with Lemma 6.2.5 above to further assume

un,km,i ≤ wn,km,i ≤ un,km+1,i a.e. in Bm. That is, we may assume the solutions un,km,i are

nondecreasing in m.

Now, applying Lemma 6.2.6 we take n → ∞ to obtain renormalized solutions

ukm, and ukm,i to −∆pu+ 2g(u)H = 2µ in Bm

u = 0 on ∂Bm

(6.2.11)

with data µ = µm1,k−µm2,k, and µ = µmi,k, respectively. By Lemma 6.1.9 (which is used

in the proof of Lemma 6.2.6), we have Th(u
n,k
m,i) → Th(u

k
m,i) and Th(u

n,k
m ) → Th(u

k
m)

strongly in W 1,p
0 (Bm) for any h > 0. Since renormalized solutions are cap1,p,N −

q.e. finite, we can use Proposition 2.3.8 of [10] to obtain, passing to a diagonal

subsequence, that un,km,i → ukm,i and un,km → ukm cap1,p,N − q.e. in Bm (see Remark
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6.1.13). Hence, we can assume that

− cW 4m
1− 1

p
,p,N−1

[
2µm2,k

]
(x′) ≤ −ukm,2(x′, t) ≤ ukm(x′, t)

≤ ukm,1(x′, t) ≤ cW 4m
1− 1

p
,p,N−1

[
2µm1,k

]
(x′) (6.2.12)

cap1,p,N − q.e. in RN . Here we have used again that we are considering cap1,p,N−

quasi-continuous representatives, so that we can extend the inequalities from a.e. in

Bm to cap1,p,N − q.e. in Bm (see Remark 2.4.6). Note that we also can assume

0 ≤ ukm,i(x) ≤ uk+1
m,i (x) and ukm,i(x) ≤ ukm+1,i(x)

cap1,p,N − q.e. in Bm, and so in particular a.e. in Bm ∩ ∂RN
+ .

Next we fix m ∈ N. Since the measures µmi,k are uniformly bounded in norm by

µi we obtain by Proposition 6.1.4 that

∥∥∥g(un,km,i)
∥∥∥
L1(Bm)

≤ ‖µi‖Mb
.

By Lemma 6.1.8 we have

lim
n→∞

∫
Bm

φgn(x, un,km,i)dx =

∫
Bm∩∂RN+

φg(ukm,i)dx
′

for any φ ∈ C∞0 (Bm). Thus,

∥∥g(ukm,i)
∥∥
L1(Bm∩∂RN+)

≤ ‖µi‖Mb

and by (6.2.12) ∥∥g(ukm)
∥∥
L1(Bm∩∂RN+) ≤ ‖µ1‖Mb

+ ‖µ2‖Mb
.

With the above estimates we can apply Theorem 3.1.7 to obtain the existence

of subsequences such that ukm → um and ukm,i → um,i a.e. in Bm as k → ∞ for
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some suitable behaved functions um and um,i. Note that there is no loss of generality

in assuming ukm,i coincides with its p− superharmonic representative mentioned in

Remark 6.2.4, so that in particular we can assume ukm,i are nondecreasing in k every-

where in Bm. Then, Lemma 7.3 of [14] shows that supk u
k
m,i is a p− superharmonic

function in Bm and so, by Theorem 10.9 of [14], also cap1,p,N− quasi-continuous in

Bm. Hence, supk u
k
m,i is a cap1,p,N− quasi-continuous representative of um,i, and we

can assume ukm,i → um,i cap1,p,N − q.e. in Bm. Thus, considering cap1,p,N− quasi-

continuous representatives, we conclude from (6.2.12) that

− cW 4m
1− 1

p
,p,N−1

[2µm2 ] (x′) ≤ −um,2(x′, t) ≤ um(x′, t)

≤ um,1(x′, t) ≤ cW 4m
1− 1

p
,p,N−1

[2µm1 ] (x′) (6.2.13)

cap1,p,N − q.e. in RN .

Since we have the estimate

∥∥g(ukm,i)
∥∥
L1(Bm∩∂RN+)

≤ ‖µi‖Mb
<∞

and ukm,i are nondecreasing in k and nonnegative, we obtain by Monotone Conver-

gence that g(ukm,i)→ g(um,i) ∈ L1
(
Bm ∩ ∂RN

+

)
and moreover

‖g(um,i)‖L1(Bm∩∂RN+) ≤ ‖µi‖Mb
.

Then, by slightly modifying the arguments leading to Corollary 3.5 of [4] we obtain

that um,i is a renormalized solution to (6.2.11) with data µ = µmi . Indeed, to obtain

the same stability result we only need to consider the terms g(ukm,i)H and g(um,i)H,

since the focus of the corollary is the handling of the measures µkm,i in order to apply

the stability result of [9]. But, replacing this stability result by the one in [17], we see
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by the proof of Lemma 6.1.9 (or Lemma 4.2.1) that we can prove stability provided

lim
k→∞

∫
Bm∩∂RN+

φkg(ukm,i)dx
′ =

∫
Bm∩∂RN+

φg(um,i)dx
′

for any {φk}k converging to φ both a.e. in Bm and weakly in W 1,p
0 (Bm) and such

that φk is uniformly bounded in L∞ (Bm). By Lemma 6.1.10, it is enough to show

that

∫
{|ukm,i|≥h}∩∂RN+∩Bm

∣∣g(ukm,i)
∣∣ dx′ + ∫

{|um,i|≥h}∩∂RN+∩Bm
|g(um,i)| dx′ → 0

as h → ∞ uniformly in k. But this is clearly true since ukm,i are nonnegative and

g(ukm,i) ↑ g(um,i) ∈ L1
(
Bm ∩ ∂RN

+

)
.

Similarly, we can show that um is a renormalized solution to (6.2.11) with data

µ = µm1 − µm2 provided we show that

∫
{|um|≥h}∩∂RN+∩Bm

|g(um)| dx′ → 0

and ∫
{|ukm|≥h}∩∂RN+∩Bm

∣∣g(ukm)
∣∣ dx′ → 0

as h → ∞, uniformly in k. Now, by the monotonicity of g and the fact that g is

odd, we conclude from estimate (6.2.12) that

∣∣g(ukm)
∣∣ ≤ g(ukm,1) + g(ukm,2) ≤ g(um,1) + g(um,2)

while from (6.2.13) we have

|g(um)| ≤ g(um,1) + g(um,2).
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Moreover (
{|um| ≥ h} ∪

{∣∣ukm∣∣ ≥ h
})
⊂ {um,1 ≥ h} ∪ {um2 ≥ h}

outside a set of zero measure in Bm ∩ ∂RN
+ . Hence, since g(um,1) + g(um,2) ∈

L1
(
Bm ∩ ∂RN

+

)
, the desired estimates hold.

To finish we can proceed exactly as in the proof of Theorem 6.1.11. Indeed,

putting µm = µm1 − µm2 and using the uniform boundedness of ‖g(um)‖L1(Bm∩∂RN+)

we can apply Lemma 4.1.1 to obtain a suitable behaved function u as the limit of

the um. Note that we can also take the limit of the um,i to obtain suitable functions

ui.

As we argued above, using that um,i are nondecreasing in m and passing to

cap1,p,N− quasi-continuous representatives, we obtain from (6.2.13) that

− cW1− 1
p
,p,N−1 [2µ2] (x′) ≤ −u2(x′, t) ≤ u(x′, t)

≤ u1(x′, t) ≤ cW1− 1
p
,p,N−1 [2µ1] (x′) (6.2.14)

cap1,p,N − q.e. in RN .

Next, we want to show that for any given M ∈ N

lim
m→∞

∫
BM∩∂RN+

φmg(um)dx′ =

∫
BM∩∂RN+

φg(u)dx′

for any {φm}m converging to φ both a.e. in BM and weakly in W 1,p
0 (BM) and such

that φm are uniformly bounded in L∞ (BM). By Lemma 6.1.10, it is enough to show

that ∫
{|u|≥h}∩∂RN+∩BM

|g(u)| dx′ → 0

and ∫
{|um|≥h}∩∂RN+∩BM

|g(um)| dx′ → 0

as h → ∞, uniformly on m. From (6.2.13), (6.2.14), and the hypothesis on g we
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conclude

|g(um)| ≤ g(um,1) + g(um,2) ≤ g(u1) + g(u2) and |g(u)| ≤ g(u1) + g(u2)

in BM ∩ ∂RN
+ . By the uniform bounds

‖g(um,i)‖L1(Bm∩∂RN+) ≤ ‖µi‖Mb

we use that um,i are nondecreasing in m to conclude that

‖g(ui)‖L1(∂RN+) ≤ ‖µi‖Mb
.

Then, the desired estimates follow and g(u) ∈ L1
(
∂RN

+

)
. Thus, by Lemma 4.2.1 we

obtain that −∆pu + 2g(u)H = 2µ in RN . Applying Theorem 5.1.1 and Theorem

5.2.1 we obtain that the restriction of u to RN
+ is a solution of the desired problem

satisfying (6.2.14) (which gives (6.2.9)).

Remark 6.2.8 As in Remark 6.1.13, we observe that it can be shown that, pass-

ing to subsequences if necessary, g(un,km ) → g(ukm) and g(ukm) → g(um) strongly in

L1
(
Bm ∩ ∂RN

+

)
, and g(um)→ g(u) strongly in L1

(
∂RN

+ ∩BM

)
for any M ∈ N.

Theorem 6.2.7 can be used to obtain existence of renormalized solutions when g

satisfies more explicit conditions. For example, we have the following application to

the case when g(s) is dominated by a power function.

Theorem 6.2.9. Assume 1 < p < N and let g : R→ R be a continuous nondecreas-

ing odd function such that

|g(s)| ≤ C |s|q for all |s| ≥ |s0|

for some C > 0, q > p − 1, and s0 ∈ R. If µ ∈ Mb

(
∂RN

+

)
is absolutely continuous
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with respect to capp−1, q
q−p+1

,N−1 then there exists a renormalized solution to (1.0.1)

with datum µ.

Proof. Since µ is absolutely continuous with respect to capp−1, q
q−p+1

,N−1 so are µ1 =

µ+, µ2 = µ−, and µmi = µi|Bm , i = 1, 2. Then for every m we can apply Theorem 2.6

of [4] in dimension N − 1 with s1 = s2 = q, α = 1− 1
p
, and R = 4(m+ 1) to obtain

nondecreasing sequences
{
µmi,k
}
k

of nonnegative measures in Mb

(
∂RN

+

)
with compact

support in Bm ∩ ∂RN
+ converging to µmi weakly-∗ in Mb

(
Bm ∩ ∂RN

+

)
and such that

W
4(m+1)

1− 1
p
,p,N−1

[
µmi,k
]
∈ Lq

(
RN−1

)
. It follows immediately that g

(
c1W

4(m+1)

1− 1
p
,p,N−1

[
µmi,k
])

belongs to L1
(
∂RN

+ ∩Bm

)
.

To apply Theorem 6.2.7 it only remains to show that we can assume µmi,k ≤ µm+1
i,k

for each k ∈ N. For this we note that the approximating sequences µmi,k given by

Theorem 2.6 of [4], which are defined in the proof of Theorem 2.5 of [4], can be

taken equal to sup {σ1, · · · , σk} for some σi that approximate, and are bounded by,

µmi φk, where φk is a smooth function supported in a neighborhood of Bm− 1
k
. Since

µmi coincides with µm−1
i in Bm−1 one can check directly that by redefining µmi,k as

sup
{
µmi,k, µ

m−1
i,k

}
one obtains approximating sequences with the same properties listed

above and that moreover satisfy the desired condition µmi,k ≤ µm+1
i,k .

Remark 6.2.10 It must be noted that Theorem 6.2.9 agrees with Theorem 6.1.11

in the sense that if q < qc (see Remark 6.1.2) then capp−1, q
q−p+1

,N−1 ({0}) > 0 (see

Proposition 2.6.1 of [10]), and so any bounded Radon measure is admissible according

to Theorem 6.2.9.

On the other hand, Theorem 6.1.11 gives that any bounded Radon measure is

admissible for a wider range of nonlinearities than Theorem 6.2.9. For example

g(s) =
|s|qc−1 s

(ln (|s|+ C))1+ε

is subcritical if ε > 0 (and C is chosen large enough) since it satisfies Assumption

6.1.1, but there is no q < qc such that |g(s)| ≤ |s|q for large values of s. Hence,
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in this case, Theorem 6.2.9 can only be applied with q ≥ qc, and so it no longer

guarantees that every bounded Radon measure is admissible since, for example, the

Dirac measure δ0 is singular with respect to capp−1, q
q−p+1

,N−1 precisely when q ≥ qc.

Let us also mention that, since p − 1 > 0, the (N − 1)-Lebesgue measure is ab-

solutely continuous with respect to capp−1, q
q−p+1

,N−1 (see [10]), and so every measure

in L1
(
∂RN

+

)
is admissible according to Theorem 6.2.9 (even when q ≥ qc).

To obtain similar conditions for other nonlinearities we need to introduce some

terminology. First we define the Bessel-Lorentz capacities, which can be viewed as

a generalization of the Bessel capacities.

For 1 ≤ s1 <∞ and 1 < s2 ≤ ∞ we denote by Ls1,s2
(
RN
)

the standard Lorentz

space (see for example [19]). Then for α > 0 one can define the Lorentz-Bessel

capacities

capα,s1,s2,N (E) = inf
{
‖f‖Ls1,s2 (RN ) : f ≥ 0, Gα ∗ f ≥ 1 on E

}
where Gα is the Bessel kernel of order α in RN (see [10] or [4]). The identification

Lp,p
(
RN
)

= Lp
(
RN
)
, which holds for 1 < p <∞, shows that indeed these capacities

generalize the standard Bessel capacities.

Theorem 6.2.11. Let 1 < p < N and let g be a continuous nondecreasing odd

function such that ∫ ∞
1

g(s)s−(q+1)ds <∞

for some q > p − 1. If µ ∈ Mb

(
∂RN

+

)
is absolutely continuous with respect to

capp−1, q
q−p+1

,1,N−1 then there exists a renormalized solution to (1.0.1) with datum µ.

Proof. If µ is absolutely continuous with respect to capp−1, q
q−p+1

,1,N−1 then so are

µ1 = µ+, µ2 = µ−, and µmi = µi|Bm . For every m apply Theorem 2.6 of [4] in

dimension N − 1 with s1 = q, s2 = ∞, α = 1 − 1
p
, and R = 4(m + 1) to obtain

nondecreasing sequences
{
µmi,k
}
k

of nonnegative measures in Mb

(
∂RN

+

)
compactly
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supported in Bm ∩ ∂RN
+ , converging to µmi weakly-∗ in Mb

(
Bm ∩ ∂RN

+

)
and such

that W
4(m+1)

1− 1
p
,p,N−1

[
µmi,k
]
∈ Lq,∞

(
RN−1

)
. Just as in the proof of Theorem 6.2.9 we may

also assume that µmi,k ≤ µm+1
i,k .

We observe that f ∈ Lq,∞
(
RN−1

)
implies

∣∣{x′ ∈ Bm ∩ RN−1 : |f(x′)| > t
}∣∣ ≤

Ct−q for every t > 0 and where C depends on ‖f‖Lq,∞(RN−1) (see [19]). Then, as in

the proof of Theorem 6.1.11, we can obtain the inequality

∫
Bm∩∂RN+

g

(
c1W

4(m+1)

1− 1
p
,p,N−1

[
µmi,k
])

dx′ ≤ g(1)
∣∣Bm ∩ ∂RN

+

∣∣+
C(q, c1, ck,p,N,m,i)

∫ ∞
1

g(t)t−(q+1)dt <∞,

where ck,p,N,m,i is the Lq,∞
(
RN−1

)
norm of W

4(m+1)

1− 1
p
,p,N−1

[
µmi,k
]
. Hence, we finish by

applying Theorem 6.2.7.

Remark 6.2.12 Let us make a few observations regarding this result. It is well-

known that L
q
p−1 = L

q
p−1

, q
p−1 ↪→ L

q
p−1

,∞ and that L
q
p−1

,∞ is the dual of L
q

q−(p−1)
,1.

Thus

Gp−1 ∗ f(0) ≥ 1 =⇒ 1 ≤ ‖Gp−1‖ q
p−1

,∞ ‖f‖ q
q−(p−1)

,1 ≤ ‖Gp−1‖ q
p−1
‖f‖ q

q−(p−1)
,1 ,

which implies that if Gp−1 ∈ L
q
p−1
(
RN−1

)
then capp−1, q

q−p+1
,1,N−1 ({0}) > 0. Since

this happens precisely when q < qc, we conclude that if q < qc then any bounded

Radon measure is admissible under the above theorem. In particular, this shows

that Theorem 6.2.11 coincides with Theorem 6.2.9 when |g(s)| ≤ C |s|q and q < qc.

Proceeding in a similar way, one can use the fact that χBc1Gp−1 ∈ L
q
p−1
(
RN−1

)
whenever 0 < p − 1 < q to prove (as in Proposition 2.6.1 of [10]) that the (N − 1)-

Lebesgue measure is absolutely continuous with respect to capp−1, q
q−p+1

,1,N−1. Thus,

every measure in L1
(
∂RN

+

)
is admissible according to Theorem 6.2.11.

Note that, in general, if |g(s)| ≤ C |s|q then Theorem 6.2.9 guarantees exis-
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tence of a solution to (1.0.1) provided µ is absolutely continuous with respect to

capp−1, q
q−p+1

,N−1, while Theorem 6.2.11 guarantees existence if µ is absolutely con-

tinuous with respect to cap
p−1, q′

q′−p+1
,1,N−1

for any q′ > q.

On the other hand, under the hypotheses on g, if the growth condition of the

above theorem is satisfied with q = qc then g satisfies Assumption 6.1.1, and so it is

subcritical. Hence, we expect that the above estimate capp−1, q
q−p+1

,1,N−1 ({0}) > 0,

which implies existence for any bounded Radon measure, can be improved to the

case q = qc. It can be proven directly that this is true. Indeed, following the ideas

above, it is enough to show that Gp−1 ∈ Lqc/(p−1),∞ (RN−1
)
. This can be shown by

definition using that Gp−1 has exponential decay at infinity and that it is controlled

by the Riesz kernel of the same order.

As a final application we consider nonlinearities of exponential type. To this end

we define the truncated η-fractional maximal operator as

M η
s,R,N [µ] (x) = sup

0<t<R

µ (Bt(x))

tN−shη(t)

where 0 < s < N , 0 < R ≤ ∞, η ≥ 0 and

hη(t) =

(− ln t)−η , 0 < t < 1/2

(ln 2)−η , 1/2 ≤ t.

Then we have the following result.

Theorem 6.2.13. Let 1 < p < N and let g be a continuous nondecreasing odd

function such that

g(|s|) ≤ eτ |s|
λ

− 1 for all s ≥ s0

for some τ > 0, λ ≥ 1, and s0 ∈ R. Let µ ∈Mb

(
∂RN

+

)
be such that µ = f + ν1− ν2,

where f ∈ L1
(
∂RN

)
and νi ∈ Mb

(
∂RN

+

)
, i = 1, 2, are nonnegative. There exists
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M(N, p, τ, λ) > 0 such that if∥∥∥∥M (p−1)(λ−1)
λ

p−1,∞,N−1 [νi]

∥∥∥∥
L∞(RN−1)

≤M

then there exists a renormalized solution to (1.0.1) with datum µ.

Proof. Let f = f1 − f2 with fi ≥ 0, define µi = fi + νi, and let µmi = fmi + νmi be its

restriction to Bm. Define µmi,k = (Tk(f
m
i ) + νmi )χB

m− 1
k

. Then µmi,k are nonnegative,

nondecreasing on k, compactly supported in Bm∩∂RN
+ , and moreover µmi,k ≤ µm+1

i,k . It

is also clear that µmi,k → µmi weakly-∗ in Mb

(
Bm ∩ ∂RN

+

)
. Hence, to apply Theorem

6.2.7 it remains to show g

(
c1W

4(m+1)

1− 1
p
,p,N−1

[
µmi,k
])
∈ L1 (Bm).

Let us first note that since p > 1 and p(1− 1
p
) > 0 we have

W
4(m+1)

1− 1
p
,p,N−1

[
Tk(f

m
i )χB

m− 1
k

]
(x′) ≤ C(k,N, p,m).

On the other hand, it holds that for every s ≥ 1, ε > 0 there exists C = C(ε, s) such

that if a, b ≥ 0 then (a+ b)s ≤ asC + (1 + ε)bs. Using this twice we conclude

(
W

4(m+1)

1− 1
p
,p,N−1

[
µmi,k
]

(x′)

)λ
≤ C(k,N, p,m, λ, ε) + (1 + ε)

(
W

4(m+1)

1− 1
p
,p,N−1

[νmi ] (x′)

)λ
,

for some ε > 0 to be fixed later, and so we have

exp

(
τ

(
c1W

4(m+1)

1− 1
p
,p,N−1

[
µmi,k
]

(x′)

)λ)

≤ C(τ, k,N, p,m, λ, ε) exp

(
τ(1 + ε)

(
c1W

4(m+1)

1− 1
p
,p,N−1

[νmi ] (x′)

)λ)

since c1 = c1(N, p). Now, an application of Theorem 2.4 of [4] in dimension N − 1

with α = 1 − 1
p
, η = (p−1)(λ−1)

λ
, r = m, and R = 4(m + 1), shows that there exists
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0 < δ0(p, λ) such that

∫
Bm∩∂RN+

exp

(
δ

(
W

4(m+1)

1− 1
p
,p,N−1

[νmi ]

)λ ∥∥∥∥M (p−1)(λ−1)
λ

p−1,4(m+1),N−1 [νmi ]

∥∥∥∥ λ
1−p

L∞(Bm∩∂RN+)

)
dx′ <∞

for any δ ∈ (0, δ0). Hence, if we choose any M(p, λ,N, τ) such that

M <

(
δ0

τcλ1

) p−1
λ

then by hypothesis and the fact that∥∥∥∥M (p−1)(λ−1)
λ

p−1,4(m+1),N−1 [νmi ]

∥∥∥∥
L∞(Bm∩∂RN+)

≤
∥∥∥∥M (p−1)(λ−1)

λ
p−1,∞,N−1 [νi]

∥∥∥∥
L∞(∂RN+)

we conclude that there exist ε > 0 such that

τ(1 + ε)cλ1 ≤ δ

∥∥∥∥M (p−1)(λ−1)
λ

p−1,4(m+1),N−1 [νmi ]

∥∥∥∥ λ
1−p

L∞(Bm∩∂RN+)

for some δ ∈ (0, δ0) and so

∫
Bm∩∂RN+

exp

(
τ(1 + ε)

(
c1W

4(m+1)

1− 1
p
,p,N−1

[νmi ]

)λ)
dx′ <∞

which concludes the proof.

Remark 6.2.14 It is immediate that the above theorem guarantees existence for

data in L1
(
∂RN

+

)
.

When λ = 1, i.e. g(|s|) ≤ eτ |s| − 1, the condition imposed on νi reads

sup
x∈∂RN+

sup
t>0

νi (Bt(x))

tN−p
≤M.

This condition can be expressed in terms of the Riesz capacities (See Chapter 2).
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Indeed, it is known that in the case 1 < p < N it holds tN−p = CcapI
1− 1

p
,p,N−1 (Bt(x))

for some C > 0 independent of t (see Chapter 5 of [10]), and so the above condition

is equivalent to

νi (Bt(x)) ≤ CMcapI
1− 1

p
,p,N−1 (Bt(x))

for every x ∈ ∂RN
+ and t > 0.

118



Chapter 7

Nonlinear problems with source

In this chapter we consider nonnegative solutions to the following problem with

source −∆pu = 0 in RN
+

|∇u|p−2 uν = µ+ uq on ∂RN
+ ,

(7.0.1)

where 1 < p < N , p− 1 < q, and µ ∈Mb

(
∂RN

+

)
is nonnegative.

We begin obtaining necessary conditions for existence of solutions. Then, we

show that under a smallness assumption on the constants involved, these conditions

imply existence of solutions. Lastly, we use these conditions to show nonexistence

results and also to characterize removable sets.

7.1 Necessary conditions for existence

To obtain necessary conditions for existence of solutions to (7.0.1) we follow the ideas

in [18].

In order to state our first result we need to introduce the Riesz potential Iα,N of
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order α, 0 < α < N , on RN , of a nonnegative Radon measure µ by

Iα,N [µ](x) = c(N,α)

∫
RN
|x− y|α−N dµ(y)

where c(N,α) is a normalized constant. We recall that the Riesz capacities were

defined in Chapter 2, while the Wolff potential Wα,s,N [·] was defined in Section 6.2.

Theorem 7.1.1. Let 1 < p < N and p− 1 < q. Let µ in Mb

(
∂RN

+

)
be nonnegative

and suppose there exists a nonnegative renormalized solution to (7.0.1). Then

∫
B

(Ip−1,N−1 [µB])
q
p−1 dx′ ≤ C(N, p, q)µ (B) (7.1.1)

holds for all balls B ⊂ ∂RN
+ ' RN−1 (where µB is the restriction of µ to B).

Proof. We know by Remark 3.3.4 that if u solves (7.0.1) then ū, the extension of u

to RN by even reflection across ∂RN
+ , is a local renormalized solution to

−∆pū = 2ūqH + 2µ in RN .

Let ω = 2ūqH + 2µ. Combining Theorems 4.3.2 and 4.2.5 of [25], we obtain that ū

coincides a.e. with a p− superharmonic function ũ satisfying

W1,p,N [ω] ≤ C(N, p)ũ.

By Remark 6.2.4 we can conclude that

W1,p,N [ω] ≤ C(N, p)ū

cap1,p,N−q.e. in RN and so, by Proposition 2.3.2, H− a.e. Thus, for any dyadic cube
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P ⊂ ∂RN
+ (i.e., P = 2j

(
k + [0, 1)N−1

)
for some j ∈ Z and k ∈ ZN−1) we have

ω(P ) ≥
∫
P

2ūqdx′ ≥ C(N, p)

∫
P

W1,p,N [ω]q dx′ = C(N, p)

∫
P

W1− 1
p
,p,N−1 [ω]q dx′.

Using that, for any α > 0, p > 1, and any N ,

Wα,s,N [ω] ∼
∑
Q⊂P

(
ω(Q)

|Q|1−
αs
N

) 1
s−1

χQ

with |Q| the N− dimensional measure of Q, and where the sum is taken over all

dyadic cubes Q contained in P (see [10]), we conclude

∫
P

∑
Q⊂P

(
ω(Q)

|Q|1−
p−1
N−1

) 1
p−1

χQ

q

dx′ ≤ C(N, p)ω(P ).

By Proposition 3.1 of [18] the above implies

∑
Q⊂P

(
ω(Q)

|Q|1−
p−1
N−1

) q
p−1

|Q| ≤ C(N, p)ω(P )

which, by an application of Theorem 3 of [22], yields∥∥∥∥∥∑
Q

f(Q)

|Q|1−
p−1
N−1

χQ

∥∥∥∥∥
L

q
q−(p−1) (dω)

≤ C(N, p, q) ‖f‖
L

q
q−(p−1)

for any nonnegative f ∈ L
q

q−(p−1)
(
RN−1

)
, where f(Q) =

∫
Q
fdx′ and the sum is

taken over all dyadic cubes Q. Since

Iα,N [f ] ∼
∑
Q

f(Q)

|Q|1−
α
N

χQ
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and ω ≥ 2µ we obtain

‖Ip−1,N−1(f)‖
L

q
q−(p−1) (dµ)

≤ C(q, p) ‖Ip−1,N−1(f)‖
L

q
q−(p−1) (dω)

≤ C(N, p, q) ‖f‖
L

q
q−(p−1)

for any f ∈ L
q

q−(p−1)
(
RN−1

)
. Hence, Ip−1,N−1 : L

q
q−(p−1) → L

q
q−(p−1) (dµ) is a bounded

linear operator and so its dual satisfies

∥∥〈I∗p−1,N−1, g
〉∥∥

L
q
p−1
≤ C(N, p, q) ‖g‖

L
q
p−1 (dµ)

for any g ∈ L
q
p−1 (dµ). Taking g = χB we obtain (7.1.1).

Remark 7.1.2 It is known that (7.1.1) is equivalent with the condition

µ (K) ≤ C(N, p, q)capIp−1,
q

q−(p−1)
,N−1 (K) (7.1.2)

for all compact sets K ⊂ ∂RN
+ ' RN−1. The proof of this equivalence, which we will

use in the following sections, can be found in [23]. On the other hand, it is known

that (7.1.1) implies

∫
RN−1

(Ip−1,N−1 [µB])
q
p−1 dx′ ≤ C(N, p, q)µ (B)

(see [24] or [18]). By Proposition 5.1 of [18]

∫
RN−1

(Ip−1,N−1 [µB])
q
p−1 dx′ ∼

∫
RN−1

(
W1− 1

p
,p,N−1 [µB]

)q
dx′

so we see that (7.1.1) implies

∫
RN−1

(
W1− 1

p
,p,N−1 [µB]

)q
dx′ ≤ C(N, p, q)µ (B) (7.1.3)

for all balls B ⊂ ∂RN
+ ' RN−1. Note that, by Monotone Convergence, the above

condition implies that if µ ∈Mb

(
∂RN

+

)
then W1− 1

p
,p,N−1 [µ] ∈ Lq

(
∂RN

+

)
.
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As we will see, condition (7.1.1) is ‘almost’ sufficient to obtain existence of a

solution. However, because of the method we use to show existence, it is convenient

to work with another necessary condition which is actually a consequence of (7.1.1).

Theorem 7.1.3. Let 1 < p < N , p− 1 < q, and let µ in Mb

(
∂RN

+

)
be nonnegative.

Then condition (7.1.1) implies W1− 1
p
,p,N−1 [µ] ∈ Lq

(
∂RN

+

)
and

W1− 1
p
,p,N−1

[(
W1− 1

p
,p,N−1 [µ]

)q]
≤ C1W1− 1

p
,p,N−1 [µ] a.e. in ∂RN

+ , (7.1.4)

for some nonnegative constant C1 depending on p, q, and N .

Proof. By Remark 7.1.2, it is enough to check that (7.1.3) implies (7.1.4). To this

end we decompose the Wolff potential as W1− 1
p
,p,N−1[µ] = Urµ+ Lrµ, where

Urµ(x) =

∫ r

0

(
µ (Bt(x))

tN−p

) 1
p−1 dt

t

Lrµ(x) =

∫ ∞
r

(
µ (Bt(x))

tN−p

) 1
p−1 dt

t

for any r > 0. Setting

ν =
(
W1− 1

p
,p,N−1 [µ]

)q
τr = (Urµ)q

λr = (Lrµ)q

we see that ν ≤ C(q) (τr + λr) for any r > 0. Note that these are L1
(
∂RN

+

)
measures.

Now fix any x ∈ ∂RN
+ ' RN−1 and write for simplicity Br = Br(x) ⊂ RN−1. If

y ∈ Br and 0 < t ≤ r then Bt(y) ⊂ B2r, and so Urµ = UrµB2r in Br. Hence, by

123



(7.1.3) we have

τr (Br) =

∫
Br

(Urµ)q dx′ =

∫
Br

(UrµB2r)
q dx′

≤
∫
Br

(
W1− 1

p
,p,N−1 [µB2r ]

)q
dx′ ≤ Cµ (B2r)

and so

W1− 1
p
,p,N−1 [τr] (x) ≤

∫ ∞
0

(
µ (B2r)

rN−p

) 1
p−1 dr

r
= CW1− 1

p
,p,N−1 [µ] (x). (7.1.5)

Next, we study the rate of decay of λr as function of r. If y ∈ Bt and s ≥ 2t then

Bt ⊂ Bs(y) and so

W1− 1
p
,p,N−1 [µBt ] (y) ≥

∫ ∞
2t

(
µ (Bt ∩Bs(y))

sN−p

) 1
p−1 ds

s

≥ Cµ (Bt)
1
p−1 t

p−N
p−1 .

Comparing the above with (7.1.3) it follows that

µ (Bt) ≤ CtN−1− q(p−1)
q−(p−1)

and then

Lrµ ≤ Cr
1−p

q−(p−1) .

If y ∈ Br and t ≥ r then Bt(y) ⊂ B2t and so

Lrµ(y) ≤
∫ ∞
r

(
µ (B2t)

rN−p

) 1
p−1 dr

r
≤ Lrµ(x)

which gives

λr (Br) =

∫
Br

(Lrµ)q dx′ ≤ C (Lrµ(x))q rN−1.
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Combining the above estimates and using integration by parts we get

∫ ∞
0

(
λr (Br)

rN−p

) 1
p−1 dr

r
≤ C

∫ ∞
0

(Lrµ(x))
q
p−1 dr

= C

∫ ∞
0

(Lrµ(x))
q
p−1
−1

(
µ (Br)

rN−p

) 1
p−1

dr

≤ C

∫ ∞
0

(
µ (Br)

rN−p

) 1
p−1 dr

r

that is,

W1− 1
p
,p,N−1 [λr] (x) ≤ CW1− 1

p
,p,N−1 [µ] (x). (7.1.6)

By combining (7.1.5) and (7.1.6) we conclude

W1− 1
p
,p,N−1 [ν] (x) ≤ CW1− 1

p
,p,N−1 [µ] (x)

which is the desired estimate (7.1.4).

7.2 Sufficient conditions for existence

Our strategy for solving problem (7.0.1) is to combine the techniques developed in

[18], where the authors study the existence of p− superharmonic solutions to

−∆pu = uq + µ in RN ,

with our symmetry and existence results of Chapter 5. The results of [18] are based

on a careful study of the Wolff potential, and the existence of solutions is guaranteed

under any one of some equivalent conditions, among which is that the measure µ

satisfies

W1,p,N [(W1,p,N [µ])q] ≤ C0W1,p,N [µ] <∞ a.e. in RN (7.2.1)
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for some small enough constant C0 = C0(N, p, q).

Unlike the problem with absorption, we do not use directly the existence result

of [18] to construct a global solution. Instead, we define a recursive sequence of

solutions to −∆pum = uqm−1H + µm in Bm

um = 0 on ∂Bm,

(7.2.2)

where u0 = 0 and µm(E) = µ (E ∩Bm), and then take limit as m → ∞. In this

way we dispense with the need to define a sequence of nonlinearities gn converging

to uq (as was done in the previous chapter). As we show in the next theorem, this

method gives a solution to (7.0.1) under a natural adaptation of condition (7.2.1).

But before, we need the following lemma.

Lemma 7.2.1. Let µ, ν ∈Mb (Ω) be nonnegative measures and suppose µ ≤ ν. Let

Ω′ ⊂⊂ Ω and let u be a renormalized solution to−∆pu = µ in Ω′

u = 0 on ∂Ω′.

then there exists a renormalized solution v to−∆pv = ν in Ω

v = 0 on ∂Ω

such that u ≤ v a.e. in Ω′.

Proof. The lemma (and its proof) is a slight modification of Lemma 6.9 in [18], so

we omit some details. Let uk = Tk(u). Then uk solves −∆puk = µ0χ{|u|<k} + λ+
k

in Ω′, uk = 0 on ∂Ω′, where λ+
k is a nonnegative measure (see Remark 3.1.4). Let

vk solve −∆pvk = µ0 + λ+
k + ν − µ in Ω, vk = 0 on ∂Ω. By the stability results of

[9], passing to a subsequence, vk converges a.e. to a function v solving the desired
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equation. Since u is a.e. finite, the result follows if we can show that uk ≤ vk a.e. in

Ω′. For this we can proceed exactly as in the proof of Lemma 6.8 in [18]. We only

remark that min
(
(uk − Th+M(vk))

+ , h
)
, where h > 0 and M = supΩ′ uk, belongs to

W 1,p
0 (Ω′) because vk ∈ W 1,p (Ω′) is nonnegative and uk ∈ W 1,p

0 (Ω′).

Theorem 7.2.2. Let 1 < p < N and p− 1 < q. Let µ be a nonnegative measure in

Mb

(
∂RN

+

)
satisfying W1− 1

p
,p,N−1 [µ] ∈ Lq

(
∂RN

+

)
and condition (7.1.4) with

C1 ≤

(
q − p+ 1

qc(N, p)C(p)2
1
p−1

) q
p−1 (

p− 1

q − p+ 1

)

where C(p) = max
{

1, 2
2−p
p−1

}
and c(N, p) is the constant in Theorem 6.2.2. Then

there exists a nonnegative renormalized solution to (7.0.1) satisfying

u(x′, xN) ≤

(
qc(N, p)C(p)2

1
p−1

q − p+ 1

)
W1− 1

p
,p,N−1 [µ] (x′) in Ω ∩ RN

+ , (7.2.3)

where Ω is a set of the form Ω = Ω1 ∩ (Ω2 × R), Ω2 ⊂ RN−1, with cap1,p,N (Ωc
1) =

0 and |Ωc
2| = 0. In particular, the above estimate holds a.e. in any hyperplane

RN−1 × {t}.

Proof. Let u1 be a renormalized solution of−∆pu1 = 2µ1 in B1

u1 = 0 on ∂B1,

(7.2.4)

where µ1(E) = µ (E ∩B1). Such a function exists by, for example, the results in

[9]. By testing against Tk(min(u1, 0)) one can see that µ ≥ 0 implies that u1 is

nonnegative (see Remark 6.5 of [18]). By Lemma 6.2.3, u1 satisfies

u1 ≤ c(N, p)W 4
1,p,N [2µ1] ≤ c(N, p)W1,p,N [2µ]
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cap1,p,N − q.e. in B1, where c(N, p) is the constant in Theorem 6.2.2. As observed in

(6.2.2)

W1,p,N [2µ] = W1− 1
p
,p,N−1 [2µ] in ∂RN

+

so u1 ∈ Lq
(
B1 ∩ ∂RN

+

)
and, by (6.2.3),

u1(x′, xN) ≤ c(N, p)W1− 1
p
,p,N−1 [2µ] (x′)

cap1,p,N − q.e. in B1, and in the whole RN if we extend the function by zero outside

of B1. Suppose m > 1, m ∈ N, and um is a renormalized solution to−∆pum = 2uqm−1H + 2µm in Bm

um = 0 on ∂Bm

(7.2.5)

where µm(E) = µ (E ∩Bm) and um−1 ∈ Lq
(
∂RN

+

)
is nonnegative, supported in

Bm−1, and satisfies

um−1(x′, xN) ≤ αm−1W1− 1
p
,p,N−1 [2µ] (x′) for every (x′, xN) ∈ Ω ∩Bm−1

for some constant αm−1, where Ω is a set of the form Ω = Ω1,m−1 ∩ (Ω2 × R) with

cap1,p,N

(
Ωc

1,m−1

)
= 0 and Ω2 ⊂ RN−1 the set where W1− 1

p
,p,N−1 [µ] (x′) is finite and

condition (7.1.4) holds (note that |Ωc
2| = 0). Since the measure 2uqm−1H + 2µm is

nonnegative we have um ≥ 0 and, again by Lemma 6.2.3,

um ≤ c(N, p)W 4m
1,p,N

[
2uqm−1H + 2µm

]
cap1,p,N − q.e. in Bm.

By definition of the Wolff potential one can see that

W 4m
1,p,N

[
2uqm−1H + 2µm

]
≤ C(p)

(
W 4m

1,p,N

[
2uqm−1H

]
+W 4m

1,p,N [2µm]
)
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where C(p) = max
{

1, 2
2−p
p−1

}
. Therefore, we can use that uqm−1H and µm are sup-

ported in ∂RN
+ , together with (6.2.3), the monotonicity of the Wolff potential, as-

sumption (7.1.4), and the induction hypothesis, to compute that

um(x′, xN) ≤ C(p)c(N, p)
(
W 4m

1,p,N

[
2uqm−1H

]
+W 4m

1,p,N [2µm]
)

(x′, xN)

≤ C(p)c2
1
p−1
(
W 4m

1,p,N

[
uqm−1H

]
+W 4m

1,p,N [µm]
)

(x′, 0)

≤ C(p)c2
1
p−1

(
W1,p,N

[(
αm−1W1− 1

p
,p,N−1 [2µ]

)q
H
]

+W1,p,N [µ]
)

(x′, 0)

≤ C(p)c2
1
p−1

((
2

1
p−1αm−1

) q
p−1

C1 + 1

)
W1,p,N [µ] (x′, 0)

= C(p)c

((
2

1
p−1αm−1

) q
p−1

C1 + 1

)
W1− 1

p
,p,N−1 [2µ] (x′)

for every (x′, xN) ∈ Ω ∩Bm, where Ω = Ω1,m ∩ (Ω2 × R), Ω2 ⊂ RN−1 is as described

above, and Ω1,m is the intersection of Ω1,m−1 with the set where the first inequality

holds. Note that cap1,p,N

(
Ωc

1,m

)
= 0. Hence, by induction starting with α1 = c(N, p),

we obtain a sequence of nonnegative functions {um}m ⊂ Lq
(
∂RN

+

)
such that

um(x′, xN) ≤ αmW1− 1
p
,p,N−1 [2µ] (x′) in Ω ∩Bm,

with Ω as described above, and where

αm = C(p)c(N, p)

((
2

1
p−1αm−1

) q
p−1

C1 + 1

)
.

Since C(p) ≥ 1, it is easy to show by induction that the assumption

C1 ≤

(
q − p+ 1

qc(N, p)C(p)2
1
p−1

) q
p−1 (

p− 1

q − p+ 1

)

implies that the sequence {αm}m satisfies

αm ≤M :=
qc(N, p)C(p)

q − p+ 1
for all m ∈ N
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and so we obtain

um(x′, xN) ≤MW1− 1
p
,p,N−1 [2µ] (x′) in Ω ∩Bm.

Note that we may assume um−1 ≤ um cap1,p,N − q.e. in RN . Indeed, assume um−1

is a solution of (7.2.5) such that um−2 ≤ um−1 cap1,p,N − q.e. in RN . Set νm =

2um−1H + µm. Then, since νm−1 ≤ νm, Lemma 7.2.1 shows that we can obtain a

renormalized solution um of (7.2.5) such that um−1 ≤ um a.e. in Bm−1. Extending by

zero and using cap1,p,N− quasi-continuous representatives we conclude um−1 ≤ um

cap1,p,N − q.e. in RN .

Now, since these solutions are nonnegative, we may identify them with their

p− superharmonic representatives and conclude um−1 ≤ um everywhere in RN (see

Remark 6.2.4). Then, by Lemma 7.3 of [14] u = supm um defines a p− superharmonic

function which, by Theorem 10.9 of [14], is cap1,p,N− quasi-continuous in RN (note

that u is finite in Ω and |Ωc ∩Bm| = 0 for every m ∈ N). Moreover, it follows that

u ∈ Lq
(
∂RN

+

)
and uqm → uq in L1

(
∂RN

+

)
. Notice that {um}m is uniformly bounded

in Lq
(
∂RN

+

)
. Hence, by Lemma 4.1.1 u satisfies properties (1), (2), and (3) in the

statement of that lemma. Note also that u satisfies the desired estimate (7.2.3).

By Lemma 6.1.10, to show that (4.2.1) holds it is enough to have

∫
{um≥k}∩BM∩∂RN+

uqmdx
′ +

∫
{u≥k}∩BM∩∂RN+

uqdx′ → 0

as k → 0, uniformly in m. But this is clearly true since um ↑ u a.e. in BM ∩ ∂RN
+

and uq ∈ L1
(
∂RN

+

)
. Hence, we may apply Lemma 4.2.1, with gm = −2uqm−1 and

g = −2uq, to conclude that u is a local renormalized solution to

−∆pu = 2uqH + 2µ in RN .

By Theorem 5.1.1 such a solution is symmetric, and so by applying Theorem 5.2.1
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the result follows.

Combining Theorems 7.2.2, 7.1.1, 7.1.3, and Remark 7.1.2 we obtain the follow-

ing.

Corollary 7.2.3. Let 1 < p < N , p − 1 < q , and assume µ in Mb

(
∂RN

+

)
is

nonnegative. Then the following are equivalent:

(1) For some ε > 0 there exists a nonnegative renormalized solution to

−∆pu = 0 in RN
+

|∇u|p−2 uν = εµ+ uq on ∂RN
+

satisfying

u(x′, xN) ≤ C(p, q,N, ε)W1− 1
p
,p,N−1 [µ] (x′) in Ω ∩ RN

+ ,

where Ω = Ω1 ∩ (Ω2 × R), Ω2 ⊂ RN−1, with cap1,p,N (Ωc
1) = 0 and |Ωc

2| = 0.

(2) There exists C > 0 such that for all balls B ⊂ ∂RN
+ ' RN−1

∫
B

(Ip−1,N−1 [µB])
q
p−1 dx′ ≤ Cµ (B)

where µB is the restriction of µ to B.

(3) There exists C > 0 such that for all compact sets K ⊂ ∂RN
+ ' RN−1

µ (K) ≤ CcapIp−1,
q

q−(p−1)
,N−1 (K) .

(4) There exists C > 0 such that for all balls B ⊂ ∂RN
+ ' RN−1

∫
RN−1

(
W1− 1

p
,p,N−1 [µB]

)q
dx′ ≤ Cµ (B) .
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(5) W1− 1
p
,p,N−1 [µ] ∈ Lq

(
∂RN

+

)
and

W1− 1
p
,p,N−1

[(
W1− 1

p
,p,N−1 [µ]

)q]
≤ CW1− 1

p
,p,N−1 [µ] a.e. in ∂RN

+ .

Proof. We know (1) implies (2) from Theorem 7.1.1. We noted in Remark 7.1.2

that (2) is equivalent with (3) and implies (4). That (4) implies (5) was shown in

Theorem 7.1.3. Finally, suppose (5) holds for some constant C. Then we see that

for any ε > 0

W1− 1
p
,p,N−1

[(
W1− 1

p
,p,N−1 [εµ]

)q]
≤ Cε

q−(p−1)

(p−1)2 W1− 1
p
,p,N−1 [εµ]

a.e. in ∂RN
+ , and so (1) follows from Theorem 7.2.2 provided ε > 0 is chosen small

enough.

7.3 Nonexistence for the subcritical case

We now turn to the problem of nonexistence.

Notice that when showing (7.1.1), in the proof of Theorem 7.1.1, we actually

obtain ∫
B

(Ip−1,N−1 [ωB])
q
p−1 dx′ ≤ C(N, p, q)ω (B)

where ω = 2ūqH+2µ. Note also that the argument could have been applied directly

to a p− superharmonic function v solving −∆pv = 2vqH + 2µ in RN . On the other

hand, we obtained

∑
Q⊂P

(
ω(Q)

|Q|1−
p−1
N−1

) q
p−1

|Q| ≤ C(N, p)ω(P )
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for all dyadic cubes Q,P ⊂ ∂RN
+ , which in the case p = N implies

ω(P )
q

N−1 |P | ≤ C(N)ω (P ) .

This last inequality cannot hold for a bounded nonnegative ω defined in ∂RN
+ unless it

is trivial. Hence, considering also the equivalences in Remark 7.1.2, we can conclude

the following.

Corollary 7.3.1. Let 1 < p ≤ N and p− 1 < q. Let µ in Mb

(
∂RN

+

)
be nonnegative

and suppose u is a nonnegative p− superharmonic solution to −∆pu = 2uqH + 2µ

in RN . If p < N then

∫
K

uqdx′ + µ (K) ≤ C(N, p, q)capIp−1,
q

q−(p−1)
,N−1 (K)

for all compact sets K ⊂ ∂RN
+ . If p = N then u(x′, 0) = 0 a.e in ∂RN

+ and µ ≡ 0.

Since capIp−1,
q

q−(p−1)
,N−1 ≡ 0 whenever (p−1)q

q−(p−1)
≥ N − 1 (see [10]) we have the

following Liouville-type theorem for subcritical problems with source.

Theorem 7.3.2. Let 1 < p ≤ N , p − 1 < q, and µ ∈ Mb

(
∂RN

+

)
nonnegative. If

p = N , or p < N and q ≤ (N−1)(p−1)
N−p , then there are no nontrivial nonnegative p−

superharmonic solutions of −∆pu = 2uqH + 2µ in RN . In particular, there are no

nontrivial nonnegative renormalized solutions of (7.0.1).

Proof. Since every nonnegative local renormalized solution coincides a.e. with a p−

superharmonic solution of the same equation (see Remark 3.2.4), by Remark 3.3.4,

the hypothesis, and the previous corollary, we see that is enough to show that there

are no nontrivial nonnegative p− superharmonic solutions of −∆pu = 0 in RN
+ whose

trace vanishes a.e. in ∂RN
+ . As noted in Remark 6.2.1, any such solution u satisfies

u(x) ≤ C inf
BM

u
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in BM for any M > 0, and so u ≡ 0.

7.4 Characterization of removable sets

In this section we obtain a characterization of removable sets for problem (7.0.1)

when µ ≡ 0. In order to properly define removable sets we first define what does it

mean to have a renormalized solution up to a portion of the boundary. We give a

definition which is a natural variant of definition 3.3.1.

Definition 7.4.1. Let 1 < p ≤ N and p − 1 < q. Given K ⊂ ∂RN
+ compact, a

renormalized solution of−∆pu = 0 in RN
+

|∇u|p−2 uν = |u|q−1 u on ∂RN
+ \K

(7.4.1)

is a function u defined in RN
+ such that:

(1) u is measurable, finite a.e., and Tk(u) ∈ W 1,p
loc

(
RN

+

)
for all k > 0;

(2) |∇u|p−1 ∈ Lsloc
(
RN

+

)
for all 1 ≤ s < N

N−1
;

(3) |u|p−1 ∈ Lsloc
(
RN

+

)
for all 1 < s < N

N−p (1 < s <∞ if p = N);

(4) u is finite a.e. in ∂RN
+ \ K, and u ∈ Lq (Ω) for any closed set Ω ⊂ ∂RN

+ such

that Ω ⊂ Kc;

(5) there holds ∫
RN+
|∇u|p−2∇u · ∇wdx =

∫
∂RN+ \K

|u|q−1 uwdx′

for all w ∈ W 1,p
(
RN

+

)
compactly supported in RN

+ \ K, whose trace belongs

to L∞
(
∂RN

+ \K
)
, and satisfying the following condition: there exists k > 0,
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r > N , and functions w±∞ ∈ W 1,r
(
RN

+

)
such that

w = w+∞ a.e. in
{
x ∈ RN

+ : u > k
}

w = w−∞ a.e. in
{
x ∈ RN

+ : u < −k
}
.

Remark 7.4.2 We note that, just as in Remark 3.3.2, it makes sense to talk about

the boundary values of u in ∂RN
+ \K.

Now we define removable sets.

Definition 7.4.3. We say that a compact set K ⊂ ∂RN
+ is removable for (7.4.1)

if every nonnegative renormalized solution of (7.4.1) is a nonnegative renormalized

solution of −∆pu = 0 in RN
+

|∇u|p−2 uν = uq on ∂RN
+ .

(7.4.2)

We have the following characterization of removable sets.

Theorem 7.4.4. If 1 < p < N and q > (N−1)(p−1)
N−p then a compact set K ⊂ ∂RN

+ is

removable for (7.4.1) if and only if capIp−1,
q

q−(p−1)
,N−1 (K) = 0.

Proof. Let u be a renormalized solution to (7.4.1) and suppose capIp−1,
q

q−(p−1)
,N−1 (K)

is equal to zero. Since q(p−1)
q−(p−1)

< N − 1 we can combine Theorems 5.1.4 and 5.5.1 of

[10] to conclude that cap1− 1
p
,p,N−1 (K) = 0. Let ū be the extension of u to RN by

even reflection. Then ū is a local renormalized solution to −∆pū = 2uqH in RN \K.

By Proposition 2.3.2 cap1,p,N (K) = 0 and by Theorem 4.3.6 of [25] this implies that

the p− superharmonic representative of ū can be extended to RN as a nonnegative

p− superharmonic function. By Remark 6.2.4, this p− superharmonic representative

coincides cap1,p,N − q.e. with u in RN
+ . Let µ be the Radon measure associated to ū,

i.e., the measure such that −∆pū = µ in D′
(
RN
)
. Let us show that µ = 2uqH.
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Take φ ∈ C∞0
(
RN
)

nonnegative and let φn be such that 0 ≤ φn ≤ φ, φn ∈

C∞0
(
RN \K

)
, and φn → φ point-wise in RN \K. Note in particular that φn → φ

H−a.e.. Hence, by Fatou’s Lemma,

∫
∂RN+

2uqφdx′ =

∫
RN

2uqφdH

≤ lim inf
n→∞

∫
RN

2uqφndH

= lim inf
n→∞

∫
RN
|∇ū|p−2∇ū · ∇φndx

= lim inf
n→∞

∫
RN
φndµ

≤
∫
RN
φdµ

and so we conclude uq ∈ L1
(
∂RN

+

)
and µ ≥ 2uqH in D′

(
RN
)

(recall that u satisfies

(4) of Definition 7.4.1). It follows at once from considering the equations solved by

ū that in fact µ = 2uqH in RN \K. Then, setting µK = µ− 2uqH we have that ū is

a p− superharmonic solution of

−∆pū = 2uqH + µK in RN

where the measure µK is supported in K (and hence bounded). Then, by Corollary

7.3.1,

µK (K) ≤ CcapIp−1,
q

q−(p−1)
,N−1 (K) = 0

and so µK ≡ 0. By Theorem 4.3.4 of [25], ū is a local renormalized solution to

−∆pū = 2uqH in RN , and so, by Theorem 5.2.1, the restriction of ū to RN
+ is a

renormalized solution of (7.4.2).

For the converse, suppose capIp−1,
q

q−(p−1)
,N−1 (K) > 0. We let µ be the capacitary

measure of K (see Theorem 2.5.3 of [10]) and extend it to ∂RN
+ by setting µ (A) =

µ (A ∩K). By Theorem 2.5.5 of [10] we see that µ satisfies (7.1.2) and so, by
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Corollary 7.2.3, there exists a renormalized solution u of (7.0.1) with measure εµ for

some ε > 0. Since µ is concentrated in K, u is also a solution of (7.4.1) and thus K

is not removable.
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